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Abstract

One of the fundamental problems in the theory of parallelism is the development of a simple
programming methodology that aids a programmer in implementing a given specification in a mod-
ular and compositional fashion. Existing techniques are helpful if the specification consists of safety
properties alone and the actions of the different processes of the program satisfy a commutativity
condition introduced by Richard Lipton. A different commutativity condition proposed recently by
Jayadev Misra goes further in allowing progress properties in the specification provided the process
implementing the progress property does so in a wast-free manner.

In this paper, we begin by showing that Lipton and Misra commutativity are incomparable no-
tions and capture fundamental though complementary aspects of asynchrony. We propose two new
definitions of commutativity that combine essential elements of Lipton and Misra commutativity.
Our first definition is expressed in terms of partial functions and is derived by operational consid-
erations. Our second definition is expressed in terms of predicate transformers and is derived by
purely formal considerations. Our definitions are related in the sense that the second definition is
weaker than the first.

Our definitions have three important consequences. Firstly, they form the basis of a simple
compositional methodology for parallel program design. This methodology is better than Lipton’s,
in that both safety and progress properties are permitted in the specification of a parallel program.
It improves on the methodology proposed by Misra by removing the constraint of wait—freedom
on processes implementing progress properties. Secondly, from the perspective of a programming
language designer, these definitions suggest constraints on the variables that can be shared between
programs. Thirdly, a set of processes that satisfy our definitions also satisfy Misra’s definition of
commutativity: this means that the set of processes is loosely—coupled and can be implemented on
a shared memory multiprocessor with an asynchronous cache coherence scheme thus enabling the
scaling up of shared memory architectures.
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0 Introduction

0.1 Background and Motivation

In [Lip75], Richard Lipton introduced the idea of reduction to enable the verification of a special class of
safety properties of parallel programs, namely partial correctness and deadlock—freedom. The notion of
reduction was defined in terms of a commutativity condition® on the actions of the processes comprising
the parallel program. In later papers, Doeppner [Doe77] and Lamport and Schneider [LS89] used Lipton
commutativity to generalize and extend Lipton’s results to cover all safety properties. However, no
headway was made in the task of proving progress properties of parallel programs.

In [Mis91], Jayadev Misra introduced the idea of loose—coupling. The aim of the work was to fa-
cilitate the design of parallel programs intended for execution on a shared-memory architecture. The
key idea was to break the tight—coupling of shared—memory parallelism by imposing the constraints
of a distributed, message—passing architecture on the programmer. These constraints were phrased in
terms of a commutativity condition® on the actions of the processes comprising the parallel program.
The importance of loose-coupling is borne out by two consequences. Firstly, one can derive a parallel
programming methodology that treats both safety and progress properties. Specifically, if a progress
property is implemented in a wait-free manner by a component process then the property holds in any
loosely—coupled collection of processes which contain the component process and satisfy a simple sta-
bility property. Secondly, one can propose an asynchronous scheme to the problem of cache-coherence
which enables the scaling up of shared-memory multiprocessors.

0.2 Contributions

In this paper, we integrate these two streams of research to develop a compositional theory for paral-
lelism. Our investigations reveal that Lipton commutativity and Misra commutativity are incomparable
notions, in the sense, that there exist actions that commute with respect to one definition and not the
other. Moreover, each definition captures a fundamental aspect of asynchrony that is different from
the other. While Lipton commutativity captures the fact that the environment of a process cannot
enable the actions of a process, Misra commutativity imposes the requirement that the environment
cannot disable the actions of a process.

Using these definitions of commutativity as a basis, we propose a new and operational definition
of commutativity of actions. Our definition is stronger than both Lipton’s and Misra’s definition and
combines the essential elements of both. An important consequence of our definition is a compositional
programming methodology for the design of parallel programs. Specifically, we use an operational
argument to show that if two processes satisfy our notion of commutativity, then the progress properties
of each are maintained when the two processes are composed and executed in parallel. It is important
to note that unlike [Lip75, Doe77, LS89], we allow both safety and progress properties in specifications.
Furthermore, unlike [Mis91], we do not require any additional assumptions (in particular, wait—freedom)
in the preservation of progress properties.

The approach adopted in the research outlined above is an operational one. In studying a phe-
nomenon as fundamental as asynchrony, we chose to be operational because we did not wish to restrict
the scope of our study by committing ourselves to a programming model. We were willing to tolerate a
limited proliferation of detail rather than overlook some basic theorems in the process. The complexity
of our operational argument suggested two things to us: firstly, that the time had come to abandon the
operational approach and secondly, that a concept of fundamental importance was the notion of the

SHenceforth referred to as Lipton commutativily.
!Henceforth referred to as Misra commuiativity.
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closure of a program [Lam87, Coh91]. The closure of a program F, with respect to a predicate P is the
strongest predicate @, implied by P, that is stable in F'. Much of the complexity of our operational
approach could be eliminated by postulating this at the very outset.

We define the closure of a program by means of a predicate transformer. We use this definition
along with the theory of UNITY [CM88] to derive a second definition of commutativity. Our definition
is in terms of predicate transformers and is weaker than the operational definition of commutativity
proposed above. Inspite of being weaker, we show that the definition is sufficient to ensure a compo-
sitional methodology for the design of parallel programs. Specifically, the definition of commutativity
is sufficient to ensure that the closures of the safety and progress properties of two programs that
commute are not violated when the programs are executed in parallel.

