
[ZM90] S. B. Zodnik and D. Maier. Readings in Object-Oriented Database Systems. Morgan Kaufmann,

San Mateo, California, 1990.

76

[SGMA89] K. Salem, H. Garcia-Molina, and R. Alonso. Altruistic locking: A strategy for coping with long lived

transactions. In D. Gawlick, M. Haynie, and A. Reuter, editors, Lecture Notes in Computer Sciences,

High performance Transaction Systems, volume 359, pages 175{199. Springer-Verlag, 1989. Also

available as CS-TR-087-87, Computer Science Department, Princeton University. A more recent

version appears as UMIACS-TR-90-104, University of Maryland Institute for Advanced Computer

Studies.

[Ske82] D. Skeen. Non-blocking commit protocols. In Proceedings of ACM-SIGMOD 1982 International

Conference on Management of Data, Orlando, pages 133{147, 1982.

[SKPO88] M. R. Stonebraker, R. H. Katz, D. A. Patterson, and J. K. Ousterhout. The design of XPRS.

In Proceedings of the Fourteenth International Conference on Very Large Databases, Los Angeles,

pages 318{330, 1988.

[SKS91] N. R. Soparkar, H. F. Korth, and A. Silberschatz. Techniques for failure-resilient transaction man-

agement in multidatabases. Technical Report TR-91-10, The University of Texas at Austin, Com-

puter Sciences Department, 1991. Submitted for publication.

[SLKS91] N. R. Soparkar, E. Levy, H. F. Korth, and A. Silberschatz. Adaptive commitment for real-time

distributed transactions. Forthcoming, May 1991.

[Son88] S.H. Son, editor. ACM SIGMOD Record: Special Issue on Real-Time Databases. ACM Press, March

1988.

[SS90] N.R. Soparkar and A. Silberschatz. Data-value partitioning and virtual messages. In Proceedings

of the nineth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

Nashville, pages 357{367, April 1990.

[tm-91] Special issue on advanced transaction models. Data Engineering, 14(1), March 1991.

[Vei89] J. Veijalainen. Transaction Concepts in Autonomous Database Environments. R. Oldenbourg Verlag,

Munich, 1989.

[VW90] J. Veijalainen and A. Wolski. The 2PC agent method and its correctness. Technical Report Research

Notes 1192, Technical research Centre of Finland, December 1990.

[Wei88] W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE Transactions

on Computers, C-37(12):1488{1505, December 1988.

[Wei89] W. E. Weihl. The impact of recovery on concurrency control. In Proceedings of the Eighth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Philadelphia, pages

259{269, 1989.

[WHBM90] G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-level recovery. In Proceedings of the nineth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Nashville, pages

109{123, 1990.

[WV90] A. Wolski and J. Veijalainen. 2PC agent method: Acieving serializability in presence of failures in a

heterogeneous multidatabase. In Proceedings of the International conference on databases, parallel

architectures and their applications (PARBASE), pages 321{330, March 1990.

75

[MKN90] P. Muth, W. Klas, and E. Neuhold. How to handle global transactions in heterogeneous database

systems. Presented at the Workshop on Multidatabases and Semantic Interoperability, Tulsa, Ok-

lahoma, November 1990.

[ML89] C. Mohan and F. Levine. ARIES/IM: An e�cient and high concurrency index management method

using write-ahead logging. Technical Report RJ6846, IBM Research, August 1989.

[MLO86] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in the R* distributed database

management system. ACM Transactions on Database Systems, 11(4):378{396, December 1986.

[Moh89] C. Mohan. ARIES/KVL: A key-value locking method for concurrency control of multiaction trans-

actions operating on B-trees indexes. Technical Report RJ7008, IBM Research, September 1989.

[Moh90] C. Mohan. Commit-LSN: A novel and simple method for reducing locking and latching in trans-

action processing systems. In Proceedings of the Sixteenth International Conference on Very Large

Databases, Brisbane, 1990. A vesion available as IBM research report RJ 7344.

[Mos87] J. E. B. Moss. Log-based recovery for nested transactions. In Proceedings of the Thirteenth Inter-

national Conference on Very Large Databases, Brighton, pages 427{432, 1987.

[MP91] C. Mohan and H. Pirahesh. ARIES-RRH: restricted repeating of history in the ARIES transaction

recovery method. In Proceedings of the Seventh International Conference on Data Engineering,

Kobe, Japan, April 1991.

[MR91] P. Muth and T. C. Rakow. Atomic commitment for integrated database systems. In Proceedings of

the Seventh International Conference on Data Engineering, Kobe, Japan, April 1991.

[Pap86] C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science Press,

Rockville, Maryland, 1986.

[PKH88] C. Pu, G. Kaiser, and N. Hutchinson. Split-transactions for open-ended atctivities. In Proceedings

of the Fourteenth International Conference on Very Large Databases, Los Angeles, pages 26{37,

1988.

[PL91a] C. Pu and A. Le�. Execution autonomy in distributed transaction processing. Technical Report

CUCS-024-91, Department of Computer Science, Columbia University, 1991.

[PL91b] C. Pu and A. Le�. Replica control in distributed systems: An asynchronous approach. In Proceedings

of ACM-SIGMOD 1991 International Conference on Management of Data, Denver, Colorado, pages

377{386, May 1991.

[RELL90] M. E. Rusinkiewicz, A. K. Elmagarmid, Y. Leu, and W. Litwin. Extending the transaction model

to capture more meaning. SIGMOD Record, 19(1):3{7, March 1990.

[Reu82] A. Reuter. Concurrency on high-tra�c data elements. In Proceedings of the ACM SIGACT-

SIGMOD Symposium on Principles of Database Systems, Los Angeles, pages 83{92, 1982.

[Reu89] A. Reuter. ConTracts: A means for extending control beyond transcation boundaries. Presentation

at 3rd Workshop on High Performance Transaction Systems, Paci�c Grove, CA, September 1989.

[RM89] K. Rothermel and C. Mohan. ARIES/NT: A recovery method based on write-ahead logging

for nested transactions. In Proceedings of the Fifteenth International Conference on Very Large

Databases, Amsterdam, 1989. A longer version is available as IBM Research report RJ 6650 (63961).

74

[KS88] H. F. Korth and G. Speegle. Formal model of correctness without serializability. In Proceedings of

ACM-SIGMOD 1988 International Conference on Management of Data, Chicago, pages 379{388,

June 1988.

[KS90] H. F. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill, New York, 1990. Second

Edition.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of

the ACM, 21(7):558{565, July 1978.

[Lam81] B. W. Lampson. Atomic transactions. In Lecture Notes in Computer Science, Distributed Systems

| Architecture and Implementation: An Advanced Course, pages 246{265. Springer-Verlag, Berlin,

1981.

[LC87] T. J. Lehman and M. J. Carey. A recovery algorithm for a high-performance memory-resident

database system. In Proceedings of ACM-SIGMOD 1987 International Conference on Management

of Data, San Francisco, pages 104{117, 1987.

[Lin80] B. G. Lindsay. Single and multi-site recovery facilities. In Distributed Databases, chapter 10, pages

247{284. Cambridge University Press, Cambridge, U.K., 1980. Also available as IBM Research

Report RJ2571, San Juse, July, 1979.

[LKS91a] E. Levy, H. F. Korth, and A. Silberschatz. An optimistic commit protocol for distributed transaction

management. In Proceedings of ACM-SIGMOD 1991 International Conference on Management of

Data, Denver, Colorado, pages 88{97, May 1991.

[LKS91b] E. Levy, H. F. Korth, and A. Silberschatz. A theory of relaxed atomicity. In Proceedings of the ACM

SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August 1991. To appear.

[LYI87] Y.-H. Lee, P. S. Yu, and B. R. Iyer. Progressive transaction recovery in distributed DB/DC systems.

IEEE Transactions on Computers, C-36(8):976{987, August 1987.

[Lyn83] N. Lynch. Multi-level atomicity. ACM Transactions on Database Systems, 8(4):484{502, December

1983.

[map89] Multidatabase services on ISO/OSI networks for transactional accounting. Technical Report

MAP761B, SWIFT, INRIA, GMD/FOKUS, University of Dortmund, 1989. Final Report, Edited

by S.W.I.F.T. Society for Worldwide Interbank Financial Telecommunications s.c. 81 avenue Ernest

Solvay, B-1310 La Hulpe, Belgium.

[MD89] D. R. McCarthy and U. Dayal. The architecture of an active data base management system. In

Proceedings of ACM-SIGMOD 1989 International Conference on Management of Data, Portland,

Oregon, pages 215{224, June 1989.

[MGG86] J. E. B. Moss, N. D. Gri�eth, and M. H. Graham. Abstractions in recovery management. In

Proceedings of ACM-SIGMOD 1986 International Conference on Management of Data, Washington,

pages 72{83, 1986.

[MHL

+

90] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A transaction recovery

method supporting �ne-granularity locking and partial rollbacks using write-ahead logging. Tech-

nical Report RJ 6649 (63960), IBM Research, February 1990. A revised vesion. To appear in ACM

Transactions on Database Systems.

73

[hdb90] Special issue on heterogeneous databases. ACM Computing Surveys, 22(3), September 1990.

[Her90] M. Herlihy. Apologizing versus asking permission: optimistic concurrency control for abstract data

types. ACM Transactions on Database Systems, 15(1):96{124, March 1990.

[HMS88] R. Haskin, Y. Malachi, and W. Sawdon. Recovery management in QuickSilver. ACM Transactions

on Computer Systems, 6(1):82{108, February 1988.

[HR83] T. Haerder and A. Reuter. Principles of transaction oriented database recovery | a taxonomy.

ACM Computing Surveys, 15(4):289{317, December 1983.

[HR87] T. Haerder and K. Rothermel. Concepts for transaction recovery in nested transactions. In Pro-

ceedings of ACM-SIGMOD 1987 International Conference on Management of Data, San Francisco,

pages 239{248, 1987.

[HS91] M. Hsu and A. Silberschatz. Unilateral commit: a new paradigm for reliable distributed transaction

management. In Proceedings of the Seventh International Conference on Data Engineering, Kobe,

Japan, pages 286{293, April 1991.

[Joh90] W. Johannsen. Transaction models for federative distributed database systems. In Proceedings of

the International Conference on Information Technology (InfoJapan 90), pages 285{292, 1990.

[KB91] N. Krishnakumar and A. J. Bernstein. Bounded ignorance in replicated systems. In Proceedings

of the tenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

Denver, pages 63{74, May 1991.

[KKB88] H. F. Korth, W. Kim, and F. Bancilhon. On long duration CAD transactions. Information Sciences,

46:73{107, October 1988.

[KLMP84] W. Kim, R. Lorie, D.McNabb, andW. Plou�e. Nested transactions for engineering design databases.

In Proceedings of the Tenth International Conference on Very Large Databases, Singapore, pages

355{362, 1984.

[KLS90a] H. F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by compensating transac-

tions. In Proceedings of the Sixteenth International Conference on Very Large Databases, Brisbane,

pages 95{106, August 1990.

[KLS90b] H. F. Korth, E. Levy, and A. Silberschatz. An optimistic two-phase commit protocol. Technical Re-

port TR-90-31, The University of Texas at Austin, Computer Sciences Department, 1990. This work

was presented in the Workshop on Multidatabases and Semantic Interoperability, Tulsa, November,

1990.

[Koo90] G.M. Koob, editor. Foundation of Real-Time Computing Research Initiative. O�ce of Naval re-

search, October 1990. Third Annual Workshop.

[Kor83] H. F. Korth. Locking primitives in a database system. Journal of the ACM, 30(1):55{79, January

1983.

[KR88] J. Klein and A. Reuter. Migrating transactions. In Future Trends in Distributed Computer Systems

in the `90s, Hong Kong, 1988.

72

[Duc90] D. Duchamp. Analysis of transaction management performance. In Proceedings of the Twelfth ACM

Symposium on Operating Systems Principles, Litch�eld Park, Arizona, pages 177{190, December

1990.

[ED89] A. K. Elmagarmid and W. Du. Supporting value dependencies for nested transactions in interbase.

Technical Report CSD-TR-885, Purdue University, Computer Sciences Department, May 1989.

[ELLR90] A. K. Elmagarmid, Y. Leu, W. Litwin, and M. E. Rusinkiewicz. A multidatabase transaction model

for InterBase. In Proceedings of the Sixteenth International Conference on Very Large Databases,

Brisbane, pages 507{518, 1990.

[EV87] F. Eliassen and J. Veijalainen. An S-transaction de�nition language and execution mechanism.

Technical Report 275, GMD|Gesellschaft fur Mathematic und Datenverarbeitung MBH, November

1987.

[FC87] R. S. Finlayson and D. R. Cheriton. Log �les: An extended �le service exploiting write-once storage.

In Proceedings of the 11th Symposium on Operating Systems Principles, pages 139{148, 1987.

[fdb87] Special issue on federated databases systems. Data Engineering, 10(3), September 1987.

[FO89] A. A. Farrag and M. T. Ozsu. Using semantic knowledge of transactions to increase concurrency.

ACM Transactions on Database Systems, 14(4):503{525, December 1989.

[GLPT75] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Granularity of locks and degrees of consis-

tency in a shared data base. In IFIP Working Conference on Modeling of Data Base Management

Systems, pages 1{29, 1975. Also available as Research Report RJ1654, IBM, September 1975.

[GM

+

81] J. N. Gray, P. McJones, et al. The recovery manager of the system R database manager. ACM

Computing Surveys, 13(2):223{242, 1981.

[GM83] H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed database.

ACM Transactions on Database Systems, 8(2):186{213, June 1983.

[GMAB

+

83] H. Garcia-Molina, T. Allen, B. Blaustein, R. M. Chilenskas, and D. R. Ries. Data-patch: Integrating

inconsistent copies of a database after a partition. In Third IEEE Symposium on Reliability in

Distributed Software and database Systems, pages 38{48, 1983.

[GMGK

+

90] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem. Coordinating multi-transaction

activities. Technical Report UMIACS-TR-90-24, University of Maryland Institute for Advanced

Computer Studies, February 1990.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of ACM-SIGMOD 1987 International

Conference on Management of Data, San Francisco, pages 249{259, 1987.

[Gra78] J. N. Gray. Notes on database operating systems. In Lecture Notes in Computer Science, Operating

Systems: An Advanced Course, volume 60, pages 393{481. Springer-Verlag, Berlin, 1978.

[Gra80] J. N. Gray. A transaction model. In Lecture Notes in Computer Science, Automata Languages and

Programming, pages 282{298. Springer-Verlag, Berlin, 1980.

[Gra81] J. N. Gray. The transaction concept: Virtues and limitations. In Proceedings of the Seventh

International Conference on Very Large Databases, Cannes, pages 144{154, 1981.

71

[BR90] B. R. Badrinath and K. Ramamritham. Performance evaluation of semantics-based multilevel con-

currency control protocols. In Proceedings of ACM-SIGMOD 1990 International Conference on

Management of Data, Atlantic City, New Jersey, pages 163{172, 1990.

[BS88] Y. Breitbart and A. Silberschatz. Multidatabase update issues. In Proceedings of ACM-SIGMOD

1988 International Conference on Management of Data, Chicago, pages 135{141, 1988.

[BST90] Y. Breitbart, A. Silberschatz, and G. R. Thompson. Reliable transaction management in a multi-

database system. In Proceedings of ACM-SIGMOD 1990 International Conference on Management

of Data, Atlantic City, New Jersey, pages 215{224, 1990.

[BSW88] C. Beeri, H.-J. Schek, and G. Weikum. Multi-level transaction management, theoretical art or

practical need? In International Conference on Extending Database Technology, Lecture Notes on

Computer Science, volume 303. Springer Verlag, 1988.

[C

+

89] S. Chakravarthy et al. HiPAC: A research project in active, time-constrained database management.

Technical Report XAIT-89-02, Xerox Advanced Information Technology, July 1989. Final report.

[CKKS89] G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The case for safe RAM. In Proceedings of

the Fifteenth International Conference on Very Large Databases, Amsterdam, pages 327{336, 1989.

[CP87] S. Ceri and G. Pelagatti. Distributed Database Systems, Principles and Systems. McGraw-Hill, New

York, 1987.

[CR90] P. K. Chrysanthis and K. Ramamritham. ACTA: A framework for specifying and reasoning about

transaction structure and behavior. In Proceedings of ACM-SIGMOD 1990 International Conference

on Management of Data, Atlantic City, New Jersey, pages 194{203, 1990.

[CR91] P. K. Chrysanthis and K. Ramamritham. A formalism for extended transaction models. In Pro-

ceedings of the Seventeenth International Conference on Very Large Databases, Barcelona, 1991.

[Dav73] C. T. Davies. Recovery semantics for a DB/DC system. In Proceedings of the ACM Annual

Conference, Atlanta, pages 136{ 141, 1973.

[DE89] W. Du and A. K. Elmagarmid. Quasi serializability: a correctness criterion for global concur-

rency control in InterBase. In Proceedings of the Fifteenth International Conference on Very Large

Databases, Amsterdam, pages 347{355, 1989.

[DHL90] U. Dayal, M. Hsu, and R. Ladin. Organizing long-running activities with triggers and transactions.

In Proceedings of ACM-SIGMOD 1990 International Conference on Management of Data, Atlantic

City, New Jersey, pages 204{214, 1990.

[DKO

+

84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, and M. R. Stonebraker. Implementation

techniques for main memory database systems. In Proceedings of ACM-SIGMOD 1984 International

Conference on Management of Data, Boston, pages 1{8, 1984.

[DST87] D. S. Daniels, A. Z. Spector, and D. S. Thompson. Distributed logging for transaction processing.

In Proceedings of ACM-SIGMOD 1987 International Conference on Management of Data, San

Francisco, pages 82{96, 1987.

70

Bibliography

[AA90] D. Agrawal and A. El Abaddi. Locks with constrained sharing. In Proceedings of the nineth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Nashville, pages 85{

93, April 1990.

[AAL91] D. Agrawal, A. El Abaddi, and A. E. Lang. Performance characteristics of protocols with ordered

shared locks. In Proceedings of the Seventh International Conference on Data Engineering, Kobe,

Japan, April 1991.

[AGMS87] R. Alonso, H. Garcia-Molina, and K. Salem. Concurrency control and recovery for global procedures

in federated database systems. Data Engineering, 10(3):5{11, September 1987.

[BBG89] C. Beeri, P. A. Bernstein, and N. Goodman. A model for concurrency in nested transaction systems.

Journal of the ACM, 36(2):230{269, April 1989.

[BHB90] P. A. Bernstein, M. Hsu, and Mann B. Implementing recoverable requests using queues. In Pro-

ceedings of ACM-SIGMOD 1990 International Conference on Management of Data, Atlantic City,

New Jersey, pages 112{122, 1990.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, Reading, MA, 1987.

[Bit86] D. Bitton. The e�ect of large main memory on database systems. In Proceedings of ACM-SIGMOD

1986 International Conference on Management of Data, Washington, pages 337{339, 1986. A panel

session, whose participants were Bitton, D. (chairperson), Garcia-Molina, H., Gawlick, D., and

Lomet, D.

[Bjo73] L. A. Bjork. Recovery scenario for a DB/DC system. In Proceedings of the ACM Annual Conference,

Atlanta, pages 142{146, 1973.

[BOH

+

91] A. Buchmann, M. T. Ozsu, M. Hornick, D. Georgakopolous, and F. A. Manola. A transaction

model for active distributed object systems. In A. K. Elmagarmid, editor, Advanced Transaction

Models for new applications. Morgan-Kaufmann, 1991.

[BR87] B. R. Badrinath and K. Ramamritham. Semantic-based concurrency control: Beyond commuta-

tivity. In Proceedings of the Third International Conference on Data Engineering, Los Angeles,

1987.

[BR88] B. R. Badrinath and K. Ramamritham. Synchronizing transactions on objects. IEEE Transactions

on Computers, 35(5):541{547, May 1988.

69

Chapter 10

Conclusions

We summarize by listing the primary contributions of this dissertation:

� Giving substance and formal meaning to the notions of compensation and relaxed atomicity (i.e., the work

on R-atomicity). Based on the formal results, a methodology for the design of compensating transactions is

envisioned. In light of the abundance of work that relies on semantic atomicity and compensation without

giving them speci�c meaning, we consider this contribution a signi�cant one.

� The power and utility of semantics-based recovery were illustrated in the context of distributed transac-

tion management. With the aid of these methods we devised protocols that alleviate the inherent and

hard problems that are associated with atomicity in distributed systems (i.e., the polarized and the O2PC

protocols).

� Using the compact model of composite transactions with polarities, we have identi�ed a correctness criterion

(namely isolation of recoveries) in the realm of transactions that are not atomic in the standard sense. Based

on the duality of compensation and retry, the criterion applies when both of these semantics-based methods

are employed. This work helps understand how relaxing atomicity of a transactional unit interacts with

isolation of concurrent transactions.

The signi�cance of the work on relaxed atomicity is underlined in light of the inevitable problems that are

typical of atomicity in a distributed system. Moreover, relaxed atomicity is motivated by the growing interest in

distributed system integration; an area where standard atomicity stands in sharp contrast to the crucial autonomy

of the integrated components.

The criterion of recovery isolation (IR) gives transactions a degree of isolation from inconsistencies arising

from failures and their asynchronous recoveries. In an IR execution, e�ects of both committed and aborted

subtransactions of the same transaction are allowed to be exposed, thereby avoiding the prohibitive cost of a

distributed atomic commitment. However, it is ensured that transactions observe only e�ects of sets of steps with

identical polarity, thus hiding the non-atomic execution of transactions.

Finally, we point out that the ideas reported here constitute a bottom-up approach to an important prob-

lem. The problem is the inability of the traditional transaction model to accommodate the demands of advanced

database applications and environments. The solution we propose is semantics-based recovery. We have devel-

oped the solution in this dissertation in a step-wise manner. First, we have de�ned and studied the concept of

compensation in a simple setting of a single transactional unit. Having done that, we have used compensation as a

building block in constructing more complex and structured transactions, and for solving problems in distributed

environments. Thus, we have demonstrated that semantics-based recovery mechanisms are useful in pointing out

new solutions for the problems posed by advanced database systems.

68

� Formal development of the retry method is lacking. In conducting this research, it might be interesting

to capitalize on the duality with compensation, where applicable. Again, the impact of the shape of the

forward transaction on the semantics-based recovery, retry this time, will play a key role.

� An interesting trade-o� between the complexity of the marking scheme and the degree of concurrency

allowed by the corresponding protocol is evident from the range of IR-preserving protocols that have been

devised. Some parameters of this trade-o� are summarized in Section 5.6. Interestingly, it seems that the

inherent blocking phenomenon is manifested in the IR context by the di�culty to discard markers. A result

should qualify the complexity of obtaining IR and relate this complexity to the known results on atomicity

in distributed systems. Additionally, it would be interesting to relate our work on composite transactions

and IR to the work on epsilon-serializability [PL91b, PL91a] and bounded ignorance [KB91]. Such a study

will shed light on the common denominator of trading transaction properties in a controlled manner for

improved distributed transaction management.

� A more precise characterization of sensitive transactions is imperative. This de�nition should be a semantic

one, and as such it should complement the rather syntactic character of the IR criterion. The di�erences

between global and local consistency in a distributed database [DE89] are bound to surface when formalizing

the notion of sensitivity. Once this de�nition is accomplished, one should look into minimizing overhead for

enforcing IR for sensitive transactions when they are executed concurrently with non-sensitive transactions.

A clearer understanding of IR itself bears on sensitivity, too. It would be nice to gain deeper insight

regarding the applicability of the two versions of IR presented in Chapters 6 and 7. The di�erence in the

visibility propagation (i.e., the di�erence in the transitivity of the follows relation) are the crux for this

matter.

� Applying the O2PC protocol in multidatabases requires additional work. We raise the following points:

{ It must be possible to distinguish between local and global transactions in order to let local transaction

bene�t from the released locks in case the simple scheme described in the beginning of Chapter 7 is

employed.

{ Some modi�cations to the lock manager software seem inevitable in order to support enforcing IR.

However, since the interface to the lock manager and the two-phase locking rule are left intact, these

modi�cations might be best accommodated by adding a software layer rather than actually modifying

the code of the lock manager as was outlined in Section 7.4.5.

{ As the protocol stands now, transactions that do not wish to access locally committed data that is

not globally committed, cannot do so as data items are unlocked once they are locally committed. By

adding another operation with the appropriate semantics (like the `release' operation of [SGMA89]) to

the lock manager interface and use this operation rather than unlocking the data item, these transac-

tions can be accommodated. The penalty is changing the interface of the locking manager.

{ Facilitating compensation by the local log (see Section 4.1.1) may not be allowed in multidatabases.

The alternative is to maintain a separate source of semantic information on the execution to guide

compensation. However, again, because of autonomy concerns, actions of local transactions will not

be recorded in such an external log. The more appealing scheme is that of using compensation in

federated databases, where a semantic decomposition of transaction is used, and compensation can be

relatively independent of the history.

67

Chapter 9

Future Research

The following list of topics are proposed as research that should augment the work reported in this dissertation.

The topics are divided according to the structure of the dissertation.

