COMPUTING QUOTIENTS
OF FINITE STATE SYSTEMS!

Kenneth L. Calvert

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

calvert@cs.utexas.edu

TR-91-23 July 1991

Iwork supported (through Simon S. Lam) by the National Science Foundation under grant number NCR-9004464
and by a grant from the Texas Advanced Research Program.

Abstract

We present a theory of interacting finite state machines, which includes a binary
composition operator ‘@’ and a satisfaction relation “sat.” The composition op-
eration models the formation of a composite that results when two systems
interact via synchronized actions (the so-called “rendezvous” model of inter-
action). The satisfaction relation captures the notion that one machine is an
adequate replacement for another in amy composite system. Composition of
finite state machines is monotonic with respect to the satisfaction relation; this
enables hierarchical modeling and component-wise refinement. The operational
interpretation of the theory is similar to that of CSP.

Within this theory, we present a solution to problems of the following form:
for given finite state machines A and B, find a machine X such that Bo X sat A,
or show that no such machine exists. Such problems are called guotient problems
because they involve “inversion” of the composition operator. Our solution
improves on previous results by dealing fully with deadlock and divergence. The
problem of finding a protocol converter for given protocols motivates the study
of quotient problems; the method has been successfully applied to compute finite
state machines representing protocol converters for realistic protocols.

1 Introduction

KP4

Consider a theory of state machines that features a composition operator “o
by which two state machines are combined to form a composite machine, and a
relation sat on state machines, whose interpretation is that one machine is an
adequate implementation of another. We are interested in the following problem:
for given machines A and B, representing a system to be implemented and an
existing component, respectively, we are required to specify a machine X, which
can be combined with B to produce an implementation of A. That is, we want
to solve for X in the following:

BoX sat A

We call this kind of problem a guotient problem (the name comes from viewing
composition as a multiplicative operation that we are required to “invert”). Note
that there may be any number of X’s satisfying the above relation, including
Zero.

Problems of this type arise frequently in the design of distributed systems
and have been the focus of some research [9, 14, 15, 11, 12]. In this paper
we present a method of computing a solution when A and B are given as fi-
nite state machines. We define o and saf for finite state machines to form a
compositional theory, within which certain kinds of concurrent interacting sys-
tems (e.g., protocol implementations) can be modeled. The solution method
presented here is motivated by the observation that the formal definition of
a protocol converier—a device enabling implementations of different communi-
cation protocols to interact usefully without modification—has the form of the
quotient equation above. Thus, our method constitutes a solution to the general
problem of finding a protocol converter whenever the protocol implementations
can be represented as finite state machines [3].

The rest of this paper is organized as follows. In the next section, we present
a theory of finite state machines and prove some properties of FSMs. The
“quotient algorithm” is is presented in two parts, in sections 3 and 4. Section 5
contains a discussion of related work and conclusions.

2 A Theory of Finite State Machines

We are interested in a general solution to the quotient problem because we
would like to be able to solve such problems in the top-down development of
concurrent or distributed systems. Therefore the formal framework within which
we develop the solution should be powerful enough to serve as a vehicle for such
development. That is, it should permit us to represent an abstract specification
as a state machine (or a collection of logic formulas, or some other mathematical
abstraction), and then establish formally that an implementation (represented
as another state machine, a program, or another collection of formulas) satisfies

that specification. Moreover, the theory should permit us to specify all—and
only—the aspects of system behavior that are in some sense relevant.

The fundamental model of concurrency and interaction used here is the same
as that introduced in formalisms such as CSP [2, 8] and CCS [13]. The rele-
vant part of a system’s behavior—that is, its interface with the environment—is
characterized by a set of actions, through which it can synchronize (or “ren-
dezvous”) with its environment. These actions are postulated to be atomic and
nonoverlapping. Occurrence of an action requires that it be enabled in both the
system and the environment. System behavior is characterized by the sequences
in which actions may and may not happen, and concurrency of two actions is
represented by the possibility of their occurrence in either order. If, at some
point, no action is enabled in both the system and its environment, then dead-
lock occurs, and no further interaction is possible. When multiple actions are
enabled on both sides of the interface, one is “chosen” (by some unspecified
means) to occur. This choice need not be fair; in particular, it may always
prefer one action over another when both are enabled.

The following notational conventions will be observed. Function application
is denoted by an infix dot (period); it has the highest syntactic binding power
in expressions. An expression of the form (opz : R.x : T.z), where is a list of
variables bound in the expression, denotes the result of applying op to the bag
of all T'.& such that R.x = true. In this paper, “op” will be one of “¥” or “J” or
“SET ” and the expression yields either a boolean or a set. An omitted range
is understood to be the constant true. These expressions obey the following
laws:

e (Vz:Rz:Tz) = (Ve Rz = T.uz)
e (3z:Rz:Tx) = (Jz = Ra A Tx)
e yc(SET z:Rz:Tz)={Hz : Re:y="Tz)

The syntactic binding power of the boolean operators is, in order from most
to least binding with those in parentheses being equal: —, (A, V), (=, <),
=. Set operators have the relative precedence (N, U, +), (€, =), and bind more
tightly than boolean operations.

2.1 Definitions

A finite state machine (FSM) is a 4-tuple (X, 5,4, §), where
e ¥ is a finite set of named, atomic actions
e S is a finite set of sfates
e 7€ S is the distinguished initial stale, and

e § C 8 x(ZU{o}) x S is the transition relation.

Figure 1: Producer-Consumer Synchronizer M

The transition relation § defines how the state of the machine changes according
to its current state and its interaction with the environment. For states m and
m’, and action e, if (m, e, m') € § we say that the action e is enabled at m; if €
is also enabled in the environment, it can occur, and the state instantaneously
becomes m’. The null action, represented by ¢, is distinct from all actions in X;
a transition (m, o, m’) € 6 is called an internal transition. Internal transitions
may occur without participation by the environment, and represent interactions
between the sub-components of a composite FSM. The presence of internal
actions introduces nondeterminism, which means that the state of the machine
after a given sequence of interface actions may not be uniquely determined.
The choice of which transition occurs when several are enabled is completely
nondeterministic; we assume only that if some transition is enabled, then some
transition will occur.

The state sets of distinct FSMs are postulated to be distinct. We assume
that actions are shared by at most two FSMs; this corresponds to an assumption
that interfaces are two-sided, as opposed to many-sided.

An example of a simple finite state machine is given in Figure 1. (In figures
the usual graphical representation of FSMs is used, with nodes representing
states and labeled arcs representing transitions.) This machine, A, models a
simple synchronizer. One user, the Producer, produces items that are used by
the other user, the Consumer. When the Producer is ready to turn over an
item, it enables the event p. When the Consumer is ready to accept an item, it
enables the event ¢. The synchronizer M ensures that the Producer never gets
more than two items ahead of the Consumer.

A finite sequence of actions is called a trace. In what follows, the variables ¢,
u, and v range over traces. An individual action is treated as a trace of length
one, and concatenation of traces is denoted by juxtaposition. Thus fe is the
(possibly empty) sequence t followed by the single action e. The null action ¢
is a right and left zero of concatenation (fo = of = {), and thus is identified
with the empty sequence, or null trace. The notation t* denotes a catenated

sequence of k copies of £.

The transition relation § is extended to the #race relation 6* in the usual
way by taking its reflexive and transitive closure. Formally, §* is defined to be
the least relation (i.e. subset of § x L* x S) satisfying

o (m,o,m) e
@ (mo,t,7n1)65* A (ml,e,mg)eé = (mo,te,mg) € 6"

We abbreviate (m, o, m') € § to §(m, o, m’), and similarly (m,?, m') € 5% is ren-
dered as 6*(m,t, m’).

In what follows, variables A, B, C, D, M, and N range over arbitrary FSMs.
Variables ranging over arbitrary states of a particular finite state machine are
represented by the lower-case variable denoting the FSM: m denotes a state of
M, nis a state of N, etc. Primes and subscripts are used when naming multiple
states of the same FSM, so that &', b, and by all represent states of B. Note that
the initial state is always denoted by i. Where ambiguity is possible regarding
which FSM is referred to, we resort to subscripts.

A finite state machine can be viewed as a directed graph with labeled edges,
and some graph terminology is useful in discussing the structure of FSMs. In
particular, there is an obvious correspondence between the trace relation and
the set of (labeled) paths in the graph. A cycle is a nonempty path that begins
and ends at the same state.

An FSM defines a set of traces, which is just the language “accepted” by
the FSM in the traditional automata-theoretic sense (with each state being an
accepting state) [10]. For trace ¢ and FSM M, we say “t is a trace of M” iff ¢ is
the sequence of actions along some path from the initial state of M. Formally
this is represented by the expression M (), defined

M%) &f (Fm : 8*(i, t, m))

The traces of M represent possible behaviors of M. Clearly, the set of traces of
an FSM is prefix-closed: M (') = M(t). Also, ¢ is a trace of every F'SM.

Before defining composition of FSMs, we introduce some additional terms
and predicates on states. For each state m, out.m is the subset of & containing
the interface actions enabled at state m. Formally,

outm = (SET m/,e:e€X A 8(m,e,m’) 1 ¢)

For any state m, ezt.m is a predicate that is true iff no internal transition
originates at m. Formally,

etm ~@m imeS:6(m,o,m)

Where exf.m holds, the state of the machine can change only through interaction
with the environment.

A state m is divergent if some cycle of internal transitions contains m. Op-
erationally, because the environment cannot prevent internal transitions from
occurring, a machine reaching a divergent state is not guaranteed ever to inter-
act with its environment again, even if interface actions are continually enabled.
Instead, it may “cycle” through internal transitions forever. The predicate div
is true of divergent states:

div.m = (Fm : 6(m,0,m’): 6 (m/, 0, m))
We say an FSM is divergent iff it has a reachable divergent state; i.e., there
exist t and m such that §*(7,¢,m) and div.m.