In addition to providing a compositional programming methodology, our definitions have three
important ramifications. Firstly, from the perspective of the programming language designer, they
suggest constraints on the variables that can be shared between programs. For example, it is easy to see
that the commutativity conditions are satisfied if all shared variables are restricted to be logic variables
[CT90]. Secondly, our definitions imply Misra’s definition of commutativity. This means that any two
processes that satisfy our notions of commutativity are loosely—coupled. It has been demonstrated in
[Mis91] that the cache coherence problem vanishes for a set of loosely—coupled processes executing on
a shared memory multiprocessor. In particular, one can use an asynchronous cache—coherence scheme
(such a scheme is proposed in [Mis91]) and this enables the scaling up of shared memory multiprocessors.
Thirdly, from the perspective of methodology, they enable us to derive a set of rules of composition
that can be used to implement a composite specification by several component programs [Coh91].

1 Programming Formalism and Logic

Our computational model is based on UNITY [CM88]. In our approach, a program is a syntactic object
that consists of two sections: a declare section consisting of variable declarations and an assign section
consisting of a finite and non-empty set of statements.

Operationally, program execution can begin in any state and proceeds by repeatedly selecting a
statement from the assign section and executing it with the fairness constraint that in every infinite
execution, each statement is selected and executed infinitely often. In this model, parallelism is captured
by a fair, interleaved execution of the statements of the program with each statement being executed
atomically.

We permit our programs to have conditional statements of the form

Sz i=eifb

where z is a list of variables, e is a list of expressions and b is a boolean condition. We say that a
statement § is defined in a state iff condition b holds in that state. As would be expected, if § is
selected for execution in a state in which it is defined, executing § results in a new state in which the
list of variables z is assigned the values of the corresponding expressions in list e. But, what if § is
selected in a state in which condition b is false ? Technically speaking, such a selection is allowed by
our notion of fairness. While S is undefined in such a state, our execution should record the fact that
S was selected for execution. We resolve this dilemma by postulating that if an undefined statement is
selected for execution, then its execution has the same effect as a skip statement: that is, the resulting
new state is the same as the old one.

We are interested in two classes of properties of programs, namely safety and progress properties.



e Safely properties: We express safety using the unless operator of UNITY. For state predicates,
X and Y, the operational interpretation of X unless Y is as follows: in any execution, once X
becomes true it remains true as long as Y is false. A special case is X unless false (also written
stable X) that captures the idea that once X is true, it remains true.

Formally, for a program F,

XunlessYinF = (Vs:s€ F:[XA-Y = wp.s.(XVY)]).

e Progress properties: We express progress in terms of the ~— (read, leads—to) operator of UNITY.
For state predicates X and Y, we say X + Y if in any fair execution, once X is true, Y is or
will become true. Formally,

X ensuresY = (X unlessY) A (Jt:[X A-Y = wp .L.Y]).

X ensures Y = XY
X Y, Y+ Z = X Z
VX : XeW: X—Y) = (3X: XeW:X)—Y)

Our goal in this paper is the development of a compositional programming methodology for the parallel
program design. A first step in such an exercise is to define a notion of program composition.

o Program composition: As in UNITY, we compose two programs F’ and G by taking the union of
their corresponding assign sections. The composed program is denoted by F' [ G.

A programming methodology is said to be compositional if one is able to infer the safety and progress
properties of a composite program from the corresponding properties of its components, In the frame-
work of UNITY, the following result on composing safety properties is known.

XunlessYinF | G = XunlessYinF A X unlessYinG.

For a long time no such result was known for composing progress properties. In a recent paper [Mis91],
Jayadev Misra has suggested a theorem for composing progress properties. The theorem assumes that
the process that implements the progress property does so in a wail—free manner. We believe such an
assumption is not required.

In the remainder of the paper, we demonstrate two approaches — an operational approach and
a predicate transformer based approach — to developing a compositional methodology of parallel
programs that deals with both safety and progress properties.

2 An Operational Approach

2.1 Preliminaries

We will concentrate on three kinds of objects: states, partial funciions and sequences of partial functions.

Assume that we are given a set of states, &, and a set of partial functions. Both the domain and
the range of a partial function will be . We denote a representative state of £ by the letter s. We
use the letters f and ¢ to represent partial functions.

Informally, a state is intended to capture the notion of a program siate. In the same vein, a partiol
function is intended to capture the notion of a statement. Such an abstraction allows us to assert
that a statement is defined in a state if and only if the corresponding partial function is defined at the
corresponding state of X.



The third category of interest will be finite sequences of partial functions®. The functions in the
sequence will be applied to their argument in the order read, that is, from left to right. The empty
sequence will be denoted by “<>”. We will use the letters A, B, M, N, X,Y to represent arbitrary
sequences.

We now introduce notation for expressing properties about these objects and present rules that will
be useful in manipulating such properties.

Definition 0 inductively defines the application of a sequence of functions to a state. The base case
states that the empty sequence applied to a state returns the same state. The inductive step is as
expected.

Definition 0 (function application, “.”)
1. <> =3
2. fA.s = A(f.s)

Definition 1 inductively defines the concept of definedness of sequences of functions. The base case
states that the empty sequence is defined at every state. The inductive step is as expected.

Definition 1 (definedness, “[]”)
1. [s]<>.
2. [s]fA = [s]f A[f.s]A.
Equality of two sequences is given by definition 2.
Definition 2 (equality, “*”)
(AR B) = [s]AN[s]BA(A.s= B.s).
Theorem 0 The relation ~ is an equivalence relation on the set of sequences {A : [s]A}.
Theorem 1 (Substitution of equals)
(A X B)A[s]JAX = (AX R BX).

While Theorem 1 states the most general form of substitution for X, in practice we use the following
corollary frequently.