9.1 Single-Transaction Recovery

Several open problems were posed in Chapter 4. In what follows, we add a few more issues:

� Our compensation methodology should be re�ned by being tested with more example applications. This

experience should be used to reinforce the design methodology sketched in Section 4.2 and provide new

insights in this respect. Sample speci�c problems are extracting relations R from consistency constraints,

and de�ning compensation based on such relations.

� In our treatment of R-atomicity we left the relation R under-speci�ed to a large extent. There is scope to

investigate the relationship between the shape of this relation and the corresponding atomicity notions. We

have actually made the �rst strides in this direction by mentioning reexive, anti-symmetric, and transitive

relations, however more speci�c results are needed. It might be instructive to compare the notions of

recoverability, failure-commutativity, and in particular Herlihy's invalidation [Her90] with di�erent forms of

R-commutativity. Some initial results on relating these notions are reported in [CR91].

� As was mentioned in Section 4.2, exposing uncommitted data should be done in a quali�ed manner, based

on the properties of the exposing and exposed transactions. In principle, this observation calls for classifying

transactions into transactions types, and allowing exposing updates early only among compatible classes of

transactions. Work on compatibility of transaction classes can be found in [GM83].

9.2 Atomicity of Composite Transactions

Several open problems were posed in Section 6.4. In what follows, we add a few more issues:

� The polarized protocol, as well as the protocols of Chapter 7 are given assuming a generic type of access to

data items. These protocols should be extended for the read/write case.

� More speci�c relationships between shapes of global transactions and the applicability of the localization

of compensation principle is requisite. A clearer classi�cation of the issue of inter-dependencies among

subtransactions and its rami�cations on relaxed atomicity and IR deserves more attention. In particular,

one should investigate when each of the two versions of IR we have presented is applicable.

66

rather the weaker criterion of quasi serializability. The authors of [AGMS87] mentioned use of compensating

transactions to cope with exposing updates to local transactions, and commit dependencies and cascading aborts

as the recovery approach among global transactions.

In [DE89], a correctness criterion that is weaker then serializability is given for transaction management

in multidatabases. The treatment of dependencies among subtransactions in this paper, and the relaxation of

serializability is relevant to our work.

The methods reported in Chapter 6 and 7 are characterized by using semantic information to overcome the

di�culties associated with the distributed commit problem. This characterization also suits ideas of [GMAB

+

83],

where semantic information and compensatory actions are used to reconcile inconsistencies in a distributed

database after a partition.

A di�erent approach for solving the problem atomicity in distributed systems is based on the notion of single-

site transactions [SS90, HS91]. The idea is to circumvent the problems of committing a multi-site transaction by

migrating data to a single site and executing a local transaction. Mechanisms for reliable message transmissions

are relied upon for these types of schemes.

Independently of our work on establishing relaxed atomicity by semantics-based recovery, [MR91, MKN90]

report on how the traditional redo/undo methods are used to obtain standard atomicity in multidatabases.

65

(Society for Worldwide Interbank Financial Telecommunications) network, that is documented in [EV87, map89,

Vei89]. The essential property of this international banking environment is that the component systems are au-

tonomous. The system employs a semantic transaction (S-transactions) model. In this model, ACID transactions

are used as building blocks in a similar manner to composite transactions by combining them with a control ow

mechanism.

Another enhancement to the transaction model is the split-transaction operation [PKH88]. Performing a split

operation, a transaction modeling an open-ended activity, commits data that will not change. Interactions with

other transactions are serialized through the committed data.

Regarding �tting non-compensatable actions into our ideas, we mention that [ELLR90] presents a transaction

model which distinguishes among compensatable and not compensatable subtransactions. A mixed transaction

is de�ned to be a global transaction where some of its subtransactions are compensatable and some are not.

In [CR90, CR91], a generic framework, called ACTA, is constructed for the speci�cation and reasoning about

a variety of transaction models. This framework can be instantiated to express existing models by de�ning a rich

set of attributes like visibility of e�ects, delegation of objects among transactional units, etc.

In the spirit of relaxing the classical transaction properties, we mention the work of [KB91]. This work

introduces a notion of bounded violation of consistency constraints in favor of increased concurrency. The bound

is based on the semantics of the constraints. The violation occurs as transactions are allowed to be ignorant of

e�ects of a bounded number of prior transactions. A similar idea is found in the work on epsilon-serializability

[PL91b]. There, temporal and bounded inconsistencies among replicas are allowed to be observed by transactions.

There are very god reasons for relaxing the classic transaction model. However, in doing so, care should be

taken regarding the interactions among the relaxed properties and other properties. Some form of correctness

criterion must be de�ned and retained, given a new model. Most of the formerly mentioned work lacks in this

respect. Only recently [PL91b, PL91a, KB91], some work has been devoted to correctness issues. The focus in

both these papers, however, is on relaxing concurrency control aspects.

Our work on composite transactions is not yet another advanced transaction model. We see our major

contribution as the formulation of the correctness criterion (IR) and the corresponding protocols. IR captures

both compensation and retry and deals with executions that are potential in most of the mentioned advanced

transaction models.

8.4 Other Related work

Within the class of serializable executions, some advances that are related to our work have been made recently.

In [AA90], a locking-based protocol that captures the entire class of conict serializability is reported. The perfor-

mance of this protocol is examined in [AAL91]. In [SGMA89], an extension to two-phase locking, called altruistic

locking, is introduced as means for permitting release of locks held by long-duration transactions before they com-

mit, while ensuring serializability. Transactions that access released but uncommitted data are said to be running

in the wake of the releasing transaction and must abide by certain locking and committing restrictions in order

to ensure database consistency. The major alternative proposed for recovery in [SGMA89] is the maintenance

of commit dependencies and executing cascading aborts in case that the releasing transaction is aborted. An

alternative for recovery based on compensation was also mentioned there, but not fully explored. The protocols

in [AA90, SGMA89] allow more concurrent executions compared to the 2PL protocol, while ensuring serializabil-

ity. The protocols resemble our marking-based protocols in the manner they enforce certain orderings among

transactions.

In [AGMS87], a variation of altruistic locking was proposed in the context of multidatabases. It was shown

in [DE89] that this particular variation of altruistic locking in multidatabases does not ensure serializability, but

64

correct concurrent execution lies with the concurrency control protocol. Standard read and write operations

are used in this model. By letting subtransactions execute in parallel, and by preserving the predicates explicitly,

concurrency is enhanced, yet correctness is guaranteed.

Another way for enhancing concurrency is the use of semantically-richer operations instead of the primitive

read and write. Having semantically-richer operations provides the means for re�ning the notion of conicting

versus commutative operations [BR87, BR90, BR88, Wei88, Wei89]. That is, it is possible to examine whether

two operations commute (i.e., do not conict) and hence can be executed concurrently. By contrast, in the

conventional model, there is not much scope for such considerations since a write operation conicts with any

other operation on the same data item. For example, object-oriented databases use abstract data type techniques

to de�ne data objects which support speci�c and rather complex operations (see, e.g., [ZM90]). In [BR88], in

addition to using semantics of operations, the authors use the structure of complex objects to enhance concurrency.

Using the concept of a granularity graph to represent the `contained-in' relation, compatibility of operations is

determined dynamically, at run-time.

The transaction model we propose (see Section 2.2) can be viewed as a synthesis of the NT/PV model with

complex operations and other means for embedding semantics within the model. The work in [Wei88, Wei89]

should be cited for its study of the subtle interplay among recovery and concurrency control issues.

An alternative paradigm of de�ning non-serializable, yet correct, executions is to re�ne the transaction bound-

aries by prescribing breakpoints in transactions and by specifying allowable interleavings at these breakpoints

[Lyn83, FO89]. These speci�cations are based on semantic knowledge. Our IR criterion can be thought of as an

instance of this paradigm.

A major de�ciency of most of the formerly mentioned work is that in the quest for alternative correctness

criteria, `enhancing concurrency' was emphasized while disregarding transaction failures and recoveries.

8.3 Advanced Transaction Models

Recently, a substantial amount of work has been dedicated to advanced transaction models (refer to [tm-91] for a

broad spectrum of such models). The motivation for this research stems from a practical need to relax the classic

Atomicity, Consistency, Isolation, and Durability (ACID) properties of transactions. Speci�c reasons for this

trend were already mentioned in the introduction (e.g., support for long-duration and cooperative transactions,

and autonomy concerns for multidatabases). It is common to exploit the semantics of data and activities for the

construction of applications under these models. Our work on relaxed atomicity belongs to this trend.

Common in a few of the papers on advanced transaction models [GMGK

+

90, KR88, Reu89] and in our

own work, is the following abstraction of a complex transaction (we refer to such a transaction as a composite

transaction). A transaction is a collection of ACID subtransactions, each executing a logically coherent task, and

collectively representing a complex and possibly, long-lived activity. A script (or work-ow) controls the invocation

of these subtransactions. In essence, this abstraction attaches a control ow structure to a set of transactional

units. Typically, in the domain of such composite transactions it is assumed that serializability is ensured only at

the subtransaction level. It is implicitly assumed, that either a semantic criterion (not serializability) is enforced

at the level of entire transactions [KR88, Reu89], or no constraints at all are imposed at this level [GMGK

+

90].

Also, the concepts of semantic atomicity and forward recovery are advocated in the context of these models.

Forward recovery is the capability to resume the execution of a failed transaction rather than aborting it. This

property can be obtained by using a subtransaction, rather than the entire transaction, as the unit of recovery. A

mechanism for maintaining persistent linkage among subtransactions, (e.g., reliable queues [BHB90]) is essential

for the purposes of forward recovery.

A prominent example of an actual system that incorporates ideas that are similar to our work is the S.W.I.F.T.

63

cannot voluntarily abort itself is introduced. Low-level details of how to store reliably the code of compensating

transactions, and record their identity in the log records of the saga's subtransactions are also discussed there.

A major source of inuence on our work was the study of multi-level transactions [BSW88,WHBM90, BBG89].

In particular we cite [BSW88], where several common ad hoc techniques in transaction management (e.g., early

release of locks on pages) are cast in terms of the elegant framework of multi-level transactions.

In [BR87], semantics of operations on abstract data types are used to de�ne recoverability, which is a weaker

notion than commutativity. Conict relations are based on recoverability rather than commutativity. Conse-

quently, concurrency is enhanced since the potential for conicts is reduced. When an operation is recoverable

with respect to an uncommitted operation, the former operation can be executed; however a commit dependency

is forced between the two operations. This dependency a�ects the order in which the operations should commit,

if they both commit. If either operation aborts, the other can still commit, thereby avoiding cascading aborts.

For instance, an invoked write operation is recoverable relative to an uncommitted read operation on the same

data item.

Recoverability-based conict resolution for multi-level transactions is reported in [BR90]. There, simulations

indicate that a recoverability-based multi-level scheme outperforms both single-level 2PL and commutativity

based multi-level concurrency control.

A noteworthy approach, which can be classi�ed as a simple type of compensation, is employed in the XPRS

system [SKPO88]. There, a notion of failure commutativity is de�ned for entire transactions (as opposed to

individual operations). Failure commutativity is an adaptation of recoverability [BR87] applied to complete

transactions. Transactions that are classi�ed as failure commutative can run concurrently without any conicts.

Handling the abort of such a transaction is done by a log-based special undo function, which is a special case of

compensation as we de�ne it.

This type of work [BR87, BR90, SKPO88] is more conservative than ours as it relies on commit dependencies

and as it narrows the domain of interest to serializable histories. Our work starts with a di�erent premise and

objective, as we explicitly allow and handle situations of exposed dirty data, and o�er the extra exibility of

addressing such cases when the need arise. Our results o�er several notions that are applicable in the wider

domain that includes non-serializable and non-recoverable (as de�ned in [BHG87]) histories.

8.2 Beyond Serializability

During di�erent stages of our work, we were inuenced by studies of correctness criteria other than serializability.

This is evident primarily in Chapter 2, where a exible model for dealing with non-serializable executions was

constructed. The impact of the work on alternative correctness criteria is felt also in our treatment of distributed

transaction management, where serializability is assumed only locally, and not as a global property. In this section

we review the sources of this impact on our work.

In order to deal with enhanced concurrency, beyond the realm of serializable executions, a new approach to

concurrency control is required. A major source of inuence on our work in this respect is the NT/PV model

described in [KS88]. Within this model, alternative correctness notions, other than serializability, can be de�ned.

The aspect of the NT/PV model that is of relevance to us are the use of explicit consistency predicates as means to

capture the semantics of the database. Explicit input and output predicates over the database state are associated

with top-level transactions as well as with each nested transaction. The input predicate is a pre-condition of

transaction execution and must hold on the state that the transaction reads. The output condition is a post-

condition which the transaction guarantees on the database state at the end of the transaction provided that

there is no concurrency and the database state seen by the transaction satis�es the input condition. Thus, as

in the standard model, when transactions are run in isolation, they preserve consistency, and responsibility for

62

Chapter 8

Related Work

A set of seminal papers on transaction and recovery management constitutes the background for this dissertation

[GLPT75, Gra78, Lin80, Gra81, GM

+

81, Lam81, HR83]. These articles shaped the attitude and understanding of

the author. The comprehensive article [MHL

+

90] and several other of the ARIES papers [MP91, RM89, Moh90]

contributed to the understanding of the intricate issues of practical transaction management.

Some related work was mentioned in previous chapters, in a precise context. In this chapter, we mention

research that has impact on our own work, provides alternative approaches, or is related to issues raised in this

dissertation. Work on compensation is reviewed in Section 8.1. Research on correctness notions other than

serializability, and on advanced transaction models is covered in Section 8.2, and Section 8.3, respectively. All

other related work is included in Section 8.4.

8.1 Compensation

The idea of compensating transactions as a semantically-rich recovery mechanism is mentioned, or at least referred

to, in several papers. However, to the best of our knowledge, a formal and comprehensive treatment of the issue

and its rami�cations is lacking. Therefore, in light of the growing consensus for the need for compensatory

mechanisms, we feel that our contribution in this respect is signi�cant.

Strong motivation for our work can be found in Gray's early paper [Gra81]. There, compensating transactions

are mentioned informally as `post facto' transactions that are the only means to alter committed e�ects. Gray

observes that early exposure of uncommitted data is essential in the realm of long-duration and/or nested transac-

tions. Also, compensation is mentioned as a possible remedy to the limitations of the current transaction model.

Another early reference is the DB/DC database system [Bjo73, Dav73], where the idea of semantic undoing is

used.

The notion of compensation (countersteps) is mentioned in the context of histories that preserve consistency

without being serializable in [GM83, FO89]. It is noted in [GM83] that running countersteps (to undo steps)

does not necessarily return the database to its initial state, an observation on which we elaborate in our work.

The di�culty of designing countersteps is raised as a drawback of compensation, which is another problem we

address.

Compensating transactions are also mentioned in the context of a saga, a long-duration transaction that can

be broken into a collection of subtransactions that can be interleaved arbitrarily with other transactions [GMS87].

A saga must execute all its subtransactions, hence compensating transactions are used to amend partial execution

of sagas. In a saga, the last forward subtransactions to execute is simply rolled-back in case it aborts. Previous

subtransactions are compensated-for. In [GMS87] and in [GM83] the idea that a compensating transaction

61

entire set. Multigranularity locking [GLPT75] would be very bene�cial in this case since R1 and R2 require

locking of the entire set.

� In addition to protocols UD/LCUM and LC/UDUM there are a variety of other protocols resulting from

other isolation properties. For instance, a very simple protocol is one that requires that for each transaction

T

s

, all sites in which T

s

executes are undone with respect to the same transactions, and are locally-committed

with respect to no transaction. There is a trade-o� between the protocol's simplicity and the degree of

concurrency it allows. Further details on the other protocols can be found in [KLS90b].

� Alternatively to storing the marking sets as data items in the database, they can be stored and managed

externally. A special software module whose responsibility is the scheduling of global transactions would

maintain the marking sets. This module should implement a concurrency control scheme for accessing the

marking sets. The concurrency control scheme can be customized to take full advantage of the simple

access pattern to the marking sets. Such an architecture might be preferable in the multidatabase context,

since storing the marking sets in the local database might be cumbersome and even prohibited. Typically,

in a multidatabase system, at each site, an agent [WV90, VW90] of the global transaction manager is

running as an application program, that is, above the local transaction manager. These agents spawn local

subtransactions, submit requests originating at the global transaction manager for local execution through

these subtransactions, and participate in the 2PC protocol as the representatives of their sites. The functions

of managing the marking sets can be integrated into these agents.

60

Implementing UDUM1 may be cheaper in terms of messages. However, it requires augmenting the data

structures. Keeping track of the set of execution sites for each transaction is necessary. Also, it must be possible

to determine at what site a marking (T

j

; UD) was observed by T

s

. For brevity, we do not present here the

necessary augmented data structures. We note, however, that managing these structures does not incur any

extra messages. In the context of implicit discarding, R3 is executed as part of the transaction that enabled the

transition; that is, the transaction whose access to site k made UDUM1 (and hence UDUM0) detectable at that

site.

7.3.5 Discussion

Several comments concerning the protocols and their implementation are in order.

� Each of the two protocols is composed out of a permissive clause and a restrictive clause. The permissive

clause of UD/LCUM, for example, allows transactions to access both sites that are marked locally committed

and sites that are unmarked with respect to a particular transaction. The permissive clause of LC/UDUM,

on the other hand, allows transactions to access both sites that are marked undone and sites that are

unmarked with respect to a particular transaction. Based on our optimistic assumptions that transaction

aborts are the exception rather than the rule, it is more likely to have many locally committed markings

and few undone markings. Therefore, it is likely that most of the time a typical transaction would execute

at a set of sites that are either locally committed or unmarked with respect to a set of transactions, and

are undone with respect to none. The dual case (where each `locally committed' is replaced by `undone'

and vica versa), is less likely to occur. Therefore, it seems that having a permissive clause based on locally

committed markings (as in UD/LCUM) would result in a better protocol. A restrictive clause based on

locally committed marks is more likely to cause failures of the IR validation and hence transaction aborts.

These qualitative assertions, however, must be supported by an experimental study.

� Considering the proposed implementation for both protocols, we note that the marking sets induce extra con-

icts among otherwise non-conicting pairs of transactions. The optimistic assumption favors UD/LCUM

in this respect, too. In LC/UDUM, otherwise non conicting subtransactions are ordered as they execute

R1 and the validity check. In UD/LCUM, on the other hand, R2 and R3 are executed only in the rare cases

of a transaction abort, hence contention for the markings sets and the total order e�ect is diminished sig-

ni�cantly. Under the optimistic assumption, most of the accesses to the marking sets in UD/LCUM would

be read accesses due to validation. For the last two reasons, it is likely that UD/LCUM will out-perform

LC/UDUM under such optimistic circumstances. However, LC/UDUM preserves the stronger IR criterion

and has a very simple marker discarding mechanism.

� Deadlocks may arise due to contention to the local marking sets. For example, a transactions that read-locks

sitemarks:a in order to perform the validation, may be blocked while attempting to access a regular data

item z that is locked by CT

ia

. The compensating transaction, on the other hand, may be blocked too,

holding a lock on z and attempting to access sitemarks:a. One simple way to avoid such deadlocks is to

perform all the accesses to the marking sets as the last access of subtransactions. The only problem with

this simple remedy is that late validation results in wasted e�orts in case the check fails. An acceptable

compromise would be to perform the check �rst and then unlock sitemarks:a. In case it succeeds and the

subtransaction is completed, the validation is repeated as the last action of the subtransaction.

� Another way to reduce contention to the marking sets is to split them into individually lockable entities,

one for each mark. Observe that R3 in both protocols requires locking only of the deleted mark and not the

59

Figure 7.4 illustrates this scenario. The legend for this �gure is as follows: coo

2

represents the coordinator for

T

2

, coo

1

represents the coordinator that initiates the marker discarding for T

1

, and DISCARD represents the

action of discarding the markers for T

2

. An arc labeled \m" (\v") stands for a marker carrying (validation result)

message going in the arc direction. An arc labeled \cc" (\di") stands for a COMPENSATION-COMPLETE

(DISCARD) message going in the arc direction. The scenario in this �gure is impossible. This is realized by

following a cycle of events (1 2 3...6 1) as shown that cannot occur because the events in a distributed history

form a partial order [Lam78]. 2

v

v

m

m

di

di

cc

cc

6

5

4

3

2

1

T

2a

coo

2

coo

1

DISCARD

CT

1a

T

1a

T

2b

DISCARD

CT

1b

T

1b

Figure 7.4: Synchronized Discarding

Implicit Discarding.

By use of the fact that global transactions obey the 2PL rule, the knowledge needed to detect UDUM0 can be

implicitly deduced rather than explicitly disseminated and gathered by extra messages. Namely, we observe that

the condition in UDUM0 is implied by the following:

� UDUM1. For each site in which T

j

executes, there is a transaction that has also executed at that site, while

that site was undone with respect to T

j

.

Once a site n makes a transition in its markings as speci�ed by UDUM1, there can be no T

j

that accesses a site

that was locally-committed with respect to T

j

and is about to access n.

In essence, the task of synchronizing the discarding of markers is implicitly assigned to a regular transaction,

rather than managed explicitly by a two-phased message exchange, as in the previous method.

Lemma 14. UDUM1 implies UDUM0.

Proof. The proof is identical to the proof of Lemma 13, once we replace the synchronized DISCARD

action of Lemma 13 by the regular transaction that implicitly synchronizes the discarding. 2

58

as well as site l which is unmarked relative to T

j

. Therefore, it is safe to discard the UD marker at site n and

consider it as UM . We show that enforcing the UD/LCUM rule under this circumstances assures WIR.

For the implementation of UD/LCUM, the marking of sites locally-committed with respect to transactions

is redundant. A binary-state marking scheme (i.e., UD and UM) su�ces. As far as ensuring WIR, discarding

markers can be decoupled from the execution and commit procedure of the transactions that created the markers.

The caveat, however, is that presence of out-of-date markers may restrict the accesses of global transactions to

sites, unnecessarily. On the other hand, discarding the markers too early can cause the violation of the WIR

criterion. Recall that protocol UD/LCUM allows a transaction T

s

to access sites that are locally-committed with

respect to T

j

as well as sites that are unmarked with respect to T

j

. Therefore, T

s

may access a site that is locally-

committed with respect to T

j

and a site that was undone with respect to T

j

and was prematurely unmarked. As

far as correctness goes, the precondition for this problematic transition is formulated as follows. A site n that is

undone with respect to T

j

can be unmarked with respect to T

j

, if:

� UDUM0 (undone to unmarked). All T

s

that have accessed sites that are locally-committed with respect to

T

j

cannot possibly access n.

Once UDUM0 holds, the undone to unmarked with respect to T

j

transition can be made safely. WIR is guaranteed

by following the UD/LCUM rule and discarding UD markers in accord with UDUM0.

The following pseudo-code segments summarize the implementation of UD/LCUM (there is no R1 in this

protocol):

R2. The last operation of CT

jn

:

sitemarks:n sitemarks:n [f(T

j

; UD)g

R3. Whenever UDUM0 is detected:

sitemarks:k sitemarks:k � f(T

i

; UD)g

Regarding R2, recall that if a site n votes to abort T

j

, then the abort and the standard undo actions taken locally

are modeled by CT

jn

.

Next, we present two marker-discarding techniques, both capitalizing on the opportunity to decouple the

discarding from the execution of the marking transaction.

Synchronized Discarding.

Discarding

2

markers can be done periodically as a garbage-collection activity, thereby amortizing the associated

communication cost over a set of transactions. Thus, it is an activity that may be relegated to light load periods.

Periodically, a coordinator initiates a markers discarding message exchange by disseminating initiation messages

to a set of sites. The sites respond by including the identity of all global transactions whose local compensating

subtransactions completed successfully (this message is referred to as COMPENSATION-COMPLETE message).

Markers can be discarded for global transactions all of whose compensations have completed as evidenced by the

report from all the concerned sites. Upon receipt of this report, the coordinator sends a second round of messages

to the same sites, notifying them which markers can be discarded (this message is referred to as a DISCARD

message). The two-phase message exchange creates a synchronization point which is essential for the following

sketch of correctness argument.

Lemma 13. Synchronized discarding guarantees UDUM0.

Proof. The proof is by contradiction. Assume that there exists a transaction T

2

that accesses a site n that

is locally-committed with respect to T

1

and a site m after the undone marker of T

1

has been discarded at site m.

2

This discarding method was designed by Nandit R. Soparkar during discussions with him on the subject. In particular, the

elegant proof technique is due to him, and �rst appears in [SKS91].

57

R2. The last operation of CT

jn

:

sitemarks:n sitemarks:n � f(T

j

; LC)g

R3. After receiving a DECISION message for T

j

:

if DECISION is COMMIT then sitemarks:n sitemarks:n � f(T

j

; LC)g

Observe that R3 is required only to discard the LC mark and reclaim its space. It has no consequence regarding

IR, since T

j

commits (this is a critical di�erence when comparing with protocol UD/LCUM).

Reasoning that protocol LC/UDUM is a correct implementation of the isolation property S1 follows from the

next two lemmata.

Lemma 11. If T

s

accesses a site n while it is locally committed with respect T

j

, then T

jn

! T

sn

at SG

n

,

without having CT

jn

on that path.

