ON A ROUTING AREA
DECOMPOSITION PROBLEM IN
BUILDING-BLOCK LAYOUT DESIGN*f

Yang Cai and Martin D. F. Wong

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-91-32 October 1991

ABSTRACT

We study in this paper the problem of minimizing the number of L-shaped channels in routing
area decomposition for building-block layouts. Given a building-block layout of rectangular
modules, the routing area is to be decomposed into straight and L-shaped channels and routed in
a certain order. Since (straight) channels are easier to route and channel routers usually produce
near optimal results, it is desirable to minimize the number of L-shaped channels used in such a
decomposition. We present an algorithm for minimizing the number of L-shaped channels used
in the routing area decomposition. Qur algorithm is based on a careful study of the structure of
layouts of rectangular modules and a transformation of the original problem to a graph theoretical
problem. For examples of up to 136 channels, our algorithm took less than one tenth of a second
on a SUN SPARCstation 1 to finish the computation and obtained up to 29% reduction in the
number of L-shaped channels over the results produced by the algorithm in [9].

Keywords: Computer-aided design, Channel routing, Building-block layout, Routing region
definition and ordering, L-shaped channel.

* This work was partially supported by the National Science Foundation under grant MIP-8909586, by an IBM
Faculty Development Award, and by an ACM SIGDA scholarship.

TA preliminary version of this paper was presented at the 28th Design Automation Conference [6].

1 Introduction

Detailed routing for VLSI building-block layout design is known to be a difficult problem
[16, 18, 21, 24]. In order to reduce its complexity, routing 1s typically done in a hierarchical
fashion [17, 20]. The routing area is to be decomposed into small regions which are then
routed independently in a certain order such that whenever a region is being routed, its
dimensions can be adjusted without destroying previously routed regions. In this case,
routing completion in a single pass is guaranteed and there is no need for rip-up and reroute.
This kind of routing area decomposition can be easily obtained for a special class of layouts
called slicing structures [19]. However, this is not always possible for general layouts if we
insist that the regions be rectangular in shape. For example, consider the layout shown in
Figure 1, and suppose that the regions A, B, C, and D are all to be routed as straight
channels. Clearly, A must be routed before B, for otherwise B is not completely defined
because the positions of the terminals on the edge c¢d are not known at this time. For similar
reasons, B must be routed before C, C must be routed before D, which in turn must be
routed before A. Thus we have a cyclic channel-routing precedence constraint, which rules
out the existence of a desired ordering of the routing regions.

Cyclic channel-routing precedence constraints can be avoided by converting the layout
into a slicing structure [8, 17]. However, the conversion of a non-slicing tructure into a slicing
structure usually result in an inferior placement. On the other hand, it is also possible to
break the cyclic channel-routing precedence constraints without modifying the placement
by the introduction of switchboxes [5, 20]. Again consider the layout shown in Figure 1,
we can estimate the height of region A and fix the positions of the intersecting points of
edge cd with the topological wiring paths generated in the global routing phase. These
intersecting points are called junction terminals. Regions B, C, D can now be routed as
straight channels in that order. After that, region A becomes a switchbox, having fixed
width and fixed terminals on three of its four sides. It can be routed by a switchbox router
[15, 24]. The drawback of this approach is that because the width of a switchbox is fixed
before routing and cannot be expanded, routing completion is not guaranteed, and in some
cases many iterations of rip-up and reroute are necessary in order to complete the routing.

In view of this difficulty, a new decomposition scheme was proposed in [9], in which
some regions are combined to form larger regions called L-shaped channels. To see how
the introduction of L-shaped channels can help to break cyclic channel-routing precedence

constraints, consider the example shown in Figure 2, which is a new decomposition of the

Figure 1: Cyclic channel-routing precedence constraint

Figure 2: L-shaped channels

routing area for the layout shown in Figure 1. By making region A as an L-shaped channel.
there is no cyclic channel-routing precedence constraint and the regions can be routed in the
following order: B, C, D, A. Note that if the regions are routed in this order, then whenever
a region is being routed, it can be expanded or contracted without destroying previously
routed regions. Such an ordering of (straight) channels and L-shaped channels is called a
feasible channel ordering of the layout. It is shown in [9] that if all the modules in the
layout are rectangular in shape, then there always exists a way of decomposing the routing
area into a feasible channel ordering of channels and L-shaped channels. The existence of a

feasible channel ordering guarantees routing completion without rip-up and reroute.

The channel routing problem has been extensively studied in the past two decades and
its nature is well understood [10, 14, 18]. Many existing channel routers can achieve widths
that are within one or two tracks of the optimal value [2, 10, 11, 23, 25]. On the other
hand, the routing of L-shaped channels is a relatively new subject, its nature is not well
understood and existing L-shaped channel router [7] may produce results which are inferior
to the results produced by a channel router. Hence it is beneficial to use as few L-shaped
channels as possible in decomposing the routing area. The problem of minimizing the number
of L-shaped channels used appears to be quite difficult. In fact, it was conjectured to be NP-
hard in [9]. The authors of [9] also proposed a heuristic method for minimizing the number
of L-shaped channels used. However, their method is based only on local informations and
hence could produce poor results for large layouts.

We present in this paper an efficient algorithm for computing a feasible channel ordering
for a given layout of rectangular modules using as few L-shaped channels as possible. We
use the novel method of maintaining global information and use them to correct “mistakes”
made in the earlier stages of the algorithm. Our algorithm is based on a careful study
of the structure of such layouts and a transformation of the original problem to a graph
theoretical problem. The worst case time complexity of our algorithm is O(n?), where n is
the number of modules in the given layout, and it runs extremely fast for practical examples.
In particular, it took less than one tenth of a second of CPU time on a SUN SPARCstation
1 to finish the computation for examples of up to 136 channels. It produced results which
are up to 29% better than that produced by the algorithm in [9].

The rest of this paper is organized as follows. Terminologies, notations and preliminary
results are introduced in Section 2. Section 3 reviews previous works done on this problem.
Section 4 shows how to modify a feasible channel ordering of a layout to obtain a new feasible
channel ordering with fewer L-shaped channels by changing some L-shaped channels into
straight channels. Section 5 describes the construction of feasible channel orderings to
be used as initial solutions. Section 6 presents our algorithm. Experimental results are

presented in Section 7. Finally, we conclude the paper in Section 8.

2 Preliminaries

Given a layout of rectangular modules. we represent the routing regions between adjacent
modules by line segments as illustrated in Figure 3(a). The diagram consisting of these line

segments is shown in Figure 3(b). Such a diagram is called a configuration. In general,

(a) A layout (b) Its configuration

Figure 3: A layout and its configuration

a configuration need not be rectangular in shape, it can be any rectilinear polygon which
is convex in the Manhattan sense. ! A configuration is said to be trivial if and only if it
contains no line segments (except its boundary). An efficient algorithm for constructing a
configuration from a given layout of rectangular modules were described in [8]. We assume
throughout this paper that there is no empty room in the configuration. z

A mazimal (straight) line segment of a configuration C is an internal straight line segment
of C which cannot be further extended on either direction. The limits of a straight line
segment of C are defined to be the endpoints of the maximal line segment that contains
it. The limits of an L-shaped line segment of C is defined to be the two endpoints of the
maximal line segments of C which contains the two straight line segments that form the
L-shaped line segment, such that the line segments between the corner of the L-shaped line
segment and these endpoints contain the two straight line segments of the L-shaped segment.
In Figure 4, the limits of the L-shaped line segment L3 are p and r, while its endpoints are
¢ and 7.