Corollary 0 (Leibniz)
(AXBYA(AX RY) = (BX RY)

(AR BYA(XARY) = (XBRY).

2Tn the sequel, we will use the abbreviation funciion to refer to a partial function and the abbreviation seguence to
refer to a finite sequence of partial functions.



2.2 Lipton’s definition

In an early paper [Lip75], Richard Lipton introduced the idea of left movers and right movers to
simplify the task of proving partial correctness properties of parallel programs. Motivated by his ideas,
we introduce the operators lefi-commutes (lco; ), righi-commutes (rco; ) and commutes (cor).

Definition 3 (Lipton) For any two functions f and g, we have

(flecorg) = (Vs:[slgf: fg ~ gf).
(freorg) = (gleor f).
(feorg) = (fleoyg)A(frecorg).

The three operators, lcoy, rco; and co; can be naturally extended to pairs of sequences as follows.

Definition 4 For any two sequences A and B,

(AleoyB) = (Vf,g: f€ ANge B: flcoyg).
(ArcoyB) = (Blecoj A).
(AcoyB) = (Alco; B) A(Arco B).

Lemma 0 Let a function f and a sequence M be given such that (flco, M). Then,
(Vs:[s]Mf:Mf & fM).

We now present an important theorem: given two sequences A and B such that (Aleo; B), if any
interleaving of A and B is defined in a state then a serial execution of A followed by B is defined in
that same state. Furthermore, both the interleaving and the serial execution yield the same state when
applied to the same state.

Theorem 2 Assume two sequences A and B are given such that Alco; B. Let X be any interleaving
of A and B. Then,

(Vs:[s]X : X X AB).
Remark: One can generalize Theorem 2 to obtain the following stronger theorem.

Theorem 3 Assume two sequences A and B are given such that Aco;B. Let X and Y be any two
interleavings of A and B. Then,

(Vs:[s]X : X V).

That is, given two sequences A and B such that (A co; B), if any interleaving of A and B is defined,
then all interleavings of A and B are defined and each interleaving yields the same state. In particular,
if a serial execution of A followed by B is defined than all parallel executions (that is, interleavings) are
defined and yield the same state. That is, (A coy B) is a sufficient condition to interleave the executions
of A and B. A similiar result was the basis of the work in [Lip75]. (End of Remark)

2.3 Misra’s definition

In a recent paper [Mis91], Jayadev Misra introduced the idea of loose—coupling. An integral part of his
work was a commutativity relation between functions of different processes comprising the program.
Motivated by his ideas, we introduce the operator commutes ( copy ).



Definition 5 (Misra) For any two functions f and g, we have

(feomg) = (Vs:[slfAlslg: fg ~ gf).
The operator, co,, can be naturally extended to pairs of sequences as follows.
Definition 68 For any two sequences, A and B,
(Aco, B) = (Vf,g: feANge B: fcon,g).
Lemma 1 Let a function f and a sequence M be given such that (f con, M ). Then,
(Vs:[s]f A[s]Mf:Mf % fM).

Theorem 4 Assume that two sequences A and B are given such that (Aco,, B). Let X be an inter-
leaving of sequences A and B. Then,

(Vs:[s]X A[s]A: X X AB).

This result appears as Theorem 3 and Corollary 1 in [Mis91]. Using theorem 4, Misra derives the
following important corollary.

Corollary 1 Given are two sequences Ag and B such that Agco, B. Let X be an interleaving of A
and B. Then,
(Vs :[s]Ag A [s]X : [s]Xg).

Remark : By constructing a proof very similiar to that of Theorem 4 one can prove the following
stronger theorem.

Theorem 5 Assume that two sequences A and B are given such that (Aco, B). Let X and Y be any
two interleavings of A and B. Then,

(Vs:[s]X A[s]Y : X RY).
We summarize this important result. Given two sequences A and B such that (Aco,, B), any two
defined interleavings of A and B yield the same state. In particular, if a serial execution of A followed
by B is defined, then any defined interleaving will have the same value as the defined serial execution.

Notice that not all interleavings may be defined. This result appears as Theorem 2 in [Mis91]. (End
of Remark)

2.4 Incomparability of Lipton and Misra Commutativity

In the previous sections, we introduced two notions of commutativity due to Lipton [Lip75] and Misra
[Mis91] and have explored some of the consequences of these definitions. While it might appear that
Lipton commutativity ( co; ) is stronger than Misra commutativity ( coy, ), the two notions of commu-
tativity are incomparable.

Theorem 6 There exist funciions f and g such that,

(feorg) A-(fcomyg)
and

~(fecorg) A(fcomg).

Proof (of 6): The first assertion follows by choosing f and g to be P operations on a semaphore.
The second assertion follows by choosing f to be a P operation and g to be a V operation on a a
semaphore. (End of Proof)



2.5 A New Definition of Commutativity
Based on Lipton’s and Misra’s definitions of commutativity, we propose the following definition.

Definition 7 For any two functions { and g, we have

(fleog) = (fleorg) A (fcong).
(freog) = (gleof).
(feog) = (fleog)A(freoy).

As before, the three operators, lco, rco and co can be naturally extended to pairs of sequences.

However, keeping in mind that our programs are sets of functions, we choose to extend them to pairs
of sets as follows.

Definition 8 For fwo sets F and G,

(FlecoG) = (Vf,g: f€EFAgeG: flcog).
(FrecoG) = (GleoF).
(FcoG) = (FleoG)A (FrecoG).

2.6 A Compositional Theorem for Progress

We are now ready to present a theorem that allows the composition of progress properties.