Proof. For the IR-validation of T

s

, a read access to sitemarks:n is generated on T

s

behalf. Since the

accesses of T

jn

and T

sn

to sitemarks:n conict, and since the history at n is serializable, T

jn

and T

sn

must be

ordered. Since T

s

accesses n while it is locally committed with respect to T

j

, it must be that T

jn

! T

sn

at SG

n

.

Had CT

jn

been on that path, the LC marker would have been removed (by R2). 2

Lemma 12. If T

s

accesses a site n while it is unmarked with respect T

j

, T

j

has executed at n not preceded

by T

s

, and T

j

�nally aborts, then CT

jn

! T

sn

at SG

n

.

Proof. Similarly to the previous proof, since T

j

, CT

j

and T

s

all conict when accessing sitemarks:n and

since T

j

! CT

j

by de�nition, there are two possible orders among the three transactions: T

jn

! T

sn

! CT

jn

at

SG

x

or T

jn

! CT

jn

! T

sn

at SG

x

. Had the �rst path been a valid one, then by R1, n would have been marked

locally committed with respect to T

j

. 2

To complete the proof of correctness of the implementation all we need to make sure is that the coordinator

enforces the rule form of LC/UDUM, when it performs the IR-validation.

7.3.4 Protocol UD/LCUM

The main challenge in devising an implementation for UD/LCUM is the timing of the transition from undone

to unmarked with respect to T

j

(the arc labeled UDUM in Figure 7.3). Unfortunately, undone markers must be

kept forever in order to enforce IR using UD/LCUM. To see why consider the following paths: T

jm

! T

im

and

T

il

! T

sl

. By the transitivity of follows, T

s

follows T

j

. IR is violated once the path CT

jn

! T

sn

is considered.

Following the UD/LCUM rule, T

s

would be prohibited from accessing site n (thereby forming the problematic

path CT

jn

! T

sn

) at any future point, provided that the marker (j; UD) at site n is maintained forever. That

is, the UDUM transition in Figure 7.3 never occurs. Discarding markers, however, is crucial for both space

considerations as well as e�cient execution of the IR-validation. Even in light of the optimistic assumption that

aborts | and therefore UD markers | are rare, we must provide a rule for discarding UD markers for reasons

of e�ciency of the protocol. Interestingly, this problem does not arise in the LC/UDUM protocol.

In what follows, we describe a UD/LCUM protocol where markers are discarded, however, a weaker notion of

IR is guaranteed. The protocol we present guarantees the following:

� Weak Isolation of Recoveries (WIR). No transaction is executed at a site that is locally committed with

respect to another transaction as well as at a site that is undone with respect to that other transaction.

WIR is the incarnation of IR of Chapter 6 in the current context, since as in Chapter 6, the follows relation is

not transitive. Observe that the above execution is WIR, since T

s

accesses site n that is undone relative to T

j

56

In contrast to the polarized protocol, the above protocols are based on marking sites, rather than marking

data items. We say that a transaction accesses a site when it accesses (reads or writes) a data item residing

at that site. A site is marked with respect to a transaction only if the transaction has accessed that site. The

protocols are overly restrictive since data items that are not accessed by T

i

at all, and just reside in a site that

is accessed by T

i

are nevertheless considered as marked with respect to T

i

. An improvement can be devised by

marking on a data item basis and allowing propagation of markers only within a single site. Thus, discarding

markers would have remained a local action, yet granularity of markers would have been �ner.

There is a certain similarity between these protocols and the altruistic locking protocol [SGMA89]. In our

case, however, an aborted global transaction creates two wakes (see [SGMA89]): an undone wake and a locally-

committed wake. Similarly to the way altruistic locking restricts entering and leaving a wake, UD/LCUM and

LC/UDUM restrict accessing both wakes.

In the context of a multidatabase environment, it is very important to notice that both protocols do not

impose any restrictions on local transactions. Only global transactions are subject to the restrictions posed in

the protocols. Therefore, the autonomy of local database systems is not a�ected by these protocols.

7.3.2 Validating IR

We introduce data structures for maintaining the markings. For each site, n, the protocol maintains the set

sitemarks:n de�ned as follows:

(j; LC) 2 sitemarks:n iff site n is locally committed with respect to T

j

(j; UD)2 sitemarks:n iff site n is undone with respect to T

j

These marking sets are updated to reect the transitions described above, and are read by global transactions in

order to ascertain whether execution at a particular site complies with the relevant protocol. The fact that a site

is unmarked with respect to a transaction is deduced implicitly from the lack of any marking in the corresponding

marking set. In order to preserve the semantics of the sets as de�ned above, concurrent accesses to the sets must

be controlled. One option is to designate special entities for storing these sets in the underlying local databases.

As part of the database, the sets are accessed by transactions subject to the 2PL rule. Some possible optimizations

are discussed in Section 7.4.5.

We enforce IR in the O2PC context by using a validation method rather then by the incremental method that

was used in Chapter 6. That is, checking whether the accesses of a transaction violate the IR criterion is done by

the coordinator after all the accesses have already been performed. The marking state of a site, as represented by

the local sitemarks set, is piggy-backed with the acknowledgement/results of a completed operation. Upon receipt

of the markers, the coordinator validates the execution by the relevant rule (i.e., LC/UDUM, or UD/LCUM).

Since the marking is on a site basis and since accesses to the marking sets are subject to the 2PL rule, sending

the marking sets should be done only once for each subtransaction.

7.3.3 Protocol LC/UDUM

For the implementation of LC/UDUM, the marking of sites undone with respect to transactions is actually redun-

dant, since the protocol allows transactions to access both sites that are undone and unmarked with respect to

another transaction. Hence, we can simplify matters, avoid the undone marking altogether, and resort to a binary-

state marking scheme (i.e., LC and UM). The following pseudo-code segments summarize the implementation

of LC/UMUD:

R1. After site n responds to the VOTE-REQ message sent for T

j

:

if n votes to commit T

j

then sitemarks:n sitemarks:n [f(T

i

; LC)g

55

Vote:Commit

Locally-

Committed

UnDone

Vote:Abort

Decision:Commit

UDUM

Decision: Abort

UnMarked

Figure 7.3: Transitions in the marking of a site

7.3.1 Marking Sites

The basic building block for implementing protocols that are based on the isolation properties is a simple marking

of sites. With respect to a speci�c global transaction T

j

, a site is either unmarked (UM), or marked. Then, a site

is marked locally-committed (LC) with respect to T

j

, or marked undone (UD) with respect to T

j

. Initially, a site

is unmarked with respect to a transaction T

j

. A site is made locally-committed with respect to T

j

once it votes

to commit T

j

in response to a VOTE-REQ message. On the other hand, if the site votes to abort T

j

, the site is

made undone with respect to T

j

. A site ceases to be locally-committed with respect to T

i

and becomes unmarked

with respect to that transaction whenever the site receives the decision message from the 2PC coordinator to

commit T

i

. If the decision is to abort T

j

, then the site becomes undone with respect to T

j

. At some point,

a site ceases being undone with respect to an aborted transaction and becomes unmarked with respect to that

transaction. We postpone the discussion concerning this transition to Section 6.3.2. It is important to note that

all these transitions in the marking are triggered either by local events, or by messages that are already part of

the 2PC protocol. Figure 7.3 summarizes the transitions in the markings.

Using this marking scheme, we devise protocols that ensure that the isolation properties are satis�ed. Intu-

itively, the protocol should prevent situations where a global transaction accesses a site that is locally-committed

with respect to another transaction, as well as a site that is undone with respect to that other transaction, since

such a situation can result in a non IR history. Protocols LC/UDUM and UD/LCUM correspond to the isolation

properties S1 and S2, respectively. Each of the two protocols can be summarized by a rule that restricts the sites

a global transaction T

s

may access:

� LC/UDUM. Let T

s

execute at a site that is marked with respect to a T

j

. Then for each such T

j

, either one

of the following conditions hold:

{ all sites in which T

s

executes are locally-committed with respect to T

j

.

{ all sites in which T

s

executes are either undone or unmarked with respect to T

j

.

� UD/LCUM. Let T

s

execute at a site that is marked with respect to a T

j

. Then for each such T

j

, either one

of the following conditions hold:

{ all sites in which T

s

executes are undone with respect to T

j

.

{ all sites in which T

s

executes are either locally-committed or unmarked with respect to T

j

.

54

Starting with the premise that T

s

follows CT

jc

, and using a symmetric argument, C2 is similarly proven. 2

Lemma 9 is pictorially illustrated in �gure 7.2 which describes both the global and local SGs. The �gures

correspond to a history where the second disjuncts in the second conjuncts of C1 and C2 hold.

Next, we introduce two properties of global SGs that are used to `isolate' non-atomic executions, thereby

ensuring IR. Each property is presented as a formal assertion. We �rst introduce four predicates that depend on

the transaction identi�ers j and s:

� A1(j,s): At any SG

a

where T

s

appears, T

ja

! CT

ja

! T

sa

.

� A2(j,s): At any SG

a

where T

s

appears, T

ja

! T

sa

without having CT

ja

on that path.

� A3(j,s): At any SG

a

where both T

s

and T

j

appear, if there is a local path T

ja

! T

sa

, then the path

T

ja

! CT

ja

! T

sa

is in SG

a

.

� A4(j,s): At any SG

a

where both T

s

and T

j

appear, if there is a local path T

ja

! T

sa

, then the path

T

ja

! T

sa

is in SG

a

, without having CT

ja

on that path.

Using these predicates we introduce two isolation properties:

� S1: (8T

j

; T

s

: T

j

! T

s

in the global SG : A2 _ A3)

� S2: (8T

j

; T

s

: T

j

! T

s

in the global SG : A1 _ A4)

Lemma 10. The following assertions hold:

� (9T

j

: C1(j))) :S1; and

� (9T

j

: C2(j))) :S2.

Proof. Consider the path CT

jc

! T

kc

in SG

c

whose existence is guaranteed by the �rst conjunct of C2.

Because of this path and since CT

jc

is always serialized after T

jc

, we have that T

j

! T

k

in the global SG. By the

second conjunct of C2, there exists an SG

d

where either T

jd

! T

kd

without having CT

jd

on that path, or there

is no path between T

j

and T

k

in SG

d

. In both cases, the negation of A1(j; k) is implied. Considering the path

CT

jc

! T

kc

in SG

c

again, we observe that the negation of A4(j; k) holds. Therefore, we have demonstrated that

for T

j

and T

k

, where T

j

! T

k

in the global SG, both :A1 and :A4 hold.

By a symmetric argument the second part of the lemma follows. 2

Theorem 6. If either one of the isolation properties S1 or S2 hold, then the execution is IR.

Proof. Let i be either 1 or 2, then:

The history is not IR

) f Lemma 9 g

(9T

j

: C1(j) ^C2(j))

) f weakening g

(9T

j

: C1(j)) ^ (9T

j

: C2(j))

) f Lemma 10 g

:S

i

The counter positive form of this implication is the theorem statement. 2

7.3 Protocols for Isolation of Recoveries

In this section, we present two protocols that ensure IR when the O2PC protocol is employed. As such, the

protocols actually complement the O2PC protocol. The protocols implement the isolation properties. We strive

for protocols whose execution requires no messages other than the standard 2PC messages.

53

CT

ja

T

s

T

k

CT

jc

T

i

T

j

T

s

CT

jc

T

kc

T

kd

T

ib

T

ia

T

ja

Figure 7.2: Illustrating Lemma 9 by the local SGs (left) and global SG (right)

� A transaction T

i

follows a forward transaction T

j

in a history, if T

j

! T

i

is a path in the corresponding SG,

and there is no compensating subtransaction CT

jn

on that path.

Following a compensating subtransaction is transitive. Following a forward transaction is transitive, except when

a corresponding compensating subtransaction appears in the path.

Lemma 9. If an execution under O2PC is not IR, then there exists a global transaction T

j

such that:

� C1(j): There exists a global transaction T

i

(i 6= j) such that T

ja

! T

ia

at some SG

a

, without having CT

ja

on that path, and at some other SG

b

where T

i

appears, either CT

jb

! T

ib

, or there is no local path between

T

j

and T

i

in SG

b

; and

� C2(j): There exists a global transaction T

k

(k 6= j) such that CT

jc

! T

kc

at some SG

c

, and at some other

SG

d

where T

k

appears, either T

jd

! T

kd

without having CT

jd

on that path, or there is no local path between

T

j

and T

k

in SG

d

.

Proof. For the purpose of the following proof, we need to de�ne shortest path between two transaction nodes

in a global SG. Let us segment paths in the global SG into local paths. The shortest path between two transaction

nodes in the global SG, is the global path connecting these two nodes with the least number of segments (the

shortest path may not be unique).

Since the execution is not IR, there exist T

s

and T

j

, such that T

s

follows T

j

, as well as T

s

follows CT

jn

for

some site n. Consider the shortest path T

j

! T

s

, where there is no compensating subtransaction CT

jm

on that

path. Such a path exists by the de�nition of T

s

follows T

j

. Let the �rst segment of this path be in SG

a

, and

the second in SG

b

. Furthermore, let T

i

be the last global transaction on the �rst segment and the �rst one on

the second segment (see the left �gure in Figure 7.2 for illustration). We have that T

ja

! T

ia

, without having

CT

ja

on that path, thereby satisfying the �rst conjunct of C1. Consider the next site b on that shortest path.

If CT

jb

! T

ib

, then the �rst disjunct in the second conjunct of C1 holds. If such a path does not exist, then

we claim that there is no path between T

j

and T

i

in SG

b

, and hence the second disjunct of the conjunct of C1

holds. First, by Lemma 8, it cannot be that T

ib

! T

jb

, since a cycle would have formed in the global SG (since

T

ja

! T

ia

in SG

a

). Second, had T

jb

! T

ib

, the path T

j

! T

s

with a �rst segment at SG

a

would not have been

the shortest path between T

j

and T

s

.

52

� We give a formal de�nition of IR in the context of O2PC.

� We show that if an execution is not IR then certain conditions are implied (Lemma 9).

� We introduce properties of SGs, called isolation properties whose negation is implied by the above conditions

(Lemma 10).

� We conclude in Theorem 6 that by ensuring the isolation properties, IR histories are guaranteed.

As pointed out in Section 5.6, there are di�erences in the underlying transaction models used in Chapters 6

and 7. Consequently, there are distinctions in the presentation of the IR criterion, even though the basic notion is

identical. In this chapter, the follows relation is de�ned in terms of paths in serialization graphs (SGs) (which are

similar to the partial orders introduced by composite executions in Chapter 6). Our SGs are a slightly extended

version of the traditional SGs, since they include nodes for subtransactions that aborted during the execution of

the O2PC protocol. Inclusion of these subtransactions in the SGs is crucial for the de�nition of IR. As in the

standard treatment of SGs, subtransactions that are aborted earlier are not accounted for in the SGs. To make

the presentation uniform, we use the syntactic device of modeling a subtransaction that aborts during the O2PC

protocol as a committed subtransaction followed immediately by the corresponding compensating subtransaction.

(Actually, an abort followed by a standard roll-back is a special case of compensation, where no transaction have

read from the compensated-for transaction [KLS90a]). Using this syntactic transformation, we need not use

polarities to de�ne IR. Following are the formal de�nitions and results.

Let T be a set of global transactions, and let CT

a

be the set of the corresponding compensating subtrans-

actions at site a. The local serialization graph for site a for a complete local history

1

H

a

is a directed graph

SG

a

(H

a

)=(V

a

; E

a

). The set of nodes V

a

consists of a subset of transactions in T [CT

a

. The set of edges E

consists of all A ! B, A;B 2 T [CT

a

, such that one of A's operations precedes and conicts with one of B's

operations in H

a

.

A global SG is an SG that corresponds to a history at more than one site. Given a set of local SGs, each

represented as SG

a

= (V

a

; E

a

), the corresponding global SG is de�ned as SG

global

= ([V

a

; [E

a

). Observe that

each compensating subtransaction is assigned a separate node in the global SG (in accord with the localization

of compensation principle).

Lemma 8. A global SG that corresponds to a history under the O2PC protocol is acyclic.

Proof. The O2PC protocol assumes that local histories are serializable, and hence local SGs are acyclic.

The presence of compensating subtransactions cannot introduce cycles, since each compensating subtransaction is

represented as a separate node. As was already mentioned, the O2PC protocol preserves synchronization points,

and hence each global transaction still follows the 2PL rule, globally. Therefore, the global SG is acyclic. 2

Before we proceed, we establish some notation. The notation A! B is used to denote that there is a directed

path (of arbitrary length) between the two transaction nodes in a given SG.When specifying a local path, the local

SG it belongs to, is also speci�ed. A global transaction T

i

that requires access to data located at sites 1; 2; : : : ; k

is submitted for execution as a collection of local subtransactions T

i1

; T

i2

; : : : ; T

ik

, where T

ij

is executed at site j.

Similarly, CT

ij

is the compensating subtransaction at site j that corresponds to the forward subtransaction T

ij

.

In the de�nition of follows, we distinguish between following a compensating subtransaction, and following

a forward transaction:

� A transaction T

i

follows a compensating subtransaction CT

jn

in a history, if CT

jn

! T

i

is a path in the

corresponding SG.

1

See [BHG87] for precise de�nitions of complete histories.

51

Under certain circumstances, the O2PC scheme can be employed as it was presented so far, without any

further adjustments. If transactions are not sensitive, and hence the notion of IR is not relevant for them, O2PC

can be employed right away.

Another simple way of taking advantage of the O2PC idea without tackling correctness issues is to allow only

local transactions to bene�t from the fact that global transactions release their locks early. That is, a global

transaction releases its locks and becomes locally-committed only for the purposes of letting local transactions

proceed; other global transactions are still delayed. This simple version of the O2PC protocol reduces the length

of time local transactions are delayed due to global transactions.

7.1 O2PC in Real-Time DTM Systems

In this section we briey mention several relevant aspects of the work reported in [SLKS91], where compensation

is used in the context of a real-time DTM system.

The harsh consequences of enforcing atomicity in DTM systems cannot be tolerated in typical real-time

applications. Under light system loads and no failures, using 2PC is acceptable. However, when those assumptions

do not hold, an alternative is needed. An adaptive approach is taken in [SLKS91] that permits a site to dynamically

switch to the less costly O2PC under situations that demand it, such as a transient excessive load. The decision

to switch between the two commit protocols can be taken autonomously at any site. Switching between the

protocols exploits a trade-o� between the cost of commitment and the obtained degree of atomicity. Namely,

low-cost protocol and relaxed atomicity under O2PC, and high-cost protocol and standard atomicity under 2PC.

As was already pointed out, there is more overhead to compensation than standard recovery. The feature of

compensation that is crucial to its applicability to real-time systems is that undo operations must be performed

immediately, while compensatory action may be deferred. This allows recovery work to be performed during

periods of light system load despite the expectation that transaction failures (and thus recovery) will occur

disproportionately more during times of high system load. Furthermore, it is not necessary for a failed transaction

T to hold data pending the execution of CT . Rather, a failed T can release data that is later (re)acquired by

CT . Since we allow standard 2PC to be used as the norm for transaction commitment, with compensation-based

techniques invoked only when time-constraints require it, the overhead is further reduced.

To substantiate the above claims, an example adapted from the real-time systems literature was worked out.

The example is concerned with a tracking system for mobile targets [Son88, Koo90]. The system is dispersed

over several processing sites that manage target-sensors, target-tracking weapons, and store data pertaining to

the readings, positions, etc. in local database systems. Periodically, the sensors update the data regarding the

targets as sensed at each local site, and this data is also sent to a speci�c coordinator site. The coordinator site

receives such track data from several sites and correlates the information gathered to create the global tracking

information. In the example, compensation is used to amend the positioning of the weapon system after an

erroneous reading is recorded at one of the stations (say, due to a signal-processing error). Compensation is

performed by positioning the weapon system based on extrapolation of its past trajectory since the local site does

not know the precise correct current position for it.

7.2 Isolation of Recoveries under the O2PC Protocol

The main result of this section is the derivation of a su�cient condition for obtaining the IR criterion under the

O2PC protocol. The strategy in obtaining the main result is summarized as follows:

50

in Section 7.4.

49

the one hand, the early release of locks solves the problems of blocking and the local commitment keeps the

sites autonomous. On the other hand, the uncoordinated commitment of updates may violate the standard

all-or-nothing atomicity guarantee of a transaction, if at least one of the sites votes to abort it.

As was outlined above, we use compensating transactions, in conjunction with the O2PC protocol, as the

means to ensure transaction atomicity despite of the uncoordinated commitment of updates at di�erent sites.

After voting to commit T , a site still carries on with the second phase of the regular 2PC protocol (despite having

released locks held by T). If the site receives a decision message from the coordinator to abort T , then it invokes

the corresponding compensating transaction. Since it is more likely that the decision would be to commit T , the

gain by the early release of locks should outweigh the overhead associated with those cases requiring compensation

for T . The message transfer in the O2PC protocol between the coordinator and a participating site is depicted

pictorially in Figure 7.1.

Commit/Abort

Decision:

Committed/Compensated-for

Coordinator:

Vote: Commit/Abort

Participant site:

DECISION

VOTE

VOTE-REQ

Figure 7.1: A schematic view of the O2PC protocol

The execution of a compensating transaction requires access to the log and other information stored on stable

storage (see Section 4.1), thus further increasing the cost associated with this type of transaction. For these

reasons, we limit the usage of compensating transactions in our context, for relatively rare pessimistic cases of

failures of global transactions.

In the context of the O2PC protocol, compensation is employed as follows. If T

j

is a global transaction,

CT

i2

; : : : ; CT

ik

are local compensating subtransactions, one for each site where T

i

was executed. Each compensat-

ing subtransaction is submitted for execution at a site just like any other local transaction, and hence it is subject

to the local concurrency control. Compensating subtransactions are treated as local transactions rather than as

subtransactions of global transactions with respect to locking; that is, they also follow strict 2PL locally. There-

fore, at each site, the local execution over local transactions, subtransactions, and compensating subtransactions

is serializable.

A distinctive feature of the O2PC protocol is that it makes no changes to the message transfer pattern or

the structure of the standard 2PC protocol. Even when O2PC is augmented to preserve IR (in Section 7.4)

the structure of 2PC is preserved. The changes are in local reactions to the 2PC messages. Therefore, O2PC

does not contradict standardization e�orts of the 2PC protocol. Moreover, there is a very strong compatibility

between 2PC and its optimistic variant. Transactions employing the former can be executed concurrently with

transactions obeying the latter, and still global transactions follow 2PL globally. This guarantee follows from

the fact that O2PC preserves the synchronization points of subtransactions. Furthermore, even for the same

global transaction, some of the constituent subtransactions may be engaged in O2PC and some in 2PC. These

advantageous properties are exploited in the work reported in Section 7.2 [SLKS91], and in the ideas described

48

Chapter 7

The O2PC Protocol

A di�erent method for achieving relaxed atomicity in a DTM environment is presented in this chapter. The

method is based on the optimistic 2PC (O2PC) protocol. Formal de�nition of the IR criterion in this context is

given in Section 7.3 and corresponding protocols are given in Section 7.4.

In the standard 2PC protocol, a multi-site transaction is associated with a coordinator that initiates the

protocol by sending a VOTE-REQ message (also referred to as PREPARE message) to all participating sites.

Upon receipt of this message, a participating site votes (by sending a VOTE message back to the coordinator)

either to commit the particular transaction or to abort it. Based on these votes, the coordinator decides whether

to commit or abort the transaction. Only if all the votes are to commit then the transaction is to be committed.

Following this, the coordinator transmits its DECISION message to the participating sites.

Typically, in DTM systems global serializability is obtained using the synchronization points techniques de-

scribed in Section 5.4.3 that combines the 2PC protocol with a global 2PL discipline. For the well known reasons

of avoiding cascading aborts, and use of state-based recovery, the exclusive (i.e., write) locks are released only

after the DECISION message is received locally. Thus, a strict version of 2PL is used. It is possible to release

the shared (i.e., read) locks as soon as the VOTE-REQ message is received.

Holding the locks until a DECISION message is received, which is the cause of blocking, is necessary only

if the transaction at hand has to be aborted. Our revised protocol is based on the optimistic assumption that

in most cases the protocol terminates successfully (i.e., the transaction commits) and therefore the locks can be

released earlier. This can dramatically reduce waiting due to data contention, thereby improving the performance

of the system. Such an assumption is valid in most practical distributed environments. Furthermore, since the

commit protocol is initiated only when the transaction at hand has already obtained all its locks and completed

all its operations, its failure is very unlikely. Namely, the transaction cannot participate in a deadlock, nor can

it fail because if a logical error. It can fail only because of site or communication faults, which usually are rather

infrequent. The validity of the optimistic assumption is orthogonal to the protocol correctness. However, if the

assumption is unfounded, the overhead incurred by the protocol is likely to outweight its bene�ts.

The optimistic 2PC (O2PC) protocol is a slightly modi�ed version of the 2PC protocol. The same message

exchange is carried out as in the standard protocol. If a site votes to abort T

j

, then as in the standard protocol,

an abort vote is sent back to the coordinator, and the locks held by the transaction are released as soon as the

transaction is locally undone (rolled-back). However, if a site votes to commit T

j

, all locks held by T

j

are released

at once, without waiting for the coordinator's �nal commit or abort message. In this case, we say that T

j

is

locally-committed at that particular site. Observe that a global 2PL discipline is preserved, even under the early

lock release provision of the O2PC protocol.

