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ABSTRACT

Modeling the effects of area light sources has been an ac-
tive area of research for many years. Most methods simplify
the problem by approximating the area source with a col-
lection of point sources. The only existing analytic meth-
ods work in screen space to compute a single image. This
paper presents an object-space algorithm to model illumina-
tion from polygonal light sources, as well as point sources.
The result is a collection of smooth-shaded polygonal facets
that may be rendered from any viewing position. Binary
Space Partitioning trees are used to compute the umbra and
penumbra boundaries efficiently. Fast analytic techniques
are developed for illumination calculations. Numerical opti-
mization techniques are used to sample the shading function
finely enough to find all significant illumination gradations.
Illumination calculations are optimized to concentrate com-
putational effort on parts of the scene where they are most
needed.

CR Categories and Subject Descriptors: 1.3.3 [Computer
Graphics]: Picture/lmage Generation—Display algorithms.
1.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism.

General Terms: Algorithms.

Additional Key Words and Phrases: computational geom-
etry, data structure, diffuse, mesh generation, optimization,
penumbra, sampling, shadow.

1. INTRODUCTION

Generating photorealistic images of most scene models re-
quires determining the illumination of surface elements by
area light sources. Some of these light sources are the orig-
inal emitters of the light into the environment, and others
may be surface elements that reflect light onto each other.
Although light source primitives currently used in generating
photorealistic images are frequently polygonal areas, these
are usually treated as collections of point sources.

When only diffuse emission and reflection are present, il-
Jumination does not change in a static scene as the view-
ing position is moved. If the illumination is precomputed,

a sequence of highly realistic images from different view-
points can be generated at interactive speeds. For most cur-
rent graphics hardware, the best results toward these ends
may be achieved by rendering a scene as a smooth-shaded
polygonal mesh. The precomputation involves subdividing
a scene into an appropriate mesh of surface elements and
computing the intensities at the vertices of each element.
Many mesh elements are required to sample the intensity
fanction adequately in regions where the illumination varies
rapidly. However, a large number of mesh elements slows
the illumination computation and the final shading and dis-
play of the scene. To balance the requirements of realism
and speed, only elements whose illumination cannot be ef-
fectively treated as constant should be subdivided. The tech-
nique presented here is effective at accomplishing this goal
for either point or area sources.

This paper presents an analytic method for determining
the illumination provided by area light sources of constant
intensity in object space without resorting to point sam-
pling of the sources. The method is developed in a flexible
framework that can easily handle point source illumination
as well. Area light sources and illuminated surfaces may be
convex polygons of arbitrary shape and size. While it is pre-
sented here as a means of local penumbra illumination, this
approach can also be used for global illumination.

The next section more formally presents the problem and
reviews previous efforts to solve it. Section 3 describes our
approach thoroughly. Implementation details are provided
in Section 4. Performance results and example images are
in Section 5. In Section 6 we analyze the work and suggest
possible directions for further research.

2. THE SOFT SHADOW PROBLEM

Let us now describe the problem more precisely. Input con-
sists of the scene geometry, a list of light sources, the re-
flectance and emittance specifications for the receivers and
light sources, and an intensity tolerance, I, to be described
below.

The scene is composed of closed polyhedra. Each face of a
polyhedron is a planar convex polygon. The plane of a face
divides space into two subspaces with respect to that face:



2.1. Shading Computations

The bulk of research in shading algorithms has been devoted
to point light illumination. In this case, the light source is
either totally visible or totally invisible from any point. The
intensity of an occluded point is 0, and the intensity of any lit
point may be computed by a simple analytic formula. The
main difficulty is determining occlusions. A review of the
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Figure 1: Soft shadows

a positive subspace, and a negative subspace. A face may
be considered to be one-sided; it is visible only when viewed
from its positive subspace, which is outside the polyhedron
of which it is a part. The boundary of a face is represented
by a list of its vertices, which are numbered Vi, V2, ... Vg,
ordered consecutively counterclockwise when viewed from
the positive side.

Light sources are either points or polygonal areas. A point
source is defined by a position in space. An area light source
is specified as a face of any scene polyhedron.

Shading computations are performed at a finite set of
wavelengths, A1, Az, ...Aw. Reflection properties for each
receiving surface are specified by a list of reflectance values
at each wavelength of interest. To maintain physical con-
straints, each reflectance value is a real number in the range
[0,1]. Similarly, the emission of a light source must be sup-
plied at each pertinent wavelength.

The goal is to divide the scene polygons into fragments
whose intensity varies by less than I.. Intensities will be
computed at all vertices of each fragment, and these polyg-
onal fragments will then be rendered with smooth interpo-
lation of these intensities to produce a final image.

The problem may be broken down into several parts.
First, we need to compute the portions of the light sources
visible from any point, P, in the scene. This information
must be incorporated into a shading function to determine
the intensity of P. The variation of the shading function
across each surface must be characterized to determine a
subdivision that allows each fragment’s intensity to differ by
less than I. throughout. Next, the intensities at all vertices
must be computed. Finally, an image is created by rendering
the polygonal fragments.

Area light sources lead to an image with soft-edged shad-
ows. For each such light source, the surfaces in the scene
may be divided into three illumination classifications: fully
lit, partially lit (penumbra), and fully occluded (umbra).
This is shown in Figure 1.

work on this problem is beyond the scope of this paper, but
the interested reader should refer to either the early survey
by Crow [13] or the recent overview by Woo, Poulin, and
Fournier [34].

Most existing area illumination algorithms model a source
as a finite collection of point sources. Point shadow algo-
rithms are then applied for each sample point. This has
been done with the depth buffer [20], ray tracing [12] [23],
and shadow volumes [5]. Unless care is taken, inaccuracies in
the approximation of the illumination of an area light source
may result, and aliasing may occur.

Radiosity algorithms have also been used to model area
sources. These methods operate by subdividing all surfaces
in a scene into patches, and then computing a geometric
form factor, Fi;, between each pair of patches. Computing
each form factor requires determining interpatch visibility.
At this stage, existing methods either assume each patch
is a point source [10] [4] [6] or perform visibility tests for
strategically-chosen pairs of points on the surfaces in ques-
tion [27] [33]. When examined solely with respect to oc-
clusion computations, these methods differ little from the
discrete methods mentioned above, and they suffer the same
drawbacks.

Amanatides [1] developed an analytic approach for cir-
cular or spherical light sources. While this is a powerful
technique, it works for no other light source shape.

Nishita and Nakamae [26] [27] have developed an ana-
lytic algorithm for polygonal sources. They use a shadow
volume approach to divide surface polygons into lit, shad-
owed, and penumbra regions. Illumination calculations are
performed in scanline order. For each point in penumbra,
a shadow-clipping algorithm is performed to determine the
unoccluded portion of the light source. Then an analytic
function is evaluated to compute intensity. This approach
does an excellent job of computing penumbras, but it fails to
take advantage of spatial coherence in shadow clipping for
penumbra points during scan conversion, and it fails to take
advantage of frame to frame coherence since the illumination
computations are done in image space.

2.2. Mesh Generation

While Gouraud shading hardware allows the display of
scenes with pre-computed illumination, surprisingly little at-
tention has been paid to the problem of discretizing a scene.
Most commonly, the scene is subdivided in advance before



lighting computations are done, and this initial mesh is un-
changed. Probably thisis a side effect of the general philoso-
phy of using fast hardware to preview the scene and then do-
ing ray tracing for final rendering, common in commercially-
available rendering packages for workstations.

Algorithms have been devised for dividing a mesh along
the sharp boundaries -of shadows cast by point sources.

3. APPROACH

Our algorithm starts with an initial mesh composed of the
minimal set of input polygons that fully describe the scene
geometry. Mesh refinement and illumination computations
are done for each light source separately, with all shading
calculations and mesh subdivision finished for one source be-
fore moving on to another. During an illumination pass for

Atherton [2] and Chin [8] adapted object space hidden sur-
face algorithms to this task. While this approach detects the
most important intensity changes in a scene, it can fail to
capture the true character of illumination across a fully lit
area.

