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sJonclusions

> summarize by listing the primary contributions of this dissertation:

e Giving substance and formal meaning to the notions of compensation and relaxed atomicity (i.e., the wc
on R-atomicity). Based on the formal results, a methodology for the design of compensating transactions
envisioned. In light of the abundance of work that relies on semantic atomicity and compensation withc

giving them specific meaning, we consider this contribution a significant one.

e The power and utility of semantics-based recovery were illustrated in the context of distributed trans:
tion management. With the aid of these methods we devised protocols that alleviate the inherent a
hard problems that are associated with atomicity in distributed systems (i.e., the polarized and the O2]

protocols).

e Using the compact model of composite transactions with polarities, we have identified a correctness criteri
(namely isolation of recoveries) in the realm of transactions that are not atomic in the standard sense. Bas
on the duality of compensation and retry, the criterion applies when both of these semantics-based methc
are employed. This work helps understand how relaxing atomicity of a transactional unit interacts w

1solation of concurrent transactions.

The significance of the work on relaxed atomicity is underlined in light of the inevitable problems that :
bical of atomicity in a distributed system. Moreover, relaxed atomicity is motivated by the growing interest
tributed system integration; an area where standard atomicity stands in sharp contrast to the crucial autonor
the integrated components.

The criterion of recovery isolation (IR) gives transactions a degree of isolation from inconsistencies arisi
m failures and their asynchronous recoveries. In an IR execution, effects of both committed and abort
btransactions of the same transaction are allowed to be exposed, thereby avoiding the prohibitive cost o
tributed atomic commitment. However, it is ensured that transactions observe only effects of sets of steps w
ntical polarity, thus hiding the non-atomic execution of transactions.

Finally, we point out that the ideas reported here constitute a bottom-up approach to an important prc
n. The problem 1s the inability of the traditional transaction model to accommodate the demands of advanc
tabase applications and environments. The solution we propose is semantics-based recovery. We have dev
ed the solution in this dissertation in a step-wise manner. First, we have defined and studied the concept
mnpensation in a simple setting of a single transactional unit. Having done that, we have used compensation a
ilding block in constructing more complex and structured transactions, and for solving problems in distribut
vironments. Thus, we have demonstrated that semantics-based recovery mechanisms are useful in pointing c

w solutions for the problems posed by advanced database systems.



e Formal development of the retry method is lacking. In conducting this research, it might be interesti
to capitalize on the duality with compensation, where applicable. Again, the impact of the shape of t

forward transaction on the semantics-based recovery, retry this time, will play a key role.

e An interesting trade-off between the complexity of the marking scheme and the degree of concurren
allowed by the corresponding protocol is evident from the range of IR-preserving protocols that have be
devised. Some parameters of this trade-off are summarized in Section 5.6. Interestingly, it seems that t
inherent blocking phenomenon is manifested in the IR context by the difficulty to discard markers. A res
should qualify the complexity of obtaining IR and relate this complexity to the known results on atomic
in distributed systems. Additionally, it would be interesting to relate our work on composite transactic
and IR to the work on epsilon-serializability [PL91b, PL91a] and bounded ignorance [KB91]. Such a stu
will shed light on the common denominator of trading transaction properties in a controlled manner -

improved distributed transaction management.

e A more precise characterization of sensitive transactions is imperative. This definition should be a seman
one, and as such it should complement the rather syntactic character of the IR criterion. The differen
between global and local consistency in a distributed database [DE89] are bound to surface when formalizi
the notion of sensitivity. Once this definition is accomplished, one should look into minimizing overhead -
enforcing IR for sensitive transactions when they are executed concurrently with non-sensitive transactio
A clearer understanding of IR itself bears on sensitivity, too. It would be nice to gain deeper insig
regarding the applicability of the two versions of IR presented in Chapters 6 and 7. The difference in t
visibility propagation (i.e., the difference in the transitivity of the follows relation) are the crux for t

matter.
e Applying the O2PC protocol in multidatabases requires additional work. We raise the following points:

— It must be possible to distinguish between local and global transactions in order to let local transacti
benefit from the released locks in case the simple scheme described in the beginning of Chapter 7

employed.

— Some modifications to the lock manager software seem inevitable in order to support enforcing |
However, since the interface to the lock manager and the two-phase locking rule are left intact, the
modifications might be best accommodated by adding a software layer rather than actually modifyi

the code of the lock manager as was outlined in Section 7.4.5.

— As the protocol stands now, transactions that do not wish to access locally committed data that
not globally committed, cannot do so as data items are unlocked once they are locally committed.
adding another operation with the appropriate semantics (like the ‘release” operation of [SGMA89)])
the lock manager interface and use this operation rather than unlocking the data item, these trans:

tions can be accommodated. The penalty 1s changing the interface of the locking manager.

— Facilitating compensation by the local log (see Section 4.1.1) may not be allowed in multidatabas
The alternative is to maintain a separate source of semantic information on the execution to gui
compensation. However, again, because of autonomy concerns, actions of local transactions will
be recorded in such an external log. The more appealing scheme is that of using compensation
federated databases, where a semantic decomposition of transaction is used, and compensation can

relatively independent of the history.



“hapter 9

‘'uture Research

e following list of topics are proposed as research that should augment the work reported in this dissertatic

e topics are divided according to the structure of the dissertation.

1 Single-Transaction Recovery

veral open problems were posed in Chapter 4. In what follows, we add a few more issues:

e Our compensation methodology should be refined by being tested with more example applications. T
experience should be used to reinforce the design methodology sketched in Section 4.2 and provide n
insights in this respect. Sample specific problems are extracting relations R from consistency constrain

and defining compensation based on such relations.

e In our treatment of R-atomicity we left the relation R under-specified to a large extent. There is scope
investigate the relationship between the shape of this relation and the corresponding atomicity notions.
have actually made the first strides in this direction by mentioning reflexive, anti-symmetric, and transit
relations, however more specific results are needed. It might be instructive to compare the notions
recoverability, failure-commutativity, and in particular Herlihy’s invalidation [Her90] with different forms

R-commutativity. Some initial results on relating these notions are reported in [CR91].

e As was mentioned in Section 4.2, exposing uncommitted data should be done in a qualified manner, bas
on the properties of the exposing and exposed transactions. In principle, this observation calls for classifyi
transactions into transactions types, and allowing exposing updates early only among compatible classes

transactions. Work on compatibility of transaction classes can be found in [GM83].

2 Atomicity of Composite Transactions

veral open problems were posed in Section 6.4. In what follows, we add a few more issues:

e The polarized protocol, as well as the protocols of Chapter 7 are given assuming a generic type of access

data items. These protocols should be extended for the read/write case.

e More specific relationships between shapes of global transactions and the applicability of the localizat;
of compensation principle is requisite. A clearer classification of the issue of inter-dependencies amc
subtransactions and its ramifications on relaxed atomicity and IR deserves more attention. In particul

one should investigate when each of the two versions of IR we have presented is applicable.



her the weaker criterion of quast serializability. The authors of [AGMS87] mentioned use of compensati
msactions to cope with exposing updates to local transactions, and commit dependencies and cascading abo
the recovery approach among global transactions.

In [DE8Y], a correctness criterion that is weaker then serializability is given for transaction manageme
multidatabases. The treatment of dependencies among subtransactions in this paper; and the relaxation
1alizability is relevant to our work.

The methods reported in Chapter 6 and 7 are characterized by using semantic information to overcome t
ficulties associated with the distributed commit problem. This characterization also suits ideas of [GMAB™8
ere semantic information and compensatory actions are used to reconcile inconsistencies in a distribut
tabase after a partition.

A different approach for solving the problem atomicity in distributed systems is based on the notion of sing
e transactions [SS90, HS91]. The idea is to circumvent the problems of committing a multi-site transaction
grating data to a single site and executing a local transaction. Mechanisms for reliable message transmissic
> relied upon for these types of schemes.

Independently of our work on establishing relaxed atomicity by semantics-based recovery, [MR91, MKNY

yort on how the traditional redo/undo methods are used to obtain standard atomicity in multidatabases.



sciety for Worldwide Interbank Financial Telecommunications) network, that is documented in [EV87, map
i89]. The essential property of this international banking environment is that the component systems are ¢
1omous. The system employs a semantic transaction (S-transactions) model. In this model, ACID transactic
> used as building blocks in a similar manner to composite transactions by combining them with a control fl
chanism.

Another enhancement to the transaction model is the split-transaction operation [PKH88]. Performing a sp
eration, a transaction modeling an open-ended activity, commits data that will not change. Interactions wi
rer transactions are serialized through the committed data.

Regarding fitting non-compensatable actions into our ideas, we mention that [ELLR90] presents a transacti
ydel which distinguishes among compensatable and not compensatable subtransactions. A mized transacti
defined to be a global transaction where some of its subtransactions are compensatable and some are not.

In [CR90, CRI1], a generic framework, called ACTA, is constructed for the specification and reasoning abc
rariety of transaction models. This framework can be instantiated to express existing models by defining a ri
- of attributes like visibility of effects, delegation of objects among transactional units, etc.

In the spirit of relaxing the classical transaction properties, we mention the work of [KB91]. This wc
roduces a notion of bounded violation of consistency constraints in favor of increased concurrency. The bou
based on the semantics of the constraints. The violation occurs as transactions are allowed to be ignorant
ects of a bounded number of prior transactions. A similar idea is found in the work on epsilon-serializabil
L91b]. There, temporal and bounded inconsistencies among replicas are allowed to be observed by transactio

There are very god reasons for relaxing the classic transaction model. However, in doing so, care should
cen regarding the interactions among the relaxed properties and other properties. Some form of correctne
terion must be defined and retained, given a new model. Most of the formerly mentioned work lacks in t|
pect. Only recently [PL91b, PL91a, KB91], some work has been devoted to correctness issues. The focus
th these papers, however, is on relaxing concurrency control aspects.

Our work on composite transactions is not yet another advanced transaction model. We see our ma
wtribution as the formulation of the correctness criterion (IR) and the corresponding protocols. IR captu
th compensation and retry and deals with executions that are potential in most of the mentioned advanc

nsaction models.

4 Other Related work

ithin the class of serializable executions, some advances that are related to our work have been made recent
[AA90], a locking-based protocol that captures the entire class of conflict serializability is reported. The perf
wce of this protocol is examined in [AAL91]. In [SGMAR8Y], an extension to two-phase locking, called altruis
king, is introduced as means for permitting release of locks held by long-duration transactions before they co
t, while ensuring serializability. Transactions that access released but uncommitted data are said to be runni
the wake of the releasing transaction and must abide by certain locking and committing restrictions in orc
ensure database consistency. The major alternative proposed for recovery in [SGMAR&9] is the maintenar
commit dependencies and executing cascading aborts in case that the releasing transaction is aborted. .
ernative for recovery based on compensation was also mentioned there, but not fully explored. The protoc
[AA90, SGMARY] allow more concurrent executions compared to the 2PL protocol, while ensuring serializal
. The protocols resemble our marking-based protocols in the manner they enforce certain orderings amo
nsactions.

In [AGMSR8T], a variation of altruistic locking was proposed in the context of multidatabases. It was sho

[DE89] that this particular variation of altruistic locking in multidatabases does not ensure serializability, |



rect concurrent execution lies with the concurrency control protocol. Standard read and write operatic
> used in this model. By letting subtransactions execute in parallel, and by preserving the predicates explicit
ncurrency is enhanced, yet correctness is guaranteed.

Another way for enhancing concurrency is the use of semantically-richer operations instead of the primit
ad and write. Having semantically-richer operations provides the means for refining the notion of conflicti
'sus commutative operations [BR87, BR90, BR88, Wei88, Wei89]. That is, it is possible to examine whetl
o operations commute (i.e., do not conflict) and hence can be executed concurrently. By contrast, in t
wventional model, there is not much scope for such considerations since a write operation conflicts with a
1er operation on the same data item. For example, object-oriented databases use abstract data type techniqu
define data objects which support specific and rather complex operations (see, e.g., [ZM90]). In [BR8S],
dition to using semantics of operations, the authors use the structure of complex objects to enhance concurren
ing the concept of a granularity graph to represent the ‘contained-in’ relation, compatibility of operations
termined dynamically, at run-time.

The transaction model we propose (see Section 2.2) can be viewed as a synthesis of the NT/PV model wi
nplex operations and other means for embedding semantics within the model. The work in [Wei88, Wei.
buld be cited for i1ts study of the subtle interplay among recovery and concurrency control issues.

An alternative paradigm of defining non-serializable, yet correct, executions is to refine the transaction bour
es by prescribing breakpoints in transactions and by specifying allowable interleavings at these breakpoi
yn83, FO89]. These specifications are based on semantic knowledge. Our IR criterion can be thought of as
tance of this paradigm.

A major deficiency of most of the formerly mentioned work is that in the quest for alternative correctne

teria, ‘enhancing concurrency’ was emphasized while disregarding transaction failures and recoveries.

3 Advanced Transaction Models

cently, a substantial amount of work has been dedicated to advanced transaction models (refer to [tm-91] fo
vad spectrum of such models). The motivation for this research stems from a practical need to relax the clas
omicity, Consistency, Isolation, and Durability (ACID) properties of transactions. Specific reasons for t
nd were already mentioned in the introduction (e.g., support for long-duration and cooperative transactio
d autonomy concerns for multidatabases). Tt is common to exploit the semantics of data and activities for t
1struction of applications under these models. Our work on relaxed atomicity belongs to this trend.
Common in a few of the papers on advanced transaction models [GMGK*90, KR88, Reu89] and in ¢
n work, is the following abstraction of a complex transaction (we refer to such a transaction as a compos
nsaction). A transaction is a collection of ACID subtransactions, each executing a logically coherent task, a
lectively representing a complex and possibly, long-lived activity. A script (or work-flow) controls the invocat;
these subtransactions. In essence, this abstraction attaches a control flow structure to a set of transactior
its. Typically, in the domain of such composite transactions it is assumed that serializability is ensured only
> subtransaction level. Tt is implicitly assumed, that either a semantic criterion (not serializability) is enforc
the level of entire transactions [KR88, Reu89], or no constraints at all are imposed at this level [GMGK™'9
50, the concepts of semantic atomicity and forward recovery are advocated in the context of these mode
rward recovery is the capability to resume the execution of a failed transaction rather than aborting it. T!
operty can be obtained by using a subtransaction, rather than the entire transaction, as the unit of recovery.
chanism for maintaining persistent linkage among subtransactions, (e.g., reliable queues [BHB90]) is essent
- the purposes of forward recovery.

A prominent example of an actual system that incorporates ideas that are similar to our work is the S W.I.F



not voluntarily abort itself is introduced. Low-level details of how to store reliably the code of compensati
msactions, and record their identity in the log records of the saga’s subtransactions are also discussed there

A major source of influence on our work was the study of multi-level transactions [BSW88, WHBM90, BBGS8
particular we cite [BSW88], where several common ad hoc techniques in transaction management (e.g., ea
ease of locks on pages) are cast in terms of the elegant framework of multi-level transactions.

In [BR87], semantics of operations on abstract data types are used to define recoverability, which is a weal
tion than commutativity. Conflict relations are based on recoverability rather than commutativity. Con
ently, concurrency is enhanced since the potential for conflicts is reduced. When an operation is recoveral
th respect to an uncommitted operation, the former operation can be executed; however a commit dependen
forced between the two operations. This dependency affects the order in which the operations should comn
they both commit. If either operation aborts, the other can still commit, thereby avoiding cascading abor
r instance, an invoked write operation 1s recoverable relative to an uncommitted read operation on the sa
ta item.

Recoverability-based conflict resolution for multi-level transactions is reported in [BR90]. There, simulatic
licate that a recoverability-based multi-level scheme outperforms both single-level 2PL and commutativ
sed multi-level concurrency control.

A noteworthy approach, which can be classified as a simple type of compensation, 1s employed in the XP]
stem [SKPOS88]. There, a notion of failure commutativity is defined for entire transactions (as opposed
lividual operations). Failure commutativity is an adaptation of recoverability [BR87] applied to compl
nsactions. Transactions that are classified as failure commutative can run concurrently without any conflic
ndling the abort of such a transaction is done by a log-based special undo function, which 1s a special case
mpensation as we define it.

This type of work [BR87, BR90, SKPO88] is more conservative than ours as it relies on commit dependenc
d as it narrows the domain of interest to serializable histories. Our work starts with a different premise a
jective, as we explicitly allow and handle situations of exposed dirty data, and offer the extra flexibility
dressing such cases when the need arise. Our results offer several notions that are applicable in the wic

main that includes non-serializable and non-recoverable (as defined in [BHG8T]) histories.

2 Beyond Serializability

iring different stages of our work, we were influenced by studies of correctness criteria other than serializabili

is is evident primarily in Chapter 2, where a flexible model for dealing with non-serializable executions w

wstructed. The impact of the work on alternative correctness criteria is felt also in our treatment of distribut

nsaction management, where serializability is assumed only locally, and not as a global property. In this secti
review the sources of this impact on our work.

In order to deal with enhanced concurrency, beyond the realm of serializable executions, a new approach
1currency control is required. A major source of influence on our work in this respect is the NT/PV mo
scribed in [KS88]. Within this model, alternative correctness notions, other than serializability, can be define
e aspect of the NT/PV model that is of relevance to us are the use of explicit consistency predicates as means
bture the semantics of the database. Explicit input and output predicates over the database state are associat
th top-level transactions as well as with each nested transaction. The input predicate is a pre-condition
nsaction execution and must hold on the state that the transaction reads. The output condition is a po
1dition which the transaction guarantees on the database state at the end of the transaction provided tl
re 18 no concurrency and the database state seen by the transaction satisfies the input condition. Thus,

the standard model, when transactions are run in isolation, they preserve consistency, and responsibility -



“hapter 8

lelated Work

set of seminal papers on transaction and recovery management constitutes the background for this dissertati
LPT75, Gra78, Lin80, Gra81, GM*81, Lam81, HR83]. These articles shaped the attitude and understanding
s author. The comprehensive article [MHLY90] and several other of the ARIES papers [MP91, RM89, Moh!
1tributed to the understanding of the intricate issues of practical transaction management.

Some related work was mentioned in previous chapters, in a precise context. In this chapter, we menti
earch that has impact on our own work, provides alternative approaches, or is related to issues raised in t.
sertation. Work on compensation is reviewed in Section 8.1. Research on correctness notions other th
1alizability, and on advanced transaction models is covered in Section 8.2, and Section 8.3, respectively. .

1er related work 1s included in Section 8.4.

1 Compensation

e idea of compensating transactions as a semantically-rich recovery mechanism is mentioned, or at least referr

in several papers. However, to the best of our knowledge, a formal and comprehensive treatment of the iss
d its ramifications is lacking. Therefore, in light of the growing consensus for the need for compensatc
chanisms, we feel that our contribution in this respect is significant.

Strong motivation for our work can be found in Gray’s early paper [Gra81]. There, compensating transactic
> mentioned informally as ‘post facto’ transactions that are the only means to alter committed effects. G
serves that early exposure of uncommitted data is essential in the realm of long-duration and/or nested trans:
ns. Also, compensation is mentioned as a possible remedy to the limitations of the current transaction mod
other early reference is the DB/DC database system [Bjo73, Dav73], where the idea of semantic undoing
d.

The notion of compensation (countersteps) is mentioned in the context of histories that preserve consisten
thout being serializable in [GM83, FO89]. Tt is noted in [GM83] that running countersteps (to undo ste
es not necessarily return the database to its initial state, an observation on which we elaborate in our wo
e difficulty of designing countersteps is raised as a drawback of compensation, which 1s another problem
dress.

Compensating transactions are also mentioned in the context of a saga, a long-duration transaction that c
broken into a collection of subtransactions that can be interleaved arbitrarily with other transactions [GMS8
saga must execute all its subtransactions, hence compensating transactions are used to amend partial executi
sagas. In a saga, the last forward subtransactions to execute is simply rolled-back in case 1t aborts. Previc

btransactions are compensated-for. In [GMS87] and in [GM83] the idea that a compensating transacti



entire set. Multigranularity locking [GLPT75] would be very beneficial in this case since R1 and R2 requ

locking of the entire set.

In addition to protocols UD/LCUM and LC/UDUM there are a variety of other protocols resulting fre
other isolation properties. For instance, a very simple protocol is one that requires that for each transacti
T, all sites in which T executes are undone with respect to the same transactions, and are locally-committ
with respect to no transaction. There is a trade-off between the protocol’s simplicity and the degree

concurrency it allows. Further details on the other protocols can be found in [KLS90b].

Alternatively to storing the marking sets as data items in the database, they can be stored and manag
externally. A special software module whose responsibility is the scheduling of global transactions wor
maintain the marking sets. This module should implement a concurrency control scheme for accessing t
marking sets. The concurrency control scheme can be customized to take full advantage of the simy
access pattern to the marking sets. Such an architecture might be preferable in the multidatabase conte
since storing the marking sets in the local database might be cumbersome and even prohibited. Typical
in a multidatabase system, at each site, an agent [WV90, VW90] of the global transaction manager
running as an application program, that is, above the local transaction manager. These agents spawn lo
subtransactions, submit requests originating at the global transaction manager for local execution throu
these subtransactions, and participate in the 2PC protocol as the representatives of their sites. The functic

of managing the marking sets can be integrated into these agents.



