A GRAPH THEORETIC TECHNIQUE
TO SPEED UP FLOORPLAN
AREA OPTIMIZATION®

Ting-Chi Wang and D. F. Wong
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-91-26 August 1991

* This work was partially supported by the National Science Foundation under grant MIP-8909586, by an ACM
SIGDA scholarship, and by an IBM Faculty Development Award.

A Graph Theoretic Technique to Speed up
Floorplan Area Optimization”

Ting-Chi Wang and D. F. Wong
Department of Computer Sciences
University of Tezas at Austin
Austin, Texas 78712

Abstract

A well known approach for the floorplan area optimization problem is to first determine a list
of all non-redundant implementations of the entire floorplan and then select an optimal floorplan
from the list [3,5,8,9,10]. For large floorplans, this approach may fail due to insufficient memory
space available to store the implementations of sub-floorplans generated during the computation.
An effective method to reduce memory usage is as follows: During the computation, whenever
the set of non-redundant implementations of a sub-floorplan exceeds a certain predefined size,
we only retain a subset of the implementations that can best approximate the original set. In
this paper, we present two algorithms to optimally select implementations for rectangular and L-
shaped sub-floorplans. Our algorithms are designed specifically for the floorplan optimization
algorithm in [9] but they can also be applied to other algorithms such as [3,5,10] as well.
The common key idea of our two algorithms is based on reducing the problem of optimally
selecting a subset of implementations to a constrained shortest path problem, which we can
solve optimally in polynomial time. We have incorporated the two algorithms into [9] and

obtained very encouraging experimental results.

*This work was partially supported by the National Science Foundation under grant MIP-8908586, by an ACM
SIGDA scholarship, and by an IBM Faculty Development Award.

1 Introduction

A general approach to floorplan design is to first determine the topology of the floorplan primarily
using the interconnection information among the modules [1,2,4,7]. The floorplan topology specifies
the relative positions of the modules and is usually represented by a floorplan tree [4,9]. Based
on the topology. several optimization problems can then be addressed to minimize various cost
measures. 1{ each module is rectangular and has a finite number of implementations, one of
the optimization problems, called floorplan area optimization problem, is to select an appropriate
implementation for each module such that, without changing the floorplan topology, the total area

of the floorplan is minimized.

A well known approach for the floorplan area optimization problem is to first determine a list
of all non-redundant implementations of the entire floorplan and then select an optimal floorplan
from the list [3,5,8,9,10]. The computation is done in a bottom-up fashion starting at the leaves
of the floorplan tree (representing the modules) and ending at the root (representing the entire
floorplan). For large floorplans, this approach may fail due to insufficient memory space available
to store the implementations of sub-floorplans generated during the computation. An effective
method to reduce memory usage is as follows: During the computation, whenever the set of non-
redundant implementations of a sub-floorplan exceeds a certain predefined size, we only retain a
subset of the implementations that can best approximate the original set. In this paper, we present
two algorithms to optimally select implementations for rectangular and L-shaped sub-floorplans.
Our algorithms are designed specifically for the floorplan optimization algorithm in [9] but they

can also be applied to other algorithms such as [3,5,10] as well.

The common key idea of the two algorithms is based on reducing the problem of optimally
selecting a subset of implementations to a constrained shortest path problem, which we can solve
optimally in polynomial time. We have incorporated the two algorithms into [9], and experimental
results indicate that for the test examples where [9] was able to run alone, with the incorporation
of the two algorithms, both memory usage and running time were reduced significantly while the

solutions remained of comparable quality. Furthermore, for the test examples where [9] failed to

run, the two algorithms helped to produce satisfactory solutions.

The rest of this paper is organized as follows. Section 2 defines some important fermi-
nologies. Section 3 gives a review of [9] and addresses the approach to reduce memory usage by
[9]. Section 4 conmsists of three subsections: Section 4.1 introduces the constrained shortest path
problem and provides a polynomial time optimal algorithm to solve it. Based on the constrained
shortest path algorithm, we present in Section 4.2 and 4.3 two implementation selection algorithms
to optimally select a subset of implementations for rectangular and L-shaped sub-floorplans, re-
spectively. Experimental results are reported in Section 5, and some concluding remarks are made

in Section 6.
2 Preliminaries

A floorplan for m modules consists of an enveloping rectangle subdivided by horizontal and vertical
line segments into m non-overlapping rectangles called basic rectangles. Each basic rectangle must

be large enough to accommodate the module assigned to it.

A floorplan tree is a hierarchical description of a floorplan. It specifies how the floorplan
is obtained by recursively partitioning a rectangle into a finite number of parts. Figure 1 shows
a floorplan and its corresponding floorplan tree. Each leaf in the floorplan tree corresponds to a

basic rectangle and each internal node corresponds to a composite rectangle in the floorplan.

