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ABSTRACT

We consider in this paper the problem of shifting vias to obtain more compactable channel rout-
ing solutions. Let S be a grid-based two-layer channel routing solution. Let v¢, w be the number
of grid points on column c that are occupied by vias, horizontal wires in S, respectively. We de-
fine the expected height of column ¢ in S to be he = Ave + Bw, + C, where A, B, C are some
design rule dependent constants. A column in § is said to be a critical column of S if it has
maximum expected height among all columns in S. Let Hg = max, k. be the expected height of
the critical column(s) of S. In general, Hs is a good measure of the height of § after compaction.
We show that the problem of shifting vias to minimize Hg can be solved optimally in polynomial
fme.
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1 Introduction

In VLSI layout design, a significant portion of the chip area is used for channel routing. There
are several grid-based two-layer channel routers which can consistently produce routing
solutions that are at most one or two tracks within optimal solutions [2, 9, 13, 16, 24].
Recent studies [5, 6, 7, 8, 22] showed that the routing solutions of these routers could be
compacted to obtain further area reduction. From experimental results of different channel
compactors, it was observed that the amount of area reduction is closely related to both
the channel routing solution and the design rules used. Appropriate modification of a given
channel routing solution could result in a significant amount of routing area reduction.
Techniques developed to modify channel routing solutions include via shifting [5, 8], via
offsetting [5, 8, 23], track permutation [6, 7, 22], local rerouting [6, 7, 20, 21], and wvia
minization [5, 20, 21]. In this paper, we will focus our attention on the technique of via
shifting.

In a grid-based two-layer channel routing solution, the vias typically have some freedom
to move along some rectilinear graphs (rectilinear trees if we assume there are no redundant
wires in the channel routing solution) without violating design rules, as illustrated in Figure
1. In this example, the rectilinear graph associated with each via along which the via can
move is indicated by heavy lines. If the rectilinear graphs associated with two vias share
a common grid point, then the vias can be merged into a single via by changing the layer
assignment of some wires. For example, vias 1 and 2 in Figure 1 can be merged into a single
via, so are vias 3 and 4. These vias are said to be mergeable.

Given a grid-based two-layer channel routing solution S, we can obtain a new routing
solution S’ by simply shifting the vias in S without violating design rules. In this case, S’ is
said to be derivable from S. For example, the routing solution S’ in Figure 2(b) is derivable
from the routing solution S in Figure 2(a). In current fabrication technologies, wires are
usually narrower than vias, and hence the positions of the vias in a channel routing solution
can affect the final routing area after compaction. For example, consider the two routing
solutions S and S’ in Figure 2 with the following design rules: via height = 2.0, wire width
= 1.0, and minimum spacing between adjacent features (vias and wires) = 1.0. Figure 3(a)
and 3(b) show the compacted results of S and S', respectively. In this case, by shifting
the vias in S, we obtained a reduction of channel height from 9.0 to 7.0. In general, for a
given channel routing solution S, there are many different channel routing solutions which

are derivable from S. This paper addresses the problem of how to obtain a channel routing
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Figure 1: Shifting vias in a channel routing solution

solution S’ from a given solution S by shifting vias so that S' achieves minimum channel
height after compaction.

The rest of this paper is organized as follows. Section 2 introduces our measure of
channel height after compaction. Section 3 studies the effects of via shifting. Basic concepts
and preliminary results are presented in Section 4. Section 5 defines a boolean procedufe
which given a grid-based two-layer channel routing solution S and a target expected height
H, determines whether there is a channel routing solution derivable from S with expected
height < H. Two implementations of the procedure are given, one is more robust while
the other is more efficient. Section 6 presents our optimal via shifting algorithm. Finally,

Section 7 concludes the paper with some general remarks.