The uncoordinated local commitment resulting in the early release of locks is the crux of the protocol. On

47

of follows for a more conservative transaction model is given in Chapter 7. There, in spite of the transitivity,

propagation of e�ects is controlled by dealing with sites as the unit of marking.

Another question that should arise concerns an execution where T

32

is serialized in between T

12

and T

22

in

Figure 6.1 (b). By the de�nition, this execution turns out to be IR. (This execution is not IR, however, under the

de�nition of follows given in Chapter 7). This should not be surprising once considering the following reasoning.

We made a modeling decision that if such a T

32

propagates the e�ects of T

12

to T

22

, then it should have been a

subtransaction of T

1

itself, and not a subtransaction of a di�erent transaction. That is, our transactions create

spheres of atomicity and consistency. All subtransactions that are related to a single activity in terms of causality,

atomicity and consistency should be grouped as a single composite transaction [tm-91, GMGK

+

90]. If T

3

is a

separate transaction, then the sensitivity of T

2

is not an issue any more, once T

32

executed in between T

12

and

T

22

.

6.5 When Actions Are Not Semantically-Recoverable

The concept of relaxed atomicity relies on the methods of compensation and retry. As was mentioned earlier,

these methods are not applicable universally, and are based on semantics of the applications at hand. For instance,

transactions involving real actions [Gra81] (e.g., �ring a missile or dispensing cash) may not be compensatable.

The adjustment for transactions involving non-compensatable subtransactions is to retain their locks and delay

real actions until a commit decision message is received from the coordinator (as in standard two-phase commit)

in all sites performing these actions. All other sites running compensatable subtransactions on behalf of the same

transaction can still bene�t from the early lock release of our modi�ed commit protocol.

A general way of integrating arbitrary subtransactions (which may not be suitable for compensation or retry)

into our model, is described next. Each subtransaction can be divided into three portions: a compensatable

portion (CP), a pivot portion (PP), and a retriable portion (RP). The execution of such a subtransaction would

proceed as follows: The CP is executed �rst, and following its termination all locks it has acquired are released

at once. The PP is executed second and its termination is coordinated by a 2PC protocol among all the pivots

of the subtransactions of the same transaction. While waiting for the 2PC decision message to arrive, the RP

is initiated. Locks acquired by the PP or the RP are released only after a decision message is received locally.

If the decision is to abort, then the RP is aborted and both RP and PP are undone using standard recovery

since their locks have not been released. Additionally, the CP is compensated-for. If, however, the decision is

to commit, then PP's locks are released, and if RP happens to have failed it is re-executed until it succeeds. A

disadvantage of this method is that because of the very early release of locks by the CP, synchronization points

are not preserved, and thus 2PL property of the global transaction is lost.

46

Section 2.1 is used and hence executions are eventually semantically atomic. The following propositions assume

a semantically atomic execution E, that is generated under the polarized protocol. The lemmata are direct

consequence of the rules used to present the protocol.

Lemma 3. If q

j

follows s

b

i

because of a conict on x at a certain site, and at that site T

i

's markers have

not been discarded by the time q

j

accesses x, then (i; b) 2 mfb(q

j

).

Lemma 4. If q

j

j

! p

j

, then mfb(q

j

) � mfb(p

j

).

Lemma 5. A marker (i; b) is discarded at site, only if there is no active transaction T

j

such that (i;

�

b) 2

mfb(o

j

) at any other site.

Lemma 6. All markers in the follow set of a subtransaction are of the same polarity.

Lemma 7. If o

j

follows p

b

i

because of a conict on a data item, and T

i

's fate is

�

b, then (i; b) 2 mfb(o

j

).

Proof. Let o

j

and p

i

conict on x. Since T

i

has a unanimous fate, a recovery subtransaction that corresponds

to p

i

must exist in the execution. Thus, the marker (i; b) 2 access(x) is discarded by the recovery subtransaction

that corresponds to p

i

. Therefore, since o

j

follows p

b

i

, o

j

must precede this recovery subtransaction, and hence

the marker would not be removed prior to o

j

's access to x. Consequently, (i; b) 2 mfb(o

j

). 2

Theorem 5. The polarized protocol ensures that executions isolate recoveries.

Proof. The proof is by contradiction. We assume that p

j

follows s

b

i

and t

�

b

i

, and derive a contradiction. By

the de�nition of the `follows' relation, there are subtransactions q

j

(o

j

) that follow s

b

i

(t

�

b

i

) because of conicts

on data items x (y) at site 1 (site 2), and q

j

j

! p

j

(o

j

j

! p

j

). (One of q

j

; o

j

may be p

j

itself). By assumption,

the execution is SA, and hence T

i

has a unanimous fate b or

�

b. Without loss of generality it may be assumed

that the �nal fate of T

i

is b (the dual case is symmetric). By Lemma 7, (i;

�

b) 2 mfb(o

j

). The proof proceeds by

considering two cases. First, we assume that site 1 had already discarded the marker (i; b) when q

j

accessed x. By

Lemma 5, the (i; b) marker could have been discarded only if (i;

�

b) 62 mfb(o

j

) at site 2. However, (i;

�

b) 2 mfb(o

j

).

A contradiction is derived. In the second case, we assume that the marker (i; b) was not discarded before q

j

accessed x at site S

1

. Then, by Lemma 3, (i; b) 2 mfb(q

j

), and by Lemma 4, (i; b) 2 mfb(p

j

). However, since

(i;

�

b) 2 mfb(o

j

), by Lemma 4, (i;

�

b) 2 mfb(p

j

), too. This contradicts Lemma 6. 2

6.4 Discussion

A few comments concerning several modeling decisions that have been made in this chapter are in order. The

relation follows is not transitive, and this is a critical point. Intuitively, this relation models the propagation

of the e�ects of a subtransaction t

j

on subtransactions of other transactions. Such propagation is allowed only

within a single transaction, one of whose subtransactions came immediately after t

j

. The reasoning behind the

decision to limit this propagation is that we wanted to con�ne the cascading e�ects of a subtransaction somehow.

Assume that a subtransaction p

j

commits, and is followed by other subtransactions transitively. If T

j

is aborted

we need to compensate for p

j

, and also we need to compensate for the uncontrollable cascading e�ects of p

j

.

This very much resembles cascading aborts, which the method of compensation is set to prevent. In particular,

consider the following <

E

orderings: t

j

<

E

q

i

where both subtransactions execute at the same site, and q

i

<

E

p

k

,

where p

k

executes at a di�erent site. Had follows been transitive, p

k

would have followed t

j

. Such uncontrollable

propagation to remote sites is troublesome.

Propagation of e�ects is modeled and tracked by the propagation of markers in the protocol. Making follows

transitive means that a marker (i; b) would have to be assigned to access(x) even if p

i

does not access x. It

is problematic to discard such arbitrarily scattered markers. Currently we maintain the invariant that (i; b) 2

access(x) only if a subtransaction of T

i

accesses x. This invariant enables to discard markers of a particular

transaction by local actions at all sites where the transaction was executed. A di�erent, transitive, de�nition

45

unnecessarily. Therefore, it is necessary to discard markers.

Discarding markers should be done carefully, since discarding a marker too early can lead to incorrectly passing

the condition of the second and third rules, thereby generating a non-IR execution. Such an undesirable scenario

can arise if a subtransaction p

j

follows q

b

i

, and accesses a data item whose (i;

�

b) marker was removed prematurely.

As far as correctness goes, the precondition for discarding markers is formulated as follows.

A marker (i; b) of a transaction T

i

(with a unanimous fate), can be discarded if all T

j

whose subtrans-

actions follow q

�

b

i

are no longer active.

A transaction is active until it can no longer initiate new subtransactions at new sites (i.e., until the coordinator

initiates the commit protocol for that transaction). Once T

j

becomes inactive, subtransactions p

j

can no longer

cause the problem outlined above. Implementing this transition requires cooperation among sites and hence extra

communication. It should be emphasized, however, that this additional message exchange is needed only for the

purposes of discarding markers, and it can be decoupled from the execution and commit procedure of a particular

transaction. Speci�cally, discarding markers can be done periodically, as a garbage collection activity, thereby

amortizing the communication cost over a set of transactions.

The purpose of the following message exchange is to discard markers of transactions executed at a set of

participating sites and coordinated by a coordinator. This message exchange is executed periodically, and not for

every transaction separately. The additional rules for this exchange are described next.

� At a participant as a response for a request to DISCARD from the coordinator. For transactions T

i

,

whose local recovery subtransactions have terminated successfully with polarity b:

if :(9 local subtransaction p

j

: (i;

�

b) 2 mfb(p

j

))

then send SAFE ack message to coordinator

else send UNSAFE ack message to coordinator

� At the coordinator. When the coordinator has received SAFE/

UNSAFE acks from all participants of T

i

that executed recovery subtransactions for T

i

:

if all the participants sent a SAFE ack

then notify all participants to discard T

i

's markers

Having received all the SAFE/UNSAFE acks for a transaction T

i

, the coordinator has all the information

needed to determine whether it is safe to discard T

i

's markers. First, the coordinator is certain that T

i

has a

unanimous fate, since the successful termination of all of T

i

's recovery subtransactions was acknowledged. It is safe

to discard T

i

's markers provided that there is no transaction T

j

, whose subtransaction follows a subtransaction

of T

i

with a polarity opposite to the �nal fate of T

i

. The existence or absence of such a transaction T

j

is encoded

in the SAFE/UNSAFE ack messages.

It is assumed that mfb sets of subtransactions are maintained as long as the corresponding transaction is

active. Finally, it should be noted that discarding markers at a site need not be performed as a synchronous

action. By the time a site is noti�ed that it can discard markers, their presence or absence is of no consequence,

whatsoever.

6.3.3 Correctness

We are in position now to state several results concerning the protocol. The polarized protocol is a reactive

algorithm that reacts to events in the course of processing a multi-site transaction. The execution of transactions

is governed by the protocol, and hence only a certain class of executions is allowed under the polarized protocol.

Our objective is to show that these executions isolate recoveries. We assume that the commit protocol outlined in

44

� For each subtransaction p

j

the protocol maintains the following set:

mfb(p

j

), the set of all markers (i; b) such that p

j

follows

2

q

b

i

. (The name mfb(p

i

) should be read as \markers

followed by p

i

").

Initially, for all data items x, and for all subtransactions p

j

, access(x) = ; and mfb(p

j

) = ;, respectively.

Regarding the �rst rule below, the set subtraction is e�ective only for a successful recovery subtransaction

that removes the marker of its corresponding forward subtransaction. The second rule propagates markers only

in cases of conicts among subtransactions. Dependency orderings may not be based on data conicts, but still

take part in `follows' chains. The third rule takes care to reect these dependency orderings in the mfb sets.

Since dependency orderings are inter-site, this rule implicitly assumes the communication needed for the remote

invocation.

1. Marking. Whenever a forward or a recovery subtransaction s

i

terminates with polarity b, then for all data

items x accessed by s

i

:

access(x) := (access(x) � f(i;

�

b)g) [f(i; b)g

2. Access and Propagation. Whenever a subtransaction p

i

requests access to data item x:

if (9j : (j; b) 2 mfb(p

i

) ^ (j;

�

b) 2 access(x))

then reject p

i

's request

else mfb(p

i

) := mfb(p

i

) [access(x)

3. Propagation by Dependence. Whenever a subtransaction p

i

requests to invoke a subtransaction q

i

:

if (9j : (j; b) 2 mfb(p

i

) ^ (j;

�

b) 2 mfb(q

i

))

then reject p

i

's request

else mfb(q

i

) := mfb(q

i

) [mfb(p

i

)

Executions that are not IR are excluded by checking the conditions of the second rule and the third rule. A

subtransaction is prevented from accessing data items marked by markers of the same transaction with opposing

polarity. If a subtransaction attempts to access a data item x that would violate this condition, the access request

is rejected in the second rule. Rejection implies that the subtransaction can either fail or be delayed. Delaying is

useful only if it is possible that x's o�ending marker will be removed. Such a removal may occur when a successful

recovery subtransaction replaces the o�ending marker with the opposite marker as prescribed in the �rst rule.

Dependency orderings that violate the IR criterion are similarly rejected in the third rule.

Recall that invoking a subtransaction may model initiating it, as well as any other type of dependency between

subtransactions (e.g., data ow, synchronization). The only time where mfb(q

i

) is not empty in rule 3 is when two

subtransactions \invoke" the same third subtransaction within the same transaction. Such an invocation models

a synchronization event, or a subtransaction that gets input from the output of two previous subtransactions. In

this case, mfb(q

i

) accumulates markers and rule 3 is executed as a validation check (i.e., after the subtransaction

q

i

is already active and got its inputs for example).

Observe that the rules of the protocols check local conditions and prescribe local actions, and hence, a local

scheduler can implement the protocol without additional inter-site communication.

6.3.2 Discarding Markers

For the condition checking in rules 2 and 3 to be performed fast and for space e�ciency, it is required to keep

the access(x) sets �nite. Moreover, if markers are not discarded in a timely fashion, they restrict accesses

2

Since discarding markers is done only periodically and asynchronously (see below), the mfb sets may accumulate extra markers.

That is, it may indeed happen that (i; b) is in mfb(p

j

) and p

j

does not follow a q

i

. Such a situation arises because of Rule 2 which

assigns to mfb(p

i

) regardless of the non-transitive de�nition of follows.

43

(b)

T

0

12

T

22

T

21

T

1

11

(a)

CT

0

12

T

22

T

21

T

1

11

Figure 6.1: Non-IR executions

In an IR execution it is possible to follow a forward subtransaction, p before a successful rp actually reverses

p's e�ects. The class of IR executions excludes, however, executions in which a global state resulting from an

incomplete execution of a transaction is observed by other transactions. Thus, a notion of virtual atomicity is

enforced. A nice feature of the de�nition of IR using polarities, is that it excludes following all possible non-atomic

combinations among committed, aborted, compensated-for, and retried subtransactions.

To illustrate, consider the sample executions depicted in Figure 6.1. In this �gure a subtransaction of transac-

tion T

i

executing at site S

j

is denoted T

ij

. The notation CT

ij

denotes the compensating subtransaction speci�c

to the forward subtransaction T

ij

. The <

E

relation is depicted by arrows. In this �gure all the executions are

not IR.

The example in Figure 6.1 (a) is of particular interest. By following CT

12

, T

22

\knows" that the coordinator

of T

1

has decided to abort T

1

. On the other hand, the e�ects of T

11

are visible at site S

1

, and thus a�ect T

21

and

transitively T

22

. T

22

is exposed to the asynchrony in the process of recovering T

1

, and consequently may observe

an inconsistent state.

6.3 The Polarized Protocol

In this section, we present a protocol, called the polarized protocol, that ensures that executions isolate recoveries.

The protocol is executed by schedulers at each site that collectively ensure the IR property. The protocol

implements the `follows' relation which is crucial to the generation of IR executions. It does so by marking data

items with polarities of subtransactions that access them, and propagating these markings along conict and

dependency orderings.

First, we present the general polarized protocol which applies regardless of the type of decision rule the

coordinator employs. The protocol, expressed as a set of rules, and some explanatory comments are included in

Section 6.3.1. Section 6.3.2 focuses on the problem of discarding markers. A correctness proof is presented in

Section 6.3.3.

6.3.1 The Protocol

The following type and data structures are used in the protocol:

� A marker is an ordered pair (i; b), where i is a transaction identi�er and b is a polarity of a subtransaction

within that transaction.

� For each data item x the protocol maintains the following set:

access(x), the set of all markers (i; b) such that x is accessed by a subtransaction p

b

i

.

42

The fate of a transaction T

i

in an execution E is the union of the set of the polarities of T

i

's recovery

subtransactions in E, with the set of polarities of subtransactions of T

i

that have no recovery subtransactions.

Formally:

fate(T

i

; E) = fb j rp

b

i

2 Eg [fb j (q

b

i

2 E) ^ (rq

i

62 E)g

A transaction T

i

has a unanimous fate in an execution E if

j fate(T

i

; E) j = 1

That is, all polarities considered in the construction of fate(T

i

; E) are identical. This polarity is referred to as

the fate of T

i

, if indeed T

i

has a unanimous fate.

An execution E is semantically atomic (SA) if for each transaction T

i

:

� There is at least one subtransaction, p

i

2 T

i

that has no recovery subtransaction in E; and

� T

i

has a unanimous fate.

Observe that if a recovery subtransaction fails, the execution does not preserve semantic atomicity since the

transaction to which the subtransaction belongs cannot have a unanimous fate. We note without proof that a

commit protocol (structured as prescribed in Section 5.2.1) that satis�es the unanimity condition ensures that

eventually executions are SA. Compliance with the unanimity condition satis�es the �rst requirement in the

de�nition of an SA execution. Our de�nition of semantic atomicity is an extension of the de�nition in [GM83] to

include both compensation and retry.

The property of semantic atomicity is not pre�x-closed. Consequently, as a non-SA execution progresses and

more recovery subtransactions are executed it may become SA.

6.2 Isolation of Recoveries for Composite Transactions

As was intuitively explained in section 5.3, the notion of IR is concerned with the visibility of e�ects of transactions

that do not have a unanimous fate. In standard transaction models, visibility is modeled by the reads-from conict

relation (see [BHG87] for the exact de�nition). Since we do not deal with reads and writes, every conict among

subtransactions of di�erent transactions represents the fact that the e�ects of the preceding subtransaction, t

j

are visible to the subsequent subtransaction, p

i

. Recall that causality and logical precedence are modeled by

the dependency orderings within a transaction. Hence, it is appropriate to model the further propagation of the

e�ects of t

j

within T

i

along these orderings. The notion of propagation and visibility of e�ects is made formal by

de�ning the follows relation.

Let

i

! denote the transitive closure of the <

i

relation. A forward subtransaction p

i

follows a subtransaction

t

j

(i 6= j) in an execution E if:

� t

j

<

E

p

i

, and there is no s

k

such that

t

j

<

E

s

k

<

E

p

i

. Or, if

� q

i

follows t

j

, and q

i

i

! p

i

.

An execution isolates recoveries if there is no forward subtransaction of a particular transaction that follows

subtransactions of opposing polarities of another transaction. Formally:

Let s

b

j

and t

�

b

j

be two subtransactions of T

j

that have opposing polarities in an execution E. Then an execution

E isolates recoveries (IR) i� whenever p

i

follows s

j

, then p

i

does not follow t

j

.

41

The partial order models the logical precedences within a composite transaction. For brevity, a composite trans-

action is often referred to just as a transaction.

The termination of composite transaction is coordinated using the commit protocol outlined in Section 5.2.1

and employing either one of the decision rules described there. No synchronization points are assumed, however.

That is, a request for vote message from the coordinator, may be received after the local subtransaction has already

terminated and released its resources. Consequently, there is no notion of global serializability for composite

transactions.

We subscript subtransaction names to denote the transactions they belong to, or the transaction they cor-

respond to in case of recovery subtransactions. For example, p

i

is a forward subtransaction

1

of transaction

T

i

, rp

i

is its corresponding recovery subtransaction, and s

i

denotes either a forward subtransaction of T

i

or a

corresponding recovery subtransaction. Regardless of whether s

i

is a forward or a recovery subtransaction, we

say that s

i

is a subtransaction of T

i

.

We treat all conicts among subtransactions as dependencies in the sense of Section 5.4.1 (i.e., we do not

distinguish among read-write conicts, write-write conicts etc.). Observe, however, that there are no intra-

transaction conicts among subtransactions (except for the conicts between subtransactions and their recovery

subtransactions). This is because a transaction may have only one subtransaction at a particular site, and data

items at di�erent sites are disjoint. Thus, to model intra-transaction dependencies that span across sites we need

an additional notion. An ordering among two subtransactions of the same transaction is called a dependency

ordering. All the dependency orderings are inter-site. These dependency orderings model the logical precedence,

ow of information, causality and synchronization constraints among subtransactions of the same transaction

that are imposed by its program. Regardless of the actual type of dependency modeled by p

i

<

i

q

i

, we say that

p

i

invokes q

i

.

6.1 Composite Executions

A complete composite execution E over a set of composite transactions T = fT

1

; : : : ; T

n

g is a partial order with

ordering relation <

E

where

� E = [

n

i=1

T

i

[rec, where

rec � [

n

i=1

frp

i

j p

i

2 T

i

g

That is, E consists of the subtransactions iof the transactions in T and recovery subtransactions for a subset

of these subtransactions.

� Each subtransaction in E has a polarity. Polarities are used below to encode the fate of a transaction in an

execution.

� <

E

� [

n

i=1

<

i

.

� For any two conicting subtransactions s

i

; t

j

, either s

i

<

E

t

j

or t

j

<

E

s

i

.

� For any pair p

i

; rp

i

, of forward and recovery subtransactions, p

i

<

E

rp

i

.

A composite execution is a pre�x of a complete composite execution. Since all the executions, hereafter, are

composite, for brevity we refer to a composite execution merely as an execution.

1

Even though we resort to a more conventional notation for subtransactions in Chapter 7 (T

ij

, where the second index, j is a site

name), here we prefer the p

i

notation to avoid double subscripting.

40

Chapter 6

Atomicity of Composite Transactions

In this chapter, we formally introduce composite transactions in the context of a DTM system. A formal de�nition

of IR for composite transactions is given in Section 6.2. A corresponding protocol, referred to as the polarized

protocol is presented and proved correct in Section 6.3. Comments on the underlying model of this chapter are

discussed in Section 6.4. Section 6.5 describes methods for incorporating actions that cannot be compensated-for

or retried into our paradigm.

A distributed database is a set of disjoint databases, where each database that is associated with a site. A

subtransaction is an atomic transaction that consists of a totally ordered sequence of accesses to data items at a

single site. Since our discussion, hereafter, is at the subtransaction level, the speci�cs of the accesses (i.e., whether

they are reads, writes or other types of operations) are abstracted. To further justify this abstraction we assume

the following regarding the interleaving of accesses to data items:

� Serializability and Strictness. The executions of accesses to data items are serializable and strict

[BHG87] at the subtransaction level. Strictness means that a subtransaction does not access a data item x

before the previous subtransaction to access x terminates (commits or aborts).

The success or failure of a subtransaction (i.e., whether it committed or aborted) is encoded by a binary

polarity. For clarity, assume that if a subtransaction commits (aborts) its polarity is 1 (0). Observe that strictness

is needed so that a subtransaction p is assigned a polarity before subsequent subtransactions access the data items

accessed by p. The necessity of this requirement becomes clear later.

There are two kinds of subtransactions; forward subtransactions and recovery subtransactions. Each forward

subtransaction is associated with a recovery subtransaction. We use p; q; o to denote forward subtransactions

and rp; rq; ro to denote their respective recovery subtransactions. When we refer to either a recovery or forward

subtransaction, we use s; t. The notation s

b

(where b is either 0 or 1) denotes that s has polarity b. A polarity

opposite to b is denoted

�

b. If a recovery subtransaction, rp, succeeds then rp's polarity is opposite to p's polarity.

Otherwise, if rp fails, the polarities of p and rp are identical. A forward subtransaction and its successful recovery

subtransaction always have opposing polarities. Intuitively, this represents the fact that a committed recovery

subtransaction reverses the e�ect of its forward subtransaction.

Subtransactions accessing at least one data item in common are said to be conicting. A recovery subtransac-

tion accesses at least all data items accessed by its forward subtransaction. Therefore, a forward subtransaction

and its recovery subtransaction conict.

A composite transaction T

i

, is a partial order with ordering relation <

i

where

� the elements of T

i

are a �xed set of forward subtransactions; and

� there is at most one subtransaction of T

i

at a particular site.

39

� The site executing the transaction crashes.

� The transaction was aborted intentionally, in order to resolve a deadlock, or for other reasons.

� A logical error in the transaction's code led to its abort (e.g., division by zero, attempt to violate integrity

constraint).

The most simple form of retrying a transaction is re-executing its program. Following the �rst two types of

failures, re-execution of the transaction may also fail. In case of a logical error that is state-dependent, the error

may occur again depending on the state of the database during the re-execution. Therefore, regardless of the

cause of the failure, we cannot require a retry by re-execution to succeed unconditionally as was required for

compensation by the persistence of compensation requirement.

A more sophisticated retry transaction can examine the log records of the forward transaction and determine

the cause for the failure. Based on this analysis, the retry transaction may take appropriate actions, thereby

increasing its probability to succeed. Such a retry mechanism is similar to an exception handler whose actions

are determined by the type of the failure. In addition, a retry transaction may invoke contingency actions

[ELLR90, RELL90, BOH

+

91, C

+

89] if the failure analysis leads to the conclusion that mere re-execution is futile.

A contingency action performs a task that is functionally equivalent to the task that was originally associated

with the transaction.

If the semantics of a particular forward transaction are such that the unconditional success of this exact

transaction is crucial to the success of the entire transaction, then retry should not be considered as a recovery

option for such a transaction (see Section 6.5). Similarly to compensation, retry is not universally applicable.