A block in a floorplan is defined as a connected set of basic rectangles. Two types of blocks
will be considered in this paper: L-shaped and rectangular blocks. Figure 2 illustrates an L-shaped
block and a rectangular block, where the L-shaped block consists of three basic rectangles and
the rectangular block consists of four basic rectangles. An implementation of an L-shaped block is
represented by a 4-tuple (w1, w2, b, ky) with wy > wy and hy > hy, where w; and wy represent the
widths of the bottom edge and the top edge, respectively, and h; and h; represent the heights of
the left edge and the right edge, respectively. (See Figure 2.) An implementation of a rectangular

block is represented by a pair (w, k), where w is the width and h is the height. (See Figure 2.)

5 4
2 . E
i1
8 B
D
1 - 9110 C
12

8

Bl (o 119] [515}}9\

12 | pt
o[9]
[e] 7102 [l (]

Figure 1: A floorplan and its floorplan tree.

(3] [¢]

top
edge (w2) width (W)
an L-shaped %

P — e g a Tectangular
block left / 10 /,/ /8// neigh b]ocl%u
edge / s A oy
(hp) Z) % ()

\4
bowom €dge right
(wy) ge (h2)

Figure 2: An L-shaped and a rectangular blocks.

Definition 1 Let Iy = (wy,ws, b1, he) and Ip = (w), wh, ki, h}) be two implementations of an
15 Wa, 3, g

L-shaped block. We say that I; dominates I if the following four inequalities hold:
(1) wy > wh; (2) wy > wh; (3) hy 2 hi; (4) ho 2 kY.

Similarly, if Iy = (w,h) and I = (w', k') are two implementations of a rectangular block, we say

that I; dominates I, if the following two inequalities hold:

(Hw>w's (2) R 2R

Definition 2 Let I; and I, be two implementations of a block (L-shaped or rectangular). We say

that I; is a redundant implementation if I; dominates I5.

Definition 3 A list {(wl,law2,lah1,lah2,l)a (wl,Qa W2,24 h’l,?a h2,2)7 -"’(’wl,n’ w?,ﬂshl,nahQ,n)} isan L-

list if the following four inequalities hold for all i and j, 1 < i< j < n

(1) wig > w5 (2) woi = waji (3) ki € hyji (4) hoi S hayj

Definition 4 A list {(wl,hl),{wg,hg),...,(wn,hn)} is an R-list if the following two inequalities

hold forall fand j. 1 <:i<j < n

(1) w; > wy; (2) ki < hy.

Definition 5 An irreducible L-list is an L-list in which there are no redundant implementations.

Similarly. an irreducible R-list is an R-list in which there are no redundant implementations.
3 Our Approach

In this section, we present our approach to reduce memory usage by [9]. We first briefly review the
algorithm in [9]. The inputs to this algorithm consist of a floorplan tree specifying the topology of

the floorplan, and a finite set of non-redundant implementations for each module.

Given the floorplan tree T, it is first restructured into a binary tree T’ such that each internal
node in T either corresponds to a rectangular block or an L-shaped block. Figure 3 illustrates
an example of how to restructure T into T'. At the beginning, the algorithm uses an irreducible
R-list to store all non-redundant implementations for each leaf in 7”. (Note that all non-redundant
implementations of a leaf are the same as those of its corresponding module.) Next, the algorithm
in a bottom-up fashion determines all non-redundant implementations {or each internal node in
T’ Let u be an internal node in T”. If u represents a rectangular block, the algorithm constructs
an irreducible R-list to store all the non-redundant implementations for u. If u represents an L-
shaped block. the algorithm constructs a set of irreducible L-lists to store all the non-redundant
implementations for . During the process of generating all non-redundant implementations for u.
the algorithm only considers the candidates which are very likely to be non-redundant, and then

eliminates the redundant ones from the candidates. The details of the algorithm can be found in

[9).

G [

Figure 3: Restructuring T into a binary tree T".

We have the following observation regarding the memory space requirement of [9]. Every
time when the algorithm generates all non-redundant implementations for an internal node in
T', all of them have to be stored as each such implementation is possible to be part of an optimal
solution. Hence, for large floorplans?, the numbers of non-redundant implementations of the higher
level nodes could become very large and consequently the algorithm may fail due to insufficient
memory space. In order to reduce memory usage, it is necessary to provide effective and efficient
methods to control the number of non-redundant implementations for each internal node in T

Our approach to meet this goal is as follows.

*In this paper the term large floorplan refers to either a floorplan with a large number of modules o1 2 floorplan
with a large number of non-redundant implementations for each module.

Every time after the algorithm generates all non-redundant implementations for an internal
node, we check the number of non-redundant implementations of that internal node. If it exceeds a
predefined limit, we reduce the number of implementations to within the limit by applying an im-
plementation selection algorithm. Since each internal node represents either a rectangular block or
an L-shaped block, two different implementation selection algorithms are needed. For a rectangular
block. we design an algorithm which can properly select a subset of non-redundant implementa-
tions from the irreducible R-list. For an L-shaped block, since its non-redundant implementations
are stored in a set of irreducible L-lists, we design an algorithm, which can properly select a subset
of non-redundant implementations from an irreducible L-list, and sequentially apply it to each of

the irreducible L-lists.

