
Proof: Since, in the TO scheme, transactions are serialized in timestamp order, if T

i

is

serialized before T

j

in S

k

, T

i

; T

j

2 �

k

, then T

i

's timestamp must be smaller than T

j

's times-

tamp. Thus, in S

k

, T

i

must have been assigned a timestamp before T

j

is assigned one (assuming

timestamps are assigned in an increasing order). 2

Lemma 16: If site s

k

follows a validation protocol, then any function that maps every

transaction T

i

2 �

k

to its operation that results in its validation is a serialization function for

s

k

.

Proof: Since validation protocols ensure that transactions are serialized in the order in

which they are validated, if T

i

is serialized before T

j

in S

k

, T

i

; T

j

2 �

k

, then T

i

must have been

validated in S

k

before T

j

is validated. 2
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-Appendix E-

Central to the design of any of the schemes to ensure global serializability is the requirement

that GTM

1

be able to determine operations in ser(S). A serialization function for site s

k

de-

pends on the concurrency control protocol followed by s

k

.

Lemma 14: If site s

k

follows the 2PL protocol, then any function that maps every trans-

action T

i

2 �

k

to one of its operations that executes between the time T

i

obtains its last lock

and the time it releases its �rst lock, is a serialization function for s

k

.

Proof: Let ser be a function that maps every transaction T

i

2 �

k

to one of its operations

that executes between the time T

i

obtains its last lock and the time it releases its �rst lock.

We need to show that for any pair of transactions T

i

; T

j

2 �

k

, if T

i

is serialized before T

j

in S

k

,

then ser(T

i

) �

S

k

ser(T

j

). Since T

i

is serialized before T

j

in S

k

, there exist transactions, say,

T

1

; T

2

; : : : ; T

r

in S

k

such that T

i

conicts with T

1

, T

1

conicts with T

2

, : : :, T

r

conicts with T

j

.

We show that, in S

k

, T

i

releases its �rst lock before T

1

releases its �rst lock. Since T

i

conicts

with T

1

and is serialized before T

1

, T

i

releases its �rst lock before T

1

obtains all its locks. Since

s

k

follows the 2PL protocol, T

1

obtains all its locks before it releases its �rst lock. Thus, in S

k

,

T

i

releases its �rst lock before T

1

releases its �rst lock.

Using a similar argument, it can be shown that, in S

k

, T

1

releases its �rst lock before T

2

releases its �rst lock, and so on. Thus, it follows that T

i

releases its �rst lock before T

r

releases

its �rst lock. Also, T

r

releases its �rst lock before T

j

obtains its last lock. Thus, T

i

releases its

�rst lock before T

j

obtains its last lock, and as a result, ser(T

i

) �

S

k

ser(T

j

). 2

Corollary 3: If site s

k

follows the strict 2PL protocol, then any function that maps every

transaction T

i

2 �

k

to its commit operation is a serialization function for s

k

.

Proof: Transaction T

i

obtains all its locks before it commits and releases its �rst lock only

after it commits. 2

Thus, if site s

k

follows the strict 2PL protocol, ser

k

(G

i

), for a global transaction G

i

, is c

ik

,

G

i

's commit operation at site s

k

, which can be easily identi�ed by GTM

1

. However, determining

ser

k

(G

i

) if site s

k

follows a simple 2PL protocol (that is not strict 2PL) is more complicated,

and in order to identify ser

k

(G

i

) for a global transaction G

i

, it is necessary for GTM

1

to exploit

the nature of local DBMS interfaces, and the manner in which transactions obtain and release

locks at site s

k

. If the local DBMS interface at s

k

provides for explicit lock and unlock oper-

ations, then GTM

1

can identify ser

k

(G

i

) without any problem since it has explicit knowledge

of when the last lock is obtained or the �rst lock is released by G

i

. However, in most local

DBMSs, transactions, when they execute, obtain and release locks internally, and as a result,

GTM

1

may have no knowledge of when transactions obtain and release locks. In such cases,

GTM

1

can use indirect means (e.g., knowledge of the execution of G

i

's operations) in order to

identify ser

k

(G

i

). For example, if G

i

obtains the lock for a data item at site s

k

only when it

�rst accesses the data item and not earlier, then ser

k

(G

i

) could be chosen by GTM

1

to be G

i

's

operation that �rst accesses the last data item accessed by G

i

at site s

k

. If, however, G

i

obtains

locks on certain data items at site s

k

before it accesses the data items, then if G

i

's operation

that �rst accesses the last data item accessed by it at s

k

is to be treated as ser

k

(G

i

), then G

i

would need to perform the following additional steps: After the �rst access to the last data

item accessed by G

i

at s

k

, G

i

reaccesses all the data items accessed by it at s

k

(reaccessing all

the data items ensures that G

i

is holding all its locks when it �rst accesses the last data item

accessed by it at site s

k

).

Lemma 15: If site s

k

follows the TO protocol, then any function that maps every transaction

T

i

2 �

k

to its operation that results in it being assigned a timestamp is a serialization function

for s

k

.
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execution of act(ser

k

(G

i

)), then

b

G

q

2 S

1

and

b

G

r

2 S

2

just before act(ser

k

(G

i

)) executes.

Further,

b

G

q

62 set

k

after the execution of act(ser

k

(G

i

)), since

b

G

i

is deleted from set

k

when act(ser

k

(G

i

)) executes, and no transaction in ser bef(

b

G

i

) is in set

k

just before

act(ser

k

(G

i

)) executes (since then, cond(ser

k

(G

i

)) would not hold). Thus, set

p

6= set

k

.

However, the addition to cond(ser

k

(G

i

)) for Scheme 3 ensures that if set

p

6= set

k

, then

init

q

is processed before init

r

.

� act(ack(ser

k

(G

i

))): For all transactions

b

G

j

, ser bef(

b

G

j

) is not modi�ed by act(ack(ser

k

(G

i

))).

Also set

p

is not modi�ed by act(ack(ser

k

(G

i

))). Thus the execution of act(ser

k

(G

i

)) pre-

serves the lemma.

� act(fin

i

): For all transactions

b

G

j

, execution of act(fin

i

) results in

b

G

i

being deleted from

ser bef(

b

G

j

). We show that act(fin

i

) preserves the lemma. If

b

G

q

2 ser bef(

b

G

r

) after

act(fin

i

) executes, then

b

G

q

2 ser bef(

b

G

r

) before act(fin

i

) executes, since no new ele-

ments are added to ser bef(

b

G

r

) during the execution of act(fin

i

). Further, since set

p

is not

modi�ed by act(fin

i

), if

b

G

q

;

b

G

r

2 set

p

after the execution of act(fin

i

), then

b

G

q

;

b

G

r

2 set

p

before the execution of act(fin

i

). Since the lemma holds before execution of act(fin

i

),

init

q

is processed before init

r

. 2

Proof of Theorem 12: We need to show that if act(init

i

) executes before act(init

j

), then

no operation ser

k

(G

i

) belonging to a transaction

b

G

i

is delayed due to transaction

b

G

j

. Let us sup-

pose that operation ser

k

(G

i

) is delayed due to transaction

b

G

j

, or alternatively cond(ser

k

(G

i

))

does not hold due to transaction

b

G

j

. As a result, there must be a transaction

b

G

j

2 set

k

, such

that

b

G

j

2 ser bef(

b

G

i

). By Lemma 13, init

j

is processed before init

i

is processed, which leads

to a contradiction. 2

Proof of Theorem 13: The sets set

k

and ser bef(

b

G

i

) are implemented as mentioned

earlier in the complexity analysis for Scheme 3. Since there is an addition to cond(ser

k

(G

i

)),

we �rst analyze the number of steps in cond(ser

k

(G

i

)). The number of steps in cond(ser

k

(G

i

))

in Scheme 3 without the addition is O(n) (cond(ser

k

(G

i

)) requires the intersection of two

sets of size O(n) to be computed that in the worst case takes O(n) steps). The addition

results in the following additional steps. Sets S

1

and S

2

�rst need to be computed, where

S

1

= f

b

G

i

g [ ser bef(

b

G

i

), and S

2

= f

b

G

j

:

b

G

j

2 (set

k

�

b

G

i

) _ (ser bef(

b

G

j

) \ (set

k

�

b

G

i

) 6=

;)g. Computation of S

2

takes O(n

2

) steps (since for every transaction

b

G

j

, computation of

(ser bef(

b

G

j

) \ set

k

) takes O(n) steps and there are at most n transactions).

Also, for every set set

p

, the following are computed: S

0

p

= S

1

\ set

p

and S

00

p

= S

2

\ set

p

.

Since transactions in S

0

p

and S

00

p

are ordered in the order in which their init

j

operations are

processed, cond(ser

k

(G

i

)) holds i� for every set set

p

, the init

j

operation for the last transaction

in S

0

p

is processed before the init

j

operation for the �rst transaction in S

00

p

is processed. The

computation of S

0

p

and S

00

p

, for every set set

p

, takes O(n) steps (intersection of two sets of size

O(n)). Thus, since there are m such sets, the number of steps in cond(ser

k

(G

i

)) is O(mn+n

2

).

The number of steps in act(o

j

) and cond(o

j

), for the remaining operations, are as mentioned

earlier in the complexity analysis for Scheme 3.

We now specify wait(o

j

) for each operation o

j

. The sets wait(init

i

), wait(ser

k

(G

i

) and

wait(fin

i

) are as mentioned in the complexity analysis for Scheme 3. Further, since the exe-

cution of act(ack(ser

k

(G

i

))) can result in cond(ser

l

(G

j

)) for any of the ser

l

(G

j

) operations in

WAIT to hold,wait(ack(ser

k

(G

i

))) = fser

l

(G

j

) : ser

l

(G

j

) 2WAITg. Thus, wait(ack(ser

l

(G

j

)))

has O(nd

av

) operations in the worst case since there are at most n transactions with oper-

ations in WAIT, and each transaction has d

av

operations. Thus, since the number of steps

in cond(ser

k

(G

i

)) is O(mn + n

2

), the number of steps required to process ack(ser

k

(G

i

)) is

O((mn

2

+ n

3

)d

av

). The complexity of Scheme 3 is dominated by the number of steps required

to process all the ack(ser

k

(G

i

) operations belonging to a transaction. Since there are d

av

oper-

ations per transaction, the complexity of Scheme 3 is O((mn

2

+ n

3

)d

2

av

). 2
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{ if last

p

=

b

G

l

, then act(ack(ser

p

(G

l

))) has not completed execution, or

{ for some transaction

b

G

l

2 set

p

,

b

G

l

2 ser bef(

b

G

j

).

However, since execution of act(ack(ser

k

(G

i

))) does not result in a modi�cation of set

p

,

wait(ack(ser

k

(G

i

))) is restricted to operations ser

k

(G

l

), for transactions

b

G

l

2 set

k

.

� wait(fin

i

): ffin

j

: fin

j

2WAITg.

For any operation ser

k

(G

j

) 2 WAIT, cond(ser

k

(G

j

)) cannot hold due to the execution of

act(fin

i

) since act(fin

i

) only deletes transactions from ser bef(

b

G

l

), for transactions

b

G

l

such that

b

G

i

2 ser bef(

b

G

l

).

Thus, the number of steps in cond(o

l

), for any operation o

l

2 wait(ack(ser

k

(G

i

))) is O(n),

and the number of steps in cond(o

l

) for any operation o

l

2 wait(fin

i

), is O(1). Further, in the

worst case, the number of operations in both wait(ack(ser

k

(G

i

))) and wait(fin

i

) is O(n) (since

size of set

k

is O(n), and the number of fin

j

operations in WAIT never exceeds n).

Proof of Theorem 9: The complexity of Scheme 3 is dominated by the number of steps in

act(ser

k

(G

i

)), which is O(n

2

). Thus, since each transaction has d

av

operations, the complexity

of Scheme 3 is O(n

2

d

av

). 2

Before we show that Scheme 3 with the addition is starvation-free, we prove the following

lemma.

Lemma 13: At any point during the execution of Scheme 3 with the addition, the following

holds:

� For every set set

p

, for all pairs of transactions

b

G

q

;

b

G

r

2 set

p

, if

b

G

q

2 ser bef(

b

G

r

), then

init

q

is processed before init

r

.

Proof: Trivially, the lemma holds initially since for every set set

p

, set

p

= ;. In addition,

we show that for all operations, o

j

, act(o

j

) preserves the lemma.

� act(init

i

): Elements are added only to ser bef(

b

G

i

) and only

b

G

i

is added to sets set

p

such

that s

p

2 exec(G

i

). Also, before the execution of act(init

i

), ser bef(

b

G

i

) = ;, for all sets

set

p

,

b

G

i

62 set

p

, and for all

b

G

j

,

b

G

i

62 ser bef(

b

G

j

). If

b

G

r

6=

b

G

i

, then since ser bef(

b

G

r

) is

not modi�ed by act(init

i

),

b

G

q

2 ser bef(

b

G

r

) before act(init

i

) executes. Also,

b

G

q

6=

b

G

i

,

since for all transactions

b

G

j

,

b

G

i

62 ser bef(

b

G

j

) before act(init

i

) executes. As a result, if

b

G

q

;

b

G

r

2 set

p

after act(init

i

) executes, then

b

G

q

;

b

G

r

2 set

p

before act(init

i

) executes since

only

b

G

i

is added to set

p

, and

b

G

q

6=

b

G

i

,

b

G

r

6=

b

G

i

. Thus, since the lemma holds before

act(init

i

) executes, init

q

is processed before init

r

.

If

b

G

r

=

b

G

i

, then for all transactions

b

G

j

that are added to ser bef(

b

G

i

) when act(init

i

)

executes,

b

G

j

is either last

k

or in ser bef(last

k

) for some site s

k

2 exec(G

i

) just be-

fore act(init

i

) executes. Since init

j

is processed before a transaction

b

G

j

is added to

ser bef(

b

G

l

), for some transaction

b

G

l

, for all transactions

b

G

j

that are added to ser bef(

b

G

i

)

when act(init

i

) executes, init

j

has already been processed. Thus, init

q

is processed before

init

r

.

� act(ser

k

(G

i

)): Execution of act(ser

k

(G

i

)) does not result in any transactions being added

to set

p

. Thus, if

b

G

q

;

b

G

r

2 set

p

after execution of act(ser

k

(G

i

)), then

b

G

q

;

b

G

r

2 set

p

before

execution of act(ser

k

(G

i

)).

If

b

G

q

2 ser bef(

b

G

r

) before execution of act(ser

k

(G

i

)), then since the lemma holds before

execution of act(ser

k

(G

i

)), init

q

is processed before init

r

.

Let S

1

= (f

b

G

i

g [ ser bef(

b

G

i

)) and S

2

= f

b

G

l

: (

b

G

l

2 (set

k

�

b

G

i

)) _ (ser bef(

b

G

l

) \

(set

k

�

b

G

i

) 6= ;)g just before act(ser

k

(G

i

)) executes. If

b

G

q

62 ser bef(

b

G

r

) before the
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� Does d 2 S

1

? { O(n).

Since the number of transactions

b

G

i

such that init

i

, but not fin

i

, has been processed by

Scheme 3, never exceeds n, the sizes of set

k

and ser bef(

b

G

i

) are O(n).

The number of steps in cond(o

j

) and act(o

j

), for each operation o

j

, are as follows.

� cond(init

i

): O(1).

� act(init

i

): O(nd

av

). In the worst case, act(init

i

) requires the union of d

av

sets of size O(n)

to be computed and then assigned to ser bef(

b

G

i

).

� cond(ser

k

(G

i

)): O(n). cond(ser

k

(G

i

)) requires the intersection of two sets of size O(n) to

be computed that in the worst case takes O(n) steps.

� act(ser

k

(G

i

)): O(n

2

). The cost of act(ser

k

(G

i

)) is dominated by the cost of updating

ser bef(

b

G

j

) for transactions

b

G

j

. For each transaction

b

G

j

(such that init

j

has been pro-

cessed, but fin

j

has not been processed), �rst, checking if the condition

b

G

j

2 set

k

is true

takes O(n) steps, or if the condition ser bef(

b

G

j

) \ set

k

6= ; takes O(n) steps. Finally, if

the condition is true, then the union of two sets of size O(n) needs to be computed, that

takes O(n) steps. Since there are n such transactions in the worst case, the number of

steps in act(ser

k

(G

i

)) is O(n

2

) in the worst case.

� cond(ack(ser

k

(G

i

))): O(1).

� act(ack(ser

k

(G

i

))): O(1).

� cond(fin

i

): O(1).

� act(fin

i

): O(n

2

). For each transaction

b

G

j

, a check is made to determine if

b

G

i

2 ser bef(

b

G

j

)

that takes O(n) steps per transaction. Further, if

b

G

i

2 ser bef(

b

G

j

), then

b

G

i

is deleted

from ser bef(

b

G

j

), that takes O(n) steps (since size of ser bef(

b

G

j

), in the worst case is

O(n)). Since there are n transactions in the worst case, the number of steps in act(fin

i

)

is O(n

2

).

Since cond(init

i

) and cond(ack(ser

k

(G

i

))) are both true, the only operations in WAIT are

either ser

k

(G

i

) for some transaction

b

G

i

and site s

k

2 exec(G

i

), or fin

i

for some transaction

b

G

i

.

Also, execution of act(o

j

), for an operation o

j

, can cause cond(ser

k

(G

i

)) to hold only if either

execution of act(o

j

) results in the deletion of a transaction from set

k

, or o

j

= ack(ser

k

(G

l

))

for some transaction

b

G

l

. In addition, execution of act(o

j

), for some operation o

j

, can cause

cond(fin

i

) for some transaction

b

G

i

to hold only if act(o

j

) deletes a transaction from ser bef(

b

G

i

).

We now specify wait(o

j

) for each of the operations o

j

.

� wait(init

i

): ;. Execution of act(init

i

) does not result in transactions being deleted from

any of the sets.

� wait(ser

k

(G

i

)): ;. Even though act(ser

k

(G

i

)) results in the deletion of

b

G

i

from set

k

, for

any operation ser

k

(G

l

), cond(ser

k

(G

l

)) does not hold due to the execution of act(ser

k

(G

i

))

unless act(ack(ser

k

(G

i

))) completes execution. Also, for an operation ser

p

(G

l

), s

p

6=

s

k

, cond(ser

p

(G

l

)) cannot hold due to the execution of act(ser

k

(G

i

)) since act(ser

k

(G

i

))

deletes elments only from set

k

and set

k

6= set

p

. Further, execution of act(ser

k

(G

i

)) cannot

cause cond(fin

i

) to hold since act(ser

k

(G

i

)) does not delete transactions from ser bef(

b

G

i

).

� wait(ack(ser

k

(G

i

))): fser

k

(G

j

) : ser

k

(G

j

) 2 (WAIT \ set

k

)g.

For any operation fin

j

2WAIT, execution of act(ack(ser

k

(G

i

))) cannot cause cond(fin

j

)

to hold since no elements are deleted from ser bef(

b

G

j

) as a result of the execution of

act(ack(ser

k

(G

i

))).

Further, execution of act(ack(ser

k

(G

i

))) cannot cause cond(ser

p

(G

j

)) to hold for some

operation ser

p

(G

j

) 2 WAIT, s

p

6= s

k

, since if cond(ser

p

(G

j

)) did not hold prior to the

execution of act(ack(ser

k

(G

i

))), then either
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the transitive property holds,

b

G

i

1

2 ser bef(

b

G

i

1

). However, this leads to a contradiction since

by Lemma 10c,

b

G

j

62 ser bef(

b

G

j

) for all transactions

b

G

j

at all points during the execution of

Scheme 3. 2

Proof of Corollary 1: By Theorem 10, the total number of unprocessed operations de-

creases during the execution of Scheme 3 (since at any point during the execution of Scheme 3,

it is possible to process an operation). Since every transaction has a �nite number of operations

and a �nite number of transactions are initiated, the number of unprocessed operations eventu-

ally reduces to zero, that is, every transaction completes execution. 2

Proof of Theorem 11: Let ser

p

(G

q

) operations be inserted into QUEUE in a serializable

order. We use induction to prove that for all l � 0, the �rst l ser

p

(G

q

) operations inserted into

QUEUE are processed by Scheme 3 when they are selected from QUEUE.

Basis (l = 0): Trivial.

Induction: Assume that the �rst r ser

p

(G

q

) operations inserted into QUEUE are processed

when they are selected from QUEUE by Scheme 3. We need to show that the �rst r+1 ser

p

(G

q

)

operations are processed when they are selected from QUEUE by Scheme 3. Let ser

k

(G

i

), for

some transaction

b

G

i

and s

k

2 exec(G

i

) be the r+1

th

ser

p

(G

q

) operation inserted into QUEUE.

By the induction hypothesis, the �rst r ser

p

(G

q

) operations inserted into QUEUE are processed

by Scheme 3 when they are selected from QUEUE. We need to show that ser

k

(G

i

) is processed

by Scheme 3, or alternatively cond(ser

k

(G

i

)) holds, after the �rst r ser

p

(G

q

) operations inserted

into QUEUE have been processed, and ser

k

(G

i

) is selected from QUEUE. Thus, we need to

show that, when ser

k

(G

i

) is selected from QUEUE, for all

b

G

l

2 (set

k

�

b

G

i

),

b

G

l

62 ser bef(

b

G

i

).

Suppose for some

b

G

l

2 (set

k

�

b

G

i

),

b

G

l

2 ser bef(

b

G

i

). Thus, by Lemma 10a,

b

G

l

is serialized

before

b

G

i

in ser(S). Since the �rst r ser

p

(G

q

) operations are processed by Scheme 3 when

they are selected from QUEUE, if every ser

p

(G

q

) operation in QUEUE is processed when it is

selected from QUEUE, then

b

G

l

would be serialized before

b

G

i

in the resulting schedule. Further,

since

b

G

l

2 (set

k

�

b

G

i

) when ser

k

(G

i

) is selected from QUEUE, ser

k

(G

l

) must have been inserted

into QUEUE by GTM

1

after ser

k

(G

i

) is inserted. Thus, if ser

p

(G

q

) operations are processed

when they are selected from QUEUE, then ser

k

(G

l

) would be processed after ser

k

(G

i

), and as

a result,

b

G

i

would be serialized before

b

G

l

in the resulting schedule. However, this leads to a

contradiction since operations are inserted into QUEUE by GTM

1

in a serializable order. Thus,

for all

b

G

l

2 (set

k

�

b

G

i

),

b

G

l

62 ser bef(

b

G

i

) when ser

k

(G

i

) is selected from QUEUE. As a result,

since ser bef(

b

G

i

)\(set

k

�

b

G

i

) = ;, cond(ser

k

(G

i

)) holds and ser

k

(G

i

) is processed by Scheme 3.