Given a configuration C, a cut of C is either a straight (horizontal or vertical) line
segment of C, or an L-shaped line segment of C, cutting along which separates C' into two

line disjoint subconfigurations. It is easy to see that a straight or L-shaped line segment of

1A polygon P is convez in the Manhaitan sense if and only if any horizontal or vertical line segment
joining two points of P lies completely in P.

2An empty room in a configuration is a minimal closed region of the configuration such that in the layout
corresponding to the configuration there is no block contained in the region. See [4] for an algorithm for
removing empty rooms from a configuration.

C is a separating line segment, i.e., a cut of C, if and only if both of its endpoints are on
the boundary of C. Furthermore, the two subconfigurations resulting from cutting a cut of
C are convex in the Manhattan sense if C is convex in the Manhattan sense. A cut is an
S-cut if it is a straight line segment, otherwise it is an L-cut. An L-cut of C is said to be a
definite L-cut if its corner is an “L”-type junction of C (it is so called because we will need
an L-cut for each “L”-type junction of C). Since all modules in the layout are rectangular,

we have
Lemma 2.1 Every nontrivial configuration C contains a cut.

An cut sequence of a configuration C is a sequence 7 = TjT2...Tx, such that:

e 7, is a cut of C = Cle], where € is the null sequence, and C[r4] is the set of line disjoint

configurations obtained by cutting Cle] along 71;

e For each 7, 1 < 7 < n — 1, myy is a cut of a configuration in Clmi7y ... 7], and
C[mi7a ... 7] is the set of line disjoint configurations obtained by cutting along 711

the configuration in C[my7s ... 7;] which contains 7;y;, and
e C|r]is a set of line disjoint trivial configurations.

A simple induction shows that

Lemma 2.2 The length of any cut sequence of C is equal to the number of modules in the

layout corresponding to C' minus 1.

A cut sequence 7 of a configuration C is said to be optimal if it uses minimum num-
ber of L-cuts among all cut sequences of C. Figure 4 illustrates the cut sequence = =
L L ViH VaLsVo HyHs LyH V3 Hs of a configuration with four L-cuts (L indicates L-cuts,
H indicates horizontal S-cuts, and V' indicates vertical S-cuts). The following observation
relating a cut sequence of C to a feasible channel ordering of the layout corresponding to C

was made in [9].

Theorem 2.3 A sequence T = my7o... 7T, is a cut sequence of a configuration C if and only

if Tf = moma_q ... ®1 defines a feasible channel ordering for the layout corresponding to C'.

Figure 4: A cut sequence of a configuration

According to Theorem 2.3, the problem of computing a feasible channel ordering with
minimum number of L-shaped channels for a layout of rectangular modules is equivalent to
the problem of computing a cut sequence with minimum number of L-cuts for the corre-
sponding configuration. The following corollary, which also appeared in [9], can be easily

deduced from Lemma 2.1 and Theorem 2.3.

Corollary 2.4 Every configuration has a cut sequence; Every layout of rectangular modules

has a feasible channel ordering.

A digraph D = (V, A) is said to be acyclic if it does not contain a directed circuit,
otherwise it is cyclic. Let u,v € V be vertices of D, then u is said to be a predecessor of v
in D if there is a directed u-v path in D. A strongly connected component G of a digraph D
is a maximal subgraph of D such that every pair of vertices lie in a common directed circuit
of G. Let § TV xV — A be a set of arcs not in D, then an acyclic augmentation of D with
respect to S is a subset S* C S such that D* = (V, AU §*) is acyclic.

Given a cut sequence @ = w17y ... 7, of a configuration C, we construct its order con-
straint digraph D, = (V;, A,) with vertex set V, = {my,m2,..., 7 }. An arc (m;,x;) is in the

arc set A, if and only if one of the limits of 7, is on 7;. Figure 5 shows the order constraint

-3

Figure 5: The order constraint digraph of a cut sequence

digraph of the cut sequence 7 illustrated in Figure 4 (only the solid arcs are in A,). Note
that (13, H3) € A, because the maximal (horizontal) line segment of C containing Hj has an
endpoint in V4, i.e.. H3 has a limit on V4. Intuitively, if (7;, 7;) € A,, then 7; has a straight
line segment s which contains a limit p of 7;. Let ¢ be the maximal line segment containing
p and perpendicular to s, then all the cuts which contain part of £ must be cut after the cut
containing the part of s that contains p in any cut sequence of C. In particular, r; must be
cut after 7; in 7, hence 7 < j.

We now state the following properties of order constraint digraphs.

Lemma 2.5 The order constraint digraph D, of a cut sequence is acyclic, planar, and has

mazimum in-degree < 2.

Proof: Let 7 = mymy...m,. As observed earlier, (7;,7;) € A, implies i < j. Hence D,
1s acyclic. To see that D, is planar, we construct a planar drawing for it as follows: First,
use any internal point of a cut to represent its corresponding vertex in D,. For each arc
(mi,m;) € Ay, let s be the maximal line segment of C' which has one endpoint on 7; and
which contains a straight line segment of 7;. We represent the arc (m;, 7;) by the shortest

path of line segments of C between the points representing m; and n; which contains the

8

part of s in 7;. The drawing so obtained has arc overlappings but no arc crossings. Arc
overlappings can then be removed by replacing each line segment of C which is used by more
than one arc by as many parallel line segments that run close to each other as arcs that use
it. The drawing so obtained is a planar representation of D,. Hence D, is planar. Since
each cut 7 has at most two limits, and each limit of a cut can induce at most one incoming
arc, each vertex in D, has in-degree at most two. U

Let a, 8 be cuts of a configuration C, « is said to be dependent on [3 if one straight line
segment of a is completely contained in B. A cut of C is said to be independent if it is not
dependent on any other cut of C, otherwise it is dependent. Since all S-cuts of C' must be
maximal line segments of C, we conclude that all S-cuts are independent. Note that if o 1s
dependent on 3, then after cutting /3, one straight line segment of « is gone, and « becomes
a straight line segment ' of a configuration in C[f].

Given a configuration C, a partition of C is a set of line disjoint straight or L-shaped
line segments of C whose union is the set of all internal line segments of C (i.e., all the line
segments of C except its boundaries). It is clear that the cuts of a cut sequence of C form a
partition of C. A partition of C is said to be admussible if its line segments can be arranged
into a cut sequence of C, i.e., if it is the set of cuts of some cut sequence of C. We define
the order constraint digraph of a partition of C similarly as the order constraint digraph of

a cut sequence of C, and we have

Lemma 2.6 If a partition of a configuration is admissible, then its order constraint digraph

is acyclic.