In the next section, we shall present two optimal implementation selection algorithms for
rectangular and L-shaped blocks. respectively. Both algorithms run in polynomial time. The
common key idea of the two algorithms is based on reducing the problem of optimally selecting
a subset of non-redundant implementations from an irreducible list (R-list or L-list) to the comn-
strained shortest path problem. As we shall see in next section, the constrained shortest path

problem can be optimally solved in polynomial time.
4 Optimal Selection of Implementations

In this section, we first introduce the Constrained Shortest Path Problem (CSPP) and present a
polynomial time optimal algorithm for this problem. Then, two algorithms based on reducing the
problem of optimally selecting a subset of implementations from an irreducible R-list or L-list to

the CSPP are introduced, respectively.
4.1 Constrained Shortest Path Problem

Let G = (V, E) be a weighted directed acyclic graph (DAG), where V = {v1,v2,...,v,} and E are
the vertex set and the edge set, respectively. For each edge (v;,v;) € E, let w(v;, v;) be its weight

and we assume w(v;, v;) > 0. Given two vertices s,7 € V and a positive integer k < n, the solution

-y

Figure 4: An example of the constrained shortest path problem.

to the CSPP is either a simple path of minimum total weight from s to ¢ with exactly k vertices
in G or an indication that no such path exists. Note that the CSPP is different from the classical
shortest path problem in the sense that the number of vertices on the path is restricted to be exactly
k. Figure 4 shows a weighted DAG in which the number on each edge represents the weight. It is
easy to see that the shortest path from v; to ve is the path v; — v — v3 — ¥4 — U5 — Vg With
total weight of 8. However, if we consider the CSPP with k = 4, the constrained shortest path
from v; to ve should be the path v; — v; — v4 — vg With total weight of 11. Note that there are
two other paths from v; to ve with 4 vertices, i.e., v; — v3 — v3 — Vg and vy — vg — V5 — Vg.

but their total weights, 12 and 15, are not minimum.

Let W(s.v:,l) be the minimum total weight of a constrained shortest path in G from s
to v; with exactly [vertices. For convenience, if there exists no such path from s to v; with
[vertices, we simply let W(s,v;,l) = oo. We now present a polynomial time optimal algo-
rithm called Constrained_Shortest_Path to solve the CSPP as shown below. The algorithm Con-

strained_Shortest_Path is based on the dynamic programming technique.

Algorithm: Constrained.Shortest Path
Input: A weighted DAG G :'(V, E), two vertices 5,¢ € V, and a positive integer k < |V;
Output: The set of k vertices on the constrained shortest path from s to ¢ (if exists);
Begin

/* Initialization */

Wi(s, s,1) =0

for each vertex v; € V — {5} do

Wis, v, 1) 1= o0,

end for
/* Calculate W(s.t, k) */
for [=2 to k do
for each vertex v; € V — {5} do
/* Calculate W(s, v, [} */
Wis, vi.l) = o
for each edge (vj,v) € E do
if Wis,v;,1=1)+ w(v;, ;) < W (s, v;,!) then
W (s, v, 1) = W(s,v5,1 = 1)+ w(vj, vi);
update the vertex, i.e., v;, which gives rise to the current W(s, v;,1);
end if
end for
end for
end for
if Wis. t,k)=oc then
return(“Can not find such a path.”);
else /* Determine the set of k vertices on the constrained shortest path. */
P.=0; vi=t; =k
while | > 2 do
P := PJ{v;}, where v; is associated with W(s,v,);
vimyy li=il=1
end while
ifk>2
P.={s}UPUlth
else /*k=1lands=1%/
P .= {s}:
end if

return(P);

end if

End.

Theorem 1 The algorithm Constrained_Shortest-Pathfcorrectly solves the CSPP in O(k(|V|+|E]))
time, where k, |V, and |E| are the number of vertices on the constrained shortest path, the number

of vertices, and the number of edges, in G, respectively.

Proof. To show the correctness of the algorithm Constrained Shortest_Path, we first prove the
computation of W{(s,v;,1) is correct for all v; and [with v; € V — {s} when 1 <[< k,and v; € v
when [= 1. The proof is by induction on I. When [= 1, there are two cases. The first case is that
if v; = s. it is true that W(s,s, 1) is correctly set to 0. On the other hand, if v; # s, W(s,v;. 1) is
correctly set to oc since there is no path from s to v; with only one vertex. Suppose the algorithm
Constrained_Shortest_Path correctly calculates W (s, v;, 1) for all v; and Iwithl1 << g< k. When