Theorem 7 Assume that two programs F and G are given such that (FleoG ). For state predicates
P and Q, we have

P—QinF
stableQinG
P QinF || G.

3 A Predicate Transformer Approach
3.1 Preliminaries

We assume familiarity with the usual boolean and arithmetic operators. The operators we use are
summarized below, ordered by increasing binding power.

=,#
=, =
~>
A,V
:77é7 <22
+,-

“” {function application)

We use X, Y, Z to denote predicates on program states, f, g, b to denote predicate transformers
and R,S and ~+ to denote binary relations on predicates.

Universal quantification over all the program variables [DS90] is denoted by the square brackets
([}, read everywhere). This operator takes a predicate as an argument and returns a boolean value. It
enjoys all the properties of universal quantification over a non-empty domain.



3.2 Extremal Solutions of Equations

For a set of equations E in the unknown z, we writez : I to explicate the dependence on the unknown
z. Given an ordering = on the solutions of F, y is the strongest solution (or the least fizpoint of E) if
and only if

1. y solves E
2. (Vz : zsolvesE : y = z)

The weakest solution (or the greatest fizpoint) of E can be defined in a similiar manner.
We extend the notation for quantification, introduced earlier, to cover extremal solutions as follows.
We allow expressions of the form

(Qz == E)
where ) can be one of  and v to denote the strongest and weakest solution of z : E respectively.

Finally, we will use the following form of the Theorem of Knaster-Tarski [DS90], to prove properties
of extremal solutions.

Theorem 8 (Knaster—Tarski) For monotonic f, the equation
V:[fY=Y]

has a strongest and a weakest solution. Furthermore, it has the same strongest solution as
Y:[fY=Y]

and the same weakest solution as
Y:[fY<Y]

Theorem 9 For monotonic f, let g.X be the strongest solution and h.X the weakest solution of
Y:[fXY=Y]

Then both g and h are monotonic.

3.3 The Closure of a Program

Recall the model of computation introduced in Section 1. A program is essentially a finite and non-
empty set of statements. We assume that the statements in our programs are terminating. In terms of
the predicate transformer semantics [DS90], this means that for a statement s and a state predicate X,

(50) [wlp.s.X = wp.s.X]

Given this, we are allowed to assume that the predicate transformers wp and sp are converses, that is,
(51) (X = wp.s.Y]|=[sp.s.X = Y]

We also assume that the wp.s predicate transformer is monotonic, that is

(52) [X=Y] = [wp.s.X = wp.s.Y]

An execution of a program begins in any state and proceeds by repeatedly selecting a statement
from this set and executing it with the fairness constraint that in every infinite execution each statement
is selected and executed infinitely often.

o0



Given this model of computation, it makes sense to ask the following question: given that program
execution is begun in a state satisfying state predicate P, what is the predicate that characterizes the
smallest set of states that the program execution can lead to 7 For a given program G, we capture this
notion by means of a predicate transformer g that takes the predicate P as an argument. We call g.P
the closure of program G with respect to predicate P.

Formally, given a program G and a state predicate P, consider the set L of equations LO-L1 in the
unknown predicate Z:

(L0) [P = 7]
(L1) (Z unless falseinG)

Condition L0 states that Z is weaker than P. Condition L1 states that Z is stable in program G.

Definition 9 (closure) For a given program G, the strongest solution of equations L will be called
the closure of G. It will be denoted by g.P.

The following properties of the closure follow from its definition.

(GO) [P = g.P]
(G1) (g.P unless falseinG)
(G2) [P = Z]A(Z unless falseinG) = [¢.P = Z]

The closure of a program can also be written as the least fixpoint of a predicate calculus expression
as the following theorem shows.

Theorem 10 For a program G and a siate predicate P,
[g.P = (pZ 2 PVv{ds:s € G:sp.s.Z))]

This alternate characterization of the closure of a program, as the least fixpoint of a predicate calculus
expression, gives us the following properties.

(G3) [g.P = PV (3s:s € G:sp.s.(g.P))]
(G4) [Z«<Pv{(3s:s € G:sp.s.Z)] = [g.P= Z]
(G5) l9.(9.P) = g.P]

(G6) [g3X: X eW:X) = X : X eW:9.X)]

We will make use of the following lemma in our theorems.

Lemma 2 For a program G and a state predicale Z,

stableZinG = [¢9.Z = 7]

3.4 A Predicate Transformer Based Definition of Commutativity

The concept of the closure of a program allows us to formulate a new definition for the commutativity
of two programs. Accordingly, we define lefi-commutes ( <), right-commutes (> ) and commutes ()
as follows.

Definition 10 (commutes, “>") Given are two programs F and G. Assume that the variable s
ranges over the statements of programs F. Then,

(FaG) = (VZ:stableZinG:(Vs:s¢€ F :stable wp.s.ZinG))
(FvG) = (GaF)
(FG) = (FaG)A(Fr @)



3.5 Preservation of Properties

To reiterate, our goal is to derive a compositional methodology for the development of parallel pro-
grams. This means that if we have proved a property of a program F, we would like the same (or
similiar) property to hold of the composite program F' | G obtained by composing F* with some other
program G.