2

Complexity Analysis of Scheme 3:

We �rst describe additional data structures involved in the implementation of Scheme 3.

We then analyze, for every operation o

j

, the number of steps in cond(o

j

) and act(o

j

), and the

characteristics of wait(o

j

) (the number of operations and their types).

Implementation: Every transaction

b

G

i

, when init

i

executes, is assigned a unique identi�er

(that increases with time) that de�nes a total order on the set of transactions. The sets of

transactions set

k

and ser bef(

b

G

i

) are implemented as lists in which the transactions are stored

in an increasing order of their identi�ers. If S

1

and S

2

are two sets of size O(n) that are

implemented as lists of elements stored in an increasing order, and d is an element, then the

complexity of various operations are as follows.

� S

1

[ S

2

{ O(n).

� S

1

\ S

2

{ O(n).

� S

1

� fdg { O(n).
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� act(fin

i

) has not yet executed when

b

G

j

is added to set

k

due to the execution of act(init

j

),

last

k

=

b

G

i

when act(init

j

) executes.

b

G

i

is thus added to ser bef(

b

G

j

) when act(init

j

) executes.

Further, since

b

G

i

is deleted from ser bef(

b

G

j

) only when act(fin

i

) executes, act(ser

k

(G

j

)) exe-

cutes after both act(ser

k

(G

i

)) and act(init

j

) execute, and act(fin

i

) has not yet executed at p,

b

G

i

2 ser bef(

b

G

j

) at p.

Induction: Assume the lemma is true for num � r, r � 0. We need to show that the lemma

holds if the number of transactions

b

G

l

such that act(ser

k

(G

l

)) executes in between act(ser

k

(G

i

))

and act(ser

k

(G

j

)) is � r + 1. Let

b

G

q

be a transaction such that act(ser

k

(G

q

)) executes in be-

tween act(ser

k

(G

i

)) and act(ser

k

(G

j

)). The number of transactions

b

G

l

such that act(ser

k

(G

l

))

executes in between act(ser

k

(G

i

)) and act(ser

k

(G

q

)) is � r. Similarly, the number of transac-

tions

b

G

l

such that act(ser

k

(G

l

)) executes in between act(ser

k

(G

q

)) and act(ser

k

(G

j

)) is � r.

Since act(fin

i

) has not yet executed at p, and act(ser

k

(G

q

)) executes before p (since act(ser

k

(G

q

))

executes before act(ser

k

(G

j

))), act(fin

i

) has not yet executed when act(ser

k

(G

q

)) executes.

Thus, by the induction hypothesis,

b

G

i

2 ser bef(

b

G

q

) at any point after act(ser

k

(G

q

)) executes

and before act(fin

i

) executes. Since

b

G

i

2 ser bef(

b

G

q

) until act(fin

i

) executes, cond(fin

q

)

does not hold unless act(fin

i

) executes. Thus, act(fin

i

) executes before act(fin

q

) executes,

and at p act(fin

q

) has not yet executed. As a result, again, by the induction hypothesis,

since act(ser

k

(G

q

)) executes before act(ser

k

(G

j

)) executes,

b

G

q

2 ser bef(

b

G

j

) at any point

after act(ser

k

(G

j

)) executes and before act(fin

q

) executes. Thus, at p, since act(fin

i

) and

act(fin

q

) have not yet executed,

b

G

i

2 ser bef(

b

G

q

) and

b

G

q

2 ser bef(

b

G

j

). As a result, by

Lemma10b, since the transitive property holds at all points during the execution of Scheme 3,

b

G

i

2 ser bef(

b

G

j

) at p. 2

Proof of Theorem 8: Suppose ser(S) is not serializable. Thus, there exist distinct trans-

actions, say,

b

G

1

;

b

G

2

; : : : ;

b

G

r

, r > 1, such that ser

i

1

(G

1

) executes before ser

i

1

(G

2

), ser

i

2

(G

2

)

executes before ser

i

2

(G

3

), : : :, ser

i

r

(G

r

) executes before ser

i

r

(G

1

), and for all j; k = 1; 2; : : : ; r,

j 6= k, i

j

6= i

k

(since for any site s

k

, transaction

b

G

j

has at most one operation ser

k

(G

j

)).

We claim that for all j, j = 1; 2; : : : ; r, none of act(fin

j

) can execute. To see this, ob-

serve that for all j, j = 1; 2; : : : ; r, ser

i

j

(G

j

) executes before ser

i

j

(G

(j mod r)+1

). Thus, by

Lemma 11 and Lemma 12, if act(fin

j

) has not executed when Scheme 3 attempts to execute

act(fin

(j mod r)+1

),

b

G

j

2 ser bef(

b

G

(j mod r)+1

) and thus, ser bef(

b

G

(j mod r)+1

) 6= ;. (since

Scheme 3 attempts to execute act(fin

(j mod r)+1

) after it executes act(ser

i

j

(G

(j mod r)+1

))).

As a result, since cond(fin

(j mod r)+1

) does not hold unless ser bef(

b

G

(j mod r)+1

) = ;,

act(fin

(j mod r)+1

) cannot execute unless act(fin

j

) has executed. Thus, act(fin

j

) must execute

before act(fin

(j mod r)+1

) executes. Now suppose act(fin

k

) executes for some k = 1; 2; : : : ; r.

From the above arguments, if follows that act(fin

k

) executes before act(fin

k

) executes, which

is not possible. Thus, none of act(fin

j

) can execute, for all j, j = 1; 2; : : : ; r.

Consider a point p during the execution of Scheme 3 when all of act(ser

i

j

(G

j

)),

act(ser

i

j

(G

(j mod r)+1

)), j = 1; 2; : : : ; r have been executed. Since for all j, j = 1; 2; : : : ; r,

act(fin

j

) does not execute, by Lemma 12,

b

G

j

2 ser bef(

b

G

(j mod r)+1

) at p. By Lemma 10b,

since the transitive property holds,

b

G

1

2 ser bef(

b

G

1

) at p. However, this leads to a contradic-

tion since by Lemma 10c,

b

G

j

62 ser bef(

b

G

j

), for all

b

G

j

and at all points during the execution

of Scheme 3. Thus, ser(S) is serializable. 2

Proof of Theorem 10: Suppose that for all

b

G

p

2 set

k

, act(ser

k

(G

p

)) cannot be executed.

Thus, for every

b

G

p

2 set

k

, there exists a

b

G

q

2 set

k

such that

b

G

q

2 ser bef(

b

G

p

). Since set

k

has a �nite number of elements, there must be transactions in set

k

b

G

i

1

;

b

G

i

2

; : : : ;

b

G

i

r

such that

b

G

i

1

2 ser bef(

b

G

i

2

),

b

G

i

2

2 ser bef(

b

G

i

3

), : : :,

b

G

i

r

2 ser bef(

b

G

i

1

). Thus, by Lemma 10b, since
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if

b

G

p

2 ser bef(

b

G

p

) after the execution of act(ser

k

(G

i

)), then just before act(ser

k

(G

i

))

executes,

b

G

p

2 (f

b

G

i

g [ ser bef(

b

G

i

)) and

b

G

p

2 (f

b

G

j

g [ f

b

G

l

:

b

G

j

2 ser bef(

b

G

l

)g for some

b

G

j

2 (set

k

�

b

G

i

) just before act(ser

k

(G

i

)) executes. We consider the following cases just

before act(ser

k

(G

i

)) executes.

1.

b

G

p

=

b

G

i

and

b

G

p

=

b

G

j

: This is not possible since

b

G

j

2 (set

k

�

b

G

i

) and thus,

b

G

j

6=

b

G

i

.

2.

b

G

p

=

b

G

i

and

b

G

p

6=

b

G

j

: Thus, since

b

G

j

2 ser bef(

b

G

p

),

b

G

j

2 ser bef(

b

G

i

) and

thus ser bef(

b

G

i

) \ (set

k

�

b

G

i

) 6= ; just before act(ser

k

(G

i

)) executes. As a result,

cond(ser

k

(G

i

)) does not hold, and thus act(ser

k

(G

i

)) cannot be executed.

3.

b

G

p

6=

b

G

i

and

b

G

p

=

b

G

j

: In this case

b

G

p

2 ser bef(

b

G

i

) and thus

b

G

j

2 ser bef(

b

G

i

) just

before act(ser

k

(G

i

)) executes. For reasons similar to above, act(ser

k

(G

i

)) cannot be

executed.

4.

b

G

p

6=

b

G

i

and

b

G

p

6=

b

G

j

: As a result,

b

G

p

2 ser bef(

b

G

i

) and

b

G

j

2 ser bef(

b

G

p

)

just before act(ser

k

(G

i

)) executes. Thus, since the transitive property holds before

act(ser

k

(G

i

)) executes,

b

G

j

2 ser bef(

b

G

i

) just before act(ser

k

(G

i

)) executes, and

act(ser

k

(G

i

)) cannot execute.

� act(ack(ser

k

(G

i

))): For all transactions

b

G

j

, ser bef(

b

G

j

) is not modi�ed by act(ack(ser

k

(G

i

))).

Thus a, b and c are preserved.

� act(fin

i

): For all transactions

b

G

j

, execution of act(fin

i

) results in

b

G

i

being deleted from

ser bef(

b

G

j

). We show that act(fin

i

) preserves a, b and c.

a: If

b

G

p

2 ser bef(

b

G

q

) after act(fin

i

) executes, then

b

G

p

2 ser bef(

b

G

q

) before act(fin

i

)

executes, since no new elements are added to ser bef(

b

G

q

) during the execution of act(fin

i

).

Since a holds before execution of act(fin

i

),

b

G

p

is serialized before

b

G

q

in ser(S).

b: Since for all transactions

b

G

j

, execution of act(fin

i

) results in

b

G

i

being deleted from

ser bef(

b

G

j

), if

b

G

p

2 ser bef(

b

G

q

) and

b

G

q

2 ser bef(

b

G

r

) after execution of act(fin

i

), then

b

G

p

6=

b

G

i

, and

b

G

p

2 ser bef(

b

G

q

),

b

G

q

2 ser bef(

b

G

r

) before act(fin

i

) executes. As a result,

since b holds before act(fin

i

) executes,

b

G

p

2 ser bef(

b

G

r

) before act(fin

i

) executes. Fur-

ther, since

b

G

p

6=

b

G

i

,

b

G

p

2 ser bef(

b

G

r

) after act(fin

i

) executes.

c: Since c holds before execution of act(fin

i

) and no new elements are added to ser bef(

b

G

p

)

when act(fin

i

) executes,

b

G

p

62 ser bef(

b

G

p

) after the execution of act(fin

i

). 2

Lemma 11: For all sites s

k

, transactions

b

G

i

;

b

G

j

, if ser

k

(G

i

) executes before ser

k

(G

j

),

then act(ser

k

(G

i

)) executes before act(ser

k

(G

j

)).

Proof: Let us assume that act(ser

k

(G

j

)) executes before act(ser

k

(G

i

)). Since before

act(ack(ser

k

(G

j

))) executes and after act(ser

k

(G

j

)) executes, last

k

=

b

G

j

, act(ser

k

(G

i

)) can-

not execute before act(ack(ser

k

(G

j

))) executes. As a result, ser

k

(G

j

) executes before ser

k

(G

i

)

which leads to a contradiction. Thus, act(ser

k

(G

i

)) executes before act(ser

k

(G

j

)). 2

Lemma 12: For all sites s

k

, transactions

b

G

i

;

b

G

j

, if act(ser

k

(G

i

)) executes before act(ser

k

(G

j

))

executes, then at any point p during the execution of Scheme 3 after the execution of act(ser

k

(G

j

)),

but before the execution of act(fin

i

), the following is true:

b

G

i

2 ser bef(

b

G

j

).

Proof: We prove the lemma by induction on num, the number of transactions

b

G

l

such that

act(ser

k

(G

l

)) executes in between act(ser

k

(G

i

)) and act(ser

k

(G

j

)).

Basis (num = 0): If

b

G

j

2 set

k

when act(ser

k

(G

i

)) executes, then

b

G

i

is added to ser bef(

b

G

j

)

when act(ser

k

(G

i

)) executes. If

b

G

j

62 set

k

when act(ser

k

(G

i

)) executes, then since

� last

k

is set to

b

G

i

when act(ser

k

(G

i

)) executes,

� for all transactions

b

G

l

, act(ser

k

(G

l

)) does not execute in between act(ser

k

(G

i

)) and

act(ser

k

(G

j

)), and
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� act(init

i

): Elements are added only to ser bef(

b

G

i

). Also, before init

i

is processed,

ser bef(

b

G

i

) = ; and

b

G

i

62 ser bef(

b

G

j

), for all

b

G

j

.

a: If

b

G

q

6=

b

G

i

, then since ser bef(

b

G

q

) is not modi�ed by act(init

i

),

b

G

p

2

b

G

q

before

act(init

i

) executes. Thus, since a holds before act(init

i

) executes,

b

G

p

is serialized before

b

G

q

in ser(S).

If

b

G

q

=

b

G

i

, then just before act(init

i

) executes, either

b

G

p

= last

k

or

b

G

p

2 ser bef(last

k

)

for some s

k

2 exec(G

i

). Since a holds before act(init

i

) executes, transactions in ser bef(last

k

)

are serialized before last

k

in ser(S). Since act(ser

k

(G

i

)) executes after the acknowledge-

ment of the completion of last

k

's operation, last

k

is serialized before

b

G

i

in ser(S). By

transitivity of the serialized before relationship, transactions in ser bef(last

k

) are serial-

ized before

b

G

i

in ser(S). Thus,

b

G

p

is serialized before

b

G

i

in ser(S).

b: We now use Lemma 9 to show that b is preserved. Just before act(init

i

) executes,

let S

1

= ser bef(last

k

) [ flast

k

g, for some site s

k

2 exec(G

i

), and let S

2

= f

b

G

l

:

b

G

i

2

ser bef(

b

G

l

)g [ f

b

G

i

g. Since, before act(init

i

) executes,

b

G

i

62 ser bef(

b

G

j

), for all

b

G

j

,

S

2

= f

b

G

i

g. Thus, by Lemma 9, executing ser bef(

b

G

i

) := ser bef(

b

G

i

) [ S

1

preserves b.

c: If

b

G

p

6=

b

G

i

, then since ser bef(

b

G

p

) is not modi�ed by act(init

i

), and since c holds

before act(init

i

) executes,

b

G

p

62 ser bef(

b

G

p

) after execution of act(init

i

).

If

b

G

p

=

b

G

i

, then for all s

k

2 exec(G

i

), before act(init

i

) executes, last

k

6=

b

G

i

since

act(ser

k

(G

i

)) has not yet executed. Also, before act(init

i

) executes, since

b

G

i

62 ser bef(

b

G

j

)

for all

b

G

j

, executing ser bef(

b

G

i

) := ser bef(last

k

) [ flast

k

g cannot result in

b

G

i

2

ser bef(

b

G

i

).

� act(ser

k

(G

i

)):

a: If

b

G

p

2 ser bef(

b

G

q

) before execution of act(ser

k

(G

i

)), then since a holds before exe-

cution of act(ser

k

(G

i

)),

b

G

p

is serialized before

b

G

q

in ser(S).

Just before act(ser

k

(G

i

)) executes, let S

1

= (f

b

G

i

g [ ser bef(

b

G

i

)) and S

2

= f

b

G

l

: (

b

G

l

2

(set

k

�

b

G

i

)) _ (ser bef(

b

G

l

)\ (set

k

�

b

G

i

) 6= ;)g. If

b

G

p

62 ser bef(

b

G

q

) before the execution

of act(ser

k

(G

i

)), then just before act(ser

k

(G

i

)) executes,

b

G

p

2 S

1

and

b

G

q

2 S

2

. We

show that every transaction in S

1

is serialized before every transaction in S

2

in ser(S),

and thus

b

G

p

is serialized before

b

G

q

in ser(S). Since for all

b

G

l

2 (set

k

�

b

G

i

) just be-

fore act(ser

k

(G

i

)) executes, act(ser

k

(G

l

)) has not executed, act(ser

k

(G

i

)) executes before

act(ser

k

(G

l

)) and thus ser

k

(G

i

) executes before ser

k

(G

l

) executes. As a result,

b

G

i

is

serialized before

b

G

l

in ser(S). Since a holds before the execution of act(ser

k

(G

i

)), every

transaction in ser bef(

b

G

i

), just before the execution of act(ser

k

(G

i

)), is serialized before

b

G

i

in ser(S). By the transitivity of the serialized before relation, for all

b

G

l

2 (set

k

�

b

G

i

)

since

b

G

i

is serialized before

b

G

l

, every transaction in S

1

is serialized before

b

G

l

in ser(S).

Also, if for some transaction

b

G

j

, ser bef(

b

G

j

) \ (set

k

�

b

G

i

) 6= ; just before act(ser

k

(G

i

))

executes, then there exists a transaction

b

G

l

2 (set

k

�

b

G

i

) such that

b

G

l

2 ser bef(

b

G

j

)

just before act(ser

k

(G

i

)) executes. Since a holds before the execution of act(ser

k

(G

i

)),

b

G

l

is serialized before

b

G

j

in ser(S). Thus, by transitivity of the serialized before relation,

since every transaction in S

1

is serialized before every transaction in (set

k

�

b

G

i

), every

transaction in S

1

is serialized before every transaction in S

2

in ser(S).

b: Just before act(ser

k

(G

i

)) executes, let S

1

= (f

b

G

i

g[ser bef(

b

G

i

)) and S

2

= f

b

G

j

g[f

b

G

l

:

b

G

j

2 ser bef(

b

G

l

)g, where

b

G

j

2 (set

k

�

b

G

i

) just before act(ser

k

(G

i

)) executes. By

Lemma 9, since executing ser bef(

b

G

l

) := ser bef(

b

G

l

) [ S

1

for all

b

G

l

2 S

2

preserves

b, execution of act(ser

k

(G

i

)) preserves b.

c: We show that if for transaction

b

G

p

, execution of act(ser

k

(G

i

)) results in

b

G

p

2 ser bef(

b

G

p

),

then cond(ser

k

(G

i

)) could not have held just before act(ser

k

(G

i

)) executed, and thus

act(ser

k

(G

i

)) could not have executed. Since c holds before execution of act(ser

k

(G

i

)),
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-Appendix D-

In order to show that Scheme 3 ensures the serializability of ser(S), we �rst need to

prove properties of ser bef(

b

G

i

) for all transactions

b

G

i

. At any point during the execution

of Scheme 3, the transitive property is said to hold if for any transactions

b

G

p

;

b

G

q

;

b

G

r

such that

b

G

p

2 ser bef(

b

G

q

) and

b

G

q

2 ser bef(

b

G

r

), the following is true:

b

G

p

2 ser bef(

b

G

r

).

Lemma 9: The following action A preserves the transitive property.

A : For all

b

G

k

2 S

2

; ser bef(

b

G

k

) := ser bef(

b

G

k

) [ S

1

where S

1

= ser bef(

b

G

i

) [ f

b

G

i

g and S

2

= f

b

G

k

:

b

G

j

2 ser bef(

b

G

k

)g [ f

b

G

j

g just before A

executes, and

b

G

i

;

b

G

j

are transactions.

Proof: We show that if the transitive property holds before A executes, then it holds after

A executes. Thus, we show that, after A executes, for any

b

G

p

;

b

G

q

;

b

G

r

, if

b

G

p

2 ser bef(

b

G

q

) and

b

G

q

2 ser bef(

b

G

r

), then

b

G

p

2 ser bef(

b

G

r

). We consider the following cases:

�

b

G

p

2 ser bef(

b

G

q

) before A executes and

b

G

q

2 ser bef(

b

G

r

) before A executes: If

b

G

p

2

ser bef(

b

G

q

) and

b

G

q

2 ser bef(

b

G

r

) before A executes, then since the transitive property

holds before A executes,

b

G

p

2 ser bef(

b

G

r

) after A executes.

�

b

G

p

2 ser bef(

b

G

q

) before A executes and

b

G

q

2 ser bef(

b

G

r

) only after A executes: Thus,

before A executes,

b

G

q

2 S

1

and

b

G

r

2 S

2

. We show that before A executes,

b

G

p

2

ser bef(

b

G

i

) and thus

b

G

p

2 S

1

. Since

b

G

q

2 S

1

before A executes, either

b

G

q

=

b

G

i

or

b

G

q

2 ser bef(

b

G

i

) before A executes. If

b

G

q

=

b

G

i

, then trivially

b

G

p

2 ser bef(

b

G

i

) before A

executes. If

b

G

q

2 ser bef(

b

G

i

), then since the transitive property holds before A executes,

b

G

p

2 ser bef(

b

G

i

) before A executes. Thus, before A executes, since

b

G

p

2 S

1

and

b

G

r

2 S

2

,

b

G

p

2 ser bef(

b

G

r

) after A executes.

�

b

G

p

2 ser bef(

b

G

q

) only after A executes and

b

G

q

2 ser bef(

b

G

r

) before A executes: Thus,

b

G

p

2 S

1

and

b

G

q

2 S

2

before A executes. We show that before A executes,

b

G

j

2

ser bef(

b

G

r

) and thus

b

G

r

2 S

2

. Since

b

G

q

2 S

2

, either

b

G

q

=

b

G

j

or

b

G

j

2 ser bef(

b

G

q

)

before A executes. If

b

G

q

=

b

G

j

, then trivially

b

G

j

2 ser bef(

b

G

r

) before A executes.

