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Abstract: We provide a mathematical framework for the analysis of discrete
dynamical systems. These are systems with a discrete state spaces. We find that
Hilbert spaces are the appropriate spaces in which to embed the dynamics. In this
formulation, it is possible to define and write equations of motion for the system.
Although Hilbert spaces are generally associated with quantum systems in physics,
they are employed here in a purely classical manner; both dynamical evolution and
results of measurements are just as in classical mechanics. Two examples analysed
are Buclid’s algorithm and the Turing machine.

1. Introduction

This work provides a framework for describing the dynamics of discrete dynamical sys-
tems. Such systems, sometimes called discrete event systems, are so called because some
aspect of the evolution of the system is discrete. It may be the case that states accessible
to the system form a discrete set or it may happen that transitions of the system take place
only at certain instants of time. In systems such as the digital synchronous computer, both
the time and the states of the system change by discrete amounts. Such systems are the
subject of this work.

It is important to understand that ’dynamical system’ here stands for any system that can
be described by the ideas and techniques of physical systems familiar to physicists. Systems

in physics have a special property—they obey the “laws of nature.”

No such requirement
is imposed on the systems considered here. The examples we describe in this paper do not
obey the laws of nature. However they do have states and equations of motion. Therefore
they qualify as dynamical systems. In other words, our interest in discrete event systems is
quite independent of any connection with natural systems or with physical law.

The relationship between physics and computations has received a great deal of attention.
We have deliberately avoided a discussion of this relationship as they involve ideas that are
not necessary for the present discussion. We refer the reader to the article by Bennett [1]

for a history of this subject.

t Supported by the IBM corporation through grant number 61653 and by the State of
Texas through TATP Project 003658-237.



Let us begin by first classifying all known dynamical systems according as the set of all
possible states of the system or the times at which the state may change is continuous or
discrete, see figure 1.

Systems that evolve continuously in time, namely those that may be described by differ-
ential equations have easily the longest history and have been very well studied. These are

the “classical systems” of fiure 1. Quantum theory and quantum dynamical systems should

leave no one in doubt that nature provides an abundance of systems with discrete state
spaces. It is certainly not the case that discrete event systems are solely “man-made.” As
far as we know (observationally), the quantity we call time appears as a continuous parame-
ter in all natural systems. These systems therefore occupy part of the box called “Quantum
Theory.” The digital computer is a fine example of a man-made system with a discrete set
of states and in which transitions occur at discrete instants of time. These are placed in the
lower right portion of figure 1. There are other man-made systems, such as asynchronous
computers or sytems in the field of operations research where either time is a continuous
parameter or the state space is continuous. These systems, including the digital computer,

fall in the shaded portion of the figure and are the ones that hold our interest.
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Our results indicate strongly that techniques developed for treating quantum systems
can also be used for dealing with the dynamics of man-made systems. We are encouraged
by the observation that our classification places man-made systems in the same class as

quantum systems. As justification for this point of view we present two examples of discrete
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systems that may be interpreted as a dynamical system in the sense just described. Both
examples are of interest to the computer scientist. The first example analysed in section
2 is Buclid’s algorithm for finding the greatest common divisor of two intergers. Section 3
formulates the Turing Machine as an example of a discrete dynamical system. Both examples
point to suitably chosen Hilbert spaces as being the appropriate vector spaces in which to

wmbed the dvnamics. The state space of a quantum system such as a hydrogen atom is a

Hilbert space!. Such spaces have been in use by physicists for the better part of this century
and there is an abundance of literature on this subject. We do not provide a comprehensive
introduction to Hilbert spaces but will intorduce only those aspects necessary for our work.
For an introduction see reference [2]. Appendices A and B provide more details of the

particular Hilbert spaces used in section 2 and 3 respectively.