Mesh generation techniques for area sources have arisen
out of research with radiosity algorithms. The earliest tech-
niques [18] [10] required substantial user interaction to de-
velop a good mesh. Cohen [11] developed an adaptive re-
finement approach in which a coarse mesh is shaded and
the differences in intensity between the vertices of an ele-
ment are used as a criterion for further subdivision. This
approach often works well, but aliasing problems can result
from a poorly-chosen initial mesh.

Heckbert [21] introduced a Monte Carlo ray-tracing al-
gorithm that simulates the distribution of light from area
sources. Photons originate from randomly selected points
on the light sources and are distributed throughout the en-
vironment. All surfaces hit by more than some tolerance
number of photons are subdivided, and the distribution is
iterated until no more subdivision is warranted. While this
technique captures all significant intensity changes, it leads
to excessive refinement in bright areas of near-constant illu-

mination.

Our previous work [6] extended the point shadow algo-
rithm of Chin [8] to area illumination. A light source is
approximated by a collection of point sources, and the scene
is split across the sharp shadow boundaries associated with
each point source. Intensities are computed at several points
within each region of full illumination, and if these samples
indicate a large intensity gradation, the region is subdivided.
This method works well for small light sources, but as the
number of point sources needed for an adequate approxima-
tion grows, subdivision within regions of penumbra is too
fine.

To our knowledge, there has been no meshing algorithm
to date that works with both hard and soft shadows. The
methods of Cohen [11] and Heckbert [21] are limited by the
quadtree data structure used for subdivision. Since sharp
shadow boundaries seldom fall along axis-aligned planes, ex-
cessive refinement of the quadtree is required near a shadow
boundary to approximate the shadow edge. Campbell’s
method [6] uses the more general BSP tree data structure,
so it has more potential for extension to a wider range of

light source geometries.

an individual light source, the intensities of scene polygons
are computed, and polygons exhibiting a significant inten-
sity variation at any wavelength of interest are subdivided
to keep this variation at or below I, the user-supplied tol-
erance. Between steps, or after all light sources have been
processed, the scene element subpolygons may be rendered
to show an accurate, high-quality image of the scene at the
current state of the illumination algorithm.

Receiving areas are subdivided to ensure the quality of the
images created by a rendering of the mesh. Sharp shadows,
cast by point light sources, introduce discontinuities in the
illumination function. For the boundaries to be evident in
the rendering, the mesh must be split at the boundaries.
In addition, a region must be subdivided if the intensity
varies significantly over the surface. Such variation occurs in
regions where the visible portion of the light changes across
the surface, as well as in large regions where the relative
orientation of the light source changes dramatically.

Subdivision may also be introduced to improve the effi-
ciency of the shading algorithm. For area sources, the visible
fraction of the light source, f, may vary between 0 and 1.
When shading any point, f must be calculated accurately,
which is a time-intensive operation. Generally most of the
scene either has total visibility to the light source, or none
at all. The shading computations for these special cases are
fast. There is a great time saving if the regions of full illumi-
nation and full occlusion can be separated from those of par-
tial occlusion, so that the expensive shading and shadowing
algorithm is only used in a restricted capacity. Frequently,
intensity variations occur at or near the boundaries between
regions of different visibility, so this subdivision serves a dou-
ble purpose. Note that for point sources, division at shadow
boundaries provides this visibility partitioning, with no re-
gion of partial occlusion.

The order in which light sources are processed is impor-
tant. Point sources always introduce intensity discontinu-
ities, but area sources do not. If we process point sources
first, the scene polygons will already be somewhat subdi-
vided when we process the area sources. In many cases,
this existing subdivision will divide the fully lit or penum-
bra regions, with respect to a particular area source, finely
enough to meet the intensity tolerance. On the other hand,
if area sources are processed first, point sources will usually
generate a great deal of further mesh refinement, since the
planes used to split areas of homogeneous visibility classifi-
cation would rarely coincide with sharp shadow boundaries
exactly. Thus it is better to process all point sources, fol-



lowed by all area sources. The user may want to observe the
progress of the algorithm interactively, and he or she may be
willing to stop at an approximate solution before all lighting
passes are finished. In this case, it is best to process light
sources in order of decreasing energy, as in [9], so that the
largest intensity contributions may be computed first. After
all primary light sources have been processed, global illumi-

nation may proceed, if desired, by using the scene polygons
as secondary light sources. In summary, we process the point
sources ordered by decreasing energy, followed by the area
sources in order of decreasing energy, and finally the scene
polygons, also ordered by descending energy.

A chosen light source is used to define data structures
representing exactly those volumes with some occlusion and
those with total occlusion. These are called, respectively,
the occlusion and umbra volumes. For a point source, these
volumes are identical. The bounding planes of these volumes
are determined by the vertices of the light source and those
of the occluding polygons.

These volumes are used to partition the scene polygon
into regions of distinct visibility classification, as in [26]. For
point sources, receiving polygons are split across the planes
of the shadow volumes into regions of full visibility (LIT)
or no visibility (UMBRA). For area sources, first the occlu-
sion volume is used to divide the scene into regions that are
either totally lit or have at least some occlusion. The re-
gions with occlusion are split across the planes of the umbra
volumes to complete the classification. Since the main rea-
son for visibility classification with area sources is efficiency,
small polygons are not subdivided, but are tagged as lying
in PENUMBRA. While this causes shading calculations to
take a little longer for the current light pass, the number of
final output polygons can be drastically reduced.

Once the visibility partitioning is done, additional sub-
division may be desirable if the illumination across a lit or
penumbra region varies greatly. This is determined by ap-
plying numerical optimization techniques to find the global
minimum and maximum intensities. If these differ by more
than the tolerance, the region is split to decrease the vari-
ation of each piece. This optimization and subdivision is
applied recursively until the variation of all scene elements
is below the tolerance. Finally, each of these fragments is
shaded with respect to the current light source.

Now the scene elements may be rendered by smooth shad-
ing. Alternatively, the next light pass may begin. The algo-
rithm continues until all light sources have been processed.
Figure 2 summarizes the algorithm.

3.1. Shadow Volumes

Receiving polygons are processed to partition them into fully
lit, penumbra, and umbra regions for each successive light
source. Note that for point sources, the penumbra compo-
nent is empty. Division may be accomplished by building
a data structure representing the volumes of all shadows

For each light source, S;, do
Build OCCLUSION volume for S;
Build UMBRA volume for S;
For each receiver, R;, do
Use OCCLUSION and UMBRA volumes to classify

R; into LIT, PENUMBRA, and UMBRA regions

Subdivide LIT regions of R; within tolerance

Subdivide PENUMBRA regions of E; within tolerance

Shade fragments of R; with S;
If desired, render the scene

Figure 2: Algorithm overview

cast by all scene polygons and then testing receiving poly-
gons against these volumes. It is convenient to maintain
separate structures for volumes that have some occlusion,
called occlusion volumes, and for volumes having full occlu-
sion, called umbra volumes. Clearly the occlusion volume
totally encloses the umbra volume, but we need the two
structures to distinguish the two types of shadow bound-
aries: lit/penumbra and penumbra/umbra.

In this work we must deal with three types of shadows:
point shadows, penumbrae cast by area sources, and um-
brae cast by area sources. In each case, we want to build
a data structure representing all shadows of the same type
cast by the light source. A building block approach in used.
Specialized algorithms are used to build elementary regions
of shadow, such as that cast by a light source and an in-
dividual polygon. Elementary regions are later merged to
produce unified data structures for the entire scene.

In Sections 3.1.1 through 3.1.3, we describe the geome-
tries of the various types of primitive shadow volumes. Sec-
tion 4.2 describes the data structures we use to represent
these shadows and shows how these data structures may be
merged.

3.1.1. Point Shadow Volumes

Let us discuss shadows cast by point sources. These are
crucial in several respects. They are needed for visibility
classification. Also, they are an integral part of the shading
algorithm for penumbra regions. Finally, since they are the
simplest to describe, it make sense to start here.