2 A Measure of Channel Height after Compaction

Let v,, w, be the number of grid points on column ¢ in a grid-based two-layer channel routing
solution S that are occupied by vias, horizontal wires, respectively. We shall refer to v., w.
as the via count, wire count at column c in §, respectively, and refer to f. = v. + w,. as
the feature count at column cin S. Let a be the height of a via, 8 be the width of a wire,
and ~ be the minimum spacing between adjacent features. According to current fabrication
technologies, a > 3. (For example, the values of o, # and v used in [5, 6, 7, 8] are a = 2.0,
B =~ = 1.0.) There are three major factors that contribute to the height of column cin a

channel routing solution S after compaction, namely,

1. The sum of the heights of vias on column c in §, i.e., av,;
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Figure 2: Derivable channel routing solutions



(a) The original solution S

(b) A derivable solution S’

Figure 3: Compaction of channel routing solutions

2. The sum of the widths of horizontal wires on column cin S, i.e., fw,, and

3. The total minimum spacings between adjacent features on column cin S, i.e., y(v, +

w, + 1).

Therefore, we define the expected height of a column c¢in S to be

he = av.+ pw. + y(ve +we + 1)
= (a+7y)vc+ (B+7)we+7
= Av.+ Bw,+ C,

where A = o+ v, B = 4 v, and C = =, are design rule dependent constants. It can be
seen from the above reasoning that k. is an estimation of the height of column ¢ in S after
compaction.

A column of a channel routing solution S is said to be critical if it has maximum expected
height among all columns of S. Let Hs = max. k. be the height of the critical column(s)
of S. In general, Hg is a good measure of the height of S after compaction, and will be
referred to as the exrpected height of S. For example, the channel routing solution shown in
Figure 4(a) has expected height 7 (using a = 2.0, 8 = v = 1.0.), and the actual height of
the channel after compaction (Figure 4(b)) is also 7.

Note that shifting vias can change the expected height of a channel routing solution, as
illustrated in Figure 5. After shifting the two vias to the new positions indicated by the

two arrows, the expected height of the new channel routing solution is 3(a + 3), while the
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(a) A channel routing solution
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(b) A compacted channel

Figure 4: A measure of channel height after compaction
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Figure 5: Shifting vias to reduce the expected height of a channel

expected height of the original channel routing solution is 2a + 443, a difference of o — 3.
The main contribution of this paper is efficient algorithms that compute a channel routing

solution with minimum expected height derivable from a given channel routing solution.

3 Effects of Via Shifting

In this section we study the effects of shifting the vias in a grid-based two-layer channel
routing solution on the expected height of the columns of the channel.

Figure 6 depicts different ways of shifting vias. Note that via shifting may introduce
overlappings of wires of the same net, but never introduces overlappings of wires of different

nets. We consider the following two kinds of via shiftings.

1. Horizontal via shifting.
Suppose we shift a via v in a channel routing solution S from column ¢ to another
column to obtain another channel routing solution S'. Let v., w, and f. be, respec-
tively, the via count, wire count and feature count at column cin S, and let A, be the

expected height of column ¢ in §'. Since the grid point where v was located in S is
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Figure 6: Different ways of shifting vias



. . B !
now replaced by a horizontal wire in ', we have

’

v, = v.—1, and
1

w, o= we+1.
Therefore,

¥ ’ 1
fC = UC + u’C
= V. -+ W,
= f., and

hy = (a+7)v.+ (B+7)w, +7

= (@+7)(ve=1)+ B+ (we+1)+7
= ((a+7)ve+ (B+1)we+7)—(a—5)
= h.—(a—p)

< h..

That is, the expected height of column ¢ in S’ is decreased by a — 3 from the height
of column c in . Similarly, if a via is shifted to column ¢ from another column, then

the expected height of column c is increased by a — 3.

Vertical via shifting.

Suppose the given grid-based two-layer channel routing solution S has no mergeable
vias. For each via v in S, if possible, we can vertically shift v to a “corner” (i.e., an
intersection of a vertical wire segment and a horizontal wire segment). Hence, without
loss of generality, we may assume that the original channel routing solution S has the
property that if a via v is not at a corner, then it is not possible to shift it to a corner.
It follows that we only need to consider the following three cases of vertical shifting of

vias:
(a) From corner to corner (Figure 7(a));

(b) From non-corner to non-corner (Figure 7(b));

(c) From corner to non-corner (Figure 7(c)).

If we shift a via v along a column c in a channel routing solution S so that v stays

at column ¢ to obtain a new channel routing solution S'. Let v, w, and f. be,

9



......