Implementing UDUM1 may be cheaper in terms of messages. However, it requires augmenting the d:
uctures. Keeping track of the set of execution sites for each transaction is necessary. Also, it must be possil
determine at what site a marking (7}, UD) was observed by T,. For brevity, we do not present here t
cessary augmented data structures. We note, however, that managing these structures does not incur a
ira messages. In the context of implicit discarding, R3 is executed as part of the transaction that enabled t
nsition; that is, the transaction whose access to site ¥ made UDUMI (and hence UDUMO) detectable at t!

C.

3.5 Discussion

veral comments concerning the protocols and their implementation are in order.

e Each of the two protocols is composed out of a permissive clause and a restrictive clause. The permiss
clause of UD/LCUM, for example, allows transactions to access both sites that are marked locally commit
and sites that are unmarked with respect to a particular transaction. The permissive clause of LC/UDU
on the other hand, allows transactions to access both sites that are marked undone and sites that :
unmarked with respect to a particular transaction. Based on our optimistic assumptions that transacti
aborts are the exception rather than the rule, 1t is more likely to have many locally committed markir
and few undone markings. Therefore, it is likely that most of the time a typical transaction would exect
at a set of sites that are either locally committed or unmarked with respect to a set of transactions, a
are undone with respect to none. The dual case (where each ‘locally committed’ is replaced by ‘undo
and vica versa), is less likely to occur. Therefore, it seems that having a permissive clause based on loca
committed markings (as in UD/LCUM) would result in a better protocol. A restrictive clause based
locally committed marks is more likely to cause failures of the IR validation and hence transaction abor

These qualitative assertions, however, must be supported by an experimental study.

e Considering the proposed implementation for both protocols, we note that the marking sets induce extra cc
flicts among otherwise non-conflicting pairs of transactions. The optimistic assumption favors UD/LCTU
in this respect, too. In LC/UDUM, otherwise non conflicting subtransactions are ordered as they exect
R1 and the validity check. In UD/LCUM, on the other hand, R2 and R3 are executed only in the rare ca;
of a transaction abort, hence contention for the markings sets and the total order effect is diminished s
nificantly. Under the optimistic assumption, most of the accesses to the marking sets in UD/LCUM wou
be read accesses due to validation. For the last two reasons, it is likely that UD/LCUM will out-perfo
LC/UDUM under such optimistic circumstances. However, LC/UDUM preserves the stronger IR criteri

and has a very simple marker discarding mechanism.

e Deadlocks may arise due to contention to the local marking sets. For example, a transactions that read-lo
sttemarks.a in order to perform the validation, may be blocked while attempting to access a regular de
item z that is locked by C'T;,. The compensating transaction, on the other hand, may be blocked t
holding a lock on z and attempting to access sitemarks.a. One simple way to avoid such deadlocks is
perform all the accesses to the marking sets as the last access of subtransactions. The only problem w
this simple remedy is that late validation results in wasted efforts in case the check fails. An acceptal
compromise would be to perform the check first and then unlock sitemarks.a. In case it succeeds and t

subtransaction is completed, the validation is repeated as the last action of the subtransaction.

e Another way to reduce contention to the marking sets is to split them into individually lockable entiti

one for each mark. Observe that R3 in both protocols requires locking only of the deleted mark and not t



sure 7.4 illustrates this scenario. The legend for this figure is as follows: coos represents the coordinator -
, cooy represents the coordinator that initiates the marker discarding for 77, and DISCARD represents t
iion of discarding the markers for T5. An arc labeled “m” (“v”) stands for a marker carrying (validation resu
ssage going in the arc direction. An arc labeled “c¢” (“di”) stands for a COMPENSATION-COMPLE"
ISCARD) message going in the arc direction. The scenario in this figure is impossible. This is realized
lowing a cycle of events (1 2 3...6 1) as shown that cannot occur because the events in a distributed histc

m a partial order [Lam78].
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Figure 7.4: Synchronized Discarding

1plicit Discarding.

~use of the fact that global transactions obey the 2PL rule, the knowledge needed to detect UDUMO can
plicitly deduced rather than explicitly disseminated and gathered by extra messages. Namely, we observe tl
> condition in UDUMO is implied by the following:

o UDUMI. For each site in which T} executes, there is a transaction that has also executed at that site, wh

that site was undone with respect to 7.

1ce a site n makes a transition in its markings as specified by UDUMI, there can be no 7; that accesses a s
it was locally-committed with respect to T; and is about to access n.

In essence, the task of synchronizing the discarding of markers is implicitly assigned to a regular transactic
her than managed explicitly by a two-phased message exchange, as in the previous method.

Lemma 14. UDUMI1 implies UDUMO.

Proof. The proof is identical to the proof of Lemma 13, once we replace the synchronized DISCAF

iion of Lemma 13 by the regular transaction that implicitly synchronizes the discarding.



well as site { which is unmarked relative to 7;. Therefore, it is safe to discard the U D marker at site n a
nsider it as UM . We show that enforcing the UD/LCUM rule under this circumstances assures WIR.

For the implementation of UD/LCUM, the marking of sites locally-committed with respect to transactic
redundant. A binary-state marking scheme (i.e., UD and UM) suffices. As far as ensuring WIR, discardi
wrkers can be decoupled from the execution and commit procedure of the transactions that created the marke
e caveat, however, is that presence of out-of-date markers may restrict the accesses of global transactions
es, unnecessarily. On the other hand, discarding the markers too early can cause the violation of the W
terion. Recall that protocol UD/LCUM allows a transaction T to access sites that are locally-committed wi
pect to T as well as sites that are unmarked with respect to T;. Therefore, T; may access a site that is local
mmitted with respect to 7; and a site that was undone with respect to 7; and was prematurely unmarked.

- as correctness goes, the precondition for this problematic transition is formulated as follows. A site n that

done with respect to T} can be unmarked with respect to 7, if:

o UDUMO (undone to unmarked). All Ty that have accessed sites that are locally-committed with respect

T; cannot possibly access n.

ice UDUMO holds, the undone to unmarked with respect to 7T} transition can be made safely. WIR is guarante
following the UD/LCUM rule and discarding U D markers in accord with UDUMO.
The following pseudo-code segments summarize the implementation of UD/LCUM (there is no R1 in t

stocol):

R2. The last operation of CT}y:
sitemarks.n «— sitemarks.n U {(Z;,UD)}
R3. Whenever UDUMO is detected:
sttemarks.k — sitemarks.k — {(T;,UD)}

garding R2, recall that if a site n votes to abort T;, then the abort and the standard undo actions taken loca
> modeled by CT;,,.
Next, we present two marker-discarding techniques, both capitalizing on the opportunity to decouple t

carding from the execution of the marking transaction.

nchronized Discarding.

scarding? markers can be done periodically as a garbage-collection activity, thereby amortizing the associat
nmunication cost over a set of transactions. Thus, it is an activity that may be relegated to light load perio
riodically, a coordinator initiates a markers discarding message exchange by disseminating initiation messag
a set of sites. The sites respond by including the identity of all global transactions whose local compensati
btransactions completed successfully (this message is referred to as COMPENSATION-COMPLETE messag
arkers can be discarded for global transactions all of whose compensations have completed as evidenced by t
yort from all the concerned sites. Upon receipt of this report, the coordinator sends a second round of messag
the same sites, notifying them which markers can be discarded (this message is referred to as a DISCAT
ssage). The two-phase message exchange creates a synchronization point which is essential for the followi
tch of correctness argument.

Lemma 13. Synchronized discarding guarantees UDUMO.

Proof. The proofis by contradiction. Assume that there exists a transaction 75 that accesses a site n tl

locally-committed with respect to 7] and a site m after the undone marker of 77 has been discarded at site

2This discarding method was designed by Nandit R. Soparkar during discussions with him on the subject. In particular,
zant proof technique is due to him, and first appears in [SKS91].



12. The last operation of C'Tjy,:
sitemarks.n — sitemarks.n — {(T;, LC)}

13. After receiving a DECISION message for T;:
f DECISION is COMMIT then sitemarks.n — sitemarks.n — {(T;, LC)}

serve that R3 is required only to discard the LC mark and reclaim its space. It has no consequence regardi

, since T; commits (this is a critical difference when comparing with protocol UD/LCUM).

Reasoning that protocol LC/UDUM is a correct implementation of the isolation property S1 follows from t
xt two lemmata.

Lemma 11. IfT, accesses a site n while it is locally commatted with respect 15, then T, — Ty at SC
thout having C'Ty, on that path.

Proof. For the IR-validation of Ty, a read access to sitemarks.n i1s generated on Ty behalf. Since t
cesses of T, and T, to sitemarks.n conflict, and since the history at n is serializable, T}, and T;, must
lered. Since T accesses n while it is locally committed with respect to 7j, it must be that T;, — Ti, at SC
d CTj, been on that path, the LC marker would have been removed (by R2).

Lemma 12. IfT; accesses a site n while it is unmarked with respect T, 1 has erecuted at n not precec
Ts, and T; finally aborts, then C'T;, — Ty at SG,.

Proof. Similarly to the previous proof, since T;, CT; and T} all conflict when accessing sitemarks.n a
ce T; — CT} by definition, there are two possible orders among the three transactions: Tj, — T, — CT},
ie OF 15y — CTp — Ty at SG. Had the first path been a valid one, then by R1, n would have been mark
ally committed with respect to 7.

To complete the proof of correctness of the implementation all we need to make sure is that the coordinaf
forces the rule form of LC/UDUM, when it performs the TR-validation.

3.4 Protocol UD/LCUM

e main challenge in devising an implementation for UD/LCUM is the timing of the transition from undc
unmarked with respect to T; (the arc labeled UDUM in Figure 7.3). Unfortunately, undone markers must
bt forever in order to enforce IR using UD/LCUM. To see why consider the following paths: Tj,, — Tipn a
— T};. By the transitivity of follows, T; follows T;. IR is violated once the path CT;, — T, is consider:
llowing the UD/LCUM rule, Ts; would be prohibited from accessing site n (thereby forming the problema
th CT}j, — T,) at any future point, provided that the marker (j,UD) at site n is maintained forever. Tt
the UDUM transition in Figure 7.3 never occurs. Discarding markers, however, is crucial for both sp:
1siderations as well as efficient execution of the IR-validation. Even in light of the optimistic assumption tl
orts — and therefore U/ D markers — are rare, we must provide a rule for discarding U D markers for reasc
efficiency of the protocol. Interestingly, this problem does not arise in the LC/UDUM protocol.

In what follows, we describe a UD/LCUM protocol where markers are discarded, however, a weaker notion

is guaranteed. The protocol we present guarantees the following:

o Weak Isolation of Recoveries (WIR). No transaction is executed at a site that is locally committed wi

respect to another transaction as well as at a site that is undone with respect to that other transaction.

[R is the incarnation of IR of Chapter 6 in the current context, since as in Chapter 6, the follows relation

t transitive. Observe that the above execution is WIR, since T accesses site n that is undone relative to



In contrast to the polarized protocol, the above protocols are based on marking sites, rather than marki

ta items. We say that a transaction accesses a site when it accesses (reads or writes) a data item residi
that site. A site is marked with respect to a transaction only if the transaction has accessed that site. T
tocols are overly restrictive since data items that are not accessed by T; at all, and just reside in a site tl
accessed by T; are nevertheless considered as marked with respect to 7;. An improvement can be devised
wrking on a data item basis and allowing propagation of markers only within a single site. Thus, discardi
wrkers would have remained a local action, yet granularity of markers would have been finer.

There is a certain similarity between these protocols and the altruistic locking protocol [SGMAS89]. In ¢
e, however, an aborted global transaction creates two wakes (see [SGMAR89]): an undone wake and a local
nmitted wake. Similarly to the way altruistic locking restricts entering and leaving a wake, UD/LCUM a
/UDUM restrict accessing both wakes.

In the context of a multidatabase environment, it 1s very important to notice that both protocols do 1
pose any restrictions on local transactions. Only global transactions are subject to the restrictions posed

> protocols. Therefore, the autonomy of local database systems is not affected by these protocols.

3.2 Validating IR

> introduce data structures for maintaining the markings. For each site, n, the protocol maintains the

emarks.n defined as follows:

j, LC) € sitemarks.n if f site n 1s locally committed with respect to T}
, UD)€ sitemarks.n if f site n 1s undone with respect to 7}

ese marking sets are updated to reflect the transitions described above, and are read by global transactions
ler to ascertain whether execution at a particular site complies with the relevant protocol. The fact that a s
nnmarked with respect to a transaction is deduced implicitly from the lack of any marking in the correspondi
wrking set. In order to preserve the semantics of the sets as defined above, concurrent accesses to the sets mn
controlled. One option is to designate special entities for storing these sets in the underlying local databas
part of the database, the sets are accessed by transactions subject to the 2PL rule. Some possible optimizatic
> discussed in Section 7.4.5.

We enforce IR in the O2PC context by using a validation method rather then by the incremental method tl
s used in Chapter 6. That is, checking whether the accesses of a transaction violate the IR criterion is done
> coordinator after all the accesses have already been performed. The marking state of a site, as represented
> local sitemarks set, is piggy-backed with the acknowledgement /results of a completed operation. Upon recei
the markers, the coordinator validates the execution by the relevant rule (i.e., LC/UDUM, or UD/LCUN
ice the marking is on a site basis and since accesses to the marking sets are subject to the 2PL rule, sendi

> marking sets should be done only once for each subtransaction.

3.3 Protocol LC/UDUM

r the implementation of LC/UDUM, the marking of sites undone with respect to transactions is actually redu
nt, since the protocol allows transactions to access both sites that are undone and unmarked with respect
other transaction. Hence, we can simplify matters, avoid the undone marking altogether, and resort to a bina
te marking scheme (i.e., LC' and UM). The following pseudo-code segments summarize the implementat;i

LC/UMUD:

11. After site n responds to the VOTE-REQ message sent for Tj:

f n votes to commit 7; then sitemarks.n — sitemarks.n U {(Z;, LC)}



Vote:Commit Yote:Abort

UDUM

Decision:Commit

Loca.lly— Decision: Abort
ommitted

Figure 7.3: Transitions in the marking of a site

3.1 Marking Sites

e basic building block for implementing protocols that are based on the isolation properties is a simple marki
sites. With respect to a specific global transaction Tj, a site is either unmarked (UM), or marked. Then, a s
marked locally-committed (LC) with respect to T;, or marked undone (UD) with respect to T;. Initially, a s
unmarked with respect to a transaction 7;. A site is made locally-committed with respect to 7 once it vo
commit 7} in response to a VOTE-REQ message. On the other hand, if the site votes to abort T}, the site
vde undone with respect to 7;. A site ceases to be locally-committed with respect to 7; and becomes unmark
th respect to that transaction whenever the site receives the decision message from the 2PC coordinator
mmit 7;. If the decision is to abort 7j, then the site becomes undone with respect to 7;. At some poi
ite ceases being undone with respect to an aborted transaction and becomes unmarked with respect to tl
msaction. We postpone the discussion concerning this transition to Section 6.3.2. It is important to note tl
these transitions in the marking are triggered either by local events, or by messages that are already part
> 2PC protocol. Figure 7.3 summarizes the transitions in the markings.

Using this marking scheme, we devise protocols that ensure that the isolation properties are satisfied. In
vely, the protocol should prevent situations where a global transaction accesses a site that is locally-committ
th respect to another transaction, as well as a site that is undone with respect to that other transaction, sir
h a situation can result in a non IR history. Protocols LC/UDUM and UD/LCUM correspond to the isolati
operties S1 and S2, respectively. Each of the two protocols can be summarized by a rule that restricts the si

slobal transaction 75 may access:

e LC/UDUM. Let T, execute at a site that is marked with respect to a 7;. Then for each such Tj, either ¢
of the following conditions hold:

— all sites in which T executes are locally-committed with respect to 7.

— all sites in which T executes are either undone or unmarked with respect to 7j;.

e UD/LCUM. Let T, execute at a site that is marked with respect to a 7;. Then for each such Tj, either ¢
of the following conditions hold:

— all sites in which 7 executes are undone with respect to 7.

— all sites in which T executes are either locally-committed or unmarked with respect to 7.



Starting with the premise that T follows C'T}., and using a symmetric argument, C2 is similarly proven.
Lemma 9 is pictorially illustrated in figure 7.2 which describes both the global and local SGs. The figu
respond to a history where the second disjuncts in the second conjuncts of C1 and C2 hold.

Next, we introduce two properties of global SGs that are used to ‘isolate’ non-atomic executions, there

suring IR. Each property is presented as a formal assertion. We first introduce four predicates that depend

> transaction identifiers j and s:
o Aljs) At any SG, where T, appears, Tj, — CTjq4 — Tiq.
o A2(js). At any SG, where T, appears, Tj, — T, without having CT;, on that path.

o A3(j,s). At any SG, where both T, and T; appear, if there is a local path Tj, — Ts,, then the ps
Tia — CTjq — Tiq is in SG,.

o A4(js) At any SG, where both T, and T; appear, if there is a local path Tj, — Ts,, then the ps
Tiqa — Tsq is in SG, without having C'T}, on that path.

Using these predicates we introduce two isolation properties:
o SI: (VT;,T, : T; — T, in the global SG : A2V A3)

o 52 (VT;,T, : T; — T, in the global SG : A1V A4)
Lemma 10. The following assertions hold:

e (3T, : C1(j)) = —S1; and

o (3T, : C2(j)) = —~S2.

Proof. Consider the path CT;. — T}, in SG. whose existence is guaranteed by the first conjunct of (
cause of this path and since CT}. is always serialized after 7}., we have that T; — T} in the global SG. By t
ond conjunct of C2, there exists an SG4 where either T3 — T4 without having C'T;4 on that path, or the
no path between 7; and Tj in SG4. In both cases, the negation of A1(j, k) is implied. Considering the pe
e — The in SG. again, we observe that the negation of A4(j, k) holds. Therefore, we have demonstrated t!
T3 and T}, where T; — T}, in the global SG, both =A1 and —A4 hold.

By a symmetric argument the second part of the lemma follows.

Theorem 6. If either one of the isolation properties S1 or S2 hold, then the execution is IR.

Proof. Let ¢ be either 1 or 2, then:

The history is not IR,
= {Lemma9 }

(3T - C1(5) A C2(5))
= { weakening }

(375 - C1(5) A (3T C2(7))
= { Lemma 10 }

he counter positive form of this implication i1s the theorem statement.

3 Protocols for Isolation of Recoveries

this section, we present two protocols that ensure IR when the O2PC protocol is employed. As such, t
>tocols actually complement the O2PC protocol. The protocols implement the isolation properties. We str

- protocols whose execution requires no messages other than the standard 2PC messages.
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Figure 7.2: Tllustrating Lemma 9 by the local SGs (left) and global SG (right)

o A transaction 7; follows a forward transaction 7 in a history, if T; — T} is a path in the corresponding S

and there is no compensating subtransaction CTj, on that path.

llowing a compensating subtransaction is transitive. Following a forward transaction is transitive, except wh
orresponding compensating subtransaction appears in the path.
Lemma 9. If an execution under O2PC is not IR, then there exists a global transaction T; such that:

o C1(j): There exists a global transaction T; (i # j) such that Tj, — T;q at some SG4, without having C']
on that path, and at some other SGy where T; appears, either C'Ty, — T, or there is no local path betwe
T; and T; in SGy; and

o C2(j): There exists a global transaction Ty, (k # j) such that CT;, — Ty, at some SG., and at some otl
SGq where Ty, appears, either T;q4 — Trq without having CTjq on that path, or there is no local path betwe
T; and Ty in SGg.

Proof. For the purpose of the following proof, we need to define shortest path between two transaction noc
a global SG. Let us segment paths in the global SG into local paths. The shortest path between two transacti
des in the global SG, is the global path connecting these two nodes with the least number of segments (t
ortest path may not be unique).

Since the execution is not IR, there exist 7, and T}, such that T follows T}, as well as T} follows CTj,, -
ne site n. Consider the shortest path 7; — T}, where there is no compensating subtransaction C7j,, on tl
th. Such a path exists by the definition of 7, follows 7;. Let the first segment of this path be in SG,, a
> second in SGy. Furthermore, let T; be the last global transaction on the first segment and the first one
= second segment (see the left figure in Figure 7.2 for illustration). We have that T;, — Tj,, without havi
;o on that path, thereby satisfying the first conjunct of C1. Consider the next site b on that shortest pa
CT;y — T3y, then the first disjunct in the second conjunct of C1 holds. If such a path does not exist, th

claim that there is no path between 7} and 7} in SGj, and hence the second disjunct of the conjunct of
Ids. First, by Lemma 8, it cannot be that Tj; — Tj3, since a cycle would have formed in the global SG (sir
, — Tia in SG,). Second, had Tjp — Ty, the path T; — T, with a first segment at SG, would not have be
> shortest path between T and 7.



We give a formal definition of IR in the context of O2PC.

o We show that if an execution is not IR then certain conditions are implied (Lemma 9).

We introduce properties of SGs, called ¢solation properties whose negation is implied by the above conditic
(Lemma 10).

e We conclude in Theorem 6 that by ensuring the isolation properties, IR histories are guaranteed.