Note that the converse of Lemma 2.6 is not true in general. Figure 6 shows a partition

of a configuration which is not admissible but has an acyclic order constraint digraph.

3 Previous Works

The idea of decomposing the routing area of a building-block layout of rectangular modules
into straight and L-shaped channels was first introduced and shown to be always possible in
[9]. The authors of [9] also proposed the following heuristic algorithm for computing a cut
sequence of a configuration C which uses as few L-cuts as possible. (We use z.y to denote
concatenation of ordered sequences z and y. Also note that the algorithm is not presented

in its original form, but rather it is presented in terms of our notation for consistency.)

=

Figure 6: An inadmissible partition with acyclic order constraint digraph

Algorithm 3.1: Independence_Heuristic (C');
(* C is a configuration *)
Begin
T I= €
while C[r] contains a nontrivial configuration do
if C[r] contains a configuration which has an S-cut «
then 7 := 7.¢;
else if C'[n] contains a configuration which has an independent L-cut 3
then 7 := 7.03;
else begin
Let v be a cut of a configuration in C[r];
o= Ty
end;
return 7w
End.

By Lemma 2.1, at least one configuration of C[r] has a cut if Cx] is not a set of
line disjoint trivial configurations. Hence Algorithm 3.1 works correctly and returns a cut
sequence 7 of C. Referring to Figure 7(a), the configuration C has no S-cut and L; is the
only independent L-cut of C. Hence Algorithm 3.1 cuts Ly. After that, it proceeds to cut
Ly, L3 and Ly in that order. At this point, no configuration in C[L;LyL3L,] has an S-cut
or an independent L-cut, so the algorithm proceeds to cut any cut, say Ls, and so on. The
cut sequence obtained in this way uses 6 L-cuts as shown in Figure 7(a). Note that there is
a better cut sequence which uses only 4 L-cuts as shown in Figure 7(b). ®

Algorithm 3.1 fails to be optimal because it makes decisions based only on local infor-

31t was claimed in [9] that Algorithm 3.1 is optimal if whenever the algorithm selects a cut, there is an
S-cut or there is at most one independent cut The example in Figure 7 shows that this claim is not true in
general.

10

(a) A cut sequence (b) A better cut sequence

Figure 7: Illustration of Algorithm 3.1

mations (it looks only at the cuts of a configuration) and makes no attempts of eliminating
unnecessary L-cuts. In fact, it can produce poor results for large configurations. In the
next section, we will show how can “mistakes” made in the early stage of the algorithm be

“corrected” by maintaining some necessary global information.

4 Elimination of L-cuts

In this section, we describe a method of constructing a new cut sequence of a configuration
C from a given cut sequence of C by changing some L-cuts into S-cuts and appropriately
reordering the cuts. Thus the new cut sequence uses fewer L-cuts than the original one.
Given a cut sequence 7 = w7 ... 7, of C, we construct a set of arcs R, C V,x V. An arc
(7. 7;) € R, if and only if 7; is an L-cut of a configuration in C[ri7, ... 7;-1], and the corner
of 7; is an endpoint of 7;. Each arc a € R, is called a recovery arc of w. For the cut sequence 7
indicated in Figure 4, the set of recovery arcs is Ry = {(Ls, L1), (V2, L2), (L4, L), (Hj, Lq)}.
They are indicated in Figure 4 by dotted arcs. Note that if a = (7;,7;) is a recovery arc of
7, then 7; cannot be a cut until after 7; is cut. Hence we must have ¢ > j. The cut =, is
called the tail of a, and the L-cut 7; is called the head of a, it will also be referred to as
the L-cut of m corresponding to a. We can similarly define a recovery arc of a partition of a

configuration.

11

Consider the recovery arc (Ls, L1). Adding it to D, will not result in a cyclic digraph
because there is not directed Li-Ls path in D,. Hence it is possible to extend the vertical
line segment of Lz to include the vertical line segment of L; and cut Lz before L;. In
this example, by appropriately reorder the cuts, we can obtain the following cut sequence
7 = LyViH LsHsViVo Hy Hs Ly HsVaHs. Notice that the L-cut L, in 7w becomes an S-cut Hg
in 7', and hence we save one L-cut. In this case, we say L; 1s eliminated by Ls. In general,
one can try to eliminate an L-cut corresponding to a recovery arc by executing the following
function.

Function 4.1: Shuffle (7, a);

(* 7 = mymp... 7y is a cut sequence of a configuration C,a=(r;,7;) € Ry *)
(* If successful. Shuffle(r, a) is a new cut sequence of C' with one fewer L-cut than 7 *)

Begin
Let s be the straight line segment of 7; which is colinear with a straight line segment of m;;
7wl =T Us; (* extend one straight line segment of 7; *)
TIi=wy s (* change 7; into an S-cut *)
’
T o= TR . Fj-1s
w =T

fork:=j+1toi—1do
if) is a cut of Clr']
then 7 = 7 .7
else w = w.my;
return WI.F?.LJ.TFi+17ri+1 R

End.

Assume 7 = Shuffle(r,a) is a cut sequence of C, where a = (7, 7;), then the set of
cuts of 7 is the same as the set of cuts of 7 except that m;, ; are replaced by #7 and 77,
respectively. The type of m; (being an S-cut or an L-cut) is the same as 7. However, 7;
changes from an L-cut in 7 to an S-cut 77 in 7', Hence the number of L-cuts of 7 is one
fewer than the number of L-cuts of 7.

Let TI be an admissible partition of a configuration C, and let a = (7, 7;) be a recovery
arc of TI. Let s be the straight line segment of 7; which is colinear with a straight line
segment of 7;, and let 77 = m; U s, 7] = m; — s. Then a is said to be a valid recovery arc of
the partition II if

I(a) = (I = {m,m;}) U{m],7}}

is an admissible partition of C, i.e., 7; can be eliminated.
A wvalid recovery arc of a cut sequence 7 of a configuration C is a valid recovery arc of

the admissible partition of C formed by the cuts of 7. Let a = (m;,7;) be a recovery arc

12

of 7, then © = Shuffle(r,a) is a cut sequence of C if and only if every line segment of it
is a cut of a configuration in C[r'] when it is appended to the end of 7' in the function
Shuffle(, a). This holds for those line segments precede 77 in 7' by construction. It also
holds for those line segments succeed 7} in 7 , because all the line segments that precede
them in 7 also precede them in 7. Hence 7 is a cut sequence of C if and only if 77 is a cut
of a configuration in C[r'] when it is appended to the end of 7' in the function Shuffle(r, a).