Below is a theorem about the geometry of a shadow cast
by a point source.

Theorem 1. Suppose that we are given point light source
S and convex blocking polygon B, facing 5. The shadow
volume cast by S and B Is the volume, VOLpn: formed
by the intersection of the negative halfspace of B and the
negative halfspaces of each plane that is defined by S and
an edge of B and faces outward from B.



Figure 3: Occlusion volume

Proof

A point P is only in shadow if a ray of light, represented by
a straight line segment from S to P, intersects B. No point
between S and B is in shadow. Now let us consider the
points on the negative side of B. Since B is convex, VOLpn:
is convex. Any line emanating from S and intersecting B
will pass into VOLpn: and never leave it, since each of the
bounding planes is semiinfinite. Thus all points in shadow
are enclosed in the volume. Similarly, no line emanating
from S and not intersecting B will penetrate VO Lpn:. Thus
VOLypn: encloses the shadow exactly. ]

3.1.2. Occlusion Volumes

For area light sources, an occlusion volume is the union
of all points from which only a fraction f < 1 of a light
source is visible. This is equal to the union of the point
shadow volumes emanating from each point on the surface
of the light source. For a convex polygonal light source and
occluding surface, this is equal to the convex hull of the
shadow volumes emanating from each vertex of the light
source, as discussed in [26]. The computation of general
three-dimensional convex hulls is notoriously difficult [16]
[28]. Fortunately, the special properties of occlusion volumes
allow them to be defined and computed without resorting to
convex hull methods.

First, let us define a term that will help in the presenta-
tion.

Definition 1. Let P be a point in space that is illuminated
by light source S, a convex polygonal area. The paths of all
light rays emanating from S and reaching P are bounded by
the plane of S and all planes defined by P and each edge,
(Vi, Vig1) of S. The convex volume bounded by these planes
is called the illumination pyramid.

We may consider the occlusion volume to consist of all
points whose illumination pyramids intersect a blocking
polygon. In the immediately following text, we will develop
an algorithm to compute the occlusion volume for the sim-
plest and most common configuration of source and blocking

minimum extremal plane

maximum extremal plane

Figure 4: Choosing a plane

polygon. This case is when the source and blocker face one
another, and they neither cross nor touch the other’s planes,
as in Figure 3. In Section 4.2.2, the special cases will be
considered.

Now for the simple case. The bounds of the occlusion
volume must be computed. Clearly the plane of the blocker,
B, is one bound. Let us consider what other planes are
bounds.

Definition 2. Let (Vi, Viz1) be any edge of a blocking poly-
gon, B. Consider all planes defined by this edge and the ver-
tices of the light source, with the planes facing away from
B. The plane that makes the smallest angle with the plane
of B is called the minimum blocker extremal plane, and its
associated vertex is called the minimum blocker extremal
vertex.

This leads to the following lemma.

Lemma 1. No points on the positive side of a minimum
blocker extremal plane may be occluded by B.

Proof

Consider any minimum blocker extremal plane, E. Since
it is defined by the vertex of S making the smallest angle
with B, S must be entirely in the positive halfspace of £.
Because F is tangent to the blocker and facing away from
it, B is entirely in the negative halfspace of E. Now look
at any point, P, on the positive side of E. The illamination
pyramid for P encloses all lines from S to P. Since both P
and S are all on positive side of E, the illumination pyramid
is all on the positive side. Since B is on the negative side of
E, it may never intersect the illumination pyramid. O

Now we have a set of planes that are known to separate un-
occluded and occluded regions. But there are other bound-
ing planes to consider.

Definition 3. Let (V;, Vi41) be any edge of the light source,
S. Consider all planes defined by this edge and the vertices of



the blocker, with the planes facing away from B. The plane
that makes the smallest angle with the plane of S is called the
minimum source extremal plane, and its associated vertex is
called the minimum source extremal vertex.

Not surprisingly, the following result holds.

Lemma 2. No points on the positive side of a minimum
source extremal plane may be occluded by B.

Proof
In a manner similar to that of the previous proof, it may be

shown that S and B are entirely on the positive and negative
sides, respectively, of a minimal source extremal plane, E.
Thus the illumination pyramid of any point on the positive
side of E does not intersect B. ]

Now we are ready to bound the occlusion volume.

Theorem 2. Given a light source polygon S and a block-
ing polygon B, the occlusion volume of S and B is VOLoce,
the volume formed by the intersection of the negative half-
space of B, the negative halfspaces of the blocker minimum
extremal planes associated with each edge of B, and the
source minimum extremal planes associated with each edge

of S.

Proof
First let us consider the points outside VOLoc. Clearly no

blocked points may be on the positive side of B. By Lem-
mas 1 and 2, all points on the positive sides of the minimum
extremal planes must be unoccluded. So no point outside
the volume is occluded.

Consider any point, P, inside the volume. The lines con-
necting P to S must all intersect the plane of B. Let us
find the intersection of P’s illumination pyramid with B’s
plane. This is done by projecting S onto the plane of B.
Projection is done vertex by vertex, with the projection ofa
vertex determined by the intersection of B’s plane with the
line connecting that vertex to P. S’ projection is formed
by connecting the projected vertices in the same order as
the unprojected vertices are listed. Since S is convex, the
projection is also convex. If there is no occlusion, there must
be no intersection between B and the projection. Suppose
there is no intersection. Then the projection must lie com-
pletely outside the boundary of B, on one side of it. This
indicates that P is on the positive side of at least one mini-
mum extremal plane. Thus there is a contradiction. So any

point inside the volume is occluded. ]

3.1.3. Umbra Volumes

An umbra volume is the union of all points from which none
of the light source is visible. This is the intersection of the
point shadow volumes emanating from each point on the
surface of the light source. For a convex light source and

Figure 5: Umbra volume

convex occluding polygons, this is equal to the intersection
of the point shadow volumes emanating from each vertex of
the light source, as discussed in [26].

Below is a definition that will be useful in the presentation.

Definition 4. Let (V;, Vig1) be any edge of a blocking poly-
gon, B. Consider all planes defined by this edge and the ver-
tices of the light source, with the planes facing away from
B. The plane that makes the largest angle with the plane
of B is called the maximum blocker extremal plane, and its
associated vertex is called the maximum blocker extremal

vertex.
This leads to the following lemma.

Lemma 3. Any point on the positive side of the light source
and the positive side of a maximum blocker extremal plane
receives at least some light.

Proof

Any point on the positive side of the light source, S, may
be either on the positive or miegative side of the plane of B,
the blocker. Suppose P is a point on the positive side of B.
Since S is also on the positive side, B can not intersect any
line segments between P and S. So there is no intersection
at all.

Now consider any point onn the negative side of B, but on
the positive side of some maximum extremal blocker plane,
E. Since E makes the greatest angle with B, and S is as-
sumed to have finite size, ther € must be some vertex of S that
makes a smaller angle with /3. Consider all points along the
line segment connecting such a vertex with the extremal ver-
tex associated with 5. There must be a line passing through
P and tangent to B which intersects this line segment in its
interior. Unoccluded ray of light may originate from any
point on this line segment th at lies between the intersection
point and the extremal vertex. ]

Now let us completely bound the umbra.



Theorem 3. Given a light source polygon S and a blocking
polygon B, the umbra volume of S and B is the volume,
VOLum, formed by the intersection of the negative halfspace
of B and the negative halfspaces of the blocker maximum
extremal planes associated with each edge of B.

Proof

First-let-us consider the points outside the VO L., Clearly
no blocked points may be on the positive side of B. By
Lemma 3, all points on the positive sides of the maximum
extremal planes must be unoccluded. So no point outside
the volume is occluded.