Refer to Section 6.5 where incorporating of actions that cannot be retried into our framework is described.

Next, we illustrate the utility of retry in a DTM environment. As was alluded above, our basic paradigm is to

establish a relaxed notion of atomicity given that subtransactions commit or abort in an uncoordinated manner

using semantics-based recovery. Relaxed atomicity, similarly to standard atomicity, o�ers two options for the

�nal fate of a transaction. Establishing the option that parallels the standard Abort (`nothing') is obtained by

compensating for all tentatively committed subtransactions. In a dual manner, we claim that the Commit option

(`all') can be established by executing a retry subtransaction for all the failed subtransactions. The duality of

the two methods is illustrated by considering the case of a commit protocol employing a standard biased decision

rule. If a local decision is reached prior to a global decision, the two decisions can di�er only in case of a local

commit. Thus, compensation can patch up relaxed atomicity. Conversely, if a global decision is reached prior to

e�ecting a local decision (i.e., prior to the local commit point) then the decisions can be incompatible only in

case of a global commit, and then retry establishes relaxed atomicity.

In the context of autonomy, i.e., multidatabases, retry has another importance. Compensation accommodates

autonomy by allowing a site to commit in a tentative manner before a global commit decision is made. In a

dual manner, retry facilitates forcing a global commit decision that is accepted before the sites themselves have

physically committed the subtransactions. Such a capability to force a global commit decision is useful in a

multidatabase environment [BST90].

38

One can argue that the localization of compensation principle holds regardless of the dependency classi�cation

of the forward transactions. Once a forward transaction has executed, regardless of whether it had inter-dependen-

cies or not, the traces it leaves in the form of local logs at the di�erent sites look the same for the purposes of

compensation. It is anticipated, however, that it is going to be easier to enforce the localization principle for

global transactions that have no dependencies. When a global transaction is semantically decomposed, each of

its subtransactions has clear semantics. Thus coming up with independent compensating subtransactions should

pose less di�culty. It is going to be harder to enforce the localization principle when syntactic decomposition is

used. Some global information might be needed in order to assign the individual compensating subtransactions

the relevant semantics. We postpone to future research a more precise analysis of the interplay among the types

of global transactions and the validity of the localization principle.

5.6 Two Speci�c Solutions

Chapters 6 and 7 provide two speci�c methods for obtaining relaxed atomicity and ensuring IR. To give the reader

a broader perspective on this part of the dissertation, we provide in this section a brief preview and comparison of

the two methods. Chapter 6 talks about composite transactions and is based on [LKS91b]. Chapter 7 describes

an Optimistic 2PC (O2PC) protocol and is a variation of [LKS91a]. For clarity, in both chapters all transactions

are assumed to be sensitive; that is, IR needs to be enforced for all of them.

The work in Chapter 6 is characterized as follows:

� The transaction model is an advanced model [tm-91, BOH

+

91].

� Both decisions rules are considered, and hence both retry and compensation are employed.

� There are dependencies among subtransactions and they are modeled by a partial order. Consequently, IR

is enforced in an incremental manner.

� IR is enforced on data items granules.

� Subtransactions may have no synchronization points, and hence global serializability is not an issue.

The work in Chapter 7 is characterized as follows:

� A conservative and standard transaction model is used.

� Only compensation, and not retry, is relied-upon, since only the standard biased decision rule is considered.

� There are no dependencies among subtransactions. Therefore, IR is imposed using a validation method.

� IR is enforced at a site granularity.

� Subtransactions have synchronization points.

It is possible to combine features from either method and come up with a synthesized protocol.

5.7 Retry Transactions

Similarly to a compensating transaction, a retry (sub)transaction is coupled with a forward (sub)transaction.

First, we discuss briey how a retry transaction can be constructed. Retry is initiated based on the premise that

the forward transaction has failed. There are few possible reasons for a transaction failure:

37

5.5 Localization of Compensation

Our basic idea is to promote the notion of tentative local commitment of subtransactions that can be undone

by compensation if the global transaction fails. For that end, we have coupled compensation activities with sub-

transactions. A question that should be addressed is how to treat the collection of compensating subtransactions

that is associated with the global forward transaction. Answering this question has rami�cations on de�ning the

correctness of executions with compensation in a distributed environment.

For answering this question, we point out the following special features of compensation in a distributed

system:

� Compensation, as a recovery activity, is an after the fact activity. That is, the forward transaction has

executed, and compensation is carried out based on its e�ects. Similarly to standard undo, the compensating

subtransaction is guided by the local log in determining which operations with which arguments should be

applied. Therefore, there is no single global program that drives the individual compensating subtransactions

at the di�erent sites.

� By the persistence of compensation requirement (Section 4.1.4), each site automatically guarantees the

eventual successful termination of the local compensating subtransaction. Consequently, there is no need

to use a commit protocol to coordinate the termination of the compensating subtransactions. Each local

compensating subtransaction can terminate independently.

In light of the above, we advocate the principle that compensating for a global transaction need not be

coordinated as a global activity. That is, there is no such entity as a global compensating transaction. Instead,

compensating subtransactions of a single global transaction should be treated as a collection of almost independent

local transactions. More precisely, the localization of compensation principle asserts that:

� The execution of a compensating subtransaction does not depend on the execution of its siblings.

� The termination of a compensating subtransaction need not be coordinated with the termination of its

siblings.

This principle can be better understood by making the analogy to traditional DTM systems. There, when a

global transaction is aborted, each site is responsible for undoing the local subtransaction. Only the initiation

of the recovery at each site is coordinated, namely it is prompted by the receiving of an abort decision message

from the 2PC coordinator of the global transaction. We extend this principle of localized recovery for recovery

by compensation. A similar idea, referred to as recovery non-interference, is reported in [LYI87]. In support

of localization of compensation, we also cite [Vei89, map89] where a large-scale, commercial application that is

predicated on a similar principle, is described.

Being a recovery activity, compensation is inherently considered as an overhead function. Therefore, the cost

of compensation should be kept at minimum. By localizing compensation, the expensive communication for the

coordination of a global activity is avoided. Also, observe that avoiding the need to coordinate the termination of

the compensating subtransactions is crucial. The alternative of using an atomic commit protocol for the global

compensating activity would have contradicted the initial objective of alleviating the problem associated with

atomicity in a distributed environment.

The validity of the localization principle and the di�culty in enforcing it depends on the decomposition and

dependency classi�cation of the forward transaction. In what follows, we provide a qualitative analysis of the

interplay among these notions.

36

has no orderings, IR is enforced by validation method. The coordinator validates the execution of all subtransac-

tions once they return results and are ready to terminate. In the validation, the coordinator ascertains that the

subtransactions have not observed both compensated-for and committed e�ects of other transactions (the speci�c

algorithms are presented in Chapter 7). On the other hand, when there are orderings, the coordinator has to

monitor the execution of the subtransactions as it progresses incrementally to make sure IR is preserved.

We note that is not surprising that the issue of the shape of the program of transactions surfaces again, after

being discussed in Chapter 2 in the context of single-transactions compensation.

5.4.2 Decomposition into Subtransactions

By the decomposition of a global transaction to local subtransactions, we refer to the aspect of the granularity

of the operations that are shipped to a site for execution. Another way to look at the decomposition dimension

is in terms of the interface a site exports for global transactions.

The two extreme decomposition methods we discuss are semantic and syntactic. Similar classi�cation can

be found in [Joh90]. Using a syntactic decomposition, the set of primitive requests of a global transaction to a

particular site constitute the local subtransaction at that site. Each subtransaction can be viewed as an arbitrary

collection of reads and writes against the local data. That is, no prede�ned semantics is associated with a

subtransaction. This model is elaborated in [CP87] and is the standard model in distributed databases. Syntactic

decomposition is also considered as the general framework in the multidatabases context [BS88, BST90].

On the other hand, using semantic decomposition, each global transaction is decomposed into a collection

of local subtransactions, each of which performs a semantically coherent task. The subtransactions are selected

from a well-de�ned repertoire of procedures forming an interface at each site in the distributed system. A

subtransaction may include more than one procedure, but still the signi�cant aspect of associating well-de�ned

and pre-determined semantics with each subtransaction is invariant. This decomposition is suitable for a federated

distributed database environment [fdb87].

The distinction between the two models is obvious once semantic compensation is introduced. Our work

applies to both models; however, �tting the ideas in each framework is bound to be di�erent, and probably easier

when semantic decomposition is employed.

5.4.3 Synchronization Points

Obtaining global serializability in a locking-based DTM system is typically based on synchronized release of locks.

In order to enforce a two-phased locking (2PL) [BHG87] discipline over all accesses of a global transaction, it

should be guaranteed that a lock is not released at one site prior to acquiring a lock at another site by the same

transaction. This can be achieved through the synchronization that is introduced by the 2PC protocol. It is

assumed that the coordinator of T

j

initiates the 2PC protocol only after it has received acknowledgements for all

of T

j

's operations. Therefore, when the coordinator initiates the 2PC protocol by sending the messages requesting

votes (known as VOTE-REQ, or PREPARE) messages), T

j

has surely obtained all the locks it will ever need. If

locks are released only after the VOTE-REQ message has been received, 2PL and thus serializability is obtained.

This combined 2PC/2PL protocol is very common (e.g., R* and CAMELOT [MLO86, Duc90]) and is referred

to in [BHG87] as distributed 2PL. We refer to this coupling of the beginning of the release phase of 2PL and the

receipt of the VOTE-REQ message as synchronization point. When a subtransaction releases its locks prior to to

receiving the VOTE-REQ message, we say that it does not have a synchronization point.

35

Executions that are IR are formally de�ned in Chapters 6 and 7. The de�nitions in these chapters di�er due

to the di�erent underlying transaction models. Protocols that guarantees IR are also devised in these chapters.

5.4 Taxonomy of DTM Models

In this section we review certain aspects of DTM that are relevant for the development of our ideas. We classify

DTM models along the dimensions of decomposition of a global transaction to local subtransactions, and depen-

dencies and orderings among the subtransactions. We also comment on methods for combining atomicity and

synchronization concerns in DTM systems. The categories we de�ne in this section are referred to later in the

dissertation.

5.4.1 Dependencies and Orderings among Subtransactions

The program of a transaction induces certain dependencies among the operations that implement the program.

The dependencies can result from either control or data ow of the transaction program. For instance, a condi-

tional statement requires evaluating the condition before executing the branches. That is, the primitive operations

that implement the branch depend on the operations that are used for the condition evaluation. Likewise, an

assignment statement induces a dependency between the reading of the right-hand-side and the update of the left-

hand-side. In more advanced transaction models, where the emphasis is on exibility and expressibility, dependen-

cies can result from a variety of other reasons, e.g., causality, and synchronization constraints [tm-91, BOH

+

91].

A global transaction, like an ordinary transaction, is driven by a program that induces certain dependencies.

Typically, a coordinator is assigned the task of executing this program by spawning remote requests. Usually, this

coordinator also plays the role of the commit-protocol-coordinator for the particular global transaction [CP87].

When mapped for execution on the underlying distributed system, the global transaction is decomposed to lo-

cal subtransactions. We choose to disregard all intra-subtransaction dependencies and narrow our attention to

the more interesting inter-subtransaction dependencies. Such dependencies are modeled in what follows by a

partial order over the subtransactions. These issues of dependencies among subtransactions of the same global

transaction are discussed at length in [DE89, ED89].

One simple case of global transaction structure is when the program is devoid of an elaborate control ow and

has no dependencies among its constituent subtransactions. For example, consider a transaction that executes a

simple SQL-like [KS90] statement in the form of:

select �

from R

where the relation R is fragmented in several sites. Mapping such a global transaction to the distributed en-

vironment results in an unordered set of subtransactions. The coordinator of such a transaction spawns the

subtransactions at the relevant sites in no particular order, and waits to gather all the results. This case is

referred to in [ED89] as subtransactions with no value dependencies. On the other hand, mapping a dependency

among two subtransactions onto the underlying distributed architecture may require the coordinator to spawn

the dependent transaction only after the dependent-upon subtransaction has returned its result (since the latter

supplies an input parameter for the former, for example).

The reader should be aware to the di�erent execution pattern in these two cases. When there are no depen-

dencies, the coordinator spawns all the subtransactions and waits for them to return, whereas when there are

dependencies the execution progresses incrementally at the di�erent sites as dictated by the coordinator. The

presence of orderings (that are the consequence of dependencies) among subtransactions, and lack thereof, distin-

guishes the methods presented in Chapters 6 and 7 in terms of enforcing IR. Namely, when a global transaction

34

some sites and aborted subtransactions at other sites. Problems may arise when the e�ects of such non-atomic

transactions become visible, thereby a�ecting other transactions. Speci�cally, there are transactions that should

not be a�ected by both failed (or compensated-for) and successful subtransactions of the same transaction. We

must isolate such failed, non-atomic transactions until all the recovery subtransactions are executed and semantic

atomicity is obtained. We refer to this requirement as isolation of recoveries

2

(IR). We say that an execution

is IR to informally mean that no transaction in that execution observes both compensated-for e�ects as well

as committed e�ects of other transactions. In this section, we motivate this requirement and postulate it as a

correctness criterion in the context of relaxed atomicity.

First, we argue that IR is indeed bene�cial in excluding unacceptable executions by illustrating an example.

Consider a global transaction T

1

which transfers funds from site 1 to site 2. The decomposition of T

1

into local

subtransactions is simply:

� T

11

{ debit by amount a

� T

12

{ credit by amount a

Assume that in a particular execution under our generic commit protocol (Section 5.2.1) it happens that T

12

aborts, whereas T

11

commits locally. Compensation for T

11

includes crediting by the amount a. Consider a

transaction T

2

that performs an audit at the two sites, by reading the balances at each site. The execution at the

two sites is depicted below (each line represents the serialization order at a site from left to right).

S

0

: T

11

T

21

CT

11

: S

1

S

2

: T

12

T

22

: S

3

The states S

0

; S

2

denote the initial states of the accounts at sites 1 and 2, respectively. Likewise, the states S

1

; S

3

denote the corresponding �nal states. Clearly, in this scenario, T

2

reads a globally inconsistent state, where the

amount a is unaccounted for.

Recall that based on the notion of R-commutativity, being a�ected by a successful subtransaction that is later

compensated-for is permitted (e.g., T

21

being serialized after T

11

in the above example). Thus, one might argue

that with the aid of a proper relation R, compensation may be designed to rectify the above anomaly. Next,

we refute this argument. Let (T

11

�CT

11

� T

21

)(S

0

) = S

4

. Then, although CT

11

and T

21

R-commute, and as a

result S

4

R S

1

, this does not change the fact that S

1

and S

3

do not satisfy the global consistency constraint of

maintaining consistent total balances. Thus, the anomalous situation where T

2

is a�ected by both compensated-

for and locally committed subtransactions cannot be recti�ed by R-commutativity. The problem arises because

the relation R is based on local predicates alone, and it guarantees nothing regarding global relationships among

data items at the di�erent sites.

Transactions such as T

2

in the above example, are characterized by requiring a global consistency constraint

to hold on the data they access at multiple sites. Such transactions are referred to as sensitive transactions. The

degree of atomicity guaranteed by R-commutativity is not su�cient for sensitive transactions. We defer as future

research de�ning a clearer characterization of sensitive transactions. In chapter 6 and 7, for clarity of exposition,

we assume that all transactions are sensitive.

An analogy between isolation of recoveries and serializability is in place. Serializability makes concurrent

executions transparent to the transactions. Likewise, isolation of recoveries makes non-atomicity transparent to

transactions. The importance of our study of IR as a correctness criterion is underlined by the growing popularity

of advanced transaction models that are based on semantic atomicity [GM83, GMS87, AGMS87, KR88, Reu89,

Vei89, GMGK

+

90, tm-91, BOH

+

91], and by the lack of speci�c correctness criteria in this domain.

2

The choice of the name is intentional since IR as presented in this chapter is an extension for global transactions, of Constraint 2

of Section 2.3.

33

The work in this direction of relaxed atomicity, as opposed to the traditional atomicity, has not matured yet.

The precise guarantees of such transaction models have not been examined to date. In particular, the attractive

idea of using relaxed atomicity in a distributed setting has not been carefully examined so far. Chapters 6 and 7

are dedicated to formal treatment of relaxed atomicity and the ensuing correctness issues in a DTM setting.

5.2.1 A Generic Relaxed Atomicity Commit Protocol

We adopt and extend the notion of semantic atomicity mentioned above for DTM systems. First, we adopt the

convention that a multi-site transaction, referred to also as global transaction hereafter, is decomposed into single-

site subtransactions. The commit protocol for global transactions proceeds as follows. A site decides whether a

local forward subtransaction commits or aborts without coordination with other sites executing subtransactions

on behalf of the same transaction. Once this decision is made, all the local resources the subtransaction holds

are released at once. We say that the site makes a local (commit) decision. A centralized coordinator initiates

a commit protocol by requesting these decisions from the sites that executed subtransactions on behalf of the

to-be-committed transaction. The decisions are cast as votes in the �rst phase of the commit protocol. The

coordinator gathers the votes and decides whether to commit or abort the transaction according to a decision

rule whose nature is explained shortly. This global decision is conveyed to the di�erent sites in a second phase

of the commit protocol. In case of a discrepancy between a local decision and the global decision, a recovery

subtransaction is executed at the local site. Namely, if the local decision was commit and the global one is abort,

then the local subtransaction is compensated-for. Conversely, a local subtransaction is retried if the global decision

is commit and the local decision was abort. (We expand on retry in Section 5.7). Notice that semantics-based

recovery is done on a subtransaction basis. That is, each forward subtransaction is associated with a retry or

compensating counter-part (more on this issue in Section 5.5). The recovery subtransactions ensure convergence

to a unanimous outcome at all sites despite the uncoordinated local decisions.

Any rule governing the decision making by the coordinator must conform to the unanimity requirement:

� Unanimity. If all votes are identical then the decision must be unanimous with the votes.

A decision rule can be either biased or arbitrary. In standard atomic commit protocols, the following biased

decision rule is used:

� Biased Decision. If at least one of the sites votes to abort, then the decision is abort.

An arbitrary rule can be based on quorum, majority or other principles that conform with the unanimity require-

ment

1

. For instance, a transaction may be considered successful if a certain subset of its subtransactions succeed.

The speci�cs of the arbitrary decision rule are abstracted from our discussion. The main distinction between the

two rules is the possibility of reversing a local abort decision by a retry subtransaction. This option is lacking in

the biased case, and is present in the arbitrary case.

The description given above serves as a common framework for both Chapters 6 and 7.

5.3 Isolation of Recoveries

The concept of atomicity is intended to mask failures by creating a virtual failure-free system in a failure-prone

environment. When relaxing atomicity, as we propose to do, we must make sure that failures do not become

visible. Since semantic atomicity is an eventual property (i.e., eventually all locally committed subtransactions

will be compensated for), there are time intervals where transactions have locally committed subtransactions at

1

We do not deal with optimizations to the commit protocol that are possible when orderings are imposed among the subtransactions

(e.g., like the linear 2PC protocol [Gra78]).

32

phenomenon where transactions may be delayed for unbounded periods. In the context of 2PC, blocking implies

that if the coordinator for a transaction, or a communication link to that coordinator, fails in a certain critical

time, some other transactions at active sites are delayed until the failure is repaired.

Another severe di�culty arises when atomic commitment is considered in the context of multidatabase systems

where several sites are integrated to create a cooperative environment (see [hdb90] and the references there). The

goal of the integration is to support global transactions by dividing them into local subtransactions that are

executed at the di�erent sites. In a multidatabase, the individual sites comprising the integrated system may use

heterogeneous database management systems. The sites may belong to distinct, and possibly competing business

organizations (e.g., competing computerized reservation agencies). In such systems the local autonomy of the

individual sites is crucial. It is undesirable, for example, to use a protocol where a site belonging to a competing

organization can intentionally or innocently block the local resources. One of the avors of local autonomy is

de�ned as the capability of a site to abort any local (sub)transaction at any time before the (sub)transaction

terminates. Employing the 2PC protocol, a site enters a prepared state if it votes to commit a transaction T

[Gra78]. Once in this state, a site becomes a subordinate of the external coordinator, and it can no longer

unilaterally determine the fate of the local subtransaction of T . Therefore, local autonomy is sacri�ced once a

2PC protocol is imposed on the integrated sites.

In summary, the fundamental problems associated with an atomic commit protocol in a DTM system are:

� Lengthy delays are introduced by the need to coordinate the termination of the distributeed subtransactions.

� A potential for the undesirable phenomenon of blocking is introduced.

� The autonomy of individual sites is compromised once the protocol is imposed on the distributed system.

These problems are exempli�ed by the popular 2PC protocol. In our work on semantics-based recovery in DTM

systems we attempt to solve, or at least alleviate these problems. Our work is concerned with a generic DTM

model. Thus, we do not deal directly with the intrinsic problems of multidatabases. However, the results can be

instantiated, and their relevance is ampli�ed, where this particular case of a DTM system is considered.

5.2 Outlining a Solution: Relaxing Atomicity

Facing the impossibility results regarding atomic commitment in distributed systems [Ske82, BHG87] it is evident

that in order to overcome the above problems, a trade-o� must be exploited. Our thesis is to relax the guarantees of

transaction atomicity, thereby obtaining a handle for solving the di�cult problems we are faced with. Prominent

previous proposals in the context of relaxed atomicity are sagas [GM83, GMS87], and their generalization|

multitransactions [GMGK

+

90, BOH

+

91]. These proposals do not consider the atomicity problem in distributed

setting, but rather the similar problem of atomicity of long-duration transactions. Essentially, the idea in these

proposals is to decompose the coarse unit of a transaction into �ner subtransaction units. Subtransactions commit

or abort independently, without coordination with other subtransactions of the same transaction. Resources held

by the subtransactions are released as soon as the subtransaction terminates, without waiting for the termination

of the entire transaction. Therefore, atomicity of the whole transaction is given up for a weaker notion referred to

as semantic atomicity [GM83]. Each subtransaction, T

ij

, is associated with a compensating subtransaction, whose

task is to undo semantically the e�ects of T

ij

in case the entire transaction aborts. Instead of the standard all-

or-nothing atomicity, semantic atomicity guarantees that either all subtransactions commit|and then the entire

transaction commits, or that all subtransactions that committed in a tentative manner are compensated-for, if

the entire transaction is to abort.

31

Chapter 5

Distributed Transaction Management:

Preliminaries

Having studied compensation for an individual transaction, we turn our attention to semantics-based recovery

for composite transactions|transactions that are composed of several simple subtransactions. Since we draw our

motivation from the use of composite transactions in distributed systems, distributed transaction management

(DTM hereafter) is the focus of this chapter and the remainder of the dissertation. We concentrate on composite

transactions, whose constituent subtransactions execute at di�erent sites of a distributed system.

Composite transactions are formally introduced in the next chapter. In this chapter, we �rst outline the basic

problem of atomicity in DTM systems in Section 5.1. We sketch our solution in a concise and informal manner in

Section 5.2. Our approach exploits a trade-o� as it solves the problem by relaxing standard atomicity. Relaxed

atomicity gives rise to a host of issues that are referred to as isolation of recoveries (IR). This pivotal concept

is informally motivated and presented in Section 5.3. In Section 5.4 we classify DTM models along dimensions

that are relevant for our results. In Section 5.5 we introduce the localization of compensation principle, which

serves as a basis for the use of compensation in the context of DTM. Chapters 6 and 7 deal with speci�c methods

that are based on the general paradigm described in this chapter. Section 5.6 briey contrasts this two methods,

thereby giving the reader an overview of Chapters 6 and 7. Finally, the other semantics-based recovery method

of retry, which is made use of in Chapter 6, is introduced in Section 5.7.

5.1 The Problem

When transactions access data items at multiple sites of a distributed system, atomicity is accomplished by

employing an atomic commit protocol. The two-phase commit (2PC) protocol [Gra78] is the most common

atomic commit protocol, and it is widely used in distributed transaction management systems. In this protocol, a

multi-site transaction is associated with a coordinator that gathers votes from the participating sites as to whether

to commit or abort the transaction. Based on these votes, the coordinator makes a decision and transmits it to

the participating sites. The receipt of this decision message must precede the release of all resources held by the

transaction that is involved in the 2PC protocol. Consequently, all other transactions contending for the resources

held by the transaction in question must wait until the decision message has been received. If the execution times

of the actions of a multi-site transaction di�er from site to site, these delays make the execution duration of all

actions at all sites equally long.

It is well known that there is no atomic commit protocol that is not blocking, in a distributed system that is

subject to (fail-stop) site failures, and failures in communication links [Ske82, BHG87]. Blocking is the undesirable

30

should be established [GM83]. The compatibility will represent the various restrictions on exposing data among

types of transactions. More work needs to be done on the subject of building such a type-speci�c lock manager.