Define a violating sequence of a = (m;,7;) in 7™ as a sequence
T = Tigs Tigse v v Tigs Tipgpyy = 5

of cuts of 7, such that m > 1, and for 0 < h < m, either (7;,,7,,,) € Rxor (7i,,,,7i,) € Ar.
Note that we have 1 = g > 91 > ... > im > tme1 = J. An end of a line segment of C is

either an endpoint or a limit of the line segment. We now have

Theorem 4.1 Let a = (7, 7;) be a recovery arc of a cut sequence m of a configuration C,

then the following statements are equivalent:
1. a is a valid recovery arc of 7;
2. 7 = Shuffle(r,a) is a cut sequence of C;

3. There is no violating sequence of a in 7.

Proof: Let II, II' be, respectively, the partition of C formed by the set of line segments of
7 and 7. Then II is admissible. If 7 is a cut sequence of C, then I is also admissible and
hence a is a valid recovery arc of m by definition. Hence statement 2 implies statement 1.
Suppose 7 is not a cut sequence of C, then 77 is not a cut of a configuration in C[r'] when
it is appended to the end of 7 in the function Shuffle(r,a). Hence one of its endpoints p is
not on the boundary of a configuration of C[x'] when it is appended to the end of 7' in the
function Shuffie(r, a). This endpoint must also be an endpoint of 7;, for the other endpoint
of 77 is an endpoint of 7;, which is on the boundary of a configuration of C [r'] when 77
is appended to the end of 7' in the function Shuffle(r,a). This is due to the fact that the
other cut m;, of 7 that contains p was put into the sequence w in the function Shuffle(r, a).
If p is the corner of 7, then (m;,m;,) € R, otherwise (m;,,m;) € A,. Obviously m;;, # 7;
because p is not the corner of x; (otherwise it would not be an endpoint of 7} as well).
Since 7;, is put into w in the function Shuffle(r, a) because it is not a cut of a configuration

in C[r'] when the function Shuffie(r,a) tries to append to the end of 7', an endpoint of it

13

must be contained in a cut m;, of = which is also put into w in the function Shuffle(r, a). If
this endpoint of 7;, is the corner of 7y, then (m,,7mi,) € Ry, otherwise (7, ;) € A.. I
7, = T;, we have found a violating sequence of a in 7. Otherwise, we claim that proceeding
this way we must reach 7; and hence detect a violating sequence of a in 7 after a finite
number of steps. This is because the number of cuts of 7 is finite, if we cannot reach 7, in
finite steps. then we must encounter some cut 7;, of 7 twice in this process, i.e., we have
found a sequence

Wikﬁﬂik+1a°"77rirv7rir+1 = ’Kik

. such that for k < h < r, either (m;,, 7m,,,) € Ry or (7;,,,,7,) € A;. Hence 1 > 2341 >
> i, > 1,41 = i, a clear contradiction. Therefore, statement 3 implies statement 2.

Finally, assume there is a violating sequence
T = 71'3‘0,7&'51,. . ,ng,ﬁim+l = ﬂ'j

of a in 7. then we claim that there exists a sequence

such that for 0 < k <m/, ﬂ';k €1l and 7";’;:+1 has an end on T(‘;k. From which we can deduce

that for 0 < k < m', W;k must precede ’zTng in any ordering of the line segments of I

’
*
- .

”n/_%'1 i
Thus statement 1 implies statement 3. According to the definition of violating sequence, for

. . . N . » #
which results in a cut sequence of C. However, this is impossible because my = 7

0 <k<m,m; hasanendon 7, ,. In particular, m; = m;, has an end p on 7;,. This end
p of m; must also be an end of 7, for otherwise it is the corner of 7; which cannot be on
7;, # 7;. Therefore, n7 has an end on 7;,. Furthermore, m;, has an end ¢ on mj,,, = 7,

hence on 77 U 7}. If ¢ is on 7}, then we can take

* k3
T T Tigs Migse oo s Wiy Wiy = T

as the sequence we are looking for, otherwise ¢ is on 77 and we can take

E3
Ty == Ty Mgy e oo s My

as the sequence we are looking for because 77 has an end on 7}. This completes the proof
of the theorem. O
Using a procedure similar to Function 4.1, a violating sequence of a recovery arc of a

cut sequence 7 of a configuration can be detected in O(n) time, where n is the number of

14

(a) Dx (b) D

Figure 8: Illustration of the proof of Lemma 4.2

modules in the layout corresponding to the configuration. Hence, according to Theorem 4.1,
we can determine in linear time whether a recovery arc of 7 is a valid recovery arc of 7.
Function 4.1 can be used to eliminate a single L-cut. In general, we would like to eliminate
more than one L-cut at the same time. Let a = (m;,7;) and b = (74, 7;) be two recovery
arcs of a cut sequence 7 of a configuration C, we say a and b are independent if either ¢ <!
or j > k. (Note that j < 7 and [< k.) Let P, be the set of valid recovery arcs of 7. An
independent acyclic augmentation of D, with respect to Py is an acyclic augmentation of D,
with respect to P, such that the recovery arcs in it are pairwise independent. Let R be a
set of recovery arcs of a partition II of a configuration C, and let a = (7;,7;) € R, we define
II(R) = IT'(R — {a}) where II' = II(a) and II(R) = Il if R = ¢. In the sequel, we will show
that if P~ is an independent acyclic augmentation of D, with respect to Py, then II(P~) is
an admissible partition of C, where II denotes the partition of C formed by the set of cuts

of 7. i.e., there exists a cut sequence of C with |P*| fewer L-cuts than 7.*

Lemma 4.2 Let a = (7;,7;) be a valid recovery arc of a cut sequence 7 of a configuration
C, and let 7' = Shuffle(r.,a). Also, let D, = (V.,A) be obtained from the digraph D,(a) =
(Vy, Ar U {a}) by renaming =;, ; to w7, w7, respectively. If for u,v € Vo = V., there is
a directed u-v path in D_s, the order constraint digraph of the partition of C formed by the

line segments of ©, there is a directed u-v path in D..

Proof: The only arcs that are in D_s but not in D, are of the form (7}, 7;) (the dotted arc in

4In the preliminary version of this paper [6], we claimed that if B” is an acyclic augmentation of D, with
respect to Ry, the set of recovery arcs of 7, then II(R*) is an admissible partition of C. This is, however,
not valid in general.

15

Figure 8(b)), where (7;,7,) € A.. According to the definition of D, we have (73, 7h) € A
and (7r;-‘.,7r;'-‘) € A; because a = (7;,7;) is an arc of Dr(a). Hence there is a directed 77-m
path in D,. O

Theorem 4.3 Let P* be an independent acyclic augmentation of the order constraint di-
graph D, = (Vz, A;) of a cut sequence © of a configuration C with respect to the set of valid
recovery arcs Pr of 7. Then, for any a = (m;,7;) € P*, P* — {a} is an independent acyclic

augmentation of D = (Vs A) with respect to P, where 7 = Shuffle(n, a).