Motivating Example : Consider the example of a producer and a consumer who share an infinite buffer.
Let N denote the number of items in the buffer. It is clear that the property (N = 1) — (N = 0)
holds for the consumer. What corresponding progress property can we expect when the producer and
consumer are executed in parallel 7 Suppose the execution of the composite program is begun in a state
satisfying predicate (IV = 1). It is possible that the producer executes faster than the consumer filling
the buffer with items. Now, from the definition of closure, the worst that the producer can do is to
take the composite program to a state satisfying the closure of (N = 1), that is, (N > 1). Eventually,
by our requirement of fairness, the consumer will be scheduled for execution. While this will decrease
N by the number of items consumed, it is easy to see that the composite program may never reach a
state (N = 0). However, a little thinking will show that the program will reach a state satisfying the
closure of (N = 0), that is (N > 0). And this is exactly what the paradigm of loose—coupling intends
to capture !

Formally, given programs F’ and G and a property P — @ of F, we would like to derive condi-
tions under which property g.P — g¢.Q holds of F' | G, where g is the closure of program (. This
way of defining loose—coupling was first reported by Ernie Cohen [Coh91]. (End of Motivating Example)

Lemma 3 (Safety, “unless”) Assume that programs F and G are given such that F «G. For state
predicates P and @, let g.P and g.Q) be the closures of G with respect to P and @ respectively. Then,

Punless QinF = g.Punlessg.inF | G.

Lemma 4 (Basic Progress, “ensures”) Assume that programs F and G are given such that F «@G.
For state predicates P and ), let g.P and g.Q) be the closures of G with respect to P and @) respectively.
Then,

P ensures QinF = g.Pensuresg.QinF [ G.

Lemma 5 (Progress, “—") Assume that programs F and G are given such that F «G. For state

predicates P and @), let g.P and ¢.Q) be the closures of G with respect to P and () respectively. Then,
P—QinF = ¢gP—gQinF | G.
Theorem 11 Given are programs F and G such that F «G. For state predicates P and @), we have

P QinF
stable@ inG
P—QinF | G.

4 Conclusions

We have introduced two new definitions of commutativity, namely co and <. As would be expected
the two notions are related by the following theorem.

Theorem 12 For any two programs F and G,
(FleoG) = (F«G).
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6 Appendix: Proofs of Theorems

Section 2 :

Theorem 1 (Substitution of equals)
(AR B) A[s]JAX = (AX R BX).
Proof (of 1)

(AX & BX)
= {definition 2}
[s]JAX A [s]BX A (AX.s = BX.s)
= {definition 1 for [s]AX and [s]BX }
[sSJAX A[s]AA[s]BA[B.s]X A(AX.s = BX.s)
< {Leibniz for = twice}
[s]JAX A [s]JAA[AS]X A[s]BA (A.s = B.s)
< {definition 1 for [s]AX}
[s]JAX A [s]AA[s]BA(A.s = B.s)
= {definition 2}
[s]JAX A (A 2 B)

(End of Proof)

Lemma 0 Let a function f and a sequence M be given such that (flco; M). Then,
(Vs:[s]Mf:Mf R fM).
Proof (of 0): The proof is by induction on M.

Base Case : M is the empty string < >.

(Mf ~ fM)

= {M=<>}
(f~h

= {reflexivity of 2}
[s]f

= {M=<>}
[s]M f

Induction Step : Assume that M is of the form M'g.
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(Mf & £M)
= {M= M'g}
(M'gf ~ fM'g)
< {Leibniz}
(M'gf & M'fg)A(fM' ~ M'f)
< {Leibniz}
(M'fg & M'fg) A (fg "R° gf)y A (FM' 2 M)
= {definition 2}
[s1M'fg A (fg "~* gf) A (M'f & FM)
< {(flco; M) and induction hypothesis}
[s]M'fg Als1M'f A (Fg "% o)
= {definition 1}
[s)M'fg A (Fg "~ gf)
< {Leibniz}
[s1M'gf A (fg "° gf)
< {fleog}
[s]M'gf A [M'.slgf
= {definition 1}
[s]M'g f
= {definition of M}
[s]M f

(End of Proof)

Theorem 2 Assume two sequences A and B are given such that Alco; B. Let X be any interleaving
of A and B. Then,
(Vs:[s]X : X R AB).

Proof (of 2): The proof is by induction on the length of A.

Base Case : Let A be the empty sequence < >. This means that X is the sequence B.

(X X AB)

= {X=Band A=<>}
(B ~ B)

= {reflexivity of 2 and [s]B}
true

Induction Step : Let A be the sequence fA’. From the definition of an interleaving this implies that
f occurs in X as well. That is, X is of the form M fN, for some sequences M and N. Since f is from
A, the sequence M is a prefix of B. From our assumption of (Alco; B), this means that (flco; M)
which by Lemma 0 yields (Vs: [s]M f: Mf & fM). Using these facts, we observe

13



(X 2 AB)
= {definition of X and A}
(MfN % fA'B)
< {Leibniz}
(fMN & fA'B),(Mf ~ fM)
= {definition 2}
[s1f,(MN & A'B),(Mf % fM)
= {induction hypothesis}
[s1f, [f-SIMN,[f.s]A (Mf ~ fM)
= {definition 1 twice}
[SIFMN, [sLf A, (M & fM)
< {Theorem 1}
[SIMFN,[s|fA",(Mf ~ fM)
< {condition 1}
[s]M fN,[s]f A", [s]f, [s]M f
= {definition 1 twice}
[s]M fN,[s]fA'
= {definition of X and A}
[s]X A[s]A

(End of Proof)

Theorem 6 There ezxist functions f and g such that,

(feorg) A=(f com g)

and
—(fcorg) A(feom g).

Proof (of 6): We will prove the theorem by demonstrating functions f and g which satisfy the two
conditions. Our examples will be drawn from the familiar operations P and V on the semaphore z.