[= g+ 1. it is easy to see that for any v # s, we have

Wi(s,vi, g+)= min(oos(mif* E("V(-S,'Uj,Q) + w(vj, Ut))) (1)

v,

Clearly, Equation (1) is implemented in the algorithm Constrained_Shortest.Path. Hence, based
on the induction hypothesis, W(s,v;,q + 1) can also be calculated correctly by the algorithm
Constrained_Shortest.Path. Therefore, the computation of W(s,v;,!) is correct for any v; and !
with 1 < [< k. Since the algorithm Constrained-Shortest.Path correctly calculates any W(s. v;,1)
and also correctly records which vertex adjacent to v; gives rise to such W(s,v;,1), it is not hard
to see that an optimal path P of total weight W(s,?,k) can be retrieved in linear time by the
algorithm Co.nstrained_Shortest_Path if Wi(s,t,k) # oo (i.e., P exists). On the other hand, if no
such P exists, the algorithm returns “Can not find such a path.”. Consequently, the algorithm

Constrained Shortest.Path is correct.

The time complexity of the algorithm is dominated by the computation of W{(s,v;,1) for all
v; and [with 2 <[< k. For each [, every vertex v; other than s and every edge incident into v;
need to be examined once, and hence the computation of W (s, v;,1) for each I takes O(|V] + |E|)

time. Therefore, the overall time complexity of the algorithm Constrained Shortest_Path should

10

Figure 5: A staircase curve.

be O(k(|V] + |E|) as there are O(k) possible values for . O
4.2 Rectangular Blocks

In this subsection. we present an algorithm to optimally select a subset of non-redundant implemen-
tations from an irreducible R-list. That is, given an irreducible R-list R storing n non-redundant
implementations of a rectangular block B, and a positive integer k < n, the algorithm selects from

R a subset of k implementations which can best approximate R.

Let R = {r1,72,...,Tn} with each 7; equal to (w;, ki), and let R’ = {TdysTdys s Tdy) DE
a subset of k implementations selected from R with 1 = dy < dy < ... < dp = n. We may
assume 2 < k < n. We can use a staircase curve Cg to represent R such that R constitutes the
set of corners on Cgr with r; and r, being the rightmost and the leftmost corners, respectively.
(Figure 5 shows the staircase curve Cg for R = {ry,72,...,7¢}.) Note that any point on or above
(g represents a feasible (either redundant or non-redundant) implementation of B, but only the
corners are non-redundant. Similarly, we can use another staircase curve Cr to represent R'. and
any point on or above Crs is also a feasible implementation of B. Intuitively, we can consider
the bounded area between Cg and Crs as the amount of feasible implementations discarded due
to selecting R’ from R. Hence, we define the cost ERROR(R,R’) of selecting R’ from R as the
bounded area between Cr and Cgs, and our objective is to select R’ such that ERROR(R,R') is
minimized. Figure 6 shows an example in which B = {r1,72,73,74, 75,76}, B = {r1,73, 74, re}. and

by definition, ERROR(R, R') is the sum of the areas of A, and A,.

11

N3 . W

Figure 6: Ilustration of bounded area between curves.

Clearly. Crs can be partitioned into a set of subcurves Q,d1 T ,Q,d2 g '“’Qrdk-l’rdk , where
for all g. 1 < ¢ < k, subcurve Qrdqwq“ has 74, and Tdgy, @8 its two endpoints. Similarly, for all
g. 1< g<k,let Praq-rqu be the subcurve of Cg with rg, and g4, as its two endpoints. Hence,
in Figure 6, A; corresponds to the bounded area between Q,,, and P, .., and A corresponds
to the bounded area between @, ,, and P, r,. If we define error(ra,,rd,,,) as the bounded area

between Qrdq Tdgar and Pqu,rdq_-rl , we have

k-1
ERROR(R,R) = Y error(ra,Tag.)- (2)
. g=1

Equation (2) tells us that ERROR(R, R') can be calculated in terms of error(rq,,74,,,) for
g = 1,2....,k — 1. We present below an O(n?) algorithm called Compute_R.Error to calculate
error{r;,r;) forall i and j, 1 < i< j < n Both the correctness and the time complexity of the

algorithm Compute_R_Error can be easily proved, and hence the proof is omitted.

Algorithm: Compute R_Error
Input: An irreducible R-list {r; = (w1, hi), 72 = (wa, ko), s Tn = (Wn, Ao}
Qutput: error(ry,rj)foralliand j, 1 <i<j<n
Begin
fori:=lton~-1do
error(r;, riz1) = O
end for

forl:=2ton~1do

12

e

Figure 7: Constructing a weighted DAG.

fori:=1ton—{do
error(ri.rig)) 1= error(ri, rigie1) + (wi — wigr-1)(hipt = higi-1);
end for
end for

End.

We now describe how to reduce the problem of selecting an optimal R’ from R to an
instance of the CSPP. Given R, we comstruct a weighted DAG G = (V,E) with V = R and
E={{rirjvi,j,1 << j < n}. Each edge (r;,7;) has its weight equal to error(r;,r;). (See
Figure 7 for an illustration of the construction.) Note that the construction takes O(n?) time. We

have the following lemma.