Proof: By Theorem 4.1, 7' is a cut sequence of C. For 1 < h < jand i < h < n,
7, is identical to 7, according to the Function 4.1. Because P~ is an independent acyclic
augmentation of D, with respect to Py, for any b = (m,m) € P* — {a}, we have either
[<k<jori<l<k Hencebisarecovery arc of 7 because its head m; = 7, is an L-cut of
7', Furthermore, any violating sequence of b in 7 is also a violating sequence of b in 7. This
is because any cut of 7' in a violating sequence of b in 7 must have index < k and > [in
7', hence it is also a cut of 7 with the same index. Therefore, by Theorem 4.1, b must also
be a valid recovery arc of # because it is a valid recovery arc of =. Also, the recovery arcs
in P* — {a} are pairwise independent, because the indices of their heads and tails are the
same in 7 as in 7. It remains to show that P~ — {a} is an acyclic augmentation of D_+ with
respect to P.. Obviously, P* — {a} is an acyclic augmentation of Dr(a) = (Vr, A, U {a})
with respect to P, — {a}, hence it is an acyclic augmentation of D, = (V,, A.) with respect
to P+ because P* — {a} C P.. Hence by Lemma 4.2, it is also an acyclic augmentation of
D_+ with respect to Ps. O

Given an independent acyclic augmentation P* of the order constraint digraph of a cut
sequence 7 of a configuration C with respect to the set of valid recovery arcs of 7, Theorem
4.3 suggests a way to construct a new cut sequence of C from 7 with |P*| fewer L-cuts than =
by repeatedly applying Function 4.1. However, this would require O(n?) time because each
call to Function 4.1 require O(n) time, where n is the length of m. The following function

accomplishes the same thing in O(n) time.

16

Function 4.2: Modify (7, P*);
(* ® = my7g ... Tn is a cut sequence of a configuration C *)
(* P* is an independent acyclic augmentation of D, with respect to Py,
the set of valid recovery arcs of m *)
Begin
Sort the arcs in P* into ascending order of the indices of their heads;
7 =€
h =0
while P* # ¢ do
begin
Select the first arc a = (7, 7;) from P~*;
Let s be the straight line segment of 7; which is colinear with a straight line segment of ;;
7w =g U s
w; = 7r’j - 8
T =T Ah41Th42 - Fj-13
W=
fork:=j+1toi—1do
if 7y is a cut of C[r']
then 7 = 7 .7k
else w = w.mg;

s
* -
=T .7(,3' ROt

i

= 1
1= €
* = P~ {a}
end;

it

€ A

1
return @ .Tpy1Thae2 ... T

End.

The correctness of Function 4.2 follows from the observation that because P~ is an
independent acyclic augmentation of D, with respect to Pr, the recovery arcs of P* are
pairwise noninterfering, i.c., if (m, 7;), (7x. ™) € P*, ¢ # k, then the intervals [7,¢] and [I, k]

are disjoint. In fact, if 7 < [, then j < ¢ < < k. Therefore, we have

Theorem 4.4 Let P* be an independent acyclic augmentation of the order constraint di-
graph of a cut sequence 7 of a configuration C with respect to the set of valid recovery arcs
of =, then Modify(x, P*) returns a cut sequence of C with |P*| fewer L-cuts in O(n) time,
where n is the length of 7.

Proof: Correctness follows from the above discussion. The arcs of P* can be sorted in
O(n) time using bucket sort [1]. The while loop also terminates in O(n) time because each
cut of 7 is scanned for at most once within the loop. Hence the overall time complexity of
Function 4.2 is O(n). D

17

A maximum independent acyclic augmentation of D, with respect to Py, the set of valid

recovery arcs of 7, can be computed as follows:

Procedure 4.3: Maximum Independent_Acyclic.Augmentation (r);
(* # = my72...m, is a cut sequence of a configuration C *)
Begin
Construct the order constraint digarph D, = (Vi, Ax) of m;
Compute the set of valid recovery arcs Pr of =;

P =9
while P, # ¢ do
begin
Select an arc @ = (7;, 7;) from P such that ¢ is minimal;
P = P*U{a};
Remove all arcs (7, 7)) such that k > j from Pr
end;
return P~
End.

Theorem 4.5 Procedure 4.3 correctly computes a mazimum independent acyclic augmenta-
tion of the order constraint digraph Dx of a cut sequence 7 of a configuration C with respect

to the set of valid recovery arcs Pr of © in O(n?) time, where n is the length of 7.

Proof: It is clear that the valid recovery arcs returned by Procedure 4.3 are pairwise
independent. Suppose Di = (V, Ar U P") is cyclic, and let P = mip, ®ijs .o, Tipys Wiy, 18 2
directed circuit of D%, where m; ., = m;,. Since each arc in P~ is a valid recovery arc of 7, P
must contain at least two arcs from P*. Let (mi,, 7.,), (7, 7i,,,) € P™ be two consecutive
recovery arcs of P i.e., there is no recovery arc between them in P) with p < ¢, then we
have i,41 < fpr2 < ... < ig. Hence we also have 7, < 7541 because the recovery arcs of P~
are pairwise independent. Let (m;,,7;,,,) and (7, 7i,,,) be the first and last recovery arcs
of P, by applying the above argument to each consecutive pair of recovery arcs of P we can
conclude that 7, < 7y41. On the other hand, we have 1,41 < ipg2 < ... <ipm <lpi1 = 10 <
4 < ... < 14, a contradiction. Hence P~ is an independent acyclic augmentation of D;.
Finally, assume P~ is not a maximum independent acyclic augmentation of D, then there
exists a maximum independent acyclic augmentation P’ of D, which shares the maximum
number of common arcs with P*. Let ¢ be the arc of P* with minimum head index which is
not in P'. According to Procedure 4.3, ¢ is the arc with minimum head index among all arcs
that are pairwise independent with the arcs in P~ (P') whose head index is smaller than
the head index of a. Hence P has at most one arc b such that a and b are not independent.

Therefore, P = (P' — {b}) U {a} is a2 maximum independent acyclic augmentation of D

18

Figure 9: Another cut sequence

having more common arcs with P than P’ does, contradicting the choice of P’. This
completes the proof of the theorem. O

Based on Theorem 4.4, Algorithm 3.1 can be modified as follows:

Algorithm 4.4: Modified Independence.Heuristic (C);

(* C is a configuration *)

Begin
Call Algorithm 3.1 to compute a cut sequence 7 of C;
Construct the order constraint digraph D, = (Vy, A;) of 7;
Compute the set of valid recovery arcs P, of 7;
Call Procedure 4.3 to compute a maximum independent acyclic augmentation P* of D,
with respect to Pr;
return Modify(w, P*)

End.

The worst case time complexity of Algorithm 4.4 is O(n?), where n is the number of
modules in the layout corresponding to the given configuration. Algorithm 4.4 always pro-
duces a cut sequence which uses no more L-cuts than the result produced by Algorithm
3.1. For example, applying Algorithm 4.4 to the configuration in Figure 4 we obtain the
cut sequence indicated in Figure 9 which uses 3 L-cuts, one fewer than the cut sequence

produced by Algorithm 3.1. However, the result produced by Algorithm 4.4 is dependent on

19

the result produced by Algorithm 3.1, which is used as the initial cut sequence in Algorithm
4.4. Hence it is very important to construct a “good” initial cut sequence. This is the topic

to be discussed in the next section.

