AN INTEGRATED
SCHEDULING STRATEGY FOR
MULTIPROCESSOR SYSTEMS

Mandar Joshi
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-91-24 July 1991

Table of Contents

Table of Contents

List of Tables

List of Figures

Abstract

1. Introduction
1.1 Problem Statemento
1.2 Approach e
1.3 Results o v e e

1.4 Organization of the thesis

2. Related work
2.1 Static Scheduling Strategies
2.1.1 Graph Theoretic Approaches
2.1.2 Simulated Annealing Methods
2.1.3 Heuristicsearch oo

214 Miscellaneous v v e e e e e e

o
Q]

Dynamic Scheduling Strategies

3. An Integrated Scheduling Strategy
3.1 Justification for the Integrated Approach
3.2 The Static Scheduling Model

11

ii

iv

vi

111

3.2.1 The Model of Computation 13

3.2.2 Model of Target Architecture 14

3.2.3 Linear Clustering Algorithm 14

3.3 The Dynamic Algorithm 17

4. Experimental Study 19
4.1 Experimental Setup e 19
4.1.1 CODE programming system 19

4.1.2 Symult S2010 System 20

42 Choiceof Test Set o o v o v v v it 21
43 Results . . o o o v o e e e e e e 23
431 Graph G41 24

432 Graph G82 24

433 Graph G32 28

4.4 ConcluSions . . . v v v v v e e e e e e e e 28

5. Conclusions and Future research 35
BIBLIOGRAPHY 36

List of Tables

4.1

4.2

Assignment of nodes to clusters in G41

Assignment of nodes to clusters in G32

1v

List of Figures

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

CODE graph for prime number generation 22
CODE graph representationof G41 25
VAG of G41 after Linear Clustering 26
Performance results for G41 o 27
VAG of G82 after Linear clustering 29
Performance results for G82 30
CODE graph representation of G32 31
VAG of G32 after Linear Clustering 32
Performance results for G32o 33

Abstract

Allocating resources to minimize the execution time of a parallel pro-
gram is an NP-complete problem. Neither of the two major strategies, static
scheduling and dynamic scheduling, is a complete solution by itself. Static
scheduling suffers from the unavailability of accurate information about the
execution behavior of the program; while dynamic scheduling which use the
run-time information may incur serious overheads unless effectively managed.
The strategy presented here combines both static and dynamic scheduling. A
schedule generated by a static scheduling algorithm is used as initial assign-
ment. A simple dynamic scheduling algorithm is then applied to compensate
for inaccuracies in the initial information as they become visible during the
execution of the program Beginning with a good static schedule minimize the
amount of work which must be done at run-time by the dynamic scheduler.
The study presented here identifies the factors which affect the performance
of scheduling algorithms and indicates that the integrated strategy can pro-
vide substantial improvement over either static or dynamic scheduling used

separately.

Keywords : Multiprocessor scheduling, performance measurement.

vi

Chapter 1

Introduction

Multiprocessor systems built from low cost, high performance micro-
processors are a promising method for development of low cost, high perfor-
mance parallel supercomputers. These multiprocessor systems can be used
either to maximize the throughput of a given system by assigning different
processors to different jobs or to maximize the speed up for a single job. Our
focus is on attainment of the second goal. The task is to take a given paral-
lel program and to allocate resources to the parallel program in such a way
as to minimize the execution time of the program on a given multiprocessor

architecture.

1.1 Problem Statement

A brief summary statement of the problem is as follows - given a

parallel program
e partition it into a set of schedulable units of computation, and

e create a schedule for allocation of resources to these units of computation
and the communication among them such that the total time of execution

of the parallel program on the given architecture is minimized.

A parallel computation can be represented as a directed graph where

each of the nodes represents a unit of computation and each edge represents

1

a dependency between two units of computation. Each node of the graph is
called a schedulable unit of computation because it can, once its conditions

for execution are met, be scheduled for execution on an appropriately chosen

processor. Bach edge represents a communication among nodes which for its

execution, must be assigned to some communication resource.

The target architecture for execution of the parallel program can be
represented by an undirected graph where each node represents a processor and
each edge represents a communication link between two or more processors. We
can, without loss of generality, consider each processor to also incorporate local
memory. This model of target architectures spans all types of multiprocessor
systems ranging from closely coupled systems of multiple processors sharing a
common memory to distributed systems, which consist of a set of distinct com-
puters connected by communication channels. The problem is to assign units of
computation to processors and communications between units of computation
to communication resources such that the total time to execute the compu-
tation on the given target architecture is minimized. The scheduling problem
now becomes a mapping problem between the dependency graph representing

the parallel computation and the graph representing the target architecture.