(a) Corner to corner (b) Non-corner to non-corner (c¢) Corner to non-corner
Figure 7: Vertical shifting of vias

. . . . f 1
respectively, the via count, wire count and feature count at column cin S, and let h,

be the expected height of column ¢ in S'. Then we have

!

v, = Ug,

ro_ { w, Cases (a) and (b)

e = w.+1 Case (c),
fo = vtw
_ fe Cases (a) and (b)
N fe+1 Case (c),
he = (a4 7)ve+ (84w, +7
_ h. Cases (a) and (b)
- h.+ (B+7~) Case (c)
> h,.

From the last formula we conclude that shifting vias vertically cannot decrease the height
of a column. Thus only horizontal shifting of vias can decrease the expected height of a
column, and hence the expected height of a channel. Therefore, in order to minimize the

expected height of a channel, we only need to consider horizontal shifting of vias. There is
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no point of shifting a via vertically unless the via is eventually shifted horizontally out of
the column it was originally in, in that case, the effect is the same as a horizontal shifting.

In summary, we have

Theorem 3.1 Given a grid-based two-layer channel routing solution S without mergeable
vias such that each via of S is located at a corner of S if it is possible. Then any channel
routing solution derivable from S by shifting vias vertically has expected height > Hs, the
expected height of S.

According to Theorem 3.1, instead of consider the rectilinear graph associated with each
via in a channel routing solution, we can consider an interval of consecutive columns between
the leftmost and rightmost column intersecting the rectilinear graph associated with the via.
Such an interval is called the interval of the via. Each via in a channel routing solution can
be shifted to a position of any column in its interval without violating design rules. In doing
so, we may have to shift the via from one track to another, or introduces overlapping of wires
of the same net. For the example in Figure 1, the interval of vias 1 and 2is I; = I, = [1, 3],
and the interval of vias 3 and 4 is Iz = I, = [10,12].

Note that the rectilinear graph associated with a via in a channel routing solution S
is the same as the rectilinear graph associated with the same via in any channel routing
solution derivable from S, assuming there is no mergeable vias. Therefore, the interval of
a via is the same in any channel routing solution derivable from the same channel routing

solution.

4 Preliminaries

We introduce in this section some necessary definitions and preliminary results. A network
is a 5-tuple Gy = (N, E, %, s,t), such that G = (N, E) is a directed graph with vertex set
N and arc set E, and s, t are distinguished vertices of G, called the source and sink of Gy,
respectively, such that s has no incoming arcs and ¢ has no outgoing arcs. The non-negative
function ¢ defined on E is called the capacity function of Gy. For each arc a € E, ¢(a) is
called the capacity of the arc a. A flow ¢ of Gy is a non-negative function defined on E,
such that for each a € E, ¢(a) < ¢’(a), and such that for each v € N — {s,1},

Y dla= > &)

a=({uv)EE b=(v,w)€E
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The value

S dla)y= > ¢(b)

a=(s0)€E b=(v,0)€E
is called the value of the flow ¢. A mazimum flow of Gy is a flow of G, with maximum
value. It is shown in [17, 18] that the maximum flow of a network with integer capacity
function can be computed in O(mnlogn) time, where m, n are the number of arcs and
vertices of the network, respectively. ‘
Given a grid-based two-layer channel routing solution S, we can assume without loss of

generality that

e no two vias are mergeable in S, and

e cach via is located at some corner of S if possible.

Note that these conditions can be guaranteed by a preprocessing procedure. We can use
depth-first search [1] to compute the rectilinear graph associated with each via, and merge
vias that share a common rectilinear graph. For the remaining vias, if there is a corner in its
associated rectilinear graph, then move the via to any one of such a corner by appropriately
changing the layer assignment along the path that the via travels, otherwise the via cannot
be moved to a corner. This preprocessing procedure can be done in O(W L) time, where W
is the number of tracks in S, and L is the length (i.e., the number of columns) of 5. As
observed earlier, it suffices to consider the horizontal positions of the vias. Consequently,
we only need to consider for each via j an interval of columns I; = [l;,7;], such that via j
can and only can be moved to positions in columns k, [; < k < r;. We will refer to [; (rj,
respectively) as the left (right, respectively) endpoint of via ;.