As pointed out in Section 5.6, there are differences in the underlying transaction models used in Chapter:
d 7. Consequently, there are distinctions in the presentation of the IR criterion, even though the basic notion
ntical. In this chapter, the follows relation is defined in terms of paths in serialization graphs (SGs) (which :
nilar to the partial orders introduced by composite executions in Chapter 6). Our SGs are a slightly extend
-sion of the traditional SGs, since they include nodes for subtransactions that aborted during the execution
> O2PC protocol. Inclusion of these subtransactions in the SGs is crucial for the definition of IR. As in t
ndard treatment of SGs, subtransactions that are aborted earlier are not accounted for in the SGs. To me
> presentation uniform, we use the syntactic device of modeling a subtransaction that aborts during the O21
>tocol as a committed subtransaction followed immediately by the corresponding compensating subtransactic
ctually, an abort followed by a standard roll-back is a special case of compensation, where no transaction hz:
wd from the compensated-for transaction [KLS90a]). Using this syntactic transformation, we need not 1
larities to define IR. Following are the formal definitions and results.

Let 7 be a set of global transactions, and let C7, be the set of the corresponding compensating subtra
ions at site a. The local serialization graph for site a for a complete local history' H, is a directed gra
fo(Ha)=(Vy, Eq). The set of nodes V,, consists of a subset of transactions in 7 U CT 4. The set of edges
isists of all A — B, A/ B € 7 UCT,, such that one of A’s operations precedes and conflicts with one of !
erations in H,.

A global 5G is an SG that corresponds to a history at more than one site. Given a set of local SGs, ez
resented as SGy = (Va, Ey), the corresponding global SG is defined as SGyiopar = (U Vo, U Ey). Observe t!
h compensating subtransaction is assigned a separate node in the global SG (in accord with the localizati
compensation principle).

Lemma 8. A global SG that corresponds to a history under the O2PC protocol is acyclic.

Proof. The O2PC protocol assumes that local histories are serializable, and hence local SGs are acycl
e presence of compensating subtransactions cannot introduce cycles, since each compensating subtransaction
resented as a separate node. As was already mentioned, the O2PC protocol preserves synchronization poin
d hence each global transaction still follows the 2PL rule, globally. Therefore, the global SG is acyclic.

Before we proceed, we establish some notation. The notation A — B is used to denote that there is a direct
th (of arbitrary length) between the two transaction nodes in a given SG. When specifying a local path, the lo
i it belongs to, is also specified. A global transaction 7; that requires access to data located at sites 1,2, ...
submitted for execution as a collection of local subtransactions 131, T;o, . .., Tz, where T;; is executed at site
nilarly, C'T}; is the compensating subtransaction at site j that corresponds to the forward subtransaction 7

In the definition of follows, we distinguish between following a compensating subtransaction, and follow:

orward transaction:

o A transaction 7; follows a compensating subtransaction C'7Tj, in a history, if CT;, — T} is a path in t

corresponding SG.

1See [BHG87] for precise definitions of complete histories.



Under certain circumstances, the O2PC scheme can be employed as it was presented so far, without a
ther adjustments. If transactions are not sensitive, and hence the notion of IR is not relevant for them, O21
1 be employed right away.

Another simple way of taking advantage of the O2PC idea without tackling correctness issues is to allow o
al transactions to benefit from the fact that global transactions release their locks early. That is, a glol
msaction releases its locks and becomes locally-committed only for the purposes of letting local transactic
sceed; other global transactions are still delayed. This simple version of the O2PC protocol reduces the leng

time local transactions are delayed due to global transactions.

1 O2PC in Real-Time DTM Systems

this section we briefly mention several relevant aspects of the work reported in [SLKS91], where compensati
used in the context of a real-time DTM system.

The harsh consequences of enforcing atomicity in DTM systems cannot be tolerated in typical real-ti
plications. Under light system loads and no failures, using 2PC is acceptable. However, when those assumptic
not hold, an alternative is needed. An adaptive approach is taken in [SLKS91] that permits a site to dynamica
itch to the less costly O2PC under situations that demand it, such as a transient excessive load. The decisi
switch between the two commit protocols can be taken autonomously at any site. Switching between t
stocols exploits a trade-off between the cost of commitment and the obtained degree of atomicity. Name
v-cost protocol and relaxed atomicity under O2PC, and high-cost protocol and standard atomicity under 2P

As was already pointed out, there is more overhead to compensation than standard recovery. The feature
mpensation that is crucial to its applicability to real-time systems is that undo operations must be perform
mediately, while compensatory action may be deferred. This allows recovery work to be performed duri
riods of light system load despite the expectation that transaction failures (and thus recovery) will occ
proportionately more during times of high system load. Furthermore, it is not necessary for a failed transacti
to hold data pending the execution of CT. Rather, a failed T' can release data that is later (re)acquired
. Since we allow standard 2PC to be used as the norm for transaction commitment, with compensation-bas
hniques invoked only when time-constraints require it, the overhead is further reduced.

To substantiate the above claims, an example adapted from the real-time systems literature was worked o
e example is concerned with a tracking system for mobile targets [Son88, Koo90]. The system is dispers
er several processing sites that manage target-sensors, target-tracking weapons, and store data pertaining
> readings, positions, etc. in local database systems. Periodically, the sensors update the data regarding t
-gets as sensed at each local site, and this data 1s also sent to a specific coordinator site. The coordinator s
eives such track data from several sites and correlates the information gathered to create the global tracki
ormation. In the example, compensation is used to amend the positioning of the weapon system after
oneous reading is recorded at one of the stations (say, due to a signal-processing error). Compensation
rformed by positioning the weapon system based on extrapolation of its past trajectory since the local site dc

t know the precise correct current position for it.

2 Isolation of Recoveries under the O2PC Protocol

e main result of this section is the derivation of a sufficient condition for obtaining the IR criterion under t

PC protocol. The strategy in obtaining the main result is summarized as follows:



Section 7.4.



> one hand, the early release of locks solves the problems of blocking and the local commitment keeps t
es autonomous. On the other hand, the uncoordinated commitment of updates may violate the standa
-or-nothing atomicity guarantee of a transaction, if at least one of the sites votes to abort it.

As was outlined above, we use compensating transactions; in conjunction with the O2PC protocol, as t
ans to ensure transaction atomicity despite of the uncoordinated commitment of updates at different sit
ter voting to commit T, a site still carries on with the second phase of the regular 2PC protocol (despite havi
eased locks held by T). If the site receives a decision message from the coordinator to abort 7', then it invol
> corresponding compensating transaction. Since 1t is more likely that the decision would be to commit 7', t
in by the early release of locks should outweigh the overhead associated with those cases requiring compensati
- I". The message transfer in the O2PC protocol between the coordinator and a participating site is depict

torially in Figure 7.1.

Coordinator: Participant site:

VOTE-REQ

VOTE Vote: Commit/Abort
Decision:
Commit/Abort DECISION
Committed /Compensated-for

Figure 7.1: A schematic view of the O2PC protocol

The execution of a compensating transaction requires access to the log and other information stored on stal
rage (see Section 4.1), thus further increasing the cost associated with this type of transaction. For the
wsons, we limit the usage of compensating transactions in our context, for relatively rare pessimistic cases
lures of global transactions.

In the context of the O2PC protocol, compensation is employed as follows. If T} is a global transactic
oy ..., Oy are local compensating subtransactions, one for each site where T; was executed. Fach compens:
y subtransaction is submitted for execution at a site just like any other local transaction, and hence it is subje
the local concurrency control. Compensating subtransactions are treated as local transactions rather than
btransactions of global transactions with respect to locking; that is, they also follow strict 2PL locally. The
e, at each site, the local execution over local transactions, subtransactions, and compensating subtransactic
serializable.

A distinctive feature of the O2PC protocol is that it makes no changes to the message transfer pattern
> structure of the standard 2PC protocol. Even when O2PC is augmented to preserve IR (in Section 7
> structure of 2PC is preserved. The changes are in local reactions to the 2PC messages. Therefore, O2]
es not contradict standardization efforts of the 2PC protocol. Moreover, there is a very strong compatibil
tween 2PC and its optimistic variant. Transactions employing the former can be executed concurrently wi
msactions obeying the latter, and still global transactions follow 2PL globally. This guarantee follows frc
> fact that O2PC preserves the synchronization points of subtransactions. Furthermore, even for the sa
bal transaction, some of the constituent subtransactions may be engaged in O2PC and some in 2PC. Th

vantageous properties are exploited in the work reported in Section 7.2 [SLKS91], and in the ideas describ
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different method for achieving relaxed atomicity in a DTM environment is presented in this chapter. T
thod is based on the optimistic 2PC (O2PC) protocol. Formal definition of the IR criterion in this context
ren in Section 7.3 and corresponding protocols are given in Section 7.4.

In the standard 2PC protocol, a multi-site transaction is associated with a coordinator that initiates t
stocol by sending a VOTE-REQ message (also referred to as PREPARE message) to all participating sit
on receipt of this message, a participating site votes (by sending a VOTE message back to the coordinat.
her to commit the particular transaction or to abort it. Based on these votes, the coordinator decides whetl
commit or abort the transaction. Only if all the votes are to commit then the transaction is to be committ
llowing this, the coordinator transmits its DECISION message to the participating sites.

Typically, in DTM systems global serializability is obtained using the synchronization points techniques
ibed in Section 5.4.3 that combines the 2PC protocol with a global 2PL discipline. For the well known reasc
avoiding cascading aborts, and use of state-based recovery, the exclusive (i.e., write) locks are released o1
er the DECISION message is received locally. Thus, a strict version of 2PL is used. It is possible to rele:
> shared (i.e., read) locks as soon as the VOTE-REQ message is received.

Holding the locks until a DECISION message is received, which is the cause of blocking, is necessary o
the transaction at hand has to be aborted. Our revised protocol is based on the optimistic assumption tl
most cases the protocol terminates successfully (i.e., the transaction commits) and therefore the locks can
eased earlier. This can dramatically reduce waiting due to data contention, thereby improving the performar
the system. Such an assumption is valid in most practical distributed environments. Furthermore, since t
mmit protocol is initiated only when the transaction at hand has already obtained all 1ts locks and complet
its operations, its failure is very unlikely. Namely, the transaction cannot participate in a deadlock, nor ¢
fail because if a logical error. It can fail only because of site or communication faults, which usually are rat!
requent. The validity of the optimistic assumption is orthogonal to the protocol correctness. However, if t
sumption is unfounded, the overhead incurred by the protocol is likely to outweight its benefits.

The optimistic 2PC (O2PC) protocol is a slightly modified version of the 2PC protocol. The same messa
change is carried out as in the standard protocol. If a site votes to abort 7;, then as in the standard protoc
abort vote is sent back to the coordinator, and the locks held by the transaction are released as soon as t
msaction is locally undone (rolled-back). However, if a site votes to commit T, all locks held by T; are relea.
once, without waiting for the coordinator’s final commat or abort message. In this case, we say that T;
ally-commutted at that particular site. Observe that a global 2PL discipline is preserved, even under the ea
k release provision of the O2PC protocol.

The uncoordinated local commitment resulting in the early release of locks is the crux of the protocol. |



follows for a more conservative transaction model is given in Chapter 7. There, in spite of the transitivi
>pagation of effects is controlled by dealing with sites as the unit of marking.

Another question that should arise concerns an execution where T35 is serialized in between T, and T5s
sure 6.1 (b). By the definition, this execution turns out to be IR. (This execution is not IR, however, under t
finition of follows given in Chapter 7). This should not be surprising once considering the following reasoni
> made a modeling decision that if such a T5» propagates the effects of T15 to Tss, then it should have beer
btransaction of 77 itself, and not a subtransaction of a different transaction. That is, our transactions cre:
heres of atomicity and consistency. All subtransactions that are related to a single activity in terms of causali
»micity and consistency should be grouped as a single composite transaction [tm-91, GMGK*90]. If T3 i
»arate transaction, then the sensitivity of 75 is not an issue any more, once T35 executed in between Tis a

D .

5 When Actions Are Not Semantically-Recoverable

e concept of relaxed atomicity relies on the methods of compensation and retry. As was mentioned earli
sse methods are not applicable universally, and are based on semantics of the applications at hand. For instan
nsactions involving real actions [Gra81] (e.g., firing a missile or dispensing cash) may not be compensatak
e adjustment for transactions involving non-compensatable subtransactions is to retain their locks and del
| actions until a commit decision message is received from the coordinator (as in standard two-phase comm
all sites performing these actions. All other sites running compensatable subtransactions on behalf of the sa
nsaction can still benefit from the early lock release of our modified commit protocol.

A general way of integrating arbitrary subtransactions (which may not be suitable for compensation or rets
o our model, is described next. FEach subtransaction can be divided into three portions: a compensatal
rtion (CP), a pivot portion (PP), and a retriable portion (RP). The execution of such a subtransaction wo
sceed as follows: The CP is executed first, and following its termination all locks it has acquired are releas
once. The PP is executed second and its termination is coordinated by a 2PC protocol among all the pive
the subtransactions of the same transaction. While waiting for the 2PC decision message to arrive, the 1
initiated. Locks acquired by the PP or the RP are released only after a decision message is received local
the decision is to abort, then the RP is aborted and both RP and PP are undone using standard recove
ce their locks have not been released. Additionally, the CP is compensated-for. If, however, the decision
commit, then PP’s locks are released, and if RP happens to have failed it is re-executed until it succeeds.
advantage of this method is that because of the very early release of locks by the CP, synchronization poi

> not preserved, and thus 2PL property of the global transaction is lost.



ction 2.1 is used and hence executions are eventually semantically atomic. The following propositions assus
semantically atomic execution E| that is generated under the polarized protocol. The lemmata are dire
nsequence of the rules used to present the protocol.

Lemma 3. If ¢; follows s? because of a conflict on = at a certain site, and at that site T;’s markers he
t been discarded by the time q; accesses z, then (i,0) € mfb(q;).

Lemma 4. Ifg; ij, then mfb(q;) C mfb(p;).

Lemma 5. A marker (i,b) is discarded at site, only if there is no active transaction Tj such that (i,b)
fb(o;) at any other site.

Lemma 6. All markers in the follow set of a subtransaction are of the same polarity.

Lemma 7. Ifo; follows p! because of a conflict on a data item, and T} ’s fate is b, then (i,b) € mfb(o;).
Proof. Let o; and p; conflict on z. Since 7; has a unanimous fate, a recovery subtransaction that correspon
p; must exist in the execution. Thus, the marker (¢,6) € access(x) is discarded by the recovery subtransacti
it corresponds to p;. Therefore, since o; follows 23 o; must precede this recovery subtransaction, and her
= marker would not be removed prior to 0;’s access to z. Consequently, (i,b) € mfb(o;).

Theorem 5. The polarized protocol ensures that executions isolate recoveries.

Proof. The proof is by contradiction. We assume that p; follows s? and t?, and derive a contradiction.
- definition of the ‘follows’ relation, there are subtransactions g¢; (o;) that follow s? (t?) because of confli
data items = (y) at site 1 (site 2), and g; EN p; (0 EN p;). (One of ¢;,0; may be p; itself). By assumptic
> execution is SA, and hence T; has a unanimous fate b or b. Without loss of generality it may be assum
1t the final fate of 7} is b (the dual case is symmetric). By Lemma 7, (i,b) € mfb(o;). The proof proceeds
rsidering two cases. First, we assume that site 1 had already discarded the marker (4, b) when ¢; accessed x.
mma 5, the (¢,b) marker could have been discarded only if (i,b) & mfb(o;) at site 2. However, (i,b) € mfb(o
contradiction is derived. In the second case, we assume that the marker (¢,6) was not discarded before
cessed # at site S;. Then, by Lemma 3, (4,b) € mfb(q;), and by Lemma 4, (i,b) € mfb(p;). However, sit
b) € mfb(o;), by Lemma 4, (i,b) € mfb(p;), too. This contradicts Lemma 6.

4 Discussion

few comments concerning several modeling decisions that have been made in this chapter are in order. T
ation follows is not transitive, and this is a critical point. Intuitively, this relation models the propagati
the effects of a subtransaction ¢; on subtransactions of other transactions. Such propagation is allowed o1
thin a single transaction, one of whose subtransactions came immediately after ¢;. The reasoning behind t
cision to limit this propagation is that we wanted to confine the cascading effects of a subtransaction somehc
sume that a subtransaction p; commits, and is followed by other subtransactions transitively. If 7; is abort

need to compensate for p;, and also we need to compensate for the uncontrollable cascading effects of |
is very much resembles cascading aborts, which the method of compensation is set to prevent. In particul
nsider the following <z orderings: t; <g ¢; where both subtransactions execute at the same site, and ¢; <g |
ere py, executes at a different site. Had follows been transitive, p; would have followed ¢;. Such uncontrollal
pagation to remote sites is troublesome.

Propagation of effects is modeled and tracked by the propagation of markers in the protocol. Making follc
nsitive means that a marker (¢,6) would have to be assigned to access(z) even if p; does not access .
problematic to discard such arbitrarily scattered markers. Currently we maintain the invariant that (7, b)
cess(x) only if a subtransaction of T; accesses #. This invariant enables to discard markers of a particu

nsaction by local actions at all sites where the transaction was executed. A different, transitive, definiti



necessarily. Therefore, it is necessary to discard markers.

Discarding markers should be done carefully, since discarding a marker too early can lead to incorrectly passi
> condition of the second and third rules, thereby generating a non-IR execution. Such an undesirable scena
1 arise if a subtransaction p; follows q?, and accesses a data item whose (i, 13) marker was removed premature

far as correctness goes, the precondition for discarding markers is formulated as follows.

A marker (¢, b) of a transaction 7; (with a unanimous fate), can be discarded if all T; whose subtrans-

actions follow ¢? are no longer active.

A transaction is active until it can no longer initiate new subtransactions at new sites (i.e., until the coordinal
tiates the commit protocol for that transaction). Once T; becomes inactive, subtransactions p; can no lon;
1se the problem outlined above. Implementing this transition requires cooperation among sites and hence exf
nmunication. It should be emphasized, however, that this additional message exchange is needed only for t
rposes of discarding markers, and it can be decoupled from the execution and commit procedure of a particu
msaction. Specifically, discarding markers can be done periodically, as a garbage collection activity, there
1ortizing the communication cost over a set of transactions.

The purpose of the following message exchange is to discard markers of transactions executed at a set
rticipating sites and coordinated by a coordinator. This message exchange 1s executed periodically, and not -

ry transaction separately. The additional rules for this exchange are described next.

e At a participant as a response for a request to DISCARD from the coordinator. For transactions
whose local recovery subtransactions have terminated successfully with polarity b:
if —(3 local subtransaction p; : (i,b) € mfb(p;))
then send SAFE ack message to coordinator

else send UNSAFE ack message to coordinator

e At the coordinator. When the coordinator has received SAF
UNSAFE acks from all participants of 7; that executed recovery subtransactions for 7;:
if all the participants sent a SAFE ack

then notify all participants to discard 7;’s markers

Having received all the SAFE/UNSAFE acks for a transaction 7j, the coordinator has all the informati
cded to determine whether it is safe to discard 7;’s markers. First, the coordinator is certain that 7; has
animous fate, since the successful termination of all of 7;’s recovery subtransactions was acknowledged. It is s:
discard T;’s markers provided that there is no transaction 7, whose subtransaction follows a subtransacti
T; with a polarity opposite to the final fate of 7;. The existence or absence of such a transaction 7} is encod
the SAFE/UNSAFE ack messages.

It is assumed that mfb sets of subtransactions are maintained as long as the corresponding transaction
iive. Finally, it should be noted that discarding markers at a site need not be performed as a synchronc
sion. By the time a site is notified that it can discard markers, their presence or absence is of no consequen

atsoever.

3.3 Correctness

> are 1n position now to state several results concerning the protocol. The polarized protocol 1s a react:
orithm that reacts to events in the course of processing a multi-site transaction. The execution of transactic
governed by the protocol, and hence only a certain class of executions is allowed under the polarized protoc

it objective is to show that these executions isolate recoveries. We assume that the commit protocol outlined



e For each subtransaction p; the protocol maintains the following set:
mfb(p;), the set of all markers (i, b) such that p; follows? ¢7. (The name mfb(p;) should be read as “mark
followed by p;”).

tially, for all data items x, and for all subtransactions p;, access(x) = 0 and mfb(p;) = 0, respectively.

Regarding the first rule below, the set subtraction is effective only for a successful recovery subtransacti
1t removes the marker of its corresponding forward subtransaction. The second rule propagates markers or
cases of conflicts among subtransactions. Dependency orderings may not be based on data conflicts, but si
e part in ‘follows’ chains. The third rule takes care to reflect these dependency orderings in the mfb se
ice dependency orderings are inter-site, this rule implicitly assumes the communication needed for the remc

rocatlon.