The following property is a consequence of the finiteness of state sets and

the definitions of ext and div:

(0) @m:(i,t,m)) = (Im:86*(4,t,m): (ext.m V div.m))

2.2 Composition

The result of composing two FSMs is another FSM having a set of interface

actions that is a subset of the union of those of the components. The state

set of the composite machine is isomorphic to the cartesian product of the

component state sets. We use the notation (mn) to denote the state of the

composite machine corresponding to the pair (m,n) of states of M and N.
For FSMs M and N, we define MoN to be (X, 5,4, 6), where

e L= B+ BN
e S = Sy xSy
o i= (irrin)
e 6 is given by

§((mn),e,(m'n)) = (e€T A éy(me,m)An=n")V
(e€Z Adn(n,e,n/) Am=m/)V
(e=o A
(Bg:9#0:0pm(m,g,m) A bdn(n,g,n)))

In general, a composite machine Mo N may have states that are not reachable
from the initial state via any sequence of transitions, even though the corre-
sponding states in M and N are reachable; these unreachable states play no
part in our theory. Clearly composition is commutative up to isomorphism;
because each action is shared by at most two FSMs, it is associative as well.
Observe that the synchronized interaction of the components—if they have
any actions in common—become internal state transitions of the composite
machine. This is illustrated in the figures below. Figure 2 shows a synchronizer

[

Figure 2: Synchronizer N

Figure 3: Composite FSM MoN

N, similar to M from previous example; however, N maintains the Producer
and and Consumer tightly in lockstep, and its “Producer action” is ¢, while its
“Consumer action” is f. Figure 3 depicts M oN, the machine formed by letting
M and N interact, with N functioning as Consumer for M, and M acting as
producer for N. The unlabeled arrows are the o-transitions that result from
synchronization and hiding of the common ¢ actions. The “capacity” of this
composite synchronizer is the sum of capacities of the components: at most
three items can be produced without an item being consumed. The following
properties, which are straightforward consequences of the foregoing definitions,
express relationships between a composite Mo N and its components M and N.

(1) oui{mn) = oul.m =+ ouln

(2) ezt {mn) = ext.m A extn A (out.mn outn = ()

(3) div.imn) = divm V divn V (Fu:u# o185 (myu,m) A 6y (n,u,n))

To relate the traces of a composite to those of its components, we define the
relation zip. Let & = L + L. We define zip as the smallest relation (subset
of £}, x B x 1) such that, for all traces u, ' €Xy, v, v €Ly, and w,w' €Y,

e zip(o,v,v)
e zip(u,o,u)
e zip(u,u,o)
o zip(u,v,w) A zip(v',v',w') = zip(uw',vv', ww')

As an example, for M and N in the figures above, we have zip(pep, cf, ppf) and
zip(pep, cf, pfp), etc. The following properties follow from the definitions.

(4) (MoN)(w) = (Fu,v: zip(u,v,w) : M(u) A N(v))

(5) & ((mn),w,(m'n")) =
(Fu, v : zip(u, v, w) : 64, (m,u,m') A 65 (n,v,n"))

2.3 Satisfaction Relation

The intuitive meaning of M sat N is that (the system represented by) M is “as
good as” N, and therefore can replace it in any composite system. The idea is
that the environment should not be able to observe any difference between M
and N. The underlying model of synchronous interaction more or less dictates
that M sat N implies the following conditions on M and N:

o If M can engage in a finite sequence of actions (trace), then N can engage
in the same sequence of actions. (Otherwise, replacing N with M in a com-
posite might result in some bad state—e.g., a deadlock state—becoming
reachable that was not reachable before.)

e If, after a certain trace, N is guaranteed to have some action in a given set
enabled, then M, after the same trace, is guaranteed to have some action
in the same set enabled. (This condition is also to ensure that if NoD
cannot reach a deadlock state, then M oD cannot either.)

e If M can diverge after a certain trace, then N can diverge after the same
trace.! (This condition, together with the first, ensures that a composite
MoD can diverge only if NoD can.)

1The possibility of divergence disappears if we make a stronger assumption about the
“fairness” of selection of state transitions for occurrence. In particular, if we assume that
every infinitely-often-enabled transition occurs infinitely often, the possibility that all interface
actions are forever pre-empted by internal transitions is ruled out. In this case, all states on a
cycle of internal transitions can be aggregated into a single state, from which the system will
eventually depart by any means possible. Such a strong fairness assumption places a burden

Figure 4: Producer-Consumer synchronizer N

These conditions are formalized as follows. For FSMs M and N, M sat N iff
Y = In and both of the following conditions are satisfied for each trace ¢ and
state m of M:

S0 63,(4,t,m) A ext.m =
(3n:84(i,t,n): (ext.n A out.n C out.m) V div.n)

S1 &,(i,t,m) A divm = (In:85(i,t,n): div.n)

Figure 4 shows a finite state machine representing a producer-consumer synchro-
nizer of capacity three; call this machine D. It can be shown that MoN sat D,
and in fact D sat MoN.2 The operational interpretation of the relation saf
is similar to that of the “more-deterministic” relation () in the well-known
failure semantics for CSP [8]. The main difference is the following. In CSP, a
process that can initially diverge is understood to be capable of enabling {or
not enabling) any of its interface actions, and so satisfies only the trivial spec-
ification “true.” In the theory presented here, an initially-diverging process is
not guaranteed to do anything, but may be relied on not to do some things; to
the environment, divergence is indistinguishable from deadlock.
An immediate consequence of S0 and 51 is the following:

(6) M sat N = (¥Vt:M(t): N(t))

The following property, proved in the appendix, states that composition is
“monotonic” with respect to the satisfaction relation. This means that the in-
dividual components of a system can themselves be regarded as specifications,
and can be implemented independently of each other.

on the implementor that seems to go beyond that embodied in the FSM itself: fairness is
fundamentally an infinitary property, and does not fit nicely into a theory of finite state
machines. A satisfaction relation based on a partial assumption of strong fairness is given
in [4], but it does not have certain desirable properties.

2 A complete development of this theory would include proof rules or sufficient conditions
permitting one to establish M sat N for arbitrary M and N. We omit such a discussion
here in favor of a thorough description of the solution method for quotient problems, which
guarantees correctness. In general, it is computationally hard to decide whether M sat N.

(7) M sat N = (MoD) sat (NoD)

2.4 Deterministic and Semi-Deterministic FSMs

Different FSMs may be equivalent with respect to the sat? relation; we have
already noted D and Mo/ in Figures 3 and 4 as examples. In this section we
describe two classes of FSMs having structural characteristics that make reason-
ing about the satisfaction relation easier. The first is the class of determinisiic
FSMs. A FSM M is deterministic if at most one state is reachable via any trace;
that is,

& (i,t,m) A §*(i,t,m') = m=m'

A necessary and sufficient condition for M to be deterministic is that it have
no reachable internal transitions, and for any m and e, there is at most one
m' such that §(m,e, m'). The environment of a deterministic FSM can have
perfect knowledge of its state at all times, by observing the sequence of actions
that occur. For any finite state machine M, a standard procedure [10] produces
a deterministic FSM N such that M(t) = N(t) for any trace ¢, and in fact
N sat M.

We next introduce the class of semi-deferministic FSMs, which properly
contains the deterministic finite state machines. In a semi-deterministic FSM,
all states reachable via a given trace are “localized” to the set of states reach-
able from a single state (via at most one internal transition). Thus, a semi-
deterministic FSM may be considered deterministic with respect to a subset of
its states. To define semi-determinism formally, we first define two relations
derived from the transition relation. The first holds between two states if one
is reachable from the other by at most a single internal transition:

p(m,m") ' om=m' V §(m,o,m)

The second is defined in terms of the first and the transition relation §; it holds
when there is a path from one state to another consisting of a single action,
preceded by at most one internal transition. Formally, for any e € £, m, and
m':

E(m,e,m’) i # o A (Img : u(m, mg) : §(mg, e, m’))

As usual we define £*, the reflexive and transitive closure of £, to be the strongest
relation satisfying:

e £*(m,0,m)
o £*(mo,t,m1) A &(my,e,ma) = £ (mo,te, ms)

A finite state machine is semi-deferministic iff it satisfies the following require-
ments:

e For each state m, out.m = @ V ext.m. (No state has both internal transi-
tions and actions enabled.)

e 8(mg,o,m1) A 8(my,0,my) = my =my. (A path containing two con-
secutive null transitions contains a divergent state.)

o £(m,e,my) A E(m,e,mz) = my =my. (From any state, at most one
state can be reached via the ¢-relation for a given action.)

The following properties follow from the above, for any semi-deterministic FSM
M.

(8) &*(mo,t,m1) A E*(mo,t,ma) = ™M1 =my
(9) 6*(i,t,m) = (3w’ : &5(4, 1, m') - p(m’, m)).
(10) €*(mo, tt',ma) A E*(mo,t,my) = £ (my,t',m2)

A state m is called a head state of a semi-deterministic FSM if £* (3, ¢, m) for
some t. (Note that the initial state is a head state.) The important characteristic
of semi-deterministic FSMs is that they can be viewed as deterministic with
respect to their head states (see Property (8)).

Proposition 0 For any FSM M there exists a semi-deterministic FSM N such
that A sat N and N sat M. 0

Proof. By astandard construction described in [1] we can produce, for a given
M, a deterministic FSM D such that M(¢) = D(t), together with an injective
mapping f from Sp to the nonempty sets of states of M, such that for every
trace ¢ and state d of D,

§5(i,t,d) = f.d=(SET m:85(,t,m):m)

To construct a semi-deterministic equivalent for M, we modify this D to form
D' by adding nondeterminism as follows. Each state d of D is split into two
states dj, and d,, and D’ has a transition §{dp, ¢, dy) for each d. Each transition
6(d,e,d’) of D becomes 6(dy,e,d'y) in D'. Now, for each d and m € f.d such
that ezt.m, we add a state d,, and an internal transition §(ds,¢,dy,) in D'
Also, we establish out.d,, = out.m in D’ by adding a transition §(dm, e, d},) for
each ¢ € out.m and the unique d'; such that 6(d,, e, d},) (by the determinizing
construction, there exists such a d} for each e). Finally, if and only if there
exists m € f.d such that div.m, we add a state d, and two internal transitions
§(dn,o,dy) and 8(dy, o, dy) in I, Clearly D(t) = D'(t) for any ¢. The proof
that Y sal M and M sat 1 is left as an exercise for the reader. O

10

3 Constructing a Solution

In the next two sections, we describe a general method for solving quotient
problems in the the theory just described. For given FSMs A4 and B, we show
how to construct a finite state machine C, such that BoC saf A, or show that no
such FSM exists. By Proposition 0, any given FSMs A and B can be transformed
into equivalent semi-deterministic FSMs A’ and B’. Thus any quotient problem
can be made into an equivalent problem involving semi-deterministic FSMs.
Therefore, for the algorithm described here, A and B are assumed to be semi-
deterministic. We also assume that neither A nor B is divergent; extension to
deal with the case of divergent A or B is straightforward.