Else if,

b

G

j

2 ser bef(

b

G

q

), then since the transitive property holds before A executes,

b

G

j

2 ser bef(

b

G

r

) before A executes. Thus, since before A executes,

b

G

p

2 S

1

and

b

G

r

2 S

2

,

b

G

p

2 ser bef(

b

G

r

) after A executes.

�

b

G

p

2 ser bef(

b

G

q

) only after A executes and

b

G

q

2 ser bef(

b

G

r

) only after A executes:

Thus, before A executes,

b

G

p

2 S

1

and

b

G

r

2 S

2

. As a result,

b

G

p

2 ser bef(

b

G

r

) after A

executes. 2

Lemma 10: At any point during the execution of Scheme 3, for all transactions

b

G

p

;

b

G

q

;

b

G

r

,

the following hold:

a: If

b

G

p

2 ser bef(

b

G

q

), then

b

G

p

is serialized before

b

G

q

in ser(S).

b: If

b

G

p

2 ser bef(

b

G

q

) and

b

G

q

2 ser bef(

b

G

r

), then

b

G

p

2 ser bef(

b

G

r

) (the transitive prop-

erty).

c:

b

G

p

62 ser bef(

b

G

p

).

Proof: Trivially, a,b and c hold initially since for all

b

G

i

, ser bef(

b

G

i

) = ;. In addition, we

show that for all operations, o

j

, act(o

j

) preserves a, b and c (since ser bef(

b

G

i

) is only modi�ed

when act(o

j

) executes).
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is not minimal with respect to

b

G

i

and (V;E;D) �rst calls S((V;E;D);

b

G

i

). If the set of depen-

dencies � returned by S is non-empty, then the algorithm responds \yes" (since if �

0

= ; is

minimal with respect to

b

G

i

and (V;E;D), then a non-empty � cannot be minimal with respect

to

b

G

i

and (V;E;D), and S would return ;). If, on the other hand, the set of dependencies �

returned by S is ;, then the algorithm responds \no" (since �

0

= ; is minimal with respect to

(V;E;D) and

b

G

i

). 2
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� (x

i+1

; emp

0

i

); (emp

0

i

; x

i

), if jneg

i

j = 0.

This can be shown formally using an induction argument. We shall, however, resort to

a less formal approach in our arguments. The path has to contain edges (D

2

; s

2

); (s

1

; x

p+1

).

Furthermore, for any node x

i+1

in the path, the only edges in a continuation of the path from

x

i+1

are edges

� (x

i+1

; pos

0

i

(jpos

i

j)); (pos

0

i

(jpos

i

j); P

0

i;jpos

i

j

), if jpos

i

j > 0,

� (x

i+1

; emp

i

); (emp

i

; x

i

), if jpos

i

j = 0,

or edges

� (x

i+1

; neg

0

i

(jneg

i

j)); (neg

0

i

(jneg

i

j); N

0

i;jneg

i

j

), if jneg

i

j > 0,

� (x

i+1

; emp

0

i

); (emp

0

i

; x

i

), if jneg

i

j = 0.

We show that if edges (x

i+1

; pos

0

i

(jpos

i

j)); (pos

0

i

(jpos

i

j); P

0

i;jpos

i

j

) are in the path, then all the

edges (x

i+1

; pos

0

i

(jpos

i

j)); (pos

0

i

(jpos

i

j); P

0

i;jpos

i

j

); : : : ; (pos

i

(1); P

i;1

); (P

i;1

; emp

i

); (emp

i

; x

i

) are also

in the path (the argument for showing that if edges (x

i+1

; neg

0

i

(jneg

i

j)); (neg

0

i

(jneg

i

j); N

0

i;jneg

i

j

)

are in the path, then all the edges (x

i+1

; neg

0

i

(jneg

i

j)); (neg

0

i

(jneg

i

j); N

0

i;jneg

i

j

); : : : ; (neg

i

(1); N

i;1

);

(N

i;1

; emp

0

i

); (emp

0

i

; x

i

) are also in the path is similar). Let us assume that for some k =

1; 2; : : : ; jpos

i

j, edge (pos

0

i

(k); P

0

i;k

) is in the path. We show that the following edges are also in

the path

� (P

0

i;k

; pos

i

(k)); (pos

i

(k); P

i;k

); (P

i;k

; pos

0

i

(k � 1)); (pos

0

i

(k � 1); P

0

i;k�1

), if k > 1,

� (P

0

i;k

; pos

i

(k)); (pos

i

(k); P

i;k

); (P

i;k

; emp

i

); (emp

i

; x

i

), if k = 1.

Due to dependencies (P

0

i;k

; pos

i

(k))!(pos

i

(k); C

i

) and (P

0

i;k

; pos

i

(k))!(pos

i

(k); C

i+1

), the only

choice of edges from P

0

i;k

in the path is (P

0

i;k

; pos

i

(k)); (pos

i

(k); P

i;k

). From (P

i;k

), the only

choice of edges is (P

i;k

; pos

0

i

(k � 1)); (pos

0

i

(k � 1); P

0

i;k�1

), if k > 1, and (P

i;k

; emp

i

); (emp

i

; x

i

),

if k = 1.

Thus, the path must contain edges (x

1

; s

0

); (s

0

; C

p+1

). Further, we claim that for all i =

1; 2; : : : ; p, edges (C

i+1

; l

i;j

); (l

i;j

; C

i

) are in the path, for some j = 1; 2; 3. This follows from the

fact that there are dependencies (C

r

; l

r;s

)!(l

r;s

; C

r+1

), for all r = 1; 2; : : : ; p, for all s = 1; 2; 3.

Also, edges (C

i+1

; l

i;j

); (l

i;j

; v), where v 62 fC

1

; C

2

; : : : ; C

p

g, cannot be in the path, since as

shown earlier, the path would then end at v.

We now show that there exists an assignment of truth values to x

k

for all k = 1; 2; : : : ; q,

such that for all i = 1; 2; : : : ; p, for some j = 1; 2; 3, val(l

i;j

) is true, and thus C is satis�able.

For all i = 1; 2; : : : ; p, for all j = 1; 2; 3, val(l

i;j

) is assigned true i� (C

i+1

; l

i;j

); (l

i;j

; C

i

) are in

the path. This assignment causes C to be true since as shown earlier, for all i = 1; 2; : : : ; p, for

some j = 1; 2; 3, edges (C

i+1

; l

i;j

); (l

i;j

; C

i

) are in the path.

Further, it is not possible that for some k = 1; 2; : : : ; q, x

k

and �x

k

are both assigned true.

If x

k

and �x

k

are both assigned true, then there must exist symbols l

i;j

and l

r;s

such that edges

(C

i+1

; l

i;j

); (l

i;j

; C

i

), (C

r+1

; l

r;s

); (l

r;s

; C

r

) are in the path, and val(l

i;j

) = x

k

, val(l

r;s

) = �x

k

.

Thus, jneg

k

j)0, jpos

k

j)0, l

i;j

= pos

k

(u), for some u, u = 1; 2; : : : ; jpos

k

j, and l

r;s

= neg

k

(v), for

some v, v = 1; 2; : : : ; jneg

k

j. However, this is not possible, since one of l

i;j

and l

r;s

is in the path

between x

k+1

and x

k

, and a path cannot contain a site node more than once. 2

We now show that the problem of computing a set of dependencies, �, that is minimal with

respect to (V;E;D) and

b

G

i

, is NP-hard.

Proof of Theorem 7: We show that the NP-complete problem of determining if �

0

= ; is

not minimalwith respect to

b

G

i

and (V;E;D) can be Turing-reduced to the problem of computing

a � that is minimal with respect to

b

G

i

and (V;E;D).

Consider a subroutine S((V;E;D);

b

G

i

) that returns a set of dependencies � that is minimal

with respect to

b

G

i

and (V;E;D). An algorithm for solving the problem of determining if �

0

= ;
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a cycle in (V

0

; E

0

; D

0

) such that all the transaction nodes in the cycle are in S

1

(since there are

dependencies (C

i

; l

i;j

)!(l

i;j

; C

i+1

), for all i = 1; 2; : : : ; p, for all j = 1; 2;3, a path from C

r

to

C

s

is possible only if r > s). Similarly, there can be no cycle in (V

0

; E

0

; D

0

) such that all the

transaction nodes in the cycle are in S

2

. In addition, there is no cycle in (V

0

; E

0

; D

0

) consisting

of transaction nodes from both S

1

and S

2

since such a cycle must have edges (v

1

; l

i;j

), (l

i;j

; v

2

),

for some site node l

i;j

and v

1

2 S

1

and v

2

2 S

2

(s

0

and l

i;j

are the only site nodes that have edges

to transaction nodes in both S

1

and S

2

). Let l

i;j

= pos

r

(k) (the argument for l

i;j

= neg

r

(k) is

similar). Due to dependencies (C

i

; l

i;j

)!(l

i;j

; P

r;k

), (C

i+1

; l

i;j

)!(l

i;j

; P

r;k

), v

1

= C

i

or C

i+1

, and

v

2

= P

0

r;k

. The only other edge incident on P

0

r;k

is (P

0

r;k

; l

0

i;j

). However, due to the dependency

(P

0

r;k

; l

0

i;j

)!(l

0

i;j

; P

r;k+1

), if k < jpos

r

j or (P

0

r;k

; l

0

i;j

)!(l

0

i;j

; x

r+1

), if k = jpos

r

j, the path ends

at P

0

r;k

and cannot be part of a cycle. Thus, there can be no cycle in (V

0

; E

0

; D

0

) consisting of

transaction nodes from both S

1

and S

2

, and (V

0

; E

0

; D

0

) is acyclic.

We now show that (V;E;D) contains a cycle involving D

2

i� there is a path from D

2

to C

1

through node s

1

in (V;E;D). If (V;E;D) contains a cycle involving D

2

, due to the dependency

(x

p+1

; s

1

)!(s

1

; D

2

), there cannot be a path from C

1

to D

2

through s

1

. Thus, there must be

a path from D

2

to C

1

through s

1

that results in the cycle. If in (V;E;D), there is no cycle

involving D

2

, then if there was a path from D

2

to C

1

through node s

1

, then there would be a

cycle due to the edges (C

1

; s

2

); (s

2

; D

2

). Thus, we need to show that C is satis�able i� there is

a path from D

2

to C

1

through s

1

.

If C is satis�able, we show that there is a path from D

2

to C

1

through s

1

by specifying the

edges in the path. Since C is satis�able, there exists an assignment of truth values to x

k

for all

k = 1; 2; : : : ; q, such that for all i = 1; 2; : : : ; p, for some j = 1; 2; 3, val(l

i;j

) is true. We now

specify the edges in the path. Edges (D

2

; s

1

); (s

1

; x

m+1

) are in the path. For all i = 1; 2; : : : ; q,

if x

i

is false in the assignment, then the following edges are in the path:

� (x

i+1

; pos

0

i

(jpos

i

j)); (pos

0

i

(jpos

i

j); P

0

i;jpos

i

j

); : : : ; (pos

i

(1); P

i;1

); (P

i;1

; emp

i

); (emp

i

; x

i

),

if jpos

i

j > 0,

� (x

i+1

; emp

i

); (emp

i

; x

i

), if jpos

i

j = 0,

else if x

i

is true in the assignment, the path contains the edges:

� (x

i+1

; neg

0

i

(jneg

i

j)); (neg

0

i

(jneg

i

j); N

0

i;jneg

i

j

); : : : ; (neg

i

(1); N

i;1

); (N

i;1

; emp

0

i

); (emp

0

i

; x

i

),

if jneg

i

j > 0,

� (x

i+1

; emp

0

i

); (emp

0

i

; x

i

), if jneg

i

j = 0.

Edges (x

1

; s

0

); (s

0

; C

p+1

) are also in the path. For all i = 1; 2; : : : ; p, edges (C

i+1

; l

i;j

); (l

i;j

; C

i

)

are in the path, for some j = 1; 2; 3 such that val(l

i;j

) is true in the assignment.

In the above choice of edges, we show that no node appears more than once in the path.

Nodes other than l

i;j

, trivially, appear only once. For any node l

i;j

, it is in the path between

nodes C

i+1

and C

i

only if val(l

i;j

) is true in the assignment. If l

i;j

= pos

r

(k), then val(l

i;j

) = x

r

,

and since x

r

is true in the assignment, l

i;j

is not among the nodes in the path between x

r+1

and x

r

. Similarly, if l

i;j

= neg

r

(k), then val(l

i;j

) = �x

r

, and since x

r

is false in the assignment,

l

i;j

is not among the nodes in the path between x

r+1

and x

r

. Thus, the above edges constitute

a path from D

2

to C

1

through s

1

.

On the other hand, if there is a path from D

2

to C

1

through s

1

, then we show that for all

i = 1; 2; : : : ; q, the path contains either edges

� (x

i+1

; pos

0

i

(jpos

i

j)); (pos

0

i

(jpos

i

j); P

0

i;jpos

i

j

); : : : ; (pos

i

(1); P

i;1

); (P

i;1

; emp

i

); (emp

i

; x

i

),

if jpos

i

j > 0,

� (x

i+1

; emp

i

); (emp

i

; x

i

), if jpos

i

j = 0,

or edges

� (x

i+1

; neg

0

i

(jneg

i

j)); (neg

0

i

(jneg

i

j); N

0

i;jneg

i

j

); : : : ; (neg

i

(1); N

i;1

); (N

i;1

; emp

0

i

); (emp

0

i

; x

i

),

if jneg

i

j > 0,

36



P

0

3;1

P

3;1

N

0

2;1
N

2;1

emp

0

2

P

0

1;1

P

1;1

l

1;1

l

1;2

l

1;3

emp

3

l

0

1;3

l

0

1;2

emp
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Figure 6: TSGD

35



{ (x

i

; emp

i

); (emp

i

; P

i;1

); (P

i;1

; pos

i

(1)); (pos

i

(1); P

0

i;1

); (P

0

i;1

; pos

0

i

(1)); (pos

0

i

(1); P

i;2

);

(P

i;2

; pos

i

(2)); : : : ; (P

0

i;jpos

i

j

; pos

0

i

(jpos

i

j)); (pos

0

i

(jpos

i

j); x

i+1

), if jpos

i

j > 0,

{ (x

i

; emp

i

); (emp

i

; x

i+1

), if jpos

i

j = 0,

{ (x

i

; emp

0

i

); (emp

0

i

; N

i;1

); (N

i;1

; neg

i

(1)); (neg

i

(1); N

0

i;1

); (N

0

i;1

; neg

0

i

(1)); (neg

0

i

(1); N

i;2

);

(N

i;2

; neg

i

(2)); : : : ; (N

0

i;jneg

i

j

; neg

0

i

(jneg

i

j)); (neg

0

i

(jneg

i

j); x

i+1

), if jneg

i

j > 0,

{ (x

i

; emp

0

i

); (emp

0

i

; x

i+1

), if jneg

i

j = 0,

� (x

p+1

; s

1

); (s

1

; D

2

); (D

2

; s

2

); (s

2

; C

1

).

Note that there are two edges incident on each of the symbols emp

i

, emp

0

i

, l

0

i;j

, P

i;j

, P

0

i;j

, N

i;j

and N

0

i;j

. In addition, there are four edges incident on every symbol l

i;j

.

� If l

i;j

= pos

r

(k), there are edges (C

i

; l

i;j

), (l

i;j

; C

i+1

), (P

r;k

; l

i;j

) and (l

i;j

; P

0

r;k

) in the

TSGD.

� If l

i;j

= neg

r

(k), there are edges (C

i

; l

i;j

), (l

i;j

; C

i+1

), (N

r;k

; l

i;j

) and (l

i;j

; N

0

r;k

) in the

TSGD.

The set of dependencies D consist of

� (C

i

; l

i;j

)!(l

i;j

; C

i+1

), for all i = 1; 2; : : : ; p, for all j = 1; 2; 3,

� (C

p+1

; s

0

)!(s

0

; x

1

),

� for i = 1; 2; : : : ; q,

{ (x

i

; emp

i

)!(emp

i

; P

i;1

); (P

0

i;1

; pos

0

i

(1))!(pos

0

i

(1); P

i;2

); (P

0

i;2

; pos

0

i

(2))!(pos

0

i

(2); P

i;3

);

: : : ; (P

0

i;jpos

i

j

; pos

0

i

(jpos

i

j))!(pos

0

i

(jpos

i

j); x

i+1

), if jpos

i

j > 0,

{ (x

i

; emp

i

)!(emp

i

; x

i+1

), if jpos

i

j = 0,

{ (x

i

; emp

0

i

)!(emp

0

i

; N

i;1

); (N

0

i;1

; neg

0

i

(1))!(neg

0

i

(1); N

i;2

); (N

0

i;2

; neg

0

i

(2))!(neg

0

i

(2); N

i;3

);

: : : ; (N

0

i;jneg

i

j

; neg

0

i

(jneg

i

j))!(neg

0

i

(jneg

i

j); x

i+1

), if jneg

i

j > 0,

{ (x

i

; emp

0

i

)!(emp

0

i

; x

i+1

), if jneg

i

j = 0,

� for each symbol l

i;j

,

{ if l

i;j

= pos

r

(k), there are edges (C

i

; l

i;j

), (l

i;j

; C

i+1

), (P

r;k

; l

i;j

) and (l

i;j

; P

0

r;k

) in the

TSGD. The following dependencies are in D.

(C

i

; l

i;j

)!(l

i;j

; P

r;k

), (C

i+1

; l

i;j

)!(l

i;j

; P

r;k

),

(P

0

r;k

; l

i;j

)!(l

i;j

; C

i

), (P

0

r;k

; l

i;j

)!(l

i;j

; C

i+1

).

{ if l

i;j

= neg

r

(k), there are edges (C

i

; l

i;j

), (l

i;j

; C

i+1

), (N

r;k

; l

i;j

) and (l

i;j

; N

0

r;k

) in the

TSGD. The following dependencies are in D.

(C

i

; l

i;j

)!(l

i;j

; N

r;k

), (C

i+1

; l

i;j

)!(l

i;j

; N

r;k

),

(N

0

r;k

; l

i;j

)!(l

i;j

; C

i

), (N

0

r;k

; l

i;j

)!(l

i;j

; C

i+1

).

� (x

q+1

; s

1

)!(s

1

; D

2

),

It is easy to see that the number of steps required to construct the TSGD (V;E;D) is O(p+ q).

If C = x

1

_ �x

2

_ x

3

, then the constructed TSGD is as shown in �gure 6.

Our goal is to show that C is satis�able i� (V;E;D) does not contain any cycles involving

D

2

. We begin by showing that the TSGD (V;E;D) satis�es the conditions. In D, the only

dependency on any ofD

2

's edges is (x

m+1

; s

1

)!(s

1

; D

2

). Thus, inD, there are only dependencies

into D

2

's edges. Also, the set of dependencies, D, is legal. Further, we show that the TSGD

(V

0

; E

0

; D

0

) is acyclic, where

V

0

= V �D

2

,

E

0

= E � f(D

2

; s

1

); (D

2

; s

2

)g, and

D

0

= D � f(x

q+1

; s

1

)!(s

1

; D

2

)g.

Let S

1

= fC

1

; C

2

; : : : ; C

p+1

g, and S

2

= fx

1

; x

2

; : : : ; x

q+1

g [ fN

r;k

; N

0

r;k

: r = 1; 2; : : : ; q; k =

1; 2; : : : ; jneg

r

jg [ fP

r;k

; P

0

r;k

: r = 1; 2; : : : ; q; k = 1; 2; : : : ; jpos

r

jg. Note that there cannot exist
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Theorem 7 is a consequence of the following NP-completeness result.

Theorem 17: The following problem is NP-complete.

Given a TSGD (V;E;D), and a transaction node

b

G

i

2 V in the TSGD such that for all trans-

actions

b

G

j

2 V , for all sites s

k

, dependency (

b

G

i

; s

k

)!(

b

G

j

; s

k

) 62 D. Also, TSGD (V

0

; E

0

; D

0

)

resulting from the deletion of

b

G

i

, its edges and dependencies from (V;E;D), is acyclic. Is � = ;

not minimal with respect to the TSGD and transaction

b

G

i

?

Proof: We begin by showing that � = ; is not minimal with respect to

b

G

i

and (V;E;D) i�

(V;E;D) contains a cycle involving transaction

b

G

i

. Since � = ;, and universal quanti�cation

over ; is always true, by the de�nition of minimality � is minimal with respect to

b

G

i

and

(V;E;D) i� (V;E;D) does not contain any cycles involving

b

G

i

. As a result, it su�ces to show

that the following problem is NP-complete.

Does (V;E;D) contain a cycle involving

b

G

i

?

The above problem is in NP since a non-deterministic algorithm only needs to guess a

sequence of at most m+ n nodes (since in a path no node can appear more than once and the

TSGD has at most m + n nodes) and then check in polynomial time if the edges between the

nodes result in a path from

b

G

i

to

b

G

i

in the TSGD (V;E;D).

We show a polynomial transformation from 3-SAT. Consider a formula in Conjunctive Nor-

mal Form (CNF) C = C

1

^C

2

^ � � �^C

p

that is de�ned over literals x

1

; x

2

; : : : ; x

q

. Let l

i;j

, l

0

i;j

,

i = 1; 2; : : : ; p, j = 1; 2; 3, be new symbols for the j

th

literal in clause C

i

. Each symbol l

i;j

has

a value, val(l

i;j

), that is either x

k

or �x

k

, k = 1; 2; : : : ; q. Note that for any two symbols l

i;j

and

l

i;k

, j 6= k, val(l

i;j

) 6= val(l

i;k

). In addition, for every literal x

i

, there are new symbols emp

i

and

emp

0

i

. For r = 1; 2; : : : ; q, pos

r

denotes the sequence of symbols l

i;j

in the order of increasing

i, such that val(l

i;j

) = x

r

, and pos

0

r

, the corresponding sequence of symbols l

0

i;j

in the order of

increasing i, such that val(l

i;j

) = x

r

. For r = 1; 2; : : : ; q, neg

r

denotes the sequence of symbols

l

i;j

in the order of increasing i, such that val(l

i;j

) = �x

r

, and neg

0

r

, the corresponding sequence of

symbols l

0

i;j

in the order of increasing i, such that val(l

i;j

) = �x

r

. Also jpos

r

j denotes the number

of elements in the sequence pos

r

and for k = 1; 2; : : : ; jpos

r

j, pos

r

(k) denotes the k

th

element

in the sequence pos

r

. jpos

0

r

j, pos

0

r

(k), jneg

r

j, neg

r

(k), jneg

0

r

j and neg

0

r

(k) are similarly de�ned.