1. Marking. Whenever a forward or a recovery subtransaction s; terminates with polarity b, then for all de

items x accessed by s;:
access(x) = (access(x) — {(i,0)}) U {(i,b)}

2. Access and Propagation. Whenever a subtransaction p; requests access to data item x:
if (35: (4,b) € mfb(p;) A (j,b) € access(x))
then reject p;’s request
else mfb(p;) := mfb(p;) Uaccess(x)
3. Propagation by Dependence. Whenever a subtransaction p; requests to invoke a subtransaction ¢;:

if (37 (4,b) € mfb(ps) A (4,b) € mfb(q:))

then reject p;’s request

else mfb(q;) := mfb(q;) Umfb(p;)

Executions that are not IR are excluded by checking the conditions of the second rule and the third rule.
btransaction is prevented from accessing data items marked by markers of the same transaction with opposi
larity. If a subtransaction attempts to access a data item x that would violate this condition, the access requ
rejected 1n the second rule. Rejection implies that the subtransaction can either fail or be delayed. Delaying
ful only if it is possible that @’s offending marker will be removed. Such a removal may occur when a success
overy subtransaction replaces the offending marker with the opposite marker as prescribed in the first ru
pendency orderings that violate the IR criterion are similarly rejected in the third rule.

Recall that invoking a subtransaction may model initiating it, as well as any other type of dependency betwe
btransactions (e.g., data flow, synchronization). The only time where m fb(g;) is not empty in rule 3 is when t
btransactions “invoke” the same third subtransaction within the same transaction. Such an invocation mod
ynchronization event, or a subtransaction that gets input from the output of two previous subtransactions.
s case, mfb(q;) accumulates markers and rule 3 is executed as a validation check (i.e., after the subtransacti
is already active and got its inputs for example).

Observe that the rules of the protocols check local conditions and prescribe local actions, and hence, a lo

1ieduler can implement the protocol without additional inter-site communication.

3.2 Discarding Markers

r the condition checking in rules 2 and 3 to be performed fast and for space efficiency, it is required to ke

> access(x) sets finite. Moreover, if markers are not discarded in a timely fashion, they restrict acces:

2Since discarding markers is done only periodically and asynchronously (see below), the m fb sets may accumulate extra marke
at is, it may indeed happen that (7,0) is in m fb(p;) and p; does not follow a ¢;. Such a situation arises because of Rule 2 wh
igns to m fb(p;) regardless of the non-transitive definition of follows.
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Figure 6.1: Non-IR executions

In an IR execution it is possible to follow a forward subtransaction, p before a successful rp actually rever:
effects. The class of IR executions excludes, however, executions in which a global state resulting from
-omplete execution of a transaction is observed by other transactions. Thus, a notion of virtual atomicity
forced. A nice feature of the definition of IR using polarities, is that it excludes following all possible non-aton
mbinations among committed, aborted, compensated-for, and retried subtransactions.

To illustrate, consider the sample executions depicted in Figure 6.1. In this figure a subtransaction of trans:
n 1; executing at site S; is denoted Tj;. The notation C'T;; denotes the compensating subtransaction speci
the forward subtransaction 7j;. The <g relation is depicted by arrows. In this figure all the executions ¢
t IR.

The example in Figure 6.1 (a) is of particular interest. By following C'Ti2, T2 “knows” that the coordinal
T} has decided to abort 77. On the other hand, the effects of T}, are visible at site 57, and thus affect 75, a
msitively Too. Ths 18 exposed to the asynchrony in the process of recovering 77, and consequently may obser

inconsistent state.

3 The Polarized Protocol

this section, we present a protocol, called the polarized protocol, that ensures that executions isolate recoveri
e protocol is executed by schedulers at each site that collectively ensure the IR property. The proto
plements the ‘follows’ relation which is crucial to the generation of IR executions. It does so by marking d:
ms with polarities of subtransactions that access them, and propagating these markings along conflict a
pendency orderings.

First, we present the general polarized protocol which applies regardless of the type of decision rule t
ordinator employs. The protocol, expressed as a set of rules, and some explanatory comments are included
ction 6.3.1. Section 6.3.2 focuses on the problem of discarding markers. A correctness proof i1s presented
ction 6.3.3.

3.1 The Protocol

e following type and data structures are used in the protocol:

e A markeris an ordered pair (4,b), where 7 is a transaction identifier and b is a polarity of a subtransacti

within that transaction.

e For each data item x the protocol maintains the following set:

access(z), the set of all markers (i, b) such that z is accessed by a subtransaction p!.



The fate of a transaction 7; in an execution F is the union of the set of the polarities of T;’s recove
btransactions in £, with the set of polarities of subtransactions of 7; that have no recovery subtransactio
rmally:

fate(Ty, By ={b|rp; € B} U {b] (¢} € E) A (ra; € E)}

A transaction T; has a unanimous fate in an execution F if
| fate(Ti, E) | = 1

at is, all polarities considered in the construction of fate(T;, F') are identical. This polarity is referred to
> fate of T;, if indeed T; has a unanimous fate.

An execution F is semantically atomic (SA) if for each transaction T;:
e There is at least one subtransaction, p; € T; that has no recovery subtransaction in F; and
e T; has a unanimous fate.

Observe that if a recovery subtransaction fails, the execution does not preserve semantic atomicity since t
nsaction to which the subtransaction belongs cannot have a unanimous fate. We note without proof tha
mmit protocol (structured as prescribed in Section 5.2.1) that satisfies the unanimity condition ensures t!
ntually executions are SA. Compliance with the unanimity condition satisfies the first requirement in t
finition of an SA execution. Our definition of semantic atomicity is an extension of the definition in [GM83]
lude both compensation and retry.

The property of semantic atomicity is not prefix-closed. Consequently, as a non-SA execution progresses a

re recovery subtransactions are executed 1t may become SA.

2 Isolation of Recoveries for Composite Transactions

was intuitively explained in section 5.3, the notion of IR, is concerned with the visibility of effects of transactic
1t do not have a unanimous fate. In standard transaction models, visibility is modeled by the reads-from confl
ation (see [BHG8T] for the exact definition). Since we do not deal with reads and writes, every conflict amc
btransactions of different transactions represents the fact that the effects of the preceding subtransaction,
> visible to the subsequent subtransaction, p;. Recall that causality and logical precedence are modeled
> dependency orderings within a transaction. Hence, it is appropriate to model the further propagation of t
ects of ¢; within 7; along these orderings. The notion of propagation and visibility of effects is made formal
fining the follows relation.

Let - denote the transitive closure of the <; relation. A forward subtransaction p; follows a subtransacti

(i # j) in an execution F if:

e 1; <g p;, and there is no s; such that
t; <g sp <g pi. Or, if

o ¢; follows ¢;, and ¢; _ D;-

An execution isolates recoveries if there is no forward subtransaction of a particular transaction that follo
btransactions of opposing polarities of another transaction. Formally:
Let 5;? and t;? be two subtransactions of 7T; that have opposing polarities in an execution £. Then an executi

isolates recoveries (IR) iff whenever p; follows s;, then p; does not follow ¢;.



e partial order models the logical precedences within a composite transaction. For brevity, a composite tra
ion 1s often referred to just as a transaction.

The termination of composite transaction 1s coordinated using the commit protocol outlined in Section 5.
d employing either one of the decision rules described there. No synchronization points are assumed, howev
at 18, a request for vote message from the coordinator, may be received after the local subtransaction has alrea
minated and released its resources. Consequently, there is no notion of global serializability for compos
nsactions.

We subscript subtransaction names to denote the transactions they belong to, or the transaction they c
pond to in case of recovery subtransactions. For example, p; is a forward subtransaction ! of transacti
- rp; 1s its corresponding recovery subtransaction, and s; denotes either a forward subtransaction of 7; o
responding recovery subtransaction. Regardless of whether s; is a forward or a recovery subtransaction,
7 that s; 1s a subtransaction of 7.

We treat all conflicts among subtransactions as dependencies in the sense of Section 5.4.1 (i.e., we do 1
tinguish among read-write conflicts, write-write conflicts etc.). Observe, however, that there are no int
nsaction conflicts among subtransactions (except for the conflicts between subtransactions and their recove
btransactions). This is because a transaction may have only one subtransaction at a particular site, and d:
ms at different sites are disjoint. Thus, to model intra-transaction dependencies that span across sites we ne

additional notion. An ordering among two subtransactions of the same transaction is called a depender
lering. All the dependency orderings are inter-site. These dependency orderings model the logical preceden
w of information, causality and synchronization constraints among subtransactions of the same transacti
1t are imposed by its program. Regardless of the actual type of dependency modeled by p; <; ¢;, we say tl

mvokes q;.

1 Composite Executions

complete composile execution E over a set of composite transactions 7 = {T1,...,T,} is a partial order w

lering relation <p where

o =UP,T; U rec, where
rec C UL {rpi | pi € Ti}

That is, £/ consists of the subtransactions iof the transactions in 7 and recovery subtransactions for a sub:

of these subtransactions.

e Each subtransaction in ¥ has a polarity. Polarities are used below to encode the fate of a transaction in

execution.
o <p D U, <;.
e For any two conflicting subtransactions s;, ¢;, either 5; <g t; or t; <g s;.
e For any pair p;, rp;, of forward and recovery subtransactions, p; <g rp;.

A composite execution is a prefix of a complete composite execution. Since all the executions, hereafter, :

mposite, for brevity we refer to a composite execution merely as an execution.

I Even though we resort to a more conventional notation for subtransactions in Chapter 7 (Ti;, where the second index, j is a s
ne), here we prefer the p; notation to avoid double subscripting.



“hapter 6

\tomicity of Composite Transactions

this chapter, we formally introduce composite transactions in the context of a DTM system. A formal definiti
IR for composite transactions is given in Section 6.2. A corresponding protocol, referred to as the polar:
stocol is presented and proved correct in Section 6.3. Comments on the underlying model of this chapter :
cussed in Section 6.4. Section 6.5 describes methods for incorporating actions that cannot be compensated-
retried into our paradigm.

A distributed database 1s a set of disjoint databases, where each database that i1s associated with a site.
biransaction is an atomic transaction that consists of a totally ordered sequence of accesses to data items a
gle site. Since our discussion, hereafter, is at the subtransaction level, the specifics of the accesses (i.e., whetl
-y are reads, writes or other types of operations) are abstracted. To further justify this abstraction we assul

> following regarding the interleaving of accesses to data items:

e Serializability and Strictness.  The executions of accesses to data items are serializable and str
[BHGS8T] at the subtransaction level. Strictness means that a subtransaction does not access a data iten

before the previous subtransaction to access z terminates (commits or aborts).

The success or failure of a subtransaction (i.e., whether it committed or aborted) is encoded by a binz
larity. For clarity, assume that if a subtransaction commits (aborts) its polarity is 1 (0). Observe that strictn
needed so that a subtransaction p is assigned a polarity before subsequent subtransactions access the data ite
cessed by p. The necessity of this requirement becomes clear later.

There are two kinds of subtransactions; forward subtransactions and recovery subtransactions. Each forwa
btransaction is associated with a recovery subtransaction. We use p,q, 0 to denote forward subtransactic
d rp,rq, ro to denote their respective recovery subtransactions. When we refer to either a recovery or forwe
btransaction, we use s,t. The notation s” (where b is either 0 or 1) denotes that s has polarity b. A polar
posite to b is denoted b. If a recovery subtransaction, rp, succeeds then rp’s polarity is opposite to p’s polari
herwise, if rp fails, the polarities of p and rp are identical. A forward subtransaction and 1ts successful recove
btransaction always have opposing polarities. Intuitively, this represents the fact that a committed recove
btransaction reverses the effect of its forward subtransaction.

Subtransactions accessing at least one data item in common are said to be conflicting. A recovery subtrans:
n accesses at least all data items accessed by its forward subtransaction. Therefore, a forward subtransacti
d its recovery subtransaction conflict.

A composite transaction T;, is a partial order with ordering relation <; where

e the elements of T; are a fixed set of forward subtransactions; and

e there is at most one subtransaction of 7T; at a particular site.



e The site executing the transaction crashes.
e The transaction was aborted intentionally, in order to resolve a deadlock, or for other reasons.

e A logical error in the transaction’s code led to its abort (e.g., division by zero, attempt to violate integr

constraint).

e most simple form of retrying a transaction is re-executing its program. Following the first two types
lures, re-execution of the transaction may also fail. In case of a logical error that is state-dependent, the er
1y occur again depending on the state of the database during the re-execution. Therefore, regardless of t
1se of the failure, we cannot require a retry by re-execution to succeed unconditionally as was required -
mpensation by the persistence of compensation requirement.

A more sophisticated retry transaction can examine the log records of the forward transaction and determi
> cause for the failure. Based on this analysis, the retry transaction may take appropriate actions, there
reasing 1ts probability to succeed. Such a retry mechanism is similar to an exception handler whose actic
> determined by the type of the failure. In addition, a retry transaction may invoke contingency actic
LLR90, RELL90, BOHt91, C*t89] if the failure analysis leads to the conclusion that mere re-execution is fut
contingency action performs a task that is functionally equivalent to the task that was originally associat
th the transaction.

If the semantics of a particular forward transaction are such that the unconditional success of this ex:
nsaction is crucial to the success of the entire transaction, then retry should not be considered as a recove
tion for such a transaction (see Section 6.5). Similarly to compensation, retry is not universally applicak
fer to Section 6.5 where incorporating of actions that cannot be retried into our framework is described.

Next, we illustrate the utility of retry in a DTM environment. As was alluded above, our basic paradigm is
ablish a relaxed notion of atomicity given that subtransactions commit or abort in an uncoordinated mani
ng semantics-based recovery. Relaxed atomicity, similarly to standard atomicity, offers two options for t
al fate of a transaction. Establishing the option that parallels the standard Abort (‘nothing’) is obtained
npensating for all tentatively committed subtransactions. In a dual manner, we claim that the Commit opti
II’) can be established by executing a retry subtransaction for all the failed subtransactions. The duality
> two methods is illustrated by considering the case of a commit protocol employing a standard biased decisi
e. If a local decision is reached prior to a global decision, the two decisions can differ only in case of a lo
mmit. Thus, compensation can patch up relaxed atomicity. Conversely, if a global decision is reached prior
ecting a local decision (i.e., prior to the local commit point) then the decisions can be incompatible only
e of a global commit, and then retry establishes relaxed atomicity.

In the context of autonomy, i.e., multidatabases, retry has another importance. Compensation accommoda
tonomy by allowing a site to commit in a tentative manner before a global commit decision is made. Ir
al manner, retry facilitates forcing a global commit decision that is accepted before the sites themselves he
ysically committed the subtransactions. Such a capability to force a global commit decision is useful in
tidatabase environment [BST90].



One can argue that the localization of compensation principle holds regardless of the dependency classificati
the forward transactions. Once a forward transaction has executed, regardless of whether it had inter-depende
s or not, the traces it leaves in the form of local logs at the different sites look the same for the purposes
mnpensation. It is anticipated, however, that it is going to be easier to enforce the localization principle -
bal transactions that have no dependencies. When a global transaction is semantically decomposed, each
subtransactions has clear semantics. Thus coming up with independent compensating subtransactions shot
se less difficulty. It 1s going to be harder to enforce the localization principle when syntactic decomposition
>d. Some global information might be needed in order to assign the individual compensating subtransactic
> relevant semantics. We postpone to future research a more precise analysis of the interplay among the tyy

global transactions and the validity of the localization principle.

6 Two Specific Solutions

apters 6 and 7 provide two specific methods for obtaining relaxed atomicity and ensuring IR. To give the reac
roader perspective on this part of the dissertation, we provide in this section a brief preview and comparison
> two methods. Chapter 6 talks about composite transactions and is based on [LKS91b]. Chapter 7 descrit
Optimistic 2PC (O2PC) protocol and is a variation of [LIXS91a]. For clarity, in both chapters all transactic
> assumed to be sensitive; that is, IR needs to be enforced for all of them.

The work in Chapter 6 is characterized as follows:
e The transaction model is an advanced model [tm-91, BOH*91].
e Both decisions rules are considered, and hence both retry and compensation are employed.

e There are dependencies among subtransactions and they are modeled by a partial order. Consequently,

is enforced in an incremental manner.
e IR is enforced on data items granules.
e Subtransactions may have no synchronization points, and hence global serializability is not an issue.
The work in Chapter 7 is characterized as follows:

e A conservative and standard transaction model is used.

Only compensation, and not retry, is relied-upon, since only the standard biased decision rule is consider:
e There are no dependencies among subtransactions. Therefore, IR is imposed using a validation method.
e IR is enforced at a site granularity.

e Subtransactions have synchronization points.

is possible to combine features from either method and come up with a synthesized protocol.

7 Retry Transactions

nilarly to a compensating transaction, a retry (sub)transaction is coupled with a forward (sub)transactic
'st, we discuss briefly how a retry transaction can be constructed. Retry is initiated based on the premise tl

> forward transaction has failed. There are few possible reasons for a transaction failure:



5 Localization of Compensation

it basic idea is to promote the notion of tentative local commitment of subtransactions that can be undc
compensation if the global transaction fails. For that end, we have coupled compensation activities with st
msactions. A question that should be addressed is how to treat the collection of compensating subtransactic
1t 1s associated with the global forward transaction. Answering this question has ramifications on defining t
rectness of executions with compensation in a distributed environment.

For answering this question, we point out the following special features of compensation in a distribut

stem:

e Compensation, as a recovery activity, 1s an after the fact activity. That is, the forward transaction |
executed, and compensation is carried out based on its effects. Similarly to standard undo, the compensati
subtransaction is guided by the local log in determining which operations with which arguments should
applied. Therefore, there is no single global program that drives the individual compensating subtransactic
at the different sites.

e By the persistence of compensation requirement (Section 4.1.4), each site automatically guarantees t
eventual successful termination of the local compensating subtransaction. Consequently, there is no ne
to use a commit protocol to coordinate the termination of the compensating subtransactions. Each lo

compensating subtransaction can terminate independently.

In light of the above, we advocate the principle that compensating for a global transaction need not
>rdinated as a global activity. That is, there is no such entity as a global compensating transaction. Inste:
npensating subtransactions of a single global transaction should be treated as a collection of almost independe

al transactions. More precisely, the localization of compensation principle asserts that:
e The execution of a compensating subtransaction does not depend on the execution of its siblings.

e The termination of a compensating subtransaction need not be coordinated with the termination of

siblings.

This principle can be better understood by making the analogy to traditional DTM systems. There, wher
bal transaction is aborted, each site is responsible for undoing the local subtransaction. Only the initiati
the recovery at each site is coordinated, namely 1t 1s prompted by the receiving of an abort decision messa
m the 2PC coordinator of the global transaction. We extend this principle of localized recovery for recove

compensation. A similar idea, referred to as recovery non-interference, is reported in [LYI87]. In suppe
localization of compensation, we also cite [Vei89, map89] where a large-scale, commercial application that
2dicated on a similar principle, is described.

Being a recovery activity, compensation is inherently considered as an overhead function. Therefore, the c
compensation should be kept at minimum. By localizing compensation, the expensive communication for t
>rdination of a global activity is avoided. Also, observe that avoiding the need to coordinate the termination
> compensating subtransactions is crucial. The alternative of using an atomic commit protocol for the glol
mnpensating activity would have contradicted the initial objective of alleviating the problem associated w
micity in a distributed environment.

The validity of the localization principle and the difficulty in enforcing it depends on the decomposition a
pendency classification of the forward transaction. In what follows, we provide a qualitative analysis of t

erplay among these notions.



s no orderings, IR is enforced by wvalidation method. The coordinator validates the execution of all subtrans:
ns once they return results and are ready to terminate. In the validation, the coordinator ascertains that t
btransactions have not observed both compensated-for and committed effects of other transactions (the speci
orithms are presented in Chapter 7). On the other hand, when there are orderings, the coordinator has
nitor the execution of the subtransactions as it progresses incrementally to make sure IR is preserved.

We note that is not surprising that the issue of the shape of the program of transactions surfaces again, af

ing discussed in Chapter 2 in the context of single-transactions compensation.

4.2 Decomposition into Subtransactions

~the decomposition of a global transaction to local subtransactions, we refer to the aspect of the granular
the operations that are shipped to a site for execution. Another way to look at the decomposition dimensi
in terms of the interface a site exports for global transactions.

The two extreme decomposition methods we discuss are semantic and syntactic. Similar classification c
found in [Joh90]. Using a syntactic decomposition, the set of primitive requests of a global transaction tc
rticular site constitute the local subtransaction at that site. Each subtransaction can be viewed as an arbitre
lection of reads and writes against the local data. That is, no predefined semantics is associated with
btransaction. This model is elaborated in [CP87] and is the standard model in distributed databases. Syntac
composition is also considered as the general framework in the multidatabases context [BS88, BST90].

On the other hand, using semantic decomposition, each global transaction is decomposed into a collecti
local subtransactions, each of which performs a semantically coherent task. The subtransactions are select
m a well-defined repertoire of procedures forming an interface at each site in the distributed system.
btransaction may include more than one procedure, but still the significant aspect of associating well-defin
d pre-determined semantics with each subtransaction is invariant. This decomposition is suitable for a federat
tributed database environment [fdb87].

The distinction between the two models is obvious once semantic compensation is introduced. Qur wc
plies to both models; however, fitting the ideas in each framework is bound to be different, and probably eas

en semantic decomposition is employed.