2. Euclid’s Algorithm—An Example

A very simple discrete dynamical system is the algorithm of Euclid for finding the greatest
common denominator ged, of two integers z and y. Dijkstra [3], presents a discussion of this
algorithm in a form that is particluarly suitable for our purpose. We begin with a review of

this algorithm, see figure 2.
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Figure 2

The line y = = is the “anwer line” because gcd(z,z) = @. So for points not on the answer

line, one proceeds by drawing the smallest right isosceles triangle with the right angle at

I Though of a different kind than the ones used here.
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(z,y) and one acute angle on one of the axes. The new point for the next iteration is chosen
by moving to the point that coincides with the other acute angle of the triangle. This is
repeated until the new point falls on the answer line. We will now assume that this algorithm
is correct and present the dynamical system to which it corresponds.

The two main ingredients of any dynamical system are the dynamical variables and a

rule that specifies the evolution of these variables. Let us begin by describing the dynamical

variables. We proceed heuristically. We will first desribe a state space and define the
dynamical variables later. Let us suppose the existence of a linear vector space F with the
following properties.

1. Basis vectors denoted |2}, 1 =0,1,2,...

2. An inner product defined by

(il7) = (2.1)

where (i] is the complex conjugate transpose of i) and §;; is the Kronecker delta defined by

5, = {1, 4= 7

0, otherwise.

So the basis vectors |i) are an orthonormal set.
3. Two independent operators & and &' called annihilation and creation operators that

operate on the basis vectors as follows;

(Al;l> _{0, ifi:O; .
T 1Vili—1), otherwise. (2.2)

atlls) =+vi+11]i+1). (2.3)

4. A commutation relation

[a,a" = aa' —a'a = 1.(2.9)

This is an operator equation where the right side is the identity operator in the space F. A
vector space with these properties is called a Fock space after Vladimir Fock. Fock spaces
are direct sums of Hilbert spaces. Appendix A contains a representation of used in this
discussion.

The vectors |i) are eignevectors of the operator ' since firstly

atalo) = 0lo)
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and

The integers 0,1,... are in one to one correspondence with the basis vectors of /. Con-

sider the direct product F @ F of F with F'. The basis vectors of F @ F are defined by

1z,y) & |z)ly). (2.5)

where |z) and |y) are vectors in F'. The set of states written in the form |z, y) may each be
considered as representing a point in upper right quadrant of the plane, that is those in figure
5 There are now two sets of operators, one for each of the spaces in the direct product. Let
us call these é; and a! and @, and @l. These creation and annihilation operators act on the
basis vectors of the first and second F' spaces in the product F @ F. The inner product in
F @ F is induced by that in F',

<33’v Y|z, i§’> = Oppibyyr (2.6)

we must compute the

def

So that to determine the x-coordinate of a state denoted by lz,y)
inner product of the state &|z,y) with the state |z, y), where z = al

b
as.

<$7yt:%ix7y> = &‘EAU‘Z‘»&O

=Z. (2.7

Similarly for the v coordinate with § “ g

(z,ylglz,y) = (z,ylalas|z,y)
( |

= ¥. (2.8)

\Vith these definitions, the action of the &’s and al’s are identified with translations in the

plane of figure 2.



with the states |z,y) and |z+y,y) as the initial and final states respectively, it can be shown
that

(z +y,y|[T, Ellz,y) > 0.

Our monotonicity criteria will therefore not permit the relevant coefficient Aggypypp in this

case, to be non-zero. In this way we can arrive at equation (2.9).

It would seem that the monotonicity criteria described is the equivalent of the action
principle in classical mechanics. In classical mechanics, the action principle is imposed on
the system “from outside.” It would seem that our present derivation corresponds to the
construction of Hamiltonian dynamics rather than Lagrangian dynamics; E might well be
called the Hamiltonian of Euclid’s system.

One might ask if it is possible to construct Euclid’s system in some other way, say for
instance in a Fock space that is not the direct product. It turns out that this is indeed
possible. Once again we may think of the state of the system as being described by the
coordinates (z,%) but we now encode these two numbers as a single number z using the well
known encryption z = 1/2((z +y)* + 3z + ). The new Fock space has basis vectors given by
|z). The E operator is also different but its function not nearly as obvious as the £ described
here in detail. There are vet other ways of formulating this algorithm. We might like to
think of erecting a finite dimensional Fock space at each point of the positive quadrant of
the z — y plane. Each such point can be in one of two states, only one of which represents
the occupation of the corresponding point by a fictious particle. In this description the
state of the system is defined to be the product of the state at each point. These kinds of
Fock spaces are used in physics for the description of fermions. The kind introduced in the
detailed presentation are used for the description of bosons. We will not present the detailed
analysis of these alternatives but it is important to realize that there are many different ways
of describing the same algorithm.