The various restrictions on the dependent transactions (e.g, having �xed or linear programs, R-commutativity)

indicate that compensation is a history-based activity. That is, the applicability of compensation depends on

the execution, and in particular on the nature of the dependent transactions. In essence, it is impossible to

guarantee proper compensation (i.e., in a manner that ensures a degree of atomicity and consistency) regardless

of the execution, and independently of the dependent transactions. Instead, there is a spectrum of less extreme

possibilities that constitute a trade-o�. The fewer restrictions are imposed on transactions, the more involved the

compensation is bound to be, and the weaker the resultant atomicity guarantee will be. It is probably possible

to custom-design compensating transactions that are very speci�c to an application, and require an intrinsic

knowledge of its semantics. Ideally, however, there should be a generic mechanism that activates the necessary

compensatory actions as required, similarly to the way a traditional undo mechanism operates. If the forward

transactions are structured carefully, then compensation can be simple and largely applicable. For instance,

imagine a library of pre-de�ned forward routines, each of which associated with a counter-routine. All forward

transactions are composed out of this well-de�ned repertoire of routines. Thus, it is possible to guarantee, by either

formal veri�cation or exhaustive testing of all possible combinations, that the counter-routine always compensates

its forward counterpart properly regardless of the dependent transactions. Under these circumstances, it is possible

to automatically extract the actions of a particular compensating transaction from the log.

29

4.2 On the Design of Compensating Transactions

Since compensation is an application-dependent activity, it is hard to identify universal principles for the design of

compensating transactions. Nevertheless, we have provided a formal basis for the design and use of compensation.

This formal basis emphasizes that while semantically undoing the forward transaction, certain predicates express-

ing general consistency constraints and speci�c properties established by the dependent transactions should be

preserved. The examples in Chapter 3 and the comprehensive example in [SLKS91] shed some light on this formal

basis by applying it to actual scenarios. In this section we generalize the examples and provide insights regarding

the design of compensating transactions that cannot be captured in formal terms.

Compensating transactions are intended to counter the phenomenon of cascading aborts by undoing a trans-

action without undoing its dependents. This purpose, and the cascading e�ect itself, can be traced in the design

of a compensating transaction. A reasonable design rule is to �rst perform an actual logical undo, and then

restore consistency, or establish other desirable properties. This restoration activity is the result of undoing the

compensated-for transaction while leaving the dependent transactions intact. For instance, consider the compen-

sation illustrated in Section 3.3, where �rst the tuple is deleted, and then the average computation is amended. Or,

consider the example in Section 7.1 [SLKS91], where �rst the erroneous track is removed and then the positioning

of the gun is corrected. The pattern is repeated: by undoing a transaction with dependents, some inconsistencies

arise, and some desirable properties are violated. Thus, after undoing, a restoration phase is called for.

The task of re-establishing the desirable predicates by the compensating transaction depends on the existence

and the nature of the dependent transactions. Typically, if there are no dependent transactions, logical undoing

is all that compensation performs (e.g., referring again to the example in Section 3.3, just removing the tuple is

su�cient if the average computation does not take place). Therefore, the code of a compensating transaction must

check the log and determine whether the forward transaction has dependent transactions and act accordingly.

A form of cascading undoing is sometimes unavoidable. Often, there are semantic dependencies among trans-

actions, such as causality, that necessitate compensating in a cascading manner for transactions dependent on the

originally compensated-for transaction. For instance, referring back to the airline reservation example in Section

3.1, the special meal order of the canceled ight reservation should be canceled, too. There are several alternatives

to handle causally-dependent activities. First, such dependent (sub)transactions should be encapsulated within

a single sphere of recovery. Namely, this is a case for a composite transaction in the form of a nested transac-

tion [Mos87], a saga [GMS87], or its generalization | a multi-transaction [GMGK

+

90, KR88, Reu89]. In such

models of composite transactions, the e�ect of a cascading abort (or cascading compensation for that matter) is

controllable, predictable, and con�ned to the boundaries of a single transactional unit. A competing approach

is the active, or triggered, model for transaction dependencies [DHL90, MD89, C

+

89]. Causality is modeled by

triggering the dependent transaction when the causing event occurs. A good example here is a cancellation of

reservation in an airline reservation system which is handled as a compensating transaction that triggers the

transfer of pending reservation from a waiting list to the con�rmed list. These issues, however, fall outside the

scope of this dissertation.

Theorems 1, 2 and 3 indicate that the externalization (i.e., exposing updated data items by releasing locks

for example) of uncommitted data items should be done in a controlled manner if a degree of atomicity is of

importance. That is, uncommitted data should be externalized only to transactions that satisfy the requirements

speci�ed in the premises of the theorems. In the context of locks, locks should be released only to quali�ed

transactions, that is, those transactions that do satisfy the requirements. Other transactions must be delayed

and are subject to the standard concurrency control and recovery policies. This restriction concerns also actions

that are not-compensatable (i.e., the real actions of [Gra81] that were mentioned in Section 2.3). In general,

a classi�cation of transaction types is necessary. Further, a notion of compatibility of these transaction types

28

Ideas from [HMS88], which describes an extensible logging service, can be incorporated for the design of the logging

architecture. It is important to note that the technology trend of large main memories can support fast random

access to the log, by storing at least the tail of the log in main memory [Bit86, DKO

+

84].

Yet another problem is concerned with supporting compensation for transactions whose log records span a

lengthy log interval. Such long interval can cause di�culties in terms of reusing log space. A log compaction

mechanism must exist under such circumstances.

Typically, the portion of the log in between the forward and the compensating transactions is the relevant seg-

ment of the execution. However, sometimes, compensation has to look at even earlier execution. If compensation

is to amend a value that tracks an entity based on periodic recordings (e.g., tracking a mobile target), extrapo-

lation based on past values can be used as the basis for the compensation [SLKS91]. Under these circumstances,

earlier execution, prior to the forward transaction must be considered by the compensation.

4.1.3 Explicit Invocation of Compensation

So far it has been assumed that a compensating transaction can be invoked internally by the recovery manager as

a consequence of the abort of an externalized transaction. In a system that supports compensation, it is possible

to allow users to invoke a compensating transaction explicitly in order to cancel the e�ects of a committed

transaction in the same manner as regular transactions are invoked. Such a feature can be useful in the following

scenario. Suppose that a transaction was committed \erroneously." By committed erroneously, we mean that

from the system's point of view there was nothing wrong with the committed transaction. However, external

reasons, that were discovered later, rendered the decision to commit the transaction erroneous. Being aware of

these circumstances, the user may invoke the proper compensating transaction that will automatically amend the

situation.

4.1.4 Persistence of Compensation

As was noted earlier, we should disallow a compensating transaction to be aborted either externally (by user, or an

application), or internally (e.g., as a deadlock resolution victim). A simplistic (and usually unsatisfactory) solution

to the problem of deadlock resolution is the notion of golden transactions in system R [GM

+

81]. By running only

one golden transaction at a time, the system can always avoid choosing these privileged transactions as deadlock

victims. A more suitable solution is to support automatic restarting of compensating transactions if they fail.

Such a mechanism can be used for making compensating transactions persistent across system crashes. Following

a crash, all interrupted compensating transactions should be treated as pending actions that must be redone.

The mechanism for implementing this strong persistence can be based on resuming a compensating transaction

from a savepoint [MHL

+

90], or on restarting. In case of resuming from a savepoint, the internal state as well

as the concurrency control information of the compensating transaction must be saved in log records. In case of

restarting, the interrupted compensating transaction has to be undone �rst, and then automatically restarted. We

emphasize that the principle for recovery of compensating transaction is that once a begin-transaction record of

CT appears in stable storage, CT must be completed eventually. An implementation along the lines of the ARIES

system [MHL

+

90] can support the persistence of compensating transactions across system crashes. In ARIES,

undo activity is logged using Compensating Log Records (CLRs). Each CLR points (directly or indirectly) to

the next regular log record to be undone. It is guaranteed that actions are not undone more than once, and that

undo actions are not undone even if the undo of a transaction is interrupted by a system crash.

27

Chapter 4

Practical and Design Issues

In this chapter we discuss several issues that should be addressed in order for compensation to be of practical

use. Among other issues, we discuss speci�c design rules for compensating transactions.

4.1 Practical Issues

Compensation is a powerful method. However, executing it can be expensive unless adequate special support for

it is provided.

4.1.1 Logging Scheme

Requiring a compensating transaction to succeed unconditionally (the persistence of compensation requirement)

implies that design of a compensating transaction is a complex and application-dependent task. The fact that the

compensating transaction always executes after its forward counter-part must be used to alleviate this di�culty.

Essentially, the forward transaction should record enough semantic information, e.g., in the form of log records,

in order to guide the proper execution of the compensating transaction. Therefore, it is likely that some form

of operation logging will be used [HR83]. Operation logging is the logging scheme used in conjunction with

the semantically-rich logical undo methods. Another reason why logging operations, rather than logging physical

changes, is preferable is that it enables detecting dependencies among transactions by analyzing the log sequences.

The necessity of logging enough information to enable detecting dependencies among transactions (e.g., logging

read accesses) is discussed in [PKH88].

4.1.2 Log Retrieval

Since compensating transactions are envisioned to be driven by a scan of the log, it is important to provide

e�cient on-line access to the log information. Without a suitable logging architecture, the accesses to the log

might translate to I/O tra�c that would interrupt the sequential log I/O that is performed on behalf of executing

forward transactions. A related problem is the e�ciency of the log scan which impacts the performance of the

compensating transactions themselves. Since compensating transactions rely on quali�ed retrieval of log records,

a random access to the sequentially written log device must be supported. In order to facilitate such retrieval

e�ciently, some (indexing) structure must be imposed on the sequence of log records. Stable memory [CKKS89]

can be used for creating and maintaining this structure. The stream of log records can be post-processed in the

failure-proof random-access memory before this stream is oriented to secondary storage. We briey mention some

work that has been done in providing e�cient access to sequential streams of data (i.e., logs) [LC87, FC87, DST87].

26

as an illustration: The compensated-for transaction extends a �le, or is allocated storage, and the additional

space is used by other transactions; the compensated-for transaction frees space that is later allocated for other

transactions; the compensated-for transaction inserts a record to a B-tree that causes a split of a node, and other

transactions use the new nodes; the compensated-for transaction updates the free space information mechanism

of the storage manager (percentage of occupied space in a page, etc.) and other transactions update the same

information. (See discussion on these issues in [ML89, Moh89]). We note that, in all the above storage management

examples, although e�ects are exposed to transactions, they are not exposed to users.

3.3 The Average Computation Example

In this example we illustrate the use of semantics in the design of a compensating transaction. Consider the

following transactions:

� T : A long-duration transaction, one of whose operations inserts a tuple t into a relation R, with a numeric

attribute A.

� T

0

: A transaction that scans the relation R, counts the tuples and computes the average of their value on

the attribute A. For reference purposes, assume that T

0

stores the count in N , and the result of the average

computation in average.

Clearly, T

0

2 dep(T). Since T is a long-lived transaction, the insertion operation is exposed early, before T

commits. In particular, the inserted tuple t was counted by T

0

and considered in the average computation.

Assume that T has to abort. According to the conventional recovery approach, T

0

would have to be aborted

in a cascading manner. It is undersirable to abort T

0

since it is an expensive transaction that scans the entire

R relation. An alternative scenario in which aborting T

0

would have been undesirable is one where T

0

must be

executed fast to provide the average result as an assessment for a decision support application. For these reasons,

it is highly undersirable to abort T

0

once T aborts. Fortunately, a simple compensation can help:

� CT : We describe the part of CT that handles the tuple t and the average computation. The notation t[A]

denotes the value of tuple t on attribute A.

. . .

delete(t)

oldN := N

N := N - 1

average := (oldN*average - t[A])/(oldN - 1)

. . .

Thus, instead of aborting T

0

and redoing its task, we were able to amend the situation easily, based on the

semantics of computing averages. Compensation in this case yields an atomic execution since all the e�ects of T

are canceled. Observe how CT �rst logically undoes the insertion of t and the increment of N , and then restores

the value of average appropriately. It is assumed that CT checked the log of the execution and discovered that

T

0

depends on T and acted appropriately. Another lesson from this example is that exposing uncommitted data

must be done in a controlled manner. Namely, only these transactions for which enough semantic information

exists can read the exposed uncommitted data; e.g., only to the average computing class of transactions in this

case.

25

if (rs + x) <= seats then rs:=rs+x

else reject:= reject+1

The consistency constraint Q in this case is:

Q(S) iff S(rs) � S(seats)

Assume:

S = fseats = 100; rs = 95; rejects = 10g;

T = reserve(5) ; dep(T) = freserve(3)g

Let the execution be X � X

T

� X

dep(T)

� X

CT

where CT is de�ned by De�nition 12. We would like to have

after X: S

0

= frs = 95; rejects = 11g, that is, T 's reservations were made and later canceled by running CT ,

and dep(T)'s reservations were rejected. And that is exactly what we get by our de�nition. Observe how T 's

reservations were canceled, but still its indirect impact on rejects persists since T caused dep(T)'s reservations

to be rejected.

Hence, this example demonstrates an execution that is not atomic but is nevertheless intuitively acceptable.

Had the transaction in dep(T) been executed alone, it would result in successful reservations. In formal terms,

we can de�ne a relation S

0

RS

00

to hold only if Q is satis�ed by both states, and then state that the execution

is R-atomic. Notice how in this example the operation of CT can be implemented as inverse of T 's operation

(addition and subtraction). The less interesting case, where there are enough seats to accommodate both T and

dep(T), also �ts nicely. In this case CT 's subtraction on the entity seats commutes with dep(T)'s addition to

this entity.

3.2 Storage Management Examples

The following example is from [MGG86], though the notion of compensation is not used there. Consider trans-

actions T

1

and T

2

, each of which adds a new tuple to a relation in a relational database. Assume the tuples

added have di�erent keys. A tuple addition is processed by �rst allocating and �lling in a slot in the relation's

tuple �le, and then adding the key and slot number to a separate index. Assume that T

i

's slot updating (S

i

) and

index insertion (I

i

) steps can each be implemented by a single page read followed by a single page write (written

r

i

[tp]; w

i

[tp] for a tuple �le page p, and r

i

[ip]; w

i

[ip] for an index �le page p).

Consider the following execution of T

1

and T

2

regarding the tuple pages tq; tr and the index page ip:

< r

1

[tq]; w

1

[tq]; r

2

[tr]; w

2

[tr]; r

2

[ip]; w

2

[ip]; r

1

[ip]; w

1

[ip] >

This is a serial execution of < S

1

; S

2

; I

2

; I

1

>, which is equivalent to the serial execution of executing T

1

and then T

2

. Assume, now, that we want to abort T

2

. The index insertion I

1

has seen and used page p, which was

written by T

2

in its index insertion step. The only way to abort T

2

, without aborting T

1

is to compensate for T

2

.

Fortunately, we have a very natural compensation, CT

2

, which is a delete key operation. Observe that a delete

operation as compensation commutes with insertion of a tuple with a di�erent key, and encapsulates composite

compensation for the slot updating and index insertion. Compensation in this case is performed by logical undo

and hence the resulting execution is atomic (Theorem 1).

An entire class of applications for compensation (similar to the above example) can be found in the context

of storage management in a database system. It is di�cult to isolate the e�ects of an operation at the storage

management level. Therefore, these e�ects are exposed to all the transactions. We list several speci�c examples

24

Chapter 3

Examples

In this chapter, we present several examples to illustrate the various concept we have introduced so far. Through-

out this section we use the symbols T; CT; dep(T); X, and S to denote a compensated-for transaction, its

compensating transaction, the corresponding set of dependent transactions, the execution of all these transac-

tions, and the execution's initial state, respectively. A complete example that is based on an actual application

is described in [SLKS91]. A short overview of this example is found in Section 7.1.

3.1 Speci�cation Example

We present a speci�cation of what a generic CT should accomplish. Let update(T;X) denote the set of database

entities that were updated by T in execution X. The same notation is used for a set of transactions.

De�nition 12. Let X(S) = S

0

, and X � X

0

�X

CT

(by Constraint 2). We specify CT , by characterizing S

0

for all entities e:

S

0

(e) =

8

>

>

>

>

<

>

>

>

>

:

S(e) if e 62 update(dep(T); X)

(X

0

(S))(e) if e 2 update(dep(T); X)

^ e 62 update(T;X)

X

dep(T);e

(augment(S;X)) if e 2 update(dep(T); X)

^ e 2 update(T;X)

2

Observe that this speci�cation conforms with Constraint 1. Before we proceed, we informally explain the

meaning of this type of compensation. If no dependent transaction updates an entity that T updates, CT undoes

T 's updates on that entity. The value of entities that were updated only by dependent transactions is left intact.

The value of entities updated by both T and its dependents should reect only the dependents' updates as they

appear in X.

There is a certain subtlety in the second case of the de�nition which is illustrated next. Assume that T

updated e. The modi�ed e is read by a transaction in dep(T) and the value read determines how this transaction

updates e

0

. After compensation, even though the initial value of e is restored (by the �rst case of the de�nition),

the indirect e�ect it had on e

0

is left intact (by the second case of the de�nition).

To further illustrate the type of compensation just described, we give a concrete example. Consider an airline

reservation system with the entity seats that denotes the total number of seats in a particular ight, entity rs

that denotes the number of already reserved seats in that ight, and entity reject that counts the number of

transactions whose reservations for that ight have been rejected. Let reserve(x) be a simpli�ed seat reservation

transaction for x seats de�ned as:

23

is serializable.

Example 8. Consider the set entities of Example 6, with the addition of a private entity u that belongs to

some transaction in dep(T). Let the programs of T; dep(T); CT , and the relation R be de�ned as follows:

T = a := a+ 1; CT = a := a� 1;

dep(T) = fu := a; if u � 5 then f(b) else g(b)g

S

0

R S

00

iff (S

0

(b) � 0) S

00

(b) � 0)

Even though dep(T)'s execution can branch di�erently when run alone and in the presence of T and CT , the two

di�erent executions produce �nal states that are related by R. 3

22

2.6 Compensation in Serializable Executions

The requirements from the dependent transactions in Theorems 2 and 3 are quite severe. Besides the R-

commutativity requirement imposed on the operations of the dependent transactions, there are restrictions on

the shape of the programs (e.g., �xed or linear programs) in each of the theorems' premises. In both theorems,

programs of dependent transactions are restricted to have no conditional statements. Clearly, in practice, there

are many transactions that do not stand up to any of these criteria. Reviewing the proofs of Theorems 2 and

3, it is evident that the major obstacle is the lax restrictions on the interleaving of operations. As a matter of

fact, only the EWSR assumption and Constraint 2, restrict concurrency in our exposition so far. In particular,

Lemma 2 indicates that operations of the forward, dependent and compensating transactions may interleave in

di�erent orders for di�erent entities. The almost arbitrary interleavings disallow treating a complete transaction

as a semantic unit. Thus, we are forced to build on the semantics of individual operations. The only way to refer

to an entire transaction T was by the projected execution X

T

. However, we have already noted that X

T

is devoid

of semantics and is just a syntactic derivative of X. Only if T is �xed or linear, X

T

retains the semantics of T as

a complete unit.

For these reasons, it is prudent to re-focus our attention on approximating atomicity by compensations in

executions that are serializable. Serializability allows one to treat entire transactions as if they are isolated. In

particular, we can treat complete transaction programs as functions, rather than referring to individual opera-

tions. Moreover, we can capitalize on the R-commutativity of entire transactions as functions. Consequently,

serializability gives us the leverage to deal with transaction programs with real control ow (i.e., conditional

statements) and go beyond �xed and linear programs.

The only change in our notational machinery is the introduction of the transaction program as a function from

states to states. The speci�cs of the control ow are abstracted by dealing with a program just as a function. We

use the names of transactions, e.g., T;CT , and dep(T) to denote these functions.

Theorem 4. If CT R-commutes with dep(T), then every execution where T is a serialization point is

R-atomic.

proof. Let X be an execution where T is a serialization point, and let S be its initial state. Observe that

since both T and CT are serialization points, and dep(T) is treated rather as a single (parent) transaction, X is

actually serializable.

X(S)

= f both T and CT are serialization points g

(T � dep(T) �CT)(S)

= f function composition g

(dep(T) �CT)(T (S))

R f R-commutativity assumption g

(CT � dep(T))(T (S))

= f constraint 1 g

(dep(T))(S)

= f Let Y be that execution g

Y (S)

2

Theorem 4 is quite useful since it speci�es a concurrency control policy that guarantees R-atomicity. Namely,

we need to ensure that every potential compensated-for transaction be isolated (i.e., T is a serialization point) in

order to guarantee R-atomicity in case of compensation. In the subsequent parts of this dissertation, we restrict

our attention to the use of compensation under the assumption of this theorem; namely, serializability is assumed.

In particular, the results reported in Chapters 6 and 7 deal with compensation in a distributed setting. These

results rely on Theorem 4 by assuming that at each individual site in the distributed system, the local execution

21

X =< dep(T) : a := a + 2; T : f(a); T : g(b);

dep(T) : g(b); CT : a := a+ 2; CT : b := b+ 10 >

Observe that X

dep(T)

and X

CT

do not commute but they do R-commute for the given relation R. Let the

initial state be S = fa = 2; b = 15g. We have that X(S) = fa = 4; b = 15g, whereas Y (S) = fa = 4; b = 5g,

and indeed X is partially R-atomic. 3

Next, we relax the stringent requirement of having �xed programs.

De�nition 10. A program of a transaction is linear if it is a sequence of operations. 2

Programs are sequences, but we allow operations to read multiple entities, that is, use local variables. Therefore,

programs may not be �xed. An example for a linear transaction program is a program that gives a raise to all

employees, where the raise based on some aggregated computation (for instance 10% of the minimum salary).

De�nition 11. Let R be a reexive relation on augmented states. An operation f that updates e preserves R

if

(8e

0

2 adb : (S(e

0

) R

e

0

S

0

(e

0

))) ((f(S))(e) R

e

(f(S

0

))(e)))

2

Theorem 3. Let X be an execution of T; dep(T) and CT whose initial state is S. If the executions X

dep(T)

and X

CT

R-commute, X is EWSR, the programs of all transactions in dep(T) are linear, R is transitive, and

the operations of dep(T) preserve R, then X is partially R-atomic.

Proof. Using the proof of Theorem 2 we can show that (8e 2 db : X

dep(T);e

(S

0

) R

e

(X(S))(e)), where S

0

coincides with S on the database state. Let Y be an execution of the transactions in dep(T) that includes the same

operations as in X

dep(T)

and in the same order. Such a Y is a legitimate execution since dep(T)'s programs are

linear and have no conditional statements. Next, we show that (8e 2 db : Y

e

(augment(S; Y)) R

e

X

dep(T);e

(S

0

)).

Having the above two sets of R

e

relations, we can apply the transitivity of R entity-wise and complete the proof.

Since all programs in dep(T) are linear we can treat Y merely as a sequence of operations, regardless of the

issuing transactions. Let f

1

�: : :�f

k

be the sequence of all the operations of dep(T) in the order of their appearance

in X (and hence also in Y).

We show that (8e 2 adb : Y

e

(augment(S; Y)) R

e

X

dep(T);e

(S

0

)), where S

0

coincides with S on the database

state by induction on k.

k = 0: (8e 2 adb : Y

e

(augment(S; Y)) = S(e) = X

dep(T);e

(S

0

)).

Inductive step: Let f

k

update e 2 adb. The �nal value of database entities other then e is computed by a

sequence of at most k � 1 operations. Therefore, we can apply the hypothesis of induction and get the following

(8e

0

2 adb : (e

0

6= e)) (Y

e

0

(augment(S; Y)) R

e

X

dep(T);e

0
(S

0

))). Let us focus on e itself. We can say that

Y

e

(augment(S; Y)) = f

n+1

(S

00

) and X

dep(T);e

(S

0

) = f

n+1

(S

000

) with the appropriate S

00

, and S

000

. Since each

argument of f

k

is computed using less than k operations in both X and Y , we can apply the hypothesis of

induction and get (8e 2 adb : S

00

(e) R

e

S

000

(e)). Since f

k

preserves R we have completed the proof. 2

Example 7. Consider the set entities of Example 4, with the addition of a private entity u that belongs

to some transaction in dep(T). We use the relation S

0

R S

00

iff ((S

0

(b) � S

0

(a))) (S

00

(b) � S

00

(a))). The

execution X is as follows:

X =< T : a := a+ 1; dep(T) : u := a; dep(T) : b := u+ 10; CT : a := a� 1 >

Observe that X

CT

and X

dep(T)

R-commute (but do not commute), dep(T) is linear (but not �xed), and X is

(partially) R-atomic. 3

20

Theorem 2. Let X be an execution of T; dep(T), and CT whose initial state is S. If the executions X

T

0

and

X

CT

R-commute for every transaction T

0

2 dep(T), X is EWSR, and all programs of transactions in dep(T) are

�xed, then X is partially R-atomic.

We �rst state a lemma that is used in several of the proofs.

Lemma 2. Let X be an execution of T; dep(T), and CT . Let T

1

and T

2

be some disjoint sets of transactions

such that T

1

[T

2

= dep(t). If X is EWSR, then for all entities e:

X

e

� X

T

1

;e

�X

T;e

�X

T

2

;e

�X

CT;e

The proof of the lemma is a straightforward application of the assumption that X is EWSR along with

imposing Constraint 2. We now turn to the proof of Theorem 2.