It has been shown[10] that the general graph mapping problem is
equivalent to the graph isomorphism problem. Even more restricted versions
of this problem are known to be NP-complete. Therefore, we typically must
rely on heuristics which are known to be sufficiently accurate as well as com-

putationally feasible.

[SV]

1.2 Approach

Exact optimal scheduling algorithms typically require exact informa-

tion concerning the execution time of each unit of computation, the amount

of information exchanged and which paths through the dependency graph are
executed. This information is not usually available, therefore, scheduling must
be based upon estimates of these properties which may contain a little or a
great deal of uncertainty. Furthermore, the computation graph may be a dy-
namic graph, i.e. it may dynamically add nodes or choose only a few paths in

the dependency graph sepcification.

It is typically the case, though, that a substantial amount of informa-
tion concerning the execution properties of the units of computation and the
dependency graph in general, are available at the time the program 1s com-
piled and loaded. There has, therefore, been a considerable amount of effort
applied to the development of static scheduling algorithms which utilize this
information. These algorithms offer a substantial improvement over random

assignments which do not utilize this information.

A good deal of time and energy has also been applied to the study
of dynamic scheduling algorithms. In this family of scheduling algorithms the
assignment of resources to tasks is modified at run time as the state of the sys-
tem and the computation becomes more accurately resolved. These dynamic
scheduling algorithms have also been found to have benefit in some circum-

stances.

This leads us to consider the possibility of integrating static and dy-
namic scheduling into a single system. A static schedule based upon the best
information available at load time will often be a much more effective initial

assignment of resources than a random assignment. Simple dynamic schedul-

3

ing, correcting inaccuracies due to the incomplete information available to the

static scheduling algorithm, should lead to additional improvement.

The static algorithm used in this study is a technique called Linear

Clustering [10]. The Linear Clustering algorithm is based upon a series of graph
transformations. The end point of these transformations is a graph which is
called the “Virtual Architecture Graph” or VAG. A VAG represents a processor
configuration which, if realized, would be an optimal execution environment
for the given program graph. The Virtual Architecture Graph is then mapped
upon the target physical architecture. A simple dynamic scheduling algorithm
in which processors request additional schedulable units of computation (SUC)

when they exhaust their supply of SUCs is coupled with the static scheduler.

1.3 Results

The scheduling strategy described above was applied to programs
generated with the CODE [5] parallel programming environment. The CODE
system allows users to generate parallel programs and stores them in the form
of a dependency graph. This stored dependency graph is then used to generate

the actual code for different target architectures.

The static scheduling algorithm operates on the CODE graph and
generates an initial schedule. The CODE parallel program generator uses that
information while generating the program. The information required to support
dynamic scheduling is also inserted into the executable code at this stage.
The generated code is then compiled and run on the target architecture. The

dynamic scheduling algorithm is invoked as needed during execution.

The results of this thesis are a determination of the factors which lead

to this integrated scheduling algorithm producing an improvement over either

4

static or dynamic scheduling applied by itself.

1.4 Organization of the thesis

Chapter 2 gives an overview of the algorithms and methods available to be
combined into an integrated static/dynamic scheduling system.

Chapter 3 describes the integrated strategy for combining static and dynamic
scheduling in some detail.

Chapter 4 defines and describes the execution environment in which the in-
tegrated algorithm was tested. It also defines the experiments and gives the
parameters driving the experiments, and the metrics measured in the experi-
ments.

Chapter 5 draws conclusion from the performance studies and describes the

possibilities for future work.

Chapter 2

Related work

Multiprocessor scheduling has been studied extensively for more than
twenty years. Since the general multiprocessor scheduling problem is NP com-
plete, most research has been focused upon finding heuristics which are fast
but offer effective and satisfactory solutions in some domain of application. A
fairly thorough survey of the literature previous to 1988 can be found in Kim
[10]. The survey here lists the several approaches which were analyzed with
respect to their applicability in a search for appropriate static and dynamic

scheduling strategies for our integrated static/dynamic strategy.

2.1 Static Scheduling Strategies

Static scheduling algorithms are applied at compile time and/or load
time to determine an “optimal” allocation of resources to minimize the exe-
cution of a given parallel program. A wide spectrum of cost functions have
been used. Cost functions typically depend upon different parameters and use
different metrics. There follows a brief description of types of strategies based

upon the model used for representing the scheduling problem.

2.1.1 Graph Theoretic Approaches

Network flow methods [21] model the scheduling problem as finding

a min-cut in a graph where the processors are synchronization nodes and the

6

other nodes are program modules. In communication graph based models the
cost of communication is reduced by the use of graph embedding methods.

