BALANCED
SEQUENCING PROTOCOLS

Yeturu Aahlad
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-91-34 November 1991

BALANCED SEQUENCING PROTOCOLS

APPROVED BY
DISSERTATION COMMITTEE:

Nt € Sm

/ /James C. Browne

]
- \2&9@@

Mohamed Gou a

//%

Hank Korth

Sl S 0Z

Simon Lam

;' oslaw Malek

Copyright
by
Yeturu Aahlad
1991

To my parents,
Yeturu Venkata Satyasena Reddi and Yeturu Saroja Reddi
and my wife, Subha

BALANCED SEQUENCING PROTOCOLS

by

YETURU AAHLAD, B. TECH., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 1991

Acknowledgements

I am very grateful to my advisor, Dr. J. C. Browne, for his enthusiastic support and
encouragement. I thank my dissertation committee members, Drs. Gouda, Korth,
Lam and Malek for their guidance. I thank Yvonne Ballester, Nancy Macmahon
Karen Nordby and Gloria Ramirez for their help with a bewildering assortment of
administrative problems. I thank my family, especially my parents, for their

unflinching confidence in my ability to succeed.

BALANCED SEQUENCING PROTOCOLS

Publication No.

Yeturu Aahlad, Ph.D.
The University of Texas at Austin, 1991

Supervisor: James C. Browne

The protocol used to control the sequence of execution of events of a distributed
computation has a significant impact on its performance. Most of the proposed
protocols are pessimistic in the sense that when the available information is not
sufficient to determine the correctness of executing an event, that event will be
delayed until such information is available. Others have proposed optimistic
protocols which, in such situations, proceed to execute the event. When the
necessary information becomes available, if it turns out that the event should not
have been executed, the protocol takes appropriate action to recover from the

mistake.

vi

This research addresses ways to strike an appropriate balance between the extremes
of optimism and pessimism in a sequencing protocol and evaluates the benefits of
doing so. The term Balanced Sequencing Protocol refers to protocols whose degree
of optimism can be varied across a spectrum of possibilities ranging from optimistic
to pessimistic by tuning one or more parameters of the protocol. Two approaches

are employed in the investigation:

1. a general protocol for sequencing any program at any specified level of

optimism and

2. balanced sequencing protocols specialized for some common distributed
computing primitives and paradigms, namely, producer-consumer,

distributed semaphores and distributed locking.

For these specialized protocols, the range of circumstances where balanced protocols
do better than both extremes and the optimal balance are analytically determined. A
model of distributed databases used in a previously published simulation experiment
is studied, and balanced locking is demonstrated to perform better than conventional

locking when recovery cost is less than 20 message delays.

During the course of this research, a previously unknown phenomenon which can
cause the performance of optimistic protocols to degrade over time was identified,
and its effects were quantified for a simple system. A solution to this problem based

on balanced sequencing is proposed.

vii

Table of Contents

Chapter 1: INtroduction.........ceeieimniiiiii.. 1
SEQUENCING «.evvvnininiiiiiiieiee e 1
Optimism, Pessimism and Balance..................ooonn. 2
OULIINE . o eentieiieietereeeeereeiatiieniotenneasraseanaaaaanens 3

Chapter 2: Background........cocoviiiiiiiniiiiiiiiin... 6
Distributed COMPUNG....c.covvniniiiiiiiiiiiiiieeaeenn, 6
A general introduction to SEqUENCING....c.oeenvuivieiinininss 7

Chapter 3: A General-purpose Sequencing Protocol 12
IMOEVALOI « . evvveereeneeeneneeneenenueineenseanaasssenneaneeanns 12
The Detailed Modelocoeiiiiiiiiiiiiiaee 12
Evidence of Generalitycoovevviiiiiiniiinieinieiaeiaens 26

Chapter 4: Some Specialized Balanced Sequencing Protocols 32
The Producer-Consumer Problem...............cooeien. 33
Balanced Distributed Semaphores ... 44
Balanced Distributed Lockingoooiiiiiiiiiine 60

Chapter 5: The Echo Phenomenon........ccccocooviniiiniinnin 71
The premise: why optimism is expected to work 71
The pitfall: why optimism may not work 72
Example: the Time Warp protocolc..oooiiiiiinni. 72
A solution: an echo-damping protocol (edp).........cccc.... 80

viii

Balanced Sequencing
Protocols

Yeturu Aahlad

Chapter 1
Introduction

Sequencing
A distributed computing environment consists of a set of components, typically
assumed to operate asynchronously, which share and coordinate their efforts
toward executing a computation. Such sharing requires the coordinated
maintenance of an information base so that the sequencing decisions made by
the components are consistent with the specifications for the computation. To
do so, these components exchange the information required to support the
decision process involved in coordinating their efforts. Such a decision
process may be modeled as a function f which when applied to the state s of
the computation, returns a sequencing decision d; i.e., if S is the set of all

possible states and D is the set of all possible decisions, then f:S->D.

A consequence of asynchrony is that the clocks of these components can
never be in perfect agreement. Yet, if the components are to be mutually
consistent in their decision-making, they must maintain consistent views of the
computation's state s. The maintenance of consistent views of state
information upon which sequencing decisions can be made is a critical problem

of the management of distributed computations. The choice of decision

Chapter 6: Survey of Related Literature...............coooviiiini. 83

ConCePts SUTVEY....oviuiiniiniiiiiiiiii e, 83

Literature SUTVEY..ccioiiiiiiiiniiiiiiiiiiiieieeeieeeans 85

Chapter 7: Summary of Results and Conclusions 99

Future Workovoiiiiiie e 101
Bibliography. oo 103
V4 T U U U PP 111

ix

function f and the exchange of information which leads to the establishment of
its domain S, will be referred to as the "sequencing protocol”.
Optimism, Pessimism and Balance

There are three general classes of sequencing protocols. One class guarantees
a priori that all sequencing decisions are consistent with the specification of the
computation. This class of protocols is termed pessimistic, since decisions are
postponed until all relevant information is available and consistent. A
hypothetical global observer who can observe events as they occur may notice
inefficiencies such as those caused by the computing components waiting
because they do not yet have the necessary information to enable them to go
ahead. Thus, when a decision needs to be made, the pessimistic approaches
incur an overhead (delay etc.) associable with determining S. The second
class of protocols involves making favorable assumptions about all unavailable
information required to proceed with the computation. This class is termed
optimistic since decisions are never postponed because relevant information is
unavailable. Instead, if such optimistic actions result in a deviation from
specifications, such a deviation is detected and compensating actions to restore
consistency with specifications are taken. The optimistic approaches incur an

overhead for detection of and recovery from inconsistencies.

There is some controversy in the literature as to the circumstances under
which each protocol class yields superior performance. However, there is no

reason to believe that either extreme protocol is optimal in any particular

circumstance. There is a third class of protocols which introduces quantifiable
and variable measures of optimism into a previously pessimistic protocol to
obtain a balanced sequencing protocol. This third class of protocols, which
constitutes the spectrum of strategies spanning the extremes, is the subject of
this dissertation. It is the thesis of this dissertation that such a protocol will, in
many circumstances, yield better performance than either completely

pessimistic or completely optimistic sequencing protocols.

While optimism can in general be introduced into any type of computation,
it has been studied most extensively in the contexts of database concurrency
management and distributed simulation. In both contexts, protocols aimed at
combining the best of both approaches by tempering the level of optimism have
been proposed. [KUNB81] presents a database protocol which optimistically
reads the database, then pessimistically updates it. The "five-color" locking
protocol of [DAS90] attempts to improve upon two-phase locking by admitting
some serializable non-two-phase schedules. It requires a validation component
because it admits some non-serializable schedules. Performance data for this
protocol is not currently available. [FUJ88] obtains mixed results for
simulation strategies which "look ahead" by estimating the simulated time of
future events.

Outline
Chapter 2 covers the background in distributed computing and sequencing

needed to study this document.

Chapter 3 demonstrates the universal applicability of the concept of
balanced sequencing by presenting the design of a very general sequencer
capable of sequencing any program at any desired level of optimism. The
operation of such a sequencer is illustrated with examples. However, the high
computational cost of such a general approach suggests the need for specialized

balanced sequencing protocols targeting narrower problem domains.

Chapter 4 presents the design and performance analysis of some
specialized balanced sequencing protocols. The first problem considered is the
Producer-Consumer problem. Even for this simple, extensively studied
problem, it is demonstrated analytically that, depending on the relative lengths
of the operations "produce”, "consume”, "read shared memory” and "write

shared memory", the optimal balance can be any where in the spectrum

between extreme optimism and pessimism.

Next, in Chapter 4, the balanced version of a distributed implementation of
a semaphore is presented. An analytical relationship is established which
relates the optimal balance to characteristics of the system and the application
served by the semaphore. Again, it is demonstrated that the optimum can lie

any where in the spectrum of possibilities.

The final section of Chapter 4 adapts the design and performance analysis

of distributed semaphores to distributed locking. This adapted analysis is then

applied to the data used in a prior simulation study of distributed concurrency

management [CARSE].

In Chapter 5, a previously unknown pitfall of optimistic sequencing which
can lead to severe and permanent degradation of performance with the passage
of time is identified. For some simple networks of processes employing the
Time-Warp optimistic protocol, the extent of degradation is quantified as a
function of the speed at which processes progress and recover. Finally, a
solution to this problem is proposed, which works by varying the level of

optimism and employs Dijkstra's "Diffusing Computation” paradigm.

Chapter 6 is a literature survey. Here, some of the key contributions to this

dissertation from existing literature are summarized.

Chapter 7 summarizes the results and conclusions and suggests directions

for future work.

Chapter 2
Background

Distributed computing

The concepts of a process and a distributed system

"Distributed Computing" is a study of the interaction of concurrently active
processes which do not share a common sense of time; i.e., processes which
are not "centrally clocked". Each process in its most general form, consists of
a "local state” and a program which operates on that state and communicates
with other processes. The local state of a process is the set of state variables
which only that process can access. A set of processes, together with the
"protocols” which govern their interaction constitute a distributed system.
Shared state Vs. messages

The processes of a distributed system can communicate either by their use of
shared state, or by exchanging messages. The choice of communication
mechanisms can be further resolved based on assumptions about them. A
popular flavor of shared state, called Concurrent Read, Exclusive Write
or CREW, assumes that while several processes can concurrently read the
value of a shared variable, a process seeking to modify the value must have
exclusive access. In this dissertation, the following properties are assumed

for message-based communication mechanisms:

« Processes are inter-connected by channels.

o FEach channel is matched with exactly one process which can send

messages on it and exactly one process which can receive messages on it.
o A channel neither loses messages nor generates them of its own volition.

o A channel delivers messages in the order in which they are sent, after an

arbitrary, unbounded delay.
o The capacity of a channel is unbounded.

The above is by no means the only possible model of communication
media. However, it is the most common. The Synchronous Communication
model of CSP [HOAS85] is an example of an alternative model.

A general introduction to sequencing

Guarded Commands
The "guarded command"” denotation of programs has proven useful in several
contexts of distributed computing research. For our purpose, it provides the
basis for an elegant definition of the level of optimism in a sequencing

protocol, and hence, an elegant definition of balanced sequencing.

A guarded command denotation of a program has the form:

do Gg —> S0 G1 —> S1 .o od.

The G; are predicates on the variables of the program and are called guards.

The Sj are steps which modify the program's variables. The interpretation is
that a step may be executed any time its guard is true, and the program
terminates when all guards are false [DIJ76]. It is assumed that the values of a
program'’s variables— and hence the truth of its guards— can only be changed by
the execution of a step. Therefore, a true guard remains true and a false guard
remains false at least until the execution of the next step. Determining a true

guard and executing the corresponding step is atomic.

Processes of a distributed program are disjoint subsets of guard-statement
pairs. The need for communication arises when more than one process
accesses any given variable. A different model of a distributed computation
and a notion of correctness called "sequential consistency” are described in
[LAMT79].

Pessimism, Optimism and Balance
When a process knows enough about the program's state to determine the truth
or falsehood of a guard G, it may accordingly determine whether or not to
execute the corresponding statement S. It is when a process can not determine
the truth of G that optimism enters the picture. A pessimistic sequencing
protocol would disallow the execution of S and an optimistic protocol would
allow it. A continuum of balanced protocols are obtained by associating with
each guard G, a predicate Gp such that G => Gp. Under a balanced

protocol, when a process can not determine the truth of G, it

allows S to execute if and only if it can determine that Gp is true.
In particular, choosing Gp = G yields the pessimistic end-point
and choosing Gp = true yields the optimistic end-point.

w

Validation and Recovery

An optimistic or balanced protocol must include some means to determine
when an invalid sequencing of events has occurred, and to compensate for

such occurrences.

Validation methods typically involve a compromise between the desire to
lower the cost of determining the validity of an execution and the undesirable
possibility of flagging some valid executions as invalid. [PAP86] presents a
discussion of such trade-offs for database concurrency control. [JEF85] and
[KUNS81] use only the time-ordering of events for validation. The protocol
presented in the next chapter validates by comparing run-time dependences
between events of a program's execution with the dependences specified
between the steps of the program. If, for example, correctness were specified
as a predicate on the observable result of executing a program, all of the above

approaches have the potential to flag valid executions as invalid.

Proposed approaches to recovery can be classified as backward and

forward. Most proposed recovery protocols in the literature [WOO80,

10

STR85, KOO87, JOH88, JEF85, BHGS87]! are backward recovery
protocols, as is the protocol proposed in the next chapter. In all of these
protocols, a state which resulted from a valid prefix of the computation is
restored, and the computation resumes from that state, thus ensuring that the
result of the computation is in no way affected by the incorrect sequencing
which occurred. Two possible weaknesses of backward recovery are the
cost of saving intermediate states and the potential for cascading rollback
(A phenomenon whereby recovery in one process or transaction necessitates
recovery in others and so on. Such a cascade can repeatedly affect a process,
in the limit causing it to roll back to its initial state). [RUS80] proved that for a
system of processes communicating over FIFO channels, given the ordering of
events defined in [LAMT78], it is necessary and sufficient to save the state of a
process immediately prior to sending each message to avoid cascading

rollbacks.

Forward recovery consists of performing additional actions to ensure that a
correct result is obtained despite the invalid sequencing in the past. Such a
protocol is proposed in [GARS83]. [KOR90] proposes a theory for forward

recovery in transaction-based systems based on the concept of compensating

IText books (such as [BGH87)) are referenced several times in this document. In every case,
the referenced text is one example of several texts on that subject which could have been

referenced in that context.