0. We will demonstrate (f co;g) A ~(fcoy, g). Let both f and g be P operations. The following
derivation proves (fco; g).

(fcorg)

= {definition of co;}

(flco;g) A (freorg)
= {instantiating f and g}
(Plco; P) A (Prco; P)
= {symmetry and definition of leo; }
(Vs :[s]PP: PP % PP)
= {reflexivity of <}
true

The following derivation demonstrates =(f conm g)-

i6



(feomg)
= {instantiating f and g}
(P cop, P)
= {definition of con, }
(Vs :[s]P A[s]P: PP & PP)
= {semaphore = 1 implies P is defined and PP isn’t}
false

1. We will demonstrate =(f co; g) A (fcom g). Let f be a P operation and g be V operations. The
following derivation proves =(f co; g).

(feorg)

= {definition of co;}
(f1cor g) A (f reor g)
= {instantiating f and g}
(Pleo; V) A(Prco V)
= {definitions of lco; and rco; }
(Vs:[s]VP : PV R VP)A
(Vs :[s]PV : PV X VP)
= {semaphore z = 0 implies V P is defined but PV isn’t}
false

The following derivation demonstrates (f con, g).

(fcomg)
= {instantiating f and g}

(Pcop, V)

{definition of cor, }

(Vs :[s]P A[s]V : PV R VP)
{semaphore definition}

true

i

I

(End of Proof)

Theorem 7 Assume that two programs F and G are given such that (FlcoG ). For state predicates
P and @), we have
P—Q@QinF
stableQ inG
P—QinF | G.

Proof (of 7): Our argument will be an operational one. By their very nature operational arguments
tend to be involved and ours is no exception. To make the proof readable and understandable, we
develop a running example along with the proof.

1. Consider an execution, o, of the UNITY program F' || G beginning in a state, s. We know four
facts about o. Firstly, o is infinite. Secondly, the transitions of the execution ¢ can be labelled
with the statements of F' | G. Thirdly, it is fair with respect to the statements of the composite
program F || G. Fourthly, recall from section 1, that some of these transitions may have caused
no state change as the statement selected to execute the transition may have been undefined.
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Ezample : Let o be of the form

GO Fo ) 1 2 G
8~——>81——>82—->33%84£85—286§-§S7...

where F0, F1, F2, F3, ... are transitions corresponding to statements of program F and GO,
G1, G2, ... correspond to statements of program G.

. Assume that predicate P is true in s. Our proof obligation requires us to show that there exists
a state, ¢, in o such that predicate ¢ is true in ?.

3. From o, project the sequence of transitions that belong to program F. Call this sequence op.

We know three facts about op. Firstly, oF is NOT an execution sequence. It is a sequence of
statements. Secondly, it is infinite. Thirdly, oF is fair with respect to the statements of F', in
the sense that every statement of F occurs infinitely often in it.

Ezample (contd.) : With o as given above, oF is the sequence FO, F1, F2, F3, ...

. Suppose the statements of the sequence op are applied, in order, to the state s. Now predicate
P is true in s. Since o is fair with respect to program F', and since our first hypothesis is that
(P~ @ in F), we eventually reach a state, u, satisfying predicate Q after a finite prefix, «, of
o has been applied to s. We know two facts about a. Firstly, a is finite. Secondly, it is possible
that o is undefined in state s (that is, —[s]e holds) as some of the statements of @ were undefined
and were treated as skip statements.

Ezample (contd.) : The sequence o was given by F0, F1, F2, F3, ... Applying this sequence
to the state s yields the following execution sequence.

s O Elypp B2, B3y .

Thus o is the finite prefix F0, F1, F2 of oF.

. Since « is a prefix of o and since o is obtained, by projection, from o, there exists a prefix 7
of & such that, a is obtained by projecting the statements of F' from 7. We know two facts about
. Firstly, 7 is finite. Secondly, 7 may be undefined in state s.

Ezample (contd.) : Given that o is the finite sequence F'0, F'1, "2 the sequence 7 will be GO,
Fo, F1, G1, F2.

. Clearly, 7 is an interleaving of two sequences : sequence ¢ consisting of transitions from F and
sequence 3 consisting of transitions from G. The question is: how can one transform 7 so that it
becomes defined in state s 7 The answer is: by dropping those transitions of r that were undefined
and equivalent to skip actions. Note that the dropped transitions may belong to either o or 3.
We consider these two cases separately.

Ezample (contd.) : The sequence 7 is an interleaving of sequence « (FO, F1, F2) and g (GO,
G1). Consider the execution sequence o again. Then the execution sequence corresponding to 7
is

3@31@325333%84};—335
Now it may be the case that the transition F1 is undefined in state s2 and G1 is undefined in
state s3. That is, the states s2, s3 and s4 are exactly the same states. So to ensure that 7 is

defined in state s, we have to drop transitions F'1 and G1.

18



7. Dropping actions of 3 does not pose a problem. Dropping transitions of o is problematic for the
following reason. Suppose a transition f (belonging to @) was undefined in 7 and was dropped.
The danger that arises is that f may have been defined when « is applied to state s in step 4
above. In fact, it may have been instrumental in reaching state » which satisfies (). We can drop
f safely if we have a theorem that says that f is undefined in o as well.

Ezample (contd.) : Dropping G1 from 7 reduces the sequence § from G0, G1 to GO. Dropping
F1 from 7 may be problematic if F'1 is defined in the execution sequence corresponding to a in
step 4 above. Going from state 1 to 2 may be instrumental in reaching state u in which ¢ holds.
We need a theorem that states that if F'1 is undefined in 7 then it is undefined in a as well.