Before describing the construction of the particular solution C', we develop
several concepts properties that are required of any solution FSM. In the rest of
this paper, the predicates and functions defined depend upon the given FSMs
A and B. For brevity, our notation leaves this dependence implicit. Also, the
variable D ranges over deterministic FSMs that are (or might be) solutions, or
have certain properties required of all solutions; this includes the constructed
solution C'.

3.1 Preliminary Developments

The set of interface actions of any solution D (and of our constructed solution
C)is £ = T4 + Ip, the set of all actions in L4 or &p or not both. Thus C
has two interfaces: one with B, and one with the environment. The variables
u, v, and w and their subscripted variants range over traces in X*, Xp, and X7,
respectively. Note that by definition a trace can be in at most two of these sets.

Consider the relationship among A, B, and a solution D. Each trace of D
may match several different traces of B, and thus generates several different
traces of the composite BoD; for correctness, each of these must be a trace of
A. In other words, for each state d, there will in general be several distinct
B-states b such that (bd) is a reachable state of BoD. Each of these may
correspond to a different state of A. For correctness, for each reachable state
(b d) of the composite, there must be a corresponding state a of A having certain
characteristics.

Constructing C consists in defining its state set and transition relation. Our
algorithm does this inductively, beginning with the initial state and analyzing
the potential effect of each action in I at each state. The analysis ensures that
for each state b of B that is reachable via occurrence of that action (and other
actions not part of the interface with C'), there is a corresponding state a of A,
reachable via a similar sequence of actions.

We introduce some terminology relating paths and states of D, B, BoD,
and A. The paths 6*(b,v,0’) in B and 6*(d,v,d’) in D are concurrent if there
exists a path &*({(bd),w, (' d')) in BoD such that zip(u,v,w). States b of B
and d of D are concurrent if (bd) is a reachable state of BoD, i.e., if there exist

11

concurrent paths §*(i,v,8) in B and §*(i,u,d) in D.

A head state a of A corresponds to a state (bd) of BoD if there exists a
trace w such that §*(i,w, (bd)) and £*(i,w,a) in A. A path 6*({(bd),w, (V' d"}))
in BoD corresponds to a path £*(a, w,a’) in A if (bd) corresponds to a.

A trace u € I* is safe if for every concurrent trace v of B there is a corre-
sponding trace of A. Formally, we define

safe.u Lf Vo, w: zip(u,v,w) A B(v) : A(w))

We say FSM D is safe if all of D’s traces are safe.
Proposition 1 D is safe if and only if every trace of BoD is a trace of A. O

Proof. We calculate:

(Vw : (BoD){(w) : A(w))
= { property (4) }

(Vw: (3u,v: zip(u, v, w) : D{u) A B(v)) : A(w))
= { predicate calculus }

(Vu,v,w: zip(u, v, w) A D(u) A B(v) : Alw))
= { predicate calculus }

(Vu:D(u): (Yo,w: zip(u,v,w) A B(v) : A(w)))
= { definition safe }

(Vu : D(u) : safe.u)
= { definition }

D is safe

i
For head states a and b (of A and B respectively), and state d of D, the

predicate T'.(a, b, d) means that b and d are concurrent, and « is the head state
corresponding to (b d). Formally:

def

T{a,b,d) = (Pu,v,w:zplu,v,w): (6, w,a) A S5, b) A5 (3, u,d))

The following result is an immediate consequence of (5) and the above definition:
(11) Ta,b,d) = (3w €, w,a): 6*(i,w, (bd))

For any head state a of a semi-deterministic FSM A4, and any set &G C 24,
the predicate prog.(a,G) means that ezt holds at a state, internally-reachable
from a, at which only events in G are enabled. Formally, we define

def

prog.(a,G) = (Fd' :pla,d'): extd A outd CG)

From this definition follows a “monotonicity” property:

12

{(12) G C G A progfa,G) = progle, G).

For a state d of D, and a set G of actions of D, the predicate nezt.(d,G)
means that if the set of actions enabled at d contains &, then no deadlock can
occur at d unless it can also occur at some corresponding A-state. We define

nezt.(d, &) et (Va,b: T.(a,bd): (outbNG # 0) V prog.(a, (outdb + G)))
A property similar to (12) is immediate from this definition:
(13) G C G A next(d,G) = next.(d,G).

A state d of D is progressive iff next.(d, out.d). A state is nonprogressive if it is
not progressive. “I) is progressive” means every state of D is progressive. {Note
that a state that is not reachable is trivially progressive.)

We can now state necessary and sufficient conditions for D to be a solution
in terms of the above-defined local properties.

Proposition 2 Let A and B be semi-deterministic and nondivergent, and let D
be deterministic. Then BoD sat A if and only if the following three conditions
are satisfied: (i) D is safe; (i} D is progressive; (iii) BoD is nondivergent. O

Proof of this result is given in the Appendix.

We now turn to our solution method. The construction of the solution C
takes place in two or three phases, corresponding to the above conditions for
solutionhood. In the first step, we construct a safe FSM Cy. Then we refine it (if
possible) so that it becomes progressive, yielding Cp. Finally, if the composite
Bo() is divergent, we attempt break down C} into parts and reassemble them
to form C in a way that eliminates divergences from Bo('. A failure in any of
the three phases indicates that no solution exists, and provides an indication of
why.

3.2 Constructing Cy

Our method of constructing the state set and transition relation of Cj is based
on the observation that, for any trace u € &* of any solution D, the set of all
pairs of (head) states of A and B reachable via traces that “zip with” u captures
all available information about the composite system Bo D and how its behavior
corresponds to that allowed by A. In particular, from such a set it can easily be
determined whether a safe trace can safely be extended by a particular action.
We shall construct Cy so that each state ¢ is identified with a distinct set of
pairs of head states ¢ and & such that T.(a,b,¢).

The next few definitions formalize the concepts needed to define the state
space and transition relation of Cy and prove its correctness.

13

First we define a function, b, that maps a trace to the set of all pairs of head
states of A and B that are possible states of the system after that trace. For
trace u € L*,

hau X (SET a,b,v,w:&4(i,w,a) A Eg(4,v,b) A zip(u,v,w) : (a,b))
This function provides a way to abstract from the structure of a particular FSM
and deal with traces, as indicated by the following result.

Proposition 3 The function h and the relation T satisfy, for any «, b, and d:

T.(a,b,d) = (Fu, b : 65, u,d): (a,b) € hou A p(b', b))

Proof. We observe for any a, b, and d,

T.{a,b,d)
= { definition T }
(Fu,v,w: zip(u, v, w) : E4(1, w,a) A 65(4,v,8) A 65 (4, u,d))
= { B is semi-deterministic: (9) }
(Fu,v,w: zip(u,v,w) : & (4, w,a) A
(3 &0, b)) pu(b,8)) A3, u,d))
= { predicate calculus }
(Fu, b 65 u,d): Qv w: zip(u, v, w) : E4(5,w,a) A E(3,v,0)) A
u(¥',5))
= { definition h.u }
(Fu, b 651, u,d) : (a, b)) € hou A pu(b', b))

O

From the set of pairs h.u, it is possible to determine whether a trace u can
safely be extended by a given action e. The predicate ss (“safe step”) captures
this notion. For a set J of pairs of head states (i.e., h.u for some u) and action
e € T, ss5.(J, e) means that for any pair (a,b) in J, for each path from b in B
concurrent with e there is a corresponding path from a. Formally,
ss.(J,) = (Va,b,v,w : (a,b)€J A ziple,v,w) A (Y €5 (b, v, V) :
(Fa’ 2 (e, w,a)))

The use of predicate ss in the construction of Cj is indicated by the following
result, which is proved in the appendix.

Proposition 4 For any u € &%, e € It

safeu = ssh.u, e) = safe.ue

14

If the null trace is not safe, then there is no safe FSM (because the null
trace is a trace of every FSM). In this case, by Proposition 2, it is clear that no
solution exists. Therefore we proceed under the assumption

(14) safe.c.

Note that this assumption is easily checked for given A and B by a simple
inductive computation.

Observe that h.c is easily computed by an inductive closure procedure from
the singleton set {(i4,ip)}. (Obviously T.(i4,i8,ic).) Given h.u, h.ue is also
straightforward to compute by inductive closure. We assume the existence of
a function representing this computation: the function ¢ maps a set J of pairs
and an action e € ¥ to another set of pairs, and is defined by the equation
w.(h.u,e) = h.ue. (Note that the range of the function & is finite: the number
of distinct sets of pairs of (head) states of A and B is finite.) Finally, for given
J = h.u and e, checking ss.(J, e) is a simple local computation.

The point of these observations is that a safe machine Cy can be defined in
terms of k.o, ss, and ¢, and there is no need to deal explicitly with traces. We
define Cy = (X, So, 8o, 7), where each state ¢ € Sy is identified with a distinct set
tag.c, satisfying:

CO tagi=h.o
Cl édple,e,) = tag.c’ = p.(tag.c,e)
C2 ss.(tag.c,e) = (3 1" € 8y : bp(e,e, ')

That is, Co has a single state for each set h.u such that u and all of its prefixes
are safe. Note that Cp has no internal transitions, and by definition has at
most one transition for any action from any state; thus Cy is deterministic. The
actual construction of Cy is described shortly; we first prove that the above
conditions imply certain properties of Cj.

Proposition § If {y satisfies conditions CO and C1, then for any state ¢ of
Cy, and any trace u, 83(é,u,¢) = tag.c= h.u. 0

Proof. The proof is by induction on the length of u. Because Cj is determin-
istic, there is at most one ¢ s.t. 8§(4,u, ¢) for any u. The base case, u = o,
follows from CO0. For the inductive step, assume 6;(¢, ue, ¢). By the definition
of the trace relation, there exists a unique ¢’ such that 6§(7, u,¢’) and 6(¢, e, ¢);
by the inductive hypothesis, tag.c’ = h.u. By C1, tag.c = ¢.(lag.c’, e); thus
tag.c = @.(h.u, e); the definition of ¢ then gives tag.c = h.ue.]