11

transactions. These protocols guarantee the restoration of the semantic
integrity of the computation. They may, however, produce results which can
not occur in the absence of incorrect sequencing and the subsequent recovery.
The need to save intermediate states and the cascading rollback problem are
avoided with forward recovery. Also, the resulting improvement in the
efficiency of recovery can significantly improve the gains from balanced
sequencing, as is illustrated by the second and third example studied in chapter
4. However, such protocols are based on the semantics of the applications

they serve; i.e., no generally applicable protocol has been proposed.

12

Chapter 3
A General-purpose Sequencing Protocol

Motivation
In the following paragraphs, a general protocol capable of executing any given
program at any specified level of optimism will be presented. Inevitably, such
a general protocol will be less efficient than its specialized counterparts such as
those described in the next chapter. The anticipated application of this general
approach is to investigate the effectiveness of balanced sequencing for a given
application before one undertakes the non-trivial task of devising a specialized
sequencing protocol for that application. It may also serve to guide the design
of specialized protocols for complex applications.

The Detailed Model
The model consists of four component protocols and the three data structures
they use. The data structures are the program which specifies the
computation, the log which denotes the history of the computation and the
sequencing options table abbreviated SOT which denotes valid
possibilities for the computation's progression. The component protocols of
the general sequencing protocol are triggering, initiating actions, logging,

recording the computation's history, validation, checking the consistency of

13

the log with the program, and recovery, eliminating any inconsistency
discovered by the validation protocol.
The Data Structures

The program is denoted by a directed graph. Each node is labeled with a
quadruple <n, s, I, O>. nis a unique identifier. s is a step of the program.
I is a predicate denoting the dependence of s on other steps and O is a
predicate denoting the dependence of other steps on s. The attribute s is of the
canonical form U := f(V) where U and V are sets of variables termed the
modification domain and the invocation domain respectively. I'is a
predicate of the canonical form one_of(a set of sets of dependences). O isa
predicate of the canonical form one_of(a set of pairs in which the first element
of each pair is a predicate on the state of the data and the other is a set of
dependences). The boolean function one_of is true iff precisely one of the
elements of its argument set contains only satisfied dependences, any satisfied
dependence belonging to other sets of its argument also belong to that set and
the predicate if any associated with that set of dependences is true. Each
directed arc represents a dependence of its destination on its source and is
labeled with a triple <t, a, d>. a is a unique identifier and d is a datum of the

computation. t is the type of the dependence, one of:

s MM, signifying that d is an element of U of the source and the destination

nodes,

®

15

The predicate O for this node is one_of({X>Y, 6}, X=Y, 7, 8}, X<Y, 9,
10}). Interpretation:— Upon executing this node, the dependences which
become "enabled" are 6 if X>Y,7 and 8 if X=Y and 9 and 10 if
X<Y.

n0: Begin

{{x>Y, 12},
{X=Y051,{X<¥ 34}}
MM.0Xf MM.5.Y

MM,1 X MM 4.Y

MI2,Y VI3, X

X 1
[REFIRINVIREFINIINEIH

F ¥ 9 1
[EEBURELIRERRIRYERY B

nl: X=X-Y n2:Y¥=Y-X

{{(X>Y 6},
{X=Y78]{X<¥ 9101}

{{X>Y, 11,12},
{X=Y,13.141 {X<Y 15})

MM,6,% M MM,15,Y

M.8.Y ™.13,X
MM, 7. X MM.14,Y

Y9V VeV

{{0.51.{7.81.{13,14}}

n3: End

Figure 1

16

The Log of a computation is a record of the events of that computation and
the dependences among them. The log, like the program, is denoted by a
directed graph. The nodes of this graph are events (executions of individual
program steps) and the arcs represent dependences among them. Each node of
the graph is a triple, <n, E, C>. n identifies the step in the program which
was executed. E is the exit condition; i.e., the dependence of other events on
it. This is the set of all valid combinations of out-going arcs from the node. C
is a checkpoint; i.e., a record of the version of each datum used by the event.
A datum may be checkpointed either implicitly by recording its version number
or explicitly by recording its version number and its value. This definition of a
checkpoint differs from the usual meaning of this term in literature related to
crash recovery for databases and general distributed computing [BER&7,
CHA72, CHA75, RUS80, WOO080, KOOg87, JOH88]. A checkpoint usually
refers to a state of a process or an entire system which can be restored if such
restoration is necessitated by any future event such as a crash. The Cs are
refered to as checkpoints because collectively, they serve the same purpose as
traditional checkpoints; i.e., they represent previous states of the system. The
logging of an event is complete if all of its logical predecessors are logged. A
set of completely logged events constitutes a complete segment of a log and
the set of all completely logged events is the log's maximal complete

segment.

17

The SOT denotes valid ways in which the computation may progress. It
consists of two types of entries. An I_Entry is the I attribute of an initiated
step with each dependence tagged with the initial version number of the datum.

An O_Entry is computed from the O attribute of a terminated step as follows:

o Remove the <predicate, dependence set> pairs whose predicate

component evaluates to false.

- Remove the predicate component of the remaining predicate,

dependence set> pairs.
» Tag each dependence with the version of the datum it represents.

The initiation of an event results in the creation of an I_Entry in SOT.

The termination of an event results in the creation of an O_Entry in SOT.

Note that the initiation and termination of events are recorded in both the
SOT and the log. In fact, the SOT can be computed from the log, and
hence, the log can serve the above role of the SOT. This redundancy serves

to improve efficiency in two ways:

» Since the log serves as the basis for validation, an entry remains in the log
at least until the event is validated. However, entries in SOT can be
simplified and/or removed by a reduction process (described later)

without regard to validation.

18

« The organization of information for efficient validation (the log) vs.
efficient triggering (the SOT) is different. Entries in the log are arranged in
the partial order determined by their dependence on other events, since the
proposed validation protocol analyzes these entries in some order
consistent with this partial order. For the SOT, it is advantageous to
organize entries according to the corresponding nodes of the program
graph, since, to determine whether a node in the program graph should be
triggered, only O-entries of its predecessors in the program graph are
analyzed.

The Protocol Components

The triggering protocol is the component which initiates events. The

pessimistic aspect of a triggering mechanism is the overhead that goes into

reducing or eliminating the possibility of triggering events out of sequence.

The optimistic aspect is the triggering of events before sequencing errors can

be ruled out.

The basic strategy consists of maintaining the SOT. The manner in which

this data structure is distributed and/or replicated is an independent issue.

Initially, SOT has no entries. The initiation and termination of events
result in the addition of I_and O_ entries respectively to SOT. Let q stand
for the predicate conjunct (O_Entries) and not disjunct (I_Entries).

The decision to trigger an event is correct if g implies its I attribute, wrong if ¢

19

implies the negation of its I attribute and otherwise undecidable. It is in the

treatment of the undecidable instance that the issue of optimism enters the
picture. A pessimistic strategy will treat this as wrong and an optimistic
strategy will treat this as correct. To implement a balanced strategy, Ipis
chosen for each step such that I implies Ip. (q implies Ip) becomes the
criterion for triggering the event. The spectrum of protocols ranging from
pessimistic to optimistic is achieved through the choice of appropriate Ip.
Pessimistic triggering is achieved by choosing Ip = I while optimistic
triggering is achieved by choosing Ip = true. In general, weakening Ip
increases optimism and reduces pessimism and vice versa, thereby providing a
full spectrum of protocols. Any Ip may be strengthened in an arbitrary
manner without jeopardizing any safety property, although liveness can be

jeopardized.

If the creation of I_ and O_ entries are the only modifying operations on
SOT., its information content will be identical to that of the computation's log
(discussed later). The SOT grows monotonically with the progress of the
computation, and hence, so does the cost of using it in triggering decisions.
Therefore, means for reducing the entries in SOT without altering the
available sequencing options are desired. Such a reduction is effected by
removing all dependences tagged with old version numbers and then removing
all entries which contain a null set of dependences. From the perspective of

minimizing the cost of triggering decisions, it is desirable to reduce the SOT

20

every time a new version of any datum is created. However, the reduction
itself is an overhead. One way to balance the incurrence of these overheads is
to reduce the SOT whenever some pre-determined number of modifications to

data have occurred.

The Logging protocol maintains the log of the computation. At the
termination of each event, a node is added to the log. All attributes of the
node, n, E and C are available upon completion of the event. However, if any
optimism is involved in the triggering of events, the situation could arise
wherein the log contains an event but not all of its logical predecessors (The
event is not completely logged). In such a situation, information necessary to
compute the set of incoming arcs may not be available at the time of logging an
event. Since the incoming arcs can be derived from the C attributes of a
complete segment of the log, the task of filling in the incoming arcs must be
postponed until the node achieves completeness. Nodes may be removed from
the log either as a part of the process of recovering from a fault or via garbage
collection. A node is a candidate for garbage collection if all its predecessors
are candidates for garbage collection, it represents a correctly sequenced event
and all the data it explicitly checkpoints are explicitly checkpointed by one or

more of its successors.

The validation protocol determines the consistency of the log with the
program and identifies any events that may be incorrectly sequenced. An event

n in a complete segment of a log is in sequence if its set of incoming arcs

21

satisfies the I attribute of node n of the program and its set of outgoing arcs
satisfies its E attribute. The first step in the validation procedure is to compute
the arcs among the nodes to be validated from the C attributes of the logged
events. (For each datum modified by n, an in-coming arc either from each
event that invoked the initial version of that datum, or, if there are none, an in-
coming arc from the event that created the initial version. For each datum
invoked by n, an in-coming arc from the event that created that version of that
datum.) Then, for each of the nodes, the n attribute identifies the
corresponding step of the program, and consistency in sequencing can be
verified. 1) The set of in-coming arcs must be consistent with the I attribute
of node n of the program and 2) the set of out-going arcs must be consistent
with the E attribute of the event. The nodes which don't meet condition 1
represent events executed out of sequence. For nodes which don't meet
condition 2, the successors whose removal restores condition 2 represent
events executed out of sequence. The set of events determined to be executed
out of sequence is the fault. The domain of a fault is the data whose state is
affected by the fault; i.e., the modification domain of the fault and its successor

events.

The recovery protocol negates the effect of the detected fault.
Approaches to tecovery are classified as forward if they involve including
additional events in the execution to compensate for faulty events and

backward if they involve state restoration and resumption of computation at

22

or prior to the origin of the fault. (Under an alternative classification, recovery
protocols which retry a computation are classified as forward and others,
whether dependent on or independent of semantics, are classified as
backward.) This research restricts itself to backward strategies since they are
independent of the semantics of the program's steps. Backward recovery
involves a sequence of three steps, restoration, reconstruction and

resumption.

State restoration is achieved by a backward search of the log starting
from the fault until an explicit check-point for each element of the fault domain
is encountered. (Note that SOT should also be restored. This is achieved by
treating the entries in SOT as data objects for the purposes of checkpointing

and recovery.) Let's call this set of explicit checkpoints the anchor.

State reconstruction is optional. By repeating the events logged between
the anchor and the fault, the state of the fault's domain just prior to the fault is
reconstructed. At this point, there is at least enough information to sequence
the next event correctly, and hence a positive rate of progress is guaranteed
regardless of the amount of optimism and regardless of the checkpointing

intervals if mis-sequencing is the only type of fault encountered.

The computation may resume either from the restored state or from the

reconstructed state. The primary advantage of incorporating the reconstruction

23

step is that it is possible to guarantee progress of the computation without

having to checkpoint every state of every variable.

Consider the execution of the GCD program under an optimistic protocol.
Figure 2(a) shows the log of an incorrectly sequenced execution of this
program. In this case, n2:2's dependence on nl:2 is inconsistent with the exit
condition of n1:2. For this specific fault, there is an obvious forward recovery
fix; i.e., extend the execution with the event Y :=Y + X. Clearly, this fix is
based on the semantics of the event which is out of sequence. This is in
general true of any forward recovery scheme and hence there is no such thing
as a general purpose forward recovery scheme for any computation based on

any program.

01 | X:v0=7 | [00:1 [X:v0=7 | [n0:1 [X:VO=7] [n0:1 [X:VO=7
Y:V0=4 Y:V0=4 Y:V0=4 Y:V0=4
{{1,2}} {1,2}} {{1,2}} {{1,2}}
1,X 2. Y 1,X P, Y 1,X 2.Y 1,X Y
A \ 4 Y Vv \ 20 4 A 2
nl:l | X:V1=3][nl:l X:Vi=3] Inl:1 |X:V1=3] nl:1 JX:V1=3
Y:VO Y:VO Y:VO Y:VO
{19,10}} {19,104} {{9,10}} {{9,10}}
9.X 10,y D Thelogafter g% 10,Y 9.X 10,Y
v ¢ ;(tate éeys’toranon. v ¢ v
and Y assume
n2:1 XfVl the most recent n2:1)‘5\\;1 n2:1 Xgl
Y:V1 explicitly check- V1 YVl
{{11,12}} pointed {{11,12}} {{11,12}}
values, X:V1 and
Y:VO0 respectively. e
1y |2y 1 2y 113 ZYI‘_’__
A \ 4 Y v A ‘} M
nl:2 | X:v2 nl2 [X:V2 nl:2 IX:V2
Y:V1 Y:vi Y:V1
{{6}} {6}} {6}}
9,X lO,Y C) The log after 6,X r——-
3 y ;Seu::tgnstruction Y
n2:2 }Y(.‘\g acheivedbyre- |13 §¥f
: executing the :
events n2:1 and
112 nl:2 which lie {781}
between the fault
a) The lo; and the anchor.
reﬂectinggan 7.X < 8. Y
inconsistent h 4
history of the n3:1
computation.
Note how n2:2
depends on nl:2.
d) The Correct
Execution

Figure 2

24

The first step is to restore the values of X and Y to a previous consistent
state. The most recent explicit checkpoints are X:V1 atevent nl:1 and Y:VO at

event n0:1. If there were any intervening events between n0:1 and nl:1 which

25

modified Y, it would be necessary to find an earlier checkpoint of X. This in
turn could necessitate finding an earlier checkpoint of Y an so on. This is the
cascading rollback or domino effect discussed in [WOO80] and [RUSZ0]. In
this case, there is no cascading rollback, and the log after state restoration

looks like figure 2(b).