A via is said to be active if it intersects some horizontal wire. Imagine that we remove
all the active vias from S. Then the via count at column ¢ becomes d., the number of
non-active vias at column c. while the wire count at column c is increased by v, — d. because
each active via at column ¢ is now replaced by a horizontal wire. Hence the height of column

¢ now becomes

P = adc+5((vc*d6)+w6>+7(vc+wc+l)
= (a—B)d.+ (B+7)(ve+ we) + 5
= (auﬁ)dc+(ﬂ+7)fc+7-

Whenever a via is put back to column c, its height is increased by « — f because a horizontal

wire is replaced by a via. Therefore, if z. vias are put back to column cin s 0<z. < f.—d.,
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then the height of column ¢ in §" is h. = p. + (o — B)z., and the expected height of S" is
Hy = max{h, : 1 < ¢ < L}. It should be observed that p. < h. for any solution S’ derivable

from S. Therefore, we have

Lemma 4.1 Let S be a grid-based two-layer channel routing solution with length L, then
I = max{p. : 1 < ¢ < L} is a lower bound of the expected height of any channel routing

solution derivable from S.
Furthermore, we have

Theorem 4.2 Let S be a grid-based two-layer channel routing solution with length L, then
for any channel routing solution S' derivable from S to have expected height Hy < H, if

and only if at most

H—p,
a—f

ZS(H,C)Z L J

. . . 7
active vias are on columncin S ,1<c¢< L.

The next lemma is important in guaranteeing the termination of our algorithm to be

presented in Section 6.

Lemma 4.3 Let S', S” be two grid-based two-layer channel routing solutions derivable from
the same channel routing solution, then there exists 6 > 0, such that either Hy = Hgn or

|\Hg' — Hgr| > 6, where Hgr, Hgn are, respectively, the expected height of S" and S".

Proof: Since both Hy and Hgr are of the form (e 4+ )+ j(B4+7) +7,1 <1, < W,

where W is the number of tracks in S' (S), it can be easily verified that
6 = min{Ji(a++) +j(B+7) £0: =W <i,j < W},

satisfies the properties listed in the lemma. O

5 A Boolean Procedure

We describe in this section a boolean procedure Feasible(S, H) which given a grid-based
two-layer channel routing solution S and a target expected height H, determines whether
there is a channel routing solution derivable from S with expected height < H. Section 5.1
describes an implementation of Feasible(S, H) based on a network flow formulation of the
problem. Section 5.2 presents a faster implementation of Feasible(S, H) based on a greedy

method.
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5.1 A Network Flow Formulation

Given a grid-based two-layer channel routing solution S with W tracks and L columns, and

a target expected height H, we construct a network Gy, = (N,E,s,t, s ), such that

N = {s;t}U{v: visaviaof S}U{c: cisa column of 5}
E = {(s.v): visaviaof S}U{(c,t): cisa column of S} U
{(v,¢): visa via, cis a column of S and ¢ is in the interval of v}
Yep((s,v)) =1 for all vias v of S
Ysu((v,c)) = 1 for all vias v and all columns ¢ of § with (v,c) € E
ssallet) = 15—5)
= zs(H,c) for all columns ¢ of S.

Figure 8(a) shows a channel routing solution S. Figure 8(b) shows its corresponding network

Gy (the capacity function is not shown in the figure). We now have

Theorem 5.1 Let Gy, = (N,E,s,t,9s5m) be the network corresponding to a grid-based
two-layer channel routing solution S as constructed above, let V' be the total number of vias
of S, then Gy, has a flow of value V' if and only if there exists a channel routing solution

S" derivable from S such that Hy < H.

Proof: Suppose there exists a channel routing solution S " derivable from S with Hy < H.

We can construct a flow ¢ of Gy, as follows:

¢((3> v)) =1

¢((v,0)) =

. N . . /
1 ifviavison columncin S
0 otherwise

o((c,t)) = > o((v,c))

(vic)EE
for all vias v and columns ¢ of S (S'). According to the definition of ¢, Y(veyer ¢((v,c)) is

the number of active vias on column ¢ in S . Because H s < H, by Theorem 4.2, we have

Qb((cat)) = Z ¢((ch))

(vic)EE
S ZS(H’ C)

= vYsullet)).