5 Construction of Initial Cut Sequences

The basic idea of our algorithm is to start out with an initial cut sequence, and then to
transform it into a better cut sequence by eliminating as many L-cuts as possible. Therefore,
the final result produced by our algorithm depends both on the initial cut sequence and the
number of L-cuts eliminated. Let 7, = be two cut sequence of a configuration C, then 7’ is
said to be derivable from m if II' = II(R) for some set of recovery arcs R of «, where II, IT'
are, respectively, the partition of C formed by the cuts of 7 and 7. The way we construct

our initial cut sequence is motivated by the following results.

Theorem 5.1 Let 7 and © be two cut sequences of a configuration C with no “+7 type
junctions. ® If ©' contains all the L-cuts of w, then there exists a set of recovery arcs R of
7', such that TT'(R') is admissible and all the L-shaped line segments of (R are L-cuts of
7, where I is the partition of C formed by the cuts of ©', i.e., there erists a cut sequence of

C derivable from 7= whose L-cuts are all L-cuts of 7.

Proof: By induction on N, the length of 7 (). The theorem holds vacuously for N = 0.
Assume N > 0, and consider the first cut o of = which separates C into two line disjoint

subconfigurations C; and C,. We consider the following two cases:

e Case 1: « is also a cut of 7.
Let 74(i), 7, (i), i = 1,2, be, respectively, the subsequence of 7, 7' consisting of all
the cuts of 7, 7 which are line segments of C;, then 7,(i), 7(i) are cut sequences of
C;, i = 1,2. Furthermore, |, (1) = |7, (1)] < |7| = N, |7.(2)] = |7,(2)] < N, and
all L-cuts of 74(7) are L-cuts of 7_(i), i = 1,2. Hence by the inductive hypothesis, for
i = 1,2, there exists a recovery arc set R; of 7, (i) such that IT,(R}) is admissible and
all the L-shaped line segments of II;(R;) are L-cuts of m,(¢), where II; is the partition
of C; formed by the cuts of 7,(i). Therefore, R = R} U R, is a recovery arc set of T’

satisfying the conditions listed in the theorem.

5By slightly generalizing the notation of recovery arcs so that the way of decomposing a “+” type junction
can be affected by a recovery arc (by letting S-cuts recovering S-cuts), the restriction of ¢ having no “+”
type junction can be released.

20

e Case 2: o is not a cut of 7.
In this case, a must be an S-cut. Since C does not contain any “+7 type junctions,
« contains at most one S-cut of 7', and there is a natural one-to-one correspondence
between the set of recovery arcs of a cut sequence of C and the set of L-cuts of that
cut sequence. Because all L-cuts of 7 are also L-cuts of 7', the set of L-cuts of 7'
having a line segment contained in « contains no L-cuts of 7. Let R, be the set of
recovery arcs of © corresponding to this set of L-cuts of 7', It is easy to see that
II'(R,) is admissible and there is a way of arranging the line segments of II'(R,) into
a cut sequence 7 of C such that o is the first cut of 7", Since 7" contains all the
L-cuts of 7, according to Case 1, there exists a set of recovery arcs R: of 7" such that
I1"(R.) is admissible and all the L-shaped line segments of IT"(R)) are L-cuts of 7,
where II" is the partition of C formed by the cuts of 7”. Hence R' = R, UR" is the
set of recovery arcs of 7 satisfying the conditions listed in the theorem, where R" is

. ’ . H 2
the set of recovery arcs of # corresponding to the set of recovery arcs R, of 7 .

Hence the theorem follows. O

Corollary 5.2 Let 7 be a cut sequence of a configuration C with no “+7 type junctions

containing all the L-cuts of an optimal cut sequence 7' of C, then n is derivable from .

Since the “+” type junctions of a configuration can be split into two “L” type junctions
[3, 8], according to Corollary 5.2, we would like to construct our initial cut sequence for
a configuration C such that it contains all the L-cuts of an optimal cut sequence of C.
However, we do not know of such a set of L-cuts. Therefore, what we will do in the sequel
is to study the properties of the cuts which are members of some optimal cut sequence of
C, and we will try to construct our initial cut sequence in such a way that at least one cut

with such properties is retained in each stage of the algorithm.

Lemma 5.3 Let a be a cut of a configuration C cutting along which separating C into two
disjoint configurations Cy and Cs, and let m, my and my be the number of L-cuts in an
optimal cut sequence of C, Cy and C,, respectively. Then my +my < m < my + my + dq,

where 6, = 1 if @ s an L-cut, otherwise 6, = 0.

Proof: It is clear that m < my + mgy + 8,. To show that m > m; + m,, observe that the

cuts of an optimal cut sequence 7 of C can be divided into the following three types:

1. Cuts that are completely contained in either C; or Cy;

21

2. Cuts that have part of them in C; and part of them in Cy; and
3. Cuts that contain part of a.

We can construct from 7 a cut sequence 7(1) of Cy, whose cuts are:
1. The cuts of 7 that are contained in Cy; and
2. The parts of the cuts of 7 of types (2) and (3) in C;.

Similarly, we can construct a cut sequence 7(2) of C from 7. Each L-cut of 7 of type (1) is
transformed into an L-cut of either 7(1) or (2); Each L-cuts of 7 of type (2) is transformed
into an S-cut of (1) or 7(2) and an L-cut of m(2) or 7(1); Each L-cut of 7 of type (3)
is transformed into an S-cut of either 7(1) or n(2). Therefore, the number of L-cuts in =,
which is equal to m, is greater than or equal to the sum of the number of L-cuts in 7(1) and
7(2), which is in turn greater than or equal to my + mz. U

If m = my + my + 64 in Lemma 5.3, then « is said to be an essential cut of C. Hence
all S-cuts are essential. Any configuration has an essential cut. For any essential cut o of
a configuration C, there exists an optimal cut sequence of C with « as its first cut. Hence
essential cuts are never “wrong” cuts to cut. The following theorem characterizes essential

cuts.

Theorem 5.4 A cut sequence ™ = T172... 7%, of a configuration C is an optimal cut se-
quence of C if and only if for 1 < k < n, m is an essential cut of a configuration in

C[W]’/Tg...ﬂ'k..l].

Proof: Let # = my7y... 7, be a cut sequence of a configuration C, such that for 1 < k& < n,
71 is an essential cut of a configuration in C[ri7my ... Tk—1]. Assume, to the contrary, that 7 is

I3

not an optimal cut sequence of C, then there exists an optimal cut sequence T = 7?37:"2 ST,
. . . + PR . » . . .

of C, such that for 1 < j < i < n, m; = 7,;, and ¢ is maximized, i.e., 7 is an optimal

cut sequence of C having longest common prefix with 7. Since m;y; is an essential cut

of a configuration in C[mims...7;], there exists an optimal cut sequence of C of the form

124 ?

i
S SN B P

7" . . - ! LLA
i42- - T,. However, this contradicts the choice of = because 7 is an

optimal cut sequence of C having longer common prefix with = than 7 . This proves the
sufficiency. To prove the necessity, assume # = m7;... T, is an optimal cut sequence of C
and 7 is not an essential cut of C (hence it is an L-cut). Let C be separated by 7 into two

line disjoint subconfigurations C; and C,, and let m, m; and mg be the number of L-cuts

22

of an optimal cut sequence of C, C; and C,, respectively. Then m = m; 4+ m; according
to Lemma 5.3, and the number of L-cuts in 7 is at least my + my + 1, contradicting the
assumption that 7 is an optimal cut sequence of C. Hence m; must be an essential cut of
C. Similarly, we can show that for 1 < k < n, 74 is an essential cut of a configuration in
Clmme. .. Tk=1). O

Since the corner of a definite L-cut of a configuration is an “L” type junction of the
configuration, it must be contained in an L-cut in any cut sequence of the configuration.