4.3 Synchronization Points

taining global serializability in a locking-based DTM system is typically based on synchronized release of loc
order to enforce a two-phased locking (2PL) [BHGS87] discipline over all accesses of a global transaction,
buld be guaranteed that a lock is not released at one site prior to acquiring a lock at another site by the sa
msaction. This can be achieved through the synchronization that is introduced by the 2PC protocol. It
sumed that the coordinator of T} initiates the 2PC protocol only after it has received acknowledgements for
T;’s operations. Therefore, when the coordinator initiates the 2PC protocol by sending the messages requesti
tes (known as VOTE-REQ, or PREPARE) messages), T; has surely obtained all the locks it will ever need.
ks are released only after the VOTE-REQ message has been received, 2PL and thus serializability is obtaine
is combined 2PC/2PL protocol is very common (e.g., R* and CAMELOT [MLO86, Duc90]) and is referr
in [BHGS8T7] as distributed 2PL. We refer to this coupling of the beginning of the release phase of 2PL and t
eipt of the VOTE-REQ message as synchronization point. When a subtransaction releases its locks prior to

eiving the VOTE-REQ message, we say that it does not have a synchronization point.



Executions that are IR are formally defined in Chapters 6 and 7. The definitions in these chapters differ d

the different underlying transaction models. Protocols that guarantees IR are also devised in these chapter

4 Taxonomy of DTM Models

this section we review certain aspects of DTM that are relevant for the development of our ideas. We class
M models along the dimensions of decomposition of a global transaction to local subtransactions, and depe
ncies and orderings among the subtransactions. We also comment on methods for combining atomicity a
1chronization concerns in DTM systems. The categories we define in this section are referred to later in t

sertation.

4.1 Dependencies and Orderings among Subtransactions

e program of a transaction induces certain dependencies among the operations that implement the progra
e dependencies can result from either control or data flow of the transaction program. For instance, a con
nal statement requires evaluating the condition before executing the branches. That is, the primitive operatic
1t implement the branch depend on the operations that are used for the condition evaluation. Likewise,
ignment statement induces a dependency between the reading of the right-hand-side and the update of the le
nd-side. In more advanced transaction models, where the emphasis is on flexibility and expressibility, depende
s can result from a variety of other reasons, e.g., causality, and synchronization constraints [tm-91, BOHT9
global transaction, like an ordinary transaction, is driven by a program that induces certain dependenci
pically, a coordinator is assigned the task of executing this program by spawning remote requests. Usually, t!
ordinator also plays the role of the commit-protocol-coordinator for the particular global transaction [CP8
hen mapped for execution on the underlying distributed system, the global transaction is decomposed to
| subtransactions. We choose to disregard all intra-subtransaction dependencies and narrow our attention
> more interesting inter-subtransaction dependencies. Such dependencies are modeled in what follows by
rtial order over the subtransactions. These issues of dependencies among subtransactions of the same glol
nsaction are discussed at length in [DE89, ED89].

One simple case of global transaction structure is when the program is devoid of an elaborate control flow a
s no dependencies among its constituent subtransactions. For example, consider a transaction that executes
nple SQL-like [KS90] statement in the form of:

select *

from R

ere the relation R is fragmented in several sites. Mapping such a global transaction to the distributed e
onment results in an unordered set of subtransactions. The coordinator of such a transaction spawns t
btransactions at the relevant sites in no particular order, and waits to gather all the results. This case
erred to in [ED89] as subtransactions with no value dependencies. On the other hand, mapping a dependen
iong two subtransactions onto the underlying distributed architecture may require the coordinator to spa
> dependent transaction only after the dependent-upon subtransaction has returned its result (since the lat
pplies an input parameter for the former, for example).

The reader should be aware to the different execution pattern in these two cases. When there are no depe
ncies, the coordinator spawns all the subtransactions and waits for them to return, whereas when there :
pendencies the execution progresses incrementally at the different sites as dictated by the coordinator. T
ssence of orderings (that are the consequence of dependencies) among subtransactions, and lack thereof, dist

ishes the methods presented in Chapters 6 and 7 in terms of enforcing IR. Namely, when a global transacti



ne sites and aborted subtransactions at other sites. Problems may arise when the effects of such non-ator
msactions become visible, thereby affecting other transactions. Specifically, there are transactions that shot
t be affected by both failed (or compensated-for) and successful subtransactions of the same transaction.
1st 1solate such failed, non-atomic transactions until all the recovery subtransactions are executed and seman
»micity is obtained. We refer to this requirement as isolation of recoveries® (IR). We say that an executi
IR to informally mean that no transaction in that execution observes both compensated-for effects as w
committed effects of other transactions. In this section, we motivate this requirement and postulate it as
'rectness criterion in the context of relaxed atomicity.

First, we argue that IR is indeed beneficial in excluding unacceptable executions by illustrating an examg
nsider a global transaction 77 which transfers funds from site 1 to site 2. The decomposition of T3 into lo

btransactions is simply:
e 7111 — debit by amount a
e T — credit by amount a

sume that in a particular execution under our generic commit protocol (Section 5.2.1) it happens that ’
orts, whereas 711 commits locally. Compensation for 777 includes crediting by the amount a. Consider
msaction 75 that performs an audit at the two sites, by reading the balances at each site. The execution at t

o sites is depicted below (each line represents the serialization order at a site from left to right).

SO . T11 T21 CT11 . Sl
Sa i Tis Toz 153

e states Sy, 52 denote the initial states of the accounts at sites 1 and 2, respectively. Likewise, the states S,
note the corresponding final states. Clearly, in this scenario, 75 reads a globally inconsistent state, where t
ount @ is unaccounted for.

Recall that based on the notion of R-commutativity, being affected by a successful subtransaction that is la
npensated-for is permitted (e.g., To; being serialized after 777 in the above example). Thus, one might arg
1t with the aid of a proper relation R, compensation may be designed to rectify the above anomaly. Ne

refute this argument. Let (711 o CTy1 0 To1)(So) = Sa. Then, although CTi; and Ts; R-commute, and as
ult 5S4 R 51, this does not change the fact that 57 and Ss do not satisfy the global consistency constraint
untaining consistent total balances. Thus, the anomalous situation where 75 is affected by both compensate
-and locally committed subtransactions cannot be rectified by R-commutativity. The problem arises becat
> relation R 1s based on local predicates alone, and it guarantees nothing regarding global relationships amo
ta items at the different sites.

Transactions such as 75 in the above example, are characterized by requiring a global consistency constra
hold on the data they access at multiple sites. Such transactions are referred to as sensitive transactions. T
sree of atomicity guaranteed by R-commutativity is not sufficient for sensitive transactions. We defer as futt
earch defining a clearer characterization of sensitive transactions. In chapter 6 and 7, for clarity of expositic

assume that all transactions are sensitive.

An analogy between isolation of recoveries and serializability is in place. Serializability makes concurre
scutions transparent to the transactions. Likewise, isolation of recoveries makes non-atomicity transparent
msactions. The importance of our study of IR as a correctness criterion is underlined by the growing popular
advanced transaction models that are based on semantic atomicity [GM83, GMS87, AGMS87, KR88, Reut
i89, GMGK™T90, tm-91, BOH*91], and by the lack of specific correctness criteria in this domain.

2The choice of the name is intentional since IR as presented in this chapter is an extension for global transactions, of Constrair
Section 2.3.



The work in this direction of relaxed atomicity, as opposed to the traditional atomicity, has not matured y
e precise guarantees of such transaction models have not been examined to date. In particular, the attract:
a of using relaxed atomicity in a distributed setting has not been carefully examined so far. Chapters 6 anc

> dedicated to formal treatment of relaxed atomicity and the ensuing correctness issues in a DTM setting.

2.1 A Generic Relaxed Atomicity Commit Protocol

> adopt and extend the notion of semantic atomicity mentioned above for DTM systems. First, we adopt t
1vention that a multi-site transaction, referred to also as global transaction hereafter, is decomposed into sing
e subtransactions. The commit protocol for global transactions proceeds as follows. A site decides whether
al forward subtransaction commits or aborts without coordination with other sites executing subtransactic
behalf of the same transaction. Once this decision is made, all the local resources the subtransaction hol
> released at once. We say that the site makes a local (commit) decision. A centralized coordinator initia
-ommit protocol by requesting these decisions from the sites that executed subtransactions on behalf of t
be-committed transaction. The decisions are cast as votes in the first phase of the commit protocol. T
>rdinator gathers the votes and decides whether to commit or abort the transaction according to a decisi
e whose nature is explained shortly. This global decision is conveyed to the different sites in a second ph:
the commit protocol. In case of a discrepancy between a local decision and the global decision, a recove
btransaction is executed at the local site. Namely, if the local decision was commit and the global one is abo
n the local subtransaction is compensated-for. Conversely, a local subtransaction is retried if the global decisi
commit and the local decision was abort. (We expand on retry in Section 5.7). Notice that semantics-bas
overy 1s done on a subtransaction basis. That is, each forward subtransaction is associated with a retry
mpensating counter-part (more on this issue in Section 5.5). The recovery subtransactions ensure converger
a unanimous outcome at all sites despite the uncoordinated local decisions.

Any rule governing the decision making by the coordinator must conform to the wnanimity requirement:
e Unanimity. If all votes are identical then the decision must be unanimous with the votes.

decision rule can be either biased or arbitrary. In standard atomic commit protocols, the following bias

cision rule is used:
e Biased Decision. If at least one of the sites votes to abort, then the decision is abort.

| arbitrary rule can be based on quorum, majority or other principles that conform with the unanimity requi
nt 1. For instance, a transaction may be considered successful if a certain subset of its subtransactions succe
e specifics of the arbitrary decision rule are abstracted from our discussion. The main distinction between t
o rules 1s the possibility of reversing a local abort decision by a retry subtransaction. This option is lacking
> biased case, and is present in the arbitrary case.

The description given above serves as a common framework for both Chapters 6 and 7.

3 Isolation of Recoveries

e concept of atomicity 1s intended to mask failures by creating a virtual failure-free system in a failure-prc
vironment. When relaxing atomicity, as we propose to do, we must make sure that failures do not becor
ible. Since semantic atomicity is an eventual property (i.e., eventually all locally committed subtransactic

I be compensated for), there are time intervals where transactions have locally committed subtransactions

1'We do not deal with optimizations to the commit protocol that are possible when orderings are imposed among the subtransactis
., like the linear 2PC protocol [Gra78]).



enomenon where transactions may be delayed for unbounded periods. In the context of 2PC, blocking impl
1t if the coordinator for a transaction, or a communication link to that coordinator, fails in a certain criti
ne, some other transactions at active sites are delayed until the failure is repaired.

Another severe difficulty arises when atomic commitment is considered in the context of multidatabase syste:
ere several sites are integrated to create a cooperative environment (see [hdb90] and the references there). T
al of the integration is to support global transactions by dividing them into local subtransactions that e
~cuted at the different sites. In a multidatabase, the individual sites comprising the integrated system may 1
terogeneous database management systems. The sites may belong to distinct, and possibly competing busin
sanizations (e.g., competing computerized reservation agencies). In such systems the local autonomy of t
lividual sites is crucial. It is undesirable, for example, to use a protocol where a site belonging to a competi
ranization can intentionally or innocently block the local resources. One of the flavors of local autonomy
fined as the capability of a site to abort any local (sub)transaction at any time before the (sub)transacti
minates. Employing the 2PC protocol, a site enters a prepared state if it votes to commit a transaction
ra78]. Once in this state, a site becomes a subordinate of the external coordinator, and it can no lon;
ilaterally determine the fate of the local subtransaction of T'. Therefore, local autonomy is sacrificed once
C protocol is imposed on the integrated sites.

In summary, the fundamental problems associated with an atomic commit protocol in a DTM system are:
e Lengthy delays are introduced by the need to coordinate the termination of the distributeed subtransactio
e A potential for the undesirable phenomenon of blocking is introduced.

e The autonomy of individual sites i1s compromised once the protocol is imposed on the distributed systen

ese problems are exemplified by the popular 2PC protocol. In our work on semantics-based recovery in D1
stems we attempt to solve, or at least alleviate these problems. Our work 1s concerned with a generic D1
»del. Thus, we do not deal directly with the intrinsic problems of multidatabases. However, the results can

tantiated, and their relevance is amplified, where this particular case of a DTM system is considered.

2 Outlining a Solution: Relaxing Atomicity

cing the impossibility results regarding atomic commitment in distributed systems [Ske82, BHG87] it is evide
1t in order to overcome the above problems, a trade-off must be exploited. Our thesis is to relaz the guarantees
msaction atomicity, thereby obtaining a handle for solving the difficult problems we are faced with. Promine
svious proposals in the context of relaxed atomicity are sagas [GM83, GMS87], and their generalization
dtitransactions [GMGKT90, BOHt91]. These proposals do not consider the atomicity problem in distribut
ting, but rather the similar problem of atomicity of long-duration transactions. Essentially, the idea in the
bposals is to decompose the coarse unit of a transaction into finer subtransaction units. Subtransactions comr
abort independently, without coordination with other subtransactions of the same transaction. Resources he
the subtransactions are released as soon as the subtransaction terminates, without waiting for the terminati
the entire transaction. Therefore, atomicity of the whole transaction is given up for a weaker notion referred
semantic atomicity [GM83]. Each subtransaction, T;;, is associated with a compensating subtransaction, whe
sk is to undo semantically the effects of 7;; in case the entire transaction aborts. Instead of the standard ¢
nothing atomicity, semantic atomicity guarantees that either all subtransactions commit—and then the ent
nsaction commits, or that all subtransactions that committed in a tentative manner are compensated-for

> entire transaction 1s to abort.
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Jistributed Transaction Management:
’reliminaries

wving studied compensation for an individual transaction, we turn our attention to semantics-based recove
- composite transactions—transactions that are composed of several simple subtransactions. Since we draw c
tivation from the use of composite transactions in distributed systems, distributed transaction manageme
TM hereafter) is the focus of this chapter and the remainder of the dissertation. We concentrate on compos
nsactions, whose constituent subtransactions execute at different sites of a distributed system.

Composite transactions are formally introduced in the next chapter. In this chapter, we first outline the ba
>blem of atomicity in DTM systems in Section 5.1. We sketch our solution in a concise and informal manner
ction 5.2. Our approach exploits a trade-off as it solves the problem by relaxing standard atomicity. Relax
micity gives rise to a host of issues that are referred to as isolation of recoveries (IR). This pivotal conce
informally motivated and presented in Section 5.3. In Section 5.4 we classify DTM models along dimensic
1t are relevant for our results. In Section 5.5 we introduce the localization of compensation principle, whi
ves as a basis for the use of compensation in the context of DTM. Chapters 6 and 7 deal with specific methc
1t are based on the general paradigm described in this chapter. Section 5.6 briefly contrasts this two metho
reby giving the reader an overview of Chapters 6 and 7. Finally, the other semantics-based recovery meth

retry, which is made use of in Chapter 6, is introduced in Section 5.7.

1 The Problem

hen transactions access data items at multiple sites of a distributed system, atomicity is accomplished

ploying an atomic commit protocol. The two-phase commit (2PC) protocol [Gra78] is the most comm
mic commit protocol, and it is widely used in distributed transaction management systems. In this protocol
ilti-site transaction is associated with a coordinator that gathers votes from the participating sites as to whet!
commit or abort the transaction. Based on these votes, the coordinator makes a decision and transmits it
> participating sites. The receipt of this decision message must precede the release of all resources held by t
msaction that is involved in the 2PC protocol. Consequently, all other transactions contending for the resourt
|d by the transaction in question must wait until the decision message has been received. If the execution tin
the actions of a multi-site transaction differ from site to site, these delays make the execution duration of
ions at all sites equally long.

It is well known that there 1s no atomic commit protocol that is not blocking, in a distributed system that

bject to (fail-stop) site failures, and failures in communication links [Ske82, BHG87]. Blocking is the undesiral



buld be established [GM83]. The compatibility will represent the various restrictions on exposing data amo
bes of transactions. More work needs to be done on the subject of building such a type-specific lock manag
The various restrictions on the dependent transactions (e.g, having fixed or linear programs, R-commutativi
licate that compensation 1s a history-based activity. That is, the applicability of compensation depends

> execution, and in particular on the nature of the dependent transactions. In essence, it is impossible
arantee proper compensation (i.e., in a manner that ensures a degree of atomicity and consistency) regardl
the execution, and independently of the dependent transactions. Instead, there is a spectrum of less extre:
ssibilities that constitute a trade-off. The fewer restrictions are imposed on transactions, the more involved t
mpensation is bound to be, and the weaker the resultant atomicity guarantee will be. It is probably possil
custom-design compensating transactions that are very specific to an application, and require an intrin
owledge of its semantics. Ideally, however, there should be a generic mechanism that activates the necesse
mpensatory actions as required, similarly to the way a traditional undo mechanism operates. If the forwe
msactions are structured carefully, then compensation can be simple and largely applicable. For instan
agine a library of pre-defined forward routines, each of which associated with a counter-routine. All forwe
msactions are composed out of this well-defined repertoire of routines. Thus, it is possible to guarantee, by eit!
mal verification or exhaustive testing of all possible combinations, that the counter-routine always compensa
forward counterpart properly regardless of the dependent transactions. Under these circumstances, it 1s possil

automatically extract the actions of a particular compensating transaction from the log.



2 On the Design of Compensating Transactions

1ce compensation is an application-dependent activity, it is hard to identify universal principles for the design
npensating transactions. Nevertheless, we have provided a formal basis for the design and use of compensatic
is formal basis emphasizes that while semantically undoing the forward transaction, certain predicates expre
y general consistency constraints and specific properties established by the dependent transactions should
sserved. The examples in Chapter 3 and the comprehensive example in [SLKS91] shed some light on this forn
sis by applying it to actual scenarios. In this section we generalize the examples and provide insights regardi
> design of compensating transactions that cannot be captured in formal terms.

Compensating transactions are intended to counter the phenomenon of cascading aborts by undoing a tra
sion without undoing its dependents. This purpose, and the cascading effect itself, can be traced in the desi
a compensating transaction. A reasonable design rule is to first perform an actual logical undo, and th
tore consistency, or establish other desirable properties. This restoration activity is the result of undoing t
npensated-for transaction while leaving the dependent transactions intact. For instance, consider the compe
ion illustrated in Section 3.3, where first the tuple is deleted, and then the average computation is amended. (
1sider the example in Section 7.1 [SLKS91], where first the erroneous track is removed and then the positioni
the gun 1s corrected. The pattern is repeated: by undoing a transaction with dependents, some inconsistenc
se, and some desirable properties are violated. Thus, after undoing, a restoration phase is called for.

The task of re-establishing the desirable predicates by the compensating transaction depends on the exister
d the nature of the dependent transactions. Typically, if there are no dependent transactions, logical undoi
all that compensation performs (e.g., referring again to the example in Section 3.3, just removing the tuple
ficient if the average computation does not take place). Therefore, the code of a compensating transaction m
>ck the log and determine whether the forward transaction has dependent transactions and act accordingly.

A form of cascading undoing is sometimes unavoidable. Often, there are semantic dependencies among trai
ions, such as causality, that necessitate compensating in a cascading manner for transactions dependent on t
ginally compensated-for transaction. For instance, referring back to the airline reservation example in Secti
, the special meal order of the canceled flight reservation should be canceled, too. There are several alternati
handle causally-dependent activities. First, such dependent (sub)transactions should be encapsulated witl
iingle sphere of recovery. Namely, this is a case for a composite transaction in the form of a nested trans:
n [Mos87], a saga [GMS8T], or its generalization — a multi-transaction [GMGK*90, KR88, Reu89]. In su
ydels of composite transactions, the effect of a cascading abort (or cascading compensation for that matter)
trollable, predictable, and confined to the boundaries of a single transactional unit. A competing approa
the active, or triggered, model for transaction dependencies [DHLI0, MD89, C+89]. Causality is modeled
ggering the dependent transaction when the causing event occurs. A good example here is a cancellation
ervation in an airline reservation system which is handled as a compensating transaction that triggers t
nsfer of pending reservation from a waiting list to the confirmed list. These issues, however, fall outside t
ype of this dissertation.

Theorems 1, 2 and 3 indicate that the externalization (i.e., exposing updated data items by releasing loc
example) of uncommitted data items should be done in a controlled manner if a degree of atomicity is
portance. That is, uncommitted data should be externalized only to transactions that satisfy the requireme:
scified in the premises of the theorems. In the context of locks, locks should be released only to qualif
msactions, that is, those transactions that do satisfy the requirements. Other transactions must be delay
d are subject to the standard concurrency control and recovery policies. This restriction concerns also actic
Wt are not-compensatable (i.e., the real actions of [Gra81] that were mentioned in Section 2.3). In gener

lassification of transaction types is necessary. Further, a notion of compatibility of these transaction tyj



as from [HMS88], which describes an extensible logging service, can be incorporated for the design of the loggi
hitecture. It is important to note that the technology trend of large main memories can support fast randc
ess to the log, by storing at least the tail of the log in main memory [Bit86, DKO*84].

Yet another problem is concerned with supporting compensation for transactions whose log records spar
gthy log interval. Such long interval can cause difficulties in terms of reusing log space. A log compacti
chanism must exist under such circumstances.

Typically, the portion of the log in between the forward and the compensating transactions is the relevant s
nt of the execution. However, sometimes, compensation has to look at even earlier execution. If compensati
to amend a value that tracks an entity based on periodic recordings (e.g., tracking a mobile target), extraj
ion based on past values can be used as the basis for the compensation [SLKS91]. Under these circumstanc

lier execution, prior to the forward transaction must be considered by the compensation.