Proof. Let Y be an execution of the transactions in dep(T) that includes the same operations as in

X

dep(T)

and in the same order. Such a Y is a legitimate execution since dep(T)'s programs are �xed. First, we

observe that since the programs of transactions in dep(T) use no private entities, for all states S and entities e,

X

dep(T);e

(S) = (X

dep(T)

(S))(e) = (Y (S))(e). Since X

CT

and X

T

0

R-commute for every T

0

2 dep(T), then by

the de�nition of R

e

and Lemma 1 we make a second observation:

(X

CT;e

�X

T ;e

)(augment(S;X

CT

�X

T

))

R

e

(X

T ;e

�X

CT;e

)(augment(S;X

T

�X

CT

))

where T � dep(T). We proceed as follows:

(X(S))(e)

= f Lemma 1 and Lemma 2 g

(X

T

2

;e

�X

CT;e

)((X

T

1

;e

�X

T;e

)(augment(S;X)))

R

e

f second observation g

(X

CT;e

�X

T

2

;e

)(augment((X

T

1

;e

�X

T;e

)(augment(S;X)); X

CT

�X

T

2

))

= f private entities are partitioned and updated only once g

(X

CT;e

�X

T

2

;e

)((X

T

1

;e

�X

T;e

)(augment(augment(S;X); X

CT

�X

T

2

)))

= f Constraint 1 and programs of dep(T) have no private entities g

X

dep(T);e

(S)

= f �rst observation g

(Y (S))(e)

Thus, we have that for all entities e, (Y (S))(e) R

e

(X(S))(e), and hence X is partially R-atomic. 2

Example 6. Consider a database system with the following entities, parametric operations, and reexive

relation:

db = fa : integer; b : integerg

f(e) :: if e > 2 then e := e � 2

g(e) :: if e > 10 then e := e� 10

S

0

R S

00

iff

(((S

0

(b) � 0 ^ S

0

(a) � 10) _ (S

0

(a) = 4)))

((S

00

(b) � 0 ^ S

00

(a) � 10) _ (S

00

(a) = 4)))

The predicates on a are present only to demonstrate the notion of partial R-atomicity. The execution X is

as follows (there is no need to give the program of dep(T) since it is �xed):

19

Achieving even approximated atomicity is an intricate problem when the executions are non-serializable, as

we allow them to be. The obstacle is, as mentioned before, that the programs of transactions in dep(T) see

di�erent database states when T and CT are not executed, and therefore may generate an execution Y which

can be totally di�erent than the original execution X. Hence, X and Y may not be related as required.

We state several theorems that formalize the interplay among the approximated atomicity notion, concurrency

control constraints, restrictions on programs of dependent transactions, and commutativity. Each theorem is

followed by a simpli�ed example that serves to illustrate at least part of the theorem's premises and consequences.

Throughout this section, we assume that a compensating transaction complies with Constraints 1 and 2 of Section

4. We start with de�nitions of weaker forms of commutativity and weaker forms of atomicity.

De�nition 5. Two functions from augmented states to augmented states, X and Y , commute with respect to

a relation R on augmented states (in short, R-commute), if for all augmented states S, (X �Y)(S) R (Y �X)(S).

2

Observe that when R is the equality relation we have regular commutativity.

De�nition 6. Let X be an execution of T; dep(T), and CT whose initial state is S, and let R be a reexive

relation on augmented states. The execution X is atomic with respect to R (in short R-atomic), if there exists

an execution Y of dep(T) whose initial state is S such that Y (S) R X(S). 2

Observe that regular atomicity is a special case of R-atomicity when R is the equality relation. Since R is

reexive, the empty execution is always R-atomic, regardless of the choice of R.

We motivate the above de�nitions by considering adequate relations R in the context of R-commutativity

and R-atomicity. Let Q be a predicate on database states such that O

dep(T)

) Q. Q can be regarded as either

a consistency constraint, or a desired predicate that is established by dep(T) (similarly to the predicate Q in

Constraint 3). Therefore, we would like to guarantee that compensation does not violate Q. De�ne R (in the

context of X;Y and S) as follows:

Y (S) R X(S) iff (Q(Y (S))) Q(X(S)))

An R-atomic execution with such

2

R has the advantageous property that predicates like Q are not violated by

the compensation. Such R-atomic executions yield states that approximate states yielded by atomic executions

in the sense that both states satisfy some desirable predicates. In the examples that follow the theorems, we use

relations R of that form.

De�nition 7. Let S

0

R S

00

, and let a and b be values of entity e. We de�ne a relation with respect to e, R

e

,

on e's values as follows: a R

e

b iff ((S

0

(e) = a ^ S

00

(e) = b) _ a = b) 2

De�nition 8. Let X be an execution of T; dep(T) and CT whose initial state is S, and let R be a reexive

relation on augmented states. The execution X is partially R-atomic if there exists an execution Y of dep(T)

whose initial state is S such that (Y (S))(e) R

e

(X(S))(e) for all database entities e. 2

When an execution is partially R-atomic, its �nal state can be partitioned as follows. For some entities, all

the e�ects of T were completely removed, whereas for the rest of the entities, their values are related to the values

they would have had, had T never been executed.

De�nition 9. A program of a transaction is �xed if it is a sequence of operations that use no private entities

as arguments. 2

If T 's program is �xed then it has no conditional branches. Moreover, T cannot use local variables to store values

for subsequent referencing. A sequence of operations, where each operation reads and updates a single database

entity (without storing values in local variables) is a �xed transaction.

2

Since such a relation is anti-symmetric, we take care to always position the desired, hypothetical, execution (Y in this case), in

the left-hand side, and the actual execution (X in this case) in the right-hand side of the relation.

18

compensatory operations can be `brought together', and then cancel each other's e�ects (by the enforcement of

Constraint 1), thereby ensuring atomic executions. The following theorem formalizes this idea.

Theorem 1. Let X be an execution involving T; dep(T) and CT . If each of the operations in X

dep(T)

commutes with each of the operations in X

CT

, then X is atomic.

We illustrate this theorem by the following simple example:

Example 5. Let T

i

; T

j

and CT

i

be a compensated-for transaction, a dependent transaction and the

compensating transaction, respectively. Let the programs of all these transactions include no condition statements

(i.e., they are sequences of operations). We give an execution X, in which each operation is pre�xed by the name

of the issuing transaction.

X = < T

i

: a := a+ 2; T

j

: u := b; T

j

: a := a+ u; CT

i

: a := a� 2) >

Clearly, every operation of T

j

commutes with every operation of CT

i

in X. Hence, X is atomic, and the execution

that demonstrates atomicity is simply

Y = X

T

j

= < T

j

: u := b; T

j

: a := a+ u >

As will become clear in Section 2.5, the fact that no condition statements appear in T

j

is important. 3

Theorem 1 sets the stage for the use of logical undoing as the means for compensation. When applicable,

logical undoing allows exposing uncommitted updates early, yet ensures atomicity in case the updating transaction

aborts. These bene�ts, however, can be attained only when the undo operations commute with the operations of

the dependent transactions as prescribed in Theorem 1. We do not elaborate any further on logical undoing as it

has already been studied thoroughly (e.g, refer to [BSW88, WHBM90, MHL

+

90, ML89]. One point we would like

to point out, however, concerns the perspective we advocate regarding logical undo. Typically, commutativity

and logical undo are mentioned as means to enhance concurrency. Our point of view slightly shifts the emphasis.

We underline the ability to logically undo an externalized transaction, yet retain atomicity without resorting to

cascading aborts.

Our main emphasis in this chapter is on more liberal forms of atomicity by compensation, where the results

of executing the dependent transactions in isolation may be di�erent from their results in the presence of the

compensated-for, and the compensating transactions. One way of characterizing these weaker forms of atomicity

is by qualifying the set of entities for which the equality in De�nition 4 (atomicity de�nition) holds. In Section 3.1,

we de�ne a type of compensating transaction that ensures atomicity with respect to a certain subset of entities.

Our main contribution, however, focuses on other weak forms of atomicity that approximate in a semantic sense

pure atomicity.

2.5 Approximating Atomicity

In this section we introduce weak forms of atomicity by compensation, where the results of an execution that

includes compensation only approximate the results of executing the dependent transactions in isolation.

Let us denote the execution of transactions T; dep(T), and CT as X, and the execution without compensation,

i.e., an execution of only dep(T), as Y . In an approximated form of atomicity, the �nal state of X is only related

to the �nal state of Y .

The relation should serve to constrain CT , and prevent it from violating consistency constraints and other

desirable predicates established by dep(T). Thus, the relation should enforce some `goodness' properties, for

instance: \if a consistency constraint predicate holds on the �nal state of Y , it should also hold on the �nal state

of X."

17

is crucial since T 's e�ects are undone by CT , and hence, predicates established by T and preserved by dep(T) do

not persist after the compensation. It is the responsibility of whoever de�nes CT to enforce Constraint 3.

Constraints 1 and 2 will be assumed to hold for all compensating transactions, hereafter. Constraint 3, which

is more intricate and captures more of the semantics of compensation, will be discussed further in Section 2.5.

2.4 Atomicity by Compensation

For some applications, it is acceptable that an execution of the dependent transaction, without the compensated-

for and the compensating transactions, would produce di�erent results than those produced by the execution

with the compensation. On the other hand, other applications might forbid compensation unless the outcome of

these two executions is the same. Next, we make explicit the above criterion that distinguishes among types of

compensation by de�ning the notion of atomicity by compensation.

De�nition 4. Let X be the execution of T; CT , and dep(T) whose initial state is S. Let Y be some execution

of only the transactions in dep(T) whose initial state is also S. The execution X is atomic by compensation (in

short, atomic), if X(S) = Y (S). 2

The execution Y can be any execution of dep(T). As far as the de�nition goes, di�erent sets of (sub)transactions

of dep(T) may commit in X and in Y , and conicting operations may be ordered di�erently. The key point is

that X(S) = Y (S). If an execution is atomic then compensation does not disturb the outcome of the dependent

transactions. The database state after compensation is the same as the state after an execution of only the

dependent transactions in dep(T). All direct and indirect e�ects of the compensated-for transaction, T , have

been erased by the compensation.

Transactions in dep(T) see di�erent database states when T and CT are not executed, and therefore generate

an execution Y which can be totally di�erent than the execution X. This distinction between the executions X

and Y , which is the essence of the important notion of atomicity by compensation, would not have been possible

had we viewed a transaction merely as sequence of operations rather than a program.

A delicate point arises with regard to atomicity when S does not satisfy I

dep(T)

. Such situations may occur

when T establishes I

dep(T)

for dep(T) in such a manner that dep(T) must follow T in any execution. Hence, if

T is compensated-for, there is no execution of dep(T), Y , that can satisfy the atomicity requirement. We model

such situations by postulating that if I

dep(T)

(S) does not hold, then Y (S) results in a special state (the unde�ned

state) that is not equal to any other state and hence X is indeed not atomic.

Example 4. We illustrate De�nition 4 by considering the following two executions over read and write

operations (the notation r

i

[e] denotes reading e by T

i

, and similarly w

i

[e] for write, and c

i

for commit):

W = < w

j

[e] ; r

i

[e] ; c

j

; c

i

>

Z = < w

j

[e] ; r

i

[e] ; w

i

[e

0

] ; c

i

>

The execution W is recoverable [BHG87]. History Z is not recoverable. If however, CT

j

is de�ned, T

j

can still be

aborted. Let us extend Z with the operations of CT

j

and call the extended execution Z

0

. Z

0

is atomic provided

that Z

0

T

i

would have been generated by T

i

's program, and the same value would have been written to e

0

, had T

i

run in isolation starting with the same initial state as in Z

0

. 3

The key notion in the context of compensation, as we de�ned it, is commutativity of compensating operations

with operations of dependent transactions. Signi�cant attention has been devoted to the e�ects of commutative

operations on concurrency control [Kor83, Wei88, BR87, Reu82]. Our work parallels these results as it exploits

commutativity with respect to recovery. In all of our theorems we prefer to impose commutativity requirements on

CT rather than on T , since CT is less exposed to users, and hence constraining it, rather than constraining T , is

preferable. Predicated on commutativity, the operations of the compensated-for transaction and the corresponding

16

� T

j

reads e after T

i

has updated e.

� T

i

does not abort before T

j

reads e.

� Every transaction (if any) that updates e between the time T

i

updates e and T

j

reads e, is aborted before T

j

reads e.

2

The above de�nition is adapted from the de�nition of \reads-from" of [BHG87].

The key point is that admitting executions that do not avoid cascading aborts and supporting the undo of

committed transactions is predicated on the existence of the compensatory mechanisms needed to handle undoing

externalized transactions. In the sequel, T denotes a compensated-for transaction, CT denotes the corresponding

compensating transaction, and dep(T) denotes a set of transactions that depend on T . This set of dependent

transactions can be regarded as a set of related (sub)transactions that perform some coherent task.

Constraint 1. For all executions X, if X

T;e

�X

CT;e

is a contiguous subsequence of X

e

, then (X

T;e

�X

CT;e

) �

I, where I is the identity mapping. 2

The simplest interpretation of Constraint 1 is that for all entities e that were updated by T but read by no

other transaction (since X

CT;e

follows X

T;e

immediately in the execution), CT amounts simply to undoing T .

Consequently, if there are no transactions that depend on T , (i.e., no transaction reads T 's updated data entities),

then CT is just the traditional undo(T). The fact that CT does not always just undo T is crucial, since the e�ects

of compensation depend on the span of execution from the execution of the compensated-for transaction till its

own initiation. If such a span exists, and T has dependent transactions, the e�ects of compensation may vary

and can be very di�erent from undoing T . The fact that compensation degenerates to simple undo as speci�ed

in Constraint 1, is used later in the dissertation. In Chapter 7, traditional undo is modeled by a compensating

transaction.

There are certain operations that cannot be undone, or even

compensated-for. In [Gra81] these type of operations are termed real (e.g., dispensing money, �ring a mis-

sile). Constraint 1 does not apply for these type of operations. For simplicity, we do not discuss compensation

for real operations in this chapter. We defer discussion of non-compensatable operations to Section 6.5.

De�nition 3. A transaction T is a serialization point in an execution X if X � X

0

�X

T

�X

00

, such that

no transaction has operations both in X

0

and in X

00

. 2

Constraint 2. A compensating transaction must be a serialization point. 2

This constraint is referred to as isolation of recoveries and it plays a key role later in the dissertation. It asserts

that a transaction should either see a database state a�ected by T (and not by CT), or see a state following CT 's

termination. More precisely, transactions should not have operations that conict with CT 's operations scheduled

both before and after CT 's operations, or in between CT 's �rst and last operations. It is the responsibility of

the concurrency control protocol to implement this constraint. This constraint is elaborated later on in the

dissertation and protocols for enforcing it are devised (see Section 5.3).

In what follows, we use the notation O

T

and I

T

to denote the output and input predicate of transaction

T , respectively. The same notation is used for a set of transactions. These predicates are predicates over the

database state.

Constraint 3. Let Q be a predicate de�ned over the database state, if (O

dep(T)

) Q) ^ (I

T

) Q) then

O

CT

) Q. 2

Constraint 3 is appropriate when Q is a either general consistency constraint, or a speci�c predicate that is

established by dep(T) (that is, one of the collective tasks of the transactions in dep(T) was to make Q true).

Informally, this constraint says that if Q was established by dep(T), and is not violated by undoing T (since

I

T

) Q), then it should be preserved by CT . Observe that the assumption that Q holds initially (i.e., I

T

) Q)

15

Proof. Let X = X

0

� f

k

, where X

0

= f

1

� : : : � f

k�1

. The proof is by induction on k. Some of the proofs in

this dissertation are in `Dijkstra' style. Namely, each step in the proof is explained by a hint within .

k = 0:

(X(S))(e)

= f X � I g

S(e)

= f de�nition 1 g

(augment(S; I))(e)

= f X � I g

X

e

(augment(S;X))

Inductive step: Observe that X(augment(S;X �X

0

)) = X(augment(S;X)). This holds since private entities are

updated only once, and are used only after being updated. Therefore, updating private entities in X

0

is irrelevant

in the execution X in this case.

X

e

(augment(S;X))

= f projection g

((X

e

)(augment(S;X))(e)

= f de�nition of X g

[f

k

((X

0

e

)(augment(S;X)))](e)

= f observation above g

[f

k

((X

0

e

)(augment(S;X

0

)))](e)

= f hypothesis of induction, entity-wise g

[f

k

(X

0

(S))](e)

= f function composition g

(X(S))(e)

2

In our discussions we consider the following types of executions:

� A execution X is serial if for every two transactions T

i

and T

j

that appear in X, either all operations of T

i

appear before all operations of T

j

or vice versa.

� A execution X is serializable (SR) if there exists a serial execution Y such that X � Y .

� A execution X is entity-wise serializable (EWSR) if for every entity e there exists a serial execution Y such

that X

e

� Y

e

.

As we shall see shortly, EWSR executions are going to be quite useful in our work. We impose very weak

constraints on concurrent executions in order to exclude as few executions as possible from consideration.

2.3 Speci�cation Constraints

With the aid of the tools developed in the last section, we are in a position to de�ne compensation more formally.

Although compensation is an application-dependent activity, there are certain guidelines to which every compen-

sating transaction must adhere. After introducing some notation and conventions we present three speci�cation

constraints for de�ning compensating transactions. These constraints provide a very broad framework for de�ning

concrete compensating transactions for concrete applications, and can be thought of as a generic speci�cation for

all compensating transactions.

De�nition 2. A transaction T

j

depends on transaction T

i

in an execution if there exists an entity e such

that the following conditions hold:

14

A key notion in the treatment of compensation is commutativity. We say that two sequences of operations, X

and Y , commute, if (X � Y) � (Y �X). Two operations conict if they do not commute. Observe that de�ning

operations as functions, regardless to whether they read or update the database, leads to a very simple de�nition

of the key concept of commutativity. Compare our de�nition to those of [Wei88, BR87] for example.

Part of the orderings implied by the total order in which operations are composed to form an execution are

arbitrary, since only conicting operations must be totally ordered. In essence, our equivalence notion, when

restricted to database state, is similar to �nal-state equivalence [Pap86]. However, in what follows, we shall need

to equate executions that are not necessarily over the same set of transactions, which is in contrast to �nal-state

equivalence (and actually to all familiar equivalence notions).

We denote by X

T

(X

T

) the sequence of operations of a transaction T (a set of transactions T) in an execution

X, involving possibly other transactions. A projection of an execution X on an entity e is a subsequence of X,

that consists of the operations in X that updated e. We denote the projection of X on e as X

e

. The same

notation is used for a projection on a set of entities. When X

T

is projected on entity e the resulting sequence is

denoted X

T;e

.

It should be noted that X

T

does not reect the general control structure of the program of T since it is just the

sequence of T 's operations appearing in a particular X. In essence, X

T

is a curried function whose dependence

on the particular interleaving in X and the particular initial state is embedded in it. The remaining arguments of

X

T

are the arguments of its operations. These arguments can still be assigned values that are di�erent from the

values they were assigned in X itself. For instance, refer to Example 2. In Z

T

1

(S), u is assigned a di�erent value

than in Z(S). This peculiarity is not relevant to our results, since we concentrate in Section 2.5 on transactions

with �xed control structure (i.e., no conditional statements). Hence, in Section 2.6, when we focus on arbitrary

transactions, we do not deal with sequences like X

T

any longer.

When a projection on an entity is applied to a state, we are interested in the resulting value of that particular

entity. Therefore, we use X

e

(S), as a shorthand for (X

e

(S))(e).

The astute reader may have noticed that X

e

(S) is not well de�ned, and in particular it is not necessarily equal

to (X(S))(e). Since X

e

includes only operations that update e, and since private entities are updated only once,

the value of all private entities is unde�ned when executions are projected on database entities. To rectify this

anomaly we de�ne the function augment from database states and executions to augmented states as follows.

De�nition 1. Let S be a database state, and X an execution, then:

(augment(S;X))(e) =

�

S(e) if e 2 db

(X(S))(e) if e 2 adb� db

2

In essence, the function augment, assigns private entities the values they hold after X was applied to S.

Therefore, when an execution X is projected on a database entity, by applying it to augment(X;S) rather than

just to S, we avoid the anomaly. We illustrate the function augment and its use in the following example:

Example 3. Let u 2 (adb � db), and fa; bg � db. Consider the following execution X =< u :=

a; b := f(u) >. Let S(u) = ; (unde�ned value), and S(a) = 1. Then, X

b

(S) = f(S(u)) = f(;), whereas

(X(S))(b) = f(1). However, (augment(S;X))(u) = (X(S))(u) = 1, and then indeed X

b

(augment(S;X)) = f(1).

3

Essentially, the augmented state augment(S;X) represents the view [Pap86] operations have on the database

in execution X applied to state S.

Lemma 1. For all executions X

(8e 2 adb : (X(S))(e) = X

e

(augment(S;X)))

13

2.2.2 Executions and Correctness

We use the framework for alternative correctness criteria set forth in [KS88]. Explicit input and output predicates

over the database state are associated with transactions. The input predicate is a pre-condition of transaction

execution and must hold on the state that the transaction reads. The output condition is a post-condition

which the transaction guarantees on the database state at the end of the transaction provided that there is no

concurrency and the database state seen by the transaction satis�es the input condition. Thus, as in the standard

model, transactions are assumed to be generated by correct programs, and responsibility for correct concurrent

execution lies with the concurrency control protocol.

Observe that the input and output predicates are excellent means for capturing the semantics of a database

system. We use the convention that predicates (and hence semantics) can be associated with a set of transactions,

similarly to the way predicates are associated with nested transactions in [KS88]. That is, a set of transactions is

supposed to collectively establish some desirable property, or complete a coherent task. This convention is most

useful in domains where a set of subtransactions are assigned a single complex task.

We do not elaborate on the generation of interleaved or concurrent executions of sets of transaction programs,

since this is not central to understanding our results. However, the notion of an execution, the result of this

interleaving, is a central concept in our model. A execution is a sequence of operations, de�ning both a total order

among the operations, as well as a function from augmented states to augmented states that is the functional

composition of the operations. We use the notation X =< f

1

; : : : ; f

n

> to denote an execution X in which

operation f

i

precedes f

i+1

, 1 � i < n. Alternatively, we use the functional composition symbol `�' to compose

operations as functions. That is, X = f

1

� : : : � f

n

denotes the function from augmented states to augmented

states de�ned by the same execution X. We use the upper case letters at the end of the alphabet, e.g., X;Y; Z,

to denote both the sequence and the function an execution de�nes.

The equivalence symbol `�' is used to denote equality of executions as functions. That is, if X and Y are

executions, then X � Y means that for all augmented states S, X(S) = Y (S). Observe that since executions

and operations alike are functions, the function composition symbol `�' is used to compose executions as well as

operations.

When a (concurrent) execution of a set of transaction programs A is initiated on a state S and generates an

execution X, we say that X is a execution of A whose initial state is S.

Example 2. Consider the transaction program T

1

of Example 1. Since T

1

has a conditional statement

there are two possible executions, X and Y , which can be generated when T

1

is executed in isolation. We list the

executions as sequences of operations:

X = < u := a; v := b; c := f(c; v) > ;

Y = < u := a; v := b; w := c; b := g(u;w) >

Let S = f a = 1 ; b = 0 ; c = 2 g be database state, then S is an initial state for X. X(S) = S

0

, where

S

0

(c) = f(2; 0). Consider a concurrent execution of T

1

and T

2

of the previous example. We show two (out of the

many possible) executions, Z and W , whose initial state is S given above. Each operation is pre�xed with the

name of the transaction that issued it.

Z =< T

2

: a := 0; T

1

: u := a; T

2

: b := 1;

T

1

: v := b; T

1

: w := c; T

1

: b := g(u;w) >

W =< T

2

: a := 0; T

2

: b := 1; T

1

: u := a;

T

1

: v := b; T

1

: w := c; T

1

: b := g(u;w) >

Observe that Z(S) = W (S) = S

00

, where S

00

= f a = 0 ; b = g(0; 2) ; c = 2 g. Observe that Z � W . 3

12

Entities in our scheme can be of arbitrary granularity and complexity. Examples for entities are pages of data

and index �les, or abstract data types like stacks and queues. Accordingly, sample reading operations are read

a page, stack top, is-empty queue, and sample updating operations are write a page, stack push and pop, and

insertion into a queue. Notice that the above sample reading operations only read the database state without

updating it. On the other hand, a blind write only updates the database state but does not read it. Finally,

assuming integer-type entities, an increment operation both reads and updates an integer entity.

We are in a position now to introduce the notion of a transaction as a program. A transaction program is a

sequence of program statements, each of which is either:

� An operation.

� A conditional statement of the form:

if b then SS1 else SS2

where SS1 and SS2 are sequences of program statements, and b is a predicate that mentions only private

entities and constants.

We impose the the following restrictions on the operations that are speci�ed in the statements:

� The set of private entities is partitioned among the transaction programs. An operation in a program cannot

read nor update a private entity that is not in its own partition;

� private entities are updated only once;

� An operation reads a private entity only after another operation has updated that entity.

These restrictions are for the sake of convenience in proofs and they do not restrict the expressibility of the model.