Consider any point, P, inside the volume. Let us compute
the intersection of P’s illumination pyramid with the plane
of B by projecting S toward P onto B’s plane, as was done
in the proof of the previous theorem. P only receives light
if some portion of the projection lies outside the boundary
of B. This clearly can not be the case. Thus P is in umbra.
a

3.2. Illumination Calculations

Once the visibility classification for a light source is com-
plete, shading must be dome. For each polygon, these cal-
culations can be performed as follows. For umbra regions,
no illumination is done. For fully lit regions, the entire light
source is known to be visible from every point in the region.
Thus, an analytic formula based on contour integration sim-
ilar to that used in [26] can be used to determine the illu-
mination provided by an area light source to any point on
a lit surface. This formula is developed below. For regions
in penumbra, it is necessary to determine the fraction of the
light source visible at each point to be illuminated. Once
this is done, the analytic illumination formula can them be
applied using the visible portion of the light source. This
is a time-consuming process, so we have developed an algo-
rithm to limit the number of such illumination calculations
required.

Iuminated regions are not, in general, regions of con-
stant intensity. If we are to render them propetly, they must
be refined into regions that meet a specified tolerance for
illumination variation. This effectively allows them to be
later treated as constant intensity area light sources as well
as providing the desired illumination sampling density. The
details of mesh refinement are described in Section 4.4.

3.2.1. Point Sources

For point sources, we use the standard diffuse formula from
[19]. The intensity of any point, P, is expressed by

Is-—r - I.spr(N'r . Ls) (1)

where I. is the intensity of the light source, p, is the dif-
fuse reflectance of the receiver, N, is the normal to the il-
luminated surface, and L. is the normalized vector in the
direction from P to the light source.

Receiver

Figure 6: Geometry of illumination

3.2.2. Area Sources

Figure 6 shows the geometry of illumination. We have two
polygons, A, and A,, which are the light source and receiver,
respectively. They have unit normal vectors N, and N,. A,
is assumed to have uniform intensity, I, throughout. The
diffuse reflection coefficient of the receiver is p,. We want to
compute the intensity of a point, P,, on the receiver.

The relation between the emitted intensity, I;, and the
energy, E;, of a differential area dA; is expressed by

B
I; = 27dA; (2)

Let Fai—q be the fraction of energy leaving dA: that
reaches dA;. This is known as the geometric form factor.
Let us assume that we have a differential area, dA., cen-
tered at P,. The energy received at P, from any differential
area, dA,, on the source, and then reflected back into the
environment, may be expressed by

Fasop, = Eas—ar = EasprFas—ar (3)

Substituting Equation 3 into Equation 2, we get

Igs—p, = f—;{ﬁ—ﬂf (4)
= S ®
_ ISQWdf;;Afd&—dr (6)
]sdAsdp;-f‘ds—dr )
From [31], we find that
Fagoay = SArosgcond ;‘:i;;wsg (8)

Substituting into Equation 7, we find that

Ids»«P,. = Iserdr——ds (9)



Integrating over As, we get

IS—PT = Ispr/ Far_as = Iserdr——s (10)
As

Now we need an analytic expression for Fur—.. Hottel [22]
provides a general expression for a form factor between a
differential area and a polygon. Substituting this into Equa-

tion 10, we get the final result:

M
Lspr
Iswp, = o z—; arccos(Vi—p, - Viigy-p, )(Ns - Di)  (11)

where M, is the number of vertices of A., Vi_p, is the unit
vector from the sth vertex of A, to Py, ® works exactly like
pormal addition except that M. @ 1 equals 1, and D; is the
unit vector in the direction of Vi_p, X Viig1)—p,

Note that our formula is slightly different from that of
Nishita and Nakamae [26]. They omitted the = in the de-
nominator. The effects of the omission are not strongly no-
ticeable in direct illumination, since it can be corrected by
scaling the source intensity. However, the effect on global
illumination calculations can be dramatic.

3.3. Finding Intensity Gradations

Often it is easy to determine when the intensity variance
is too high. Simply computing the vertex intensities often
reveals a need to subdivide. But the maxima and minima
sometimes occur on edges or in the interior of a region. We
must also check for these cases. While computing and com-
paring vertex intensities is reasonable, the same is not true
for the infinite edge and interior points. Methods are needed
that are both accurate and efficient at finding the extrema
for these continuous domains. Now comes the problem of
finding extrema. Our method is based on numerical opti-
mization [29]. As we shall see, the properties of each type of
illumination function affect the optimization strategy cho-
sen.

Figures 7 through 9 show the illumination function for
regions fully lit by area sources. In general, there is a sin-
gle maximum node and the function values decrease in all
directions away from it. A maximum may occur in the inte-
rior of a polygon or along an edge. Since there is only one
maximum node, local optimization techniques are applicable
in finding this maximum. On the other hand, this function
displays no local minima. Thus a minimum can be found
solely by examination of the intensities at the vertices.

The intensity function for point illumination looks simi-
lar to that for full illumination for area sources. All of the
special properties of the area function hold for the point
function as well.

The illamination function for the interior of a penumbra
region is difficult to characterize. As Figures 10 through

Figure 7: Fully lit, source at 0°

Figure 8: Fully lit, source at 30°

Figure 9: Fully lit, source at 60°



Figure 11: In penumbra, source at 30°

12 show, there may be many local minima and maxima in
any given region. Thus local optimization techniques may
not locate the true global extrema. More elaborate global
optimization [14] [15] must be done.

4. IMPLEMENTATION

A detailed description of our implementation follows. As
can be expected, the approach described above may be im-
plemented in many ways.

4.1. Representation of Polygon Subdivision

During the shadowing and illumination steps, the receiver
can be subjected to several stages of subdivision. Each sub-
division involves splitting the surface by a plane. It is ad-
vantageous for the data structure representing this division
to be hierarchical so that we may take advantage of spa-
tial coherence in shading computations. Note than since a
polygon is planar, a two-dimensional data structure is suffi-

Figure 12: In penumbra, source at 60°
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cient. In most existing radiosity algorithms, scene polygons
are limited to rectangles and splitting is limited to planes
aligned with one edge of a rectangle [10] [1 1] [9] [21], so this
data can effectively be encoded in a quadtree [30]. Since
our algorithm uses arbitrary convex polygons and generates
arbitrary cutting planes, we must use a more general data
structure. We use a 2-d binary-space partitioning (BSP)
tree, as we did previously in [6]. Since this divides regions
based on intensity and illumination criteria, let us refer to
this as the i-tree.

4.1.1. BSP Tree Fundamentals

A brief review of BSP trees may be helpful here. The reader
may recall that a BSP tree can be used to represent a collec-
tion of n-dimensional n-gons in a volume of n-space. This is
done by recursively subdividing the volume along the hyper-
planes determined by the orientations of the polygons. The
resultant data structure is a binary tree in which each inte-
rior node represents a partitioning hyperplane and the leaf
nodes represent convex subspaces determined by the parti-
tioning. Figure 13(a) shows a 2-dimensional example. Fig-
ure 13(b) shows the BSP tree for this scene.

As described in [17], BSP trees can be used to determine
the visibility priority of a collection of polygons from any
viewing position. This is achieved by a modified inorder
traversal of the tree. Each node is processed recursively by
inserting the coordinates of the viewing position into the
planar equation of the partitioning plane at that node. The
sign of the result indicates whether the viewing position isin
the “front” halfspace determined by the plane, the “back”
halfspace, or on the plane itself, with “front” and “back”
relative to the plane normal. If the viewing position is in one
of the halfspaces, the subtree representing that halfspace is
processed first. If on the plane, the subtrees can be processed
in any order. Once the first subtree has been processed, the
polygons within the current node can be output and the
other subtree processed to terminate the routine for that
node. Thus the exact order of traversal is determined by the
viewing position, and it is guaranteed that polygons will be
listed in {ront to back order relative to the viewing position.
Further details can be obtained in [17] or [24]. Figure 13(c)
shows the output order using this algorithm on the viewing
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position and scene shown in Figure 13(a).