One may return to the computation after state restoration, but this approach
has one serious problem. There is no reason why the same problem can not
recur. Hence, conceivably, the computation could thrash indefinitely. State
reconstruction avoids this problem regardless of the frequency of explicit
checkpoints. State reconstruction consists of re-executing the log between the
anchor and the fault; i.e., the events n2:1 and nl:2, thereby reconstructing
the state just prior to the fault before returning to optimistic sequencing (figure
2(c)). The incorrect optimistic choice which necessitated this rollback is now
known to be incorrect, (because otherwise, rollback would not have been
initiated) and will therefore not be repeated. However, a different incorrect

choice can be made at this time. Indefinite thrashing can not occur because:

o There are finitely many steps in the program.

o Therefore, there are finitely many incorrect choices available.

« No incorrect choice will be made more than once.

Figure 2(d) shows the log of the correct execution.

26

Evidence of Generality
This section describes and exemplifies a methodology for modelling distributed
computing environments and the consistency management protocols they

employ in the form described in the previous section.

The General Strategy

o Identify the synchronous components of the environment. Examples are
processes of a system of communicating processes, transactions of a
transaction based system, the individual programs of a multi-programming

environment, actors of a dataflow computation etc.

« Represent the role of each synchronous component as a fragment of a

program.

« Determine (from the integrity constraints) the manner in which these

components may correctly interact.

o Integrate the program fragments using information determined in the

previous step.

» Mimic the behavior of the consistency management protocol to be modeled
by determining the appropriate IP for each step of the program, the control
mechanism for choosing among steps when more than one is enabled by a
valid Ip, the criterion by which the validation procedure determines

inconsistencies etc.

27

An Example

Consider two concurrent transactions, T1 and T2 in a distributed database
constrained to execute serializably. Between them, the transactions access
three data, P, Q and R. Figure 3. is a program representing the correct
concurrent execution of T1 and T2; i.e., the set of all serializable interleavings
of their actions. If T1 and T2 had to be denoted as sequential programs, they

may be written:

TI: read Q; read R; write P as f1(Q,R).

T2: read P; write Q as f2(P).

28

MI,28,Q
M1,27.Q
0: Begin
£{0,1,2,3,4,5,7,8], MM.9,P
{0,2,3,4,6,7.8,9}}
MM,0,T1_Q \
] _% MM.6.Q l MM,8,T2_P
\ 4 A MLLQ TITY VISP A4 v
{{0,1}.{0.27}} {{3.4}} {{8.9}.{8,28}}
1: T1.Q:=Q 2:TI._ R:=R / 3:T2.P:=P
{{11,28},{10,11}} {12,131} / ({15,25},{14,15}}
—J MI,11,T1_Q MiJi2,TL R VA MLI5T2 P
™, 14,P
h 4 Y)4 / MM7T2.Q } v
{{2,11,12}} /1 {{7.15}}
4: T1_P:=FI(T1_Q, M 5:T2_Q =F2(T2_P)
T1_R) g
{{16,17,18}} / {{19,20}}
MI.16,11_P / ; JTM,15,T2.P Mip0,12.Q
v &\ v ¥

{{5,16},{16,25}}

6:P:=T1 P

IM,10,Q {{21,22},{22,26}}

/

MM,23,Q

[Y

({6,20},{20,27}}

7:Q:=T2_Q

{{23,24},{24,28}}

MM_2LP &
M2TI P&
IM17,T1_Q & IM,I8TIL R &
IM,13,R

[|
*W v v ;WZQ—J

{{10,13,17,18,19,21,22,24},
{13,14,17,18,19,22,23,241}

9: End

Figure 3

4 Figure 7

The program for the
concurrent execution of T1
and T2

29

The following sections show how four "traditional” protocols to sequence
the events of T1 and T2 are special cases of the general purpose protocol.
Details of these protocols can be found in chapter 6 and the referenced papers.
T1 and T2 are the two processes. For the purpose of this example, a
dependence is called external if it derives from the use of a shared variable
(here, P, Q and R) and internal otherwise.

Schneider's Protocol Extended to Allow Non-deterministic

Decisions
This is a strictly pessimistic strategy. The triggering criterion Ip equals I. An
extension of Schneider's protocol is used by the control mechanism to
resolve non-deterministic choice. (for example, initially, either nodes I and 2
or node 3 can be triggered. T1 will broadcast a request to initiate nodes 1 and
2 and T2 will broadcast a request to initiate node 3. The request with the
earlier time-stamp will win.)

Two-phase Locking
This is frequently called a (sometimes, the) pessimistic protocol, but in our
framework it must be classified as pessimistic WRT internal dependences and
balanced (neither strictly optimistic nor strictly pessimistic) WRT external
dependences (and hence is an instance of a balanced protocol with the internal
dependences constituting the boundary of optimism). The triggering protocol
employs a variable for each shared (lockable) object (P_lock, Q_lock and
R_lock) which can take on the values T1, T2 or UNLOCKED. The triggering

30

criterion Ip equals (I with external dependences removed) AND (the
transaction to which the step belongs has locked all objects represented by its
external dependences). For example, Ip1 = (one_of {{0}}) AND (Q_lock =

T1). The control strategy is:
o Initially, all locks are UNLOCKED.

» When a step requires only one or more locks to satisfy its Ip, a lock request
is broadcast by that transaction. For example, when one_of {{0}} is

true, "Request Q _lock" is broadcast by T1.

« Locks are granted in time-stamp order of their requests using Schneider’s
protocol. The granting of a lock need not be broadcast since Schneider's

protocol guarantees that all transactions see the same picture.

« Locks are relinquished when a terminated step has an external output
dependence and the transaction will not subsequently request locks. For
example, because of arcs 10 and 28 of step 1, T1 broadcasts "Relinquish
Q_lock" any time after broadcasting "request P_lock" when node 6
comes up for execution.

Commit protocol (Kung & Robinson)

This is frequently called a (sometimes, the) optimistic protocol, but in our

framework it must be classified as pessimistic WRT internal dependences and

external dependences representing variables in the modification domain and

optimistic WRT external dependences in the invocation domain (and hence is

31

an instance of an optimistic protocol with the internal dependences and external
dependences representing variables in the modification domain constituting the
boundary of optimism. The triggering criterion Ip equals (I with external
dependences not representing variables in the modification domain removed).
Jefferson’s "virtual time" protocol

This is another approach to "optimistic” sequencing. The triggering criterion
Ip equals (I with all external dependences removed). This approach contrasts
with that of Schneider in that transactions "optimistically” presume that
protocol related messages are received in time-stamp order and hence, the set
of all received messages and the assumption that there are none in transit with
intermediate time-stamps form the basis for determining the truth of the pre-
conditions of the production rules. The receipt of a protocol-related message
out of turn is the criterion used by the validation protocol to determine that an

inconsistent state exists.

32

Chapter 4
Some Specialized Balanced Sequencing
Protocols

The previous chapter discussed the design of a general-purpose protocol which
can be used to sequence any given program at any desired level of optimism.
Unfortunately, this generality comes at a potentially steep price. Consider, for
example, the maintenance of the data-structure SOT in the general-purpose
approach when the program is executing on a distributed system with disjoint
sub-graphs of the program-graph implemented as processes and arcs
connecting these sub-graphs implemented as channels. In the worst case, a
process must communicate with each of its successors for every step it
executes, no matter what the chosen level of optimism. Further, in the worst
case, a process must communicate with each of its predecessors either when
triggering a step or when validating it. This communication can prove to be
quite expensive, and can negate any performance gains obtained by the
introduction of optimism. The remainder of this section addresses this
problem by presenting and analyzing a series of specialized balanced
implementations of common distributed computing primitives and paradigms.
In each of these examples, the level of optimism can be picked from a spectrum

of choices ranging from optimistic to pessimistic by varying a parameter of the

33

protocol. The analysis determines the optimal level of optimism as a function

of the characteristics of the distributed system.

It is a folk-theorem of distributed computing that every synchronization
problem can be reduced to some combination of two basic problems: the
producer-consumer problem, and the mutual exclusion problem [LAMS3]. Of
these, the producer-consumer problem is considered to be "easy", and the

mutual exclusion problem is considered to be "difficult".

This chapter presents specialized balanced sequencing protocols and
demonstrate their applicability for a series of examples. The first of these is the
"easy" producer-consumer problem. The second example takes the most
efficient known pessimistic distributed algorithm for mutual exclusion in
message-based systems [MAES5], adapts it to implement a distributed
semaphore, generalizes the algorithm for balanced sequencing and studies the
relationship between a system's characteristics and the optimal balance between
optimism and pessimism. The third example adapts the work done for the
second example to the domain of distributed locking.

The Producer-Consumer Problem
This example considers the sequencing of an asynchronous producer-
consumer system sharing a buffer of size 1. The producer-consumer system

may be informally specified as follows:

14

« MI, signifying that d is an element of U of the source node and an element

of V of the destination node,

« IM, signifying that d is an element of V of the source node and an element

of U of the destination node.

A datum is defined as a triple <name, value, version number> where
name is a unique identifier which does not change, value is the state of the
datum and can change and version number is a counter of the changes
undergone by value. Alternately, a datum is an association of a value with its
name for each version number from some initial value, say O, up to its current

value.

Figure 1 is a program implementing Euclid's algorithm for computing the

Greatest Common Denominator of two positive integers.
o The variables of this program are the integers X and Y.
« The step s associated with node nl is X := X - Y.

o The predicate I for this node is one_of({6, 2}, {6, 12}, {1, 2}, {1,
12}). Interpretation:— this node can be executed only if either
dependences 6 and 2 or 6 and 12 or 1 and 2 or 1 and 12 are

"enabled".

34

« The producer repeatedly "produces” data and writes it to the shared

buffer.

o The consumer repeatedly reads data from the shared buffer and

"consumes" it.

. integrity constraint: All produced data must be eventually consumed in

the order in which they are produced.

. optimality criterion: Maximize the average rate of progress, where
progress is measured as the number of data correctly produced and

consumed.

Variables of the optimality analysis are the processing times for the four
key operations, produce, consume, read-buffer and write-buffer.
Because these quantities are assumed to be invariant over time, the optimal
protocol does not result in any timing faults, and hence, the cost of recovery
does not play any role in the analysis. The analysis also does not penalize the

non-pessimistic protocols for the additional memory they use.

The specification for this example has been deliberately chosen to be as
simple as possible in order that the complexity of the analysis not obscure the
main point of the example; i.e., that balanced protocols can be a viable options
even in such a simple system. All of the above factors, namely, variations in

processing time, the cost of recovery and the cost of memory, can be

35

significant in a "real-world" application. The subsequent examples use more
realistic but still analytically tractable specifications.

A pessimistic solution
The following program is a conventional pessimistic protocol for the Producer-
Consumer problem. The producer ensures that a produced datum has been

fetched by a consumer before over-writing it.

System pessimistic;

Process producer;
Begin
produce (item);
Repeat
write item to buffer and sigmal "buffer full"”;
produce (item);
await "buffer empty”
Forever

End;

Process consumer;
Begin
Repeat
await "buffer full” and read item from buffer;

consume {(item)

36

Forever
End;

A Balanced Sequencing Solution

The following solution to this problem employs a phased approach. In each
phase, a producer optimistically produces and writes several items to the buffer
without waiting to ensure that old items have been correctly consumed. At the
phase-boundary, the producer checks with the consumer to see if all has gone
well. If so, the next phase begins. Else, corrective action is taken, and then
the next phase begins. The measure of optimism is the size of a phase; i.e., the

value of N in the program below.

System optimistic;

Process producer;
Begin
await "begin producing”®;
Repeat
For i := 0 to N - 1 Do Begin
produce (item[il);
write item[i] to buffer and signal "item[1]
written®
End;
await "end phase” and read failure_at from

consumer status;

37

{if item[x] was over-written before the consumer
could read it, then failure at = x. If the consumer
could fetch all items, then failure at = N, and the
following for-loop will be skipped.}
For i := failure at to N - 1 Do Begin {recover
from failure if any}
write item[i] to buffer and signal "buffer
full”;
await "buffer empty”
End
Forever
End;
Process consumer;
Begin

signal "begin producing”;

Repeat
item# := 0;
Repeat
await "item[i] : 1 =2 item# written” and read
item;
If i = item# Then Begin {no failure this
time}

consume {(item);

38

item# := (item#+1)
End
until (item# = ©N) {phase completed without

failures} or (i > item#); {there was a failure}
write item# to consumer status and signal "end
phase”;
For item# := item$# to N - 1 Do Begin {recover
from failure if any}
await "buffer full" and read item £from
buffer;
signal "buffer empty"”
End
Forever
End;
Performance Analysis
This section presents a derivation of the optimum balance in terms of the
speeds of the produce, consume, shared read and shared write
operations.

Assumptions

o Processes interact only through their use of shared variables. In particular,
the "write and signal” statement is implemented by a write-access to shared

memory and the "await and read” statement is implemented by a sequence

39

of one or more read-accesses to shared memory which terminates when the

awaited condition is detected.

o All operations other than a read or write access of shared memory,
produce and consume take negligible time in comparison, and can be

ignored in the analysis.

o If aread and a write to a shared variable overlap, the write is not affected in
any way. The read fails, but takes the same amount of time as a successful

read.

o A concurrent read or write takes the same time as a read or write to a single
variable.

Notation
N denotes the number of produce operations in each phase, and serves as the
measure of optimism. The subscripts p, ¢, w and r denote the operations
produce, consume, write to shared memory and read from shared
memory respectively. T, P and C with appropriate subscripts denote time,
actions of the producer and actions of the consumer respectively. For
example, Tp denotes the time taken by a produce action and Pw denotes a
write action taken by the producer.

Analysis
Timing diagrams are employed in this analysis to depict the behavior of a

producer and a consumer during an optimistic phase. The producer repeatedly

40

produces an item and writes it to the buffer. The consumer repeatedly attempts
to read a buffer until it succeeds— i.e., the read does not overlap a producer's

write and the required item is read— then consumes it.