Precedence graph methods model computations as data flow graphs, and de-

termine the minimum amount of resources necessary to execute the data flow
graph. Data flow graphs have also been extended to include communications
costs between the modules. We have chosen an extended data flow graph model
as the basis for our static scheduling algorithm. There are, however, a number

of other possible methods.[18, 17, 15]

2.1.2 Simulated Annealing Methods

Simulated annealing algorithms begin with a random initial map-
ping and fine tune the solution for some specific cost function [20, 13]. These
methods typically execute by pairwise permutation of assignments of units of
computation to processors. The fundamental approach here is to begin with

any initial assignment and try to find a better assignment.

2.1.3 Heuristic search

These methods involve a state space search. A search tree can be
generated to represent partial assignment of modules to processors [1]. A cost
function which calculates incurred costs along the path is used to determine
whether the next node is to be expanded or discarded. The algorithm finds the

best solution through an exhaustive search using a form of branch and bound.

2.1.4 Miscellaneous

Many other methods have been used including integer programming,

iterative optimization of multiple subgoals, optimization of approximate mea-

7

sures of mapping, etc.[14, 23]

All of these methods depend upon the assumption that the execution
profile of a program is known at the time the schedule is computed. It is
not possible to determine accurate execution properties of arbitrary programs

except in restricted cases.

It is also the case that the types of computation structures to which
these methods can be applied is somewhat restricted. None of them apply to the
most general case where the active paths in the dependency graph specification
are not known until execution time. In addition, the complexity of application
typically becomes much higher as the structure of the graph, is enriched from

trees to directed acyclic graphs to general graphs.

We have chosen to use an extended data flow graph model developed
by Kim [10] as the basis for our static scheduling. This algorithm, called Linear

Clustering, is described in detail in the next chapter.

2.2 Dynamic Scheduling Strategies

Dynamic scheduling strategies can be classified as load balancing poli-
cies [2, 16] or load sharing policies [6, 11, 7]. Load balancing policies attempt
to distribute the work evenly among the available processors while load sharing
policies try to keep all processors busy. The justification for these strategies is
that if all resources are kept fully utilized without introduction of extra work,
then the execution time will be approximately minimized. There are a number
of attributes which can be chosen in the construction of dynamic scheduling

policies.

e Preemptive or Non-Preemptive schedules : With a non-preemptive policy
a task is not allowed to move if it has already initiated its execution. A

preemptive policy allows the rescheduling of an existing process where

the conditions justity.

e Sender initiated or Receiver initiated : The reassignment of work can
either be initiated by a processor when its load falls below a certain
threshold or it can be initiated by a processor if its load increases beyond

a certain threshold.

e Centralized or Distributed state : In a centralized state approach, work
distribution is controlled from a central site. In a distributed approach,

control over distribution of work is shared among all resources.

Dynamic strategies also work on partial information and introduce extra over-
head at run time. It is necessary to choose a dynamic scheduling policy which
introduces minimal overhead. We choose as our dynamic algorithm a very
simple algorithm based upon empirical studies executed in the context of dis-

tributed operating systems.

Chapter 3

An Integrated Scheduling Strategy

Previous research has established that while both static scheduling
strategies and dynamic scheduling strategies can generate improvement in exe-
cution time of a parallel program upon a multiprocessor architecture and that
neither by itself is a complete solution. The strategy presented here integrates
static and dynamic scheduling algorithms and determines the conditions un-
der which this integration provides substantial advantage over either applied
separately. A static schedule is applied to generate an initial assignment of
resources to tasks. This assignment will be near optimal for a static graph
to which the method applies and for which the virtual architecture graph can
be realized and if all the execution properties are exactly known. A simple
dynamic algorithm which has been shown to be effective in the distributed op-
erating system environment is then applied to compensate for the inaccuracies
in the information upon which the static schedule is based as they become

visible through the execution of the program under the static schedule.

3.1 Justification for the Integrated Approach

The static scheduling algorithms assume that the execution times of
the units of computation are fixed, and known a priori and that the use of
communication resources is continuous and even throughout the execution of
the program. These assumptions are rarely valid in practice after mapping to

a real target architecture. The factors which affect these assumptions include

10

the following:

e Input data set : The execution time and the amount of communication
among the units of computation are typically dependent upon the input
data of the program. Execution properties may not be known for the

specific input data for a particular execution.

e Resource contention : In particular, the use of communication channels
is typically not uniform across the entire execution of a unit of compu-
tation. It is typically the case that communications take place at the
beginning and end of the execution of a unit of computation. In addi-
tion, it is commonly the case that the Virtual Architecture Graph for a
program cannot be realized directly without conflict on the real target
architecture. These effects may increase communication times by render-
ing the assumptions under which the static schedule is generated to be

invalid.

e System-dependent functions : System functions such as the spawning
and termination of processes may also affect the execution time of the
units of computation executing on a specific processor. These system
functions are typically not incorporated in the computation graph but
may take significant execution time and engender substantial communi-

cations.