We have shown explicitly that Euclid’s algorithm can be viewed as a dynamical system
in which successive iterations of the body of the algorithm correspond to a unique evolution
of the dynamical system in Fock space. As no model of computation was used in this
demonstration, we assert that any system for which the state space is discrete, may be
viewed as dynamical system in a similar manner.

Fuclid’s algorithm terminates in a finite number of iterations. The dynamical system
will therefore reach its quiescent state after a finite number of operations of E. However,
we cannot associate a period of time with this evolution as there is no scale for time in the
system. Finally, Euclid’s algorithm is a deterministic algorithm for computing the gecd of
two integers. So is the dynamical system described above. It is deterministic in the sense of

classical mechanics where “boundary conditions” or “initial state” determine the evolution of

rd
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These two dimensional spaces are quite adequate for constructing systems with any
desired number of independent states. We now present a general technique for constructing
such spaces; it is used repeatedly in our description. Suppose we require a system that can

be in any one of S independent states. Consider the vector space spanned by basis vectors

of the form

1bo, by, .., bs—1) < TT 1B3), (3.5)
1==0

where it is understood that the terms in the product are written in order of increasing value
of index. Hereafter, the state |a,b) will mean the product |a)|b), where each member of the
product is a basis vector of a distinct F. The set of annihilation and creation operators is

now b; and b with anti-commutation relations

{i)nijj} - 6éj:
{Bi’i)j} = 0, (3.6)
{6376;} = 0,

with 4 = 0,1,...,5 — 1. As each of the b; can have the value 0 or 1, the vector space in
question has dimensionality 2°. The inner product in this space is taken over from that in
F.
oy 32
7 7 H € .
<bo, biyeoos bs-x[bo by bss > =) H IR (3.7
1=0

We can restrict ourselves to a particular S dimensional subspace by imposing the con-
straint that at most one of the b; can be 1, the others must all have value 0. A simple way

of imposing this constraint is by use of the number operator 7,

S-1
n ST bl (3.8)
1=0

From this definition of n, it follows that

S—1
Plbosbe, .y bsot) = (Zbi)ibo,bl,...,bs_ly
3==0

So the basis vectors are eigenvectors of 7 with eigenvalues equal to the number of b; that

have the value 1. The condition we must impose is then

ﬁ{bg, bl? .- .?375-1> - Ibg,bl, PR 55_.1>.

Hereafter we will always assume that such a restriction has been imposed and in order to

indicate this we will adopt the notation where the state |¢) stands for that basis vector in this
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special subspace in which the ith member of the product is in state |1) the others in state
|0). The range of the parameter that is underscored is to be understood within the context
of the discussion in which it appears®. This subspace is henceforth the single-bit subspace.
Two important operators that will play a role are the state operator 3 and ?;;. These are

defined as follows.

3 = iblb;. (3.9)
Ly = bib;. (3.10)
3 can be used to determine which b; has value 1,

1(z)2)

= 1

e~
[
(3]
[
e
il

and

tilk) = ld)-
In this equation, if k is equal to j, &; changes the state from |k) to |£) otherwise the state
is nullified. So %;; is an operator that conducts transitions from one state to another®. t
has the important property that if the initial state is in the single-bit subspace, so also is
the ;;-transform of the initial state. Finally, a single-bit subspace of dimension D will be
written as FP. Let us now proceed to discuss the Turing machine proper.

Recall that our Turing machine has one external tape, one tape head and some finite
set of internal states. The conventional meaning of these parts of a Turing machine is as
follows. The external tape is taken to be infinite in extent and is divided into an infinite
number of cells. Each cell can contain at most one symbol that is a member of some fixed
set of symbols. The tape head can read at most one cell at a time. This cell is called the
current cell. After reading the current cell the tape head performs some action that depends
on the internal state. This action is some combination of moving along, reading from and
writing to the external tape. Finally, it is assumed that initially the tape has only a finite
number of marked cells, there is always only one current cell, only one internal state that is

the current state and that any action of the machine modifies only a finite number of cells

of the external tape.