14
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(a) A channel routing solution

(b) The corresponding network

Figure 8: A channel routing solution and its corresponding network
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Hence for any a € E, we have ¢(a) < v¥spu(a). Since each via is placed on exactly one

. ! N . o~
column in S, for each via v in § (§'), we have

Z(ﬁul Zgb@c

{(uw)EE (vicjeE

Also, by the definition of ¢, we have

> dl(v,c)) = d((e,t)) = > (e, w)).

(v,c)€E (c,w)eE

Therefore, ¢ is a flow of Gy ,;, and its value is

T l(s,0) = V.
(sw)EE
On the other hand, assume Gy , has a flow of value V, then it also has a integer-valued
flow ¢ of value V because all of its arcs have integral capacities. Hence we must have
é((s,v)) = 1 for all vias v of S. Therefore, ¢((v,c)) = 1 for exactly one column c¢ for each
via v, and é((v,c)) = 0 for the other (v, c) pairs. We construct a channel routing solution
S’ derivable from S by placing via v on column c if and only if ¢((v,¢)) = 1, then according

to the definition of Gy, ,, all vias are properly assigned in S ". Since
Ysu((e b)) = zs(H,¢c)

for each column ¢, we have

> 6((v.c)) < zs(H.0),

(v,c)€E

i.e., the number of active vias assigned to column cin S’ is at most zs(H, ¢). Hence according
to Theorem 4.2, the expected height of §'is < H. O

According to Theorem 5.1, Feasible(S, H) = true if and only if G

4sy Das a flow of value

V. Note that the capacity function ¥sy of Gy, is integer-valued and hence Gy, has an
integer-valued maximum flow, and it can be computed in O(|N||E|log |N|) = O(WL(V +
L)log(V + L)) time because O(|E|) = O(W L), assuming S has no mergeable vias (hence no
two vias have a common column in their interval, and therefore the sum of the indegrees of
the columns in Gy, ,, is at most O(WL)). The network Gy, ,, can be constructed in O(W L)
time. Therefore, the network flow implementation of Feasible(S, H) runs in O(WL(V +
L)log(V + L)) time.
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5.2 A Faster Approach

We now describe a faster implementation of Feasible(S, H). For 1 < ¢ < L, let Q(c) denote
the set of active vias j with left endpoint /; = ¢. In procedure Feasible(S, H), each column
c is considered in order from left to right. Among the set of yet to be assigned vias whose
interval contains column ¢, the zs(H,c) vias with smallest right endpoints are assigned to
column ¢ (if there are that many such vias). The procedure returns true if and only if all

vias are assigned to some column in this way. It is described more formally as follows.

Procedure Feasible (S, H) : boolean;
(* S is a grid-based two-layer channel routing solution with length L *)
(* H > 0 is the target expected height *)
Begin
for c:=1to L do
cap(c) := zs(H.c);
(* cap(c) is the number of vias column ¢ can still accommodate *)

cap(L + 1) 1= +oc; (* an auxiliary variable *)

c:=1;

failed := false;

Ready := Q(1); (* the set of vias ready to be assigned *)

while (¢ € L + 1) and not (failed) do
if (cap(c) = 0) or (Ready = &)
then begin

c:=c+ 1;
Ready := Ready U Q(c)
end

else begin
Let via j be the via in Ready with smallest right endpoint rj;
ifc> T;
then failed := true
else begin
Remove via j from Ready;
Assign via j to column c¢;
cap(c) := cap(c) — 1
end
end;
if failed
then Feasible := false
else Feasible := true
End.

A column ¢ of S is said to be saturated if exactly zs(H,c) vias are assigned to it by

procedure Feasible(S, H), otherwise it is unsaturated, i.e., fewer then z5(H,c) vias are as-
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signed to it by procedure Feasible(S, H). An interval [¢, j] is said to be invaded from the left
(right, respectively) by a via k of S if via k has left endpoint Iy <1 (right endpoint ry > j,
respectively), and it is assigned to some column ¢, i < ¢ < j, by procedure Feasible(S, H).

The correctness of procedure Feasible(S, H) is now stated in the following theorem.

Theorem 5.2 There exists a channel routing solution S’ derivable from S with expected

height Hy < H if and only if Feasible(S, H) = true.