We say an FSM C is mazimal if, for any D such that BoD sat A,

Vu:uel: D) = Cu)

15

Proposition 6 If)y satisfies CO0-C2, then
(15) Cp is safe
(16) Cjp is maximal

0

Proof of (15). We show Co{u) = safe.u by induction on the length of w.
For the basis, safe.c holds by assumption (14). For the inductive step, assume
Co{ue); that is, 83(%,ue,¢) for some ¢. Then there exists a unique ¢ such
that 65(¢,u,¢') and 85(c¢’, e,¢). By the Proposition 5, tag.c’ = h.u, and by the
inductive hypothesis we have safe.u. Using these facts, we calculate:

safeu A tag. = hou A dp(cd,e,e)
= { predicate calculus and C2 }

safeu A tag.c’ = h.ou A ss.{lag.c e)
= { predicate caleulus }

safe.u A ss.(h.u,e)
= { Proposition 4 }

safe.ue

0

Proof of (16). We have to show that for any solution D, D(u) = Co(u),
for any trace u. Again we use induction on trace length. The base case holds
trivially. For the inductive step, we observe for any trace u and action e,

D(ue)
= { prefix-closure of trace sets }
D(u) A D(ue)
= { D is a solution, hence is safe }
D(u) A safeu A safeue
= { inductive hypothesis }
'o{u) A safeu A safe.ue
= { definition C{u); Proposition 4 and pred. calc. }
(Fe::85(i,u,e)) A ss.(hu,e)
= { Proposition 5 }
(Fe = 85(i,u,¢) A tag.e= h.u) A ss.(hu,e)
= { predicate calculus }
(Feu 85, u,c) A tag.e= h.u A ss.(h.u,e))
= { rule of Leibniz }
(Fe 853, u,c) A ss.(tag.c,e))
= {C2}
(Ben G, u,e) A 8(c,e,)
{ definition of 6* }

16

((safeo))
tag.i ;= h.o;
new, S, 8o 1= {i},9,0;
((17) A (18) A (19)))
while new # 0 do:
select ¢ € new and remove it from new;
for each e € ¥ such that ss.(tag.c,¢) do:
if (Ac’' ¢’ € new U Sy : tag.c' = p.(lag.c,e))
then ¢’/ = ¢
else create ¢’;
tag.c’ = p.(lag.c, €);
new = new U {c''}
end if ((tag.c” = ¢.(tag.c,e)))
8o := 8o U {(c,e,c")}
(((3 " €newUSy:bp(c,e,c)) = ss.(tag.c,e)))
end for
Sp 1= S U {e}
(((17) A (18) A (19)))

end while
Figure 5: Algorithm 0: Construction of Cj.

(Fe: 854, ue, e))
= { definition }
Co(ue)

This completes the induction and the proof. m]

Given implementations of ss and ¢, conditions C0-C2 suggest an inductive
procedure like Algorithm 0 in Figure 5. (Algorithms are presented in a semi-
formal Pascal-like language. Text ({ enclosed in brackets }) is a comment.) It is
not difficult to show that Algorithm 0 maintains the following invariants, which,
together with the termination condition, imply C0-C2.
17y tagi= h.o

(18) (Ve,¢' ic,c’ € SUnew : §(c,e, ') = tag.c = p.(lag.c,e))
(19) (Ve:c€ S8 :ss.tag.c,e) = (¢ 1 € SUnew : 8(c,e,c)))

Algorithm 0 is guaranteed to produce a FSM when (14) is satisfied. That
is, we can always produce a maximal safe FSM, provided the null trace is safe.
This FSM will serve as an “upper bound” on the solution in the rest of the
construction.

17

Note that Cp potentially can have a state for each distinct set of pairs of
head states of A and B. Thus, its size (i.e. number of states) may be an
exponential function of the sizes of A and B. In our experience, however, this
has not occurred; it seems to require a very complex interdependence between
B and A. Note also that Cy is not necessarily the “minimal” FSM for a given
trace set, although it is deterministic. In particular, Cy may have states that
are distinct, even though they are functionally equivalent with respect to the
set of paths originating in each state. It is possible, however, to minimize a
deterministic FSM in time polynomial in the number of states [10].

3.2.1 Making (y Progressive

In the next step of the construction, we refine the output of the first step into
a FSM that always has “enough” actions enabled. Crucial to this refinement
process is the maximality of Cp, from which follow several useful properties.

Proposition 7 Let D be any safe, deterministic FSM, and let C be maximal
and satisfy CO and C1, and assume 85,(¢, u,d) and 6% (%, u,c). Then:

(20) (Va,b: T.(a,b,c): T.(a,b,d))

(21) ould C oule

(22) (VG :GCZI:next(d,G) = next.(c,G))
(23) dis progressive = c is progressive.

0
Proof. See Appendix.]

We “refine” Cp by iterative removal of nonprogressive states (we “remove”
a state from a FSM by removing the state and all its incoming and outgoing
transitions). This is straightforward because all the information necessary to
compute the predicate nezt.(c, out.c) is contained in the state’s {ag set and in the
transition relations of A and B. The refinement procedure is given as Algorithm
1 in Figure 6; it computes a sequence of state sets S; and transition relations
6;, beginning with Sy, bg, and satistying

Sj+1 = (SET c:c€S; A next.(c, out.c):c)U {i}

§j01 = (SET c,e,c/ :(c,e,/)€6; A e, €Sjyr:(c,e)
where i is always the initial state, Thus 5;.; is the progressive subset of 5
(plus ¢}, and §;41 is §; restricted to Sj.1. Note that the initial state ¢ is not

removed. Iteration is required because removal of a state may shrink the out
set of another state, making it non-progressive. Now define C; = (X, 5;,6;,19).

18

S, 6 = Sg, bg;
while nezt.(i, out.i) A (3c:c€ S : mnext.(c, out.c)) do:
S := (SET c:c€S; A next.(c,oul.c) : c) U {i}
§j41 = (SET c,e,c : (c,e,d) €8 Ac,d €Sj41 1 (c,e,¢))
end while
let Cp = (%, S,6,1);
if next.(i, oul.i)
then ({ C, is safe, progressive and maximal))
else ({ no safe and progressive FSM exists })
end if

Figure 6: Algorithm 1: Making Cp progressive

Proposition 8 For each FSM Cj in the sequence of machines defined above,
(24) if C; is maximal and 7 is progressive in Cj, then Cj 41 is maximal.

(25) If C; is maximal and 7 is not progressive in Cj, then there is no
progressive and safe FSM.

0

Proof of (24). Let C; be maximal, and assume i is progressive in (. Let Cj41
be obtained from C; by removal of some nonprogressive states and associated
transitions. Let D be any solution. We show D(u) implies Cj41(u) by induction
on the length of u. The basis, u = ¢, is trivial. For the inductive step, assume
6% (i, ue,d). Because Cj; is maximal and deterministic, there exist particular
states ¢/ and ¢ of C; such that 5;(i,u,c’) and §;(¢’,e,c). By the inductive
hypothesis, u is a trace of Cj4q; thus 5}‘+1(i,u,c’) as well. Because D is a
solution, d is progressive, hence—property (23)—c is progressive in Cj, hence
¢ € Sj41 and thus §;41(¢, e, ¢). Therefore ue is a trace of Cj11. O

Proof of (25). We show that the existence of a solution implies that the initial
state of a C; is progressive. Assume D is a solution. By Proposition 2, D is
progressive, hence the initial state of D is progressive. We have 67,(i,¢,%) and
also 67 (,¢,7). Now, C; is maximal, and satisfies conditions C0O and C1, so the
hypothesis of Proposition 7 is satisfied. By (23), then, the initial state of Cj is
progressive. 0o

Removing states clearly preserves safety and maximality. Thus we conclude
that if upon termination of Algorithm 1 the initial state of (), is progressive,
then C), is safe, progressive, and maximal, and otherwise no solution exists.

19

4 Ensuring Nondivergence

We have shown how to construct a safe, progressive, and maximal FSM. Now, B
is nondivergent by assumption, and Cj is nondivergent by construction. Prop-
erty (3) then tells us that BoC, is nondivergent if and only if there are no
concurrent cycles in B and Cp, i.e. there are no concurrent states b and ¢ and
non-null trace u such that §5(b,u,b) and 6% (c,u,c). Note that this property
can be checked by constructing BoC), which is straightforward.

If BoC), is nondivergent, then Cj is a solution. Otherwise, we attempt to
derive C from C) as described in this section. The hard part of the problem is
detecting nonexistence. The method described here is expensive, but fortunately
it is usually not necessary to deal with divergence. More commonly, the FSM
C, is a solution, or else it is possible to conclude after the second step that no
solution exists.

The basic idea of our approach is to “unroll” the cycles of €}, to form a
collection of sub-FSMs, each of which has the property that none of its paths
from the initial state is concurrent with any cycle in B. Each path of one
of these sub-FSMs is identical to some path of (. The sub-FSMs are then
combined to form C in such a way that each cycle in C' contains a path of one
of the sub-FSMs. Thus, none of C’s cycles is concurrent with any cycle of B,
and hence the composite BoC is nondivergent. If it is not possible to construct
an adequate (in a sense to be defined later) collection of sub-FSMs, no solution
exists.

4.1 Still More Definitions

A tree-FSM is a deterministic finite state machine with the structure of a di-
rected tree: the initial state of the FSM is called the roof. For tree-FSMs, we
denote the initial state by . The (unique) path from r to any state is called the
root path. A state m is a leaf state of a tree-FSM iff it has no outgoing edges,
j.e., it satisfies out.m = . In what follows, “tree” means “tree-FSM.” As in the
foregoing sections, D refers here to an arbitrary FSM with Xp = 2.

An unrolling of an FSM D consists of a tree-FSM M plus a labeling func-
tion L. The labeling function I maps each state of M to a tuple of the form
(d,B1,...,Bk), where d is a state of D, and each 8,0 < j < K, is either a head
state of B, or the distinguished symbol ®. Each unrolling is associated with a
particular state of D, namely the D-state in the label of the root of the tree-
FSM: the unrolling is said to be from that state. By “a state of an unrolling”
we mean a state of the tree-FSM of the unrolling.

By definition, the tree-FSM M and labeling function L of an unrolling
of D from d together satisfy the following. For the initial state r, L.r =
(d by, ..., bx), where by,... bk is some fixed ordering of all the head states
of b such that, for some a, T.(a,b,d)—i.e., all the head states concurrent with
d. For each state m # r, the label is determined inductively by the root path

20

to m, according to:

Lm={d, p,...,0k) A &(m,e,m') =
(3d ::6(d,e,d) A L’ = (d', By, ... Bk)

where, for each j, 0 < j < K, §} in L.m' is given by

@ _{ Vi B £ @ AEB(F.eb)

I) ® otherwise

The individual elements of the tuple L.m are represented by the following nota-
tion: Lg.m is the D-state component and L;.m, 0 < j < K, is the jth B-state
component. That is, L.m = (Lo.m, L1.m, ..., Lg.m).