We introduce new symbols P

r;k

, P

0

r;k

for each pos

r

(k), r = 1; 2; : : : ; q, k = 1; 2; : : : ; jpos

r

j and

new symbols N

r;k

; N

0

r;k

for each neg

r

(k), r = 1; 2; : : : ; q, k = 1; 2; : : : ; jneg

r

j. We illustrate the

notation by means of the following example.

Example: Let C = (x

1

_ �x

3

_ x

4

) ^ ( �x

2

_ �x

1

_ x

3

) ^ ( �x

2

_ �x

4

_ x

1

).

val(l

1;1

) = x

1

, val(l

2;2

) = �x

1

, val(l

3;2

) = �x

4

.

pos

1

= l

1;1

� l

3;3

, neg

1

= l

2;2

, pos

2

= null.

pos

0

1

= l

0

1;1

� l

0

3;3

, neg

0

2

= l

0

2;1

� l

0

3;1

.

Also, jpos

1

j = 2, jpos

2

j = 0, jneg

0

2

j = 2.

pos

1

(1) = l

1;1

, pos

1

(2) = l

3;3

, neg

0

1

(1) = l

0

2;2

, neg

0

2

(2) = l

0

3;1

. 2

We now construct the TSGD as follows. The set of nodes V consist of transaction and site

nodes. The transaction nodes in the TSGD consists of C

1

; C

2

; : : : ; C

p

; C

p+1

, x

1

; x

2

; : : : ; x

q

; x

q+1

,

D

2

(C

p+1

; x

q+1

and D

2

are new symbols) in addition to P

r;k

, P

0

r;k

for all r = 1; 2; : : : ; q, k =

1; 2; : : : ; jpos

r

j and N

r;k

, N

0

r;k

for all r = 1; 2; : : : ; q, k = 1; 2; : : : ; jneg

r

j. Site nodes consist of l

i;j

,

l

0

i;j

, i = 1; 2; : : : ; p, j = 1; 2;3, in addition to new symbols s

0

; s

1

,s

2

and for all i, i = 1; 2; : : : ; q,

emp

i

; emp

0

i

.

The set of edges E consist of

� (C

i

; l

i;j

) and (l

i;j

; C

i+1

), for all i = 1; 2; : : : ; p, for all j = 1; 2; 3,

� (C

p+1

; s

0

), (s

0

; x

1

),

� for i = 1; 2; : : : ; q,
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� act(ser

k

(G

i

)): O(n). At most n dependencies are added to D as a result of the execution

of act(ser

k

(G

i

)) since every transaction

b

G

j

has at most one operation ser

k

(G

j

) and there

are at most n transactions in the TSGD. If a dependency (

b

G

i

; s

k

)!(

b

G

j

; s

k

) is added to

D, then both tot count(

b

G

j

; s

k

) and act count(

b

G

j

; s

k

) are incremented by 1.

� cond(ack(ser

k

(G

i

))): O(1).

� act(ack(ser

k

(G

i

))): O(n). For every transaction

b

G

j

such that a dependency (

b

G

i

; s

k

)!

(

b

G

j

; s

k

) 2 D, act count(

b

G

j

; s

k

) is decremented by 1. Since every transaction

b

G

j

has at

most one operation ser

k

(G

j

) and there are at most n transactions in the TSGD,D contains

at most n such dependencies when act(ack(ser

k

(G

i

))) executes.

� cond(fin

i

): O(d

av

). cond(fin

i

) holds only if for every site s

k

2 exec(G

i

), tot count(

b

G

i

; s

k

) =

0.

� act(fin

i

): O(nd

av

). For every transaction

b

G

j

such that a dependency (

b

G

i

; s

k

)!(

b

G

j

; s

k

) 2

D, where s

k

2 exec(G

i

), tot count(

b

G

j

; s

k

) is decremented by 1, and the dependency

deleted from D. Since D contains at most nd

av

such dependencies (a transaction has d

av

operations and there are at most n transactions in the TSGD), the number of steps in

act(fin

i

) is O(nd

av

).

Since cond(init

i

) and cond(ack(ser

k

(G

i

))) are both true, the only operations in WAIT are

either ser

k

(G

i

) for some transaction

b

G

i

and site s

k

2 exec(G

i

), or fin

i

for some transaction

b

G

i

. Also, execution of act(o

j

), for an operation o

j

, can cause cond(ser

k

(G

i

)) to hold only

if execution of act(o

j

) causes act count(

b

G

i

; s

k

) to be decremented. In addition, execution of

act(o

j

), for some operation o

j

, can cause cond(fin

i

) for some transaction

b

G

i

to hold only if

act(o

j

) decrements tot count(

b

G

i

; s

k

), for some site s

k

2 exec(G

i

).

We now specify wait(o

j

) for each of the operations o

j

.

� wait(init

i

): ;. Execution of act(init

i

) does not result in any counters being decremented.

� wait(ser

k

(G

i

)): ;. Execution of act(ser

k

(G

i

)) does not result in any counters being decre-

mented.

� wait(ack(ser

k

(G

i

))): fser

k

(G

j

) : (ser

k

(G

j

) 2WAIT)g.

For any operation fin

j

2WAIT, execution of act(ack(ser

k

(G

i

))) cannot cause cond(fin

j

)

to hold since only act count(

b

G

l

; s

k

), s

k

2 exec(G

l

), is decremented due to the execution

of act(ack(ser

k

(G

i

))).

Further, execution of act(ack(ser

k

(G

i

))) cannot cause cond(ser

p

(G

j

)) to hold for some

operation ser

p

(G

j

) 2WAIT, s

p

6= s

k

, since execution of act(ack(ser

k

(G

i

))) results in only

act count(

b

G

l

; s

k

), s

k

2 exec(G

l

), being decremented and s

k

6= s

p

. Thus, wait(ack(ser

k

(G

i

)))

is restricted to operations ser

k

(G

l

), for transactions

b

G

l

2 V such that s

k

2 exec(G

l

).

� wait(fin

i

): ffin

j

: fin

j

2WAITg.

For any operation ser

k

(G

j

) 2 WAIT, cond(ser

k

(G

j

)) cannot hold due to the execution

of act(fin

i

) since only tot count(

b

G

j

; s

k

), for some transaction

b

G

j

and some site s

k

2

(exec(G

i

) \ exec(G

j

)), is decremented due to the execution of act(fin

i

).

Thus, the number of steps in cond(o

l

), for any operation o

l

2 wait(ack(ser

k

(G

i

))) is O(1),

and the number of steps in cond(o

l

) for any operation o

l

2 wait(fin

i

), is O(d

av

). Further, in

the worst case, the number of operations in both wait(ack(ser

k

(G

i

))) and wait(fin

i

) is O(n)

(since there are at most n transactions in the TSGD).

Proof of Theorem 6: The complexity of Scheme 2 is dominated by the number of steps

in act(init

i

) which is O(n

2

d

av

). Thus, the complexity of Scheme 2 is O(n

2

d

av

). 2
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dependency (

b

G

l

; s

k

)!(

b

G

(j mod r)+1

; s

k

), for all

b

G

l

; s

k

such that s

k

2 (exec(G

(j mod r)+1

) \

exec(G

l

)), act(fin

(j mod r)+1

) cannot be executed unless act(fin

j

) has executed. Thus, act(fin

j

)

must execute before act(fin

(j mod r)+1

) executes. Now suppose act(fin

k

) executes for some

k = 1; 2; : : : ; r. From the above arguments, if follows that act(fin

k

) executes before act(fin

k

)

executes, which is not possible. Thus, none of act(fin

j

) can execute, for all j, j = 1; 2; : : : ; r.

Consider a point p during the execution of Scheme 2 when all of act(ser

i

j

(G

j

)),

act(ser

i

j

(G

(j mod r)+1

)), j = 1; 2; : : : ; r have been executed. Since for all j, j = 1; 2; : : : ; r,

act(fin

j

) does not execute and act(init

j

) executes before act(ser

i

j

(G

j

)), by Lemma 4, (

b

G

j

; s

i

j

)!

(

b

G

(j mod r)+1

; s

i

j

) 2 D at p. By Lemma 3 and Lemma 8, since the TSGD is legal at p, there

is no dependency (

b

G

(j mod r)+1

; s

i

j

)!(

b

G

j

; s

i

j

) in D, for all j, j = 1; 2; : : : ; r. Thus, the edges

(

b

G

1

; s

i

r

); (s

i

r

;

b

G

r

); (

b

G

r

; s

i

r�1

); : : : ; (

b

G

2

; s

i

1

); (s

i

1

;

b

G

1

) in the TSGD form a cycle. However, this

leads to a contradiction since by Lemma 2 and Lemma 8, the TSGD does not contain cycles at

any point during the execution of Scheme 2. Thus, ser(S) is serializable. 2

Before performing the complexity analysis for Scheme 2, we �rst analyze the number of steps

required by Eliminate Cycles.

Theorem 16: Eliminate Cycles terminates in O(n

2

d

av

) steps.

Proof: Since there are at most n transactions in the TSGD, and each transaction has d

av

edges, the TSGD has at most nd

av

edges. The number of edges marked by the algorithm is

O(nd

av

) since each of

b

G

i

's edges are marked at most n times and every other edge in the TSGD

is marked at most once. Also, since every time a state transition is made, an edge is marked,

the number of state transitions st

j

! st

k

possible is bounded above by O(nd

av

). Thus, the

number of reverse transitions made are also O(nd

av

). Further, at every transaction node, in the

worst case, there are nd

av

choices of pairs of edges that can be made. Each of these must be

examined in the worst case and since there are at most n transaction nodes, Eliminate Cycles

terminates in O(n

2

d

av

) steps. 2

Complexity Analysis of Scheme 2:

We �rst describe additional data structures involved in the implementation of Scheme 2.

We then analyze, for every operation o

j

, the number of steps in cond(o

j

) and act(o

j

), and the

characteristics of wait(o

j

) (the number of operations and their types).

Implementation: Associated with every edge (

b

G

i

; s

k

) in the TSGD are associated two

counters: tot count(

b

G

i

; s

k

) and act count(

b

G

i

; s

k

). The counter tot count(

b

G

i

; s

k

) maintains a

count of the total number of dependencies into an edge, while act count(

b

G

i

; s

k

) keeps a count of

dependencies (

b

G

j

; s

k

)!(

b

G

i

; s

k

) such that act(ack(ser

k

(G

j

))) has not yet completed execution.

The number of steps in cond(o

j

) and act(o

j

), for each operation o

j

, are as follows.

� cond(init

i

): O(1).

� act(init

i

): O(n

2

d

av

). Since there are at most n transactions in the TSGD and every

transaction has d

av

operations, in the worst case, act(init

i

) results in the addition of

O(nd

av

) dependencies of the form (

b

G

j

; s

k

)!(

b

G

i

; s

k

) to D, where s

k

2 exec(G

i

). Addition

of each of these dependencies, say, (

b

G

j

; s

k

)! (

b

G

i

; s

k

) for some s

k

2 exec(G

i

), results

in updates to tot count(

b

G

i

; s

k

), and in certain cases to act count(

b

G

i

; s

k

) depending on

whether or not act(ack(ser

k

(G

j

))) has completed execution. Further, by Theorem 16,

Eliminate Cycles terminates in O(n

2

d

av

) steps. Thus, the number of steps required in

order to update D when act(init

i

) executes is O(n

2

d

av

).

� cond(ser

k

(G

i

)): O(1). cond(ser

k

(G

i

)) holds only if act count(

b

G

i

; s

k

) = 0. This check

takes O(1) steps.
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marks edge (v

2r+1

; v

2r+2

) \used" if it has not been marked \used" already. If v

2r+2

=

b

G

i

, then

a dependency (v

2r

; v

2r+1

)!(v

2r+1

; v

2r+2

) is added to � if it has not already been added to �

(irrespective of whether or not (v

2r+1

; v

2r+2

) is marked \used"). 2

Theorem 15: The procedure Eliminate Cycles ensures that there are no cycles involving

b

G

i

in (V;E;D [�).

Proof: Let us suppose that the set of edges (

b

G

i

; v

1

), (v

1

; v

2

), : : :, (v

2k�2

; v

2k�1

), (v

2k�1

;

b

G

i

),

k > 1, form a cycle in the TSGD (V;E;D [�). Thus, at least one of the following cases must

be true.

1. There is a path (

b

G

i

; v

1

)(v

1

; v

2

) � � � (v

2k�2

; v

2k�1

)(v

2k�1

;

b

G

i

), k > 1.

2. There is a path (

b

G

i

; v

2k�1

)(v

2k�1

; v

2k�2

) � � � (v

2

; v

1

)(v

1

;

b

G

i

), k > 1.

By Lemma 7, for Case 1, Eliminate Cycles ensures that a dependency (v

2k�2

; v

2k�1

)!

(v

2k�1

;

b

G

i

) is added to �. Thus, TSGD (V;E;D[�) cannot contain the path (

b

G

i

; v

1

)(v

1

; v

2

) � � �

(v

2k�1

;

b

G

i

) and Case 1 is not true. By a similar argument, it can be shown that Case 2 is not

true since Eliminate Cycles ensures that a dependency (v

2

; v

1

)!(v

1

;

b

G

i

) is added to �. Thus,

the TSGD (V;E;D [�) contains no cycles involving

b

G

i

. 2

Lemma 8: For all transactions

b

G

i

, act(init

i

) preserves the acyclicity of TSGD (V;E;D)

and the legality of D.

Proof: Let (V

1

; E

1

; D

1

) denote the TSGD before the execution of act(init

i

), and (V

2

; E

2

; D

2

)

denote the TSGD after execution of act(init

i

). It is given that (V

1

; E

1

; D

1

) is acyclic, and D

1

is legal. Also, since act(init

i

) results in the addition of

b

G

i

's edges to (V

1

; E

1

; D

1

) and no

dependencies in D

1

are deleted, V

1

� V

2

, E

1

� E

2

and D

1

� D

2

. More precisely,

V

2

:= V

1

[ f

b

G

i

g.

E

2

:= E

1

[ f(

b

G

i

; s

k

) : s

k

2 exec(G

i

)g.

We �rst show thatD

2

is legal. Since, in the set of dependencies returned by Eliminate Cycles,

all the dependencies are of the form (

b

G

j

; s

k

)!(

b

G

i

; s

k

) for some transaction

b

G

j

2 V and some

site s

k

, in D

2

�D

1

, all the dependencies are of the form (

b

G

j

; s

k

)!(

b

G

i

; s

k

). Thus, since there is

no dependency of the form (

b

G

i

; s

k

)!(

b

G

j

; s

k

) in D

1

before the execution of act(init

i

), and D

1

is legal, D

2

is legal.

By Theorem 15, procedure eliminate Cycles ensures that in (V

2

; E

2

; D

2

), there are no cycles

involving

b

G

i

. Since (V

1

; E

1

; D

1

) is acyclic, D

1

� D

2

and E

2

:= E

1

[ f(

b

G

i

; s

k

) : s

k

2 exec(G

i

)g,

(V

2

; E

2

; D

2

) does not contain any cycles not involving

b

G

i

. As a result, (V

2

; E

2

; D

2

) does not

contain any cycles and is acyclic. 2

In the following theorem, we show that scheme 2 ensures the serializability of ser(S).

Proof of Theorem 5: Suppose ser(S) is not serializable. Thus, there exist distinct trans-

actions, say,

b

G

1

;

b

G

2

; : : : ;

b

G

r

, r > 1, such that ser

i

1

(G

1

) executes before ser

i

1

(G

2

), ser

i

2

(G

2

)

executes before ser

i

2

(G

3

), : : :, ser

i

r

(G

r

) executes before ser

i

r

(G

1

), and for all j; k = 1; 2; : : : ; r,

j 6= k, i

j

6= i

k

(since for any site s

k

, transaction

b

G

j

has at most one operation ser

k

(G

j

)).

We claim for all j, j = 1; 2; : : : ; r, none of act(fin

j

) can execute, and thus none of

b

G

j

's

edges can be deleted from the TSGD. To see this, observe that for all j, j = 1; 2; : : : ; r,

ser

i

j

(G

j

) executes before ser

i

j

(G

(j mod r)+1

). Thus, by Lemma 4 and Lemma 5, if act(fin

j

)

has not executed when Scheme 2 attempts to execute act(fin

(j mod r)+1

), then (

b

G

j

; s

k

)!

(

b

G

(j mod r)+1

; s

k

) 2 D (since Scheme 2 attempts to execute act(fin

(j mod r)+1

) after it ex-

ecutes act(ser

i

j

(G

(j mod r)+1

)), and act(ser

i

j

(G

(j mod r)+1

)) executes after act(ser

i

j

(G

j

)) as

well as act(init

(j mod r)+1

)). As a result, since cond(fin

(j mod r)+1

) requires there to be no
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w =

b

G

i

, the choice is eliminated in one step by adding a dependency (v; u)!(u;w). If w 6=

b

G

i

,

then Eliminate Cycles makes a state transition st

k

! st

l

due to Step 3, where st

l

:v = w,

st

l

:t par(st

l

:v) = (st

k

:v) � (st

k

:t par(st

l

:v)), st

l

:s par(st

l

:v) = u � st

k

:s par(st

l

:v), and edge

(u;w) is marked. As a result, this choice is eliminated and the number of unmarked edges in

the TSGD just after the transition st

k

! st

l

is made is r. Thus, by the induction hypothesis,

Eliminate Cycles makes a reverse transition st

l

! st

k

in a �nite number of steps. Since there

are a �nite number of choices of pairs of edges in state st

k

, each choice is eliminated when a

transition st

k

! st

l

is made, and no further state transitions (due to Step 3) can be made once

all choices have been eliminated, Eliminate Cycles makes the reverse transition st

k

! st

j

(due

to Step 4) in a �nite number of steps. 2

Corollary 2: Eliminate Cycles terminates in a �nite number of steps.

Proof: The initial state st

0

= (

b

G

i

; null; null). Every time a transition st

0

! st

j

is made,

by Lemma 6, a reverse transition st

j

! st

0

is made in a �nite number of steps. Since there are

a �nite number of choices in state st

0

, each choice is eliminated when a transition st

0

! st

j

is made, and no further transitions can be made once all choices have been eliminated, Elimi-

nate Cycles terminates in a �nite number of steps. 2

In order to prove that Eliminate Cycles detects all cycles in the TSGD, we �rst de�ne the

notion of a path in the TSGD.

De�nition 6: In a TSGD (V;E;D), (v

0

; v

1

)(v

1

; v

2

) � � � (v

k�1

; v

k

), k > 0, is a path from v

0

to v

k

i�

� for all i, i = 0; 1; 2; : : : ; k � 1, (v

i

; v

i+1

) 2 E,

� for all i, i = 0; 1; 2; : : : ; k � 2, dependency (v

i

; v

i+1

)!(v

i+1

; v

i+2

) 62 D,

� for all pairs (i; j), such that i; j = 0; 1; 2; : : : ; k, i < j, and (i; j) 6= (0; k), the following is

true: v

i

6= v

j

, and

� if k � 2, then v

0

6= v

k

.

If, in addition, v

0

= v

k

, and k > 2, then the set of edges (v

0

; v

1

), (v

1

; v

2

), : : :, (v

k�1

; v

k

) form a

cycle. 2

Lemma 7: If there is a path from

b

G

i

to a transaction node v

2k

, k > 0, (

b

G

i

; v

1

)(v

1

; v

2

) � � �

(v

2k�1

; v

2k

) in the TSGD (V;E;D), then

� if v

2k

6=

b

G

i

, then (v

2k�1

; v

2k

) is marked \used" during the execution of Eliminate Cycles.

� if v

2k

=

b

G

i

, k > 1, then a dependency (v

2k�2

; v

2k�1

)!(v

2k�1

; v

2k

) is added to �.

Proof: We prove the above lemma by induction on k.

Basis (k=1): The lemma holds for k = 1 since by Corollary 2, Eliminate Cycles terminates.

Before termination, Eliminate Cycles ensures that (v

1

; v

2

) is marked \used" if it already has

not been marked \used" (since, by the de�nition of path, v

2

6=

b

G

i

, and there is no dependency

(

b

G

i

; v

1

)!(v

1

; v

2

) in D [�).

Induction: Assume the lemma is true for k = r, r > 0. We need to show that the lemma

is true for k = r + 1. Let the path be (

b

G

i

; v

1

)(v

1

; v

2

) � � � (v

2r�1

; v

2r

)(v

2r

; v

2r+1

)(v

2r+1

; v

2r+2

).

By the induction hypothesis, edge (v

2r�1

; v

2r

) is marked \used". By the de�nition of path,

v

2r

6=

b

G

i

. Thus, when (v

2r�1

; v

2r

) is marked, a transition st

j

! st

l

is made for some states

st

j

; st

l

, where st

l

:v = v

2r

, st

l

:t par(v

2r

) = (st

j

:v)� (st

j

:t par(v

2r

)), and st

l

:s par(v

2r

) = v

2r�1

�

(st

j

:s par(v

2r

)). By the de�nition of path, v

2r�1

6= v

2r+1

, and thus, head(st

l

:s par(v

2r

)) 6=

v

2r+1

. By Lemma 6, Eliminate Cycles makes a reverse transition st

l

! st

j

in a �nite number

of steps. If v

2r+2

6=

b

G

i

, then by the de�nition of path, there is no dependency (v

2r

; v

2r+1

)!