Lemma 1 Let R be an irreducible R-list, and let G be the weighted DAG constructed from R. We
have, each path P in G from r1 to r, with k vertices corresponds to a subset of k implementatlions

of R. Moreover, ERROR(R, P) is equal to the total weight of P.

Proof. Since G is 2a DAG and each vertex in G corresponds to an implementation in R, each path
Pin G from 7, to r, with k vertices clearly corresponds to a subset of k implementations of K.

Suppose P = {74,,Td;» wesTa, } with dy = 1 and di = n. Then, the total weight of P should be

k-1 k=1 .
Z W(Tdy Tdeyy) = Z error(Ta,, Td,,,)
g=1 g=1

= ERROR(R,P).

13

It follows from Lemma 1 that the problem of selecting an optimal R’ from R is equivalent
4o the CSPP for G with s = r; and ¢t = r,. The following algorithm R.Selection can optimally

select a subset R’ of k implementations from R such that ERROR(R, R') is minimized.

Algorithm: R_Selection

Input: An irreducible R-list B = {r1,...,mn}, and a positive integer k < n;

Output: An optimal subset R’ of k implementations from R;

Begin
Apply the algorithm Compute-R-Error to calculate error(ry,r;) foralliand j, 1 <i<j<n;
Construct the corresponding weighted DAG G from A;
Apply the algorithm Constrained-Shortest.Path to G with s = r; and { = 7y;

End.

Theorem 2 The algorithm R_Selection optimally selects a subset of k implementations from an

irreducible R-list of n implementations in O(kn?) time.

Proof. The correctness of the algorithm R-Selection follows directly from Lemma 1 and Theorem
1. Its time complexity is dominated by the algorithm ConstrainedShortest_Path with |[E| = 0O(n?)

and hence is O(kn?). =]
4.3 L-shaped Blocks

In this subsection. we present an-algorithm to optimally select a subset of non-redundant imple-
mentations from an irreducible L-list. Since each L-shaped block has a set of irreducible L-lists to
store its non-redundant implementations, to reduce the number of non-redundant implementations
of the L-shaped block, we can sequentially apply the algorithm to reduce the size of each irreducible
L-list.

Let L = {l1,ls,...,I,} be an irreducible L-list storing n implementations of an L-shaped

block B, where l;=(wy;,woi, k1, hoi) foralli, 1 < i< m. Let L' = {ldys1dy5 114, } be a subset

14

of k implementations selected from L with 1 = dy < dy < ... < di = n. Again, we may assume
2 < k < n. Since each [; € L can be viewed as a point in the 4-dimensional real space R?*, we use
dist(l;,1;) to denote the Manhattan distance? between I; and [;, for all I;,1; € L. In other words,
we have

dist(l;, 1) = |wii — wj] + lwa; — wa il + |hai — hy |+ |hai — ha ;i

Since wy,; = wy, ;. we have
dést(lé,lj) = |lwy; — wl,jl -+ Vll,i - hl,jt + }hz,i — hz,ji-

In general, we expect the less distance between I; and l;, the more similar in shape they are.
Hence. dist(l;,1;) measures the amount of difference in shape between [; and ;. For each discarded
implementation /; € L — L', we define cost(l;) as the distance between /; and the implementation

in L’ which is closet to [;. That is, for any I; € L — L', we have
(1) = min dist(l;,1;).
cost(l;) IIJHEIE’ ist(ly,15)

Intuitively, we can consider cost(l;) as the cost of not selecting I from L, and hence the imple-
mentation in L’ which has the minimum distance from [; is responsible for replacing /;. Therefore,
we define the total cost ERROR(L,L") of selecting L’ from L as the sum of the costs of the
implementations not selected into L’. That is,

ERROR(L,L'y= Y cost(ly).
l,eL-L'

Now. our goal is to select L' such that ERROR(L,L') is minimized. Before describing how to

determine an optimal L', we first state some important lemmas.

Lemma 2 Let L be an irreducible L-list, and let 1y,1;,1;,1; € L with i <1< j < j'. We have

dist(l;,1;) < dist(ly,1;) and dist(l;,1;) < dist(ls,).

Proof. Since L is an irreducible L-list and I, ;1,1 € L with i < i< j < j', we can assume

Zé' = (wl,i’v Wz it hl,é'a h2,i’)7

2In fact, we can use any Ly metric [6] to measure the distance. It is well known that the Manhattan distance is
the I, metric. Note that all the Jemmas and theorem presented in this subsection remain correct for any Ly metric.