The first step is to establish the domain over which any protocol employing
optimism can not be guaranteed to perform better than the pessimistic protocol.
Intuitively, if produce operations are fast WRT read operations, optimistic
approaches are unlikely to be suitable because an optimistic producer would
begin to overwrite the buffer before the consumer had a reasonable chance to

read it. This intuition is supported by figure 4, which is a timing analysis of:

condition 1:— Tp < 2Ty

T0 TO T 1 T
Producer P Y P P
Tr T
Consumer S - B
Figure 4

Here, the optimistic producer writes item[0] to buffer in time frame T0,
produces item[1] in time frame Tpl and writes it to buffer in time frame Ty 1.
Two successive attempts by the consumer to read item[0] fail, the first because

its time frame overlaps the end of Ty0 and the second because its time frame

41

overlaps the beginning of Ty 1. Subsequently, item[0] can not be read because

the producer has already begun to overwrite item[0] with item[1].

It follows from figure 4 that if any optimistic protocol is employed when
condition 1 holds, the consumer may miss the very first production, thereby
necessitating the repetition of the entire phase. Therefore, under condition 1,

the pessimistic protocol is optimal.
Figure 5 is a timing analysis of:

condition 2:- Tp 22Trand Tw + Tp 2 T+ Ty

Case 1
TO TO T1 T1 T2
Producer d - E— P Pttt 4 B
T T T T T
CONSUMET « = = = = = = = = = RSN A . oLl
Case 2
TO To T T T2
Producer P AR A P ol P e
T T T T
CONSUMET = = = = = = = = = = o el i S e
Figure 5

In case 1,Tp+TWzTc+2Tr. Incach,Tc+2Tr2Tp+TW2TC+Tr.

The timing analysis demonstrates that in either case, if an item is read by the

42

consumer within time 2Ty after it is written to the buffer, it will be consumed

no later than time Ty after the next item is written to buffer. This in turn
guarantees that the next item will be read within time 2T after it is written to
the buffer. Since the use of the "begin producing" signal at start-up ensures
that the first item produced will be read within time 2Ty after it is written to the
buffer, a produced item will not be missed regardless of the chosen level of

optimism. Therefore, under condition 2 unbounded optimism is optimal.
Figures 6 a and b are timing analyses of:
condition 3:- (Tp 2 2Ty) and (Tw + Tp < Tc+ Tr)

As before, at start-up, the "begin producing” signal ensures that the
consumer reads the first item within 2Ty after it is written to buffer. Thus, the
lag between the completion of the first write to buffer during an optimistic
phase and the completion of its successful read (referred to as "the lag" in
subsequent paragraphs) is at most 2Ty. Figure 6a demonstrates that the start of
the last successful consume may lag the completion of the corresponding write
by at most Tp. Therefore, during the remaining N-1 produce-consume cycles

of an error-free optimistic phase, the lag may grow by no more than Tp - 2Tr.

43

The consumer will miss This write begins before the
this item. previous item is read.
T T
w p Tw
Producer g & &
TC Tr
Consumer > -
Figure 6a

It can be verified from figure 6b that the lag increases by the amount Tc +
Tr - (Tw + Tp) during each produce-consume cycle. Therefore, during the
final N-1 cycles, the lag grows by (N - 1)(T¢ + Tr - (Tw + Tp).

lag for the last
successful

produieyoglaensumel The consumer will miss This write begins before the
: this_itemn. previous itern is read.
T T PT / T T
Producer—-~—ap 2 - " ot
1
‘[; 1 T Tr
CONSUMEr » = = = = = = = = — < B>
Figure 6b

To summarize, for the first produce-consume cycle, the lag between the
completion of the producer's write to the buffer an the consumer's successful
read from buffer is at most 2Ty, For the optimistic phase to be error-free, the

lag should not grow by more than Tp - 2Tr during the remaining N-1 produce-

44

consume cycles. The actual growth of the lag during those cycles is (N - 1)(T¢
+ Tr- (Tw + Tp))

Therefore, the optimal level of optimism is obtained by choosing the largest
N such that (N - 1)(T¢ + Ty - (Tw + Tp)) < Tp - 2Tr; Le,,

T-2T
p “x

<
N= T+T-T -T
c T P w

+ 1

Since the conjunct of conditions 1, 2 and 3 is identically true, it follows
that these choices are necessary and sufficient to guarantee optimal
performance.

Balanced Distributed Semaphores
Algorithms for message-based distributed systems can be, and often are
derived from their shared variable counterparts. The semaphore was initially
considered to be a primitive for shared variable systems. However,
pessimistic "distributed” implementations of it have been proposed [SCH82].
This allows one to apply semaphore-based protocols to message-based

distributed systems.

In distributed computing literature, the adjective "distributed" applied to
"semaphore” [SCH82], "critical section” [MAES5, RIC81] or "lock” [THO79]
has been used as a synonym for message-based implementations of these
primitives in which all processes of the system participate equally; i.e., the role

played by each process is identical. This description of "distributed” is not

45

quite the same as the description in Chapter 2, but is used in the following

discussion of balanced distributed semaphores and locks for the purpose of

maintaining consistency with past literature.

The three primitives, semaphores [DIJ68], critical sections [BRI73] and

locks [BER87] are very similar. The P operation on a semaphore corresponds

to the prelude to a critical section and the lock operation on a lock. The V

operation on a semaphore, the postlude to a critical section and the unlock

operation on a lock differ only as follows:

@

An implementor may presume that the matching prelude and postlude to
a critical section, and likewise, the matching lock and unlock operations
on a lock are performed by the same process. There is no such
presumption in the context of matching P and V operations on a

semaphore.

A semaphore or critical section does not have any property that
corresponds to the "mode"” of a lock. However, locks with modes can be
simulated using multiple semaphores if and only if the following condition
derived in [PAP81] is satisfied by the lock-modes:

The availability of a lock in any given mode depends only upon the state of

that lock.

This is not a very restrictive condition. In fact, lock-modes defined by a

compatibility matrix [BHG87] will always satisfy this condition.

46

Because of the similarities, adapting an implementation of one to implement

either of the others is quite straight-forward. In this section, a pessimistic
implementation of distributed critical sections is adapted to implement
distributed semaphores. The resulting pessimistic implementation is then
generalized to a balanced spectrum. Finally, the relationship between the
characteristics of the distributed system and the optimal balance between
optimism and pessimism is analytically derived. The next section presents a
similar treatment of distributed locks.

Maekawa's distributed mutual exclusion algorithm

Summarized below is an efficient pessimistic implementation of distributed
critical sections [MAES85] with a message overhead of O(\/N) for a system of

N processes.

With each process Tj, 0 <1i < N, is associated a subset of the processes

M;. These subsets have the following properties:

o The non-null intersection rule:— It is required that every pair of

these subsets have one or more common elements; i.e.,
V1i,j: (01, j<N) : Mjn M ¢.

« To distribute the overhead equitably among the processes, and incidentally,

to make the algorithm more symmetric, it is desirable that

« every process belong to about the same number of subsets and

47

«gvery subset contain about the same number of processes.

« Since the algorithm involves the exchange of messages between a process
and the subset of processes associated with it, it is desirable that the sizes

of the M; be minimized.

+ Since exchanging messages with a different process represents a greater
overhead than exchanging messages with oneself, a slight improvement in
the efficiency of the algorithm can be achieved if every process is a member

of its M.

For an optimal assignment of processes to the sets Mj; i.e., one which
minimizes the average number of processes in each set while satisfying the
above requirements, each set contains approximately VN processes and each

process belongs to approximately VYN sets. The exact result, derived in

[MAES85] is:

The number of processes required in each set to satisfy the above constraint
for a system of N processes is the smallest integer k which satisfies the

constraint k2 -k + 1 > N.

Initially, the state of every process is "unlocked". A process requests the
critical section by sending a "request” message to each element of its M. The
receiver of a "request” message responds with a "grant" message if it is

"unlocked.” Otherwise, the request is queued. Upon granting a request, the

48

grantor becomes "locked.” When a request is queued, appropriate deadlock-

avoidance action is taken. The reader is referred to [MAE8S5] for details
pertaining to avoidance of deadlock and starvation. The process enters the
critical section after receiving a "grant" message from each element of its M.
When the process leaves the critical section, it sends a "release” message to
each element of its M. The receiver of a "release” message grants a queued
request if any; otherwise it becomes "unlocked".
The Distributed Semaphore Algorithm
This balanced implementation of distributed critical sections can be adapted to

implement distributed semaphores as follows:

A P operation is identical to the prelude to a critical section except that after
receiving all the needed "grant" messages, the process sends a "commit”
message to each element of its M. The receiver of a "commit” message

becomes "committed” to the sender.

Definition 0:— A process Tip has completed a P operation if "grant”

messages are received from all elements of My,

If the process Ty performing a V operation is the same process 7p which
completed the last P operation, it proceeds exactly as in the postlude to a
critical section. Otherwise, the V operation is performed in two phases. In the
first phase, Ty is identified. In the second phase, "release” messages are sent

to the elements of Mp.

50

complete a P operation, the elements of Mj N Mz should first become
runlocked". From the non-null intersection rule, at least one process should
first become "unlocked". Since only a completed V operation can cause a
process to become "unlocked”, at least one V operation must be completed

between two completed P operations.

QED
femma 1
All "committed" processes are committed to the process which last completed a

P operation.
Proof by induction:

Basis:— lemma 1 is true at all times up to the completion of the first P

operation.

Proof of basis:— From lemma 0, no other P operation can be concurrently
completed. A process can only become committed to one which has completed
a P operation. Therefore, before the completion of the second P operation,
any committed process can only be committed to the process which completed

the first P operation.

Hypothesis:— lemma 1 is true at all times up to the completion of the jth p

operation.

51

Proof obligation:— lemma 1 is true at all times up to the completion of the

(i+1)th P operation.

Proof:— From lemma 0, at least one V operation must intercede between
the completion of the (i-1)th and the ith P operation, say by processes Tipo and
Tp1 respectively. Consider the first such V operation to be completed by

some process, say Ty.

1) From the description of the P operation, all elements of Mpp become

committed to T after the completion of the (i-1)th P operation.

2) From the induction hypothesis, a process can not be committed to any
process other than Tpo between the completion of the (i-1)th and the ith p
operation. Further, since only an element of My can be committed to Tpo,

non-elements of Mpg are not committed to any process in this time-frame.

3) From the non-null rule applied to Mpo and My, Tty will "identify" Tipo

in phase 1 of the V operation.

When 7y completes its V operation, none of the processes are
"committed”. No process can become committed before the completion of the

ith P operation.

52

Between the completion of the ith and the (i+1)th P operation, a process
can only become committed as a result of the ith P operation; i.e., a process

can only become committed t0 Tpj.

QED

Theorem
The distributed semaphores algorithm is correct.

Proof obligation:— The completion of one V operation is necessary and

sufficient between the completions of two successive P operations.

Proof:— Lemma 0 proves that the completion of one V operation is

necessary between the completions of two successive P operations.

To prove sufficiency, let there be only one V operation, say by process Tty
after the completion of a P operation by process mp. The new proof
obligation is that the V operation will be completed, and subsequently, all
elements of Mp; i.e., all processes "locked” by mp will become "unlocked",

thereby completely reversing the P operation.

Since mp completes the P operation, all elements of My will eventually
become "committed”, and can not cease to be "committed"” except as a
consequence of the V operation. From the non-null intersection rule applied to

M, and My and lemma 1, 7ty will "identify"” mtp in phase 1 of the V operation,

53

and therefore, in phase 2 of the V operation, all elements of Mp will become

"unlocked".

QED

Generalization to balanced protocols
A process optimistically passes a semaphore if the first t of k responses to its
“request” message are "grant”" messages, where k is the number of elements in
its set M (defined earlier) and t is a number between zero and k which
determines the level of optimism at which the protocol operates. If any of the
first t responses is a "blocked" message, the process behaves pessimistically.
Thus, the parameter t defines the level of optimism. A process which
optimistically passes a semaphore "detects a false start” if any of the k -
remaining responses to its "request” message are "blocked” messages. To
compensate for its incorrect action, the process "rolls back” to its state before
passing the semaphore and waits for all remaining requests to be granted. If,
during the interval between the optimistic passing of the semaphore and the
detection of the false start, messages were sent to other processes, thereby
possibly compromising their states, they must be rolled back to their state prior
to receiving those messages. These processes may in turn cause others to
whom they sent messages to roll back. Techniques for coordinating the roll-
back of a system of processes to a previous consistent state are discussed in

[JEF85, WOO080, RUS80, STR85, KOO87, JOHSE]

Analysis: choosing the best balance

54

Consider a distributed semaphore in a distributed system of N processes.
Quantities k and t used in this analysis are defined in the previous paragraph.
Let r be the average rate at which each process performs P operations on the
semaphore and | be the average length of the period during which a request
blocks the semaphore at that process. "Request” messages are generated at the
average rate of k-r-N and each process receives "request” messages at an
average rate of k-r. Therefore, the fraction of time during which a semaphore
is blocked at a process is p-k-r. For brevity, let B represent this quantity.
Assuming that P operations on the semaphore are independent random events,
the probability that a semaphore is blocked at a process at the instant a
"request” message is received is B. Therefore, the response to a "request”
message will be a "blocked” message with probability B and a "grant” message

with probability (1 - B).

For a process to optimistically pass a semaphore, the first t responses to its
"request” messages must be "grant” messages. This optimistic decision will
turn out to be correct if all remaining k - t responses are also "grant" messages
and wrong if at least one of the remaining k - t responses is a "blocked”
message. The probability that the first t responses are "grant” messages is (1-
B)t. The probability that all the remaining k - t responses are also "grant”
messages is (1-B)(k -t). The probability that at least one of these k - t
responses is a "blocked" messages is (1- (1-B)(k - 1)) Therefore, the

probability that the process optimistically and correctly passes a semaphore 1s

55

(1-B)t(1-B)(& - ©) = (1-B)k. The probability that the process wrongly passes a

semaphore is (1-B)t(1- (1-B)(k- 1) = (1-B)t - (1-B)k.

Let E(t) represent the average time a process must wait to receive t of the
responses to its "request” messages. Every time a correct optimistic decision is
made, the average time saved is (E(K) - E(t)). Let the expected time lost to a
wrong optimistic decision be W. The expected time gained per P operation, T,
is (the probability of a correct optimistic decision times the average time saved
when a correct optimistic decision is made) minus (the probability of a wrong
optimistic decision times the average time lost to a wrong optimistic decision);

ie.,
T = (1-BYK(E(K) - E(1) - (1-B)t - (I-B)OW oo, (1)
or, since B is an abbreviation for kT,
T = (kK EK) - E@D) - (1-uken)t - -pknBW.....(2)

The optimum balanced protocol corresponds to the choice of t from the
range O to k which maximizes T.