These problems can be partially overcome by collecting information on runs of
the program over a spectrum of input data and execution environments, and
incorporating this information into the computation graph of the algorithm.

It is, however, often not a practical means of improving static schedules. The

11

complexity of parameter structures and the amount of information which must
be incorporated into the computation graph and into the algorithm renders use

of extensive measurements impractical.

Dynamic scheduling strategies can accommodate this dynamically oc-
curring uncertainty in program and system state. There are, however, a number
of overheads associated with dynamic scheduling. Dynamic algorithms must
gather state information and must execute scheduling algorithms at run time.
In addition, execution of the decisions rendered by the dynamic scheduling al-
gorithms may require substantial resources both in communication time and

processing time.

The poorer the starting point for a dynamic scheduling algorithm the
more often it must be run and the more complex and expensive implementing

its decisions becomes.

Therefore, it seems intuitive that beginning a computation with the
best possible static schedule which can be determined on the basis of existing
information and accommodating for the deficiencies in resource usage informa-
tion with dynamic scheduling offers some, and perhaps substantial advantage,

for execution of complex parallel programs.

3.2 The Static Scheduling Model

The static scheduling model chosen here is based upon a specific model
of computation in which the computation and the architecture are both mod-

eled as graphs.

3.2.1 The Model of Computation

The model of computation is a triple (G., f&™, f™™), where

o G. is a graph which specifies the computation. G; is a directed graph

and composed of the following:

1. A node set N, : Each node in N, represents a schedulable unit of
computation (SUC). Each SUC consists of a set of input dependen-
cies, a set of output dependencies and a specification of the compu-
tation bound to the node. Each SUC requires all of its input de-
pendencies to be satisfied before its completion. It is also required
to satisfy all of its output dependencies before its completion. The
computation bound to the node can be specified as arithmetic ex-
pressions, or a collection of statements or procedures in a high level

language. It may also be realized as a collection of smaller SUCs.

2. An Edge set E. : Each edge in E., e = (ni,n;), ni,n; € Ne, is
directed from SUC n; to SUC n;. Each dependency e, represents
a dependency relation between SUCs n; and n;. Each dependency
relation is realized by synchronization and data communication. The
data communication is based on an asynchronous send/synchronous

receive communication model.

o fmP is a function which maps every SUC in N, into a non-negative

floating point number which is the expected execution time of the SUC.

e fe™™ is a function which maps each edge e = (n4, n;) in Ec into a non-
negative floating point number which is the expected time required for

transfer of information from n; to n;.

13

3.2.2 Model of Target Architecture

The target architecture model is also a triple (Ga, f2""7, f'™),

where

e G, is an undirected graph defined as follows:

1. A set of processor nodes Ny, in which each processor node represents

a processor with its local memory.

2. An edge set E,, where all edges are undirected. Each edge e = (ni,
n;) represents a communication link between two processor modules

n; and n;.

o fo™ maps each processor module in N into a pair of positive floating
point numbers which denotes the computing power of the node relative

to other nodes and the current local memory size.

o f™™ maps each edge (n;, ;) in E, into a positive floating point number
which represents the bandwidth of the communication link from processor

node n; to processor node n;.

This model can be used to model all types of architecture. e.g., in shared
memory architectures, the common global memory can be modeled as a dummy

processor node which is fully connected with all other processor nodes.

3.2.3 Linear Clustering Algorithm

The static scheduling algorithm employed in this research is the lin-
car clustering algorithm developed by Kim [10]. Multiprocessor scheduling is
developed as a series of mappings from a computation graph to a Virtual Ar-

chitecture Graph. The Virtual Architecture Graph explicitly displays all of the

14

parallelism which exists in the original computation graph and incorporates in
its topology the communications among this maximally parallel set of units

of computation. This virtual architecture graph must then be mapped to a

physical target architecture graph.

A number of restrictions must be added to the original model of com-
putation before the linear clustering algorithm can be applied. These restric-

tions include:

e Sets of edges entering and leaving a node may not be joined by an "OR”
condition. This prevents the occurrence of nondeterminism in the com-

putation graph.

e The computation graph may not have any back edges. This requires
all loops in the original computation graph to be unrolled so that the
computation graph is cycle free. An algorithm is given in [10] to unroll

loops in procedural programs.
o The computation graphs must be static.

o The computation graph must have one root node and one sink node. This
restriction can be met by adding additional nodes and connecting them

appropriately to graphs which do not meet this requirement.