Note that for ,6’; to be well-defined there can be at most one &’ such that
¢p(Bj,e,b’). This is the only place where we make essential use of the fact
that B is semi-deterministic. (In particular, the construction of the safe and
progressive C, is essentially the same for arbitrary B.) Note also that

b (m,e,m’) = 6p(Lo.m,e, Lo.m')

The idea behind an unrolling from d is that the 8 components of the labels
“track” the paths in B that begin at a head state concurrent with d, indicating
when each such path has ended by the presence of the symbol ®. For each
state m of the unrolling, and each label component L;.m # ®, Lo.m and L;.m
are concurrent, i.e. there exists a state @ of A such that 7'.(a,L;.m, Lo.m).
Moreover, for any states m and m’, and any u€X*, 63, (m, u, m') in the tree-FSM
M implies 65 (Lo.m,u, Lo.m'), and if Lj.m # ® and Ly.m’' £ ®@ for 0 < j < K,
then £5(L;.m, u, Ly.m’). A straightforward induction shows that, for each state
m of an unrolling from d, L.m is uniquely determinied by d and the (unique)
trace u such that &3,(r, v, m).

A state m of an unrolling is dead iff (Vj:0< j < K : Lj.m = ®); a state is
nondead iff it is not dead. A state m is terminal iff out.(Lg.m) = . Note that
every terminal state is a leaf of the tree-FSM.

An unrolling is accepiable iff every leaf is either dead or terminal. No path
from root to leaf in an acceptable unrolling matches any concurrent cycle in B.

A state m in an unrolling is progressive iff nezt.{Lg.m, out.m). A state is
nonprogressive iff it is not progressive. An unrolling is progressive iff every state
is either dead or progressive.

A transition §(m, e, m’) in an unrolling is a back edge iff m’ is not dead and
has the same label as one of its ancestors in the tree. That is, there exist traces
u, u', and state mg such that 6*(r, u,mg) and §*(me, v, m), and L.mg = L.m/.
The presence of a back edge in an unrolling indicates the presence of a cycle in
B matching a concurrent cycle in D, as shown by the following proposition.

Proposition @ For deterministic D, Bo D is divergent if there exists a reachable
state d of D such that some unrolling from d contains a back edge. 0

21

Proof. Let (M, L) be an unrolling from d, and let 6(m,e,m’) be a back edge.
Then there exists an mo, and traces u, u' such that

& (r,u, mg) A 8 (mo,u’,m) A L.mg = L.m/

By the definition of back edge, m’ is not dead, so there exists j > 0 such that
L;.m' # ®. Therefore let Lj.m' = b, for some state b of B. For that &, by
the definition of unrolling, we have §5(b, u'e,b), and b. Letting d' = Lo.m’, d’
and b are concurrent. Moreover, we also have §5(d’, v'e,d’), and thus by (3),
div.(bd’). Hence BoD is divergent. O

An unrolling is trim iff it has no back edges, and every dead state is a
leaf. A trim unrolling does not contain any more edges than are necessary for
acceptability; that is, it cannot be made “more acceptable” by adding edges.

Proposition 10 For any D and d, if there exists an acceptable and progressive
unrolling of D from d, then there exists a trim, acceptable and progressive
unrolling from d. O

Proof. (See Appendix.) O

Henceforth, we write “t.p.a.” as an abbreviation for “trim, progressive and
acceptable.”

A trim unrolling is full iff none of its paths can be extended without violating
either the definition of trimness or the definition of unrolling. That is, for each
nondead state m, and each e € out.(Lg.m), either there exists m’ such that
8(m, e, m') or such an edge would be a back edge. From this definition, it follows
that all full trim unrollings from d have the same trace set, and therefore the
same structure; hereafter we refer to “the” full trim unrolling from d.

Proposition 11 For any d, there exists a full trim unrolling of D fromd. 0O

Proof. Algorithm 2, shown in Figure 7, constructs the tree-FSM and label
function for the full trim unrolling from a given state d. The algorithm makes
use of the transition relations of B and D, and the set of head states concur-
rent with d. The algorithm obviously produces a tree-FSM, and its labeling
function satisfies the definition of an unrolling. The resulting unrolling is full
and trim, because every nondead state m has a transition é(m, e, m’) for every
e € out.(Lg.m), except those that would be back-edges. Also, no dead state has
an outgoing transition. Termination is guaranteed because the number of dis-
tinct labels is finite (no root path of a trim FSM can be longer than the number
of distinct labels). o

The foregoing definitions are given in terms of an arbitrary FSM D so that
they can be applied in showing nonexistence of a solution; our aim, however, is

22

new,S, 6, L.y = {r},0,8,(d, b1,...,bx)
({ b;’s = head states such that T'.(a,b;, d) for some a })
while new # @ do:
select m € new;
if(3j:0<j<K:Ljm# ®) then
({ m is not dead })
for each e € T and d’ such that 8§(Lo.m,e,d’) do:
lab .= (&', B1,...,B%)
((where 8}s are per def’n of unrolling });
if no m' on the root path to m has L.m' = lab then
create a new state m’;

L.m' = lab;
new,§ 1= new U {m'}, 6 U{(m, e, m)};
end if
end for
end if

new, S = new — {m},SU {m}
end while

Figure 7: Algorithm 2: Constructing the full trim unrolling from d.

to deal with unrollings of the particular FSM C,. The next few definitions deal
with properties of unrollings of Cp.

A set W of unrollings from states of C, is reasonable iff it satisfies the
following conditions:

e every unrolling in W is t.p.a..
e W contains an unrolling from the initial state of C.

e For each unrolling (M, L) in W, and each leaf m of M, W contains an
unrolling from Lg.m

e W contains at most one unrolling from any state of C,.

The point of the concept of a reasonable set is that € can be constructed
from a given reasonable set W of unrollings, by aggregating each leaf of each
unrolling in the set with the root of the unrolling from the state corresponding
to that leaf, as follows. For each state ¢ of C}, such that W contains an unrolling
(M, L) from ¢, S¢ contains a state r, for the root of the unrolling, plus a state m,
for each nonleaf state of the unrolling other than the root. For each transition
6(m,e,m') in M such that m’ is a nonleaf state, C has a transition 6(m., e, m}).
For each transition §(m, e, m’') in M such that m’ is a leaf, C has a transition
8(me, e, 7o), where ¢/ = Lg.m’. That is, the leaf m’ is identified with the root

23

unrolling from ¢ unrolling from ¢’

Figure 8: Connecting unrollings by identifying leaves and roots

of the unrolling from state Lg.m’ (existence of the latter unrolling is guaranteed
by the definition of a reasonable set). The initial state of ' is r;, the state
corresponding to the root of the unrolling from the initial state of Cp. Figure 8
illustrates the basic idea of the construction.

Proposition 12 The FSM C constructed from the reasonable set W as de-
scribed above is a solution. O

The proof of Proposition 12 is left as an exercise for the reader.

Proposition 13 If there exists a solution, then there exists a reasonable set of
unrollings of (). |

Proof. See appendix. O

4.2 Constructing a Reasonable Set

The remainder of this section is devoted to showing how to construct a reason-
able set of unrollings if one exists. Proofs are mostly relegated to the appendix.

An unrolling (M, L) from ¢ is a sub-unrolling of another unrolling (N, L")
from ¢ iff every trace of M is a trace of N. For any state ¢ of C}, an unrolling
of Cp from c is defined to be r-mazimal iff it is trim and any unrolling from ¢
contained in a reasonable set of unrollings is a sub-unrolling of it.

Proposition 14 The full trim unrolling from any state ¢ of €}, is r-maximal.
[

Proof. See appendix. o

Proposition 15 If (M, L) is an r-maximal unrolling from ¢, and the initial state
(root) of M is either a nondead, nonprogressive state or a nondead, nonterminal
leaf, then no reasonable set contains an unrolling from c. O

24

{{ (M, L) is an r-maximal unrolling from ¢ })
while (M, L) has a state m # r such that
(m is nondead and nonprogressive V
m is a nondead, nonterminal leaf) do:
select any m such that
m is a nondead and nonprogressive stateV
m is a nondead and nonterminal leaf;
remove m from (M, L)
end while
if 7 is nondead and nonprogressive V
r is a nondead and nonterminal leaf
then ({ no t.p.a. unrolling from c exists })
else ({ (M,L)is t.p.a.))
end if

Figure 9: Algorithm 3. Making (M, L) progressive and acceptable

Proof. See appendix. m]

Proposition 16 Let (M, L) be an r-maximal unrolling from ¢, and let m be a
nondead, nonterminal leaf or a nonprogressive, nondead state such that m # r.
Let (M’, L') be obtained from M by removing m. Then (M’, L') is an r-maximal
anrolling from c. O

Proof. See appendix. 0

Now, an r-maximal unrolling from ¢ is nonprogressive if and only if it contains
a nondead, nonprogressive state; it is not acceptable if and only if it has a
nondead, nonterminal leaf. The preceding result says that removing such states
from an r-maximal unrolling preserves r-maximality; thus we can remove states
as necessary until we obtain an r-maximal t.p.a. unrolling from ¢, or until it
becomes evident that no such unrolling from ¢ exists. This procedure is shown
as Algorithm 3. Proposition 16 implies that Algorithm 3 maintains the invariant
“(M, L) is r-maximal” if the unrolling is initially r-maximal; the condition of the
root upon termination indicates whether a t.p.a. unrolling from ¢ exists. Thus,
we can use Algorithm 2 to construct an r-maximal unrolling for each state of G,
and then use Algorithm 3 to obtain a t.p.a. unrolling from it. These observations
lead us to consider construction of a set of t.p.a. unrollings from states of C)
that would be an “upper bound” on all reasonable sets, in the sense that any
unrolling in any reasonable set would be a sub-unrolling of some unrolling in
the set. As we shall see, such a set can be used to construct a reasonable set,
or determine that none exists.

25

A set W of unrollings from states of Cp is called optimal iff both of the
following conditions are satisfied:

e every unrolling in W is r-maximal

e if W does not contain an unrolling from ¢, then no reasonable set contains
an unrolling from e.

By definition, if W is optimal and W’ is reasonable, then every unrolling in
W' is a sub-unrolling of some unrolling in W. The next results show how an
optimal set can be refined into a reasonable set.

Proposition 17 If W is optimal, and does not contain an unrolling from the
initial state of C,, then no reasonable set of unrollings of), exists.]