Example
As an example, consider the case where a process needs to "request” 9 other
processes to pass a semaphore. This corresponds to an implementation of a
distributed semaphore on a system of 91 processes. Round-trip message

delays are assumed to be exponentially distributed. All time units are

56

normalized with respect to an average message delay. The range of values of

recovery costs used in this and a later example are chosen to best highlight the
transition of the optimal from optimistic through balanced to pessimistic
sequencing. Data on recovery costs encountered in real-world systems was

not obtainable despite our best effort.

Assuming a round-trip message delay is exponentially distributed with
mean m, the expected time for the arrival of t of k responses is given by the

expression:

This expression was derived using Mathematica [WOL88], a symbolic

mathematics software package.

The analysis of this example is summarized in figures 7 and 8. The
optimal balance and the improvement it offers over the pessimistic protocol

were computed for a range of operating conditions.

Figure 7 is a tabular representation of the results. Its columns from left to
right represent increasing values of the expected cost (in terms of message
delays) of recovering from an incorrect P operation. Its rows from top to
bottom represent decreasing availability of the semaphore, where availability is

the fraction of time a semaphore (i.e., not just one, but all the replicas to which

57

requests are to be sent) is unblocked, and equals (1-pk-r)k. The two
numbers in each cell represent the optimal balance, t and the average time

gained per P operation relative to the pessimistic protocol, T.

']

[2In3nj

00+200°0 6 100490070 6] 00+20070 6 100+200°0 6 {00+300°0 6 1 00+200°0 6 1 00+800°0 6 | 00+900°0 6 0
00+200°0 6] 00+200°0 6 100+200°0 6120-9%6" ¥ 8 1 20-9G6°8 Lito-e82°1 941T10-2%9"1 GETI0~-2p6° 1 74 S0 0
00+900°0 6 100+200°0 6l20~2L0°¢G gl10~862"1 L }10-861°¢C 9 1T10-9E0°¢ Gl10-8pL°¢€ 7 §I0~96E" ¥ Z °0
00+200° ¢ 6 1 00+200°0 6 j10~-202°1 81 T0~-9¢6c¥F "¢ L 110-818°¢ 3]110-980°6 ¥ 1T0-897°9 Z}110-8C€T L 0 ST 0
00+800°0 6} 00+200°0 6| 10~-266"1 8]10~908°¢C L]110-999°¢ SlT0~®pE" L ciT0-©o98°8 TE00+900°T 0 20
00+200°0 6] 20~9LE L 8110-888°¢C L]T10~8TP G 9 §10-20L"L 71 10~-998°6 Z100+9LT 1T 0100+962C" 1T 0 Ge o
00+200°0 6 1T10~809"1 g 110-962° ¥ L]10-2T2" L 9 lo0+200°T 7 J00+892" T T]00+®LY° 1 0 §00+96G6° T 0 £€°0
00+800°0 6]10-2L6"2 gi110-96L"¢C L}10~99C"6 G loo+292°1 c100+89G" T o joo+eLL"T 0 loo+tess° T 0 SE° 0
00+®00°0 6 | 10~919°¢C g] 10-8LE" L L 100+85T T G J00+9pG° T Zioo+e88° 1T 0lo0+2L07C 0joo+®LT"C 0 70
Z0~-805"y 8 110~9ZL°% g} 10-8Ly 6 g 100+8T1y" T 7 | 00+9G8" T T]00+®61°¢C 0 joo+8LE" 2 0 joo+e9p e ¢} o8 /0]
T0-908"1 81 T10~LF"9 LYQO+BLT T 9 100+80L" T £ j00+961°C 0100+971G°¢ 0}00+®L9°¢C 0 joo+egL ¢ 0 G0
10-29¢°¢ 81 T10-90G6'8 L J0o0+9ER " T S loo+®Z0°C 2 j00+8pG" 2 0]100+2Z8° ¢ 0100+8L6°C 0 joot+eh0 g ¢ GG 0
T0-928° % 8 100+290°1 L10o+2EL" T ploo+ege e T300+988°C 0 j00+2F1°€E 0100+®LC"€E 0§ 00+2€E"€ 0 9°'0
T0-®Lp "9 8 100+29¢" 1T 9 100+980°¢ £ j00+e8L°C 0 |oo+ecT € 0 00+2Gh ¢ ¢ j00+8L6°¢ 0 foo+eZo°¢ 0 G9°0
10-8L1°6 L 100+269° T G loo+egr 2 Zloo+o61€E 0]00+98G°¢ 0joo+aLL € 0100+988°¢€ 0 §00+®T6° ¢ 0 L0
00+®pC 1 L 100+960°C 7 100+9296° ¢ 0 §00+809°¢€ 0 100+926°¢€ 0]00+980° % 0 j00+99T" ¥ 0 §00+902" Y 0 GL*0
00+8.9° T 9. 100+8T9°C £ joo+e06°¢ 0]00+®T0" ¥ 0]00+®LT ¥ 0]00+20%° ¥ 0 100+999% " ¥ o3 OIS RR=1-3 7" 0 8°0
oo+®pC 2 G loo+®LC € 0]00+250° 0 o loo+sEy ¥ 0 }00+2C9" ¥ 0 100+2TL Y 0]00+28L" Y 0 Jo0+o6L" P 0 G8°0
00+860° ¢ Z100+8L0" Y 0]00+98G ¥ 0joo+®p8" ¥ 0 §00+996° % 0j00+e€0" G 0100+980°¢ 0 fo0+e80°g 0 60
Qo+ege° o foo+s9gp 0 jo0+eCT S 0100+2G2° G 0 100+971€°G 01 00+9PE" G 0 100+89€°¢ 0 100+9LE"G 0 G670
00+®99°¢g 0 joo+e99°g 0}00+989°"¢ 0 j00+299°G 0 joo+®89°G 0j00+®99°¢ 0 j00+889°¢ 0 100+989°¢ 0 T

AaTTTQRTTRAY
8h 0¢ P2 0T [N 9G¢'¢ 81 p9°0 2e° 0 9T°0 $3800 08y

59

g ainbi4

ploysaiys onsiwissed 4

PIOYS8IY} OUSIWNCO -

1500 A1onooay

i
1
8
&
4
R A L Rty

§ i 1] i
e L L e L R R] [e s il
1 1]]
B] n]
] § § §
IIIII s il Al R ol il
] B 1] i i § 1
] 1 ¥ L | 1 B]
] i]]] [} i
Boon oo [L L) B o L R o
[] il H i 8 i
]] B i i i i
]] ¥ 1 1] B
Booos oo oo om oom i se owowm e of oo oemowmome L” SRl e g o= e o s R ol Bt of

H
i

1 ¥ i i i 13 1
oo oo oo owe R Y L e B v oo o ol B]
L i 1] 1] 8
] 1 E] H
¥]] i H i
R L e ol ou o m om wm | . T L L K TR
i i ¥] 1]

B L ¥ i g &
[LU L LR R | R B o we
i H ¥]] 1]

02 2°0L 2L'S 952 82k ¥9°0 20 910

0

L0
¢’ 0
€0
¥ 0
S0

9'0

[N s i

<L > ®

60

The graph of figure 8 is derived from the tabulated data in figure 7. The X
and Y axes of the graph correspond to the columns and rows of the table.
Extreme optimism is optimal in the region above the optimistic threshold and
extreme pessimism is optimal in the region below the pessimistic threshold. It

is in the region between these lines that balanced protocols are optimal.

The following conclusions can be drawn from the results obtained for this

example:

o Higher availability of the semaphore and lower recovery cOsts tend to favor
more optimistic protocols. Likewise, lower availability of the semaphore

and higher recovery costs tend to favor more pessimistic protocols.

o For this example, the introduction of the optimal level of optimism typically
saves a few message delays— about 0.5 to 5— per P operation. This
suggests that the introduction of optimism can only be effective in
situations where message delays have a significant impact on performance.
Balanced Distributed Locking

The lock, a popular synchronization primitive for database concurrency, can be

viewed as a simple adaptation of the semaphore as described in the previous

section. Lock and Unlock operations on a Lock data-type correspond to the

P and V operations on a Semaphore data-type. The adaptation consists of a

61

generalization, the introduction of "lock modes", and permits a specialization

by allowing the implementor to assume that every Lock operation will be

matched by an Unlock operation from the same process.

The primary distinction between the Lock data-type and the semaphore
data-type is the notion of lock modes. The reader may recall that the state of a
semaphore consists of a queue of blocked requests and a binary variable of
type {unblocked, blocked}. For a lock, instead of the binary variable, there is
a set-valued variable. The elements of this set are pairs <M, P> where M is a

lock mode and P is a process (or transaction) which holds the lock in mode M.

Several sophisticated locking protocols require an additional class of
operations on a lock called lock conversions. The result of a successful
lock conversion is that the holder of a lock in some initial mode prior to that
operation ends up holding the lock in a different final mode. Lock conversion
is discussed in detail in [BER87]. A hurdle to adapting an implementation of
balanced replicated semaphores to implement balanced replicated
locking is that there is no simple relationship between a lock conversion
operation and the standard P, V operations on a semaphore. To overcome this
hurdle, a simple and reasonable alternative to classical lock conversion is
proposed below. In the interest of simplicity, this discussion is limited to
protocols which obey the two-phase rule.

Classical Two-phase locking with lock conversion

62

The following are the classical rules for two-phase locking [ESW76] and lock

conversion [GRAT75].

Rule 2PL:— A transaction shall not acquire any lock after it has

released a lock.

Rule CLC:— A transaction wishing to convert a lock it holds in mode
My to mode Mj shall instead convert it to some mode
M3 such that M3 is incompatible with any mode which
is incompatible with either Mg or M1. An example of

the application of this rule is in [BER87], section 3.9.

Such an M3 is said to be stronger than both Mg and Mj. For efficiency,
the weakest M3 which conforms to Rule CLC must be chosen. A correct
protocol which imposes Rule 2PL remains correct if it allows lock

conversions according to Rule CLC during the first (locking) phase.

A formal theory of lock modes and the following generalization of two-
phase locking are presented in [KOR83].

A Generalization of two-phase locking
The combination of rules 2PL and CLC is actually stronger than necessary.

They may be combined and weakened to the following:

Rule G2PL:— A transaction shall neither acquire nor strengthen a lock

after it has either released or weakened a lock.

63

An alternative to lock conversion

Instead of allowing lock conversion, it suffices to allow a transaction to hold
multiple locks on a datum, and note that [BER87] no two locks held by the
same transaction can conflict. The equivalents to strengthening and weakening
a lock is acquiring additional locks in different modes on the same datum and
releasing some of the locks held on the datum respectively. With this
simplification, rule 2PL is all that is needed. Because the need for lock
conversion is eliminated, adapting the distributed semaphore algorithm to

implement distributed locking becomes straightforward.

If the protocol designer is pre-assigned a set of lock-modes and a
compatibility matrix which may not altered, this scheme admits more schedules
than Rule G2PL because the weakest available mode to which a lock can be
converted may be stronger than the combination of lock modes required by a
transaction.

Adapting the implementation of Balanced Semaphores
Distributed semaphores may be adapted to implement distributed locking as
follows:

The Lock operation
The "request” message specifies the mode in which the requestor wishes to
hold the lock. A request is granted (by responding with a "grant” message)
when no other transaction holds the lock at that process in a conflicting mode.

A consequence of the alternative to lock-conversion described earlier is that the

64

transaction which originated the request may already be holding the lockina

conflicting mode. This situation does not prevent the request from being
granted. A transaction is allowed to hold a lock in an arbitrary number of
conflicting modes at the same time. In other words, two requests from the
same transaction will never conflict, even if their modes conflict. There is also
no need for "commit" messages.
The Unlock operation
Phase 1 of the V operation is not required, since the initiator of the unlock is
also the initiator of the matching lock. A "release" message specifies which of
the modes currently held on a lock should be released. Blocked requests if
any, which do not conflict with the remaining granted requests are granted.
Adapting the analysis of Balanced Semaphores
The analysis leading to the determination of the optimal balance for a replicated

semaphore is also valid for a replicated lock with the following adaptation:

+ 1In the place of the parameter A, which denoted the availability of a
semaphore, use one of a family of parameters Al where i denotes the
item being locked, m denotes the mode in which the lock is being

requested, and Al denotes the availability of item i in mode m.

+ Assuming a simple model of transaction behavior, a more realistic model of
recovery costs can be constructed. In the case of the semaphore, recovery-
cost was modelled as a random variable with a time-invariant mean.

Database systems typically employ abort-and-restart as a recovery

65

strategy. Also, the extent of modifications to the database, and hence, the

cost of undoing these modifications when required by an abort, increases
with the progress of a transaction. To reflect this fact, the analysis of the

semaphore is refined as follows:

o In the place of the parameter W, which denotes the expected time-cost
of a wrong optimistic decision, use one of a family of parameters, Wy,
where p is the number of pages that will have to be restored, and Wy is
the time-cost of recovery if p pages have to be restored. Further, if

W), is proportional to p, we have Wp = Wip.

With these modifications to the analysis, the expected time gained per lock

operation is given by the equation:
T = (Al K(EK) - E(t)) - (Alp)t- Alg))Wp.. 4

Finally, as with semaphores, the optimum balanced protocol corresponds
to the choice of t from the range 0 to k which maximizes the above expression.
Example
To demonstrate the application of the above analysis, the optimal balance and
the performance improvement it achieves is determined for a system previously
evaluated in a simulation study of distributed databases by Carey and Livny

[CARSSE].

The system simulated in this study has the following characteristics:

66

o pumber of sites===§

« size of the database:— 8 groups of 3 files each. Each file has 800 pages.
Locks are obtained at the page-level.

« work-load:— 50 transactions per site. There are 50 terminals per site, each
executing a transaction. Upon termination of a transaction, another one is

immediately initiated at that terminal.

« transaction profile:— 18 pages are locked by each transaction, all of which
belong to the same group of files. Each lock obtained is a write-lock with

probability 1/4 and a read lock with probability 3/4.

These are the characteristics relevant to this example. In addition to these,
the original study also models the resources at each site; one CPU and two
disks. The variables of the study include the think-time between lock requests,
the CPU time required to send or receive a message, locality of data and the
degree of replication. The simulation varied these values to achieve various
levels of resource contention, and compare the throughput achieved using a
wide range of concurrency management protocols. In fact, the effects of
resource contention was the focus of the original study. Nevertheless, their
parameters were adopted for this example, since they represent a reasonable

model of a distributed database and its workload.