(v

2r+1

; v

2r+2

) in D [�, and before making the reverse transition st

l

! st

j

, Eliminate Cycles
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� dependencies are deleted from D only when act(fin

l

) for some transaction

b

G

l

executes,

� for all transactions

b

G

l

,

b

G

l

6=

b

G

i

,

b

G

l

6=

b

G

j

, act(fin

l

), results in the deletion of only

b

G

l

's

edges from the TSGD, and

� act(fin

j

) cannot be executed since cond(fin

j

) does not hold if (

b

G

i

; s

k

)!(

b

G

j

; s

k

) 2 D,

and thus act(fin

j

) executes only after act(fin

i

) executes. 2

Lemma 5: For all sites s

k

, for all transactions

b

G

i

,

b

G

j

, if ser

k

(G

i

) executes before ser

k

(G

j

),

then act(ser

k

(G

i

)) executes before act(ser

k

(G

j

)).

Proof: Let us assume that act(ser

k

(G

j

)) executes before act(ser

k

(G

i

)). If act(ack(ser

k

(G

j

)))

executes before act(ser

k

(G

i

)) executes, then ser

k

(G

j

) executes before ser

k

(G

i

) which leads to a

contradiction. In addition, we show that act(ser

k

(G

i

)) cannot execute before act(ack(ser

k

(G

j

)))

completes execution. By Lemma 4, when act(ser

k

(G

i

)) executes, dependency (

b

G

j

; s

k

)!(

b

G

i

; s

k

) 2

D (since act(ser

k

(G

i

)) executes only after act(init

i

) executes, and act(fin

j

) executes only after

act(ack(ser

k

(G

j

))) executes). Thus, cond(ser

k

(G

i

)) does not hold, and act(ser

k

(G

i

)) cannot

execute before act(ack(ser

k

(G

j

))) executes. Thus, act(ser

k

(G

i

)) executes before act(ser

k

(G

j

))

executes. 2

We now prove that for all transactions

b

G

i

, act(init

i

) preserves the acyclicity of the TSGD.

In order to prove the above, we need to �rst show that the set of dependencies � returned by

Eliminate Cycles, is such that (V;E;D [�) does not contain any cycles involving

b

G

i

. For this

purpose, we introduce the notion of a state of Eliminate Cycles. A state of Eliminate Cycles, st

j

,

is a tuple (v; t par(

b

G

1

); t par(

b

G

2

); : : : ; t par(

b

G

q

); s par(

b

G

1

); s par(

b

G

2

); : : : ; s par(

b

G

q

)), where

v is a transaction node,

b

G

1

;

b

G

2

; : : : ;

b

G

q

are the transaction nodes in the TSGD, and for all

transaction nodes

b

G

l

2 V , t par(

b

G

l

) is a list of transaction nodes and s par(

b

G

l

) is a list of site

nodes. We denote the values of v; t par(

b

G

l

) and s par(

b

G

l

) in state st

j

, where transaction node

b

G

l

2 V , by st

j

:v, st

j

:t par(

b

G

l

) and st

j

:s par(

b

G

l

) respectively.

Eliminate Cycles is said to be in state st

j

at a point in between the execution any two of

its steps, if at that point, v = st

j

:v, and for all transaction nodes

b

G

l

, t par(

b

G

l

) = st

j

:t par(

b

G

l

)

and s par(

b

G

l

) = st

j

:s par(

b

G

l

). Certain steps in Eliminate Cycles cause it to move from

one state to another. When a step causes Eliminate Cycles to move from state st

j

to state

st

k

, Eliminate Cycles is said to make a state transition st

j

! st

k

. Note that only steps

3 and 4 cause state transitions (we assume that the state of Eliminate Cycles is unde�ned

before the execution of Step 1). Also, if step 3 causes a state transaction st

j

! st

k

, then

jst

j

:t par(st

k

:v)j < jst

k

:t par(st

k

:v)j

5

. Similarly, if step 4 causes a state transaction st

j

! st

k

,

then jst

j

:t par(st

j

:v)j > jst

k

:t par(st

j

:v)j.

Lemma 6: If Eliminate Cycles makes a state transition st

j

! st

k

due to Step 3, then after

the execution of a �nite number of steps, Eliminate Cycles also makes the reverse transition

st

k

! st

j

(due to Step 4).

Proof: We prove the above lemma by induction on num, where num is the number of

unmarked edges in the TSGD just after the transition st

j

! st

k

is made.

Basis (num = 0): In this case, the only choices for pairs of edges ((v; u); (u;w)) available in

state st

k

are those in which w =

b

G

i

(if w 6=

b

G

i

, then since (u;w) is marked, the pair of edges

cannot be chosen). Since a �nite number of such choices exist, and each choice becomes unavail-

able once made (since a dependency (v; u)!(u;

b

G

i

) is added to �), Eliminate Cycles makes the

reverse transition st

k

! st

j

in a �nite number of steps.

Induction: Assume the lemma is true for num = r. We show that the lemma is true for

num = r+ 1. Thus, just after the transition st

j

! st

k

is made, the number of unmarked edges

in the TSGD is r + 1. For every choice of pairs of edges ((v; u); (u;w)) while in state st

k

, if

5

For a list L, we denote the number of elements in the list by jLj.
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-Appendix C-

In order to prove that Scheme 2 ensures the serializability of ser(S), we need to �rst prove

a series of lemmas. In the following lemma, we state the conditions under which Scheme 2

preserves the acyclicity of the TSGD.

Lemma 2: If, for all transactions

b

G

i

, act(init

i

) preserves acyclicity of the TSGD, then

Scheme 2 ensures that at any point during its execution, the TSGD does not contain cycles.

Proof: Initially V = E = D = ;. Thus, trivially, the TSGD (V;E;D) does not contain any

cycles initially. Since only act(o

j

) modi�es the TSGD, we show that it preserves the acyclicity

property of the TSGD for all operations o

j

.

act(init

i

): Assumed to preserve the acyclicity of the TSGD.

act(ser

k

(G

i

)): Since the addition of dependencies to an acyclic TSGD preserves its acyclicity,

and act(ser

k

(G

i

)) only causes dependencies to be added to D, the TSGD stays acyclic.

act(ack(ser

k

(G

i

))): The TSGD is not modi�ed, and thus acyclicity of the TSGD is preserved.

act(fin

i

): The deletion of

b

G

i

's edges from the TSGD when act(fin

i

) executes does not add any

cycles to the TSGD. Thus, act(fin

i

) preserves the acyclicity of the TSGD. 2

In addition to requiring that the TSGD be acyclic, we also require that the set of dependen-

cies be legal, which is de�ned below.

De�nition 5: A set of dependencies D is legal, if for all transactions

b

G

i

;

b

G

j

and for all sites

s

k

, if (

b

G

i

; s

k

)!(

b

G

j

; s

k

) 2 D, then (

b

G

j

; s

k

)!(

b

G

i

; s

k

) 62 D. 2

In the following lemma, we state conditions under which Scheme 2 ensures the legality of

the set of dependencies.

Lemma 3: If, for all transactions

b

G

i

, act(init

i

) preserves legality of D, then Scheme 2

ensures that at any point during its execution, D is legal.

Proof: Initially D = ;. Thus, trivially, D is legal. Since only act(o

j

) modi�es the TSGD,

we show that it preserves the legality of D for all operations o

j

.

act(init

i

): Assumed to preserve the legality of D.

act(ser

k

(G

i

)): act(ser

k

(G

i

)) causes dependencies (

b

G

i

; s

k

)!(

b

G

j

; s

k

) to be added to D for all

transactions

b

G

j

2 V such that act(ser

k

(G

j

)) has not yet executed. Addition of (

b

G

i

; s

k

)!(

b

G

j

; s

k

)

to D would cause D to become illegal if D already contained a dependency (

b

G

j

; s

k

)!(

b

G

i

; s

k

).

However, if D contains the dependency (

b

G

j

; s

k

)! (

b

G

i

; s

k

) before act(ser

k

(G

i

)) is executed,

then cond(ser

k

(G

i

)) would not hold, and thus, act(ser

k

(G

i

)) would not be executed. Thus,

(

b

G

j

; s

k

)!(

b

G

i

; s

k

) 62 D, and act(ser

k

(G

i

)) preserves the legality of D.

act(ack(ser

k

(G

i

))): The TSGD is not modi�ed and thus legality of D is preserved.

act(fin

i

): No new dependencies are added during act(fin

i

) and thus, D stays legal. 2

Lemma 4: For all sites s

k

, for all transactions

b

G

i

,

b

G

j

, if act(ser

k

(G

i

)) executes before

act(ser

k

(G

j

)) executes, then at any point p during the execution of Scheme 2, after the execution

of act(ser

k

(G

i

)) and act(init

j

), but before the execution of act(fin

i

), the following is true:

(

b

G

i

; s

k

)!(

b

G

j

; s

k

) 2 D.

Proof: If

b

G

j

2 V when act(ser

k

(G

i

)) executes, then execution of act(ser

k

(G

i

)) causes de-

pendency (

b

G

i

; s

k

)!(

b

G

j

; s

k

) to be added toD (since act(ser

k

(G

j

)) executes after act(ser

k

(G

i

))).

If

b

G

j

62 V when act(ser

k

(G

i

)) executes, then when act(init

j

) is executed, dependency (

b

G

i

; s

k

)!

(

b

G

j

; s

k

) is added to D (since act(fin

i

) has not yet been executed,

b

G

i

's edges are not deleted from

the TSGD when act(init

j

) executes). Further, the dependency is not deleted until act(fin

i

) is

executed since
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wait(ack(ser

k

(G

i

))) since cond(ser

k

(G

l

)) holds for all of them. However, in order to re-

duce the total number of steps, we include only one such operation ser

k

(G

p

). An operation

ser

k

(G

q

) 6= ser

k

(G

p

), such that ser

k

(G

q

) 2 WAIT and is unmarked, can be included in

wait(ack(ser

k

(G

p

))), and yet another can be included in wait(ack(ser

k

(G

q

))) and so on.

� wait(fin

i

): ffin

j

: fin

j

2WAITg.

For any operation ser

k

(G

j

) 2 WAIT, cond(ser

k

(G

j

)) cannot hold due to the execution of

act(fin

i

) since no operations are deleted from any of the insert queues due to the execution

of act(fin

i

).

Since the number of steps in cond(o

j

), for any operation o

j

is O(1), the number of steps

in cond(o

l

) for any operation o

l

2 wait(fin

i

) or o

l

2 wait(ack(ser

k

(G

i

))) is O(1). Further,

in the worst case, the number of operations in wait(ack(ser

k

(G

i

))) is O(1) and the number of

operations in wait(fin

i

) is O(n) (since there are at most n transactions in the TSG).

Proof of Theorem 4: The complexity of Scheme 1 is dominated by the number of steps in

act(init

i

) which is O(m+ n+ nd

av

). Thus, the complexity of Scheme 1 is O(m+ n+ nd

av

). 2
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� act(init

i

): O(m + n + nd

av

). Since each transaction has d

av

operations, the number of

steps required to add

b

G

i

's edges to the TSG and to add

b

G

i

's operations to the end of the

insert queue for all s

k

2 exec(G

i

) is O(d

av

). A simple depth-�rst search can be employed

in order to detect cycles in the TSG that involve

b

G

i

's edges. A complete depth-�rst search

of the TSG takes O(m + n + nd

av

) steps since the TSG has at most m + n nodes and

at most nd

av

edges (the number of transactions in the TSG never exceeds n, and every

transaction

b

G

i

has d

av

operations).

� cond(ser

k

(G

i

)): O(1). The number of steps needed to check if ser

k

(G

i

) in the insert queue

is either unmarked or the �rst element is O(1).

� act(ser

k

(G

i

)): O(1).

� cond(ack(ser

k

(G

i

))): O(1).

� act(ack(ser

k

(G

i

))): O(1). Deletion and addition of an element to the queues takes O(1)

steps. In addition, if ser

k

(G

i

) is not the �rst operation in the delete queue, then f count

i

is incremented by 1. This takes O(1) steps.

� cond(fin

i

): O(1). cond(fin

i

) holds only if f count

i

= 0. This check takes O(1) steps.

� act(fin

i

): O(d

av

). Deleting

b

G

i

's edges from the TSG takes O(d

av

) steps. Also, deletion of

its operations takes O(d

av

) steps. For every site s

k

2 exec(G

i

), along with the deletion of

operation ser

k

(G

i

) from the delete queue, f count

j

is decremented by 1, where operation

ser

k

(G

j

) immediately follows ser

k

(G

i

) in the delete queue for s

k

. This takes O(d

av

) steps.

Since cond(init

i

) and cond(ack(ser

k

(G

i

))) are both true, the only operations in WAIT are

either ser

k

(G

i

) for some transaction

b

G

i

and site s

k

2 exec(G

i

), or fin

i

for some transaction

b

G

i

. Also, execution of act(o

j

), for an operation o

j

, can cause cond(ser

k

(G

i

)) to hold only if

� o

j

= act(ack(ser

k

(G

l

))), for some transaction

b

G

l

, and

� if ser

k

(G

i

) is marked, act(o

j

) deletes all the operations that precede ser

k

(G

i

) in the insert

queue for s

k

thus causing ser

k

(G

i

) to be the �rst operation in the insert queue for s

k

.

In addition, execution of act(o

j

), for some operation o

j

, can cause cond(fin

i

) for some trans-

action

b

G

i

to hold only if act(o

j

) deletes operations from some of the delete queue thus causing

b

G

i

's operations to be �rst in the delete queues.

We now specify wait(o

j

) for each of the operations o

j

.

� wait(init

i

): ;. Execution of act(init

i

) does not result in the deletion of operations from

any of the queues.

� wait(ser

k

(G

i

)): ;. Execution of act(ser

k

(G

i

)) does not result in the deletion of operations

from any of the queues.

� wait(ack(ser

k

(G

i

))): fser

k

(G

j

) : (ser

k

(G

j

) 2WAIT)^(ser

k

(G

j

) is the �rst operation in the

queue for site s

k

)g [ fser

k

(G

l

) 2WAIT ^ (ser

k

(G

l

) is unmarked)g.

For any operation fin

j

2WAIT, execution of act(ack(ser

k

(G

i

))) cannot cause cond(fin

j

)

to hold since no operations are deleted from any of the delete queues due to the execution

of act(ack(ser

k

(G

i

))).

Further, execution of act(ack(ser

k

(G

i

))) cannot cause cond(ser

p

(G

j

)) to hold for some op-

eration ser

p

(G

j

) 2WAIT, s

p

6= s

k

, since execution of act(ack(ser

k

(G

i

))) does not result in

the deletion of any operations from the insert queue for site s

p

. Thus, wait(ack(ser

k

(G

i

)))

is restricted to any unmarked operation in the insert queue for s

k

and the �rst operation

in the insert queue for s

k

(since cond(ser

k

(G

i

)) for a marked operation ser

k

(G

i

) holds

only if it is �rst in the queue for s

k

).

Note that wait(ack(ser

k

(G

i

))) speci�ed above does not contain all the unmarked oper-

ations ser

k

(G

l

) 2 WAIT, even though by de�nition, all of them must be included in
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-Appendix B-

Before we show that Scheme 1 ensures the serializability of ser(S), we prove the following

lemma.

Lemma 1: For all transactions

b

G

i

;

b

G

j

, for all sites s

k

, if ser

k

(G

i

) executes before ser

k

(G

j

),

then ser

k

(G

i

) is inserted into the delete queue for site s

k

before ser

k

(G

j

) is inserted into the

delete queue for site s

k

.

Proof: We �rst show that if ser

k

(G

i

) executes before ser

k

(G

j

), then act(ser

k

(G

i

)) exe-

cutes before act(ser

k

(G

j

)). Suppose act(ser

k

(G

j

)) executes before act(ser

k

(G

i

)). Then, due to

cond(ser

k

(G

i

)), act(ser

k

(G

i

)) executes only after act(ack(ser

k

(G

j

))) executes. Thus, ser

k

(G

j

)

executes before ser

k

(G

i

) executes, which leads to a contradiction. As a result, act(ser

k

(G

i

))

executes before act(ser

k

(G

j

)).

Further, due to cond(ser

k

(G

i

)), act(ser

k

(G

j

)) executes only after act(ack(ser

k

(G

i

))). Thus,

since act(ack(ser

k

(G

j

))) executes after act(ser

k

(G

j

)), act(ack(ser

k

(G

j

))) executes after

act(ack(ser

k

(G

i

))). Since operation ser

k

(G

i

) is inserted into the delete queue for s

k

when

act(ack(ser

k

(G

i

))) executes, ser

k

(G

i

) is inserted into the delete queue for s

k

before ser

k

(G

j

) is

inserted into the delete queue for s

k

. 2

Proof of Theorem 3: Let us assume that ser(S) is not serializable. Thus, there exist

distinct transactions, say,

b

G

1

;

b

G

2

; : : : ;

b

G

r

, r > 1, such that ser

i

1

(G

1

) executes before ser

i

1

(G

2

),

ser

i

2

(G

2

) executes before ser

i

2

(G

3

), : : :, ser

i

r

(G

r

) executes before ser

i

r

(G

1

) and for all j; k =

1; 2; : : : ; r, j 6= k, i

j

6= i

k

(since for any s

k

, transaction

b

G

j

has at most one operation ser

k

(G

j

)).

We �rst show that for all j, j = 1; 2; : : : ; r, act(fin

j

) cannot execute. By Lemma 1, ser

i

j

(G

j

) is

inserted into the delete queue for s

i

j

before ser

i

j

(G

(j mod r)+1

) is inserted into the delete queue

for s

i

j

. Since, for cond(fin

(j mod r)+1

) to hold, ser

i

j

(G

(j mod r)+1

) must be �rst in the delete

queue for s

i

j

, ser

i

j

(G

j

) must be deleted from delete queue for s

i

j

before act(fin

(j mod r)+1

)

can execute. Thus, for all j, j = 1; 2; : : : ; r, act(fin

j

) must execute before act(fin

(j mod r)+1

)

can execute. Thus, from above, if act(fin

k

) executes for some k, k = 1; 2; : : : ; r, then act(fin

k

)

executes before act(fin

k

) executes, which is not possible. Thus, for all j, j = 1; 2; : : : ; r,

act(fin

j

) does not execute.

Thus, after act(init

j

), for all j = 1; 2; : : : ; r, execute, there is a cycle (

b

G

1

; s

i

1

)(s

i

1

;

b

G

2

)(

b

G

2

; s

i

2

)

� � � (

b

G

r

; s

i

r

)(s

i

r

;

b

G

1

) in the TSG, since for all j, j = 1; 2; : : : ; r, act(fin

j

) does not execute, and

thus,

b

G

j

's edges are not deleted from the TSG. Let act(init

j

) execute last among act(init

1

);

act(init

2

); : : : ; act(init

r

). Thus,

b

G

j

's edges are inserted into the TSG last among

b

G

1

;

b

G

2

; : : : ;

b

G

r

.

Since the insertion of

b

G

j

's edges into the TSG causes a cycle involving edge (

b

G

j

; s

i

j

), ser

i

j

(G

j

) is

marked. Also, since act(init

(j mod r)+1

) executes before act(init

j

) executes, ser

i

j

(G

(j mod r)+1

)

is inserted into the insert queue for s

i

j

before ser

i

j

(G

j

) is inserted into the insert queue for s

i

j

.

Thus, ser

i

j

(G

(j mod r)+1

) executes before ser

i

j

(G

j

) executes. However, this leads to a contra-

diction since we assumed that ser

i

j

(G

j

) executes before ser

i

j

(G

(j mod r)+1

). Thus, Scheme 1

ensures ser(S) is serializable. 2.

Complexity Analysis of Scheme 1:

We �rst describe additional data structures involved in the implementation of Scheme 1.

We then analyze, for every operation o

j

, the number of steps in cond(o

j

) and act(o

j

), and the

characteristics of wait(o

j

) (the number of operations and their types).

Implementation: For each transaction

b

G

i

, a counter f count

i

keeps a count of the number

of operations belonging to

b

G

i

that are not �rst in the delete queue.

The number of steps in cond(o

j

) and act(o

j

), for each operation o

j

, are as follows.

� cond(init

i

): O(1).
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Thus, the number of steps in cond(o

l

) for every operation o

l

2 wait(ack(ser

k

(G

i

))) is O(1),

and the number of operations in wait(ack(ser

k

(G

i

))) is O(1).

Theorem 14: The complexity of Scheme 0 is O(d

av

).

Proof: The complexity of Scheme 0 is dominated by the number of steps in act(init

i

), which

is O(d

av

). Thus, the complexity of Scheme 0 is O(d

av

). 2
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-Appendix A-

Proof of Theorem 1: Let us assume that global schedule S is not serializable. Since each

of the local schedules is serializable, there must exist a cycle consisting of global transactions,

say, G

1

; G

2

; : : : ; G

r

, r > 1, such that G

1

is serialized before G

2

at site s

i

1

, G

2

is serialized

before G

3

at site s

i

2

, : : : , G

r

is serialized before G

1

at site s

i

r

. We show that if G

j

is serial-

ized before G

k

at site s

i

j

, then G

j

�

G

G

k

. If G

j

is serialized before G

k

at site s

i

j

, then by

the de�nition of serialization functions, ser

i

j

(G

j

) �

S

i

j

ser

i

j

(G

k

), and thus G

j

�

G

G

k

. As a

result, G

1

�

G

G

2

�

G

� � � �

G

G

r

�

G

G

1

, a contradiction, since �

G

is a total order. Thus, S is

serializable. 2

Proof of Theorem 2: In order to show that S is serializable, by Theorem 1, it su�ces to

show that there exists a total order �

G

on global transactions such that for each site s

k

, for all

global transactions G

i

; G

j

such that s

k

2 (exec(G

i

) \ exec(G

j

)), if ser

k

(G

i

) �

S

k

ser

k

(G

j

) then

G

i

�

G

G

j

. Since ser(S) is serializable, there exists a total order �

b

G

on all the transactions

b

G

i

such that for all sites s

k

, for all global transactions G

i

; G

j

such that s

k

2 (exec(G

i

)\exec(G

j

)),

if ser

k

(G

i

) �

S

k

ser

k

(G

j

) then

b

G

i

�

b

G

b

G

j

(since ser

k

(G

i

) and ser

k

(G

j

) are assumed to conict).