Proof. Immediate from the definitions. 0

Proposition 18 If W isoptimal, (M, LYeW, and (M’, ') is the t.p.a. result of
applying Algorithm 3 to (M, L), and W' is W with (M, L) replaced by (M’, L'},
then W’ is optimal. |

Proof. See Appendix. m]

Proposition 19 Let W be optimal, and (M, L) € W be an unrolling from
¢ such that M has a leaf state m such that W does not contain an unrolling
from Lo.m. If (M', L') is obtained from (M, L) by removing m, then (M’, L")
is r-maximal. (

Proof. See Appendix. 0

The above results are the basis of the following method for constructing a
reasonable set. First, we construct an r-maximal unrolling from each state ¢
of Cp, using Algorithm 2. Then we apply Algorithm 3 to each such unrolling,
and put each resulting t.p.a. unrolling in the set Wy (for the others, there is no
t.p.a. unrolling). Clearly Wy is optimal. Next we iteratively refine Wy while
preserving optimality, by removing leaves as described above, and then applying
Algorithm 3 to the resulting unrolling. If the result of Algorithm 3 is a t.p.a.
unrolling, it remains in Wy; otherwise, its unrolling may be removed from W,
without affecting optimality. Algorithm 4 summarizes this process. The second
loop maintains the invariants “Wp is optimal” and “every unrolling in Wy is
t.p.a..” The combination of these and the termination condition implies that
upon termination, either W) is reasonable, or Wy contains no unrolling from the
initial state. In the latter case—by Proposition 15—no reasonable set exists,
and hence-—by Proposition 13—no solution exists. Termination of Algorithm 4
is guaranteed, because each iteration removes some leaf of some unrolling.

26

Wy = @;
for each c€ (.5 do:
construct the full trim unrolling from ¢ using Algorithm 2;
apply Algorithm 3;
if the result is a t.p.a. unrolling (M, L) then
Wy := Wo U {(M, L)},
end if
end for
{{ Ws is optimal A every unrolling in Wy is t.p.a.))
while Wy contains an unrolling from ¢
A Wy contains an unrolling (M, L} with a leaf m,
such that Wy does not contain an unrolling from Lg.m
do:
W() = VVQ - {(A{, L)},
remove m from (M, L) to form (M’, L');
{{ (M', L) is r-maximal))
apply Algorithm 3 to (M’, L) to form (M", L”});
if (M”, L") is t.p.a. then
({ (", L") is r-maximal })
Wy = Wo U {(M", L/}
end if
end while
({ Wq is reasonable or no reasonable set exists })

Figure 10: Algorithm 4: Constructing a reasonable set

27

5 Summary and Conclusions

We have presented a general theory in which concurrent systems are modeled as
synchronously-interacting finite state machines. We have presented a method
that, given A and B, produces a finite state machine C such that BoC sat A
if one exists, or indicates why no solution exists. Algorithms 0 and 1 give a
method of constructing a safe and progressive FSM. Algorithms 2-4 take that
FSM and make it nondivergent (if necessary), or decide that it is not possible
to do so.

A number of researchers have considered various forms of the quotient prob-
lem. Hoare and He [9] studied the “weakest prespecification” problem, in which
sequential programs are modeled by relations on states, and the composition
operator is relational composition. For Milner’s Calculus of Communicating
Systems [13], Parrow [14] has described a “semi-algorithmic” method of solving
for X in the quotient equation, with the bisimulation relation as satisfaction.
That method, which relies on human guidance in constructing the quotient, uses
a tableau approach. Shields [15] also has given a solution in the context of CCS
bisimulation. Lai and Sanders [11] studied the weakest environment operator
for Hoare’s Communicating Sequential Processes. The weakest environment for
given A and B is defined to be the weakest process X satisfying B [|[X € A The
CSP composition operator || does not entail hiding the interactions between
components, and Lai and Sanders’ treatment does not deal with divergence.

Merlin and Bochmann [12] gave an efficient method of constructing a solution
X from given A and B, where A, B and X are (deterministic) finite state
machines. However, their theory did not deal with deadlock or divergence;
hence their method produces a solution that may deadlock.

Some of the algorithms given here have exponential worst-case complexity.
The size of the state space of Cp can be of the order of 9l5ax5s ‘, because each
state of Cy is identified with a distinct subset of S4 x Sp. The size of the full
trim unrolling from a state, used in the final phase of the algorithm, depends
on the size of B¢ and the number of B states concurrent with each state of C.
If the maximum number of B states concurrent with any state of C' is z, then
an upper bound on the number of states of a full trim unrolling is |Zc|19Bl",

The algorithms given here are intended to be simple to present and prove;
certain optimizations are possible. However, it is not likely that we can do
significantly better on the quotient problem. A method of deciding whether
a safe FSM exists can be used (via a polynomial transformation) to solve the
NFA-INEQUIVALENCE problem, which is PSPACE-complete [7].

Our quotient solution method was developed for the purpose of computing
specifications for different kinds of protocol converiers. A protocol converter
is device that enables implementations of different communication protocols to
achieve some degree of useful interaction. The problem of designing a protocol
converter for given formally-specified protocol implementations and desired ser-
vice is an instance of the quotient problem [6]. The method described here has

28

been successfully applied to some example protocol conversion problems [4, 5].
In those examples, the size of the output FSM was similar to that of the input
machines, and the expensive third step of the algorithm was never necessary.

It should be noted that a solution produced by the method described here is
not necessarily the “weakest” quotient FSM (in the sense that if D is a solution
then D sat C'). This is because C' is deterministic and maximal, and therefore
may have more events enabled at certain states than are necessary. However,
in general there is no unique “weakest” solution to a quotient problem of this
sort.

Appendix

Proof of (7). Given FSMs M, N and D, such that M sat N, we have to
prove conditions 80 and 81 for MoD and NoD. To prove S0, our obligation
is (omitting the ranges for brevity):

§°(i,t, (md)) A ext(md) =
(F{nd) 8@t (nd)) A ((ext{nd) A out.{nd) C out.(md)) V div.{nd)))

We observe

8*(,t, (md)) A ext.(md)
{ composition properties (5) and (2) }
(Fu, v zip(u,v,8) A 8y (3, u,m) A 655, 0,d)) A
ezt.m A ext.d A (out.m N outd =)
= { predicate calculus }
(Fu, vy (4,u,m) A extm A zip(u,v,t) A
65 (i, v,d) A ext.d A (out.mN out.d =)
= { hypothesis: S0 for M and N }
Fu,v:(Tn sy, u,n) A ((estn A out.n C outom) V div.n)) A
zip{u,v,4) A 6p(4,v,d) A extd A extm A (oulm N outd = §))
= { predicate calculus }
(Fn o Fuvizplu,v,t) A S Eu,n) A SH(i,v,d)) A
(eztn A out.n C out.m A extd A oulmNoutd =8)) V div.n)

I

At this point, we make use of the following “monotonicity” property of the
symmetric set difference:

out.n C out.m = out.n+ out.d C outm = outl.d
Now by Property (1), we have then
outn C ouim = outind) C out.{md)

Also, out.n C out.m and out.m N out.d = § imply out.n N out.d = §. Thus the
last line above implies

29

(Fn:(Fu,v:zp(u,v,t) 65 u,n) A SH(4,v,d)) ¢
(extn A extd A ouinmNoutd =0 A
out.(nd) C out.(md)) V div.n)
= { Properties (5) and (2) }
(Hn: 81, (nd)) -
((ext{nd) A out{nd) C out.(md)) V div.(nd)))

and thus we have established S0. For S1, our obligation is to show, for any
trace ¢ and state {md),

§*(i,t,(md)) A div.imd) = (3(nd):8"(i,t,(nd)): divind))
To this end we observe, for any ¢ and (md),

§* (4,1, (md)) A div.{md)
{ properties (5) and (3) }
(Bu,v: zip(u,v,t) : 65,6, u,m) A (i, v,d)) A
(div.m V divd V
Bw:w#o: 8 (mw,m) A ,(d w,d))
= { predicate calculus }
(Fu, v zip(u,v,t) : 63,5, u,m) A §5(4,v,d) A divm) V
(Fu, v zip(u, v, 1) : 85,6, u,m) A §p(i,v,d) A divd) V
(Fu,v,w: zip(u,v,t) : 85,6, u,m) A 65 (i, v,d) A
w# o A &5 (m,w,m) A SH(d, w,d))

i

‘We consider each disjunct of the last formula as a separate case. For the first,
we have:

(Fu,v: zip(u,v,t) 2 63,5, u,m) A 65(4,v,d) A div.m)
= {Sifor Mand N}
(Fu,v: zip(u,v,t) 1 (In: 63 (4, u,n) : divn) A 652, v, d))
= { predicate calculus }
(Fnc(Fu, v zipu,v,t) 656 u,n) A S5, v,d)) A divn)
{ property (5) }
(Fn 8, (nd) A divn)
= { property (3), predicate calculus }
(F{nd) : 6*(, 1, (nd)) : div.(nd))

Il

For the second disjunct, we observe

(Bu,v:zip(u,v,t) : 65, (4, u,m) A 85(i,v,d) A divd)
= { property (4); def’n trace predicate }
(Fu,v:ziplu,v,t): (Fn o 855 u,n)) A S5 (v, d) A divd)
= { predicate calculus }
(nFu,v:ziplu,v,1) 85 u,n) A dp{1,v,d)) A div.d)
{ property (5) }

1l

30

(Fn: 6%t (nd)) : div.d)
= { property (3), predicate calculus }
(B {nd):6*(i,¢,{(nd) : div.(nd))

In the case of the third disjunct we have a trace w # ¢ such that
zip(u, v,t) A 83(3,u,m) A 654, v,d) A 8y(m,w,m) A 65 (d, w,d)

Now, by the definition of the trace relation, for every & > 0 we have 63, (%, uw®, m)
and &} (3, vw*, d). Because M sat N, we have also

(Vk:0<k:(@n:éy(E, uwk n)))

However, the number of distinct states of N is finite, so there exist a particular
state ng, and natural numbers kg and j, such that

8 (6, uw®® ng) A 64 (no, w?, no)
But we also have for d, kg and j,
85 (5, vk, d) A §35(d, w?, d)

Also, we have zip(u,v,) and trivially zip(w”e, w¥e o); from the definition of zip
have then
zip(uwk°, vw® 1)

Collecting the above, we have

zip(uwhe, vwFe 1) A 6% (i, uw, ng) A 6535, vwhe d) A
85.(d, w?, d) A 8% (no, w?, no)
= { pred. calc., (5) and (3) }
§*(i,t, (no d)) A divngd)
= { predicate calculus }
(B {nd) 8 (4,1, (nd)) A div.ind))