Proof: If Feasible(S, H) = true, then each active via is properly assigned in S’ and at most
zs(H, ¢) active vias are assigned to column ¢, 1 < ¢ < L. Hence S’ so obtained is a channel
routing solution derivable from S with expected height < H. Assume Feasible(S, H) =
false, then there exists an active via j with left endpoint /; and right endpoint r; that is
not assigned to any column between [; and r; (inclusive) by procedure Feasible(S, H). Let

via 7 be the first of such vias and let
lo = max{l < [; : the interval [I,r;] is not invaded from the left},

then [y is well defined because the interval [1,r;] is not invaded from the left and 1 < ;. We

claim that
e for Iy < ¢ <rj, column c is saturated, and
o the interval [lp, ;] is not invaded from the right either.

Assume column c is unsaturated for some lp < ¢ < r;, then we must have ¢ < [;, for otherwise
via j would have been assigned to some column between [; and r; (inclusive) by procedure
Feasible(S, H). Hence lp < ¢+ 1 < I; and the interval [¢ 4+ 1,r;] is not invaded from the
left (for according to procedure Feasible(S, H), column ¢ would have been saturated before
any via is allowed to invade the interval [c + 1,7;]), contradicting the choice of l. Suppose
the interval [lg, ;] is invaded from the right and let column ¢, Iy < ¢ < r; be the rightmost
column such that an active via k with right endpoint r, > r; is assigned to it by procedure
Feasible(S, H). For similar reasons, we must have ¢ < [;, lp < ¢4+ 1 < [; and the interval
[c+ 1,7;] is not invaded from the left, a contradiction with the choice of l. Therefore, the
number of vias of S with left endpoint > Iy and right endpoint < r; is at least

7y

> zs(H,c)+1,

c=lg
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and hence in any channel routing solution S’ derivable from S, there exists a column c,
lo < ¢ <rj, such that at least zs(H,c) + 1 active vias are assigned to column c. According
to Theorem 4.2, the expected height of S" is > H. O

Theorem 5.3 Given the values of the p.’s, Procedure Feasible(S, H) can be implemented
to run in O(L + Vlog V) time, where W, L, and V' are respectively, the number of tracks,

columns and vias in S.

Proof: Given the values of the p.’s, then everything outside of the while loop in Procedure
Feasible(S, H) can be done in O(V + L) time (Ready can be sorted in O(V) time using
bucket sort [1]). The while loop is executed at most O(L) time. Each iteration of the while
loop takes constant time except for the updating of the set Ready. The set Ready can be
maintained as a heap, and new elements are inserted one at a time in O(log |Ready|) time
each insertion. Since there are a total number of O(V') insertions into Ready, the total
amount of time spent on updating Ready is O(V log V) because |Ready| < V. Hence the
while loop can be done in O(L + V log V) time. Therefore the theorem follows. O

Note that the values of the p.’s can be computed in O(W L) time by scanning S. Since
the vias can be numbered consecutively from 1 to V, we can use the results in [10, 11, 12]
to reduce the time complexity of Procedure Feasible(S,H) to O(L + VleoglogV). Using
the efficient UINON-FIND algorithm in [19], we can further reduce the running time of
Procedure Feasible(S,H) to O(L + VI'(V)), where T'(V) is a extremely slowly growing
function related to the functional inverse of the Ackermann’s function. The techniques used
are similar to those in [15]. Observe that by using more sophisticated data structures,
Procedure Feasible(S, H) can also be implemented to run in O(L + V' log W) time.

6 An Optimal Via Shifting Algorithm

Based on the materials presented in the last section, we are now ready to present our main
algorithm. The algorithm consists of a binary search loop. In each iteration of the loop, a
procedure Feasible(S, H) is used to determine whether there exists a channel routing solution
derivable from the given solution S with expected height < H. The search terminates when
the length of the search interval is < §, because according to Lemma 4.3, there is no channel

routing solution derivable from S has expected height lies in the search interval.
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Algorithm Via Shifting (5);
(* § is a grid-based two-layer channel routing solution with W tracks and L columns *)
Begin
(* preprocessings *)
Merge vias;
Shift vias to corners if possible;
for c:=1to L do
po = (a—=B)de + (B+7)fe+ 7
[:=max{p.:1<c<L}
u:= Hs:
§:=min{|(a+B)i+ B+ #0: =W < i,j < W}
for j:=1to V do
Compute the interval I; = [}, 7;] of via j;
(* the main loop *)
while (I < u) do
begin
H:=(+u)/2
if Feasible(S, H)
then u:=H — ¢
elsel:= H+46
end;
(* postprocessings *)
if not(Feasible(S, H))
then Feasible(S,u+ 6);
Assign active vias according to the last call of procedure Feasible
End.