4.1.2. I-Trees

Now let us describe the use of the i-tree. Its basic structure is
that of a 2-D BSP tree, with the splitting hyperplanes being
the lines defined by the intersections of the splitting planes
with the plane of the polygon being split. An example is
provided in Figure 14. At the beginning of the algorithm,
each input polygon is represented by a single leaf node, rep-
resenting a homogeneous region. During visibility classifica-
tion, each polygon is tested for inclusion in both the umbra
and penumbra volumes for that light source. The physical
situation allows us to have a complete set of nonoverlapping
illumination classifications: LIT, PENUMBRA, and UM-
BRA.

Several operations may be performed with this data struc-
ture. These include traversal, refinement, and point classifi-
cation. All these important operations are described below.

4.1.3. Traversal

At the end of lighting calculations, we will need to gener-
ate a list of surface elements to be rendered. This is done
by traversing the tree in any exhaustive order (inorder, pre-
order, or postorder) and identifying all leaf nodes. Each leaf
node is attached to a global list. After all such trees have
been traversed, this list is exactly what needs to be drawn.

4.1.4. Shadowing Refinement

We need to test the elements for inclusion in a shadow vol-
ume. We make use of the hierarchy for a big efficiency gain.
At the root of the i-tree, we keep the boundary representa-
tion (b-rep) of the polygon it represents. With its positive
child, we keep the boundary of its intersection with the pos-
itive halfspace of the dividing plane. The intersection with
the negative halfspace is stored with the negative child. At
each level of the tree, the appropriate recursively-defined
boundary is stored. Note that the sum of the boundaries of
the leaf nodes equals the whole, yet no two overlap.

During shadow testing, the boundary contour of a sub-
tree is tested for inclusion in the appropriate shadow vol-
ume. If this region is determined not to cross a boundary
of the volume, its subtrees are classified immediately as IN
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Figure 15: T vertices

or OUT, and need no further examination. If a boundary
of an internal node is crossed, its subtrees must be checked.
If a leaf node crosses a shadow boundary and subdivision
is mandated, the data structure is refined. The contour of
the node is split across the divider and its fragments are
associated with the two children of the newly-split node.

4.1.5. Point Classification

Notice that the leaves of a BSP tree are all convex subspaces.
Sometimes we need to determine which of a set of points lies
in or on the boundary of a leaf. Rather than exhaustively
test against each leaf, we can use the hierarchy of the tree
to our advantage. See [32] for another example.

Start with an i-tree and a list of points. Since each di-
vider splits a subtree into disjoint convex regions, work may
be saved by testing the points with respect to the divid-
ing hyperplane. Substituting the coordinates of a point into
the planar equation will produce a value that is less than 0,
equal to 0, or greater than zero. These correspond, respec-
tively, to points on the negative side, on the hyperplane, or
on the positive side. Only points on the divider or positive
side can belong to positive leaves, and the opposite is true
for negative leaves. Using the tree recursively, the candidate
set generated at the leaf level will all lie in the leaf as long
as all points initially were in the polygon and they were not
filtered out by the point classification process.

Let us give an example of its use: insertion of T vertices.
Since our mesh subdivision algorithm generates an adaptive
data structure of inconsistent depth, many T-vertices result.
See Figure 15. Shading anomalies may result unless these
vertices are added to the boundaries of all edges that contain
them. This is done by first generating a list of all vertices
in a polygon. Then this list is filtered down to each leaf by
the i-tree. Any vertex not already in the vertex list for a
leaf node must be added. Thus our problem is easily solved.
Other applications of this algorithm are described later in
this paper.

4.2. Implementing Shadow Volumes

An efficient data structure for shadows is the volume mod-
eling BSP tree of [32] and [25]. These were used earlier by
[8] and [6] to model sharp shadows for point sources. As
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Figure 16: Point shadow

PntShadVol(SrcPos, Blk)

root := prev := VolNode(INTERNAL)

root=>plane := plane of Blk

fori:= 1 to Blk==N do
curr := VolNode(INTERNAL)
curr=rpos := VolNode(OUT)
curr=>plane := plane defined by

SrcPos, Blk=>V[i], Blk=V[i+1]

prev=pneg := CuIr

prev := curr
prev=rneg := VolNode(IN)
return(root)

Figure 17: Point shadow algorithm

shall be shown below, it is straightforward to model shad-
ows cast by area sources as well. Special-purpose procedures
produce the shadow volume cast by a source and a single con-
vex light-blocking polygon. These volumes are then merged
into a unified data structure that encloses all shadows in
the scene. In Sections 4.2.1 through 4.2.3, the specialized
algorithms for primitive shadow volumes are described.

4.2.1. Point Shadow Volumes

Given the geometry described in Section 3.1.1, we must now
choose a data structure. BSP trees have been used to repre-
sent point shadows by [8] and [6]. The planes bounding the
convex shadow volume divide space into positive and nega-
tive subspaces. From Theorem 1, the intersection of all these
negative halfspaces is the shadow volume. Each leaf node of
the tree has an inclusion attribute, either IN or OUT.

Consider Figure 16(a). Light source [ is casting a shadow
due to triangle abe. This leads to the data structure shown
in Figure 16(b), with the triples at the internal nodes rep-
resenting the defining vertices for each partitioning plane.
Note that the BSP tree for the shadow cast by a convex
polygon has but a single IN node.

Pseudocode for this extremely simple procedure is pre-
sented in Figure 17.

11

eu s IR
[N 2N

Figure 18: Source/blocker configurations

4.2.2. Occlusion Volumes

In Section 3.1.2, the geometry of occlusion volumes for the
most common source/blocker configuration was described.
This leads to a straightforward algorithm for computing the
shadow data structure. Before we present the algorithm,
let us consider the special cases. Since the light source and
blocking polygon are arbitrary convex polygons, it is possi-
ble that one may cross the plane of the other, as Figure 18
shows. Since light sources only emit light from their posi-
tive faces, we need only concern ourselves with the portion
of the blocker in the positive halfspace of the light source
plane. The blocker is clipped against this plane, and the
positive portion, if such exists, is called the effective blocker.

The light source may cross the plane of the blocker. I
we split the light source where it crosses this plane, we have
will have at most two pieces, since the light source is con-
vex. One fragment of the light source can be in front of
the blocker, and the other may lie behind it. Since our im-
plementation assumes that all objects are closed, we may
ignore backfacing polygons as potentially casting shadows,
because a front face of the same object must block the same
light. This backfacing test, a common optimization in hid-
den surface calculations, increases efficiency here as well. So
we only need to be concerned with that portion of the light
source, if any, in the positive halfspace of the blocker. This
is called the effective light source.

An empty effective blocker or light source indicates that
there is no shadow to compute. The BSP tree for this shadow
volume, consisting of a single OUT node, is created, and the
procedure is complete.

If both the effective light source and blocker polygons do
exist, we may proceed with computation of the shadow vol-
wme. The source and blocker polygons are guaranteed to face
each other, although they may well share edges or vertices,
as Figure 19 shows. From this point on in the algorithm,
we consider the effective source and blocker to be the source
and blocker.

There is one degenerate case to consider. What if the
source and blocker share one or more vertices? Unless the
algorithm handles this case, some of the planes examined by
the algorithm will be ill-defined, since they will only have
two unique defining vertices. The answer is to omit planes
if either vertex of the current edge is shared by a vertex on

the other polygon. The reason is that the corresponding
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Figure 19: Effective sources and blockers

planes should really degenerate to the blocking plane, which
is already inclnded in the list of bounds.

Theorem 2 provides an approach to computing the vol-
ume. Pseudocode for our volume BSP tree implementation
of occlusion volumes is provided in Figure 20. Notice that,
since the volume is the intersection of convex halfspaces,
there is only one IN node in the BSP tree.

Naylor [24] and Nishita [26] have also developed algo-
rithms to compute the occlusion volume of a polygonal light
source and a single convex blocking polygon.

4.2.3. Umbra Volumes

Now let us consider the special cases. As is the case with
penumbra volumes, the light source and blocking polygon
must be clipped to each other’s positive sides, creating ef-
fective sources and blockers. If the effective source is not
the same as the original source, then some part of the light
source is visible behind the blocker. In that case, there is no
umbra region.