3 Note that the vectors [0) and |1) are quite different from |0) |1) respectively.
4 Observe that 7 = iy t
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The description of our Turing machine begins with the external tape. The object that
will represent the external tape is a state ¥g that is a product of the state of each of the
individual cells. Let Nz be the number of independent states available to each cell. The

state C(7) of the ith cell is defined to be

o def 114 ..
Ch)y = i}?‘K }79_(?’}% 3.11)
where ¢ = —00,...,—1,0,1,...,00. C(1) is a vector in F' & FN»_ The value of h(¢) can be

0 or 1. When h(i) = 1 the ith cell is the current cell. The range of s(¢) is 0,1,...,Ng — 1,
corresponding to the Ng independent states available to a cell. What is conventionally
regarded as data is here recorded as a particular state of the cell. The state of the entire

tape g, is a product of the state of the individual cells.

e = 1] CO). (3.12)

The annihilation and creation operators corresponding to the h(7) are h(:) and h(i)t. Each &(1)

‘s constructed out the annihilation and creation operators 3,(z) and 3, u=0,1,..., Ng,

which act on the uth parameter of the state of the ith cell.

Np=-1
3(1) = Y udu(d)3.00), (3.13)
240
The anti-commutation relations amongst them are
{8.(0,5.0)'} = bij6u,
{h(),h()'} = 8ij.
All other anti-commutation relations, for example those between h’s and &’s vanish. From
the definitions (3.4), (3.5)and (3.13), it follows that

(3.14)

()| h(1), s()) = s()|h(), 3())

and

L) h()|R(D), 3(0)) = A(D|R(D), 5(9))

The operator that changes the state of the ith cell is

fo(D) = 3.(0)78,00), (3.15)
that which changes the cell that is marked as current is
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the system uniquely. Moreover, as in classical mechanics, one is free to make measurements
on the system at any time without affecting the system. The surprising feature of Euclid’s
system is that despite it being a “classical system,” the language used for its description is

that of quantum theory.

3 rﬁn‘i‘ng Machines

We will show that it is possible to specify and describe the working of a Turing machine
as a dynamical system in Hilbert space. Our discussion is relevant to a machine that has a
single external tape, one finite control that we will henceforth be referred to as the internal
tape and a device conventionally called the tape head, that is capable of communicating
between the two media and reading from and writing to the external tape. The vector
spaces we will need are different from the ones in section 2 let us begin by introducing these.

The vector space we will need is again a Fock space F' so 2

it has all the properties
of a vector space described in section 2. The crucial difference being the properties of the

annihilation and creation operators @ and a'. These obey the relations

{a,a'} ¥ aa' +ala =1,
{a,a} =0, (3.1)
{a',a'} =o0.

Notice the plus sign in the definition where previously in section 2, there was a minus sign.
These are called anti-commutation relations.These relations imply that the vector space
of these operators is spanned by two basis vectors that we will denote [0) and |1). The

annihilation and creation operators act on these vectors according to

aloy = o0, alt)y = Joy, &'jo)y = |1), a'l) = o (3.2)

The bases |0) and |1) are orthonormal in the following inner product

(oloy = 1, (o]1) = 0, (o) = o, (1]1) = 1. (3.3)

The two basis vectors are eigenvectors of the number operator a'a, that is

atalo) =0)0), a'aj1) =1]1), (3.4)

A particular representation of this vector space is presented in appendix B.

2 We use the same name for this vector space as in section two. No confusion should arise

as we will not refer to the F of section 2 here.
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hii,j) = h@DRG). (3.16)

This completes our discussion of the external tape.
Tn the usual description of the Turing machine, the internal state and that of the current

cell define a transformation of the internal state and the external tape. Following this, let

us suppose that our Turing machine is always to be found in one ot Ny internal states. This

can be fully described by vectors in F;'.