This completes the case analysis and the proof of Property (7). o

Proof of Proposition 2. Restating the proposition, we are required to show
that, for given semideterministic and nondivergent A and B, the conjunction of

(i) D is safe
(ii) D is progressive
(ili) BoD is nondivergent.

is equivalent to the conjunction of (restating conditions SO and S1 for BoD
and A)

31

(iv) (Y (bd),w: 6(i,w, (bd)) A ext.(bd) :
(Ba: 8 (i, w,a): ((esta A out.a C out.(bd)) V div.a)))

(v) (¥ (bd),w: 8 (i,w,(bd)) A div.(bd): (Fa::6*(i,w,a) A diva))
We prove the following:

(a0) (i) = (v)

(al) (i) A = (i) = = (iv)

(a2) (i) A= (i) = = (iv)

(a3) () A (i) = (iv)
from which, by predicate caculus, we obtain

() A () A () = @v) A (V)

Proof of (a0). Beginning with (v), we calculate:

(V{bd),w: (@, w, (bd)) A div.(bd) : (a :: 8*({,w,a) A div.a))
= { hypothesis: A is nondivergent }

(V{bd),w:6*(i,w, (bd)) A div.(bd) : false)
= { predicate calculus }

=(3{bd), w8 (4, w, (bd)) A div.(bd))
= { definition }

Bo D is nondivergent

]

Proof of (al). Assume BoD is nondivergent and D is not safe, i.e. there
exists a trace u such that D(u) and —safe.u. We shall prove the negation of
(iv). By the definitions of D(u) and safe, there exist d such that 63(7,u, d),
and traces w and v, and state b, such that zip(u,v,w) and 65(4,v,8), while
(Va::=84(4,w,a)). From these observations, we calculate:

zip(u, v, w) A 5, u,d) A 85(%,v,b)
= {06}
up i 0, (b))
= { predicate calculus and (0) }
(Fd) : 6%, w, (bd)) : ext.(bd) v div(bd})
{ hypothesis: BoD is nondivergent }
(3(bd) : 65p (i, w, (bd)) : ext.{bd))
{ hypothesis; predicate calculus }
(3d) b5 pli,w, (bd)) A ext(bd) :Va =65 (i, w,a)))
= { predicate calculus }

il

32

(FGd): 65 pEw, (bd)) A ext(bd):
(Va:6%(i,wa): =((ext.a A out.a C out.(bd)) V div.a)))
= { predicate calculus }
(Y (bd) : 63p (i, w, (bd)) A ext.(bd):
(Fa: 84 (i,w,a): ((ext.a A out.a C out.{bd)) V div.a)))

which is the negation of (iv). o

Proof of (a2). Assuming D is not progressive, we prove the negation of (iv).
By definitions of progressive, T', and next, there exists a trace w, and states a
and (bd) such that ezt.(bd), and 6*(i,w, (bd)) and &, (i, w,a), but there is no
a’ such that

ula,a’y A eztd’ A outd’ C out.(bd)

Because A is semi-deterministic, it follows that there is no a such that 6% (4, w, a)
and ezt.a’ and out.a’ C out.(bd). That is, for this w and (bd), we have

& (4, w, (bd)) A ext.{bd) A =(Ta:84(i,w,a): ext.a A out.a C out.(bd))
Because A is nondivergent, this implies the negation of (iv). 0

Proof of (3). Assume D is safe and progressive. We prove (iv) by assuming
8*(i,w, (bd)) and ezt.(bd) and showing the existence of a such that

8% (i,w,a) A ext.a A out.a C out.(bd)

Note that, because D is progressive, d is progressive. By the safety of D, there
exists a such that £ (¢, w,a) in A. We observe:

& (i, w, (bd)) A & (i, w,a) A ext.(bd)
= { Properties (11) and (2) }
T.(a,b,d) A out.bNout.d=10
= { d is progressive: nexi.(d, out.d) }
T.(a,b,d) A out.bNout.d=10 A next.(d, out.d)
= { definition of next }
(out.bnout.d # B V prog.(a, (out.b + out.d)) A outbNout.d =10
= { pred. calc; (1) }
prog.(a, out.{bd))
{ def’n prog }
(Fa' : pla,d'): ext.a’ A out.d’ C out.(bd))
{ hypothesis &% (i,w, a); £*(i,w,a) A pla,d’) = 6 (i,w,d’) }
(Fad' 84 (i,w,d') : ext.a’ A oul.a’ C out.(bd))

Thus we have established (iv), and (3) is proved. O

This completes the proof of Proposition 2. I

33

Proof of Proposition 4. Under the assumption safe.u, we show ss.(h.u,e) =
safe.ue, and —ss.(h.u).e = =safe.ue. For the first, assume ss.(h.u,e). We have
to show safe.ue; that is, we must establish:

(Vv,w: zip(ue, v, w) A B(v) : A(w))

Let v, w be any traces (in L%} and I% respectively) such that zip(ue, v, w) and
B(v), i.e. there exists b such that 65(4,v,b)). We shall show A(w).

By the definition of zip, there exist vg,v; and wp, w; such that v = wvgvy,
w = wow; and z1p(u, vo, wo) and zip(e, v1, w1). Because B is semi-deterministic,
there exist by and by such that £5(, vg, bo) and 5 (bo, v1,b1), and pu(b1,b). We
have:

zip{u, vo, wo) A £°(4,v0, bo)

= { &* = §*; definition of B(¢) }
z1p(w, vo, we) A Blvg)

= { hypothesis and def’n safe.u }
A(wo)

= { property (9) }
(Fa (4, wo, a))

Collecting selected terms, we have

zip(u, vo, wo) A €54, v, bo) A &4 (%, wo, ao)
A ziple,v1, w1) A Ex{ba,v1,b1)

= { definition h.u }

(ag, bo) € hou A zip(e,vi,w1) A Ef(bo, v1,b1) A E4(¢, wo, ag)
= { hypothesis and def’n ss.(h.u,e) }

(F a1 = & (an, wy,a1)) A 44, wo, ao)
= { def'n £*;&* = 6}
(day = 6% (i, wows, 01))

{ w = wows; definition of A(¢) }

Alw)

Il

Thus we have established ss.(h.u,e) = safeue
Now assume —ss.(h.u, e); by the definition of ss, there exist a, b, v, ¥ and
w such that

(a,b) € hou A ziple,v,w) A E5(b,v,0') A =(Fd' :: & (a, w,a’))
We shall establish —safe.ue. We observe

(a,b)y € hou A ziple,v,w) A €50, v, 6} A =(Fa’ = €4 (a,w,a’))
= { definition of h.u }
(3 vo, wo :: zip(u, vo, wo) A E5(i, wo, a) A E5(4, vy, b))
A ziple,v,w) A ER(D,v,0) A =(3a £ (e, w,a"))

34

{ def’n of zip; property (10) }
(3 g, wo == zip(ue, vov, wow) A (5, v0v,b) A =(Fd" 12 &4 (4, wow, a’)))
{ predicate calculus }
(A, w' = ziplue, v, w') A E(E 0, 0) A =(3d (4w, a)))
{ properties of £* }
(A, w' o zip(ue, v, w') A §5(i, v, 0) A =(Fd 2 85(4 v, "))
{ def'n B(v"), A(w') }
(3o, W' zip(ue, v, w') A B(v') : A(w'))
{ predicate calculus and definition of safe }
—safe.ue

R

il

Thus we have shown —ss.(h.u,e) = —safe.e; this completes the proof. o

Proof of Proposition 7

Proof of (20). We show T.(a,b,¢) = T.(a,b,d) for any ¢,b and d satislying
the conditions of the lemma.

T.(a,b,¢c)
{ Proposition 3 }

(B, (ab) € b’ pu(b,b) A 8*(i,4,¢))
= { Proposition 5 }

(B, b : (ab') € tag.c: p(b',b) A §*(i, v, c))
= { hypothesis §%(i, u, c) and Proposition 5 }

(3 : (abl) € hou: pu(b, b))
= { hypothesis 6}, (¢, u,d) }

(3 i (ab) € hou: pu(V,b) A 6°(3,u,d))
= { predicate calculus }

(Fu, b’ : (ab') € hou:pu(, b)) A 6*(i,u,d))
= { Proposition 3 }

T.(a,b,d)

i

Proof of (21). We observe for any e € I:

e € outd
= { def'n out }
(3d = ép(d,e,d))
= { hypothesis §},(¢,u,d) and def’n 6* }
(Bd 654, ue, d))
{ Cy is maximal; def’n maximal }
(Feg : 83(5, ue, ¢))
= { def'n 6* }
(Feo,e1 11 85(i,u,e1) A boler, e, o))
= { hypothesis §}(i,u,c) and C is deterministic }

35

(3 Cp,C1 1 €= C1 - 55‘(i,u, Cl) A 60(61,6, Cg))
= { predicate calculus }

(Feo i bole, e, ¢0))
= { definition out }

e € out.c

Proof of (22). We observe, for any G C I

next . (d,G)
= { definition of nexzt }

(Va,b: T.(a,b,d): outbN G # 0 V prog.(a, (out.b+ G)))
= {(20); predicate calculus }

(Ya,b: T.(a,b,c): out.bN G # BV prog.(a,(outdb+ G)))
= { definition nezt }

next.(c,G)

Proof of {23). We observe:

d is progressive

= { def'n progressive }
next.(d, out.d)

= { properties (21) and (13) }
next.(d, out.c)

= { property (22) with G := out.c }
nezt.(c, out.c)

= { def’n progressive }
¢ is progressive

O

Proof of Proposition 10. We show how to transform a given unrolling into
a trim unrolling by removing certain states and transitions from its tree-FSM,
while preserving progressiveness and acceptability. (In this proof, and in the
the rest of this section, “removing a state from an unrolling” is understood to
entail adjustment the state set and transition relation of the tree-FSM as well as
the labeling function, so that the state’s incoming edge (if any) and the subtree
rooted at the state are removed.) By removing all states with a dead ancestor,
every dead state becomes a leaf. Every new leaf is dead, so if the original tree
was acceptable, the modified tree is as well.

Back edges can be removed as follows. Let m be the nearest ancestor of (i.e.,
distinct from, and on the root path to) m’ such that L.m = L.m’. Thus the
incoming edge to m’ is a back edge. Consider the tree obtained by replacing
the subtree rooted at m with the subtree rooted at m. We observe:

36

e Every state of the modified tree is a state of the original, and retains its
same label.

e Every state in the modified tree has the same out set that it had in the
original tree, so the modified tree is progressive if the original was.

e no new leaves are created, so acceptability is preserved.

e The number of back edges in the new tree is strictly less than in the
original tree, because at least one has been removed.