8. Suppose, X is a prefix of 7 that is defined in state s. Note that X is an interleaving of sequences
A and B, where A is a prefix of o and B is a prefix 3. Since F'lcoG, we have Alco B. From the
definition of lco, this means that Alco; B. From Alco; B, [s]X and Theorem 2 we get [s]AB
and infer [s]A.

Now let X f be an undefined prefix of 7. We can drop f from 7 if we have the following theorem.
[s]X A =[s]XfA[s]A = —[s]Af.
An equivalent and simpler statement of the same theorem is,
[S]IX A[s]Af = [s]XT.

But this is the precise statement of Corollary 1 ! And in our analysis, we may assume this result
provided Acon, B and this is exactly what AlcoB gives us. A simple induction allows us to
conclude that any transition of program F that is undefined in 7 is undefined in o as well.

9. Let 7' be the sequence that results after dropping the undefined transitions of 7. We know three
facts about 7/. Firstly, 7’ is defined in state s. Secondly, 7’ is an interleaving of sequences o
(obtained by dropping the undefined F-transitions of 7 from a) and [’ (obtained by dropping the
undefined G-transitions of  from ). Thirdly, since the undefined transitions that were dropped
from 7 were skip transitions, both 7 and 7/ yield the same state ¢ when applied to state s. Our
goal is to show that predicate () is true in state %.

From the first and second facts about 7/, FlecoG and Theorem 2, we can conclude that the
sequence o' is defined in state s and results in the same state when applied to s. Further,
since only undefined F-transitions were dropped from a to obtain o', applying o' to s yields the
same state u as a did (in step 4). Recall that Q is true in u. By our second hypothesis, transitions
of @ do not falsify Q. Thus Q is maintained by §’. Hence @ is true in state &. That is, ) is true
in the state that results when a finite prefix T of o is applied to state s. And this concludes our
argument,.

Ezample (contd.) : After dropping F1 and G1 from 7, the sequence 7/ that results will be GO,
F0, F2. The execution sequence corresponding to 7' is

s 251 20 s 2 g5
Note that same state s5 results when either 7 or 7/ is applied to s. Our goal is to show that ¢
holds in s5.

From Theorem 2, we have v/ & F0, F2, G0. That is, both sequences yield the same state (s5)
when applied to s. But from step 4, applying F0, 2 to state s leads to state u in which ¢ holds.
Further, from our second hypothesis, § is stable in G. Thus @ holds after the application of
(0. That is Q holds in state s5. And this concludes our example.
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(End of Proof)

Section 3:

Theorem 10 For a program G and a state predicate P,
[g.P = (pZ =PV {(3s:s € G:sp.s.Z))]
Proof (of 10):

g.FP
= {definition of g}

(uZ =2 [P = Z) A (Z unless falseinG))
= {definition of unless}

(uZ =[P = Z]A(Vs:s € G:[Z = wp.s.Z]))
= {property S1}

(uZ =[P = Z]AN(Vs:s € G:[sp.s.Z = Z]})
= {interchange quantification}

(uZ =[P = Z]A[(Vs:5 € G:sp.s.Z = Z)])
= {predicate calculus}

(uZ =[P = Z]A[(3s:5 € G:sp.s.Z) = Z])
= {predicate calculus}

(pZ =[PV (3s:s € G:sp.s.Z) = Z])
= {Theorem 9}

(uZ [PV (3s:s € G:sp.s.Z) = Z])

(End of Proof)

Lemma 2 For a program G and a state predicate Z,
stableZinG = [9.Z = Z]

Proof (of 2): The proof will be by mutual implication.

(=)

stable ZinG
= {predicate calculus}

[Z = Z] AstableZinG
= {property G2}

9.2 = Z]
= {property GO}

9.7 = Z]
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(+=)

irue

= {property G1}
stableg.ZinG

= {hypothesis [¢.Z = Z]}
stable Zin G

(End of Proof)

Lemma 3 (Safety, “unless”) Assume that programs F' and G are given such that F«G. For state
predicates P and Q, let g.P and g.Q be the closures of G with respect to P and Q) respectively. Then,

Punless QinF = g.Punless¢g.QinF [ G.
Proof (of 3):

g.Punless g.QinF | G
= {union theorem for safety}
g.P unless g.QinF' A ¢g.P unless g.Q inG
< {consequence weakening for unless}
g.P unless g.QinF A ¢.P unless falseinG
= {property G1}
g.P unless ¢.Q in F'
= {definition of unless}
(Vs:s€ F:[g.PAN-g.Q = wp.s.(9.PV g.Q)])
= {predicate calculus; omitting range of F'}
(Vs::[g.P = g.QVwp.s.(g.PV g.Q)])
< {property G2}
(Vs [P = g.QVwp.s.(9.PVg.Q)A
(9.Q vV wp .s.(g.PV ¢.Q)) unless falseinG)
& {property GO}
(Vs [P = QVwp.s.(9.PVgQ)A
(9.Q Vwp .s.(g.PV g.Q)) unless falseinG)
< {property GO and property 52}
(Vs [P=QVwp.s(PVQ)A
(9.QV wp .s.(9.PV ¢.Q)) unless falseinG)
= {predicate calculus}
(Vs : [P A-Q = wp.s.(PVQ)]A
(9.Q VvV wp.s.(9.PV ¢g.Q)) unless falseinG)
= {assumption and definition of P unless }
(Vs::(9.QV wp.s.(9.PV g.Q)) unless falseinG)
= {definition of unless}
(Vs (Vi:t € G:[(9.QVwp.s.(9.PVg.Q)) = wp.t(g.QVwp.s(g.PVgQ)))
= {unnesting, omitting range, predicate calculus}
(Vs,t::[9.Q = wp.i.(9.QV wp.s.(g9.PV g.Q)))A
(Vs,t:: [wp.s.(g.PV g.Q) = wp.t(9.QVwp.s.(9.PVg.Q))])
= {property G1}
(Vs,t:: [wp.s.(g.PV g.Q) = wp.t.(9.QVwp.s.(9.PVg.Q))]