Y = |ag) (3.16)

where o = 0,1,..., Ny — 1 and where we have adopted the convention quantities referring
to the internals of the Turing machine are taken from the Greek alphabet. There 1s now
s further increase in the number of annihilation and creation operators, namely &, and &}

which combine to form the internal state operator &,

&= Y pélo, (3.17)

Gy (3.18)

In order to discuss the tape head, it is necessary to first define the state ¥ of the entire

Turing machine.

v Yoy n. (3.19)

The tape head is a device that first finds and determines the state of the current cell. Second,
it measures the internal state and then performs some transformation on ¥.

All these definitions can now be brought together by discussing how to specify a com-
putation. For this purpose we introduce a set of Turing operators T}, (i) that can act on the
state of the Turing machine to transform it to another state. The meaning of the indices is as

follows. The range of the Greek index, in this case y, is from 0 to N; — 1—the numbering of

numbering the states of a cell of the external tape. The general rule is that indices from the
Latin alphabet refer to the state of a cell of the external tape, Greek indices have the same
meaning with reference to the internal tape. The parameter ¢ that appears as an argument
is the number assigned to a cell. We treat this parameter as an argument because firstly,

the number assigned to cell is arbitrary to within translations of the entire tape. Secondly
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treating it as an index will imply that there are an infinite number of T7s but as we will
see, there are in fact only a finite number. These operators are constructed out of the entire
set of annihilation and creation operators introduced. For the present we will assume that
there is no restriction on their form except that the action of any of them on a legal state
must produce a legal state. A legal state is one in which a finite number of cells are in a

state other than the state 0), exactly one cell is marked as current and the machine is in

one internal state. Clearly, the T, will have this property if they are composed only out of
the transition operators, (1), f,, and fzij.

A computation progresses by the application of a sequence of the T operators. To
understand this, let us suppose that the current cell with number ¢ = 10 of the external tape
‘s in state u = u, and that the current internal state is one with g = po. In this case the
rule we would like to adopt is that the state ¥ is to be transformed by the application of
the operator Tlou,(o). In other words, ¥ is replaced by Tl,uo(t0) ¥. It is in fact possible
to construct an operator that at any given stage of the computation, selects the correct T

operator to apply. The operator that does this 1s

Nr-1Ng-1 o0

H= 35 Y 3 Tu@)fubu®hi,i) (3.20)

u=0 u=0 im-—oco

To see how this operator works, let ¥ be a legal state of the computation and consider the
action of B on ¥. What we have to show is that although E is an infinite sum of operators,
at any stage in the computation only one of these terms actually acts on the current state.
Recall first that a legal state is one in which exactly one cell, call it 1o, of the external tape is
marked as current, that is, only one of the h(i) is 1. From equation (3.16), hi, 1) = ()T h(3).
Fach term of the infinite sum will be acted on by one such operator. However only that term

will survive which has 7 = 2. So we have

T, if 1 = g;
0, otherwise.

h(i,i)¥ = {
Therefore

Ny—1 Np-1

Ev = > > Thulio)fustuu(io) T
p=0 u=0

Similarly, the summations over u and p collapse to just one term and we have finally,

Ev = T)u,lio)9,

as claimed. We can think of the “collapse” as taking place in any order we wish. A fixed ¥

will always be acted on by the same T regardless of this order. The reason is the vanishing of
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the anti-commutation relations between the primitive annihilation and creation operators of
different parts of the Turing machine. We now see that the state of the computation ¥(k+1)
after k + 1 steps is related to ¥(k) according to

¥(k+1) = Euk). (3.21)

As we remarked earlier, the T),,(¢) are not completely arbitrary and further more, they
can be generated from a finite set. We address the latter point first. The transformations
that define a conventional Turing machine cannot depend on the particular number given to
a cell. After all, given some tape with a legal marking, one is free to choose any cell as cell
number 0. Equivalently, one can uniformly translate all cells by any desired amount without
changing the input or the computation. This means that the Turing operators must have
the same form for each cell. That is, they are covariant with respect to translations along
the external tape. So one first defines the finite set T,. (1) with reference to some definite
but arbitrary cell 4,. There are Ny N; operators in this set. In addition to operating on the
ioth cell, each will in general transfrom some set of neighboring cells. The set of neighbors
is part of the prescription of the program and is defined relative to some fixed cell. So for
cach u and u, Tyu(io) will involve operators of neigboring cells relative to this fiducial cell.
We imagine that a copy of the space F' ® F'® is erected over each cell together with the
entire set of T,.(io) but with i, replaced by i—the number assigned to the particular cell.
This is not quite sufficient because the space of the Turing operators is not just the space of
the cells but includes the space of internal states F¥'. So we must also assume that there
is a single copy of this space and this copy is available simultaneously to each cell. This of
course does not prove to be a problem as only one cell is current at any time.