67

In the interest of simplicity and to keep the example focused on balanced
sequencing, the resource-contention aspects of the study are ignored in this
analysis. The database is assumed to be fully replicated, and it is assumed that
there are enough resources to eliminate resource contention. The issue of
message transition delay is ignored in the simulation study, but, as can be seen
from equation (4), it is important in the context of this problem. It is therefore
assumed that, as in the distributed semaphore example, the round-trip message

delay is exponentially distributed.

Since all the pages accessed by a transaction belong to the same group of
files, in the absence of resource contention, there is no interaction between
transactions accessing different groups of files. Therefore, one need only
study transactions accessing one of the eight groups of files. Further, the
notion of a file as an element of a group can be dropped, and a group can be

considered to consist of 2400 pages. So, an equivalent system would be:

¢ npumber of sites:— 8

e size of the database:— 2400 pages.

» work-load:— 50 transactions (50 transactions per site * 8 sites / 8 groups

of files)

68

« transaction profile:— 18 pages are locked by each transaction. Each lock
obtained is a write-lock with probability 1/4 and a read lock with

probability 3/4.

Assuming that the number of locks held by a transaction progresses
linearly with time, the average number of locks held by each of the 50
transactions will be 9. (18/2) Thus, the average number of locks held by all 50
transactions will be 450. (9%50) Of these, 112.5 (450/4) will be write locks
and 387.5 (450*3/4) will be write locks. Given that read-locks are shared and
write-locks are exclusive, the availability of a page is determined to be
approximately 0.82 for write-locks and 0.95 for read-locks. At the pessimistic

end-point, a lock should be acquired at four sites to lock a database entity.

One parameter used in the derivation of optimal balance can not be
determined from the data used in the Carey-Livny study, and that is the cost of
recovering from an incorrect optimistic decision. For the purpose of this
example, this value was varied from 0 to 20 time units, since this range of
values best demonstrates the transition of the optimal protocol from optimistic
to pessimistic. As mentioned earlier, all time units are normalized with respect
to the average message delay. The optimal protocol for each of the lock-modes
and the average reduction achieved in transaction run-time is tabulated as a

function of the cost of recovery in figure 9.

Recovery Cost OBWL OBRL

RTRT

II

54.3

49.3

44.9

41.4

38.1

35.1

32.2

29.2

26.3

23.9

22

20.2

18.7

17.5

—L—L.A—Lw -
ololZlalele~|olo|s|wlp|-io

14

16.4

15 I

15.2

16 I

14

17 I

12.8

18 |

11.6

19 I

11

Bl D BRI BRIOVIWIWIWIWIN]—=]OIO
WIWINNINDINDINDINNIDINN == -OlOjOIO|O|OjOo|o O

20 |

10.4

OBWL = Optimal Balance for Write Lock
OBRL = Optimal Balance for Read Lock
RTRT = Reduction in Transaction Run Time

Figure 9

69

70

For this example, balanced locking is optimal for write-locks if the average
recovery cost is 9 message delays or less. For read-locks which exhibit greater
availability, (95% vs. 82% for write-locks) optimistic or balanced locking
remains optimal for recovery costs as high as 20 message delays.
Unfortunately, hard data on typical recovery costs could not be obtained
despite our best effort. The data shows that reduction in transaction run-time is

quite sensitive to increase in recovery cost.

71

Chapter 5
The Echo Phenomenon

In this section, a phenomenon called the "echo™ is identified whereby a single
timing fault under an optimistic protocol can result in extreme and potentially
permanent degradation of a system's performance. Even under more benign
conditions, where such a permanent degradation does not arise, it is
demonstrated that this phenomenon may exact a significant performance cost.
The manifestation of the echo phenomenon is illustrated with a case study
using a time warp [JEF85] protocol. Finally, a technique for eradicating
echoes is proposed.
The premise: why optimism is expected to work

A necessary criterion for the employment of optimism to enhance performance
is that faults occur with sufficiently low probability that performance
degradation resulting from wrong optimistic decisions does not offset
performance gained because other such decisions happened to be right. To
justify the incorporation of optimism in a protocol, it is typically established
that given the timing characteristics of the processes and a correct global state,
the probability that each subsequent optimistic decision results in a timing fault
is some sufficiently low value. The expected performance is then estimated

based on this low probability of a timing fault.

72

The pitfall: why optimism may not work

The fallacy in this reasoning is the assumption that the timing relationship
between processes are not disturbed by the occurrence of a timing fault. In
fact, this may not be the case, since some of a process’ routine activity will be
suspended while recovery is in progress. This disturbance can increase the
probability of a timing fault elsewhere in the system, resulting in additional
timing faults, and hence, additional disturbances of the timing characteristics.
In the worst case, these "echoes" of timing faults could be self-perpetuating,
resulting in an average rate of progress which asymptotically approaches zero.
Even if the echoes do not self-perpetuate, they could lead to significantly
poorer performance. However, as proven in [JEF85], a system employing a
time warp protocol will continue to make some progress regardless of the rate
at which faults occur.
Example: the Time Warp protocol

This section illustrates the echo phenomenon using a network of processes
sequenced using the Time Warp [JEF85] protocol. A typical application for

this protocol is distributed simulation. This problem has been chosen because:
it is currently of interest to a large body of researchers

 optimistic [JEF85] and pessimistic [CHA81] protocols have been proposed

and

73

+ proposed protocols are relatively easy to analyze partly because of their

operational simplicity.

This study will demonstrate that for cyclic networks of processes, the echo
phenomenon can result in serious performance degradation. For systems
consisting of simple cycles, the degradation is quantified—analytically for a
cycle of two nodes and numerically for larger cycles.

virtual time and time-warp
The concept of virtual time and the time-warp protocol are described in
[JEF85] and summarized in chapter 6. An understanding of this material is
required for the rest of this chapter.

The echo in a ring

Consider the two-process system of figure 10. If the time-warp protocol is to
perform well, large discrepancies between the processes’ virtual times should
be unlikely. To isolate the effect of the echo, it is therefore assumed that the
processes progress at the same rate. Under that assumption, one is inclined to
expect that large timing faults; i.e., large discrepancies between a process'
virtual time and the time-stamp of a message it receives, are infrequent. The
following analysis will show that a single small timing fault can result in a self-

perpetuating series of progressively larger faults.

74

figure 10

Consider the receipt of a message time-stamped T from 71 by 7 when its
virtual time is T+, resulting in a timing fault of size d. Suppose that while
g rolls back to T, m1 advances to T+d. Because the processes progress at
the same rate, this discrepancy will persist until 71 receives a message from
7. At that time, 711 will experience a timing fault of size d. Thus, the
discrepancy between the virtual times of 1t and 71 will oscillate, causing a

perpetual series of timing faults of size 0.

However, if roll-back were faster than progress, the above oscillation will
be damped. Suppose that while one process rolls back by d, the other can
only advance by some f(d) < d. Then, each echo will reduce the discrepancy,
thereby damping the echo. Likewise, if f(d) > d, the oscillation will build up
unboundedly. For more complex networks, the necessary and sufficient
condition on f that ensures damping of echoes could be more restrictive and

harder to determine. At any rate, even a gradually damped echo can exact a

75

high performance cost from a timing fault. A later section describes a protocol
which ensures the efficient eradication of echoes regardless of f.

Quantifyving echoes

The analysis of the echo comprises the following steps:

1) Determine the effect of a message exchanged between processes as a
function of their progress and recovery rates, the initial discrepancy in their

virtual times and the message delay.

2) Using 1), quantify the consequences of the echo phenomenon for a ring of

{WO processes.

3) Generalize 2) using numerical iteration over 1) to analyze an arbitrary-sized
ring of processes.

the effect of ome message

Consider two processes, m(Q and 71, in an arbitrary network. Figure 11
depicts their progress in virtual time as a function of real time. Let P be the
nominal rate at which a process progresses; i.e., the rate at which it would
progress if it never had to recover. Let R be the rate at which a process
recovers. m denotes a message delay, the elapsed time between the sending of
a message and its receipt. d denotes an initial discrepancy between the virtual

times of the two processes.

76

D]
=
=
=
2
R
>
e(d)
VT VT2 m.P
0 9
VT
1

o/P | tr(d) Real
RT RT RI Time
0 1 2

figure 11

The sequence of events depicted in figure 11 are as follows:— At real time

RTQ, the virtual times are VTQ at ©g and VT at w1, with both processes

77

progressing at a rate of P virtual time units per real time unit and 7] 18 d

behind 7@ in virtual time. At RTQ,] sends a message time-stamped VT1
which is received by 7Q m real time units later at RT1 when the virtual time at
1t(is VT2. This causes 7(to roll back to virtual time VT1, the time-stamp on
the message, at a rate of R virtual time units per real time unit. The roll back is
completed at real time RT2 and m() resumes progressing at rate P. The time
spent rolling back, tr(d) and the final discrepancy in virtual times, e(d), the
"echo" of a timing fault of size d, can be computed using the laws of geometry
and the facts that the positive-sloped lines in figure 11 have a slope of P and

the negative-sloped lines have a slope -R. They are:

and

&) = %{a +m(P +R))

analysis of a 2-process ring

Consider the ring of two processes, mQ and 71, (figure 10) synchronized by
time warp. Suppose that initially, 7tQ is d behind 7] in virtual time of the two
processes. As described above, a message from 7() to w1 results in QY
spending time tr(d) recovering and T1 being e(d) behind w(.
Subsequently, a message from 71 to m() results in 7] spending time
tr(e(d)) recovering and () being e(e(d)) behind m1. Thus, the nth such

message will result in time tr(e™-1(9)) being spent on recovery.

78

From equations 5 and 6:

PP P n1times(d+m®+R))+mP +R)+ ...n-1 times) + m.P
(e @y = RRR =

After substituting X for P/R and Y for m(P+R):

_ X(X(X...n-1 times(@ + Y) + Y) + ..n-1 times) + m.P
B R

n-2

X" ey + X"+ L +X) + mP

The following observations may be made of equation (7):

» The contributions to the performance degradation of the initial discrepancy
in virtual time, 0, and the message delay, m, are mutually additive, and

hence, can be studied independently.

s If X <1, in the limit n—>oo, the contribution of d approaches 0 and the

contribution of m approaches a constant.

o If X > 1, the contributions of both terms are unbounded.

analysis of larger rings

The progression of echoes in rings of more than two processes was

numerically evaluated using equations 5 and 6. The asymptotic limit of the

79

echo as time progresses to infinity was determined by monitoring the

normalized first- and second- differences of its progression. Starting with a
ring where all processes have the same virtual time except for one which lags
behind by 0 time units, the asymptotic limits of the echo were determined as

follows:

Let 0j represent the size of the echo after it progresses i times around the
ring and e an arbitrarily small value. The echo is determined to have ceased to
grow when

9;- 9y

ai-l

<Eg

i.e., the normalized first difference is small and

0;-0;; <9;, -9,

i.e., the second difference is negative.

9;-9.1> %17 %2 is evidence that the growth of the echo is

unbounded. To avoid drawing conclusions from possibly transient behavior,
data about the first several propagations of the echo around the ring were

ignored.

The following conclusions were drawn from the preceding study:

80

 For a ring of N processes, the progression of the echo is bounded iff R >

(N - 1DP.

« Where the previous condition is satisfied, the echo asymptotically grows to

its limit of:

m.%(R +1D(N-1)

1-(N-1)%—

It is reassuring to observe that these results are consistent with the
analytical results obtained for the case where N = 2.

A solution: an echo-damping protocol (edp)
This solution was inspired by Dijkstra's paradigm of diffusing computations
[DIJ8O].

Outline
When a process senses an echo, it initiates a diffusing computation which

causes all processes to switch to their pessimistic protocol.

With all processes employing their pessimistic protocol, no additional
timing faults will occur. Eventually, all timing faults will be recovered from,
and the network will reach a stable state of freedom from timing faults which is

detected by the diffusing computation.

When this stable state is detected, processes resume optimistic operation.

81

Details

A process which senses an echo and is not already a participant in edp initiates
edp by appointing itself the root of an echo damping tree (edt). The edt is
assigned a unique identity. The protocol defines a total order, Q2 of edts based
on their identities. The choice of the unique identities and the total order is

discussed later in this section.

The process then sends an echo damping message (edm) containing the
identity of the edt to each of its immediate neighbors and switches to its

pessimistic protocol
The recipient of an edm processes it as follows:

» If the recipient already belongs to a "better"” edt in the total ordering €, it

ignores the message.

« If the recipient already belongs to the same edt, it "accounts for" the

sender, but otherwise ignores the message.

o Otherwise, the recipient joins the edt, appoints the sender as its parent,
switches to its pessimistic protocol, "accounts for" the sender and sends

the edm to each of its immediate neighbors except its parent.

A process which "accounts for" all its immediate neighbors can not have
any children in the edt, since a child never sends an edm to its parent. It

recovers from any timing faults it may have experienced, sends an edm to its

82

parent and removes itself from the edt. However, it continues to be

pessimistic unless it is the root of the edt.

When the root of the edt removes itself from the edt, it must be the case
that the network is free of timing faults. It initiates the resumption of optimistic
operation. The resumption of optimistic operation is straight-forward. The
initiator sends resume-optimism (ru) messages to all its immediate neighbors
and switches to its optimistic protocol. A recipient of ru who is already
optimistic ignores the message. Otherwise, the recipient sends ru to all its

immediate neighbors except the sender and switches to its optimistic protocol.

It remains to choose the total ordering Q2. The choice is an issue of
performance and does not affect correctness. Ideally, one would like the edt
which has spread the farthest to take precedence. This is likely to be the older
edt. This suggests identifying an edt with its creation time; i.e., the local time
of its root when it was created, and the identity of its root, to be used to resolve
identical creation times. The lower the creation time, the better the edt. Where

creation times are equal, the id of the root is used to determine the order in €.

The proof of correctness of this algorithm is similar to the proof of
correctness of the termination detection algorithm in [DIJ80] which employs

the same paradigm.

83

Chapter 6
Survey of Related Literature

This research rests heavily on a large body of literature spanning several
domains. The purpose of this chapter is to relate this research to the work of

others.

This chapter is organized in two sections. The "concepts survey" section
discusses the relevance of some concepts from literature to this research. The
"literature survey" section summarizes the contribution of prominent articles to
the development and establishment of the concepts discussed in the "concepts
survey'.