These restrictions may require selection of a particular path for a
schedule from among the family of paths possible in the computation graphs.
We begin by introducing the notion of nodes in the computation graph which
are sequentially strongly dependent upon one another. A node N is sequen-
tially strongly dependent node on node M, if N cannot execute until all output

dependencies of M are satisfied, i.e. node N cannot begin its execution until

15

node M has completed its execution. A Linear Cluster is a connected subgraph
of the computation graph. It is a sequence of nodes which are sequentially

strongly dependent. The underlying idea of linear clustering is that nodes

which are sequentially strongly dependent on each other can be assigned to the
same processor without loss of parallelism. A path (ny,e1,n2,€2,. .. ,€1—1,n7) in

G, is called the longest path if it minimizes the following function:

-1
Z(Tcompi + (Tcommg + 1{1 Z Tcommfldj)) (31>
i=1

where Toomp; 18 the computation time for node n;, Teomm, 1s the communication
time of n; with its node nqq;, and Toppmmi 4 is the communication time of n.4;
with its neighbors other than n;. K; is scaling factor which is dependent on
the target architecture. The linear clustering algorithm works by successively
finding the longest path in G. and cutting the subgraph defined by this longest
path from G, and replacing it by a single node.

Each of the longest paths is a linear cluster. The new computation
graph generated after linear clustering can be further reduced by merging linear
clusters that cannot be run in parallel. Two linear clusters, Ly and L, can be
merged only if L, may start only after L; has finished or L; can run only when
L, is idle. This cluster merging further contributes to balancing the work-
load and yields further reduction in interprocessor communications overhead.
This new computation graph is the Virtual Architecture Graph which will be
mapped to the target architecture graph. This Virtual Architecture Graph, if
realized as an optimal multiprocessor system, will provide a processor for each
linear cluster so that the mutually independent scheduled units of computation
can be run in parallel as long as is necessary. The real target architecture may
not have a sufficient number of processors available. In this case the clusters

are assigned to processors using a secondary measure such as load balancing

16

based upon the available knowledge of execution time for the clusters. The
real target architecture may, in addition, not incorporate a conflict free, direct

communication channel between each processor. This may lead to contention

and thus render invalid the optimality of the static schedule.

The total execution time of the computation cannot be less than the
length of the critical path regardless of the amount of hardware resources avail-
able. Therefore, if the virtual architecture graph can be realized on the real
target architecture, Linear Clustering makes it possible to achieve the minimum
possible execution time for the given computation. Clusters which cannot be
run in parallel are assigned to the same processors. This minimizes interprocess
communication overhead and resources are used to their full potential for this
computation. Gerasoulis and Yang [8] have shown that, for any nonlinear clus-
tering of a coarse grain directed acyclic graph, there exists a Linear Clustering
with equal or less execution time. Thus, Linear Clustering provides optimal

mapping for the restricted class of computations to which it applies.

3.3 The Dynamic Algorithm

Selection of a dynamic scheduling algorithm must incorporate several

different factors. These factors include:

e The amount of overhead : The amount of overhead is dependent upon
the nature of the algorithm and the nature of the target system upon
which the dynamic algorithm is implemented. It depends upon the fre-
quency of execution of the algorithm, the costs to execute the decision
cycle of the algorithm and upon the cost of implementing a given schedul-
ing decision.

17

e Penalties for poor decisions : It is still the case that complete infor-
mation and execution behavior is not available to the run-time system.

Rather one can tell only that the assumptions of the static algorithm have

been violated. Therefore, poor decisions will occasionally be made. The

penalty for poor decisions can lead to an excessive cost for execution.

e Potential instability : Dynamic algorithms may be sensitive to system
behavior. Decisions to move a process may be taken frequently, thus, at
the worst case, the system may consume most of its resources by making
poor decisions and may result in processor thrashing in an attempt to

correct the poor decisions.

18

Chapter 4

4.1 Experimental Setup

To evaluate the effectiveness of our strategy, some experimental pro-
grams were generated in the CODE parallel programming system and were run
on Symult $2010 multiprocessor system. Our experiments were significantly in-
fluenced by the experimental setup we had available. The following sections

describe the experimental setup.

4.1.1 CODE programming system

CODE (Computation Oriented Display Environment) is a graphical
parallel programming system for writing parallel programs independent of tar-
get architecture and higher level programming language[5]. CODE is based on
the Unified Computation Graph (UCG) model of parallel computation, where a
parallel program is viewed as an extended directed graph [4, 19]. Each program

graph consists of the following:

e Computation units : Each node in a UCG is composed of a functionality
and a firing rule. A computation unit’s functionality is the transformation
of input dependencies to output dependencies. It can be specified in
several sequential high level languages. A firing rule specifies the state
of input dependencies which may enable this unit to execute. Each node

may be a simple unit of computation or a subgraph.