15

I; = (w4, wai, hag, Roi)s
Zj = (wl,j»wzjvhl,j’h?,j)»
Iy = (w5 wo e hajyr hagr)

with

Wy 2 Wi 2 Wi 2 W

Wy r = Wy = Wy,; = Woy,

hyg <hyi hi; < hyy,

hoy < hai < hyj < hojr
Therefore, we have

dist(l;, 1) lwy i — wy ;| + [h1i = hajl + [hai = hajl

i

= (wii—wi;)+ (h1;— k1) + (hoj = hai)
< (wrg = wi)+ (R — Rag) + (haj = hayr)
= |wy iy —wij| + Ry — hugl 4 R — Ral

= dist(ly,1;).
Similarly, we have

dist(l;, 1) < |wig— wijr| + Ry — oyl + [hai — hoyl

dist(li, 1jr).

i

For any discarded implementation I; € L — L', there exist exactly two consecutive implemen-
tations lg . lg,,, € L' with dy < i < dgyy. We define such Iy, and lq,,, as the left neighbor and the
right neighbor of l;, respectively. For example, if L= {l1,12,13,14,15} and L’ = {l1,13,15}, then the
left and the right neighbors of I3 and Iy both are I; and I5, respectively. We now present Lemma
3 which shows that cost(l;) can be computed only by considering the distance between I; and its

two neighbors.

16

Lemma 3 Let L and L’ C L be two irreducible L-lists. Foranyl; € L—1L', iflg, andly ., are its

left and right neighbors, then cost(l;) = min(dist(ldq,li),dist(lé,ldq“)).

Proof. By definition, we have

cost(l;) = z?é%f dist(l;,lg,).
t4

Based on Lemma 2. for any Iy, € L' with p < ¢ (i.e., d, < dq < i), we have
dist(la,,l;) < dist(la,,),

and for any lg, € L' withp > ¢+ 1 (i-e., i < dgq1 < dp), we have
dist(l;,ldq+1) < dist(lg,ldp).

Hence.

cost{l;) = lmé%, dist(li,lg,) = min(dist(ldq,li),dist(lé,idqﬂ)).
dp

3

For any two consecutive implementations lag,lagy, € L' let X = {l;,liv1,.-0;} € L =L
with i = dy + 1 and j = dg41 — L. We define the cost of discarding X from L as
error(la,,la,,,) = Z cost(l;),
LeX
where each cost(l;) can be computed just based on Lemma 3. Now, it is clear that ERROR(L, L)
can be computed in terms of error(ldq,idqﬂ) forg=1,2,...,k— 1, as follows.
k-1
ERROR(L.L') =Y error(la,la,,)- (3)
g=1
We present below an O(n®) algorithm called ComputeL_Error to compute error{l;.1;) for

all i and j. 1 < 1 < j < n. Again, both the correctness and the time complexity of the algorithm

Compute.L_Error can be easily proved, and hence the proof is omitted here.

Algorithm: Compute L.Error

Input: An irreducible L-list L = {1, da)

17

Output: error(l;,l;), foralliand j, 1 <i< j<m
Begin
fori:=1ton-—1do
for j:=i+1tondo
error(l;) = 0;
forg:=i+1toj—1do
ervor(li,l;) = error(l;, ;) + min{dist(l;,ly), dist(ly, [;));
end for
end for
end for

End.

We now describe how to reduce the problem of determining an optimal L' from L into
an instance of the CSPP. Given L, we construct a weighted DAG G = (V,E) with V = L and
E={.)Vi,jl<i<j< n}. Each edge (I;,1;) has its weight equal to error(l;, ;). Note that
the construction of G is very similar to that described in Section 4.2 except error(l;,1;) is dgﬁned

differently. We have the following lemma and its proof is similar to that of Lemma 1.

Lemma 4 Let L be an irreducible L-list, and let G be the weighted DAG constructed from L. We
have. each path P in G from Iy to l, with k vertices corresponds to a subset of k implementations

of L. Moreover, ERROR(L, P) is equal to the total weight of P. [

It follows from Lemma 4 that the problem of determining an optimal L’ from L is equivalent
<0 the CSPP for G with s = [; and t = I,. The following algorithm L_Selection can optimally

select a subset L’ of k implementations from L such that ERROR(L, L') is minimized.

Algorithm: L.Selection

Input: An irreducible L-list L = {l1,...,,}, and a positive integer E<
QOutput: An optimal subset L’ of k implementations from L;

Begin

Apply the algorithm Compute-L-Error to compute error(l;,l;) foralliand j, 1 <i<j<n;

18

Construct the corresponding weighted DAG G from L;
Apply the algorithm Constrained_Shortest.Path to Gwiths=1 and{ =l

End.

Theorem 3 The algorithm L.Selection optimally selects a subset of k implementations from an

irreducible L-list of n implementations in O(n®) time.

Proof. The correctness of the algorithm L-Selection follows directly from Lemma 4 and Theorem 1.