Example 1. Consider the following sets of entities: db = fa; b; cg, and adb = db[fu; v; wg, and the following

two transaction programs, T

1

and T

2

:

T1: begin

u:=a;

v:=b;

if u > v then c:= f(c,v)

else begin

w:=c;

b:= g(u,w)

end

end

T2: begin

a:=0;

b:=1

end

Observe that operation f both updates and reads entity c. T

2

illustrates operations that read no entities. 3

11

since originally transactions read data items updated by T and acted accordingly, whereas now T 's operations have

vanished but its indirect impact on its dependent transactions is still apparent. The only formal way to examine a

compensated execution is by comparing it to a hypothetical execution of only the dependent transactions, without

the compensated-for transaction. We use the comparison of the compensated execution with the hypothetical

execution that does not include the compensated-for transaction, as a key criterion in our exposition. Generating

this hypothetical execution and studying it requires the introduction of the transactions' programs which are,

therefore, indispensable for our purposes.

A transaction program can be de�ned in any high-level programming language. Programs have local (i.e.,

private) variables. In order to support the private (i.e., non-database) state space of programs we de�ne the

concept of an augmented state. The augmented state space is the database state space unioned with the private

state spaces of the transactions' programs. The provision of an augmented state allows one to treat reading and

updating the database state in a similar manner. Reading the database state is translated to an update of the

augmented state, thereby modeling the storage of the value read in a local variable.

Thus, a database, denoted as db, is a set of data entities. The augmented database, denoted as adb, is a set of

entities that is a superset of the database; that is, db � adb. An entity in the set (adb � db) is called a private

entity. Entities have identifying names and corresponding values. A state is a mapping of entity names to entity

values. We distinguish between the database state and the state of the augmented database, which is referred to

as the augmented state. We use the notation S(e), to denote the value of entity e in a state S. The symbols S

and e (and their primed versions, S

0

; e

0

, etc.) are used, hereafter, to denote a state and an entity, respectively.

Another deviation from the classical transaction model is the use of semantically-richer operations instead of

the primitive read and write. Having such operations allows re�ning the notion of conicting versus commutative

operations [BR87, Wei88]. That is, it is possible to examine whether two operations commute and hence can be

executed concurrently. By contrast, in the classical model, there is not much scope for such considerations since

a write operation conicts with any other operation on the same entity.

An operation is a function from augmented states to augmented states that is restricted as follows:

� It updates at most one entity (either a private or a database entity);

� it reads at most one database entity, but it may read an arbitrary number of private entities;

� it can both update and read only the same database entity.

We use the shorthand notation e

0

:= f(e

1

; : : : ; e

k

) to denote a single operation f . We say that f updates entity

e

0

, and reads entities e

1

; : : : ; e

k

. The arguments of an operation are all the entities it reads. There are two special

termination operations, commit, and abort, that have no e�ect on the augmented state. Operations are assumed

to be executed atomically.

It is implicitly assumed that all the arguments of an operation are meaningful; that is, a change in their value

cause a change in the value computed by the operation. The operations in our model reconcile two contradictory

goals. On the one hand, operations are functions from augmented states to augmented states, thereby giving the

exibility to de�ne complex and semantically-rich operations. On the other hand, the mappings are restricted

so that at most one database entity is accessed in the same operation, thereby making it feasible to allow

atomic execution of an operation. Although only one database entity may be accessed by an operation, as

many local variables (i.e., private entities) as needed may be used as arguments for the mapping associated with

the operation. Having private entities as arguments to operations adds more semantics to operations. Having

functions for operations allows us to conveniently compose operations by functional composition, thereby making

sequences of operations functions too.

10

preserving some sense of atomicity. Initiating a compensating transaction is caused by a decision to abort the

forward transaction. In order to maintain (at least relaxed) atomicity, we claim this decision to be non-reversible

and make sure it is robust to failures of all sorts.

There are other special characteristics. A compensating transaction does not exist by its own right; it is always

regarded within the context of the forward transaction, and it is always executed after the forward transaction. A

compensating transaction is driven by a program that is a derivative of the program of the forward transaction.

The binding of forward and compensating transactions is explicit, and is realized as the compensating transaction

gets as input a trace of the execution of the forward transaction (in the form of the latter's log records, for

example).

A mundane example taken from \real life" exempli�es some of the characteristics of compensation. Consider a

database system that deals with transactions that represent purchasing of goods. Consider the act of a customer

returning goods after they have been sold. The compensated-for transaction in that case is a particular purchase,

and the compensating transaction encompasses the activity caused by the cancellation of the purchase. The

compensating transaction is bound to the compensated-for transaction by the details of the particular sale (e.g.,

price, method of payment, date of purchase). The e�ects of purchasing transaction might have been externalized

in di�erent ways. For instance, it might have triggered a dependent transaction that issued an order to the

supplier in an attempt to replenish the inventory of the sold goods. Furthermore, the customer might have been

added to the store's mailing list as a result of that particular sale. The actual compensation depends on the

relevant policy. For example, the customer may be given store credit, or full refund. Whether to cancel the order

from the supplier and whether to retain the customer in the mailing list are other application-dependent issues

with which the compensating transaction must deal.

2.2 A Transaction Model

In the classical transaction model [Pap86, BHG87] a transaction is viewed as a sequence

1

of read and write

operations that map consistent database states to consistent states when executed in isolation. A concurrent

execution of a set of transactions is represented as an interleaved sequence of read and write operations, and is

said to be serializable if it is equivalent to a serial (non-concurrent) execution. Serializability is the correctness

criterion of this model.

This approach poses severe limitations on the use of compensation. First, sequences of uninterpreted reads

and writes are of little use when the semantically-rich activity of compensation is considered. Second, the use

of serializability as the correctness criterion for applications that demand interaction and cooperation among

possibly long-duration transactions was questioned by the work on concurrency control in [KS88, KKB88, FO89].

Since we target compensation as a recovery mechanism for these kind of applications, our model does not rely on

serializability as the only correctness notion.

2.2.1 Transactions and Programs

A transaction is a sequence of operations that are generated as a result of the execution of some program [Gra80].

The exact sequence that the program generates depends on the database state \seen" by the program. In the

classical transaction model only the sequences are dealt with, whereas the programs are abstracted and are of

little use. Given a concurrent execution of a set of transactions (i.e., an interleaved sequence of operations)

compensation for one of the transactions, T , can be modeled as an attempt to cancel the operations of T while

leaving the rest of the sequence intact. The validity of what remains from that execution is now in serious doubt,

1

We use a sequencewhich implies a total order, only for the ease of exposition. One can regard the sequence to be conict-equivalent

[BHG87] to a partial order of operations.

9

inverse operations are executed in the reverse order of their execution.

It is instructive for our purposes to evaluate how the two traditional undo methods a�ect concurrency. If a

physical method is used, data items that were updated by T may be neither read nor written by other transaction,

until T commits or aborts. This requirement is known as strictness [BHG87]. By restricting concurrency in this

manner it is made possible to undo T by simply restoring the physical before images of the relevant data items.

Note that no operations may access the data items updated by T from the point they are a�ected to the point they

are committed or recovered. Consequently, compensation cannot rely on physical undo methods. The strictness

requirement can be lifted for certain operations if a logical method is used, and thus enhance concurrency. Namely,

if two operations commute, they can be executed concurrently, regardless of whether their issuing transactions

are committed or not. If one of these transactions must be undone, the corresponding inverse operation can still

cancel the e�ect of the aborted operation. A common example in the context of commutative operations are

increment and decrement operations which commute with each other and among themselves [Reu82]. A data

item can be incremented concurrently by two uncommitted transactions. If one of the transactions aborts, its

e�ect can be undone by decrementing the item appropriately, leaving the e�ects of the other increment intact.

Because of the commutativity of the operations, the logical undo yields a state that is identical to the state that

would have been reached had the forward transaction never executed. Note that (only) commutative operations

may access the data items updated by T from the point they are a�ected to the point they are committed or

recovered.

Logical undo is based on the semantics of the operations. A decrement operation is recognized as the inverse

of increment only since the semantics of both is known. Likewise, compensation is a semantically-rich recovery

method. However, it is a generalization of logical undo that is applicable even for non-commutative operations.

Since it is not based on commutativity, compensation does not guarantee the undoing of all the direct and

indirect e�ects of the forward transaction. In particular, some of the e�ects of the dependent transactions, which

are indirect e�ects of T , may remain intact. Compensation does guarantee, however, that a consistent state is

established based on semantic information. We emphasize that unlike logical undo, the state of the database

after compensation took place may only approximate the state that would have been reached, had the forward

transaction never executed. In spite of the di�erences, compensation is still a method for automatically undoing

transactions, just like the traditional methods. Compensation, however, is applicable in the more general case

where the undone transaction has already exposed its updates.

We propose the notion of compensating transactions as the vehicle for carrying out compensation. We use

the notation CT to denote the compensating transaction speci�c to the forward transaction T . A compensating

transaction possesses the fundamental properties of a transaction along with some special characteristics. It

appears atomic to concurrently executing transactions (that is, transactions do not observe partially compensated

states); it conforms to consistency constraints; and its e�ects are durable. However, a compensating transaction is

a very special type of transaction. Under certain circumstances, it is required to restore consistency, rather than

merely preserve it. Also, compensating transactions have a unique failure atomicity requirement which is explained

next. Compensating transactions cannot voluntarily abort; the choice to either abort or to commit is present

only for the forward transaction. A compensating transaction o�ers the ability to reverse this choice, but the

capability to abort the compensation is not supported. Moreover, the underlying implementation should ascertain

that once compensation is initiated, it will eventually complete. Namely, compensating transactions should not

be subject to a system-initiated abort. Also, their completion should be guaranteed despite system crashes by

either resuming them from a save-point, or retrying them. Finally, a compensating transaction must be designed

to avoid a logical error leading to abort. This stringent requirement is referred to as persistence of compensation

and is recognized in [GMS87, GM83, Vei89, GMGK

+

90, Reu89]. We elaborate on the mechanisms needed to

implement persistence of compensation in Section 4.1.4. The rationale behind persistence of compensation is

8

Chapter 2

Single-Transaction Compensation

An informal overview of most of the features of compensation is given in Section 2.1. In Section 2.2, we present a

semantically-rich and exible transaction model. The formal results concerning compensation comprise the rest

of the chapter. It should be noticed that Sections 2.5 and 2.6 serve as the basis for material presented later in

the dissertation.

2.1 Overview of Compensation

The most common method for obliterating the e�ects of an aborted transaction T , is to maintain a recovery

log and provide the undo(T) operation which restores the state of data items updated by T to the value they

had just prior to the execution of T . The undo operation removes all the direct e�ects of T on the database.

However, if some other transaction has read data values written by T , undoing T is not su�cient. The indirect

e�ects of T must be removed by aborting the transactions that have read T 's updates, and thus are a�ected

by its execution. Aborting the a�ected transaction may trigger further aborts. This undesirable phenomenon,

called cascading aborts, can result in uncontrollably many transactions being forced to abort because some other

transaction happened to abort.

The purpose of compensation is to handle situations where it is desired to undo a transaction T whose

uncommitted updates have been exposed. Undoing T , however, should not trigger aborting other transactions

that read the exposed updates; that is, cascading aborts should be avoided. We refer to T as the compensated-for,

or forward transaction. The set of transactions that are a�ected by (reading) the data values written by T are

referred to as dependent transactions (of T), and are denoted dep(T). Compensation faces the intricate task of

undoing the forward transaction while obliterating the e�ects of the dependent transactions to a minimal extent,

and preserving data consistency. Only with the aid of the speci�c semantics of the application at hand can this

task be accomplished. Intuitively, compensating for T can be though of as performing (an approximation of) the

inverse of the function performed by T .

To understand compensation better, we compare and contrast it with the traditional methods of transaction

undo. There is a dichotomy of the traditional methods into physical (or state-based), and logical methods

[HR83, MHL

+

90]. Using physical methods, before a data item is updated by a transaction T , its physical image

is stored. These images are typically saved on a log, and are referred to as before images. If a transaction aborts,

the before images of all the data items it has updated are reinstated, thereby restoring the state of the database

prior to T 's execution. In contrast, logical methods are based on having inverse operations associated with the

operations of transactions. The execution of a forward transaction is recorded on a log, too, however descriptions

and parameters of operations are stored rather than before images. To undo a transaction, the corresponding

7

for compensating transactions in a recovery management subsystem are highlighted in Chapter 4. In the latter

part of this chapter we sketch a design methodology for compensating transactions. The transition from single

transaction compensation to full-edge semantics-based recovery of composite transaction in distributed systems

is made in Chapter 5. The problem of obtaining transaction atomicity in a distributed system is explained in this

chapter. The concept of isolation of recovery which is a backbone of the latter part of the dissertation is informally

presented there, too. Chapters 6 and 7 present two speci�c methods for solving the problem of atomicity in a

distributed system [LKS91b, LKS91a]. The common denominators and the di�erences of these two methods are

underlined in Section 5.6. We review related work, and sketch future research directions in Chapters 8 and 9,

respectively. The dissertation concludes in Chapter 10.

6

atomicity is guaranteed as the e�ects of a transaction that is �nally aborted are undone semantically by a

compensating transaction. Relaxing standard atomicity interacts in a subtle way with correctness and concurrency

control issues. Accordingly, a correctness criterion that incorporates the isolation property, is proposed. The

correctness criterion reduces to serializability when no global transactions are aborted, and excludes unacceptable

executions when global transactions do fail. We devise a family of practical protocols that ensure this correctness

notion. The results on relaxed atomicity are of particular importance for multidatabases, where the local autonomy

of the integrated systems cannot be compromised.

In summary, the salient contributions of this dissertation are:

� Introducing compensation as the viable solution to the recovery needs of long-duration and cooperative

transactions.

� Speci�cation of formal criteria for the proper use of compensation as a recovery paradigm.

� Applying semantic recovery in distributed databases and analyzing the rami�cations.

� Trading standard atomicity for relaxed atomicity, and consequently coming up with pragmatic methods and

protocols that alleviate the inherent di�culties associated with commitment in distributed systems.

1.2 Structure of the Dissertation

Typically a long-duration or a distributed transaction is decomposed into subtransactions [GM83, GMS87, CP87],

thereby introducing a nested, or multi-level transaction hierarchy [Mos87, BSW88]. This hierarchical layering

was found useful for cooperative environments as well [KKB88, KLMP84]. The decomposition is often logical;

that is, a subtransaction is associated with a coherent unit of work. For a distributed transaction, however, the

decomposition can be more arbitrary, as all the actions executed at a single site are de�ned as a subtransaction.

The resultant transaction hierarchy introduces spheres of atomicity, since the subtransactions as well as the root

transaction possess atomicity properties. It is instructive to cast the intuitive notion of early exposure of updates

within this well-structured framework. The commit of a subtransaction is an early externalization of updates

from the root transaction point of view.

1

Thus, if a root transaction is to abort, its committed subtransactions,

those which have completed their task and exposed their updates, should be compensated-for. In summary, by

using the hierarchical structuring, exposing uncommitted data translates to committing a subtransaction prior

to the commit of the root transaction. Accordingly, compensation is applied on a subtransaction basis.

This hierarchical structuring guides a bottom-up structuring of this dissertation. We start with a building

block of a single subtransaction and investigate how a committed subtransaction can be compensated-for. In

the course of this exposition, a subtransaction is treated as an independent transactional unit with complete

semantics, and the encompassing hierarchy is entirely disregarded. For instance, the transaction model presented

in Section 2.1, de�nes a model for a single (sub)transaction. Only in Chapters 5 and 6, we step one level up and

introduce composite transactions again, mainly in a distributed context. The results obtained earlier are used to

advance the study of semantic recovery in the broader scope of composite transactions.

The remainder of this dissertation is organized as follows. Chapter 2 lays the foundation for the thesis by giving

a rigorous basis to compensation. In particular, the infringement upon standard atomicity when compensation

is employed is pinpointed. The material for this chapter is largely from [KLS90a]. Chapter 3 illustrates the

fundamental concepts presented earlier by a set of examples. Practical issues concerning the support needed

1

The reader should regard this analogy in the context of a single-level nested transaction, where visibility of updates of a sub-

transaction is not restricted to only sibling subtransactions, but is rather not restricted at all. The model we have in mind is akin to

sagas [GMS87] (also known as open nesting), more than to the original nested transactions of Moss [Mos87] (also known as closed

nesting).

5

duration and distributed transaction management, and would provide critical functionality for enterprises based

on cooperative transactions. The thesis defended in this dissertation focuses on semantics-based recovery as the

requisite method. Semantics-based recovery has two dual facets, compensation and retry. The duality of the two

semantic recovery methods is rooted in the traditional undo/redo paradigms [BHG87].

Semantic undoing, referred to as compensation, is carried out by a compensating transaction which is associated

with a speci�c forward transaction. A compensating transaction faces the intricate task of undoing its forward

transaction while obliterating the e�ects of other transactions to a minimal extent and preserving data consistency.

Only with the aid of the speci�c semantics of the application at hand can this task be accomplished. Ideally,

compensation can be thought of as performing the inverse of the function associated with the forward transaction.

However, compensating for a transaction does not guarantee the physical undoing of all the direct and indirect

e�ects of the forward transaction. That is, the state of the database after compensation has taken place may

only approximate the state that would have been reached had the forward and compensating transactions never

executed. We formally identify conditions for ensuring that executions with compensations approximate in an

acceptable way ideal executions. This formal basis sets forth general requirements from compensating transactions

and shapes a methodology for their design.

Aborting, or compensating-for, a transaction that encompasses elaborate human activity (e.g., a long-running

transaction in a collaborative design environment [KKB88]), or intensive and costly computation (e.g., a long-

running data processing transaction [GMS87]) is often counter-productive. Instead, it is preferable to identify the

cause for the failure and act accordingly with the objective of saving the work associated with such a transaction.

That is, under certain circumstances, forward rather than backward recovery is desirable. We refer to the

activities associated with the forward recovery of a failed transaction as retry. Retry ranges from traditional

redo to automatic execution of code, failure diagnostics and exception handling. Similarly to compensation,

retry depends on the semantics of the application at hand. In this dissertation we concentrate on compensation

(Chapters 2,3, and 4) and cover retry rather briey (Section 5.7). Since the two methods have much in common

and because of their duality, one might expect the results for compensation to carry over for retry, however this

assumption requires further research. Our results do not rely in any manner on the speci�cs of retry, however

they are ampli�ed once such a method is assumed. We acknowledge that there are actions that are neither

compensatable nor retriable. The ideas and protocol we devise are such that they can accommodate transactions

featuring a blend of actions, some of which are not semantically recoverable.

Supporting atomicity of multi-site transactions in a distributed system is equated with the loss of the local

autonomy of the individual sites, and the problems of long-duration delays and blocking. The two-phase commit

(2PC) protocol [Gra78] embodies these de�ciencies. These hard problems can be alleviated by employing semantic

recovery, and by trading standard all-or-nothing atomicity for a weaker notion of relaxed atomicity. Facing the

relevant impossibility results in distributed computing, this new direction is well justi�ed. Relaxed atomicity is

characterized by an asynchronous process of recovery from decentralized and uncoordinated local decisions as to

whether to commit or abort a multi-site transaction. This recovery process �nally leads to a unanimous outcome.

Due to the asynchrony introduced to the commit procedure, non-atomic executions of transactions occur, and

we need to isolate them from other transactions until they are recovered. A formal model that uni�es the two

dual methods of semantic recovery, namely compensation and retry, is constructed. In this model, an isolation

property is de�ned, and a protocol that satis�es this property is presented.

Based on the notion of relaxed atomicity, we devise a transaction management protocol that combines two-

phase locking [BHG87] with a variant of 2PC. The protocol is based on the optimistic assumption that in most

cases a transaction that reaches its lock point [BHG87] (i.e., the point where the transaction has already acquired

all its locks), will indeed commit. Employing this optimistic protocol, locks may be released early under certain

circumstances, thereby avoiding the maladies of the standard 2PC protocol. Relaxed, rather than standard,

4

Chapter 1

Introduction

The motivation and a synopsis of the thesis defended in this dissertation is summarized in Section 1.1. Section

1.2 introduces the components and structure of this work, and gives a brief overview of each chapter.

1.1 Semantics-Based Recovery: Motivation and Thesis

The cornerstone of the transaction paradigm is the notion of atomicity. Transaction atomicity asserts that a

transaction either completes entirely and commits its e�ects, or aborts and has no visible e�ect on the database.

The principle that forms the basis for obtaining transaction atomicity in most contemporary database systems

is to allow transactions to access only committed data; data that has been updated by transactions that have

already committed. That is, a transaction that requests to access data items a�ected by another transaction, is

delayed until the other transaction is committed or aborted. There is a large range of database environments for

which this standard approach to transaction atomicity is excessively restrictive and even not appropriate. We

highlight the prominent problems below:

� When transactions are of long duration, the delays caused by waiting for their termination are prolonged

accordingly. For short transactions executing concurrently with a long-lived transaction, such delays impact

response time by orders of magnitude, and are thus intolerable [Gra81].

� In a variety of applications, the transaction paradigm is used to model collaborative activities [KLMP84,

HR87, KKB88, RM89]. In order to promote the cooperative nature of these activities there is a need to

exchange, and thereby expose, uncommitted data objects among transactions.

� In distributed database systems, atomicity of multi-site transactions is achieved by employing an atomic

commit protocol that coordinates among the sites participating in the execution of the transaction. Exposing

updated data to other transactions only after this protocol terminates translates to severe, and actually

unbounded, delays in transaction processing. In particular, if the processing of the transaction at each site

is of di�erent duration, the coordinated commit causes lengthy delays unnecessarily.

� Multidatabases are a speci�c type of distributed database system where several database systems are in-

tegrated to enable the processing of multi-site transactions [hdb90]. Enforcing atomicity strictly in such

integrated environments compromises the distinctive and crucial property of autonomy of the individual

systems.

A method that allows exposing uncommitted data, yet preserves transaction atomicity without inducing

cascading aborts is thus highly desirable. Such a method would alleviate performance problems related to long-

3

5.5 Localization of Compensation : 36

5.6 Two Speci�c Solutions : 37

5.7 Retry Transactions : 37

6 Atomicity of Composite Transactions 39

6.1 Composite Executions : 40

6.2 Isolation of Recoveries for Composite Transactions : 41

6.3 The Polarized Protocol : 42

6.3.1 The Protocol : 42

6.3.2 Discarding Markers : 43

6.3.3 Correctness : 44

6.4 Discussion : 45

6.5 When Actions Are Not Semantically-Recoverable : 46

7 The O2PC Protocol 47

7.1 O2PC in Real-Time DTM Systems : 50

7.2 Isolation of Recoveries under the O2PC Protocol : 50

7.3 Protocols for Isolation of Recoveries : 53

7.3.1 Marking Sites : 54

7.3.2 Validating IR : 55

7.3.3 Protocol LC/UDUM : 55

7.3.4 Protocol UD/LCUM : 56

7.3.5 Discussion : 59

8 Related Work 61

8.1 Compensation : 61

8.2 Beyond Serializability : 62

8.3 Advanced Transaction Models : 63

8.4 Other Related work : 64

9 Future Research 66

9.1 Single-Transaction Recovery : 66

9.2 Atomicity of Composite Transactions : 66

10 Conclusions 68

2

Contents

1 Introduction 3

1.1 Semantics-Based Recovery: Motivation and Thesis : 3

1.2 Structure of the Dissertation : 5

2 Single-Transaction Compensation 7

2.1 Overview of Compensation : 7

2.2 A Transaction Model : 9

2.2.1 Transactions and Programs : 9

2.2.2 Executions and Correctness : 12

2.3 Speci�cation Constraints : 14

2.4 Atomicity by Compensation : 16

2.5 Approximating Atomicity : 17

2.6 Compensation in Serializable Executions : 21

3 Examples 23

3.1 Speci�cation Example : 23

3.2 Storage Management Examples : 24

3.3 The Average Computation Example : 25

4 Practical and Design Issues 26

4.1 Practical Issues : 26

4.1.1 Logging Scheme : 26

4.1.2 Log Retrieval : 26

4.1.3 Explicit Invocation of Compensation : 27

4.1.4 Persistence of Compensation : 27

4.2 On the Design of Compensating Transactions : 28

5 Distributed Transaction Management: Preliminaries 30

5.1 The Problem : 30

5.2 Outlining a Solution: Relaxing Atomicity : 31

5.2.1 A Generic Relaxed Atomicity Commit Protocol : 32

5.3 Isolation of Recoveries : 32

5.4 Taxonomy of DTM Models : 34

5.4.1 Dependencies and Orderings among Subtransactions : 34

5.4.2 Decomposition into Subtransactions : 35

5.4.3 Synchronization Points : 35

1

Semantics-Based Recovery in Transaction Management Systems

1

Eliezer Levy

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712-1188 USA

levy@cs.utexas.edu

Fax (512) 471-7028

Chairpersons of the Supervisory Committee:

Professor Abraham Silberschatz

Associate Professor Henry F. Korth

1

This report is a revision of Levy's Ph.D. dissertation. The research was funded by the National Science Foundation

(Grants IRI-8805215 and IRI-9003341) and by the IBM and NEC Corporations. Levy was supported by a Unisys Graduate

Fellowship.

SEMANTICS-BASED RECOVERY IN

TRANSACTION MANAGEMENT SYSTEMS

Eliezer Levy

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712-1188

TR-91-29 August 1991

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712