19

o Dependency relations : Dependency relations compose computation
units into the program structure and are represented as arcs in the pro-

gram graph.

Since our model is simpler and more restrictive than the CODE model, it can

be viewed as a subset of the CODE model.

A CODE program can be transformed into an executable program
for any particular target architecture. This is accomplished by a “backend”
program. The CODE backend for the Symult was modified to facilitate gener-
ation of programs according to static schedules. The modified backend program
generates a schedule using the CODE graph and maps it onto the target ar-
chitecture. This allows us to maintain architectural independence. Executable
processes are generated according to the schedule. These processes can be

executed on the target architecture after compilation.

4.1.2 Symult S2010 System

Symult $S2010 system is an MIMD (Multiple Instruction Multiple
Data) multiprocessor system composed of processors which communicate through
a high-speed GigaLink network [22]. The description which follows describes
the particular system used for running the experiments. This system consists
of 24 nodes. Each node consists of Motorola MC68020 microprocessor operat-
ing at 25 MHz, a Motorola 63881 floating-point unit, RAM and an automatic
message routing device. Typical performance of each node is 4.0 MIPS. 16 of
the 24 processor system have 1 MB RAM, and rest of the nodes have 3 MB
memory. The operating system is loaded into and executes in the portion of
this memory. Individual processes with associated data, stacks and messages

may utilize the remaining memory on each processor. The Symult system can

20

be accessed through a front-end Sun workstation and runs a Reactive Kernel
on each of the nodes. The nodes are connected in a 6x4 mesh configuration.

User processes can access files on a disk connected to any 52010 node or from

the file system of the front-end.

4.2 Choice of Test Set

The properties of programs which can potentially benefit from the in-
tegration of static and dynamic scheduling were identified. Programs contain-
ing these characteristics in parametric form were prepared and used as the basis
for experimental validation of the goodness of the integrated static/dynamic

approach to multiprocessor scheduling.

The goal of our experimental study was to determine a few parameters
from the parameters which affect the performance of our scheduling strategy.
Some of the parameters can be determined by a straightforward analysis, some
were determined after experimentation. e.g., Static or dynamic scheduling is
ineffective for graphs which have a large number of nodes at the same level, and
have small clusters with small differences in their individual execution times.
In such cases, even random allocation gives sufficiently good results. Figure

4.1 shows such an example.

The workload factors which determine effectivenss of static and dy-
namic scheduling strategies include : certainty in the estimates of execution
time and communication volume for the units of computation and the varia-
tion in execution time among the units of computation. A large variation in
execution time renders static scheduling invalid. Dynamic scheduling can be
used profitably only when there is a substantial variation among the execution

times of the units of computation. These factors were the parameters varied in

21

Figure 4.1: CODE graph for prime number generation

22

the studies executed for this thesis. The percentage of nodes whose execution
was taken to be uncertain was varied from 10% to 100%. The range of variation

in execution time was also varied from 10% to 100%.

There were some additional constraints added because of the target
architecture. Since the processes created on Symult system are “heavyweight”
processes and consume a lot of memory, very few processes can be spawned on
a node at a time, although the operating system allows up to sixteen processes.
Because of this reason, only the eight nodes with 3 MB memory were used for
our experiments. Even then number of processes that can be spawned at a
given time are restricted. To get around this problem, server processes on each
node were introduced. These processes kept track of executing processes and
corresponding messages in addition to performing dynamic scheduling. In the
$2010 system, the individual clocks of the processors are not synchronized. To
measure the execution time of the entire program, a simple addition of execu-
tion times of individual units is not sufficient. A host process was introduced
to synchronize the execution of individual processes and measure the timing.
The results of timing measurements were compared with random allocation of

SUCs and static allocation of SUCs.

4.3 Results

Three synthetic random graphs were used as our test set. These
graphs are derived from the real applications such as weather forecasting[15]
and a molecular dynamics code[10]. The code inside each of the nodes is
parameterized to vary execution times. All graphs were run on Symult 52010
system using random scheduling, static scheduling and dynamic scheduling.

The execution times of the units were varied to determine its effect on the

23

execution times. Static scheduling always outperformed random scheduling at
least by a factor of 2. This circumstance can be attributed to the large overhead

associated with spawning a process on a Symult node. Hence, our integrated

strategy was compared with static scheduing only.

The speedup obtained using the strategy is shown simply a ratio of
execution time using static scheduling only and execution time using static and

dynamic scheduling.