Concepts Survey
[KUC81] discusses a categorization of dependences among steps of a
program. Dependences in a program are treated as implicit properties of its
semantics and the paper deals with determining dependences at compile time
for the purpose of realizing the potential for concurrency in a sequentially
formulated program. In contrast, dependences are explicitly (and syntactically)
specified in our program notation. Further, in contrast 0 [KUCS81]'s five
classes of dependences, we need to distinguish between only three classes of

dependences.

84

Protocols for preserving dependences among steps of a program employ
some form of sequencing primitive. Primitives proposed for this purpose
include "atomic memory fetch”, "test and set", time-stamps, event-counts and
sequence numbers [REE79], semaphores [DIJ68] and extended semaphores
[AGE77], locks [ESW76] and broadcasts [SCHS82]. Of these, semaphores
and the closely related locks are the most widely used, and balanced

implementations of these are presented in chapter 4.

The paradigms underlying the implementation of distributed mutual
exclusion in [RIC81], distributed locking in [THO79] and distributed mutual
exclusion in [MAES85] represent a hierarchy of increasingly efficient
approaches to distributed decision-making. [RIC81] involves every process in
every decision, [THO79] involves at least half the processes and [MAES3]

involves about YN of N processes.

Balanced protocols employ logging and checkpointing to support the
detection of inconsistencies arising from the optimism in the triggering of
events and the subsequent recovery from those inconsistencies. This use of
the log bears a strong semblance to the use of logs in the Gypsy environment
[GOO1, 2, 3] for run-time verification of programs. The goals are different

but the approaches are comparable.

State restoration and recovery have been extensively studied in the context

of crash tolerance, but the techniques and some of the results on performance

85

are relevant in the context of recovering from computational inconsistencies.
[WOO80, STR85, KOO87, JOHS88] discuss implementation techniques,
[RUS80] treats the problem of avoiding cascading rollback and [CHATS,
CHAS81, GEL76] derive analytical results for performance.

[AGRS85] discusses the common overhead of consistency management and
crash recovery mechanisms and presents a case for integrating them. Balanced
sequencing is conducive to such integration since the logging and recovery
mechanisms serve both needs. Consequently, where crash recovery is a
requirement, the overhead associated with the implementation and execution of
the logging mechanism and the implementation of the recovery mechanism
need no longer be attributed to the potential for optimism in this approach to
consistency management, thus strengthening the case for permitting optimism.

Literature Survey
This section discusses those articles from literature dealing with concurrent
program schemata, dependence graphs, sequencing primitives and protocols,
state restoration and recovery and related performance issues which contributed
directly to the conceptual basis of this research.

Concurrent Program schemata
Of the numerous models of concurrent programs, that of [KAR69] closely
matches the one used in the discussion of a general-purpose balanced

sequencing protocol with two important differences:

86

1) The schema of [KAR69] models data as a set M of shared memory

locations, each of which contains a value. In its stead, we have data, a set

of <name, value, version number> associations. In effect, this approach-

. abstracts away the issues of data organization such as shared access vs.

replication and

o makes it convenient to discuss state restoration.

If it were necessary to explicitly deal with issues of data organization, one
may always do so by employing appropriate naming conventions. For
example, to explicitly represent a technique for updating a replicated datum, the
name of the datum may be extended to generate a unique name for each replica,

and the extended names used in the program.

2) The [KAR69] schema employs a function G which determines the
"outcome" of an event. This "outcome" corresponds to the O_Entry
created in SOT at the termination of an event. The difference is that the
domain of G is the invocation domain of the step in [KARG69] as opposed
to the total domain of the step in the general-purpose sequencer. The two
approaches can be proven equivalent. However, the approach employed in
the general-purpose sequencer seems to better reflect conventional thinking
in programming in that conditional branches are based on the state at the

termination of the previous step rather than on the state just prior to it.

87

Dependence Graphs
The first part of [KUC81] defines five classes of dependence relations (loop,

output, anti, flow and input) which have an interesting relationship to the three
classes (MM, MI and IM for Modifier-Modifier, Modifier-Invoker and
Invoker-Modifier) employed in the general-purpose sequencer. [KUCR81]
models "Fortran" programs consisting exclusively of assignment statements,
For loops and While loops as dependence graphs and discusses compile time
optimizations on such graphs. The interesting section in the context of this

research is section 2.2 which defines the classes of dependences.

The loop dependence relates a statement to a loop within which it is nested.
For this purpose, each loop is identified by a "header”, an "increment counter”
statement for For loops and a "compute predicate” statement for a While loop.
Directed arcs from each header to each statement in the loop (including headers
of other loops) represent the loop dependences. Since, in the context of the
proposed research, there is no occasion to subject loops to any special
treatment, this dependence relation seems unnecessary for the purpose of this

research.

The output dependence is a dependence between statements (not
necessarily successive) which modify the same datum. Output dependences

can be derived from MM, MI and IM dependences as follows:

88

An ontput dependence is a path in the dependence graph defined by the

regular expression (MM + MLIM).(MM + MI.IM)* where all arcs represent

the same datum.

The antidependence is a dependence from statements which invoke a datum
to those which subsequently modify it. Antidependences can be derived from

MM, MI and IM dependences as follows:

An antidependence is a path in the dependence graph defined by the regular

expression IM.(output dependence)* where all arcs represent the same datum.

The flow dependence is a dependence from a statement which modifies a

datum to the next one to invoke it. This is the MI dependence.

The input dependence is a dependence between two statements which
invoke the same datum. Since it does not represent a sequencing constraint, it
is not of relevance to this research.

Sequencing Primitives and Protocols
Distributed sequencing belongs to the more general class of distributed

decision making problems. Central to any decision mechanism are:

« A set of rules to map the knowledge of state onto decisions

o 1In a distributed system, a protocol for the dissemination of such

knowledge.

89

o If the decisions involve any optimism, validation and recovery mechanisms

to determine and recover from consequences of incorrect decisions.

"State" in the context of sequencing decisions is commonly termed "control

state".
Time and State in Distributed Systems

Several techniques applied to distributed computing employ time-stamps in
some capacity. [LAM78] discusses an artificial notion of time in the context of
distributed computation which preserves causal relationships. For sequential
processes communicating via FIFO channels, events within each process are
totally ordered in the sequence in which they occur. The only ordering relation
between events of different processes is that the sending of a message occurs
before its receipt. To ensure this, a process advances its clock if necessary
upon receiving a message. Any other orderings are those derivable from the
above. Further, by making time values at each process unique without
changing the relative order of events as described above (for example, by
appending a unique "process id" to the "time" at each process), a total order
consistent with the partial order defined above can be derived. The [LAM78]

ordering corresponds to the ordering defined in this proposal as follows:

« The proposed partial order of events of each synchronous component of
computation based on the events' use of data is consistent with (and

weaker than) Lamport's total ordering of events of the same process.

90

o If channels are viewed as (the only) data shared by processes with "send"

and "receive” as modifying operations on them, the proposed ordering
relationships between events of different synchronous components of
computation correspond exactly to Lamport's ordering relationships

between events of different processes.

[CHAS6] presents a notion of global state in the context of distributed
computing. The paper presents an algorithm for determining a global state of
the computation. By using distributed snapshots which represent such global
states as checkpoints, an upper bound of two checkpoints at each process
during validation and one during other times can be achieved. A snapshot is
initiated by any process which records its state and sends a marker on each of
its output channels. The receiver of a marker, if it has not previously
participated in the snapshot records its state, records the state of the channel as
empty and propagates the marker on its output channels. If the receiver has
previously participated in the snapshot, it records the state of the channel as the
list of messages received on that channel since the process recorded its state.
The set of process and channel states thus recorded constitute a distributed
snapshot which can serve as a check-point.

General purpose Distributed Decision Protocols
[SCHS82]'s protocol is a general purpose pessimistic solution for any
deterministic distributed decision making problem. The protocol works as

follows:—

91

« All relevant information is broadcast on time-stamped messages. All

messages broadcast from a site are received at other sites in the order in
which they are broadcast. Time-stamps are based on a Lamport-clock

[LAM78] mechanism.

 The recipient of a broadcast broadcasts acknowledgement of its receipt.

- The sequence of fully acknowledged messages at a process with no
intervening partially acknowledged messages represent the process’
knowledge of the state. All the process’ decisions are based on that

knowledge.

The basic idea is that the fully acknowledged message sequence develops
identically at each process. A state transition corresponds to an inclusion of a
message in this sequence. Since each process has an identical view of state
transition, this approach is in effect equivalent (in behavior, not in perform-

ance) to centralization of decision making.

[JEF85]'s protocol is a general purpose optimistic solution for any
deterministic distributed decision making problem. Adapting the protocol to

[SCH82]'s model of computation, the differences between the two are:—

» No acknowledgement of messages

92

o When a message is received with a larger time-stamp than that of previous

messages, it is optimistically assumed that no messages with intervening
time-stamps are assumed. The receipt of each such message represents a

state transition.

o When a message with a smaller time-stamp than that of the previous
message is received, rollback is initiated to the state prior to the receipt of
the earliest message with a time-stamp larger than that of the message just
received. Anti messages are sent to negate the messages sent since that

state.

o When an anti message is received, if the corresponding message has not
yet been received, the two annihilate each other. If the corresponding
message has been received, the receiver rolls back to the state prior to the
receipt of the negated messages and in turn, sends out anti-messages as
described above.

Database and Multi-programming Protocols

[REE79] formulates an abstraction of data which is central to the discussion of

rollback in the context of this research. In addition to the common name and

value attributes, a third create-time attribute is associated with each datum.

Thus, each datum is named and has a sequence of values ordered by their

create-time. Other attributes of data employed in [REE79] -viz. read-time

and commit-record are not relevant in the context of this research. The attribute

93

corresponding to create-time associated with data in this research is the
version number. The protocol consists of having each step of the
computation choose an appropriate versions of the data needed based on the
"pseudotime” time-stamp of the transaction, the create and read times of the
sequence of versions and the state of the commit record. The failure to find the
appropriate version of any required datum is the heuristic to determine the
existence of a sequencing fault and recovery consists of marking the commit
records of all versions created by the transaction as "failed" and restarting the

transaction.

A lot of research into sequencing concurrent computation has been done in
the context of sequencing concurrent transactions on databases. Several
strategies were discussed in the context of centralized databases, but they can

be adapted to distributed databases.

The earliest proposed primitives applicable to the solution of sequencing
problems were proposed as synchronization primitives in the context of multi-
programming. Examples of these are the atomic memory fetch and the atomic

Test-and-Set .

[ESW76] proposed two phase locking for synchronizing transactions in a
database to achieve serializability. The protocol calls for transactions to "lock™
data as needed and "unlock" them when a) they are not needed and b) no

further data is needed. Data locked by a transaction can not be used by any

94

other transaction until it is unlocked. This approach is subject to deadlock
since it is possible to reach a state in which several transactions wait for each
other to unlock data. Two of the several refinements of this protocol are 1)
improving data availability via shared locks [ESW76] and 2) avoiding
deadlock by pre-ordering entities [SIL80].

Commit based strategies for synchronizing database transactions employ
the comparison of time-stamps as the synchronization primitive [KUNS1].
The basic theme is to associate a "commit phase" with each transaction.
During the commit phase, there is no interaction with other transactions. Prior
to the commit phase, the execution of the transaction is unrestricted. The
successful end of the commit phase marks the termination of the transaction. If
the commit phase is unsuccessful, the transaction has no effect on the database
and can be re-started. [KUNGS81] discusses a commit protocol with the

following key features:
» All transactions go through a read phase un-hindered.

« Upon completion of the read phase, each transaction acquires a unique

"transaction number”.

* A transaction Tj with transaction number 1(j) is "validated" if for all Tj with
transaction number t(i)<t(j), either of the following conditions are satisfied:

(from the paper)

95

» Ticompletes before Tj begins.

« Ti does not write anything read by Tj and completes before Tj begins

its write phase.

« Ti does not write anything read or written by Tj and completes its read

phase before Tj completes its read phase.

e A validated transaction (by the above rules) executes a write phase which
serves as the protocol's commit phase. When condition 3 holds, write
phases of those transactions may progress concurrently. A transaction

which fails to validate is aborted and re-tried.

This protocol's position on the optimistic-to-pessimistic spectrum is

discussed in chapter 6.
Validation

When any optimism is involved in sequencing, some means of validating the
execution sequence is required. Most proposed techniques involve comparison
of time-stamps associated with events. Representative examples are [JEF85],
[KUN81] and [REE79] described above. In all of these cases, all faulty
sequences are detected but some correct sequences may be determined to be
faulty. This is the price paid for the low computing overhead associated with

validation.

96

A close relative of the validation scheme of the general-purpose sequencer

is the approach to run-time validation of programs employed in the Gypsy
project [GOOL1, 2, 3]. Programs that are difficult to verify at compile-time are
executed and logged and the execution validated by matching the log against

the specification of the program. In this context:

o the role of the program in the sequencing protocol is that of the

specification of a program in Gypsy.

« The role of the triggering mechanism of the sequencing protocol is that of
the program in Gypsy.
Rollback and Recovery
This subject has been studied extensively in the context of tolerance to
“crashes". Since a crash is conceptually the compromising of a computation's
state, and sequencing faults also have such an effect, crash-recovery

techniques are applicable to recovery from sequencing faults.

[WOO80] discusses an implementation of a recovery mechanism. Each
process establishes checkpoints at arbitrary points of the computation. The
issue of checkpointing intervals is not addressed. Associated with each
checkpoint, a process maintains a list (the "prop-list") of processes to which
rollback will be propagated if that process has to roll back to that checkpoint
and a list (the "PRI-list") of processes which could initiate recovery to that

checkpoint. Prop-lists are used to propagate a roll-back to other processes to

97

which messages were sent since establishing the checkpoint. PRI lists are

used to determine checkpoints which are candidates for garbage collection.

[RUS80] addresses the problem of determining the checkpointing interval
required to ensure that the "domino effect” can not take place. The domino
effect is the phenomenon of cascading roll-back feeding back to a process
causing it to undo even more of its work. [RUS80]'s model of communication
employs message-lists which are a generalization of the conventional channels
in that several processes can send to, or receive from any one message-list.
For the case where the topology of the communication graph is not restricted
but each message-list serves only one sender and one receiver, it is proven that
establishing a checkpoint before each receive that was preceded by a send

ensures freedom from the domino effect.