If the source and blocker share an edge or vertex, there
will be a degenerate case. Here a blocker maximum extremal
plane should really be the coplanar with the blocker, but
pointed in the opposite direction from it. Since the plane
of the vertex is among the bounds of the umbra region, the
intersection of halfspaces must be empty. So there is no
umbra region.

Pseudocode for forming an umbra tree is provided in Fig-

ure 21.

Nishita [26] has also developed an algorithm for umbra
volumes.

4.2.4. Merging Shadow Volumes

Once the shadow volumes for individual trees have been cre-
ated, they must be merged into a data structure representing
all shadows in the scene. Most early methods simply keep
a linked list of the primitive shadow volumes [13] [26]. But
as Chin [8] has shown, shadowing calculations can be made
much faster if the merged volume data structure is better
able to take advantage of scene coherence. Chin demon-
strated this with a single volume BSP tree representing the
union of all primitive shadows.

So once the BSP trees for individual shadows have been
created, we need to merge them into a BSP tree representing
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OcclusionVol(Szc, Blk)
Src := portion of Src in Blk’s + halfspace
Blk := portion of Blk in Src’s + halfspace
if (Src = NIL or Blk = NIL)
return{VolNode(OUT))
root := prev := VolNode(INTERNAL)
root=>plane := plane of Blk
for i := 1 to Blk=N do
j := minimum extremal vertex for
edge (Blk=V[i], Blk=V[i+1])
if (j # DEGENERATE)
curr := VolNode(INTERNAL)
curr=-pos := VolNode(OUT)
curr=>plane := plane enclosing
Src=>V[j], Blk=>V[i], Blk=-V[i+1]
prev=rneg := CUIT

prev := curr
for i := 1 to Src=N do
j = minimum extremal vertex for

edge (Sre=>VI[i], Src=>V[i+1])
if (j # DEGENERATE)
curr := VolNode(INTERNAL)
curr=rpos := VolNode(OUT)
curr=>plane := plane enclosing
Blk=>V[j], Src=>Vl[i], Src=>V[i+1]
prev=rneg := cuIr

prev := curr
prev=rneg := VolNode(IN)
return(root)

Figure 20: Occlusion volume algorithm



UmbraVol(Src, Blk)
EffSrc :== portion of Src in Blk’s + halfspace
if (EffSrc # Sic)
return({VolNode(OUT))
Sre := EffSrc Blk := portion of Blk in Src’s + halfspace
if (Src = NIL or Blk = NIL)
return(VolNode(OUT))
root := prev := VolNode(INTERNAL)
root=>plane := plane of Blk
for i := 1 to Blk=N do
j := maximum extremal vertex for
edge (Blk=>V[i], Blk=V[i+1])
if (j = DEGENERATE)
return{VolNode(OUT))
curr := VolNode(INTERNAL)
curr=>pos := VolNode(OUT)
curr=-plane := plane enclosing
Sre=>V[j], Blk=V[i], Blk=V[i+1]
prev=rneg := CuIr

prev := curr
prev=>neg = VolNode(IN)
return{root)

Figure 21: Umbra volume algorithm

their sum. This may be done in one of two ways. Taking
account the special properties of the various types of shad-
ows, it is possible to produce efficient specialized merging
operations for each of these types. The other approach is to
use a general merging algorithm. We will examine each of
these in greater detail.

First let us consider the specialized approach. Chin and
Feiner [8] developed a technique for merging point shadows.
In their algorithm, a receiver polygon is split by the merged
shadow volume of previously-processed polygons into lit and
shadowed regions. This determination is made when the
IN or OUT leaf nodes of the shadow volume BSP tree are
reached. Lit regions are then used as the basis for additional
shadow subtrees. These subtrees are attached to the main
shadow tree by teplacing the OUT nodes that led to the lit
determination in the first place.

This works for two reasons. First, polygons are processed
in sorted order away from the light source, so the plane of the
blocker need not, and must not, be included in the individual
volume trees. This ordering is provided by creating a three-
dimensional BSP tree to represent the input polygons, and
then performing a simple traversal of the tree taking into
account the light source position, as was done in (8] and [6].
Second, any ray emanating from the light source and passing
into shadow will stay in shadow for the rest of its length.
In other words, the shadow is convex with respect to the
light source. When this is the case, we may subdivide and
occluding polygon and know that the sums of the shadows
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Figure 23: Penumbra and umbra shadow volumes

of its parts equals the shadow of the whole.

The Chin/Feiner merging algorithm will not work for oc-
clusion or umbra trees. Since the light source in these cases
is of finite area, there is not necessarily a possible unambigu-
ous back-to-front ordering of scene polygons away from the
source. See the example in Figure 22. From the left side of
the source, polygon by has priority, while from the right side
of the source, by should come first.

While occlusion volumes are convex with respect to the
light source, this is not the case for umbra volumes. This is
illustrated in Figure 23.

Early in our research, we attempted to produce special-
ized algorithms for merging occlusion and umbra volumes
(7.

to be complex, and they led to excessive subdivision in the

Results were disappointing. These algorithms tended

visibility classification stage. Additionally, implementation
time was substantial.

Better results were obtained when we turned to a general
BSP tree merging algorithm. The method of Naylor et al [25]
was used, with the set UNION operator applied to combine
the trees appropriately. The Naylor algorithm is recursive,
efficient, and general. Trees created in this manner have a
reasonable number of nodes, and may be traversed quickly.
However, this method is much slower than the Feiner/Chin
method for combining point shadows.

As we will discuss in Section 5, shadow merging comprises
a large portion of the run time of our algorithm. Thus it is
important to choose the fastest algorithms possible. For vis-
ibility classification with area light sources, we know of no
reasonable alternative to the gemeral Naylor method. For-
tunately, visibility classification is only done once per light
pass, so this speed is acceptable.

However, the bulk of the shadow merging occurs during
shading computations. When calculating the intensity of

a point in penumbra, the unoccluded fraction of the light



polygon is tested with respect to the plane represented by
the root of the shadow volume. If this plane is crossed, the
polygon is split at the plane and the fragments are tested
recursively against the appropriate subtrees. If the polygon
is entirely on one side of the plane, it is then tested against
the subtree on the same side. When a fragment is tested
against a leaf node, it is assigned a visibility classification
(lit, penumbra, or umbra) based on whether the leaf is IN

Figure 24: Difficulties with merging umbra

source must be determined. We do this by creating a point
shadow volume emanating from the point to be shaded, and
then we use it to clip away unseen portions of the light poly-
gon. Details are given in Section 4.3. This computation is
done many times, so it must be efficient. Here we use the
Chin/Feiner algorithm, which is several times faster than
Naylor’s for this task.

There is an additional issue when using Naylor’s general
algorithm to merge occlusion and umbra trees. As described
in his paper [25], the merging operation requires that addi-
tional data be stored with each node of a volume BSP tree.
This data is a three-dimensional boundary representation
(b-rep) of the intersection of the current node’s plane with
the subspace it subdivides, and must be maintained as a po-
tentially large set of floating point triples. For small data
sets (< 1000 input polygons) this is not a problem, but for
medium or larger inputs, a computer’s memory may be ex-
ceeded. This may be handled by trading space for time.
In our implementation, b-reps are never explicitly kept with
each node, but are computed on the fly when needed. Exper-
imental results have shown that the run time for the merging
algorithm is increased by less than 10 percent, and the size
of problems that can be successfully handled goes up by a
factor of more than 10.

Now let us address a problem with creating a merged um-
bra volume. As shown in Figure 24, sometimes a point may
not be completely occluded by a single polygon, but may
be occluded by a combination of blocking polygons. Simply
merging the primitive shadow volumes will not detect this
case. While it is possible to design an algorithm to compute
the volume in umbra due to more than one blocker, we have
chosen not to do so. Such an algorithm would likely be com-
plex and slow. Remember that the main purpose for visibil-
ity classification is speed. The incorrect umbra volume will
only lead to the occasional misclassification of umbra regions
as penumbra. Since the light source occlusion is computed
explicitly in penumbra regions, the shading will be correct
regardless.