Theorem 6.1 Algorithm Via_Shifting correctly computes a channel routing solution deriv-
able from a given grid-based two-layer channel routing solution S with minimum expected
height in O(W(W + L)+ V log? W) time, where W, L, and V are, respectively, the number

of tracks, columns and vias in S.

Proof: It is clear that Algorithm Via_Shifting returns a channel routing solution derivable
from S. It can be seen that at the beginning of each iteration of the main loop, there is
a channel routing solution derivable from S with expected height < u + ¢, and no channel
routing solution derivable from S with expected height < I — ¢, i.e., Feasible(S,u +¢) =
true and Feasible(S, 1 — 6) = false. When the main loop terminates, we have 0 <! —u <6
and H = (I + u)/2. Hence

{—u

H-(1-68)=(u+6-H=6- <6
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Therefore, if Feasible(S, H) = true, and let S' be the channel routing solution derivable from
S obtained by assigning the active vias according to Feasible(S, H), then Hg is the minimum
expected height of any channel routing solution derivable from S. For otherwise let h < Hg
be the minimum expected height of any channel routing solution derivable from S, then Hy —
h > 6§ according to Lemma 4.3. Hence we have h < Hy — 6 < H — 6 <1~ 6, contradicting
the fact that there is no channel routing solution derivable from S§ with expected height
< [ — 6. On the other hand, if Feasible(S, H) = false, then Feasible(S,u + 6) = true.
And we can similarly prove that the channel routing solution returned by the algorithm has
minimum expected among all channel routing solutions derivable from S. This establishes
the correctness of the algorithm. The first two steps of the algorithm can be done in O(WL)
time, § can be computed in O(W?) time and [ and u can be computed in O(L) time. The
two for loops each requires O(W L + V') time. The main loop is executed

u—1 log Hs —1

6 6

log 2 _6_ ‘BY»V

= O(logW)

il

log

IN

times, each iteration requiring O(L + Vlog W) time. The last two steps can be done in

O(L + Vlog W) time. Hence the overall complexity of the algorithm is:
OW? + WL+ (L+ViegW)logW) = O(W(W + L) + Vleg® W).O

The time complexity statement in Theorem 6.1 is based on the second implementation
of Feasible(S, H) as described in Section 5.2. It is easy to see that if we use the network flow
implementation of Feasible(S, H), then algorithm Via_Shifting runs in O(W? + WL(V +
L)log Wlog(V + L)) time. Even though the algorithm based on the network flow imple-
mentation of Feasible(S, H) is slower, it is a more robust algorithm in the sense that it can
handle additional via placement constraints. In fact, if for some reasons we disallow a via to
be shifted to a certain subset of columns within its interval, all we need to do is to delete the
corresponding edges in the network, while the algorithm based on the greedy method cannot
be adapted to solve the problem optimally in this case. Thus we have two implementations
of the algorithm Via_Shifting, the advantage of the first one is robustness and the advantage

of the second one is speed.
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7 Conclusions

Many techniques have been proposed to modify channel routing solutions in order to obtain
more compactable results. The problem of using these techniques to minimize channel height
after compaction is known to be NP-hard [6, 7]. By focusing on a single technique, i.e., via
shifting, and by reasonably choosing a measure of channel height after compaction, we are
able to develop two efficient polynomial time algorithms to optimally solve the problem. One
algorithm is based on a network flow formulation of the problem. This algorithm is very
robust and can handle additional via placement constraints. Another algorithm is based on
a technique similar to the one used in [15] for computing a maximum matching of a convex
bipartite graph. This algorithm is less robust by runs faster.

It is well known that the expected height of the critical column(s) of a channel routing
solution is the most significant factor that determines the channel height after compaction.
There is another factor called bump propagation [8] that can also affect the channel height
after compaction. We have not included the effects of bump propagation into our measure
of channel height after compaction. Further research is needed to design efficient algorithms
that can minimize a new channel height measure which consider both the height of the

critical column(s) and the effects of bump propagation.
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