Since a definite L-cut is the “largest” L-cut that contains its corner, we have

Corollary 5.5 Any definite L-cut of a configuration is also an essential cut of the configu-

ration.

A cut o of C is said to be better than another cut 3 of C if the minimal number of
L-cuts in a cut sequence of C having o as its first cut is smaller than the minimal number
of L-cuts in a cut sequence of C having 3 as its first cut. It is easy to see that no cut of C

is better than an essential cut of C. We now have

Lemma 5.6 Let o, 3 be cuts of a configuration C such that « is dependent on 3, then o

cannot be better than 3.

Proof: Since a is dependent on f, it is an L-cut of C. After cutting 3, one straight line
segment of « is gone and a becomes a straight line segment o of a configuration in C[f3]. Let
Cle] = {C1.C;} and C[Ba’] = {C1, Cs, Cy} where Cyla’] = {C3,C4}. For 1 < i < 4, let my
be the number of L-cuts in an optimal cut sequence of C;, and let m,, mg be, respectively,
the minimum number of L-cuts in any cut sequence of C with «, f§ as its first cut. Then

my > ma -+ my by Lemma 5.3. Hence

mg < bg+ my+ ma+my
< my+me+1
<

Mo
where 65 = 1 if J is an L-cut of C, otherwise é5 = 0. O

Corollary 5.7 Let o, 3 be cuts of a configuration C. If there exists an order sequence
Q= Co,Cly s CmsCma1 = 3 of cuts of C such that for 0 < k < m, ¢ is dependent on cry1,
then o cannot be better than [3.

23

In general, given a configuration C, we will not always be able to find an essential of C.
However, we can identify a set of cuts such that one of them must be an essential cut of C.

For a given configuration C, we construct its cut dependence digraph Do = (V¢, Ac)
having the cuts of C as it vertices. Two cuts o and 3 of C are joined by an arc (a,B) € Ac
if and only if « is dependent on 3. A cut « is said to be dominated be another cut 3 if there
exists a directed a-3 path in D¢, but there does not exist a directed 8-« path in Dc. A cut
of C is a dominated cut if it is dominated by some other cut of C.

The maximal (induced) subgraph D = (Vg, A.) of the cut dependence digraph D¢ =
(Ve, Ac) of a configuration C with the set of non-dominated cuts of C as its vertex set 1s
called the reduced cut dependence digraph of C. Note that for any cut a of C, there exists a
cut B € Vi such that there exists a directed - path in Do. A set of representative cuts of
C consists of either an S-cut or a definite L-cut of C, if C has such a cut, or one cut from
each strongly connected component of its reduced cut dependence digraph. The cardinality

of a set of representative cuts of C is called the characteristic of C.

Lemma 5.8 Each set of representative cuts of a configuration C contains at least one es-
sential cut of C'.

Proof: Let Q be a set of representative cuts of C. If Q1 contains either an S-cut or a
definite L-cut, then it contains an essential cut of C. Otherwise {1 contains one cut from
each strongly connected component of D¢, the reduced cut dependence digraph of C. Hence
for any cut a of C, there exists a directed a-f path in D¢ for some cut 8 € Q. Therefore,
o cannot be better than 3 by Corollary 5.7. In particular, if o is an essential cut of C, then
3 is also an essential cut of C by Theorem 5.4. Since C has an essential, {I contains an
essential cut of C. O

We can now present our algorithm for constructing an initial cut sequence. In Procedure
5.1 below, one or more cuts are cut at each stage, such that at least one of them is an

essential cut.

24

Procedure 5.1: Initial Cut-Sequence (C);
(* C is a configuration without “+” type junctions *)

Begin
= €
while C[r] contains a nontrivial configuration do
begin
Select from C[r] a nontrivial configuration X with minimal characteristic;
Compute a set of representative cuts Q = {wy, w2, ... ,wm of X
T i= T . W,
end;
return 7
End.

Theorem 5.9 Procedure 5.1 correctly constructs a cut sequence of a configuration without
“1” type junctions in O(n?) time, where n is the number of modules in the layout corre-

sponding to the given configuration.

Proof: Since C has no “+7 type junctions, any two distinct cuts in a set of representative
cuts of C are line disjoint and noninterfering, i.e., in each iteration of the while loop in
Procedure 5.1, wy is a cut of a configuration in Clr.wiwswi-1) for 1 < k < m. Hence
Procedure 5.1 returns a cut sequence of C. Each iteration of the while loop in Procedure
5.1 can be implemented to run in O(n) time, and the while loop is executed n — 1 time.

Therefore, the overall time complexity of Procedure 5.1 is O(n?). O

Theorem 5.10 If |Q] = 1 in each iteration of the while loop in Procedure 5.1, then Proce-

dure 5.1 produces an optimal cut sequence for C.

Proof: In this case, the cut sequence of C returned by Procedure 5.1 satisfies the conditions

listed in Theorem 5.4, hence it is optimal. O

6 A New Algorithm

We present in this section our main algorithm. It is a refinement of Algorithm 4.4. The
algorithm first constructs an initial cut sequence using using Procedure 5.1. Next it uses
Procedure 4.3 to compute a maximum independent acyclic augmentation P* of the order
constraint digraph D, of 7 with respect to P, the set of valid recovery arcs of w. It then

eliminates the set of L-cuts of m corresponding to P* by using Function 4.2.

[\
(@31

Algorithm 6.1: Essentiality Heuristic (C');

(* C is a configuration *)

Begin
Split “4” type junctions of C into “L” type junctions;
Call Procedure 5.1 to construct an initial cut sequence 7 for C;
Construct the order constraint digraph D, = (V,, Ar) of 7;
Compute the set of valid recovery arcs P, of m;
Call Procedure 4.3 to compute a maximum independent acyclic augmentation P* of D,
with respect to Py;
7 := Modify(r, P*);
return w

End.

Theorem 6.1 Algorithm 6.1 correctly computes a cut sequence for the input configuration

C in O(n?) time, where n is the number of modules in the layout corresponding to C.

Proof: The correctness of the algorithm follows from Theorems 5.9, 4.4 and 4.5. Each step
of the algorithm takes at most O(n?) time. Hence the worst case time complexity of the
whole algorithm is O(n?). O

7 Experimental Results

We have implemented Algorithm 6.1 in Pascal language on a SUN SPARCstation 1. We
compared our results with the results produced by the algorithm in [9] (Algorithm 3.1).
These results are summarized in Table 1. Here “size” refers to the number of modules in the
layout corresponding to the given configuration. As we can see from the table, improvements
of up to 29% were achieved. For all these examples, our algorithm took less than one tenth
of a second of CPU time to finish the computation.