Its time complexity is dominated by the algorithm ComputeL.Error and hence is O(n®). O

Finally, we explain how to apply the algorithm L.Selection to each of the irreducible L-lists
of an L-shaped block B. Suppose B has p irreducible L-lists storing a total of NV implementations.
Also suppose we want to reduce the number of implementations of B from N to K. Let L be one of
the p L-lists. and |L| be the number of implementations stored in L. When we apply the algorithm
L_Selection to L. the limit on the number of implementations for L is set to [_-{‘7\@} Consequently,

the limit on the number of implementations for each of the p L-lists is dynamically adjusted.
5 Experimental Results

We have implemented the algorithms R-Selection and L-Selection in C language on a Sun SPARC
station running Unix operating system. In addition, we have also incorporated the two algorithms
into [9], and used 16 test examples which are based on the following 4 floorplans FP1-FP4 to test
them. (For each of the 4 floorplans, we have 4 test examples corresponding to 4 different sets of

modules.)

FP1: The 25-module floorplan as shown in Figure 8(a);
FP2: The 49-module floorplan as shown in Figure 8(b);

FP3: The 120-module floorplan as shown in Figure 8(d) in ‘which each rectangular block B consists

of the 24-module floorplan in Figure 8(c);

19

_____I:_____-—i
B S— il

|_——T7

(a) ()
B
B
B
B
B

Figure 8: Test floorplans.

FP4: The 245-module floorplan as shown in Figure 8(d) in which each rectangular block B consists

of the 49-module floorplan in Figure 8(b);

We first used the test examples of FP1-FP3 to measure the performance of the algorithm
R_Selection. For each of the test examples, we ran R-Selection three times using different limits on
the number of implementations for each rectangular block. The results are reported in Tables 1-3,
where NV is the number of non-redundant implementations of each module, K is the user specified
limit on the number of implementations for each rectangular block, M is the maximum number of
implementations ever stored in memory during the computation®, Appr is the optimal area of the
floorplan produced by [9], and Ag is the area of the floorplan produced by [9] with R-Selection.
It is clear that M and -‘4—5;410%&1 measure the memory usage and the quality of solutions produced
by using R-Selection, respectively. As can be seen from Tables 1-3, for the test examples where

[9] ran successfully. the algorithm R-Selection helped to significantly reduce both memory usage

and running times while its solutions are very close to optimal. Furthermore, we observed that [9]

3Note that M is not equal to the total number of implementations ever generated because as soon as R-Selection
eliminates some implementations, we no longer need to store them.

20

Test (9] [9] + R_Selection
Case # | N | M | CPU (sec) || k1| M | CPU (sec) || Azz2aer
20 | 15834 5.3 1.21%
1 20 || 67871 16.2 30 | 19607 7.4 0.99%
40 | 26656 | 10.5 0.04%
20 | 18143 5.7 0.46%
2 20 || 139580 | 40.4 30 | 25375 9.2 0.09%
40 | 35950 | 14.3 0.09%
40 | 52891 | 336 0.18%
3 40 | 257944 | 181.0 |l 50 | 59142 | 388 0.18%
60 | 72721 | 46.8 0.0%
40 [79810 | 50.6 0.05%
4 40 || 402398 | 997.8 | 50 | 84928 | 61.3 0.23%
60 | 96672 | 75.6 0.23%

Table 1: The experimental results of FP1 (25 modules).

failed to run for the last three test examples of FP3 due to insufficient memory space, and hence

incorporating the algorithm R-Selection into [9] becomes necessary.

Finally. we used the test examples of FP4 to test the performance of R.Selection and
L_Selection. Note that [9] failed to run for each of these test examples. Table 4 reports the
results produced by using R-Selection with and without LSelection. In Table 4, K, is the user
specified limit on the number of implementations for each L-shaped block, and Agp4z is the area
of the floorplan produced by [9] with R_Selection and L-Selection. Clearly, é&ijﬂl‘iﬂ measures the
effectiveness of L_Selection. As shown in Table 4, for the first two test examples, the algorithm
L_Selection helped to reduce memory usage while its running times and solution gualities remain
comparable. However, for the last two test examples, using L.Selection is necessary to get solu-
tions because R-Selection alone was unable to prevent the failure caused by insufficient memory
space. Since we observed that the number of implementations of an L-shaped block in general is
much larger than that of a rectangular block, it is much more expensive to use L_Selection than
R_Selection. Therefore in our current implementation we employed two special techniques to speed
up the computation. Firstly, instead of using L.Selection whenever the number X of implementa-
tions of an L-shaped block exceeds Ko, we use L.Selection only when %-7- < 8, for some user specified

parameter 6, 0 < 6 < 1. In other words, we only use L.Selection when X is sufficiently larger than