The general structure of the Turing operators is constrained by the requirement that

legal states be transformed into legal states. The two requirements are

i B = 0 (3.22)
where n; = Z:;gl 7. and

Az, E] = 0 (3.23)

where ng = Z;‘%_‘ h(z,3). That is, E must commute® with the number operators 72, and 7ig.

These are the equations of motion for the two operators (dynamical variables) fi; and 7ig.

These operators measure respectively, the number of internal states that and the number

5 Where [4,B] = AB-B A. See section 2. The use of square brackets [] rather than curly

braces {} is explained in appendix B.
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of cells that are current. If the number of internal states and current cells are both fixed
at the beginning of the computation, then equations (3.22)and (3.23)guarantee they will
remain unchanged. For Turing machines both of these numbers are choosen to be equal to

1. Substituting for £ from equation (3.20)in equation (3.22),

Ny-iNg-1 o

% Y s AT N T
AR VI AV & iuule’uuVuu\glh(qaq/} 0
p=0 u=0 f=m-—o0

By use of the indentity [4,BC] = (4, BIC + C[A, €], and noting that #; commutes with the

operators %, 7, and iz(é, 7) this equation reduces to

Ni=1Ng—-1 oo

Z Z Z (1, Tl‘u(i)]%,uu%uu(i)il(i,i) = 0.

p=0 u=0 fm—00

Since the T, () are all independent, we have

[r, Thu(9)] = 0,

for all g, u and 3. Similarly for 7y we have

g, Thu()] = 0.

The necessary and sufficient condition for these equations to be satisfied is that T,,(7) should
be composed out of the transition operators ti;, T and (i, §).

Specification of a particular programs will in general assign further properties to the Tur-
ing operators. We will not study particular programs here as for the present we are content
with the characterization of Turing machines as dynamical systems. Program termination
is also something about which we have not been explicit. The usual Turing machine has a
special symbol in the set of recognized ones that s defined to signal a “halt.” The Turing
machine stops when the current cell is in this state. Dynamical systems do not “halt,” they
are continually evolving or are in stasis at a fixed point. In keeping with this spirit we note

that & will in many cases have eigenvalues. That is a state ¥ which have the property

Ev = v

Clearly if a particular Turing machine reaches such a state, there can be no further change
i1 its state. These states are fixed points in the space of states. If we wish to identify these
eigenvalues with the end of the program, then we must constuct E so that it has exactly one
eigenvalue for each distinct input. In addition, it should be possible to reach one of these
eigenstates for every legal initial state. We must also define E so that there are no cycles in

the space of states. Where by cycle we mean a sequence of states that are transformed into
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cach other by the action of E. In the usual analysis of the Turing machine these and other
questions are part of the halting problem. Such considerations specifically regarding Turing

machines will be taken up in future work.

4. Equations of Motion

A complete specification of a dynamical system requires a definition of the dynamical

variables, the space of states and equations of motion. In this section, we will define and
discuss dynamical variables and equations of motion. Euclid’s algorithm is once again used
as an example but the conclusions are generally valid.

Now a dynamical variable is an object that when measured, gives information about the
state of the system. The value of this measurement changes with the state of the system. In
Euclid’s system, the states are the vectors |z, ), the evolution operator is the operator E.
Let (k) be the state of Euclid’s system after k applications of E. If we apply E again, we

have

Pk +1) = EPk). (4.1)

Equations of motion usually involve derivatives of objects that arise in the system under

consideration. As this is not possible here, we must accept equation as the nearest thing
to an equation of motion. We will call this an equation of evolution because equation
(4.1)resembles an integral form of the equation of motion rather than an equation of motion.