< {predicate calculus}

(Vs,t:: [wp.s.(¢.PV g.Q) = wp.t{wp.s.(9.PVg.Q))])
= {property G6}

(Vs,t: [wp.s.(g.(PVQ)) = wp.t.(wp.s.(g.(PV Q)]
= {definition of stable}

(Vs :: stable wp .s.(g.(PV @))inG)
& {F«G}

stableg.(PV Q)inG
= {property G1}

true

(End of Proof)

Lemma 4 (Basic Progress, “ensures”) Assume that programs F' and G are given such that F «G.
For state predicates P and Q, let g.P and ¢.Q be the closures of G with respect to P and () respectively.
Then,

P ensures QinF = g.Pensuresg.QinF || G.

Proof (of 4):

g.P ensures g.QinF | G
< {union theorem}

(g.P ensures g.Q in F) A (g.P unless 9. inG)
<« {consequence weakening}

(g.P ensures g.Q in F') A (g.P unless falseinG)
= {property G1}

g.P ensures ¢.Q in F’
= {definition of ensures}

(9.P unless g.QinF) A (Is:s€ F:[g.PA-g.Q = wp.s.(9.Q)])
< {Lemma 3, P ensures @ inF, F <G}

(3s:s€ F:[g.PA-g.Q = wp.s.(9.Q)])
= {omitting range, predicate calculus}

(3s = [g.P = g.Q V wp.s.(9.Q)])
<« {property G2}

(3s 2 [P = ¢.Q V wp.s.(9.Q)]A

(g.Q V wp .s.(9.Q)) unless falseinG)
< {property GO}

(As = [P = QV wp .s.(9.Q)]A

(9.Q vV wp .5.(9.Q)) unless falseinG)
<« {property GO and property S2}

(s [P=QVwp.s.Q]A

(9.QV wp .s.(9.Q)) unless falseinG)
= {predicate calculus}

(s = [P A-Q = wp.s.Q]A

(9.Q V wp .s.(9.Q)) unless falseinG)
< {predicate calculus}

(s = [PA-Q = wp.s.Q]A

(Vu:u € F:(9.QV wp.u.(g.Q)) unless falseinG))
= {predicate calculus}

(s 2 [P A-Q = wp.s.Q]) A

(Yu:u € F:(9.QVwp.u(g.Q)) unless falseinG)
< {assumption and definition P ensures Q}
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(Vu:u€ F:(g.QVwp.u(g.Q)) unless falseinG)
= {definition of unless, omitting range}
(Vu :: [(Vt: (¢.Q V wp .u.(g.Q)) = wp.t.(9.Q V wp .u.(9.Q)))])
= {predicate calculus}
(Vu,t::[(9.Q V wp .u.(9.Q)) = wp .£.(9.Q V wp .u.(9.Q))])
= {predicate calculus}
(Vu,t:[9.Q = wp .1.(9.Q V wp .u.(9.Q))]) A
(Vu,t : [wp.u.(9.Q) = wp.t.(g.Q V wp .u.(g.Q))])
= {property G1}
(Vu,t : [wp.u.(9.Q) = wp .1.(9.Q V wp.u.(9.Q))])
< {predicate calculus}
(Vu,t:: [wp.u.(9.Q) = wp.t.(wp.u.(9.Q))])
= {definition of stable}
(Vu :: stable wp .u.(9.Q)inG)
< {F4G}
stableg.Q inG
= {property G1}
true

(End of Proof)

Lemma 5 (Progress, “—”) Assume that programs I’ and G are given such that F «(G. For state
predicates P and Q, let g.P and g.Q) be the closures of G with respect to P and () respectively. Then,

P—QinF = ¢gP—g.QinF | G.
Proof (of 5): The proof will be by induction on the structure of the proof of P+ Qin F.

Base Case : Assume that P ensures ¢ in F". Then,

P ensures @ in F
= {Lemma 4, F <G}
g.Pensures g.QinF || G
= {definition of —}
gP—gQinF | G
Induction Step (transitivity) : Assume that P — QinF and ¢ — Rin F. Then,
(P~ QinF)A(Q — RinF)
= {induction hypothesis, twice}
(9.P— ¢g.QinF | G)A(9.Q — ¢g.RinF | G)
= {transitivity of —}
(g.P+— g.RinF [ G)
Induction Step (disjunctivity) : Assume that (YP: P e W : P — QinF).
(VP:PeW:Pw—QinF)
= {induction hypothesis}
(VP:PeW:9.P—g.QinF || G)
= {disjunctivity of —}
(AP:PeW:g.P)—gQinF | G
= {property G6}
g3P:PeW:P)—g.QinF | G
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(End of Proof)

Theorem 11 Given are programs F and G such that F <« G. For state predicates P and ¢}, we have

P QinF
stable@QinG
P—@QinF | G.
Proof (of 11):
Pw— QinF

= {F <G, Lemma 5}
g.P—g.QinF | G

= {property GO and > transitivity}
P g.QinF [ G

= {stable Q in G and Lemma 2}
P—QinF | G

(End of Proof)
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