The checkpointing and recovery protocol of [KOO87] allows a trade-off
between checkpointing intervals and the extent of cascading rollback. It
requires processes to keep only the last two checkpoints established and
ensures that processes do not have to rollback past the earlier of these
checkpoints. The interval between the establishment of checkpoints determines
the possible extent of cascading rollback. The establishment of checkpoints is
coordinated to ensure that each new set of checkpoints is a distributed snapshot

[CHAS86] of the system's state.

Performance considerations

98

[CHA75] derives analytical results for optimal checkpointing intervals under
three sets of assumptions. For the most general case analyzed, the

assumptions are:

Poisson distributed fault-detections

L3

. Reprocessing time is proportional to the number of transactions in the

recovery region

. Time to process transactions which arrive during establishment of
checkpoints or during recovery is negligible in comparison with the Mean

Time Between Failures.

+ System availability given optimal checkpointing intervals is high.

For the simplest case analyzed, it is also assumed that no errors occur
during recovery and that transactions arrive at a constant rate. The intermediate
case does not assume the absence of errors during recovery. [CHAT72]

contains a survey of analytical models of rollback and recovery.

[GEL76] determines the maximum transaction load, response time for a
given transaction load and time-overhead of recovery as a function of failure
rate. The main difference from [CHA75] is that transaction arrivals during

establishment of checkpoints or during recovery are not ignored.

99

Chapter 7
Summary of Results and Conclusions

This dissertation describes, formalizes and analytically evaluates balanced
sequencing protocols, a new class of protocols for sequencing distributed
computations.
Results

Two approaches to the problem are considered. The first of these is a general-
purpose transformation of any given protocol into a spectrum of balanced
protocols. While the existence of such a transformation proves that
theoretically, any protocol can be generalized to a spectrum of balanced
protocols, the complexity of sequencing decisions is rather high. This
suggests the need for the second approach— efficient, problem-specific spectra

of balanced protocols.

Problem-specific protocols are proposed and analytically evaluated for the
producer-consumer problem, distributed semaphores, distributed locking and

echo-damping.

For the producer-consumer problem, it was assumed that the times to
perform the operations Produce, Consume, Read _Shared_Memory and

Write_Shared_Memory are time-invariant. The chosen model also does

100

not penalize the additional memory required when optimism is introduced.

Under these simplifying assumptions, the optimal balance is derived as a

function of the speed of the above operations.

For a distributed implementation of semaphores and multi-modal locks, the
optimal balance is derived as a function of the availability of the
semaphore/lock and the expected time-cost of recovery. For the examples
considered, P (or lock) operations are typically speeded up by a few message-
delays. The distributed database example illustrates that the benefits of

balanced sequencing are sensitive to recovery COsts.

The echo phenomenon, described in chapter 5, is a performance bottle-
neck for optimistic protocols. The performance deterioration it causes is
analytically determined for some simple networks of processes. A variant of
balanced sequencing is proposed to counter-act this phenomenon.

Practical considerations
Several practical factors must be considered when implementing balanced
sequencing protocols. The following is a discussion of some of these

problems.

For the examples considered, the optimal balance between optimism and
pessimism was analytically determined from simple models of system
behaviour. In the interest of simplicity and analytical tractibility, some factors

of practical concern were not incorporated into the model. For example,

101

balanced sequencing protocols are usually more complex than either optimistic
or pessimistic protocols. This increase in complexity impacts run-time
overhead because of factors such as increased demand for resources and

increased paging activity.

Where the model of system behaviour is not analytically tractible,
simulation studies may be necessary. An alternative to simulation is to tune the
balance between optimism and pessimism adaptively; i.e., by varying the
balance based on observation of past behaviour. Adaptive tuning may be
considered for systems whose behaviour can be economically monitored and

tends to be repetitious.

In studying the echo phenomenon, a simple model which assumed constant
progress and recovery rates was employed. In practice, where these rates will
be more random and time-variant, the echo phenomenon can be expected to
exhibit a much more complex behaviour. It is hoped that a simulation study
currently being planned will shed more light on this problem.

Future work
It is hoped that this dissertation will encourage further research in the field of
balanced sequencing. The analytical methods employed in the examples do not
easily generalize to more complex examples. There is a need for better
analytical techniques and detailed simulation models. An actual implementation
of a balanced sequencing protocol and a study of its benefits and weaknesses

when applied to the execution of "real-world" distributed programs is required

102

before balanced sequencing is seriously considered as a viable alternative to
conventional approaches.
Conclusions

In conclusion, the performance of sequencing protocols can be significantly
improved by implementing them as a spectrum of Balanced Sequencing
Protocols and customizing them by choosing the appropriate level of balance
based on the characteristics of the system. The research reported in this
dissertation has established that balanced sequencing protocols have a
substantial potential for enhancing the performance of distributed systems.
Whether or not this potential can be realized remains to be determined by more
in-depth simulation modeling and implementation studies. Extreme optimism
as proposed by Jefferson [JEF85] should be used with caution as it is subject
to potentially severe performance degradation caused by the Echo

Phenomenon.

[AAHS8T]

[AAHE9]

[AGE77]

[AGRS5]

[BER&7]

103

Bibliography

Y. Aahlad, J.C. Browne, "Balanced Protocols for Sequencing
Distributed Computations” Technical Report TR-87-39,
University of Texas at Austin, Department of Computer Sciences,

October 1987.

Y. Aahlad, J.C. Browne, "Balanced Sequencing Protocols”
Proceedings of the SCS Multiconference on Distributed

Simulation, Tampa, FL, March 1989, 58-63.

T. Agerwala, "Some Extended Semaphore Primitives" Acta

Informatica 8, 201-220, 1977

R.Agrawal, D.J. Dewitt, "Integrated Concurrency Control and
Recovery Mechanisms: Design and Performance Evaluation”

ACM Trans. DataBase Systems, December '85

P.A. Bernstein, V. Hadzilacos, N. Goodman, "Concurrency
Control and Recovery in Database Systems" Addison-Wesley,

Reading, Mass., 1987.

[BRI73]

[CARS&E]

[CHA72]

[CHATS]

[CHARg1]

[CHAS86]

104

P. Brinch-Hansen, "Operating System Principles” Prentice-Hall,

Englewood Cliffs, New Jersey, 1973

M.J. Carey, M. Livny, "Distributed Concurrency Control
Performance: A Study of Algorithms, Distribution, and
Replication" Proc. 14th VLDB Conf., Los Angeles, CA, 1988,
13-25

K.M. Chandy,C.V. Ramamoorthy, "Rollback and Recovery
Strategies for Computer Programs"” IEEE TOCS C21(6), June
1972

K.M Chandy, J.C. Browne, C.W. Dissly,W.R. Uhrig,
" Analytical Models for Rollback and Recovery Strategies in Data
Base Systems" IEEE Trans. S. E, SE-1(1), March 1975

K.M Chandy, J. Misra, "Asynchronous Distributed Simulation
via a Sequence of Parallel Computations” CACM 24 4):198-206,
April 1981

K.M. Chandy, L. Lamport, "Distributed Snapshots : Determining
Global States of Distributed Systems” ACM TOCS 3(1):63-75,
February 1985

[DAS90]

105

P. Dasgupta, Z.M. Kedem, "The Five Color Concurrency

[D1J68]

[DLI76]

[D1I80]

[ESW76]

[FUJ88]

Control Protocol: Non-Two-Phase Locking in General

Databases” ACM TODS 15 (2):281-307, June 1990

E.W. Dijkstra, "Co-operating Sequential Processes”
Programming Languages: NATO Advanced Study Institute:43-
112, Academic Press, London, F. Genuys (ed.) 1968

E.W .Dijkstra, "A Discipline of Programming" Prentice Hall,
Englewood Cliffs, New Jersey, 1976

E.W. Dijkstra, C.S. Scholten, "Termination Detection for

Diffusing Computations”, Information Processing Letters

11(1):1-4, August 1980

K.P. Eswaran, J.N. Gray, R.A. Lorie, I.L. Traiger, "The
Notion of Consistency and Predicate Locks in a Database

System" CACM 19(11):624-633, November 1976

R.M. Fujimoto, "Performance Measurement of Distributed
Simulation Strategies” Proceedings of the SCS Multiconference
on Distributed Simulation, San Diego, CA, February 1988, 14-
20

[GARS3]

[GEL76]

[GOO1]

[GOO2]

[GOO3]

[GRAT5]

106

H. Garcia-Molina, "Using Semantic Knowledge for Transaction

Processing in a Distributed Database” ACM TODS 8 (2):186-
213, June 1983

E. Gelenbe, D. Derochette, "Maximum Load and Service Delays
in a Data-Base System with Recovery from Failures" Modelling
and Performance Evaluation of Computer Systems, N. Holland

Pub. Co., New York. H. Beilner & E. Gelenbe, ed., 1976

D.I. Good, R.M. Cohen, J. Keeton-Williams, "Principles of
Proving Concurrent Programs" Instt. for CS, UT Austin ICSCA-
CMP-15, January 1979

D.I. Good, "The Proof of a Distributed System in Gypsy" Instt.
for CS, UT Austin Tech. Rprt 30, September 1982

D.I1. Good, R.M. Cohen, "Verifiable Communications
Processing in Gypsy” Instt. for CS, UT Austin, ICSCA-CMP-
11June 1978

J.N. Gray, R.A. Lorie, G.R. Putzolu, LL. Traiger, "Granularity
of Locks and Degrees of Consistency in a Shared Data Base"

Research Report RJ1654, IBM, September 1975

[HOAZSS5]

[JEF85]

[JOHS88]

[KAR69]

[KOO87]

[KOR83]

[KOR90]

107

C.A.R Hoare, "Communicating Sequential Processes”

Prentice/Hall International, UK, 1985

D. Jefferson, "Virtual Time" ACM TOPLAS 7(3):404-425 July
1985

D. Johnson, W. Zwaenepoel, "Recovery in Distributed Systems
Using Optimistic Message Logging and Checkpointing”
Proceedings of the 7th ACM Symposium on Principles of

Distributed Computing, pages 171-181, 1988

R.M. Karp, R.E. Miller, "Parallel Program Schemata" Journal of

Computer and Sys. Sciences, 1969

R. Koo, S. Toueg, "Checkpointing and Rollback-Recovery for
Distributed Systems" IEEE Transactions on Software

Engineering, 13(1):23-31, January 1987

H.F. Korth, "Locking Primitives in a Database System" JACM

30 (1):55-79, January 1983

H.F. Korth, E. Levy, A. Silberschatz, "A Formal Approach to
Recovery by Compensating Transactions” Proceedings of the
Sixteenth International Conference on Very Large Databases,

Brisbane, pages 95-106, August 1990

[KUC81]

[KUNS1]

[LAM78]

[LAM79]

[LAMS3]

[MAESS5]

[PAP81]

108

D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure, M. Wolfe,
"Dependence Graphs and Compiler Optimizations" POPL,

January 1981

H.T. Kung, J.T. Robinson, "On Optimistic Methods for
Concurrency Control" ACM TODS 6(2):213-226, June 1981

L. Lamport, "Time, Clocks and the Ordering of Events in a

Distributed System" CACM 21(7):558-565, July 1978

L. Lamport, "How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs” IEEE TOC
28(9):690-691, September 1979

L. Lamport, "Solved Problems, Unsolved Problems and Non
Problems in Concurrency” Invited Address, PODC 1983,

appeared in print in conf. proc. of 1984

M. Maekawa, "A YN Algorithm for Mutual Exclusion in
Decentralized Systems” ACM TOCS 3(2):145-159, May 1985

C.H. Papadimitriou, "On the Power of Locking", Proc. ACM
SIGMOD Int'l Conf. on Management of Data, pages 148-154,
Ann Arbor, MI, April 1981

[PAPS6]

[REE79]

[REE79]

[RIC81]

[RUS80]

[SCHS82]

[SILE&O]

[STR85]

109

C.H. Papadimitrion, "The Theory of Database Concurrency

Control", Computer Science Press, Rockville Md, 1986

D.P. Reed, "Implementing Atomic Actions on Decentralized

Data" Sigops, 1979

D.P. Reed, R.K. Kanodia, "Synchronization With Eventcounts
and Sequencers” CACM 22(2):115-123, February 1979

G. Ricart, A. Agarwala, "An Optimal Algorithm for Mutual
Exclusion in Computer Networks" CACM 24: 9-17, 1981

D.L. Russell, "State Restoration in Systems of Communicating

Processes” IEEE Trans. SE, SE-6(2), March 1980

F.B. Schneider, "Synchronization in Distributed Programs”

ACM TOPLAS 4(2):125-148, April 1982

A. Silberschatz, Z. Kedem, "Consistency in Hierarchical

Database Systems" JACM 27(1):72-80, January 1980

R.E. Strom, S. Yemini, "Optimistic Recovery in Distributed

Systems" ACM TOCS, 4(3):204-226, August 1985

[THO79]

[WOLZSE]

[WOO80]

110

R.H. Thomas, "A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases” ACM TODS, 4(2):180-
209, June 1979

S. Wolfram, "Mathematica™, A System for Doing Mathematics

by Computer" Addison Wesley, Redwood City, California, 1988

W.G. Wood, "Recovery Control of Communicating Processes in
a Distributed System" Technical Report 158, University of

Newecastle Upon Tyne, Computing Laboratory, November 1980

VITA

Yeturu Aahlad was born in Madras, India on March 11, 1958, the son of Yeturu
Venkata Satyasena Reddi and Yeturu Saroja Reddi. In July 1975, he entered the
Indian Institute of Technology in Madras, India. In August 1980, he received the
degree of Bachelor of Technology in Electronics and Communication from the
Indian Institute of Technology. Starting July 1980, he worked for one year as a
Development Engineer at Yamuna Digital Electronics, Inc. in Hyderabad, India. In
September 1981, he entered the Graduate School of the University of Texas at
Austin. In December 1983, he received the degree of Master of Science in
Engineering from the University of Texas. From January 1984 to August 1990, he
worked as a Teaching and/or Research Assistant for the Department of Computer
Science at the University of Texas. From September 1990, he worked as a Staff

Member at IBM's Palo Alto Scientific Center.

Permanent address: 801 Foster City Boulevard, #105
Foster City, California 94404

This dissertation was typed by Yeturu Aahlad using Microsoft Word on a Macintosh
computer. MacDraw, MacEqn and Microsoft Excel were also used in the

preparation of this dissertation.