Figure 10 shows the result obtained by Algorithm 6.1 for a large configuration consisting
of 136 channels. L-cuts are indicated by thick lines. Forty-five L-cuts were used, in contrast

to the result produced by Algorithm 3.1 which uses 56 L-cuts.

8 Concluding Remarks

We present in this paper a fast algorithm for minimizing the number of L-shaped channels
in decomposing the routing area of a build-block layout of rectangular modules into straight
and L-shaped channels. Although the algorithm is not optimal, it consistently produces

significantly better results than a previously known algorithm proposed in [9]. The algorithm

26

EX. | Size | Alg. 3.1 Alg. 6.1 | Improvement
Ex. 14 14 4 3 25.0%
Ex. 2| 63 31 24 22.6%
Ex. 3| 30 12 10 16.7%
Ex. 4] 36 14 10 28.6%
Ex. 5| 46 19 15 21.1%
Ex. 6 | 136 56 45 19.6%
Ex. 71 82 34 28 17.6%
Ex. 8] 58 23 19 17.4%

Table 1: Experimental results

=

—

Figure 10: A large example

is very efficient. It took less than one tenth of a second of CPU time on 2 SUN SPARCstation
1 to finish the computation for examples with up to 136 channels. Significant improvements
over the algorithm in [9] were observed.

Our algorithm uses the novel method of using global information to “correct” earlier
decision errors made based on local information. The algorithm can be partitioned into
two phases. In the first phase, a simple heuristic approach is used which makes decisions
based only on local information, global information is maintained as the process proceeds.
These global information are used in the second phase to “correct” mistakes made in the
first phase. This method can conceivably produce better results than an algorithm using
only the heuristic approach used in the first phase. Final results can be further improved
by carefully constructing the initial solution. We believe that this strategy is applicable in
many other situations as well.

The method we use is a transformational one. It starts out with an initial solution and
transforms it into a better solution. It fails to be optimal because the transformation we use
is not strong enough, i.e., it only allows us to change L-cuts into S-cuts, but not the other
way around (there is no uphill moves). This kind of transformation cannot guarantee to
bring us from any solution to an optimal solution. It would be very interesting to see either
a polynomial time optimal algorithm for solving this problem, or a proof of NP-hardness of
the problem.

Throughout this paper, we have focused our attention on layouts conmsisting only of
rectangular modules. For general layouts of arbitrary rectilinear modules, it is necessary
to decompose the routing area into more complicated regions, such as staircase channels
and nonstaircase channels [13] in order to have a feasible channel ordering, ¢.e., an order of
routing these regions so that whenever a region is routed, its dimensions can be adjusted
without destroying the previously routed regions. Heuristic algorithms have been proposed
for such general layouts [13]. It is interesting to see if our method can be applied in the

more general setting to obtain algorithms which optimize some reasonably chosen metric.

References

[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algo-
rithms, Addison Wesley, Reading, MA, 1974.

28

2]

3]

[4]

[10]

[11]

M. Burstein and R. Pelavin, “Hierarchical channel router”, INTEGRATION, the VLSI
journal, vol. 1,21-38, 1983.

H. Cai, “Connectivity based channel construction and ordering for building-block lay-
out”, Proc. of the 25th Design Automation Conference, 560-565, 1988.

H. Cai, “On empty rooms in floorplan graphs: comments on a deficiency in two papers”,

IEEE Trans. on CAD, CAD-8, 795-797, 1989.

Y. Cai and D.F. Wong, “A channel/switchbox definition algorithm for building-block
layout”, Proc. of the 27th ACM/IEEE Design Automation Conference, 638-641, 1990.

Y. Cai and D.F. Wong, “On minimizing the number of L-shaped channels”, Proc. of
the 28th ACM/IFEFE Design Automation Conference, 328-334, 1991.

H.H. Chen, “Routing L-shaped channels in nonslicing-structure placement”, Proc. of
the 24th ACM/IEEE Design Automation Conference, 152-158, 1987.

T. Chiba, N. Okuda, T. Kambe, 1. Nishioka and S. Kimura, “SHARPS: a hierarchical
layout system for VLSI”, Proc. of the 18th ACM/IEEFE Design Automation Conference,
820-827, 1981.

W.M. Dai, T. Asano and E. Kuh, “Routing region definition and ordering scheme for
building-block layout”, IEEE Trans. on CAD, CAD-4, 189-197, 1985.

D.N. Deutsch, “A dogleg channel router”, Proc. of the 13rd ACM/IEEE Design Au-
tomation Conference, 425-433, 1976.

C.M. Fiduccia and R.L. Rivest, “A greedy channel router”, Proc. of the 19th
ACM/IEEE Design Automation Conference, 418-424, 1982.

M.R. Garey and D.S. Johnson, Computers and intractability: a guide to the theory of
NP-completeness, W.H. Freeman & Co., New York, NY, 1979.

M. Guruswamy and D.F. Wong, “Channel routing order for building-block layout with
rectilinear modules”, Proc. of the 1988 IEEE International Conference of Computer-
Aided Design, 184-187.

29

[14] A. Hashimoto and J. Stevens, “Wire routing by optimizing channel assignment within
large apertures”, Proc. of the Eighth ACM/IEEE Design Automation Workshop, 155-
163, 1971.

[15] C.P. Hsu, “A new two-dimensional routing algorithm”, Proc. of the 19th ACM/IEEE
Design Automation Conference, 393-402, 1982.

[16] T.C. Hu and E.S. Kuh, ed., VLSI circuit layout: theory and design, IEEE Press, New
York, NY, 1985.

[17] S. Kimura, N. Kubo, T. Chiba and I. Nishioka, “An automatic routing scheme for
general cell LSI”, IEEE Trans. on CAD, CAD-2, 285-292, 1983.

[18] T. Ohtsuki, ed., Advances in CAD for VLSI, volume 4: layout design and verification,
Amsterdam, The Netherlands, North Holland, 1986.

[19] R. H. Otten, “Automatic floorplan design”, Proc. of the 19th ACM/IEEE Design Au-
tomation Conference, 261-267, 1982.

[20] B.T. Preas, “Placement and routing algorithms for hierarchical integrated circuit lay-
out”, Ph.D. Dissertation, Stanford Univ., 1979,

[21] B. Preas and M. Lorenzetti, ed., Physical design automation of VLSI systems, The
Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1988.

[22] B.T. Preas and W.M. vanCleemput, “Routing algorithm for hierarchical IC layout”,
Proc. of the 1979 IEEFE International Symposium on Circuits and Systems, 482-485.

[23] J. Reed, A. Sangiovanni-Vincentelli, and M. Santomauro, “A new symbolic channel
router: YACR2", IEFE Trans. on CAD, vol. CAD-4, 208-219, 1985.

[24] J. Soukup, “Circuit layout”, Proc. IEEFE vol. 69, 1281-1304, 1981.

[25] T. Yoshimura and E.S. Kuh, “Efficient algorithms for channel routing”, IEEE Trans.
on CAD, vol. CAD-1, 25-35, 1982.

30