21

Test 19] 9] + R-Selection
Case # || N |3 [CPU (sec) || 51| M | CPU (sec) || 427202z
20 | 45474 10.3 1.99%
1 20 1| 343603 76.8 30 | 63025 15.3 0.28%
40 1 90199 23.8 0.03%
20 | 46541 11.0 0.27%
2 20 || 495836 117.7 30 | 59299 15.2 0.76%
40 | 90548 23.0 0.19%
40 | 230002 73.0 0.13%
3 40 || 608891 187.8 50 | 239653 81.4 0.1%
60 | 252735 90.3 0.1%
40 | 131751 51.7 0.15%
4 40 || 473772 407.7 50 | 142940 57.8 0.15%
60 | 158288 65.5 0.0%
Table 2: The experimental results of FP2 (49 modules).
Test [9] [9] + R_Selection
Case # || N M CPU (sec) || K1 | M | CPU (sec) || #zpfoet
20 | 50841 15.6 1.29%
1 20 439234 90.3 30 | 53514 20.8 0.4%
40 | 57947 27.6 0.16%
20 | 61566 37.0 -
2 20 || > 806533 - 30 | 67717 51.1 -
40 | 74211 65.7 -
40 | 230891 170.5 -
3 40 || > 798494 - 50 | 236818 192.1 -
60 | 244656 221.3 -
40 | 269127 210.8 -
4 40 1| > 800552 - 50 | 282360 241.3 -
60 | 299268 284.9 -

Table 3: The experimental results of FP3 (120 modules).

22

Test 9] + [9] + R-Selection
N R._Selection 4 L._Selection %ﬁﬁ
Case # K, M CPU (sec) || K, M CPU (sec)

1000 | 232666 101.3 6.43%

1 20 || 40 | 379943 106.8 1500 | 239972 109.9 4.2%
2000 | 292279 94.7 3.15%
1000 | 209744 136.1 6.25%

2 20 || 40 | 462441 145.4 1500 | 255946 133.3 4.02%
2000 | 268903 171.1 2.44%
1000 | 341626 338.0 -

3 40 || 40 | > 782146 - 1500 | 507107 455.5 -
2000 | 600522 532.8 -
1000 | 346208 341.7 -

4 40 || 40 | > 775390 - 1500 | 458501 494.7 -
2000 | 589706 552.2 -

Table 4: The experimental results of FP4 (245 modules).

k5. Secondly, since L_Selection is extremely slow when X is very large, whenever X > § for some
user specified parameter S, we first use a heuristic version of L_Selection to reduce the number of

implementations to 5, and then use L_Selection to further reduce it to K; implementations.

The experimental results reported in Tables 1—4 indicate that the algorithm R.Selection
is both efficient and effective in producing good quality solutions for most of the test examples.
However, for very large floorplans, we need to use the algorithm L_Selection in addition to the
algorithm R-Selection. Since L-Selection is much more expensive than R.Selection, we suggest to

use R_Selection first, and only use L_Selection whenever R.Selection alone fails.

6 Concluding Remarks

We have presented in this paper two algorithms R_Selection and L.Selection to control the number
of implementations generated for rectangular and L-shaped blocks, respectively. We also presented
experimental results to show how effective and efficient the two algorithms are after incorporating

them into [9].

Finally, we would like to point out other applications of the two implementation selection

algorithms. Firstly, the two algorithms can be applied to other existing floorplan design algorithms

23

(e.g.. [3.5.10]) to reduce both memory usage and computation time. Secondly, if we consider

the case where each module in the floorplan has an infinite set of implementations specified by

a continuous shape curve, the floorplan area optimization problem can still be solved by first

approximating each such curve by a large number of points and then applying [9] together with

the two algorithms.

References

(1]

[2]

D. P. Lapotin and S. W. Director, “Mason: A Global Floor-planning Tool,” in Proc. IEEE.
Intl. Conf. on Computer-Aided Design, 1985, pp. 143-145.

U. Lauther, “A Min-Cut Placement Algorithm for General Cell Assemblies Based on a Graph
Representation.” Journal of Digital Systems, Vol. IV, Issue 1, pp. 21-34, 1980.

T. Lengauer and R. Miiller, “A Robust Framework for Hierarchical Floorplanning with Inte-
grated Global Wiring,” in Proc. IEEE International Conf. on Computer-Aided Design, 1990,
pp. 148-151.

R. H.J. M. Otten, “Automatic Floorplan Design,” in Proc. 19th ACM/IEEE Design Automa-
tion Conjf., 1982, pp. 261-267.

M. Pedram and B. Preas, “A Hierarchical Floorplanning Approach,” in Proc. IEEE Inierna-
tional Conf. on Computer Design, 1990, pp. 332-338.

F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, 1985.

N. R. Quin and M. A. Breur, “A Force Directed Component Placement Procedure for Printed
Circuit Boards,” IEEE Trans. on Circuits and Systems, Vol. CAS-26, No. 6, pp. 377-388.
1979.

L. Stockmeyer, “Optimal Orientations of Cells in Slicing Floorplan Designs,” Information and

Control, Vol. 59, pp. 91-101, 1983.

24

[9] T.-C. Wang and D. F. Wong, “An Optimal Algorithm for Floorplan Area Optimization™, in
Proc. 27th ACM/IEEE Design Automation Conf., 1990, pp. 180-186.

[10] G. Zimmerman, “A New Area and Shape Function Estimation Technique for VLSI Layouts,”

in Proc. 25th ACM/IEEE Design Automation Conf., 1988 pp. 60-65.

25