4.3.1 Graph G41

This graph is a slightly modified version of a synthetic program used
by Kim[10] (Fig 4.2). This graph contains a large number of clusters with
variation in execution times of individual clusters. The following table contains
the clustering information and Figure 4.3 shows the VAG generated by static

scheduling algorithm.

Figure 4.4 shows that the speedup for the integrated strategy is gener-
ally increasing as percentage of uncertainty is increased. The speedup obtained
depends on the nodes chosen to vary the execution time and whether the vari-
ation is positive or negative. This can result in fluctuations as seen in Figure
4.4. For smaller variations, the uncertainty is not enough to offset the overhead

of dynamic scheduling, which results in negative speedup.

4.3.2 Graph G82

Graph G82 contains two copies of G41. Assignment of nodes to clus-
ters is similar to the assignment for G41. Figure 4.5 shows VAG of G82. Even
though this graph contains more number of clusters, the speedup obtained is

not significantly larger than speedup obtained with G41. The main reason

24

CODE : Computation-Orientad Display Enyironment

Saving screen dump in file g41.5d. Please waitl!

Thraph of code_graph—

329

D54\ D55
$34 $35

6@ /D61

538

D62
D64 63

39
48

D&6 D

Figure 4.2: CODE graph representation of G41

25

Cluster Nodes Cluster | Nodes
CO0 | 1,4,11,15,22,29,35,38,40,41 || C7 23
C1 28.,33,37,35 8 7:13,20
C2 3,6,12,16,25,31,36 C9 18
C3 34 C10 17
C4 10,14,21,27,32 C11 9
C5 24,30 C12 8
Cé6 19,26 C13 2,5

Table 4.1: Assignment of nodes to clusters in G41

CO

@

Figure 4.3: VAG of G41 after Linear Clustering

26

1.10

T0% rodes

1.08

1.06

A
N
N
S
.
A
S
\i .
pR
e
HE] \
1
Ry ‘
i ‘
1
. 1
:
i

1.04

1.02

o =l anenn

1.00

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.00

40.00

27

60.00

100.00

Figure 4.4: Performance results for G41

9, variation

Cluster Nodes Cluster | Nodes
C0 | 1,10,19.26,30,31,32 | C7 | 5,13
C1 17,24,29 Cs | 4,12
C2 7,15,23,28 C9 25
C3 14,21,27 C10 22
C4 211,20 Cl1 8
C5 9.18 C12 6
C6 16 C13 3

Table 4.2: Assignment of nodes to clusters in G32

for this is the choice of dynamic scheduling algorithm. The currently imple-
mented dynamic scheduling algorithm, tries to use idle processors only after
they run out of work. The idle period of processors spent waiting for some
event, may not utilized. The speedups for graph G82 are generally similar to

those obtained for graph G41.

4.3.3 Graph G32

This graph is a representation of a weather forecasting program|[15].
Although the number of clusters is high in the graph, all the clusters are small
and variation in the clusters is very small. The speedups for this graph are in

a smaller range than those obtained for graphs G41 and G82.

4.4 Conclusions

The experimental results indicate that following parameters are im-

portant for effectiveness of the integrated scheduling strategy:

e Properties of the program graph : The following properties in program
graphs were found more suitable for our strategy:

28

Speedup
1.12 = T 7] T0% nodes

100% nodes

% variation
20.00 40.00 60.00 80.00 100.00

Figure 4.6: Performance results for G82

30

CODE : Computation-Oriented Dispiay Envirorment

Saving screen dump in file nup32.sd. Please wait!!

Graph of code_graph

Figure 4.7: CODE graph representation of G32

31

o—e C

Figure 4.8: VAG of G32 after Linear Clustering

32

Speedup

10% nodes

% variation

!

1.08 —

1.07 —

1.06 —

1.05 —

1.04 —

1.03 —

1.02 —

1.01 —

1.00 —~

097 —

0.96 —

095 —

094 —

100.00

20.00 40.00 60.00 80.00

0.00

Figure 4.9: Performance results for G32

33

1. Large number of clusters : The number of clusters should be more

than number of processors.

9. The clusters should have a wide variation in terms of their execution

times.

e Overhead of moving a process : If the overhead of moving a process reltive
to execution time of the unit is small the integrated scheduling strategy

performs better.

o Uncertainty in predicted execution times : The integrated scheduling
strategy can effectively handle moderate uncertainity in execution times.
If the uncertainity is too low or too high, overhead of moving a process
becomes dominant. In which case, the integrated scheduling startegy

performs worse than static scheduling.

The currently used dynamic scheduling algorithm does not make use
of idle periods when a process is waiting for an event. Use of such idle periods

should lead to even better performance.