Thus, S can be shown to be serializable by de�ning �

G

as follows: G

i

�

G

G

j

i�

b

G

i

�

b

G

b

G

j

. 2

Complexity Analysis of Scheme 0:

We �rst analyze, for every operation o

j

, the number of steps in cond(o

j

) and act(o

j

). We

then analyze the characteristics of wait(o

j

) (the number of operations and their types).

� cond(init

i

): O(1).

� act(init

i

): O(d

av

). Since every transaction has d

av

operations, the number of steps needed

to add

b

G

i

's operations at the end of the queue for all sites s

k

2 exec(G

i

) is O(d

av

).

� (ser

k

(G

i

)): O(1). The number of steps required to check if ser

k

(G

i

) is the �rst element

in the queue for s

k

is O(1).

� act(ser

k

(G

i

)): O(1).

� cond(ack(ser

k

(G

i

))): O(1).

� act(ack(ser

k

(G

i

))): O(1). Deletion of ser

k

(G

i

) from the front of the queue for s

k

takes

O(1) steps.

Since cond(init

i

) and cond(ack(ser

k

(G

i

))) are both true, the only operations in WAIT are

ser

k

(G

i

) for some transaction

b

G

i

and site s

k

2 exec(G

i

). Also, execution of act(o

j

), for an

operation o

j

can cause cond(ser

k

(G

i

)) to hold only if act(o

j

) deletes all the operations that

precede ser

k

(G

i

) in the queue for s

k

thus causing ser

k

(G

i

) to be the �rst operation in the queue

for s

k

.

We now specify wait(o

j

) for each of the operations o

j

.

� wait(init

i

): ;. Execution of act(init

i

) does not result in the deletion of operations from

any of the queues.

� wait(ser

k

(G

i

)): ;. Execution of act(ser

k

(G

i

)) does not result in the deletion of operations

from any of the queues.

� wait(ack(ser

k

(G

i

))): fser

k

(G

j

) : (ser

k

(G

j

) 2WAIT) ^

ser

k

(G

j

) immediately follows ser

k

(G

j

) in the queue for site s

k

g

Since the execution of act(ack(ser

k

(G

i

))) causes only ser

k

(G

i

) to be deleted from the

front of queue s

k

, the only operation o

l

for which cond(o

l

) can hold due to the execution

of act(ack(ser

k

(G

i

))) is the operation ser

k

(G

j

) that immediately follows it in the queue for

s

k

(since the execution of act(ack(ser

k

(G

i

))) causes ser

k

(G

j

) to become the �rst operation

in the queue for s

k

).

22



serializability in a centralized DBMS. Since concurrency control in centralized DBMSs is a well

studied problem, the development of concurrency control schemes for MDBSs is simpli�ed.

We have proposed a model for conservative concurrency control schemes, and have developed

a number of conservative schemes for ensuring serializability, including one that permits the set

of all serializable schedules. We have analyzed the complexities of each of the developed schemes

and compared the degree of concurrency provided by the various schemes. Since conservative

schemes delay the execution of operations belonging to transactions instead of aborting transac-

tions later, in our analysis of the complexity of conservative schemes we have taken into account

the cost of attempting to reschedule an operation that was previously made to wait. Further

work still remains to be done on making the developed schemes fault-tolerant.
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The above de�nition of starvation-freedom guarantees that if every transaction is of a �nite

duration, then it is not possible for the processing of operations belonging to a transaction to

be delayed inde�nitely. Schemes 0, 1 and 2 are starvation-free, while scheme 3 may cause trans-

actions to starve. We illustrate, in the following example, that any scheme which permits all

serializable schedules, cannot be starvation-free.

Example 8: Consider an MDBS environment consisting of two sites s

1

and s

2

. Let G

1

and

G

2

be global transactions such that transactions

b

G

1

and

b

G

2

are as follows:

b

G

1

: ser

2

(G

1

) ser

1

(G

1

)

b

G

2

: ser

1

(G

2

) ser

2

(G

2

)

Let GTM

1

insert operations into QUEUE in the following order.

init

1

init

2

ser

1

(G

2

) ser

2

(G

1

) ser

1

(G

1

) ser

2

(G

2

) fin

1

fin

2

Let CC be a concurrency control scheme that permits all serializable schedules. As a re-

sult, after CC processes operations init

1

and init

2

, it must process ser

1

(G

2

) when it is selected

from QUEUE. However, after ser

1

(G

2

) has been processed, since ser

2

(G

2

) has not yet been

processed, CC cannot process ser

2

(G

1

) when it is selected from QUEUE (processing ser

2

(G

1

)

when it is selected from QUEUE may cause ser(S) to become non-serializable). Thus, since the

processing of ser

2

(G

1

) is delayed due transaction

b

G

2

, CC is not starvation-free. 2

Scheme 3 can be made starvation-free by adding to cond(ser

k

(G

i

)) the following.

� cond(ser

k

(G

i

)): Let Set

1

= f

b

G

i

g [ ser bef(

b

G

i

), and Set

2

= f

b

G

j

: (

b

G

j

2 (set

k

�

b

G

i

)) _

((ser bef(

b

G

j

)\ (set

k

�

b

G

i

)) 6= ;)g. There do not exist transactions

b

G

q

;

b

G

r

and a set set

p

,

set

p

6= set

k

, such that

1.

b

G

q

;

b

G

r

2 set

p

,

2.

b

G

q

2 Set

1

,

b

G

r

2 Set

2

, and

3. init

r

is processed before init

q

.

Theorem 12: Scheme 3 with the addition is starvation-free.

Proof: See Appendix D. 2

Since Scheme 3 ensures serializability of ser(S), the above scheme, in addition to being

starvation-free, also ensures serializability of ser(S). However, Scheme 3 with the addition has

a higher complexity than Scheme 3.

Theorem 13: The complexity of Scheme 3 with the addition is O((mn

2

+ n

3

)d

2

av

).

Proof: See Appendix D. 2

8 Conclusion

There has been no systematic study of the concurrency control problem in MDBS environments.

Existing schemes for ensuring global serializability in MDBSs are ad-hoc, and no analysis of their

performance, the degree of concurrency provided by them, or their complexity has been made.

In this paper, we have identi�ed characteristics of the concurrency control problem and the

additional requirements on concurrency control schemes for ensuring global serializability in

MDBS environments. We have reduced the problem of developing schemes for ensuring global

serializability in an MDBS environment to that of developing conservative schemes for ensuring
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Since ser

k

(G

i

) is not processed if there exists a transaction

b

G

j

in both (set

k

� f

b

G

i

g) and

ser bef(

b

G

i

) (that is,

b

G

j

is serialized before

b

G

i

), Scheme 3 ensures that for all transactions

b

G

i

,

b

G

i

62 ser bef(

b

G

i

), and thus,

b

G

i

is never serialized before itself. We illustrate the execution of

Scheme 3 assuming that operations are inserted into QUEUE by GTM

1

in the order mentioned

in Example 2. In Example 2, after init

1

and init

2

are processed by Scheme 3, both set

1

and set

2

are f

b

G

1

;

b

G

2

g, and ser bef(

b

G

1

), ser bef(

b

G

2

) are both ;. Further, when ser

2

(G

2

) is selected from

QUEUE by Scheme 3, after ser

1

(G

1

) has been processed, cond(ser

2

(G

2

)) does not hold (since

processing of ser

1

(G

1

) results in ser bef(

b

G

2

) = f

b

G

1

g and set

2

� f

b

G

2

g = f

b

G

1

g) and ser

2

(G

2

)

is not processed. Thus, Scheme 3 does not permit the non-serializable schedule in Example 2.

Theorem 8: Scheme 3 ensures that ser(S) is serializable.

Proof: See Appendix D. 2

The complexity of Scheme 3 is dominated by the number of steps required in order to update

ser bef(

b

G

j

), for certain transactions

b

G

j

, when act(ser

k

(G

i

)) executes.

Theorem 9: The complexity of Scheme 3 is O(n

2

d

av

).

Proof: See Appendix D. 2

Furthermore, it can be shown that Scheme 3 ensures progress in the processing of operations.

Theorem 10: If for some set set

k

, during the execution of Scheme 3, set

k

6= ;, then for

some transaction

b

G

i

2 set

k

, act(ser

k

(G

i

)) is executed by Scheme 3.

Proof: See Appendix D. 2

Corollary 1: If the size of transactions is �nite and if only a �nite number of them are

initiated, then every transaction completes execution.

Proof: See Appendix D. 2

Scheme 3 can also be shown to permit all serializable schedules, which is de�ned as follows.

Operations ser

k

(G

i

) are said to be inserted into QUEUE by GTM

1

in a serializable order if

processing every ser

k

(G

i

) operation when it is selected from QUEUE results in a serializable

schedule.

De�nition 3: Let GTM

1

insert ser

k

(G

i

) operations into QUEUE in a serializable order.

A concurrency control scheme CC is said to permit all serializable schedules if every ser

k

(G

i

)

operation is processed by CC when it is selected from QUEUE (that is, CC does not add any

ser

k

(G

i

) operation to WAIT). 2

Theorem 11: Scheme 3 permits permits all serializable schedules.

Proof: See Appendix D. 2

Thus, Scheme 3 permits a higher degree of concurrency than Schemes 0, 1 and 2. However,

even though Scheme 3 ensures progress in the processing of operations and permits all serializ-

able schedules, it does not guarantee freedom from starvation.

De�nition 4: A concurrency control scheme is starvation-free if the following holds:

For all pairs of transactions

b

G

i

;

b

G

j

, if act(init

i

) executes before act(init

j

), then for all operations

ser

k

(G

i

) 2

b

G

i

, processing of ser

k

(G

i

) is not delayed (that is, cond(ser

k

(G

i

)) does not hold) due

to transaction

b

G

j

. 2
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Furthermore, BT-schemes that attempt to provide even a moderately high degree of concurrency

are intractable, as shown in the previous section.

In this section, we present an O-scheme that permits the set of serializable schedules, which

we refer to as Scheme 3. Scheme 3 adds restrictions on the processing of

b

G

j

's operations, to

the data structures, every time an init

i

or ser

k

(G

i

) operation is processed. As a result, when

an init

i

or a ser

k

(G

i

) operation is processed, Scheme 3 only adds minimum restrictions to the

data structures such that processing the next ser

k

(G

i

) operation cannot cause ser(S) to be non-

serializable (additional restrictions are added when the next ser

k

(G

i

) operation is processed).

Since, at any point, minimum restrictions are imposed on the processing of operations in order

to ensure serializability of ser(S), Scheme 3 permits the set of all possible serializable schedules.

For instance, if GTM

1

inserts operations into QUEUE in the order mentioned in Example 7, then

Scheme 3 processes every operation when it is selected from QUEUE. Further, the computation

of the minimum restrictions to be added to the data structures every time an operation is

processed is not too di�cult, and Scheme 3 can be shown to have a complexity O(n

2

d

av

).

In scheme 3, associated with every transaction

b

G

i

is a set ser bef(

b

G

i

) of transactions such

that if

b

G

j

2 ser bef(

b

G

i

), then

b

G

j

is serialized before

b

G

i

in ser(S). Also, at any point p during

the execution of Scheme 3, for every site s

k

,

� last

k

is the transaction

b

G

i

that is last among transactions in f

b

G

j

: ser

k

(G

j

) 2

b

G

j

g to

have executed act(ser

k

(G

i

)) before point p.

� set

k

is the set of transactions

f

b

G

j

: (ser

k

(G

j

) 2

b

G

j

) ^ (act(init

j

) has executed before p) ^

( act(ser

k

(G

j

)) has not executed before p)g.

Initially, for all s

k

, last

k

= null, set

k

= ;, and for all

b

G

i

, ser bef(

b

G

i

) = ;. For an operation o

j

in QUEUE, cond(o

j

) and act(o

j

) are de�ned as follows.

� cond(init

i

): true.

� act(init

i

): For every operation ser

k

(G

i

) 2

b

G

i

,

b

G

i

is added to set

k

. The set ser bef(

b

G

i

)

is updated as follows to include all the transactions serialized before

b

G

i

.

ser bef(

b

G

i

) := [

ser

k

(G

i

)2

b

G

i

^last

k

6=null

(ser bef(last

k

) [ flast

k

g).

� cond(ser

k

(G

i

)): ser bef(

b

G

i

)\ (set

k

�f

b

G

i

g) = ;. If last

k

=

b

G

j

, then act(ack(ser

k

(G

j

)))

has executed.

� act(ser

k

(G

i

)):

b

G

i

is deleted from set

k

and last

k

is set to

b

G

i

. Since for all transactions

b

G

j

2 set

k

, ser

k

(G

j

) has not been processed when ser

k

(G

i

) is processed, ser

k

(G

i

) executes

before ser

k

(G

j

) executes, and

b

G

i

is thus serialized before

b

G

j

in ser(S). Thus, for certain

transactions

b

G

j

, ser bef(

b

G

j

) is updated as follows to include all the transactions serialized

before

b

G

j

. Let Set

1

= (ser bef(

b

G

i

) [ f

b

G

i

g), Set

2

= f

b

G

l

: ser bef(

b

G

l

) \ set

k

6= ;g.

For all transactions

b

G

j

such that either

b

G

j

2 set

k

, or

b

G

j

2 Set

2

,

ser bef(

b

G

j

) := ser bef(

b

G

j

) [ Set

1

.

Operation ser

k

(G

i

) is submitted to the local DBMSs (through the servers) for execution.

� cond(ack(ser

k

(G

i

))): true.

� act(ack(ser

k

(G

i

))): Operation ack(ser

k

(G

i

)) is sent to GTM

1

.

� cond(fin

i

): ser bef(

b

G

i

) = ;.

� act(fin

i

): For all transactions

b

G

j

such that

b

G

i

2 ser bef(

b

G

j

),

b

G

i

is deleted from

ser bef(

b

G

j

). For all ser

k

(G

i

) 2

b

G

i

such that last

k

=

b

G

i

, last

k

:= null.
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Example 6: Consider an MDBS environment consisting of four sites s

1

, s

2

, s

3

and s

4

.

Let G

1

, G

2

, G

3

and G

4

be global transactions such that transactions

b

G

1

,

b

G

2

,

b

G

3

and

b

G

4

are as

follows.

b

G

1

: ser

2

(G

1

) ser

1

(G

1

)

b

G

2

: ser

2

(G

2

) ser

3

(G

2

)

b

G

3

: ser

3

(G

3

) ser

4

(G

3

)

b

G

4

: ser

1

(G

4

) ser

4

(G

4

)

Let GTM

1

insert operations into QUEUE in the order

init

1

init

2

init

3

init

4

ser

2

(G

2

) ser

3

(G

2

) ser

1

(G

4

) ser

4

(G

4

) ser

2

(G

1

) : : : : : :

After init

1

, init

2

, init

3

and init

4

have been processed, Scheme 2 adds dependencies (

b

G

3

; s

4

)!

(

b

G

4

; s

4

) and (

b

G

1

; s

1

)!(

b

G

4

; s

1

) to the TSGD. Operations ser

2

(G

2

) and ser

3

(G

2

) belonging to

b

G

2

are then processed, and the following additional dependencies are added to the TSGD by

Scheme 2: (

b

G

2

; s

2

)!(

b

G

1

; s

2

) and (

b

G

2

; s

3

)!(

b

G

3

; s

3

). Note that as a result of the processing of

b

G

2

's operations, the dependencies (

b

G

3

; s

4

)!(

b

G

4

; s

4

) and (

b

G

1

; s

1

)!(

b

G

4

; s

1

) prevent

b

G

4

's opera-

tions from being processed even though these restrictions are unnecessary, since

b

G

2

is serialized

before

b

G

1

and

b

G

3

, and thus processing the remaining operations belonging to transactions

b

G

1

,

b

G

3

and

b

G

4

in an arbitrary order cannot cause ser(S) to become non-serializable. 2

Thus, a greater degree of concurrency could be obtained if Scheme 2 deleted unnecessary

dependencies fromD every time it processed an init

i

operation. However, in a TSGD (V;E;D),

determining the set of dependencies that are unnecessary is an NP-hard problem (follows from

Theorem 7).

7 The Scheme that Permits all Serializable Schedules

The problem with the BT-schemes presented in the previous sections is that they either provide

a low degree of concurrency or have high complexity. This is due to the requirement that all

the restrictions on the processing of

b

G

i

's operations in order to ensure serializability of ser(S)

be added to the data structures when init

i

is processed (since no restrictions are added when

ser

k

(G

i

) operations are processed). Thus, BT-schemes cannot provide a very high degree of

concurrency since they a priori restrict the processing of operations to permit only a subset of

serializable schedules.

Example 7: Consider an MDBS environment consisting of two sites s

1

and s

2

. Let G

1

and G

2

be global transactions such that

b

G

1

and

b

G

2

are as follows:

b

G

1

: ser

2

(G

1

) ser

1

(G

1

)

b

G

2

: ser

2

(G

2

) ser

1

(G

2

)

Let GTM

1

insert operations into QUEUE in the order

init

1

init

2

ser

2

(G

2

) ser

1

(G

2

) ser

2

(G

1

) ser

1

(G

1

) fin

1

fin

2

All of the BT-schemes discussed earlier, when they select ser

2

(G

2

) from QUEUE do not pro-

cess ser

2

(G

2

) (since processing of ser

2

(G

2

) is restricted to follow the processing of ser

2

(G

1

) by

every scheme) even though processing every operation when it is selected from QUEUE cannot

cause ser(S) to be non-serializable. 2
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be shown by a simple induction argument on the number of init

i

operations processed, that the

TSGD is always acyclic, and thus ser(S) is serializable. As a result, Scheme 2 does not permit

the non-serializable schedule in Example 2, even if GTM

1

inserts operations into QUEUE in the

order mentioned in Example 2. In Example 2, when init

2

is processed by Scheme 2 after init

1

has been processed, dependencies (

b

G

1

; s

1

)!(s

1

;

b

G

2

) and (

b

G

1

; s

2

)!(s

2

;

b

G

2

) are added to D due

to procedure Eliminate cycles (since the TSGD, after the insertion of

b

G

2

's edges contains the

edges (

b

G

1

; s

1

), (s

1

;

b

G

2

), (

b

G

2

; s

2

) and (s

2

;

b

G

1

)). Thus, when operation ser

2

(G

2

) is selected from

QUEUE by Scheme 2, after ser

1

(G

1

) has been processed, cond(ser

2

(G

2

)) does not hold (since

dependency (

b

G

1

; s

2

)!(s

2

;

b

G

2

) 2 D) and thus ser

2

(G

2

) is not processed.

Theorem 5: Scheme 2 ensures that ser(S) is serializable.

Proof: See Appendix C. 2

The number of steps in Eliminate Cycles dominates the complexity of Scheme 2. It can be

shown that Eliminate Cycles terminates in O(n

2

d

av

) steps.

Theorem 6: The complexity of Scheme 2 is O(n

2

d

av

).

Proof: See Appendix C. 2

Scheme 2 provides a higher degree of concurrency than Scheme 0. Also, if GTM

1

inserts op-

erations into QUEUE in the order mentioned in Example 5, Scheme 2, unlike Scheme 1, does not

impose any restrictions on the processing of operations and processes every operation when it is

selected from QUEUE. However, Scheme 2 does not provide a higher degree of concurrency than

Scheme 1 since certain dependencies in the set of dependencies � returned by Eliminate Cycles

may be unnecessary for the purpose of ensuring that (V;E;D [�) contains no cycles involving

b

G

i

. Thus, there may exist a set of dependencies, �

1

, such that �

1

� � and (V;E;D[�

1

) does

not contain a cycle involving

b

G

i

. We formally de�ne the notion of minimality as follows.

De�nition 2: A set of dependencies � is minimal with respect to the TSGD and a trans-

action

b

G

i

2 V i�

� (V;E;D [�) does not contain any cycles involving

b

G

i

, and

� for all d 2 �, (V;E;D [�� d) contains a cycle involving

b

G

i

. 2

The set of dependencies � returned by Eliminate Cycles may not be minimal with respect

to (V;E;D) and

b

G

i

, and thus unnecessary restrictions may be imposed on the processing of

operations, hurting the degree of concurrency. In order to impose minimal restrictions on the

processing of operations and to provide maximal concurrency without jeopardizing the serializ-

ability of ser(S), � must be minimal with respect to (V;E;D) and

b

G

i

. However, the problem

of computing such a � is NP-hard [GJ79].

Theorem 7: Given a TSGD (V;E;D), and a transaction node

b

G

i

2 V in the TSGD such

that for all transactions

b

G

j

2 V , for all sites s

k

, dependency (

b

G

i

; s

k

)!(

b

G

j

; s

k

) 62 D. Also,

TSGD (V

0

; E

0

; D

0

) resulting from the deletion of

b

G

i

, its edges and dependencies from (V;E;D),

is acyclic. The problem of computing a set of dependencies, �, that is minimal with respect to

(V;E;D) and transaction

b

G

i

is NP-hard.

Proof: See Appendix C. 2

Note that, in Scheme 2, dependencies are only added to D. This could a�ect the degree of

concurrency since the order in which operations are processed may make certain dependencies

that were previously added to D unnecessary. This is illustrated by the following example.
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procedure Eliminate Cycles((V;E;D);

b

G

i

):

1. Mark all edges \unused".

v :=

b

G

i

, � := ;, s par(

b

G

i

) := null, t par(

b

G

i

) := null.

2. If for all pairs of edges (v; u); (u;w), either

� w 6=

b

G

i

and (u;w) is marked \used", or

� there is a dependency (v; u)!(u;w) in D [�, or

� head(s par(v)) = u.

then go to step (4).

3. Choose a pair of edges (v; u); (u;w) such that

� w =

b

G

i

or (u;w) is not marked \usedv", and

� there is no dependency (v; u)!(u;w) in D [�, and

� head(s par(v)) 6= u.

Mark (u;w) \used".

If w =

b

G

i

, then add to � the dependency (v; u)!(u;

b

G

i

).

If w 6=

b

G

i

, then s par(w) := u � s par(w), t par(w) := v � t par(w), and v := w.

Go to step (2).