The state of the system is determined by measuring the values of z and y of the cur-
cent state. As we indicated, this is accomplished by computing the expectation values®
(z,y|&|z,y) and (z,y|§|z,y) respectively. Measuring the system is the same thing as com-
puting the expectation value of some operator. Dynamical variables are now operators;
expectation values of operators have physical meaning. How many dynamical variables do
we have? As Euclid’s algorithm is formulated on a “plane,” there are two degrees of freedom
one for each of the two (geometrically) orthogonal directions. The corresponding dynamical
variables are the operators & and .

In general, we will always have an equation of evolution as in (4.1). The dynamical
variables are those operators all of whose expectation values are required simultaneously to
completely determine the state of the system. This means that the dynamical variables are
those operators that commute (or anti-commute) with each other. In the case of Euclid’s
system there are two namely ¢ and §. The Turing machine has many more; in fact as the
external tape is allowed to be infinitely long, there are an infinite number of dynamical vari-

ables. But as we always restrict ourselves to the single-bit subspaces the relevant ones are the

§ Terminology that is borrowed from physics.
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various “position” operators introduced in section 3. These are the operators that measure
the state of each cell, SV2"% 43, (4)13,()!, the position of the current cell, T th(E)Th(D)

uz=0

and the internal state, ZN’—l

AT ~
p==0 /AI,O'#O'”.

5. Conclusions

Our aim was to demonstrate that we could treat discrete systems as dynamical systems

just as are systems described by continuous variables. Section 1 demonstrated our intent
with a simple example—Euclid’s algorithm. A surprising aspect of that example was the
existence of a monotonicity criteria that almost completely specified the evolution operator.
We argued there that this was similar to the action principle in classical mechanics. The
action principle of classical mechanics is universal in the sense that the same principle is
invoked for every dynamical system. We have not been able to find such a universal principle
for discrete systems. We consider this to be an important open problem.

Now equation (4.1)is an equation that was not derived but posutulated. The evolution
operators were defined with this equation in mind. It is entirely possible that there are other
ways of defining such equations; even some that might resemble the diffential equations of
classical mechanics. But in the form given there is a very important difference between
systems described by such equations and those of classical and quantum mechanics. Linear
classical systems and quantum mechanical systems all obey the principle of superposition.
The objects that may be superposed are solutions to the dynamical equations. No such
superposition principle is applicable here. Indeed the process of “collapse” of the evolution
operator to a single term works precisely because our systems are always to be found in a
state that is not a superposition. It would be interesting to find a man-made system that
requires or perhaps evolves through a superposition of states.

We hope that our description of Turing machines will remove any doubt that systems
with a discrete space of states can indeed be treated as dynamical systems. Moreover, we
have explicitly presented the mathematics that is suitable. Attention should also be paid
to the importance of the single-bit subspaces and the corresponding transition operators.
These together provide the basis for constructing universal mimics. That is, systems that
can mimic any other discrete system. We should stress that what we have presented here is
not merely an alternative description of problems that are well understood by use of other
techniques. The hope is that these methods are powerful enough to describe any discrete
dynamical system—irom those in operations research to those in the computing sciences
including other kinds of automata and perhaps physics. Indeed by taking seriously the
view that algorithms are dynamical systems [4, 5], it may be possible to develop quantum

algorithms for problems that fall in the complexity class NP.
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Appendix A
This appendix displays one explicit representation of the Fock spaces used in section 1.
In this representation, the basis vectors are denoted |#) with 2 = 0,1,2,..., where
1 0 0
0 1 0
l()): 0 ,Il>= 0 ,{2): 14 (Al)

By use of the equations
ali) _{O, ife=0;
= 1Vi i — 1), otherwise.

and

@iy =vi+1li+1).
The annihilation and creation operators & and &* are realised as infinite singular matrices.