34

Chapter 5

Conclusions and Future research

This study has demonstrated that there exists a substantial spec-
trum of the parameter space of multiprocessor scheduling, where an integrated
adaptive scheduling algorithm based upon a reasonable static scheduling sys-
tem and a simple adaptive method can lead to substantial improvement over

either applied separately.

The critical parameters are the degree of uncertainty in the execution
characteristics of the program, and the relative granularity and number of units

of computation.

The future work which remains to be accomplished includes the fol-

lowing:

e Study of the impact of uncertainty upon dynamic scheduling algorithms.

e Extension of the studies to include larger graphs on larger architectures.

35

BIBLIOGRAPHY

1]

Jacob Bahren and Edith C. Halbert. Roses: An efficient scheduler for
precedence-constrained tasks on concurrent multiprocessors. In Hypercube
Multiprocessors 1986, pages 123-147. Society for Industrial and Applied
Mathematics, 1986.

K. M. Baumgartner, R. M. King, and B. W. Wah. Implementation of
Gammon: An efficient load balancing strategy for local computer sys-

tem. In International Conference on Parallel Processing, pages I1I-77-11-

80, 1989.

S. H. Bokhari. On mapping problem. [EFE Transactions on Computers,
C-30(3):207-214, March 1981.

J. C. Browne. Foundation and programming of parallel computations:
A unified approach. In International Conference on Parallel Processing,

pages 624-631, 1985.

J. C. Browne, M. Azam, S. M. Sobek, R. N. Rao, and C. L. Lin. Program-
ming with CODE: A Computation Oriented Display Environment. The

University of Texas at Austin, 1988.

R. Bryant and R. A. Finkel. A stable distributed scheduling algorithm. In
International Conference on Distributed Computing Systems, pages 314
323, 1981.

Derek L. Eager, Edward D. Lazowska, and John Zahorjan. Adaptive load

36

sharing in homogeneous distributed systems. IEEE Transactions on Soft-

ware Engineering, SE-12, No. 5:662-675, May 1986.

A. Gerasoulis and T. Yang. On the granularity and clustering of directed

[12]

[13]

[14]

[15]

acyclic task graphs. Technical Report LCSR-TR-153, Rutgers University,
1989.

Mario J. Gonzalez. Deterministic processor scheduling. Computing Sur-

veys, 9-3:173-204, September 1977.

S. J. Kim. A general approach to multiprocessor scheduling. Technical

Report UT-CS-TR~88-04, The University of Texas at Austin, 1988.

P. Krueger and R. A. Finkel. An adaptive load balancing algorithm for
a multicomputer. Technical Report CS-TR~539, University of Wisconsin,
Madison, 1984.

D. L.Eager, E. D. Lazowska, and John Zahorjan. The limited performance
benefits of migrating active processes for load sharing. In Proceedings of
the Conference on Measurement and Modeling of Computer Systems, pages

63-72. ACM SIGMETRICS, 1988.

Soo-Young Lee and J. K. Aggarwal. A mapping strategy for parallel pro-
cessing. IEEE Transactions on Computers, C-36:433-441, April 1987.

Virginia M. Lo. Task assignment to minimize completion time. In In-
ternational conference on Distributed Computing Systems, pages 329-336,

1985.

David F. Martin and Gerald Estrin. Experiments on models of compu-
tation and systems. [EEE Transactions on Electronic Computers, EC—

16(1):59-69, February 1967.

37

[16]

[19]

[20]

[21]

L. M. Ni and K. Hwang. Optimal load balancing strategy for a multi-
processor system. In Proceedings of International conference on Parallel

processing, pages 352-357, 1981.

Ponnuswamy Sadyappan and Fikret Ercal. Nearest-neighbor mapping of
finite element graphs onto processor meshes. IFEFE Transactions on Com-

puters, C36-12:1408-1424, December 1987.

Vivek Sarkar and John Hennessy. Compile-time partitioning and schedul-

ing of parallel programs. Journal of ACM, pages 17-26, 1986.

S. M. Sobek. A Constructive Unified Model of Parallel computation. PhD

thesis, The University of Texas at Austin, 1989.

Craig Steele. Placement of communicating processes on multiprocessor
networks. Technical Report 5184:TR:85, California Institute of Technol-
ogy, 1985.

Harold S. Stone. Multiprocessor scheduling with the aid of network flow
algorithms. IEEE Transactions on Software engineering, SE-3(1):85-93,
January 1977.

Symult Systems Corporation. Symult Series 2010 Programmer’s manual,

1989.

Jerry C. Yan. Post-game analysis— a heuristic resource management frame-
work for concurrent systems. Technical Report CSL-TR-88-374, Stanford
University, 1988.

38