4. If v 6=

b

G

i

, then begin temp := head(t par(v)); t par(v) := tail(t par(v)); s par(v) := tail(s par(v));

v := temp; go to step (2) end.

5. return(�).

Figure 5: The procedure Eliminate Cycles

� Every dependency in � is of the form (

b

G

j

; s

k

)!(

b

G

i

; s

k

), for some transaction

b

G

j

2 V and

some site s

k

2 V .

� In (V;E;D [�) there are no cycles involving

b

G

i

.

Eliminate Cycles attempts to detect cycles involving

b

G

i

in the TSGD, and then eliminates

them by adding dependencies to �. It traverses edges in the TSGD \marking" them as it goes

along so that an edge is not traversed multiple times. If an edge incident on

b

G

i

is traversed, then

Eliminate Cycles concludes that there is a cycle involving

b

G

i

and adds appropriate dependencies

to � in order to eliminate the cycle.

In Eliminate Cycles, v is the current transaction node being visited (site nodes are not vis-

ited). Unlike depth-�rst search[AHU74], in Eliminate Cycles, a transaction node may be visited

multiple times. For a transaction node

b

G

j

, t par(

b

G

j

) stores the list of transaction nodes to

which backtracking from

b

G

j

must take place, and s par(

b

G

j

), the list of site nodes from which

b

G

j

is visited, every time it is visited. Functions head, tail and � are as de�ned for lists

4

.

Eliminate Cycles returns a set of dependencies � such that (V;E;D[�) contains no cycles

involving

b

G

i

. Since Eliminate Cycles is invoked every time an init

i

operation is processed, it can

4

For a list l = [l

1

; l

2

; : : : ; l

p

] and element l

0

, head(l) returns l

1

, tail(l) returns [l

2

; : : : ; l

p

], and l

0

� l returns

[l

0

; l

1

; l

2

; : : : ; l

p

].
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Acyclicity of the TSGD plays an important role in ensuring that ser(S) is serializable. Be-

low, we formally state the conditions under which a TSGD is said to be acyclic.

De�nition 1: Consider a TSGD containing edges (v

1

; v

2

), (v

2

; v

3

), : : :, (v

k

; v

1

), k > 2. This

set of edges form a cycle if v

i

6= v

j

, for all i; j = 1; 2; : : : ; k, i 6= j, and either one of the following

is true.

� For all i, i = 2; 3; : : : ; k, dependency (v

i�1

; v

i

)!(v

i

; v

(i mod k)+1

) 62 D.

� For all i, i = 2; 3; : : : ; k, dependency (v

(i mod k)+1

; v

i

)!(v

i

; v

i�1

) 62 D.

We say the TSGD is acyclic if it does not contain any cycles. 2

Scheme 2, speci�ed below, ensures that ser(S) is serializable by ensuring that the TSGD

is acyclic; that is, if the TSGD contains edges, say, (

b

G

1

; s

i

1

), (s

i

1

;

b

G

2

), (

b

G

2

; s

i

2

), : : : (

b

G

r

; s

i

r

),

(s

i

r

;

b

G

1

), for distinct transactions

b

G

1

;

b

G

2

; : : : ;

b

G

r

, r > 1, and i

p

6= i

q

, p 6= q, then the TSGD

also contains dependencies, (

b

G

j

; s

i

j

)!(s

i

j

;

b

G

(j mod r)+1

) and (

b

G

(k mod r)+1

; s

i

k

)!(s

i

k

;

b

G

k

).

The scheme also ensures that for the above dependencies, j 6= k, ser

i

j

(G

j

) is processed be-

fore ser

i

j

(G

(j mod r)+1

) and ser

i

k

(G

(k mod r)+1

) is processed before ser

i

k

(G

k

). As a result,

Scheme 2 ensures that there is no cycle in the serialization graph of ser(S) involving transactions

b

G

1

;

b

G

2

; : : : ;

b

G

r

due to the operations ser

i

j

(G

j

) and ser

i

j

(G

(j mod r)+1

), j = 1; 2; : : : ; r.

We now specify, for every operation o

j

in QUEUE, cond(o

j

) and act(o

j

) that preserve the

acyclicity of the TSGD. Initially, for the TSGD, V = ;, E = ;, D = ;.

� cond(init

i

): true.

� act(init

i

):

b

G

i

and its edges are inserted into the TSGD. For every operation ser

k

(G

i

) 2

b

G

i

, for all transactions

b

G

j

2 V such that ser

k

(G

j

) 2

b

G

j

and act(ser

k

(G

j

)) has executed,

dependencies (

b

G

j

; s

k

)!(s

k

;

b

G

i

) are added to D. The set of dependencies, D, is further

modi�ed as follows.

D := D [ Eliminate Cycles((V;E;D);

b

G

i

)

The procedure Eliminate Cycles (speci�ed in Figure 5) returns a set of dependencies �

such that (V;E;D [�) does not contain any cycles involving

b

G

i

.

� cond(ser

k

(G

i

)): For all transactions

b

G

j

2 V , if dependency (

b

G

j

; s

k

)!(s

k

;

b

G

i

) 2 D, then

act(ack(ser

k

(G

j

))) has completed execution.

� act(ser

k

(G

i

)): For every transaction

b

G

j

2 V such that ser

k

(G

j

) 2

b

G

j

and act(ser

k

(G

j

))

has not yet been executed, dependencies (

b

G

i

; s

k

)!(s

k

;

b

G

j

) are added to D. Operation

ser

k

(G

i

) is submitted to the local DBMSs (through the servers) for execution.

� cond(ack(ser

k

(G

i

))): true.

� act(ack(ser

k

(G

i

))): Operation ack(ser

k

(G

i

)) is sent to GTM

1

.

� cond(fin

i

): For every operation ser

k

(G

i

) 2

b

G

i

, there does not exist a

b

G

j

2 V such that

(

b

G

j

; s

k

)!(s

k

;

b

G

i

) 2 D.

� act(fin

i

):

b

G

i

, along with its edges and dependencies is deleted from the TSGD.

We now discuss the procedure Eliminate Cycles that takes as arguments the TSGD and a

transaction

b

G

i

2 V . Eliminate Cycles exploits the knowledge of the order of in which operations

are processed and returns a set of dependencies � with the following properties.
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� act(init

i

):

b

G

i

and its edges are inserted into the TSG. Also, for every operation ser

k

(G

i

) 2

b

G

i

, ser

k

(G

i

) is inserted at the end of the insert queue for site s

k

. If the TSG contains a

cycle, then all of

b

G

i

's operations in the insert queues for the sites are marked.

Since the number of steps required in order to determine if an undirected graph is acyclic

is proportional to the number of nodes in the graph, the simpli�ed version of Scheme 1 has

complexity O(m + n) (the TSG has at most m + n nodes). Further, if m � n, then since the

TSG is a bipartite graph, at most m nodes can be visited before a cycle is detected. Thus,

the complexity of the simpli�ed scheme reduces to O(m). The above simpli�ed scheme ensures

ser(S) is serializable, but provides a lower degree of concurrency than Scheme 1.

6 The Transaction-site Graph-with-dependencies Scheme

Scheme 1, presented in the previous section, does not exploit the knowledge of the order in

which operations are processed (the TSG is checked only for cycles). As a result, Scheme 1

places unnecessary restrictions on the processing of operations as illustrated in the example

below.

Example 5: Consider an MDBS environment consisting of four sites s

1

, s

2

, s

3

and s

4

.

Let G

1

, G

2

, G

3

and G

4

be global transactions such that transactions

b

G

1

,

b

G

2

,

b

G

3

and

b

G

4

are as

follows.

b

G

1

: ser

2

(G

1

) ser

1

(G

1

)

b

G

2

: ser

2

(G

2

) ser

3

(G

2

)

b

G

3

: ser

3

(G

3

) ser

4

(G

3

)

b

G

4

: ser

1

(G

4

) ser

4

(G

4

)

Let GTM

1

insert operations into QUEUE in the order

init

1

init

2

init

3

ser

2

(G

2

) ser

3

(G

2

) init

4

ser

1

(G

4

) ser

4

(G

4

) ser

2

(G

1

) : : : : : :

After init

1

, init

2

and init

3

have been processed, Scheme 1 processes ser

2

(G

2

) and ser

3

(G

2

)

when they are selected from QUEUE (insertion of edges belonging to

b

G

1

;

b

G

2

and

b

G

3

into the

TSG does not cause cycles in the TSG, and thus none of their operations are marked). However,

when init

4

is processed by Scheme 1, since insertion of

b

G

4

's edges into the TSG causes a cycle

in the TSG, Scheme 1 marks operations ser

1

(G

4

) and ser

4

(G

4

) in the insert queues for s

1

and

s

4

respectively, thus restricting them to be processed after operations ser

1

(G

1

) and ser

4

(G

3

)

have been processed. These restrictions are, however, unnecessary since

b

G

2

is serialized before

b

G

1

and

b

G

3

, and thus processing the remaining operations belonging to transactions

b

G

1

,

b

G

3

and

b

G

4

in an arbitrary order cannot cause ser(S) to be non-serializable. 2

The transaction-site graph-with-dependencies scheme, referred to in the sequel as Scheme 2,

is presented below and exploits the knowledge of the order in which operations are processed. In

order to permit schedules not permitted by Scheme 1, Scheme 2 utilizes a structure similar to the

TSG. The structure contains, in addition to transaction and site nodes, dependencies (denoted by

!) between edges incident on a common site node, and is referred to as Transaction Site Graph

with Dependencies (TSGD). A TSGD is a 3-tuple (V;E;D), where V is the set of transaction

and site nodes, E is the set of edges and D is the set of dependencies. Dependencies specify

the relative order in which operations are processed and are used to restrict the processing of

operations. If (

b

G

i

; s

k

) and (s

k

;

b

G

j

) are edges in the TSGD, then a dependency of the form

(

b

G

i

; s

k

)!(s

k

;

b

G

j

) denotes that ser

k

(G

i

) is processed before ser

k

(G

j

).
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cycle (

b

G

1

; s

1

)(s

1

;

b

G

2

)(

b

G

2

; s

2

)(s

2

;

b

G

1

). Further, since init

1

is processed before init

2

,

b

G

1

's opera-

tions are inserted into the insert queues for sites s

1

and s

2

before

b

G

2

's operations. Thus, when

operation ser

2

(G

2

) is selected from QUEUE by Scheme 1, after ser

1

(G

1

) has been processed,

cond(ser

2

(G

2

)) does not hold (since ser

2

(G

1

) is in front of ser

2

(G

2

) in the insert queue for s

2

and ser

2

(G

2

) is marked) and thus ser

2

(G

2

) is not processed.

Theorem 3: Scheme 1 ensures that ser(S) is serializable.

Proof: See Appendix B. 2

Note that, in Scheme 1, it is essential that for cond(fin

i

) to hold, all of

b

G

i

's operations must

be at the front of the delete queues for the sites, else ser(S) may not be serializable. This is

illustrated by the following example.

Example 4: Consider an MDBS environment consisting of two sites s

1

and s

2

. Let G

1

,

G

2

and G

3

be global transactions such that transactions

b

G

1

,

b

G

2

and

b

G

3

are as follows.

b

G

1

: ser

2

(G

1

) ser

1

(G

1

)

b

G

2

: ser

2

(G

2

) ser

3

(G

2

)

b

G

3

: ser

3

(G

3

) ser

1

(G

3

)

Let GTM

1

insert operations into QUEUE in the order

init

1

init

2

ser

2

(G

1

) ser

2

(G

2

) ser

3

(G

2

) fin

2

init

3

ser

3

(G

3

) ser

1

(G

3

) ser

1

(G

1

) fin

1

fin

3

Operations init

1

, init

2

, ser

2

(G

1

), ser

2

(G

2

) and ser

3

(G

2

) are processed by Scheme 1 when

they are selected from QUEUE (since insertion of

b

G

1

's and

b

G

2

's edges into the TSG does not

result in a cycle, no operations are marked). Since ser

2

(G

1

) is processed before ser

2

(G

2

) by

Scheme 1, ser

2

(G

1

) is inserted into the delete queue for s

2

before ser

2

(G

2

) is inserted. If fin

2

is processed by Scheme 1 when it is selected from QUEUE even though ser

2

(G

2

) is not the

�rst operation in the delete queue for s

2

, then since

b

G

2

's edges are deleted from the TSG, the

insertion of

b

G

3

's edges into the TSG, when init

3

is processed by Scheme 1, does not result in a

cycle. As a result, no operations are marked, and operations ser

3

(G

3

), ser

1

(G

3

) and ser

1

(G

1

)

are processed when they are selected from QUEUE, resulting in the following non-serializable

schedule ser(S).

ser

2

(G

1

) ser

2

(G

2

) ser

3

(G

2

) ser

3

(G

3

) ser

1

(G

3

) ser

1

(G

1

) 2

Note that Scheme 1 provides a higher degree of concurrency than Scheme 0. In Example 3,

Scheme 1 permits operations belonging to transactions

b

G

1

and

b

G

2

to be processed in any order,

since insertion of their edges into the TSG does not cause any cycles. The number of steps

required to detect cycles in the TSG dominates the complexity of Scheme 1. Cycles in the TSG

can be detected using depth-�rst search [AHU74]. Note that the TSG has at most m+ n nodes

and at most nd

av

edges.

Theorem 4: The complexity of Scheme 1 is O(m + n + nd

av

).

Proof: See Appendix B. 2

Instead of checking the TSG for cycles involving

b

G

i

, when act(init

i

) executes, Scheme 1 can

be simpli�ed by checking the TSG simply for a cycle (which may or may not involve

b

G

i

). In

the simpli�ed version of Scheme 1, cond(o

j

) and act(o

j

) are as de�ned for Scheme 1, except

act(init

i

) is de�ned as follows.
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init

1

init

2

ser

2

(G

2

) ser

2

(G

1

) ser

1

(G

1

) ser

3

(G

2

) fin

1

fin

2

Since Scheme 0 processes init

1

before init

2

,

b

G

1

's operations are inserted into the queues for

s

1

and s

2

before G

2

's operations are inserted into the queues for s

2

and s

3

. As a result, when

ser

2

(G

2

) is selected from QUEUE by Scheme 0, it is not processed until ser

2

(G

1

) has been

processed (since ser

2

(G

1

) is ahead of ser

2

(G

2

) in the queue for site s

2

) even though ser(S)

would be serializable irrespective of the order in which ser

2

(G

2

) and ser

2

(G

1

) are processed. 2

Below we present a scheme, which we refer to as Scheme 1, and that provides a higher degree

of concurrency than Scheme 0. It utilizes a data structure similar to the site graph introduced

in [BS88], which we refer to as the transaction-site graph (TSG). A TSG is an undirected bi-

partite graph consisting of a set of nodes V corresponding to sites (site nodes) and transactions

in ser(S) (transaction nodes), and a set of edges E. Site and transaction nodes are labeled by

the corresponding sites and transactions, respectively. Edges in the TSG may be present only

between transaction nodes and site nodes. An edge between a transaction node

b

G

i

and a site

node s

k

is present only if operation ser

k

(G

i

) 2

b

G

i

, and is denoted by either (s

k

;

b

G

i

) or (

b

G

i

; s

k

).

The set of edges f(

b

G

i

; s

k

) : ser

k

(G

i

) 2

b

G

i

g are referred to as

b

G

i

's edges.

Associated with every site s

k

, are two queues : an insert queue and a delete queue. Initially,

all queues are empty, and for the TSG, both V = ; and E = ;. Processing of certain operations

in the insert queues is constrained by \marking" them. For an operation o

j

in QUEUE, cond(o

j

)

and act(o

j

) are de�ned as follows:

� cond(init

i

): true.

� act(init

i

):

b

G

i

and its edges are inserted into the TSG. Also, for every operation ser

k

(G

i

) 2

b

G

i

, ser

k

(G

i

) is inserted at the end of the insert queue for site s

k

. If the TSG contains a cy-

cle involving edge (

b

G

i

; s

k

), then operation ser

k

(G

i

) in the insert queue for site s

k

is marked.

� cond(ser

k

(G

i

)): For every transaction

b

G

j

such that ser

k

(G

j

) 2

b

G

j

, if act(ser

k

(G

j

)) has

executed, then act(ack(ser

k

(G

j

))) has also completed execution. In addition, if ser

k

(G

i

)

is marked, then it is the �rst element in the insert queue for site s

k

.

� act(ser

k

(G

i

)): Operation ser

k

(G

i

) is submitted to the local DBMSs (through the servers)

for execution.

� cond(ack(ser

k

(G

i

))): true.

� act(ack(ser

k

(G

i

))): Operation ser

k

(G

i

) is deleted from the insert queue for site s

k

(note

that ser

k

(G

i

) may not be at the front of the insert queue for site s

k

), and it is added to

the end of the delete queue for site s

k

. Operation ack(ser

k

(G

i

)) is sent to GTM

1

.

� cond(fin

i

): For every operation ser

k

(G

i

) 2

b

G

i

, ser

k

(G

i

) is the �rst element in the delete

queue for site s

k

.

� act(fin

i

):

b

G

i

and its edges are deleted from the TSG. For every operation ser

k

(G

i

) 2

b

G

i

,

ser

k

(G

i

) is deleted from the delete queue for site s

k

.

Scheme 1 permits the TSG to contain cycles, but prevents cycles in the serialization graph of

ser(S) by marking operations whose processing may potentially lead to cycles in the serializa-

tion graph. Further, processing of a marked operation is delayed until all the operations ahead

of it in the insert queue have been processed (note that processing of unmarked operations is

not constrained in any way). If Scheme 1 were used, the non-serializable schedule in Example 2

cannot result even if GTM

1

inserts operations into QUEUE in the order mentioned in Exam-

ple 2. In Example 2, when init

2

is processed by Scheme 1, after init

1

has been processed,

b

G

2

's

operations in the insert queues for site s

1

and site s

2

are marked since the TSG contains the

11



� d

av

�(the number of steps required by CC to process ack(ser

k

(G

i

))), and

� The number of steps required by CC to process fin

i

.

Note that every time an operation o

j

is processed by CC (that is, act(o

j

) is executed),

operations o

l

2WAIT for which cond(o

l

) holds are processed, too. However, evaluating cond(o

l

)

for all operations o

l

2 WAIT, in order to determine if o

l

can be processed is wasteful. Let

wait(o

j

) denote the set of operations

fo

l

: o

l

2WAIT ^ execution of act(o

j

) may cause cond(o

l

) to holdg.

As a result, when act(o

j

) executes, it su�ces to evaluate cond(o

l

) only for operations o

l

belonging

to wait(o

j

). Thus, the number of steps required by CC to process an operation o

j

is the sum

of:

� The number of steps in cond(o

j

),

� The number of steps in act(o

j

), and

� The number of steps in cond(o

l

) for each o

l

2 wait(o

j

).

Scheme 0 can be shown to have complexity O(d

av

). A detailed analysis of the complexity of

Scheme 0 can be found in Appendix A.

In Scheme 0, when init

i

is processed, the processing of every operation ser

k

(G

i

) 2

b

G

i

is

required to follow the processing of operations ahead of ser

k

(G

i

) in the queue for s

k

. No restric-

tions on the processing of operations are added when ser

k

(G

i

) or ack(ser

k

(G

i

)) is processed. We

refer to such schemes in which restrictions on the processing of ser

k

(G

i

) operations are added

to DS only when an init

i

operation is processed, as begin transaction schemes or BT-schemes.

The schemes proposed [BS88, ED90] are BT-schemes. On the other hand, a scheme in which

restrictions on the processing of ser

k

(G

i

) operations are added every time an init

i

or a ser

k

(G

i

)

operation is processed is referred to as an operation scheme or O-scheme. O-schemes, in general,

result in a higher degree of concurrency than BT-schemes (A concurrency control scheme, say

CC

1

, is said to provide a higher degree of concurrency than another concurrency control scheme

CC

2

if, for any given order of insertion of operations into QUEUE by GTM

1

, CC

2

does not

cause a fewer number of operations to be added to WAIT than CC

1

). In this paper, we present

an O-scheme that permits the set of all serializable schedules. Even though BT-schemes cannot

provide a high degree of concurrency, certain BT-schemes (e.g., Scheme 0) are attractive, since

they have low complexities compared to O-schemes.

In the following sections, we present two BT-schemes, and an O-scheme. The schemes ensure

that ser(S) is serializable. We specify the concurrency control schemes by specifying the data

structures maintained by the scheme, and cond(o

j

), act(o

j

) for the various operations. We also

state the complexity of each of the schemes, and compare the degree of concurrency provided

by the various schemes. A detailed analysis of the complexity of the schemes and proofs of their

correctness can be found in the appendices.

5 The Transaction-site Graph Scheme

Even though Scheme 0 has a low complexity, O(d

av

), it has a serious drawback in that it permits

a low degree of concurrency as illustrated by the following example.

Example 3: Consider an MDBS environment consisting of three sites s

1

, s

2

and s

3

. Let

G

1

and G

2

be global transactions such that transactions

b

G

1

and

b

G

2

are as follows.

b

G

1

: ser

1

(G

1

) ser

2

(G

1

)

b

G

2

: ser

2

(G

2

) ser

3

(G

2

)

Let GTM

1

insert operations into QUEUE in the order

10



the various operations, and the data structures associated with the scheme. Thus, a conserva-

tive concurrency control scheme can be speci�ed by specifying cond(o

j

), act(o

j

) for the various

operations, and the data structures maintained by the scheme.

We now illustrate, by an example, how our abstraction for the structure of conservative

schemes can be used to specify a simple scheme similar to the conservative TO scheme [BHG87],

which we refer to as Scheme 0. In the conservative TO scheme, every transaction T

i

predeclares

its operations and is assigned a timestamp (timestamps are assigned in an increasing order)

before any of its operations execute. Further, an operation o

j

belonging to a transaction T

i

is permitted to execute only if every other operation that conicts with o

j

, and belongs to a

transaction with a timestamp lower than T

i

's timestamp, has completed its execution. Scheme 0

can be speci�ed as follows using our model for conservative schemes. The data structures

maintained by Scheme 0 consist of queues (initially empty), one associated with every site s

k

.