This operation can be repeated until no back edges remain. After applying
these two modifications, the resulting unrolling is trim.]

Proof of Proposition 13. Let D be any deterministic solution. We first prove
two Lemmas.

Lemma. There exists a progressive and acceptable unrolling from each reach-
able state of D.

Proof. For every reachable state d of D, the full trim unrolling from d, as
constructed by Algorithm 1, is acceptable and progressive. The construction
includes all transitions except those that form back edges or originate in dead
states. Because BoD is nondivergent, by Proposition § no unrolling from any
state of [contains a back edge; therefore the algorithm rejects only transitions
originating in dead states. That is, a state is a leaf in the full trim unrolling
from d only if it is dead or terminal, and hence the unrolling is acceptable. Each
non-dead state m satisfies out.m = oui.(Lg.m), and so is progressive because
Lo.m 1s. 0

Lemma. If 65(i{,u,d) and 6gp(z’,u,c), then there exists a t.p.a. unrolling
(M', L") of Cp, from ¢ such that for each state m and trace v’ of the unrolling
there exists d’ such that §5(d, «/, d’).

Proof. Let (M, L) be the progressive and acceptable unrolling from d whose
existence is asserted by the preceding lemma. We first define a progressive and
acceptable unrolling (M, L") of Cp from ¢ in terms of (M, L). Define Lf.r = ¢,
and define L{.m for other states of M inductively: for each éar(m, e, m'), let
LY.m' be the unique state ¢’ such that é¢,(Lj.m,e,c’) (such a ¢’ exists because
e € out.(Lg.m), and by Proposition 7, out.(Lo.m) C out.(Ly.m).) Let the head
states of B that are concurrent with d be by,...,bx. Again by Proposition 7,
every state of B concurrent with ¢ is also concurrent with d. Letting b1, ...,bx
be the head states concurrent with ¢ for some K’ < K, the states concurrent
with d can be arranged as b1,...,bx/,...,bx. We then put LY.m = L;.m for
each 7, 0 < § € K’; because the structure of M is not changed, this definition
satisfies the requirements of an unrolling. A state m of is dead in (M, L")

if it is dead in (M, L), and (again by Proposition 7) progressive in (M, L")
if it is progressive in (M, L). Thus, (M, L") is a progressive and acceptable
unrolling from ¢. Now we can apply the transformation described in the proof
of Proposition 10 to obtain a t.p.a. unrolling (M’, L). The modifications of that
procedure preserve the property that &x(m,e, m’) in M implies the existence
of an edge 6p(LY.m,e, Ly.m') in D. A simple inductive argument shows that
for any m and v/, if 83, (r, w/, m) then there exists d’ such that 65(d,v’,d’). O

Now we are ready to prove the proposition. Given a solution D, we construct a
reasonable set of unrollings of C, using an inductive procedure. For the initial
states, we have 62.p(i, ¢,1), and and 68}, (¢,¢,%). By the second Lemma above we
can construct a t.p.a. unrolling (M, L) from the initial state of Cp. For each leaf
m of this unrolling we have &3, (7, u,m) and &g (i, v, Lg.m) for some u. By the
second lemma there exists d’ such that 8% (i, u, d’). Thus Lg.m and d’ satisfy the
conditions of the hypothesis of the second Lemma, and we can again construct
a t.p.a. unrolling from Lo.m and add it to the set. We similarly construct an
unrolling for the other leaves, iterating until for each leaf m of each unrolling in
the set, the set contains an unrolling from the corresponding Cjp-state. Closure
will eventually be achieved because of the finiteness of the state set of Cp. The
resulting set satisfies the definition of reasonableness by construction.]

Proof of Proposition 14. By the definition of r-maximality, it suffices to
show that any t.p.a. unrolling from ¢ is a sub-unrolling of the full trim unrolling
from ¢. Let (M, L) be any t.p.a. unrolling from ¢. Let (N, L) be the full trim
unrolling from ¢. We show by induction on trace length that every trace of
M is a trace of N. The base case is trivial. For the inductive step, assume
8%7(r,u,m), and dar(m, e, m'). By the inductive hypothesis there exists n such
that 63 (r, u,n). Because M’s unrolling is trim, m is not dead, and the label
of m’ is unique on its root path. By the definition of unrolling, there is a
corresponding transition §(Lg.m, e, Lo.m’) in Cp. Now, N is full, so (because m
is not dead, and 6(m, e, m') is not a back edge) there is an n’ and a corresponding
transition 8(n,e,n’) in N. (Recall that the labels along identical root paths of
two unrollings from the same state are identical.) Therefore ue is a trace of
N. Thus we have shown that every trace of M is a trace of N; it follows that
(M, L) is a sub-unrolling of (N, L'). o

Proof of Proposition 15. Let (N,L’) be a t.p.a. unrolling from ¢ in some
reasonable set: we shall derive a contradiction from this assumption. We observe
that by the definition of unrolling, L'.ry = L.ra, i.e., the initial states of M
and N have the same label, and furthermore because (M, L) is r-maximal we
have out.ry C out.rys. It follows that if rps is not progressive then ry is not,
and a7 is dead if and only if rx is. Finally, if ras is a leaf then 7y is.

Thus if vy is nondead and nonprogressive, then ry is nondead and non-
progressive, which contradicts the assumed progressiveness of (N, L'). If rp

38

is a nondead, nonterminal leaf, then 7y is a nondead, nonterminal leaf, which
contradicts the assumption that rpy is acceptable. Thus we have shown that no
t.p.a. unrolling from c¢ exists, and so no unrolling from ¢ is a member of any
reasonable set. O

Proof of Proposition 16. We have to show that (M', L’) is trim, and any
unrolling from ¢ in a reasonable set is a sub-unrolling of (M’, L’). Removing a
state preserves trimness, so (M’, L') is trim. Now, every trace of M that is not a
trace of M’ is of the form uw’, where u is the unique trace such that 3, (r, u, m).
We shall show that no such trace is a trace of any t.p.a. unrolling from ¢; it
then follows (thanks to r-maximality of (M, L)) that every trace of any t.p.a.
unrolling from ¢ is a trace of (M’, L), and hence (M’, L) is r-maximal. By
the prefix-closure of trace sets, it suffices to show that u is not a trace of any
t.p.a. unrolling from ¢. Let (N, L”) be any t.p.a. unrolling from ¢. We assume
8% (r,u,n), and derive a contradiction.

We have L”.n = L.m, and hence n is dead or terminal if and only if m
is. If m is a leaf, then n is a leaf, by r-maximality of (M, L). Therefore if m
is a nondead, nonterminal leaf, then n is a nondead, nonterminal leaf. This
contradicts the assumption that N is acceptable.

On the other hand, if m is nondead and nonprogressive, then by the r-
maximality of (M, L) we have out.n C out.m, hence (by the definition of pro-
gressive and (12)) n is nonprogressive in (N, L), again a contradiction. Thus
the assumption §}(r, u,n) leads to a contradiction; we conclude that u is not a
trace of any t.p.a. unrolling from ¢, and hence (M’, L'} is r-maximal.]

Proof of Proposition 18. Because W is optimal, (M, L) is r-maximal; by
Propositions 15 and 16, (M’, L') is also r-maximal; thus replacing (M, L) by
(M’, L'} preserves optimality.]

Proof of Proposition 19. Observe that m is not the root of M (because
(M, L) itself is an unrolling from Lg.r). Therefore there exist u and e such that
&%,(r, ue,m), and because m is a leaf, ue is the only trace of M that is not a
trace of M’. To show r-maximality of {(M’, L'}, it suffices to show that ue is
not a trace of any unrolling from c in any reasonable set. Let (N, L") be an
unrolling from ¢ in some reasonable set W’. We shall derive a contradiction
from the assumption that we is a trace of N.

Assume 8% (r, ue,n) for some n. Because (M, L) is maximal, and m is a
leaf, n is a leaf. By the definition of a reasonable set, W’ contains an unrolling
from L{.n. But W contains no unrolling from Lg.m = Lf.n, hence by the
definition of an optimal set, no reasonable set contains an unrolling from Lo.m;
this contradicts the hypothesis that W’ is reasonable. Therefore we conclude
that ue is not a trace of N, and hence that (A, L'} is r-maximal. O

39

References

(1]

(2]

(13]

A. Aho, 1. Hoperoft, and J. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of commu-
nicating sequential processes. Journal of the Association for Computing
Machinery, 31, 1984.

Kenneth L. Calvert. Protocol Conversion and Quotient Problems. PhD
thesis, University of Texas at Austin, May 1991. Department of Computer
Sciences.

Kenneth L. Calvert and Simon S. Lam. Deriving a protocol converter:
a top-down method. In Proceedings of ACM SIGCOMM ’89 Symposium,
Austin, TX, September 1989.

Kenneth L. Calvert and Simon S. Lam. Adaptors for protocol conversion.
In Proceedings IEEE INFOCOM 90, June 1990.

Kenneth L. Calvert and Simon S. Lam. Formal methods for protocol con-
version. IEEE Journal on Selected Areas of Communications, 8(1}, January
1990.

M. Garey and D. Johnson. Computers and Intractability. Addison-Wesley,
1979.

C. A. R. Hoare. Communicating Sequeniial Processes. Prentice-Hall, 1986.

C. A. R. Hoare and He Jifeng. The weakest prespecification. Information
Processing Letiers, 24(2), January 1987.

J. Hoperoft and J. Ullman. Iniroduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

Luming Lai and J. W. Sanders. A weakest-environment calculus for commu-
nicating systems. Technical report, Programming Research Group, Oxford
University Computing Laboratory, November 1988.

Philip M. Merlin and Gregor von Bochmann. On the construction of sub-
module specifications and communications protocols. ACM Transactions
on Programming Languages and Systems, 5(1), Jan 1983.

Robin Milner. A Calculus of Communicaiing Sysiems. Springer-Verlag,
1980.

[14] Joachim Parrow. Submodule construction as equation solving in ccs. In

LNCS 287: Proceedings of Seventh Conference on Foundations of Software
Technology and Theoretical Computer Science. Springer-Verlag, 1987.

40

[15] M. W. Shields. Implicit system specification and the interface equation.
The Computer Journal, 32(5):399-412, 1989,

41