4.2.5. Using Shadow Volumes

Now that we have created these volumes, we may use them
to compute shadow boundaries. Each receiving polygon is
tested in turn. At the start of shadowing, the whole scene
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or QUT. Remember that the i-tree may be used to speed up
the process by providing hierarchical bounds, as discussed
in Section 4.1.4.

While the above approach works, frequently more frag-
mentation than necessary is done. So we need a compres-
sion operation. We need to be careful not to undo mesh
refinement done by a previous light pass. To this end, each
node of the i-tree has an OLD/NEW boolean flag. At the
beginning of an illumination pass, all nodes in each i-tree
are set to be OLD. Any fragmentation done by the current
pass is labeled as NEW. So the compression will only undo

fragmentation labeled as NEW.

The first step in compression is to traverse the tree and
see if any sibling leaf nodes have the same visibility classi-
fication. If so, they may be combined into a single node.
This test and merging can be done recursively to remove all
redundant nodes from the tree.

For point sources, which need sharp shadows, that is all
that can be done. But consider the case of area sources.
Here there is no discontinuity at shadow edges. The subdi-
vision is merely done as an efficiency measure. We do not
want to fragment too finely, since the efficiency gains would
be minimal and the memory cost for the i-tree would grow
unnecessarily. Note that our algorithm will always correctly
shade any point classified in penumbra, so no inaccuracy
is introduced by classifying a slightly larger than necessary
area as penumbra.

Thus the merging algorithm is slightly modified. An ab-
solute lower limit on polygon fragment size is set. For sibling
leaf nodes of types LIT or UMBRA, the algorithm proceeds
as described above. But if there are two sibling nodes where
one is in PENUMBRA, the two are merged if either is be-
low the minimum size, and the merged node is classified as
PENUMBRA. This process is recursively applied. The result
is a compact description of the illumination behavior on this
polygon. Figure 25 provides pseudocode for this procedure.

4.3. Computing Intensities

The intensity of any fully lit point may be calculated by ap-
plication of Equation 11. But for a point in penumbra, we
must first find the unoccluded portion of the light source.
The intensity contributions of all visible light source frag-
ments may then be computed and summed. Point shadow
volumes (Section 3.1.1) may be applied to this task. A
shadow volume, emanating from the receiving point, may
be built from the polygons between the source and receiver



CompressVisClass(Tree)

if (Tree = NIL) return

if (Tree is leaf) return

CompressVisClass(Tree=>Neg)

CompressVisClass(Tree=>Pos)

if ((Tree=>Pos is leaf) and (Tree=>Neg is leaf) and
(Tree=>Pos is new) and (Tree=>Neg is new))

if (Tree=>Pos=>Type = Tree=>Neg=>Type)
Tree=>Type := Tree=>Pos=Type
Destroy Tree’s Children
else if ((Tree=>Pos=>Type = PENUMBRA or
Tree=>Neg=Type = PENUMBRA) and
(Tree=>Pos=>Area < MINSIZE or
Tree=>Neg=>Area < MINSIZE))
Tree=Type := PENUMBRA
Destroy Tree’s Children

Figure 25: Compressing visibility classification

polygons. This volume is then used to clip away occluded
portions of the light source.

To build a shadow volume properly, we need to deter-
mine which polygons lie between the source and the receiver.
Clearly we could test all scene polygons, but more efficiency
is desirable. Potentially many points on the receiver may
need their intensity computed. Our algorithm needs to take
advantage of the coherence of the situation.

This may be achieved by computing a bounding volume
enclosing the light source and receiving polygon. All scene
polygons may be tested for inclusion in this volume, and
those found to be completely outside it are removed from
consideration. We use a volume bounded by the light source
plane, the receiver plane, and the planes that form the con-
vex enclosure of the two polygons. The method described
above for computing the bounds of umbra volumes (Sec-
tion 3.1.3) may be employed to compute these planes. Once
the list of occluders is generated, all shading calculations
may be done for the current receiver using this list.

Note that different regions of the same receiver may be oc-
cluded by different objects. In this case, some of the blocking
list will be extraneous. Fortunately, we may prune this list
even further with the help of the i-tree. Shading need only
be done on subpolygons represented by leaves of the i-tree.
When we compute the intensity for a point in such a region,
we only want to deal those polygons that occlude the light
reaching it.

This may be done as follows. First, generate a list of all
occluders, using the b-rep of the entire scene polygon. Asthe
tree is descended, the list of occluders for a parent is tested
against the bounding volumes enclosing the light source and
the b-reps of each of its children. While the occluders for
each child are likely to overlap, there is frequently some dif-
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ference. This list refinement is done recursively until the
leaf nodes are reached. Refinement does not generally take
much time, but it can lead to a big speedup in shading cal-
culations. When a leaf node is reached, we may be assured
that we do have a list of definite occluders.

4.4. Mesh Refinement

Now that we have an analytic formula for the intensity of
any point, we know that our computed values will be accu-
rate. But to sample all the interesting illumination effects,
we must make sure that the difference between the minimum
and maximum intensities of any receiver does not exceed a
threshold. Additional computation must be done to find any
regions that exhibit unacceptable levels of variation. These
regions must be subdivided, and the resultant pieces recur-
sively tested until all fragments are within a user-specified
tolerance. Note that this is not a problem unique to area
source illumination.

Let us first discuss efficiency. Remember that all shad-
ing calculations are performed on homogeneous polygonal
regions represented by leaf nodes in the i-tree. Usually, the
illumination function extrema in such a region lie at the
vertices. If possible, we want to limit testing for edge and
interior extrema to those regions that have them. This may
be done by first finding all edge and interior extrema for
the entire scene polygon, and then using the i-tree point
classification algorithm of Section 4.1.5 to determine where
these extrema belong. The problem of finding the extrema
on a subpolygon is thus reduced to finding the minimum
and maximum of the illumination function at a finite set of
points: the vertices, plus a few others. Efficiency gains are
great.

4.4.1. Fully Lit Regions

Equations 1 and 11 give the intensities of points fully lit
by point and area sources. They are continuous and dif-
ferentiable, so we can compute the intensity gradient. The
availability of gradient information allows the use of faster,
more reliable optimization techniques.

To find edge extrema, each edge represented in the i-tree
must be examined. We employ Brent’s method with deriva-
tives [29], using the two bounding vertices of an edge as the
initial interval. If the optimization algorithm attempts to
step outside this boundary, we know that there is no local
extremum on the edge, so the edge extremum must be at a
vertex.

For computing interior extrema, we use the Fletcher-
Powell method [29], a guasi-Newton method. The centroid
of the polygon is used as a starting point. If any step of the
algorithm moves outside the boundary, we know that there
is no interior local extremum to be found. Due to the nature
of the illumination function, at most one maximum may be
found here.



All the extrema, if any, found for this polygon’s edges and
interior are gathered into a single list. This is returned to
the optimization control routine.

4.4.2. Penumbra Regions

As mentioned earlier, global optimization is required in re-
> 8§ P q

gions of penumbra. Let us first review the most commen

existing global optimization techniques.

The simplest approach is Pure Random Search (PRS) [14].
Here the function is evaluated at several points distributed
throughout the domain. The extreme function values lo-
cated are returned as the global minimum and maximum.
This technique works well if the number of search points is
large enough, but it is time-intensive.

Probably the most commonly used technique is the Mul-
tistart (MS) method [14]. Here, several random points in
the domain are chosen as starting values for the local mini-
mization routines. This is generally effective, and takes less
computation time than PRS due to fewer needed function
evaluations.

More recently, clustering algorithms [14] have been re-
duced to further reduce time costs of MS. The basic assump-
tion is that points with low function values are clustered
about local minima. Since searches from the same neigh-
borhood should lead to the same extremum, the number of
starting points for local optimization may be reduced. Var-
ious algorithms have been developed to generate this set of
starting points, but none has been conclusively determined
to be the best.