0

0
V20

2 DD OO
e DD D

a= RRVERETE (A.2)
0o 0 0 0
1 0 0 0

a= 10 V2 0 o0 (A.3)
0 0 3 0

Here the (¢)th element of & and &* are evaluated by computing the matrix element (z7]a|7)

and (i]a*|j) respectively. One can easily check that indeed

O pd DD
o el DD D

¥

*

#*
s DD D e
LD D e D

and that the number operator 7 is

18



LD O OO
e OO = O
DO D
LN s B v B

Appendix B
Here we will discuss a useful representation of the two-dimensional Hilbert spaces F' used

in section 3. The orthonormal basis vectors are denoted [0) and |1) where

0) = (1> (B-1)
and

= (o) (B.2

Annihilation and creation operators & and 4" are

N 0 0
a = (1 0) (B.3)
. 0 1 ,
a = (0 O) (B.4)
It is then straightforward to check orthonormality of the basis vectors and anti-commutation
relations.
alo) = 0,
al1) = [0,
a*oy = |1)
a1y = 0.

The spaces that were actually employed in section 3 were products of F. Using the
notation and ideas of section 3, a system with S states is requires the single-bit subspace
FS. A state ¢ in F? is written as

51

¥ = |bo, b1,.. ., bs_1) & H 16:)

i=0
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It is now possible to show that each step of Euclid’s algorithm can be realised as the

action of an operator E acting on a state |z, y) This operator has the form

o

E = Z lk, Z){ékk’éll’ékl -+ @(k,, 21)6;; k’-l’éll' -+ @(Z;, k,)ékklél 11,k1}<k/, lis (29)

Bk =1

where ©(k, [) is the step function defined by
1, k>
ok, D) = {0: Rl

It is easy to check that the state |z,y) is transformed by E according to

EIx,y) = {

£ so defined performs the required transformations and can therefore claim to represent

INV

t—y,y), iLz>y;
z,y—a), ify>uz
z,Y), fz=y.

Euclid’s algorithm. Observe that the only eigenvalues of E are states of the form |z, ) which
of course correspond to points on the “answer line” in figure 2. Once we reach the state
|z, z), additional applications of E do not change the state of the system.

The expression for E given in equation (2.9)follows directly by “inpsection” of figure 2.
There is however a systematic way of deducing equation (2.9). Using the properties of ged
and imposing a monotonicity criteria on the evolution of the system, it is possible to actually
derive equation (2.9)as the (almost) unique form that E. This is also demonstrated in [3].

The way to do this is to first write E as a general projection operator,

jee)

E = 3 k1) A (K1,

kLE =1
where A are a set of coefficients to be determined. We assume that each of these
coefficients can be 0 or 1. Next, one uses the properties of ged such as for instance ged(z,y) =
ged(y, ) = ged(z +y,y) etc. to restrict the number of non-zero coefficients A;p. Although
this will certainly reduce the number of non-zero coefficients, there are still an infinite number
of undetermined ones. To reach the form presented in equation (2.9)we must assume that
a given state is to be transformed to another state only if this transformation results in a
strict decrease in the expectation value of the operator
T =dala, + alas
betwen the initial and final states. One imposes this condition by examining the expectation
value of the operator T, E df T f _ ET between an initial and an acceptable final state.

By acceptable we mean a final state that does not violate the properties of ged. For instance
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An important set of operators in this space are the transition operators of section 3 where
they are defined in terms of the primitive annihilation and creation operators b b, i =
0,1,...,5 —1.

It can be shown that these operators have the property

Gijyta]l = Ojxtu — Sut; (B.5)
where i, ,k,1=0,1,...,5 — 1. They also satisfy the Jacobi identity

(i Bty Tmnl] + (o [Bigo Batl] + [ty [Bmns B3] = 0, (B.6)

Any set of objects that have these two properties form a Lie algebra. The transition operators
#,; therefore form Lie algebra. The basis vectors of F? together with the defining equations
for the #;; is an explicit representation of this algebra. We will defer a detailed treatment of
this aspect of our work.

Now although the transition operators are composed out of annihilation and creation
operators which obey anti-commutation relations, we used the commutator bracket [,] rather
than anticommutator bracket {}. Let A and B be two operators. The usual convention is to
use commutation relations when either of A or B are bosonic and to use anti-commutation
relations only when both are fermionic. Transition operators such as t;; are bilinear in the
fermionic operators b; and bl and are regarded as bosonic. The general rules are that the
product of two bosonic or two fermionic operators is bosonic. The product of a bosonic and

fermionic operator is fermionic.
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