1.3 Explicit Invocation of Compensation

far it has been assumed that a compensating transaction can be invoked internally by the recovery manager
onsequence of the abort of an externalized transaction. In a system that supports compensation, it is possil
allow users to invoke a compensating transaction explicitly in order to cancel the effects of a committ
nsaction in the same manner as regular transactions are invoked. Such a feature can be useful in the follow:
nario. Suppose that a transaction was committed “erroneously.” By committed erroneously, we mean tl
m the system’s point of view there was nothing wrong with the committed transaction. However, exter:
wsons, that were discovered later, rendered the decision to commit the transaction erroneous. Being aware
se circumstances, the user may invoke the proper compensating transaction that will automatically amend t

uation.

1.4 Persistence of Compensation

was noted earlier, we should disallow a compensating transaction to be aborted either externally (by user, or
plication), or internally (e.g., as a deadlock resolution victim). A simplistic (and usually unsatisfactory) solut;
the problem of deadlock resolution is the notion of golden transactions in system R [GMT81]. By running ot
e golden transaction at a time, the system can always avoid choosing these privileged transactions as deadlc
tims. A more suitable solution is to support automatic restarting of compensating transactions if they f:
ch a mechanism can be used for making compensating transactions persistent across system crashes. Followi
-rash, all interrupted compensating transactions should be treated as pending actions that must be redo
e mechanism for implementing this strong persistence can be based on resuming a compensating transacti
m a savepoint [MHLT90], or on restarting. In case of resuming from a savepoint, the internal state as w
the concurrency control information of the compensating transaction must be saved in log records. In case
tarting, the interrupted compensating transaction has to be undone first, and then automatically restarted.
iphasize that the principle for recovery of compensating transaction is that once a begin-transaction record
" appears in stable storage, C'T' must be completed eventually. An implementation along the lines of the ARI
stem [MHLT90] can support the persistence of compensating transactions across system crashes. In ARII
do activity is logged using Compensating Log Records (CLRs). Each CLR points (directly or indirectly)
> next regular log record to be undone. It is guaranteed that actions are not undone more than once, and tl

do actions are not undone even if the undo of a transaction is interrupted by a system crash.
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’ractical and Design Issues

this chapter we discuss several issues that should be addressed in order for compensation to be of practi

>. Among other issues, we discuss specific design rules for compensating transactions.

1 Practical Issues

mpensation is a powerful method. However, executing it can be expensive unless adequate special support -

s provided.

1.1 Logging Scheme

quiring a compensating transaction to succeed unconditionally (the persistence of compensation requiremer
plies that design of a compensating transaction is a complex and application-dependent task. The fact that t
npensating transaction always executes afier its forward counter-part must be used to alleviate this difficul
sentially, the forward transaction should record enough semantic information, e.g., in the form of log recor
order to guide the proper execution of the compensating transaction. Therefore, it is likely that some fo
operation logging will be used [HR83]. Operation logging is the logging scheme used in conjunction wi
> semantically-rich logical undo methods. Another reason why logging operations, rather than logging physi
anges, is preferable is that it enables detecting dependencies among transactions by analyzing the log sequenc
e necessity of logging enough information to enable detecting dependencies among transactions (e.g., logg
vd accesses) is discussed in [PKHS8S].

1.2 Log Retrieval

1ce compensating transactions are envisioned to be driven by a scan of the log, it 1s important to provi
icient on-line access to the log information. Without a suitable logging architecture, the accesses to the |
ght translate to I/O traffic that would interrupt the sequential log I/O that is performed on behalf of executi
ward transactions. A related problem is the efficiency of the log scan which impacts the performance of t
npensating transactions themselves. Since compensating transactions rely on qualified retrieval of log recor
-andom access to the sequentially written log device must be supported. In order to facilitate such retrie
iciently, some (indexing) structure must be imposed on the sequence of log records. Stable memory [CKKS:
1 be used for creating and maintaining this structure. The stream of log records can be post-processed in t
lure-proof random-access memory before this stream is oriented to secondary storage. We briefly mention so
rk that has been done in providing efficient access to sequential streams of data (i.e., logs) [LC87, FC87, DSTR



an illustration: The compensated-for transaction extends a file, or i1s allocated storage, and the additio
wce 1s used by other transactions; the compensated-for transaction frees space that is later allocated for otl
nsactions; the compensated-for transaction inserts a record to a B-tree that causes a split of a node, and otl
nsactions use the new nodes; the compensated-for transaction updates the free space information mechani
the storage manager (percentage of occupied space in a page, etc.) and other transactions update the sa
ormation. (See discussion on these issues in [ML89, Moh89]). We note that, in all the above storage manageme

amples; although effects are exposed to transactions, they are not exposed to users.

3 The Average Computation Example

this example we illustrate the use of semantics in the design of a compensating transaction. Consider t

lowing transactions:

e T A long-duration transaction, one of whose operations inserts a tuple ¢ into a relation R, with a nume
attribute A.

e 7’: A transaction that scans the relation R, counts the tuples and computes the average of their value
the attribute A. For reference purposes, assume that 7" stores the count in N, and the result of the avera

computation in average.

carly, 77 € dep(T). Since T is a long-lived transaction, the insertion operation is exposed early, before
mmits. In particular, the inserted tuple ¢ was counted by 7” and considered in the average computatic
sume that 7" has to abort. According to the conventional recovery approach, 7”7 would have to be abort
a cascading manner. It is undersirable to abort 7" since it is an expensive transaction that scans the ent
relation. An alternative scenario in which aborting 7’ would have been undesirable is one where 7" must
~cuted fast to provide the average result as an assessment for a decision support application. For these reaso

s highly undersirable to abort 7’ once 7" aborts. Fortunately, a simple compensation can help:

o CT: We describe the part of C'T that handles the tuple ¢ and the average computation. The notation {|
denotes the value of tuple ¢ on attribute A.

delete(t)

oldN := N
N:=N-1

average := (oldN*average - t[A])/(oldlN - 1)

us, instead of aborting 7’ and redoing its task, we were able to amend the situation easily, based on t
nantics of computing averages. Compensation in this case yields an atomic execution since all the effects of
> canceled. Observe how CT first logically undoes the insertion of ¢ and the increment of N, and then restos
> value of average appropriately. It 1s assumed that CT" checked the log of the execution and discovered tl
depends on T and acted appropriately. Another lesson from this example is that exposing uncommitted dz
ist be done in a controlled manner. Namely, only these transactions for which enough semantic informati
sts can read the exposed uncommitted data; e.g., only to the average computing class of transactions in t|

€.



(rs + x) <= seats then rs:=rs+x

else reject:= reject+l

The consistency constraint Q in this case 1is:
Q(S) iff S(rs) < S(seats)
sume:
S = {seats = 100, rs = 95, rejects = 10},

T =reserve(5), dep(T) = {reserve(3)}

t the execution be X = X7 o Xgepr) o Xor where C'T is defined by Definition 12. We would like to he
er X: 5" = {rs = 95,rejects = 11}, that is, T’s reservations were made and later canceled by running C
d dep(T')’s reservations were rejected. And that is exactly what we get by our definition. Observe how ’
ervations were canceled, but still its indirect impact on rejects persists since T caused dep(T')’s reservatic
be rejected.

Hence, this example demonstrates an execution that is not atomic but is nevertheless intuitively acceptab
d the transaction in dep(T') been executed alone, it would result in successful reservations. In formal terr
can define a relation S’ RS” to hold only if @ is satisfied by both states, and then state that the executi
R-atomic. Notice how in this example the operation of C'T" can be implemented as inverse of T’s operati
Idition and subtraction). The less interesting case, where there are enough seats to accommodate both T' a
p(T'), also fits nicely. In this case C'T’s subtraction on the entity seats commutes with dep(7)’s addition

s entity.

2 Storage Management Examples

e following example is from [MGG86], though the notion of compensation is not used there. Consider trai
sions 77 and 15, each of which adds a new tuple to a relation in a relational database. Assume the tup
ded have different keys. A tuple addition i1s processed by first allocating and filling in a slot in the relatio
ble file, and then adding the key and slot number to a separate index. Assume that 7;’s slot updating (.5;) a
lex insertion (I;) steps can each be implemented by a single page read followed by a single page write (writt
tp], w;tp] for a tuple file page p, and r;[ip], w;[ip] for an index file page p).

Consider the following execution of 77 and 7% regarding the tuple pages t¢q,%r and the index page ip:

< rl[tQ]a wl[tQ]a Tz[t?“], wz[tr],rz[ip], wz[ip], Tl[ip], wl[ip] >

This is a serial execution of < S7, S5, Is, I1 >, which is equivalent to the serial execution of executing
d then 75. Assume, now, that we want to abort 7. The index insertion /; has seen and used page p, which w
itten by 75 in its index insertion step. The only way to abort 75, without aborting 77 is to compensate for ’
rtunately, we have a very natural compensation, C'7T5, which 1s a delete key operation. Observe that a dele
eration as compensation commutes with insertion of a tuple with a different key, and encapsulates compos
mnpensation for the slot updating and index insertion. Compensation in this case is performed by logical un
d hence the resulting execution is atomic (Theorem 1).

An entire class of applications for compensation (similar to the above example) can be found in the conte
storage management in a database system. It is difficult to isolate the effects of an operation at the stora

inagement level. Therefore, these effects are exposed to all the transactions. We list several specific examp
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yxamples

this chapter, we present several examples to illustrate the various concept we have introduced so far. Throug
t this section we use the symbols T, CT, dep(T), X, and S to denote a compensated-for transaction,

npensating transaction, the corresponding set of dependent transactions, the execution of all these trans:
ns, and the execution’s initial state, respectively. A complete example that is based on an actual applicat

described in [SLKS91]. A short overview of this example is found in Section 7.1.

1 Specification Example

> present a specification of what a generic C'T should accomplish. Let update(T, X) denote the set of datab:
fities that were updated by T in execution X. The same notation is used for a set of transactions.
Definition 12. Let X(5) =5, and X = X' o X (by Constraint 2). We specify CT, by characterizing

- all entities e:

S(e) if e¢ update(dep(T), X)
(X'(9))(e) if e € update(dep(T), X)

S'(e) = A e & update(T, X)
Xaep(ry,e(augment(S, X)) if e € update(dep(T'), X)

A e € update(T, X)

Observe that this specification conforms with Constraint 1. Before we proceed, we informally explain t
aning of this type of compensation. If no dependent transaction updates an entity that 7" updates, C'T" undc
s updates on that entity. The value of entities that were updated only by dependent transactions is left inta
e value of entities updated by both 7' and its dependents should reflect only the dependents’ updates as th
pear in X.

There is a certain subtlety in the second case of the definition which is illustrated next. Assume that
dated e. The modified e is read by a transaction in dep(T") and the value read determines how this transacti
dates e’. After compensation, even though the initial value of € is restored (by the first case of the definitio
> indirect effect it had on e’ is left intact (by the second case of the definition).

To further illustrate the type of compensation just described, we give a concrete example. Consider an airl
ervation system with the entity seats that denotes the total number of seats in a particular flight, entity
1t denotes the number of already reserved seats in that flight, and entity reject that counts the number
wnsactions whose reservations for that flight have been rejected. Let reserve(x) be a simplified seat reservati

nsaction for z seats defined as:



serializable.
Example 8. Consider the set entities of Example 6, with the addition of a private entity u that belongs
ne transaction in dep(T). Let the programs of T, dep(T), CT, and the relation R be defined as follows:

T =a:=a+1, CT = a:=a—-1,
dep(T) = {u:=a; ifu>5then f(b) else g(b)}
S'RS"Giff (S'(b) > 0=5"(b) > 0)

en though dep(T)’s execution can branch differently when run alone and in the presence of 7" and C'T), the t

ferent executions produce final states that are related by R.



6 Compensation in Serializable Executions

e requirements from the dependent transactions in Theorems 2 and 3 are quite severe. Besides the -
mmutativity requirement imposed on the operations of the dependent transactions, there are restrictions
> shape of the programs (e.g., fixed or linear programs) in each of the theorems’ premises. In both theorer
>grams of dependent transactions are restricted to have no conditional statements. Clearly, in practice, the
> many transactions that do not stand up to any of these criteria. Reviewing the proofs of Theorems 2 a
it is evident that the major obstacle is the lax restrictions on the interleaving of operations. As a matter
t, only the EWSR assumption and Constraint 2, restrict concurrency in our exposition so far. In particul
mma 2 indicates that operations of the forward, dependent and compensating transactions may interleave
ferent orders for different entities. The almost arbitrary interleavings disallow treating a complete transacti
a semantic unit. Thus, we are forced to build on the semantics of individual operations. The only way to re
an entire transaction 7' was by the projected execution X7r. However, we have already noted that Xp is devc
semantics and is just a syntactic derivative of X. Only if T is fixed or linear, Xp retains the semantics of T'
omplete unit.

For these reasons, it is prudent to re-focus our attention on approximating atomicity by compensations
~cutions that are serializable. Serializability allows one to treat entire transactions as if they are isolated.
rticular, we can treat complete transaction programs as functions, rather than referring to individual ope
ns. Moreover, we can capitalize on the R-commutativity of entire transactions as functions. Consequent
jalizability gives us the leverage to deal with transaction programs with real control flow (i.e., conditio
tements) and go beyond fixed and linear programs.

The only change in our notational machinery is the introduction of the transaction program as a function fre
ttes to states. The specifics of the control flow are abstracted by dealing with a program just as a function.
> the names of transactions, e.g., T, CT, and dep(T) to denote these functions.

Theorem 4. If CT R-commutes with dep(T), then every execution where T is a serialization point
atomic.

proof. Let X be an execution where 7T is a serialization point, and let .S be its initial state. Observe tl
ce both 7" and CT are serialization points, and dep(T) is treated rather as a single (parent) transaction, X

sually serializable.

X(5)

= { both T and CT are serialization points }
(T o dep(T) o CTH(S)

= { function composition }
(dep(T) o CTY(T(S5))

R { R-commutativity assumption }
(CT o dep(T))(T(5))

= { constraint 1 }
(dep(T))(5)

= { Let Y be that execution }
Y()

Theorem 4 i1s quite useful since it specifies a concurrency control policy that guarantees R-atomicity. Name
need to ensure that every potential compensated-for transaction be isolated (i.e., T is a serialization point)
ler to guarantee R-atomicity in case of compensation. In the subsequent parts of this dissertation, we restr
r attention to the use of compensation under the assumption of this theorem; namely, serializability is assume
particular, the results reported in Chapters 6 and 7 deal with compensation in a distributed setting. The

ults rely on Theorem 4 by assuming that at each individual site in the distributed system, the local executi



X =< dep(T):a:=a+2, T: f(a), T :g(b),
dep(T) : g(b), CT :a:=a+2, CT :b:=b+ 10 >

Observe that Xg.p7) and Xcer do not commute but they do R-commute for the given relation R. Let t
tial state be S = {a = 2, b = 15}. We have that X(S) = {a = 4, b = 15}, whereas Y(S) = {a =4, b =
d indeed X is partially R-atomic.

Next, we relax the stringent requirement of having fixed programs.

Definition 10. A program of a transaction is linear if it is a sequence of operations.
ograms are sequences, but we allow operations to read multiple entities, that is, use local variables. Therefo
>grams may not be fixed. An example for a linear transaction program is a program that gives a raise to
ployees, where the raise based on some aggregated computation (for instance 10% of the minimum salary).

Definition 11. Let R be a reflexive relation on augmented states. An operation f that updates e preserves
(Ve' € adb: (S(¢) Rer S'(e')) = (S(S))(e) Re (S(S))(€)))

Theorem 3. Let X be an execution of T, dep(T) and C'T whose initial state is S. If the executions X gep
d Xcr R-commute, X is EWSR, the programs of all transactions in dep(T) are linear, R is transitive, «
> operations of dep(T') preserve R, then X is partially R-atomic.

Proof. Using the proof of Theorem 2 we can show that (Ve € db : Xgep(r),o(S") Re (X(5))(e)), where
ncides with S on the database state. Let ¥ be an execution of the transactions in dep(T') that includes the sa
erations as in Xg.p(r) and in the same order. Such a Y is a legitimate execution since dep(T)’s programs :
ear and have no conditional statements. Next, we show that (Ve € db : Y. (augment(S,Y)) Re Xaep(r),o (S’
wving the above two sets of R, relations, we can apply the transitivity of R entity-wise and complete the pro

Since all programs in dep(T) are linear we can treat Y merely as a sequence of operations, regardless of t
uing transactions. Let fio.. .o f; be the sequence of all the operations of dep(T') in the order of their appearar
X (and hence also in V).

We show that (Ve € adb : Y.(augment(S,Y)) Re Xacp(r),e(S")), where S’ coincides with .S on the datab:
te by induction on k.
= 0: (Ve € adb : Ye(augment(S,Y)) = S(e) = Xgep(r),e(5))-
luctive step: Let f; update e € adb. The final value of database entities other then e is computed by
juence of at most & — 1 operations. Therefore, we can apply the hypothesis of induction and get the followi
'€ adb : (¢ # e) = (Ye(augment(S,Y)) Re Xaepr),er(5'))). Let us focus on e itself. We can say tl
(augment(S,Y)) = fay1(S") and Xgep(r),e(S") = fay1(S") with the appropriate S”, and S”'. Since ea
rument of fi, is computed using less than & operations in both X and Y, we can apply the hypothesis
luction and get (Ve € adb : S”"(e) Re 5" (e)). Since fj preserves R we have completed the proof.

Example 7. Consider the set entities of Example 4, with the addition of a private entity u that belor
some transaction in dep(T). We use the relation S* R S iff ((S'(b) > S'(a)) = (S”(b) > S"(a))). T

scution X is as follows:
X=<T:a=a+1,dep(T):u:=a, dep(T) : b :=u+10, CT:a:=a—1>

serve that Xcor and Xgepr) R-commute (but do not commute), dep(T') is linear (but not fixed), and X
artially) R-atomic.



Theorem 2. Let X be an execution of T, dep(T), and CT whose initial state is S. If the executions Xp/ a
7 R-commute for every transaction T' € dep(T), X is EWSR, and all programs of transactions in dep(T)
ed, then X 1s partially R-atomic.

We first state a lemma that is used in several of the proofs.

Lemma 2. Let X be an execution of T, dep(T), and CT. Let Ty and Ty be some disjoint sets of transactic
ch that Ty UT, = dep(t). If X is EWSR, then for all entities e:

Xe = XTl,e o XT,e o XTg,e o XCT,e

The proof of the lemma is a straightforward application of the assumption that X is EWSR along w
posing Constraint 2. We now turn to the proof of Theorem 2.

Proof. Let Y be an execution of the transactions in dep(T) that includes the same operations as
ep(r) and in the same order. Such a Y is a legitimate execution since dep(1')’s programs are fixed. First,
serve that since the programs of transactions in dep(T') use no private entities, for all states S and entities
ep(7),e(S) = (Xaep(r)(5))(e) = (Y(S))(e). Since Xor and Xp R-commute for every 7" € dep(1'), then

> definition of R, and Lemma 1 we make a second observation:

(Xere o X1 o )(augment(S, Xer o X1))
Re
(X7 0 Xere)(augment(S, X7 o Xer))

ere T C dep(T). We proceed as follows:

(X(S)(e)
= { Lemma 1 and Lemma 2 }
(X7,c 0 Xer o) (X1, e 0 Xr o) (augment(S, X)))
R. {second observation }
(Xereo X7, o)(augment(( X1, . o Xr o )(augment(S, X)), Xer o X1,))
= { private entities are partitioned and updated only once }
(Xereo X7, o) (X7, 0 0 X o) (augment(augment(S, X), Xer o X1,)))
= { Constraint 1 and programs of dep(T') have no private entities }
Kuep1), ()

= { first observation }

(Y(5))(e)
hus, we have that for all entities e, (Y(5))(e) R. (X(S5))(e), and hence X is partially R-atomic.

Example 6. Consider a database system with the following entities, parametric operations, and reflex

ation:
db = {a:integer, b:integer}
fle) = ife>2 then e:=e—2
gle) = ife>10then e:=e— 10
SRS iff

(((S(8) > 0 A S'(a) > 10) V(S (a) = 4)) =
((5"(5) > 0 A S"(a) > 10) V (5"(a) = 4)))

The predicates on @ are present only to demonstrate the notion of partial R-atomicity. The execution X

follows (there is no need to give the program of dep(T') since it is fixed):



Achieving even approximated atomicity 1s an intricate problem when the executions are non-serializable,

allow them to be. The obstacle is, as mentioned before, that the programs of transactions in dep(T') s
ferent database states when 7" and CT" are not executed, and therefore may generate an execution Y whi
1 be totally different than the original execution X. Hence, X and Y may not be related as required.

We state several theorems that formalize the interplay among the approximated atomicity notion, concurren
1trol constraints, restrictions on programs of dependent transactions, and commutativity. Each theorem
lowed by a simplified example that serves to illustrate at least part of the theorem’s premises and consequenc
roughout this section, we assume that a compensating transaction complies with Constraints 1 and 2 of Secti
We start with definitions of weaker forms of commutativity and weaker forms of atomicity.

Definition 5. Two functions from augmented states to augmented states, X and Y, commute with respect
elation R on augmented states (in short, R-commute), if for all augmented states S, (X oY )(S) R (Y o X)(:

serve that when R is the equality relation we have regular commutativity.