For an operation o

j

in QUEUE, cond(o

j

) and act(o

j

) are de�ned as follows.

� cond(init

i

): true.

� act(init

i

): Every operation ser

k

(G

i

) is inserted at the end of the queue for site s

k

.

� cond(ser

k

(G

i

)): Operation ser

k

(G

i

) is the �rst operation in the queue for site s

k

.

� act(ser

k

(G

i

)): Operation ser

k

(G

i

) is submitted to the local DBMSs (through the servers)

for execution.

� cond(ack(ser

k

(G

i

))): true.

� act(ack(ser

k

(G

i

))): Operation ser

k

(G

i

) is dequeued from the front of the queue for s

k

,

and ack(ser

k

(G

i

)) is sent to GTM

1

.

� cond(fin

i

): true.

No actions are performed by Scheme 0 when a fin

i

operation is processed. In Scheme 0,

inserting

b

G

i

's operations into the queues associated with sites when init

i

is processed, serves

a function similar to assigning

b

G

i

a timestamp. Since transactions

b

G

i

are serialized in the

order in which the init

i

operations are processed, trivially, Scheme 0 ensures that ser(S) is

serializable. Thus, the non-serializable schedule in Example 2 cannot result if Scheme 0 is used,

even if GTM

1

inserts operations into QUEUE in the order mentioned in Example 2. To see

this, observe that after init

1

and init

2

are processed by Scheme 0, since init

1

is processed before

init

2

,

b

G

1

's operations are inserted into the queues for sites s

1

and s

2

before

b

G

2

's operations.

Thus, when operation ser

2

(G

2

) is selected from QUEUE by Scheme 0, after ser

1

(G

1

) has been

processed, cond(ser

2

(G

2

)) does not hold (since ser

2

(G

1

) is in front of ser

2

(G

2

) in the queue for

s

2

) and thus ser

2

(G

2

) is not processed.

We now analyze the complexity of CC which has the basic structure as shown in Figure 4.

The complexity of CC is the average number of steps it takes CC to schedule a transaction

b

G

i

.

For the purpose of analyzing the complexity of the various schemes, we assume the following.

� Every transaction

b

G

i

has, on an average, d

av

operations (that is, the average number of

sites at which a global transaction executes is d

av

).

� At no point during the execution of CC does the di�erence between the number of init

i

and fin

i

operations processed by CC exceed n.

Since every transaction

b

G

i

is assumed to contain d

av

operations, the average number of steps

taken by CC to schedule

b

G

i

is the sum of:

� The number of steps required by CC to process init

i

,

� d

av

�(the number of steps required by CC to process ser

k

(G

i

)),

9



procedure Basic Scheme():

Initialize data structures;

while (true)

begin

Select operation o

j

from the front of QUEUE;

if cond(o

j

) then begin

act(o

j

);

while (there exists an operation o

l

2 WAIT such that cond(o

l

) is true)

begin

act(o

l

);

WAIT := WAIT -fo

l

g

end

end

else WAIT := WAIT [ fo

j

g;

end

Figure 4: Basic Structure of Conservative Schemes

� fin

i

: Information relating to

b

G

i

is deleted from DS.

We denote by act(o

j

), the actions performed by CC when it processes an operation o

j

in

QUEUE. An essential feature of conservative schemes is that they ensure serializability without

resorting to transaction aborts. As a result, it may not always be possible for CC to process an

operation when it is selected from QUEUE since processing every operation when it is selected

from QUEUE may result in non-serializable schedules.

Example 2: Consider an MDBS environment consisting of two sites s

1

and s

2

. Let G

1

and G

2

be global transactions such that transactions

b

G

1

and

b

G

2

are as follows:

b

G

1

: ser

1

(G

1

) ser

2

(G

1

)

b

G

2

: ser

2

(G

2

) ser

1

(G

2

)

Let GTM

1

insert operations into QUEUE in the following order.

init

1

init

2

ser

1

(G

1

) ser

2

(G

2

) ser

2

(G

1

) ser

1

(G

2

) fin

1

fin

2

If operations are processed by CC when they are selected from QUEUE, the following non-

serializable schedule ser(S) results.

ser

1

(G

1

) ser

2

(G

2

) ser

2

(G

1

) ser

1

(G

2

) 2

Thus, associated with every operation o

j

in QUEUE is a condition, cond(o

j

), that is de�ned

over DS and that must hold if o

j

is to be processed by CC. If cond(o

j

) does not hold when

operation o

j

is selected from QUEUE by CC, then o

j

is added to a set of waiting operations,

WAIT, to be processed at a later time when cond(o

j

) becomes true. Thus, every conservative

scheme for ensuring the serializability of ser(S) has the same basic structure as shown in Fig-

ure 4. However, di�erent conservative schemes di�er in the values for act(o

j

) and cond(o

j

) for

8



GTM

2

fin

i

init

i

GTM

1

fin

i

init

i

ser

k

(G

i

)

ack(ser

k

(G

i

))

ack(ser

k

(G

i

))

ser

k

(G

i

)

Servers

CC

QUEUE

ack(ser

k

(G

i

))

ser

k

(G

i

)

DS

WAIT

Figure 3: Basic Structure of GTM

2

4 Structure and Complexity of Conservative Schemes

In this section, we describe the basic structure of conservative concurrency control schemes

employed by GTM

2

, and the methodology we adopt for analyzing their complexity. As men-

tioned earlier, GTM

1

submits the ser

k

(G

i

) operations belonging to each global transaction G

i

(or alternatively, each transaction

b

G

i

) to GTM

2

. GTM

1

inserts these operations into a queue,

QUEUE. In addition, for every transaction

b

G

i

, GTM

1

inserts into QUEUE, the operations init

i

and fin

i

(whose utility is discussed below). We now briey describe the operations in QUEUE

for an arbitrary transaction

b

G

i

and site s

k

.

� init

i

: This operation is inserted into QUEUE by GTM

1

before any other operation

belonging to

b

G

i

is inserted into QUEUE.

� ser

k

(G

i

) : This operation is inserted into QUEUE by GTM

1

in order to request the

execution of operation ser

k

(G

i

).

� ack(ser

k

(G

i

)) : This operation is inserted into QUEUE by the servers when the local

DBMSs complete executing operation ser

k

(G

i

).

� fin

i

: This operation is inserted into QUEUE by GTM

1

after ack(ser

k

(G

i

)), for all

ser

k

(G

i

) 2

b

G

i

have been received by GTM

1

.

Note that the init

i

and fin

i

operations do not belong to transaction

b

G

i

.

In Figure 3, we present the basic structure of GTM

2

. CC is any conservative concurrency

control scheme for ensuring serializability of ser(S). CC selects operations from the front of

QUEUE, in order to process them. Associated with CC are certain data structures (DS) that

are manipulated every time an operation selected from QUEUE is processed by it. In addition,

the following actions are performed by CC when it processes an operation o

j

in QUEUE.

� init

i

: Operation init

i

contains information relating to transaction

b

G

i

(e.g., the operations

in

b

G

i

, the set of sites G

i

executes at). This information is utilized by CC to determine

conicting operations and is added to DS.

� ser

k

(G

i

) : Operation ser

k

(G

i

) is submitted to the local DBMSs for execution (through

the servers).

� ack(ser

k

(G

i

)) : Operation ack(ser

k

(G

i

)) is forwarded to GTM

1

.
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Servers and Local DBMSs

G

i

; G

j

- Global Transactions

o

j

= ser

k

(G

i

)

GTM

o

j

= ser

k

(G

i

)

o

j

6= ser

k

(G

i

)

GTM

2

GTM

1

Figure 2: The GTM Components

protocols to ensure serializability of ser(S) must avoid transaction aborts, that is, they

must be conservative (e.g., conservative 2PL, conservative TO [BHG87]). This is quite

feasible in an MDBS environment.

2. Concurrency control protocols that provide a low degree of concurrency may be unsuit-

able for ensuring that ser(S) is serializable since such protocols may cause a number of

operations in ser(S) to be delayed unnecessarily. Such delays may adversely a�ect the

performance of the system since unnecessarily delaying an operation in ser(S) may cor-

respond to delaying the execution of an entire global subtransaction. For example, for a

site s

k

that uses the TO scheme, ser

k

may map each transaction to its begin operation.

As a result, causing an operation of ser(S) to wait could cause the execution of an entire

global subtransaction to be delayed.

3. A common problem with concurrency control protocols that provide a high degree of

concurrency is that they incur substantial overhead for scheduling a single operation (e.g.,

SGT). However, it may be justi�able to use such concurrency control schemes with high

overhead in order to ensure the serializability of ser(S), since the overhead involved in

scheduling an operation of ser(S) is amortized, not over one operation, but over all the

operations belonging to the corresponding global subtransaction. Thus, the gain in terms

of increased throughput, faster response times, and the number of global subtransactions

that may be permitted to execute concurrently by a concurrency control scheme that

permits a high degree of concurrency may outweigh the overhead associated with the

concurrency control scheme.

The above factors imply that concurrency control schemes for ensuring the serializability of

ser(S) must be conservative, and must provide high degrees of concurrency (even though they

may involve a high overhead). Conservative schemes for ensuring global serializability in MDBS

environments have been proposed in [BS88, ED90], while non-conservative schemes have been

proposed in [Pu88, GRS91].
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ser(S) : b

11

b

21

c

12

c

22

2

In the global schedule S, two operations conict if both access the same data item and one

of them is a write operation. Thus in Example 1, operations w

1

(c) and r

2

(c) conict in S.

However, the notion of conict between operations in ser(S) is de�ned di�erently. Operations

ser

k

(G

i

) and ser

l

(G

j

) conict in ser(S) if and only if k = l. Thus, in Example 1, operations b

11

and b

21

conict in ser(S), whereas operations b

11

and c

22

do not conict in ser(S). Note that

operations b

11

and b

21

do not conict in S. From Theorem 1, it follows that S is serializable if

ser(S) is serializable.

Theorem 2: Consider an MDBS where each local schedule is serializable. A global schedule

S is serializable if ser(S) is serializable.

Proof: See Appendix A. 2

In Example 1, note that ser(S) is serializable (the serialization order being

b

G

1

before

b

G

2

).

As a result, global schedule S is serializable. We have thus reduced the problem of ensuring

serializability in an MDBS environment to the problem of ensuring that ser(S) is serializable.

Since global transactions execute under the control of the GTM, the GTM can control the

execution of the operations in ser(S) in order to ensure that ser(S) is serializable. Thus,

for ensuring global serializability in an MDBS environment, we can restrict ourselves to the

development of schemes for ensuring that ser(S) is serializable.

To do so, we split the GTM into two components, GTM

1

and GTM

2

(see Figure 2). GTM

1

utilizes the information on serialization functions for various sites in order to determine for

every global transaction G

i

, operations ser

k

(G

i

), and submits them to GTM

2

for processing.

The remaining global transaction operations (that are not ser

k

(G

i

)) are directly submitted to

the local DBMSs (through the servers). Further, GTM

1

does not submit an operation belonging

to a global transaction G

i

(except the �rst operation) to either the local DBMSs or GTM

2

unless

an acknowledgement for the completion of the execution of the previous operation belonging to

G

i

(at the local DBMSs) has been received.

GTM

2

is responsible for ensuring that the operations submitted to it by GTM

1

execute at

the local DBMSs in such a manner that ser(S) is serializable. Our concern, for the remainder

of the paper, shall be the development of concurrency control schemes for GTM

2

that ensure

ser(S) is serializable. A discussion on mechanisms that GTM

1

can adopt in order to determine

operations in ser(S) can be found in Appendix E.

3 Characteristics of the Concurrency Control Problem

A number of schemes for ensuring serializability in centralized DBMSs exist in the literature

(e.g., 2PL, TO, SGT). Any one of them can be employed by GTM

2

in order to ensure that

ser(S) is serializable. However, certain characteristics of MDBS environments make some of the

existing schemes unsuitable for ensuring the serializability of ser(S). Below, we list some of the

factors that play an important role in the design of concurrency control protocols for ensuring

the serializability of ser(S).

1. In most MDBS environments, we expect the number of sites to be small in comparison to

the number of active global transactions in the system (that is, global transactions that

have begun execution, but have not yet completed execution). Thus, since any pair of

operations ser

k

(G

i

) and ser

k

(G

j

) conict in ser(S), ser(S) may contain a large number

of conicting operations. As a result, if, for example, the 2PL protocol were used to ensure

the serializability of ser(S), then there would be frequent deadlocks; if instead, the TO

or optimistic protocols were used, a large number of transaction aborts would result. An

abort of transaction

b

G

i

in ser(S) corresponds to the abortion of the global transaction G

i

,

which may be expensive, and thus highly undesirable in an MDBS environment. Thus,

5



Unfortunately, serialization functions may not exist for sites following certain protocols (e.g.,

serialization graph testing (SGT)). For such sites, serialization functions can be introduced

using external means by forcing conicts between transactions [GRS91]. For example, every

transaction in �

k

can be forced to write a particular data item at site s

k

, say, ticket. Thus, if

some transaction T

i

2 �

k

is serialized before another transaction T

j

2 �

k

in S

k

, then T

i

must

have written ticket before T

j

wrote it. Thus, the function that maps every transaction T

i

2 �

k

to its write operation on ticket is a serialization function for s

k

. We denote by ser

k

, any one of

the possible serialization functions for site s

k

.

2.3 Global Serializability

Serialization functions can be used to ensure global serializability in an MDBS environment.

In the following theorem, we state a su�cient condition for ensuring global serializability in an

MDBS environment.

Theorem 1: Consider an MDBS where each local schedule is serializable. Global schedule

S is serializable if there exists a total order �

G

on global transactions such that at each site s

k

,

for all pairs of global transactions G

i

; G

j

executing at site s

k

, if ser

k

(G

i

) �

S

k

ser

k

(G

j

), then

G

i

�

G

G

j

.

Proof: See Appendix A. 2

We denote the set of sites at which a global transaction G

i

executes by exec(G

i

). For every

global transaction G

i

, we de�ne transaction

b

G

i

to be a restriction of G

i

consisting of all the

operations in fser

k

(G

i

) : G

i

executes at site s

k

g. For global schedule S, we de�ne schedule

ser(S) to be the set of operations belonging to all transactions

b

G

i

, with a partial order on them.

Further, ser(S) is a restriction of S.

Example 1: Consider an MDBS environment consisting of two sites: s

1

containing data

items a and b, and s

2

containing data item c. Suppose that the local DBMS at site s

1

follows

the TO scheme in which a timestamp is assigned to a transaction when it begins execution,

and the local DBMS at site s

2

follows the strict 2PL protocol [BHG87]. Consider the following

global transactions G

1

and G

2

that execute at sites s

1

and s

2

.

G

1

: b

11

w

1

(a) b

12

w

1

(c) c

11

c

12

G

2

: b

21

r

2

(b) b

22

r

2

(c) c

21

c

22

Let L

3

be a local transaction executing at site s

1

.

L

3

: b

3

r

3

(a) w

3

(b) c

3

Let ser

1

be the function that maps every transaction in �

1

to its begin operation. Also, let ser

2

be the function that maps every transaction in �

2

to its commit operation. Thus, ser

1

(G

1

) = b

11

,

ser

1

(G

2

) = b

21

, ser

2

(G

1

) = c

12

and ser

2

(G

2

) = c

22

. As a result, transactions

b

G

1

,

b

G

2

are as

follows.

b

G

1

: b

11

c

12

b

G

2

: b

21

c

22

Consider the global schedule S resulting from the concurrent execution of transaction G

1

, G

2

and L

3

such that the local schedules at sites s

1

and s

2

are as follows.

S

1

: b

11

b

3

w

1

(a) b

21

r

3

(a) w

3

(b) c

3

r

2

(b) c

11

c

21

S

2

: b

22

b

12

w

1

(c) c

12

r

2

(c) c

22

Schedule ser(S) (which is a total order in this case) is as follows.

4
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Figure 1: The MDBS Model

We assume that the GTM is centrally located, and controls the execution of global trans-

actions. It communicates with the various local DBMSs by means of server processes (one per

transaction per site) that execute at each site on top of the local DBMSs (see Figure 1). We

assume that the interface between the servers and the local DBMSs provides for operations to

be submitted by the servers to the local DBMSs, and the local DBMSs to acknowledge the

completion of operations to the servers. The local DBMSs do not distinguish between local

transactions and global subtransactions executing at its site. In addition, each of the local

DBMSs ensures that local schedules are serializable

2

.

2.2 Serialization Functions

In order to develop our idea, we need to �rst introduce the notion of serialization function,

which is similar to the notion of serialization event [ED90]. Let �

k

be the set of all global sub-

transactions in S

k

. A serialization function for s

k

, ser, is a function that maps every transaction

in �

k

to one of its operations such that for any pair of transactions T

i

; T

j

2 �

k

, if T

i

is serialized

before T

j

in S

k

, then ser(T

i

) �

S

k

ser(T

j

).

For example, if the timestamp ordering (TO) concurrency control protocol is used at site s

k

,

and the local DBMS at site s

k

assigns timestamps to transactions when they begin execution,

then the function that maps every transaction T

i

2 �

k

to T

i

's begin operation is a serialization

function for s

k

.

For a site s

k

, there may be multiple serialization functions. For example, if the local DBMS

at s

k

follows the two phase locking (2PL) protocol, then a possible serialization function for

s

k

maps every transaction T

i

2 �

k

to the operation that results in T

i

obtaining its last lock.

Alternatively, the function that maps every transaction T

i

2 �

k

to the operation that results in

T

i

releasing its �rst lock is also a serialization function for s

k

3

.

2

In this paper, we limit ourselves to conict serializability (CSR) [Pap86], which we shall refer to, in the remainder

of the paper, as serializability.

3

Actually, any function that maps every transaction T

i

2 �

k

to one of its operations that executes between the

time T

i

obtains its last lock and the time it releases its �rst lock is a serialization function for s

k

.

3



pre-existing and autonomous local database management systems (DBMSs) located at di�erent

sites. Transactions in an MDBS are of two types:

� Local transactions. Those transactions that execute at a single site.

� Global transactions. Those transactions that may execute at several sites.

The execution of the global transactions is co-ordinated by the global transaction manager

(GTM) { a software package built on top of the existing DBMSs whose function is to ensure

that the concurrent execution of local and global transactions is serializable. Ensuring global

serializability in an MDBS is complicated by the fact that each of the participating local DBMSs

is a pre-existing database system whose software cannot be modi�ed. As a result,

� Each local DBMS may follow a di�erent concurrency control protocol.

� Local DBMSs may not communicate any information (e.g., conict graph) relating to

concurrency control to the GTM.

� The GTM is unaware of indirect conicts between global transactions due to the execution

of local transactions at the local DBMSs. This is due to the fact that pre-existing local

applications make calls to the local DBMS interfaces, and thus the GTM, which is built

on top of the local DBMSs, is not involved in the execution of the local transactions.

Various schemes to ensure global serializability in an MDBS environment have been previ-

ously proposed (e.g., [BS88, Pu88, ED90, GRS91]). These proposed schemes have been ad-hoc

in nature, and no analysis of their performance, the degree of concurrency provided by them,

or their complexity has been made. In this paper, we provide a unifying framework for the

study and development of concurrency control schemes in an MDBS environment. We utilize a

notion similar to serialization events [ED90] (referred to as O-elements in [Pu88]) in order to

reduce the problem of ensuring global serializability in an MDBS to the problem of ensuring

serializability in a centralized DBMS. We then develop a range of concurrency control schemes

for ensuring global serializability in an MDBS environment. Finally, we compare the degree of

concurrency provided by each of the various schemes and analyze their complexities.

2 MDBS Concurrency Control

In this section, we show how the problem of ensuring global serializability in an MDBS can

be reduced to the problem of ensuring serializability in a centralized DBMS. Since centralized

concurrency control is a well studied problem and a number of schemes for ensuring serializability

in centralized DBMSs have been proposed in the literature, the development of concurrency

control schemes for MDBSs is thus simpli�ed. We begin by �rst discussing the MDBS model.

2.1 The MDBS Model

An MDBS is a collection of pre-existing DBMSs located at sites s

1

; s

2

; : : : ; s

m

. A transaction T

i

in an MDBS environment is a totally ordered set of read (denoted by r

i

), write (denoted by

w

i

), begin (denoted by b

i

) and commit (denoted by c

i

) operations. A global transaction may

have multiple begin and commit operations, one for each site at which it executes. We denote

by b

ik

and c

ik

, the begin and commit operations of global transaction T

i

at site s

k

respectively.

A global schedule S is the set of all operations belonging to local and global transactions with

a partial order �

S

on them. The local schedule at a site s

k

, denoted by S

k

, is the set of all

operations (belonging to local and global transactions) that execute at s

k

with a total order

�

S

k

on them. The schedule S

k

is a restriction

1

of the global schedule S.

1

A set P

1

with a partial order �

P

1

on its elements is a restriction of a set P

2

with a partial order �

P

2

on its

elements if P

1

� P

2

, and for all e

1

; e

2

2 P

1

, e

1

�

P

1

e

2

if and only if e

1

�

P

2

e

2

.

2
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Abstract

A Multidatabase System (MDBS) is a collection of local database management systems,

each of which may follow a di�erent concurrency control protocol. This heterogeneity makes

the task of ensuring global serializability in an MDBS environment di�cult. In this paper, we

reduce the problem of ensuring global serializability to the problem of ensuring serializability in a

centralized database system. We identify characteristics of the concurrency control problem in an

MDBS environment, and additional requirements on concurrency control schemes for ensuring

global serializability. We then develop a range of concurrency control schemes that ensure

global serializability in an MDBS environment, and at the same time meet the requirements.

Finally, we study the tradeo�s between the complexities of the various schemes and the degree

of concurrency provided by each of them.

1 Introduction

The problem of transaction management in a multidatabase system (MDBS) has received con-

siderable attention from the database community in recent years [BS88, Pu88, DE89, BST90,

ED90, GRS91, PRR91, MRKS91]. The basic problem is to design an e�ective and e�cient

transaction management scheme that allows users to access and update data items managed by

�
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