We have chosen to develop our own clustering algorithm
for the task at hand. Note that in addition to finding the
global extrema, we want to find all of the local ones.

A

course rectangular grid is overlaid on the region of interest.

The 2-dimensional algorithm proceeds as follows.

The function is evaluated at a random point within each
grid cell. Then the cells are examined to find all cells whose
function values are either all greater than those of adjacent
cells, or less than all of them. The sample points of these
cells are then used as the starting values of the MS method.
Local optimization is done with Powell’s method [29]. All
local extrema found by these local searches are returned.

The 1-dimensional algorithm is identical, with intervals
instead of grid cells. For local optimization, Brent’s method
[29] is used.

4.4.3. Choosing Splitting Planes

Once it is clear that a region must be split, we need to de-
termine where this is to be done. In our previous work [6],
regions were simply bisected with axis-aligned planes per-
pendicular to their largest dimensions. While this proved
to work, we have found that these are not the best dividing
planes.
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Since we want to minimize variation, it makes sense to
always divide between the locations of the minimum and
maximum intensities. Our new approach is to divide at a
plane halfway between the two extreme points, perpendicu-
lar to the line joining them. As can be seen in the statistics
and photographs of Section 5, this works well.

4.4.4. Additional Refinement

After subdivision on shadow boundaries and across areas of
high contrast, no element will have significant intensity con-
trast. However, rendering issues may generate a need for
more mesh refinement. As discussed in [3], some meshes
are better suited than others for hardware-assisted Gouraud
interpolation. Elements that have large aspect ratios can
lead to shading anomalies. Also, when the tree representing
element subdivision (in our case, the i-tree) becomes unbal-
anced, other artifacts may result.

These issues may be addressed straightforwardly by
adding a step, after intensity-based subdivision, in which
the mesh is further subdivided according to the particular
rendering concerns at hand. Since these vary depending on
the specific rendering hardware or software used, we will not
go into further detail here. For more information, [3] should
be consulted.

4.4.5. T Vertices

As mentioned in Section 4.1.5, our mesh refinement algo-
rithm does generate T vertices. Unless these are handled
properly, shading anomalies will result. A T vertex must
be inserted into the vertex lists of all subpolygons whose
boundary it touches. Since point shadows introduce shading
discontinuities at shadow edges, it will not suffice to main-
tain boundaries as pointers to shared vertex records. Each
boundary must have its own copy of the vertex, since the
intensities of different subpolygons may be different where
they meet at these vertices.

As mentioned in Section 4.2.5, all existing nodes in the
i-tree are marked as “old” before a light pass. When new
vertices are generated as a result of subdivision, these are
stored with the parent node of the subdivision. At the end
of a light pass, the only T vertices that need to be added are
these new ones.

Calculation of vertex intensities is deferred to the last pos-
sible moment. First, the mesh is refined during the visibility
classification stage. Then, the refined nodes are tested for
further variance, at which point further subdivision may oc-
cur until the illumination variation tolerance is met. How-
ever, vertex intensities based on the current light source are
not stored at this time.

For new vertices generated by the subdivision, we need to
assign an intensity based on the previous light passes. Yet
we do not want to repeat all the calculations of these passes.



Since all new vertices occur at the edges of preexisting sub-
polygons, linear interpolation along the corresponding edge
yields an acceptable intensity.

After all subdivision to intemsity gradation is done, we
have a refined mesh showing the illumination up to the pre-
vious light pass. At this point T vertices may be processed.
Each scene polygon in turn is examined for new edges in-
troduced by the subdivision. After a complete {ist of these
vertices is generated for a polygon, the point classification
algorithm of Section 4.1.5 is used to find which vertices are
incident on which element. The vertices are inserted into the
vertex list of the element, with the intensity interpolated as
described above.

Now it is safe to compute the new vertex intensities. The
contribution of the current light source at each vertex is com-
puted, based on its location and the visibility classification
of its associated element. This contribution is then added
to the vertex’s current intemsity to produce a new running
total, based now on light passes up to and including the

current one.

4.5, Mesh Compression

The contributions of several light sources can frequently
wash out intensity gradations caused by a few of them. Thus
it is likely that a mesh may be too refined after several light
passes. To conserve space, it is good to reduce the size of the
i-tree wherever possible. So we have developed a mesh com-
pression algorithm, applicable after any light source pass.

The basic idea is the same as in Section 4.2.5. Redun-
dant nodes should be replaced by a single one. The vertex
intensities of sibling leaf nodes are examined to see if their
variation exceeds the intensity tolerance. Due to the exten-
sive work in finding variations, we know that these vertices
give a true picture of the intensity profile of the elements. If
the variance is within the tolerance, the nodes may be com-
bined into their parent, with the lists of boundary vertices
and vertex intensities concatenated appropriately. This pro-
cedure, recursively applied, can save a significant amount of
storage in some scenes, and never increases the storage. The
time consumed by this operation is minimal.

4.6. Rendering

After any light pass, or after all such passes, the scene may
be rendered. Each scene polygon is traversed to obtain the
leaf elements, and these must be smooth-shaded.

5. RESULTS

We have implemented our algorithm in the C programming
language.

Mesh generation and illumination computation is per-
formed on a SUN 4/260, which is rated at ten VAX 11/780
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Figure 26: Rendered boxes

Figure 27: Mesh for boxes

mips. Polygon scan-conversion and smooth shading are done
separately on an HP 9000 series 300. All timing figures are
given for the SUN machine. Rendering time on the HP is
only a few seconds. Times were measured using the UNIX
time facility.

Figures 26 and 27 show a rendered view of a simple scene,
along with its mesh. Timing data is given in Figure 28, with
storage statistics in Figure 29. Nearly all of the computation
time for numerical optimization is spent on evaluating the
intensity functions, so we separate the function evaluations
used in optimization from those used for final rendering.

6. CONCLUSIONS AND FURTHER WORK

We have presented an algorithm for analytic computation
of soft shadows in object space. It operates by subdividing
light-receiving polygons into homogeneous regions of three
types: fully lit, penumbra, and umbra. A BSP tree data
structure aids in the shadow computations. Intensities of
illuminated points are then computed analytically. Tech-
niques from numerical optimization are employed to ensure

that the illumination function is sampled with enough fre-

Statistic Figure
Name Boxes
Input Polygons 20
Output Polygons 219
Visibility Classification (sec) 9.82
Occluding Polygon Culling (sec) 4.82
Source Occlusion (Optimization) (sec) | 140.78
Shading (Optimization) (sec) 10.06
Source Occlusion (Final) (sec) 13.30
Shading (Final) (sec) 2.47
T Vertex Insertion (sec) 0.58
Total Time (sec) 181.83

Figure 28: Timing statistics



Statistic Tree
Name Occlusion Umbra Pnt Vis (Avg)
Nodes 395 97 51
Height 17 13 10
Storage (Kbytes) 12.7 3.1 1.8

Figure 29: Storage statistics

(5]

Gen-
erating soft shadows with a depth buffer algorithm.
IEEE Computer Graphics and Applications, 4(3):71-81,
March 1984.

Lynne Shapiro Brotman and Norman Badler.

A. T. Campbell, 11T and Donald S. Fussell. Adaptive
mesh generation for global diffuse illumination. Com-
puter Graphics, 24(4):155-164, August 1990.

quency.

There are several areas ripe for future work. A thorough
analysis of the time and space requirements for creating and
merging the various types of shadow data structures needs to
be done. The optimization techniques used by our algorithm
could possibly be improved by taking more advantage of the
special properties of the problem. In particular, the new
global optimization method introduced by this paper should
be examined both to pinpoint its strengths and weaknesses,
and to determine whether it has general applicability beyond
the scope of the current problem.

We feel that the work presented here will be of general use
to the computer graphics community. Analytic illumination
techniques, along with mesh generation, have in our opinion
not gotten enough attention in recent research. These are
important areas that need further development.
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