Definition 6. Let X be an execution of T, dep(T), and CT whose initial state is S, and let R be a reflex
ation on augmented states. The execution X is atomic with respect to R (in short R-atomic), if there exi

execution Y of dep(T) whose initial state is S such that Y(S) R X(S5).
serve that regular atomicity is a special case of R-atomicity when R is the equality relation. Since R
lexive, the empty execution is always R-atomic, regardless of the choice of R.

We motivate the above definitions by considering adequate relations R in the context of R-commutativ
d R-atomicity. Let @ be a predicate on database states such that Ogepry) = Q. @ can be regarded as eitl
onsistency constraint, or a desired predicate that is established by dep(T) (similarly to the predicate Q
nstraint 3). Therefore, we would like to guarantee that compensation does not violate ). Define R (in t
itext of X, Y and 5) as follows:

Y(S) R X(S) iff (QY(S)) = Q(X(5)))

| R-atomic execution with such? R has the advantageous property that predicates like () are not violated
> compensation. Such R-atomic executions yield states that approximate states yielded by atomic executic
the sense that both states satisfy some desirable predicates. In the examples that follow the theorems, we 1
ations R of that form.

Definition 7. Let S’ R S”, and let a and b be values of entity e. We define a relation with respect to e, T
e’s values as follows: a R b iff ((S'(e)=a N S"(e) =b) Va=0b)

Definition 8. Let X be an execution of T, dep(T) and CT whose initial state is S, and let R be a reflex
ation on augmented states. The execution X is partially R-atomic if there exists an execution Y of dep(
ose initial state is S such that (Y(S))(e) Re (X(S))(e) for all database entities e.

When an execution is partially R-atomic, its final state can be partitioned as follows. For some entities,

> effects of T" were completely removed, whereas for the rest of the entities, their values are related to the valt
2y would have had, had 7" never been executed.
Definition 9. A program of a transaction is fived if it is a sequence of operations that use no private entit
arguments.
[’s program is fixed then it has no conditional branches. Moreover, T' cannot use local variables to store val
- subsequent referencing. A sequence of operations, where each operation reads and updates a single datab:

ity (without storing values in local variables) is a fixed transaction.

2Since such a relation is anti-symmetric, we take care to always position the desired, hypothetical, execution (Y in this case)
- left-hand side, and the actual execution (X in this case) in the right-hand side of the relation.



mpensatory operations can be ‘brought together’, and then cancel each other’s effects (by the enforcement
nstraint 1), thereby ensuring atomic executions. The following theorem formalizes this idea.

Theorem 1. Let X be an execution involving T, dep(T) and CT. If each of the operations in X gep
mmutes with each of the operations in Xor, then X is atomic.

We illustrate this theorem by the following simple example:

Example 5. Let 73, T; and C7T; be a compensated-for transaction, a dependent transaction and t
mnpensating transaction, respectively. Let the programs of all these transactions include no condition statemer
., they are sequences of operations). We give an execution X, in which each operation is prefixed by the na

the issuing transaction.
X=<Ti:a=a+2, Tj:u:=b Tj:a=a+u, CLi:a:=a—2)>

carly, every operation of T; commutes with every operation of C'7; in X. Hence, X is atomic, and the executi

1t demonstrates atomicity is simply
Y = Xp, =<Tj:u=b"Tj:a:=a+u>

will become clear in Section 2.5, the fact that no condition statements appear in 7; is important.

Theorem 1 sets the stage for the use of logical undoing as the means for compensation. When applicab
ical undoing allows exposing uncommitted updates early, yet ensures atomicity in case the updating transacti
orts. These benefits, however, can be attained only when the undo operations commute with the operations
> dependent transactions as prescribed in Theorem 1. We do not elaborate any further on logical undoing as
s already been studied thoroughly (e.g, refer to [BSW88, WHBM90, MHL*90, ML89]. One point we would |
point out, however, concerns the perspective we advocate regarding logical undo. Typically, commutativ
d logical undo are mentioned as means to enhance concurrency. OQur point of view slightly shifts the emphas
> underline the ability to logically undo an externalized transaction, yet retain atomicity without resorting
scading aborts.

Our main emphasis in this chapter is on more liberal forms of atomicity by compensation, where the resu
executing the dependent transactions in isolation may be different from their results in the presence of t
npensated-for, and the compensating transactions. One way of characterizing these weaker forms of atomic
by qualifying the set of entities for which the equality in Definition 4 (atomicity definition) holds. In Section 3

define a type of compensating transaction that ensures atomicity with respect to a certain subset of entiti
ir main contribution, however, focuses on other weak forms of atomicity that approximate in a semantic ser

re atomicity.

5 Approximating Atomicity

this section we introduce weak forms of atomicity by compensation, where the results of an execution th
ludes compensation only approzimate the results of executing the dependent transactions in isolation.

Let us denote the execution of transactions 7', dep(T), and C'T as X, and the execution without compensatic
., an execution of only dep(T'), as Y. In an approximated form of atomicity, the final state of X is only rela
the final state of Y.

The relation should serve to constrain C7'; and prevent it from violating consistency constraints and otl
sirable predicates established by dep(T'). Thus, the relation should enforce some ‘goodness’ properties, -
tance: “if a consistency constraint predicate holds on the final state of Y, 1t should also hold on the final st:
X7



crucial since T’s effects are undone by C'T, and hence, predicates established by 7" and preserved by dep(T')
t persist after the compensation. It is the responsibility of whoever defines C'T" to enforce Constraint 3.
Constraints 1 and 2 will be assumed to hold for all compensating transactions, hereafter. Constraint 3, wh

more intricate and captures more of the semantics of compensation, will be discussed further in Section 2.

4 Atomicity by Compensation

r some applications, it is acceptable that an execution of the dependent transaction, without the compensate
~and the compensating transactions, would produce different results than those produced by the executi
th the compensation. On the other hand, other applications might forbid compensation unless the outcome
se two executions is the same. Next, we make explicit the above criterion that distinguishes among types
mpensation by defining the notion of atomicity by compensation.

Definition 4. Let X be the execution of T, CT, and dep(T) whose initial state is S. LetY be some executs
only the transactions in dep(T) whose initial state is also S. The execution X is atomic by compensation
ort, atomic), if X(S) =Y (9).

The execution Y can be any execution of dep(T'). As far as the definition goes, different sets of (sub)transactic
dep(T) may commit in X and in Y, and conflicting operations may be ordered differently. The key point
b X(S) =Y (S). If an execution is atomic then compensation does not disturb the outcome of the depende
nsactions. The database state after compensation is the same as the state after an execution of only t
pendent transactions in dep(7T). All direct and indirect effects of the compensated-for transaction, T, he
en erased by the compensation.

Transactions in dep(T') see different database states when 7" and C'T are not executed, and therefore gener:
execution Y which can be totally different than the execution X. This distinction between the executions
d Y, which is the essence of the important notion of atomicity by compensation, would not have been possil
d we viewed a transaction merely as sequence of operations rather than a program.

A delicate point arises with regard to atomicity when .S does not satisfy Igep(7). Such situations may occ
en 1" establishes Iyc,(7) for dep(T') in such a manner that dep(1') must follow 7" in any execution. Hence,
is compensated-for, there is no execution of dep(T), Y, that can satisfy the atomicity requirement. We mo
h situations by postulating that if I4.,(7)(S) does not hold, then Y'(S) results in a special state (the undefir
te) that is not equal to any other state and hence X is indeed not atomic.

Example 4. We illustrate Definition 4 by considering the following two executions over read and wr

erations (the notation r;[e] denotes reading e by T;, and similarly w;[e] for write, and ¢; for commit):

W = <uwjle], rile], ¢, ¢ >
Z = <wjle], rile], wile], ¢ >

e execution W is recoverable [BHGRT]. History Z is not recoverable. If however, C'T} is defined, 7} can still
orted. Let us extend Z with the operations of CT; and call the extended execution Z’. Z’ is atomic provid
it Zp would have been generated by 7;’s program, and the same value would have been written to e’, had
1 in isolation starting with the same initial state as in 7.

The key notion in the context of compensation, as we defined it, 18 commutativity of compensating operatic
th operations of dependent transactions. Significant attention has been devoted to the effects of commutat
erations on concurrency control [Kor83, Wei88 BR87, Reu82]. Our work parallels these results as it explo
mmutativity with respect to recovery. In all of our theorems we prefer to impose commutativity requirements
" rather than on T, since C'T is less exposed to users, and hence constraining it, rather than constraining 7"

ferable. Predicated on commutativity, the operations of the compensated-for transaction and the correspondi



o T; reads e after I} has updated e.
o T} does not abort before T; reads e.

o Every transaction (if any) that updates e between the time T; updates e and Tj reads e, is aborted before
reads e.

The above definition is adapted from the definition of “reads-from” of [BHG8T7].

The key point is that admitting executions that do not avoid cascading aborts and supporting the undo
mmitted transactions is predicated on the existence of the compensatory mechanisms needed to handle undoi
ternalized transactions. In the sequel, T" denotes a compensated-for transaction, C'T" denotes the correspondi
mpensating transaction, and dep(T) denotes a set of transactions that depend on 7. This set of depende
nsactions can be regarded as a set of related (sub)transactions that perform some coherent task.

Constraint 1. For all executions X, if Xr .o Xcr o is a contiguous subsequence of X., then (X7 .o Xeor )
where I 1s the identity mapping.

The simplest interpretation of Constraint 1 is that for all entities e that were updated by T but read by
ler transaction (since Xeop . follows X7 . immediately in the execution), C7T" amounts simply to undoing
nsequently, if there are no transactions that depend on T', (i.e., no transaction reads 7’s updated data entitie
=n C'T'is just the traditional undo(T'). The fact that CT does not always just undo T is crucial, since the effe
compensation depend on the span of execution from the execution of the compensated-for transaction till
1 initiation. If such a span exists, and T has dependent transactions, the effects of compensation may vz
d can be very different from undoing 7". The fact that compensation degenerates to simple undo as specifi
Constraint 1, is used later in the dissertation. In Chapter 7, traditional undo 1s modeled by a compensati
nsaction.

There are certain operations that cannot be undone, or ev
npensated-for. In [Gra81] these type of operations are termed real (e.g., dispensing money, firing a 1
). Constraint 1 does not apply for these type of operations. For simplicity, we do not discuss compensati
- real operations in this chapter. We defer discussion of non-compensatable operations to Section 6.5.

Definition 3. A transaction T is a serialization point in an evecution X if X = X' o Xy o X", such i

transaction has operations both in X' and in X".

Constraint 2. A compensating transaction must be a serialization point.

This constraint is referred to as isolation of recoveries and it plays a key role later in the dissertation. It asse
Wt a transaction should either see a database state affected by T' (and not by CT'), or see a state following C”
mination. More precisely, transactions should not have operations that conflict with C'T”s operations schedul
th before and after C'T’s operations, or in between C'77s first and last operations. It is the responsibility
> concurrency control protocol to implement this constraint. This constraint is elaborated later on in t
sertation and protocols for enforcing it are devised (see Section 5.3).

In what follows, we use the notation Op and Ir to denote the output and input predicate of transacti

respectively. The same notation is used for a set of transactions. These predicates are predicates over t
tabase state.

Constraint 3. Let Q be a predicate defined over the database state, if (Ouepery = Q) A (Ip = Q) 1
T = Q.
nstraint 3 is appropriate when ) is a either general consistency constraint, or a specific predicate that
ablished by dep(T) (that is, one of the collective tasks of the transactions in dep(T) was to make @ tru
ormally, this constraint says that if @) was established by dep(7T'), and is not violated by undoing 7' (sir

= @), then it should be preserved by C'T. Observe that the assumption that @ holds initially (i.e., Ip =



Proof. Let X = X' o f;, where X/ = fi o...0 fy—1. The proof is by induction on k. Some of the proofs
s dissertation are in ‘Dijkstra’ style. Namely, each step in the proof is explained by a hint within .

= (:

(X(9))(e)
= { X = I}
S(e)

= { definition 1 }
(augment(S,I))(e)
X (augment(S, X))
ductive step: Observe that X (augment(S, X o X)) = X (augment(S, X)). This holds since private entities :
dated only once, and are used only after being updated. Therefore, updating private entities in X' is irreleve
the execution X in this case.
Xe(augment(S, X))
= { projection }
((Xe)(augment(S, X))(e)
= { definition of X }
[fe((XE)(augment(S, X)))](e)

= { observation above }

(£ ((X7)(augment(S, X7)))](e)
= { hypothesis of induction, entity-wise }

[Fe(X7(5))](e)

= { function composition }

(X(S))(e)

In our discussions we consider the following types of executions:

o A execution X is serial if for every two transactions 7; and 7} that appear in X, either all operations of

appear before all operations of T} or vice versa.
e A execution X is serializable (SR) if there exists a serial execution Y such that X = V.

o A execution X is entity-wise serializable (EWSR) if for every entity e there exists a serial execution ¥ su
that X, =Y..

we shall see shortly, EWSR executions are going to be quite useful in our work. We impose very we

1straints on concurrent executions in order to exclude as few executions as possible from consideration.

3 Specification Constraints

ith the aid of the tools developed in the last section, we are in a position to define compensation more formal
though compensation is an application-dependent activity, there are certain guidelines to which every compe
ing transaction must adhere. After introducing some notation and conventions we present three specificati
1straints for defining compensating transactions. These constraints provide a very broad framework for defini
1crete compensating transactions for concrete applications, and can be thought of as a generic specification -
compensating transactions.

Definition 2. A transaction T; depends on transaction 1; in an execulion if there exists an entily ¢ su

1t the following conditions hold:



A key notion in the treatment of compensation is commutativity. We say that two sequences of operations,
dY, commute, if (X oY) = (Y o X). Two operations conflict if they do not commute. Observe that defini
erations as functions, regardless to whether they read or update the database, leads to a very simple definiti
the key concept of commutativity. Compare our definition to those of [Wei88, BR87] for example.

Part of the orderings implied by the total order in which operations are composed to form an execution :
ditrary, since only conflicting operations must be totally ordered. In essence, our equivalence notion, wh
tricted to database state, is similar to final-state equivalence [Pap86]. However, in what follows, we shall ne
equate executions that are not necessarily over the same set of transactions, which is in contrast to final-st:
nivalence (and actually to all familiar equivalence notions).

We denote by X1 (X71) the sequence of operations of a transaction T (a set of transactions 7) in an executi
involving possibly other transactions. A projection of an execution X on an entity e 1s a subsequence of
1t consists of the operations in X that updated e. We denote the projection of X on e as X.. The sai
tation is used for a projection on a set of entities. When X7 is projected on entity e the resulting sequence

noted X ..

It should be noted that X7 does not reflect the general control structure of the program of T since it is just t
juence of 7”s operations appearing in a particular X. In essence, X7 is a curried function whose dependern
the particular interleaving in X and the particular initial state is embedded in it. The remaining arguments
- are the arguments of its operations. These arguments can still be assigned values that are different from t
lues they were assigned in X itself. For instance, refer to Example 2. In Zp, (S), u is assigned a different va
i in Z(.S). This peculiarity is not relevant to our results, since we concentrate in Section 2.5 on transactic
th fixed control structure (i.e., no conditional statements). Hence, in Section 2.6, when we focus on arbitr:
msactions, we do not deal with sequences like X7 any longer.

When a projection on an entity is applied to a state, we are interested in the resulting value of that particu
ity. Therefore, we use X.(5), as a shorthand for (X.(5))(e).

The astute reader may have noticed that X.(.S) is not well defined, and in particular it is not necessarily equ
(X(9))(e). Since X, includes only operations that update e, and since private entities are updated only on
> value of all private entities is undefined when executions are projected on database entities. To rectify t
omaly we define the function augment from database states and executions to augmented states as follows.

Definition 1. Let S be a database state, and X an execution, then:

wmgmentts: 00 ={ )0y e € - a

In essence, the function augment, assigns private entities the values they hold after X was applied to
erefore, when an execution X is projected on a database entity, by applying it to augment(X, S) rather th
t to S, we avoid the anomaly. We illustrate the function augment and its use in the following example:

Example 3. Let w € (adb — db), and {a,b} C db. Consider the following execution X =< wu

b:= f(u) >. Let S(u) = 0 (undefined value), and S(a) = 1. Then, X;(5) = f(S(u)) = f(P), where
(9))(b) = f(1). However, (augment(S, X))(u) = (X(5))(u) = 1, and then indeed X3 (augment(S, X)) = f(

Essentially, the augmented state augment(S, X) represents the view [Pap86] operations have on the datab:
execution X applied to state S.

Lemma 1. For all executions X

(Ve € adb : (X(9))(e) = Xc(augment(S, X)))



2.2 Executions and Correctness

> use the framework for alternative correctness criteria set forth in [KS88]. Explicit input and output predica
or the database state are associated with transactions. The input predicate is a pre-condition of transacti
scution and must hold on the state that the transaction reads. The output condition is a post-conditi
ich the transaction guarantees on the database state at the end of the transaction provided that there is
wcurrency and the database state seen by the transaction satisfies the input condition. Thus, as in the standz
ydel, transactions are assumed to be generated by correct programs, and responsibility for correct concurre
scution lies with the concurrency control protocol.

Observe that the input and output predicates are excellent means for capturing the semantics of a datab:
stem. We use the convention that predicates (and hence semantics) can be associated with a set of transactio
nilarly to the way predicates are associated with nested transactions in [IKS88]. That is, a set of transactions
bposed to collectively establish some desirable property, or complete a coherent task. This convention is me
ful in domains where a set of subtransactions are assigned a single complex task.

We do not elaborate on the generation of interleaved or concurrent executions of sets of transaction prograr
ce this is not central to understanding our results. However, the notion of an execution, the result of t|
erleaving, is a central concept in our model. A ezecution is a sequence of operations, defining both a total orc
iong the operations, as well as a function from augmented states to augmented states that is the functior
mposition of the operations. We use the notation X =< fi,...,f, > to denote an execution X in whi
eration f; precedes fiy1, 1 < ¢ < n. Alternatively, we use the functional composition symbol ‘o’ to compc
erations as functions. That is;, X = f; o...0 f, denotes the function from augmented states to augment
tes defined by the same execution X. We use the upper case letters at the end of the alphabet, e.g., X,V
denote both the sequence and the function an execution defines.

The equivalence symbol ‘=’ i1s used to denote equality of executions as functions. That is, if X and Y :
scutions, then X =Y means that for all augmented states S, X(S) = Y(5). Observe that since executic
d operations alike are functions, the function composition symbol ‘o’ is used to compose executions as well
erations.

When a (concurrent) execution of a set of transaction programs A is initiated on a state S and generates
scution X, we say that X is a ezecution of A whose initial state is S.

Example 2. Consider the transaction program 77 of Example 1. Since 7 has a conditional stateme
re are two possible executions, X and Y, which can be generated when 77 is executed in isolation. We list t

scutions as sequences of operations:
X = <u:=av:=bc:= fle,v) >,
Y = <ui=avi=bw:=cb:=gluw) >
t S={a=1,b=0, ¢ =2} be database state, then S is an initial state for X. X(S) = 5, wh
¢) = f(2,0). Consider a concurrent execution of Ty and T3 of the previous example. We show two (out of t
wy possible) executions, 7 and W, whose initial state is S given above. Each operation is prefixed with t
me of the transaction that issued it.
Z =< Ty:a:=0,Ty:u:=a, Io:b:=1,
Ty:vi=b Ty :w:=c, Ty : b := g(u,w) >
W =< Ty:a:=0,T5:b:=1, Ty :u:=a,
Ty:vi=b Ty :w:=c, Ty : b := g(u,w) >

serve that Z(S) = W(S) = 5", where " = {a=0, b =¢(0,2), ¢=2}. Observe that 7 = W.



Entities in our scheme can be of arbitrary granularity and complexity. Examples for entities are pages of d:
d index files, or abstract data types like stacks and queues. Accordingly, sample reading operations are re
bage, stack top, is-empty queue, and sample updating operations are write a page, stack push and pop, a
ertion into a queue. Notice that the above sample reading operations only read the database state withc
dating it. On the other hand, a blind write only updates the database state but does not read it. Final
suming integer-type entities; an increment operation both reads and updates an integer entity.

We are in a position now to introduce the notion of a transaction as a program. A transaction program i

juence of program statements, each of which is either:
e An operation.

o A conditional statement of the form:
if b then SS51 else 552

where SS1 and SS52 are sequences of program statements, and b is a predicate that mentions only priv:

entities and constants.
> impose the the following restrictions on the operations that are specified in the statements:

e The set of private entities is partitioned among the transaction programs. An operation in a program cant

read nor update a private entity that is not in its own partition;
e private entities are updated only once;
e An operation reads a private entity only after another operation has updated that entity.

ese restrictions are for the sake of convenience in proofs and they do not restrict the expressibility of the mod
Example 1. Consider the following sets of entities: db = {a, b, ¢}, and adb = dbU{u, v, w}, and the followi

o transaction programs, 77 and 75:

Ti: begin
u:=a;
v:=b;
if u > v then c:= f(c,v)
else begin
W:i=c;
b:= g(u,w)
end
end
T2 begin
a:=0;
b:=1
end

serve that operation £ both updates and reads entity ¢. 75 illustrates operations that read no entities.



ce originally transactions read data items updated by 7" and acted accordingly, whereas now 7”s operations he
nished but its indirect impact on its dependent transactions is still apparent. The only formal way to examin
npensated execution is by comparing it to a hypothetical execution of only the dependent transactions, withc
> compensated-for transaction. We use the comparison of the compensated execution with the hypotheti
~cution that does not include the compensated-for transaction, as a key criterion in our exposition. Generati
s hypothetical execution and studying it requires the introduction of the transactions’ programs which a
refore, indispensable for our purposes.

A transaction program can be defined in any high-level programming language. Programs have local (i.
vate) variables. In order to support the private (i.e., non-database) state space of programs we define t
1cept of an augmented state. The augmented state space is the database state space unioned with the priv:
tte spaces of the transactions’ programs. The provision of an augmented state allows one to treat reading a
dating the database state in a similar manner. Reading the database state is translated to an update of t
gmented state, thereby modeling the storage of the value read in a local variable.

Thus, a database, denoted as db, is a set of data entitics. The augmented database, denoted as adb, is a set
ities that is a superset of the database; that is, db C adb. An entity in the set (adb — db) is called a priv
tity. Entities have identifying names and corresponding wvalues. A state is a mapping of entity names to ent
lues. We distinguish between the database state and the state of the augmented database, which is referred
the augmented state. We use the notation S(e), to denote the value of entity e in a state S. The symbols
d e (and their primed versions, S’ ', etc.) are used, hereafter, to denote a state and an entity, respectively

Another deviation from the classical transaction model is the use of semantically-richer operations instead
> primitive read and write. Having such operations allows refining the notion of conflicting versus commutat
erations [BR87, Wei88]. That is, it is possible to examine whether two operations commute and hence can
scuted concurrently. By contrast, in the classical model, there is not much scope for such considerations sir
vrite operation conflicts with any other operation on the same entity.

An operation 1s a function from augmented states to augmented states that is restricted as follows:
e It updates at most one entity (either a private or a database entity);

e it reads at most one database entity, but it may read an arbitrary number of private entities;

e it can both update and read only the same database entity.

> use the shorthand notation eg := f(ey,...,ex) to denote a single operation f. We say that f updates ent
“and reads entities ey, ..., ex. The arguments of an operation are all the entities it reads. There are two spec
mination operations, commat, and abort, that have no effect on the augmented state. Operations are assum
be executed atomically.

It is implicitly assumed that all the arguments of an operation are meaningful; that is, a change in their val
1se a change in the value computed by the operation. The operations in our model reconcile two contradictc
als. On the one hand, operations are functions from augmented states to augmented states, thereby giving t
xibility to define complex and semantically-rich operations. On the other hand, the mappings are restrict

that at most one database entity is accessed in the same operation, thereby making it feasible to all
mic execution of an operation. Although only one database entity may be accessed by an operation,
wy local variables (i.e., private entities) as needed may be used as arguments for the mapping associated w
> operation. Having private entities as arguments to operations adds more semantics to operations. Havi
1ctions for operations allows us to conveniently compose operations by functional composition, thereby maki

juences of operations functions too.



serving some sense of atomicity. Initiating a compensating transaction is caused by a decision to abort t
ward transaction. In order to maintain (at least relaxed) atomicity, we claim this decision to be non-reversil
d make sure it is robust to failures of all sorts.

There are other special characteristics. A compensating transaction does not exist by its own right; it is alwe
rarded within the context of the forward transaction, and it 1s always executed after the forward transaction.
mnpensating transaction is driven by a program that is a derivative of the program of the forward transactic
e binding of forward and compensating transactions is explicit, and is realized as the compensating transacti
s as input a trace of the execution of the forward transaction (in the form of the latter’s log records, -
ample).

A mundane example taken from “real life” exemplifies some of the characteristics of compensation. Conside
tabase system that deals with transactions that represent purchasing of goods. Consider the act of a custon
urning goods after they have been sold. The compensated-for transaction in that case i1s a particular purcha
d the compensating transaction encompasses the activity caused by the cancellation of the purchase. T
npensating transaction is bound to the compensated-for transaction by the details of the particular sale (e.
ce, method of payment, date of purchase). The effects of purchasing transaction might have been externaliz
different ways. For instance, it might have triggered a dependent transaction that issued an order to t
bplier in an attempt to replenish the inventory of the sold goods. Furthermore, the customer might have be
ded to the store’s mailing list as a result of that particular sale. The actual compensation depends on t
evant policy. For example, the customer may be given store credit, or full refund. Whether to cancel the orc
m the supplier and whether to retain the customer in the mailing list are other application-dependent isst

th which the compensating transaction must deal.

2 A Transaction Model

the classical transaction model [Pap86, BHGS87] a transaction is viewed as a sequence! of read and wr
erations that map consistent database states to consistent states when executed in isolation. A concurre
scution of a set of transactions is represented as an interleaved sequence of read and write operations, and
d to be serializable if it is equivalent to a serial (non-concurrent) execution. Serializability is the correctn
terion of this model.

This approach poses severe limitations on the use of compensation. First, sequences of uninterpreted rea
d writes are of little use when the semantically-rich activity of compensation is considered. Second, the 1
serializability as the correctness criterion for applications that demand interaction and cooperation amco
ssibly long-duration transactions was questioned by the work on concurrency control in [KS88, KKB88, FOS
1ce we target compensation as a recovery mechanism for these kind of applications, our model does not rely

1alizability as the only correctness notion.

2.1 Transactions and Programs

transaction is a sequence of operations that are generated as a result of the execution of some program [Gra8
e exact sequence that the program generates depends on the database state “seen” by the program. In t
ssical transaction model only the sequences are dealt with, whereas the programs are abstracted and are
le use. Given a concurrent execution of a set of transactions (i.e., an interleaved sequence of operatio
mpensation for one of the transactions, 7', can be modeled as an attempt to cancel the operations of 7" wh

ving the rest of the sequence intact. The validity of what remains from that execution is now in serious doul

1'We use a sequence which implies a total order, only for the ease of exposition. One can regard the sequence to be conflict-equival
1G87] to a partial order of operations.



rerse operations are executed in the reverse order of their execution.

It 1s instructive for our purposes to evaluate how the two traditional undo methods affect concurrency. T
ysical method is used, data items that were updated by 7' may be neither read nor written by other transactic
til 7' commits or aborts. This requirement is known as strictness [BHG8T7]. By restricting concurrency in 1|
winner 1t 18 made possible to undo 7" by simply restoring the physical before images of the relevant data iten
te that no operations may access the data items updated by 7" from the point they are affected to the point th
> committed or recovered. Consequently, compensation cannot rely on physical undo methods. The strictne
uirement can be lifted for certain operations if a logical method is used, and thus enhance concurrency. Name
two operations commute, they can be executed concurrently, regardless of whether their issuing transactic
> committed or not. If one of these transactions must be undone, the corresponding inverse operation can s
ncel the effect of the aborted operation. A common example in the context of commutative operations :
-rement and decrement operations which commute with each other and among themselves [Reu82]. A d:
m can be incremented concurrently by two uncommitted transactions. If one of the transactions aborts,
ect can be undone by decrementing the item appropriately, leaving the effects of the other increment inta
cause of the commutativity of the operations, the logical undo yields a state that is identical to the state tl
uld have been reached had the forward transaction never executed. Note that (only) commutative operatic
vy access the data items updated by T from the point they are affected to the point they are committed
overed.

Logical undo is based on the semantics of the operations. A decrement operation is recognized as the inve
increment only since the semantics of both 1s known. Likewise, compensation is a semantically-rich recove
thod. However, it is a generalization of logical undo that is applicable even for non-commutative operatio
ice it 1s not based on commutativity, compensation does not guarantee the undoing of all the direct a
lirect effects of the forward transaction. In particular, some of the effects of the dependent transactions, wh
> indirect effects of 7', may remain intact. Compensation does guarantee, however, that a consistent state
ablished based on semantic information. We emphasize that unlike logical undo, the state of the datab:
er compensation took place may only approximate the state that would have been reached, had the forwe
nsaction never executed. In spite of the differences, compensation is still a method for automatically undoi
msactions, just like the traditional methods. Compensation, however, is applicable in the more general c:
ere the undone transaction has already exposed its updates.

We propose the notion of compensating transactions as the vehicle for carrying out compensation. We 1
> notation C'7" to denote the compensating transaction specific to the forward transaction 7. A compensati
nsaction possesses the fundamental properties of a transaction along with some special characteristics.
pears atomic to concurrently executing transactions (that is, transactions do not observe partially compensat
tes); it conforms to consistency constraints; and its effects are durable. However, a compensating transactior
rery special type of transaction. Under certain circumstances, it is required to restore consistency, rather th
rely preserve it. Also, compensating transactions have a unique failure atomicity requirement which is explain
xt. Compensating transactions cannot voluntarily abort; the choice to either abort or to commit is prese
ly for the forward transaction. A compensating transaction offers the ability to reverse this choice, but t
bability to abort the compensation is not supported. Moreover, the underlying implementation should ascert:
1t once compensation is initiated, it will eventually complete. Namely, compensating transactions should 1
subject to a system-initiated abort. Also, their completion should be guaranteed despite system crashes
her resuming them from a save-point, or retrying them. Finally, a compensating transaction must be design
avoid a logical error leading to abort. This stringent requirement is referred to as persistence of compensati
d is recognized in [GMS87, GM83, Vei89, GMGK190, Reu89]. We elaborate on the mechanisms needed

plement persistence of compensation in Section 4.1.4. The rationale behind persistence of compensation



“hapter 2

ingle-Transaction Compensation

| informal overview of most of the features of compensation is given in Section 2.1. In Section 2.2, we presen
nantically-rich and flexible transaction model. The formal results concerning compensation comprise the r
the chapter. It should be noticed that Sections 2.5 and 2.6 serve as the basis for material presented later

> dissertation.

1 Overview of Compensation

e most common method for obliterating the effects of an aborted transaction 7', is to maintain a recove
- and provide the undo(T) operation which restores the state of data items updated by T to the value th
d just prior to the execution of 7. The undo operation removes all the direct effects of 7" on the databa
wever, if some other transaction has read data values written by 7', undoing 7' is not sufficient. The indire
ects of T must be removed by aborting the transactions that have read 7’s updates, and thus are affect
its execution. Aborting the affected transaction may trigger further aborts. This undesirable phenomenc
led cascading aborts, can result in uncontrollably many transactions being forced to abort because some ot}
nsaction happened to abort.

The purpose of compensation 1s to handle situations where 1t is desired to undo a transaction 7' whe
committed updates have been exposed. Undoing T', however, should not trigger aborting other transactic
1t read the exposed updates; that is, cascading aborts should be avoided. We refer to T" as the compensated-f
forward transaction. The set of transactions that are affected by (reading) the data values written by 7'
erred to as dependent transactions (of T'), and are denoted dep(T). Compensation faces the intricate task
doing the forward transaction while obliterating the effects of the dependent transactions to a minimal exte
d preserving data consistency. Only with the aid of the specific semantics of the application at hand can t|
sk be accomplished. Intuitively, compensating for 7' can be though of as performing (an approximation of) t
rerse of the function performed by 7.

To understand compensation better, we compare and contrast 1t with the traditional methods of transacti
do. There is a dichotomy of the traditional methods into physical (or state-based), and logical methc
R83, MHLT90]. Using physical methods, before a data item is updated by a transaction T, its physical im¢
stored. These images are typically saved on a log, and are referred to as before images. If a transaction abor
> before images of all the data items it has updated are reinstated, thereby restoring the state of the datab:
or to T’s execution. In contrast, logical methods are based on having inverse operations associated with t
erations of transactions. The execution of a forward transaction is recorded on a log, too, however descriptic

d parameters of operations are stored rather than before images. To undo a transaction, the correspondi



- compensating transactions in a recovery management subsystem are highlighted in Chapter 4. In the lat
rt of this chapter we sketch a design methodology for compensating transactions. The transition from sin,
msaction compensation to full-fledge semantics-based recovery of composite transaction in distributed syste
made in Chapter 5. The problem of obtaining transaction atomicity in a distributed system is explained in t|
apter. The concept of isolation of recovery which 1s a backbone of the latter part of the dissertation is informa
ssented there, too. Chapters 6 and 7 present two specific methods for solving the problem of atomicity ir
tributed system [LKS91b, LKS91a]. The common denominators and the differences of these two methods :
derlined in Section 5.6. We review related work, and sketch future research directions in Chapters 8 and

pectively. The dissertation concludes in Chapter 10.



micity is guaranteed as the effects of a transaction that is finally aborted are undone semantically by
npensating transaction. Relaxing standard atomicity interacts in a subtle way with correctness and concurren
trol issues. Accordingly, a correctness criterion that incorporates the isolation property, is proposed. T
rectness criterion reduces to serializability when no global transactions are aborted, and excludes unacceptal
~cutions when global transactions do fail. We devise a family of practical protocols that ensure this correctne
tion. The results on relaxed atomicity are of particular importance for multidatabases, where the local autonos
the integrated systems cannot be compromised.

In summary, the salient contributions of this dissertation are:

e Introducing compensation as the viable solution to the recovery needs of long-duration and cooperat

transactions.
e Specification of formal criteria for the proper use of compensation as a recovery paradigm.
e Applying semantic recovery in distributed databases and analyzing the ramifications.

e Trading standard atomicity for relaxed atomicity, and consequently coming up with pragmatic methods a

protocols that alleviate the inherent difficulties associated with commitment in distributed systems.

2 Structure of the Dissertation

pically a long-duration or a distributed transaction is decomposed into subtransactions [GM83, GMS87, CP8
reby introducing a nested, or multi-level transaction hierarchy [Mos87, BSW88]. This hierarchical layeri
s found useful for cooperative environments as well [KKB88, KLMP84]. The decomposition is often logic
1t 1s, a subtransaction is associated with a coherent unit of work. For a distributed transaction, however, t
composition can be more arbitrary, as all the actions executed at a single site are defined as a subtransactic
e resultant transaction hierarchy introduces spheres of atomicity, since the subtransactions as well as the rc
nsaction possess atomicity properties. It is instructive to cast the intuitive notion of early exposure of upda
thin this well-structured framework. The commit of a subtransaction is an early externalization of upda
m the root transaction point of view.! Thus, if a root transaction is to abort, its committed subtransactio
b»se which have completed their task and exposed their updates, should be compensated-for. In summary,
ng the hierarchical structuring, exposing uncommitted data translates to committing a subtransaction pr
the commit of the root transaction. Accordingly, compensation is applied on a subtransaction basis.

This hierarchical structuring guides a bottom-up structuring of this dissertation. We start with a buildi
ck of a single subtransaction and investigate how a committed subtransaction can be compensated-for.
> course of this exposition, a subtransaction is treated as an independent transactional unit with compl
nantics, and the encompassing hierarchy is entirely disregarded. For instance, the transaction model present
Section 2.1, defines a model for a single (sub)transaction. Only in Chapters 5 and 6, we step one level up a
roduce composite transactions again, mainly in a distributed context. The results obtained earlier are used
vance the study of semantic recovery in the broader scope of composite transactions.

The remainder of this dissertation is organized as follows. Chapter 2 lays the foundation for the thesis by givi
1gorous basis to compensation. In particular, the infringement upon standard atomicity when compensati
employed is pinpointed. The material for this chapter is largely from [KLS90a]. Chapter 3 illustrates t

1damental concepts presented earlier by a set of examples. Practical issues concerning the support need

IThe reader should regard this analogy in the context of a single-level nested transaction, where visibility of updates of a si
nsaction is not restricted to only sibling subtransactions, but is rather not restricted at all. The model we have in mind is akin
as [GMS87] (also known as open nesting), more than to the original nested transactions of Moss [Mos87] (also known as clo

ting).



ration and distributed transaction management, and would provide critical functionality for enterprises bas

cooperative transactions. The thesis defended in this dissertation focuses on semantics-based recovery as t
juisite method. Semantics-based recovery has two dual facets, compensation and retry. The duality of the t
nantic recovery methods is rooted in the traditional undo/redo paradigms [BHGS87].

Semantic undoing, referred to as compensation, is carried out by a compensating transaction which is associat
th a specific forward transaction. A compensating transaction faces the intricate task of undoing its forwe
msaction while obliterating the effects of other transactions to a minimal extent and preserving data consisten
1ly with the aid of the specific semantics of the application at hand can this task be accomplished. Ideal
mpensation can be thought of as performing the inverse of the function associated with the forward transactic
wever, compensating for a transaction does not guarantee the physical undoing of all the direct and indire
ects of the forward transaction. That is, the state of the database after compensation has taken place
ly approximate the state that would have been reached had the forward and compensating transactions nes
~cuted. We formally identify conditions for ensuring that executions with compensations approximate in
“eptable way ideal executions. This formal basis sets forth general requirements from compensating transactic
d shapes a methodology for their design.

Aborting, or compensating-for, a transaction that encompasses elaborate human activity (e.g., a long-runni
nsaction in a collaborative design environment [KKB88]), or intensive and costly computation (e.g., a lor
ning data processing transaction [GMS8T]) is often counter-productive. Instead, it is preferable to identify t
1se for the failure and act accordingly with the objective of saving the work associated with such a transactic
at 1s, under certain circumstances, forward rather than backward recovery is desirable. We refer to t
ivities associated with the forward recovery of a failed transaction as retry. Retry ranges from traditior
lo to automatic execution of code, failure diagnostics and exception handling. Similarly to compensatic
1y depends on the semantics of the application at hand. In this dissertation we concentrate on compensati
hapters 2,3, and 4) and cover retry rather briefly (Section 5.7). Since the two methods have much in comm
d because of their duality, one might expect the results for compensation to carry over for retry, however t|
sumption requires further research. Our results do not rely in any manner on the specifics of retry, howe:
y are amplified once such a method 1s assumed. We acknowledge that there are actions that are neit!
mpensatable nor retriable. The ideas and protocol we devise are such that they can accommodate transactic
turing a blend of actions, some of which are not semantically recoverable.

Supporting atomicity of multi-site transactions in a distributed system is equated with the loss of the lo
tonomy of the individual sites, and the problems of long-duration delays and blocking. The two-phase comr
PC) protocol [Gra78] embodies these deficiencies. These hard problems can be alleviated by employing seman
overy, and by trading standard all-or-nothing atomicity for a weaker notion of relazed atomicity. Facing t
evant impossibility results in distributed computing, this new direction is well justified. Relaxed atomicity
aracterized by an asynchronous process of recovery from decentralized and uncoordinated local decisions as
ether to commit or abort a multi-site transaction. This recovery process finally leads to a unanimous outcon
le to the asynchrony introduced to the commit procedure, non-atomic executions of transactions occur, a

need to 1solate them from other transactions until they are recovered. A formal model that unifies the t
al methods of semantic recovery, namely compensation and retry, is constructed. In this model, an isolati
yperty is defined, and a protocol that satisfies this property is presented.

Based on the notion of relaxed atomicity, we devise a transaction management protocol that combines tv
ase locking [BHGS87] with a variant of 2PC. The protocol is based on the optimistic assumption that in me
ses a transaction that reaches its lock point [BHGS8T7] (i.e., the point where the transaction has already acquir

its locks), will indeed commit. Employing this optimistic protocol, locks may be released early under certe

cumstances, thereby avoiding the maladies of the standard 2PC protocol. Relaxed, rather than standa



“hapter 1

ntroduction

e motivation and a synopsis of the thesis defended in this dissertation i1s summarized in Section 1.1. Secti

 introduces the components and structure of this work, and gives a brief overview of each chapter.

1 Semantics-Based Recovery: Motivation and Thesis

e cornerstone of the transaction paradigm is the notion of atomicity. Transaction atomicity asserts that
nsaction either completes entirely and commits its effects, or aborts and has no visible effect on the databa
e principle that forms the basis for obtaining transaction atomicity in most contemporary database syste:
to allow transactions to access only committed data; data that has been updated by transactions that h:
eady committed. That is, a transaction that requests to access data items affected by another transaction.
layed until the other transaction is committed or aborted. There is a large range of database environments -
ich this standard approach to transaction atomicity is excessively restrictive and even not appropriate. |

rhlight the prominent problems below:

e When transactions are of long duration, the delays caused by waiting for their termination are prolong
accordingly. For short transactions executing concurrently with a long-lived transaction, such delays imp:

response time by orders of magnitude, and are thus intolerable [Gra81].

e In a variety of applications, the transaction paradigm is used to model collaborative activities [KLMP:
HR87, KKB88, RM89]. In order to promote the cooperative nature of these activities there is a need

exchange, and thereby expose, uncommitted data objects among transactions.

e In distributed database systems, atomicity of multi-site transactions is achieved by employing an ator
commit protocol that coordinates among the sites participating in the execution of the transaction. Exposi
updated data to other transactions only after this protocol terminates translates to severe, and actua
unbounded, delays in transaction processing. In particular, if the processing of the transaction at each s

is of different duration, the coordinated commit causes lengthy delays unnecessarily.

e Multidatabases are a specific type of distributed database system where several database systems are
tegrated to enable the processing of multi-site transactions [hdb90]. Enforcing atomicity strictly in su
integrated environments compromises the distinctive and crucial property of autonomy of the individs

systems.

A method that allows exposing uncommitted data, yet preserves transaction atomicity without induci

scading aborts is thus highly desirable. Such a method would alleviate performance problems related to lo
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