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Abstract

The consensus problem is concerned with the agreement on a system status by
the fault-free segment of a processor population in spite of the possible inadvertent
or even malicious spread of disinformation by the faulty segment of that population.
The resulting protocols are useful throughout fault-tolerant distributed systems and will
impact the design of other decision systems to come. This paper surveys research on the
consensus problem, compares approaches, outlines applications, and suggests directions
for future work.
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works]: Network Operations — nelwork management, network monitoring, C.2.4
[Computer-Communication Networks]: Distributed Systems — distribuled appli-
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INTRODUCTION

It has long been the goal of system designers to connect independent computer resources
together to create a metwork with greater power and availability than any of its parts.
Unfortunately, the reverse can happen if faulty resources are allowed to corrupt the network.
In the area of fault-tolerant computing, the consensus problem is to form an agreement by
the fault-free members of the resource population on a quantum of information, which could
be a list of the faulty members, in order to maintain the performance and integrity of the
system. The proposed approach is to diagnose and contain faults at the system level. Work
in the area has increased with the proliferation of distributed systems that range from
small, local-area networks to large, real-time, fault-tolerant systems such as that proposed
by IBM to fulfill Federal Aviation Administration air-traffic control requirements [Cristian
1990]. Consensus solutions give a convenient and, sometimes, vital picture of the condition
of the network.

This paper surveys over 20 years of research on this consensus problem. Section 2
examines work on system diagnosis, which has sprung from the seminal research domne
by Preparata et al., and on the Byzantine Generals Problem introduced by Pease et al.
[Preparata ef al. 1967; Pease et al. 1980]. Sections 3 and 4 discuss how faulty processors are
characterized and how they might be detected with testing. Section 5 looks at extensions
to the basic work done on the consensus problem. Section 6 is a comparison of system
diagnosis and Byzantine Generals Problem solutions. Section 7 is devoted to applications

of consensus protocols, and Section 8 suggests directions for future studies.



5 FORMULATING THE CONSENSUS PROBLEM

The simple idea of consensus is fo share information among a group of processing elements
(PEs) preferably in a fault-tolerant manner. That is, the fault-free members of the PE
population should be able to consistently agree on and produce correct results despite the
actions, malicious or not, of the faulty segment of the population. The importance of the
problem stems from its omnipresence. This problem is at the core of protocols handling syn-
chronization, reliable communication, resource allocation, task scheduling, reconfiguration,

replicated file systems, sensor reading, and other functions.

Reconfiguration

~ Fauli-Tolerant Computations

Reliable Communicatio

Figure 1: Consensus Problems in Fault Management.

A distributed operating system shows the abundant need for consensus procedures.
Fig. 1 shows a general layered approach to fault management in which higher layers are
dependent on lower layers to produce a fault-tolerant system [Malek 1991]. That is, the
synchronization layer allows processors to recognize untimely messages, and to order timely

messages in implementing reliable communications. Reliable communications let fault-



free processors pass fault-free messages that are used to agree on correct computations.
Finally, the ability to agree on a single value allows the fault-free processors to agree on a
reconfiguration after a fault. Each of these layers is a separate consensus problem.

First, the synchronization level maintains a global timepiece which is simply a consensus
of all the fault-free PEs on a particular time value and a rate of change of that value. Second,
s reliable communication is one processor forming a consensus with another processor on
some set of information and the order of transmission of that set [Birman and Joseph 1987].
Third, a fault-tolerant computation is the result of a consensus of the fault-free PEs on
the fault-free status of the PE that performed the computation, or on the correctness of
the computation itself. Finally, reconfiguration is a concurrence by all service users on the
status of their servers. Therefore, at a high level, the fault-tolerant, distributed operating
system of Fig. 1 consists entirely of consensus procedures.

Another general method of implementing fault tolerance is the state machine approach
[Schneider 1990; Cristian 1991a). Here, a fault-tolerant service is created by replicating the
desired server and its service requests. At the heart of this technique is the coordination of
the service population such that the failure of a member will be recognized and tolerated.
In other words, the fault-free constituents must agree on who is faulty and what is the
desired result. Thus, the basis of this approach is a consensus procedure yet again.

Traditionally, the formation of a consensus among several processors has been imple-
mented with n-modular redundancy (NMR) at a great cost of resources while only attaining
the throughput (jobs per unit time) of a single PE. With NMR, n PEs perform the same
task. Thus, ¢ faulty PEs, n > 2t + 1, may be masked by taking a majority vote of the n

results.



The throughput of this n processor system could be increased by the number of fault-
free PEs if one could reliably determine which of the PEs were faulty. Then, rather than
mask the faulty processors, the system could identify and ignore them, thus allowing unique
tasks to be scheduled on each fault-free processor, increasing the performance of the system
over the NMR technique by the number of fault-free PEs. T herefore, a natural goal is to
diagnose, i.e., detect and locate, faulty processors and to disseminate this information to
the fault-free processors. If the diagnosis is correct, then the result of each processor is as
reliable as the majority result of the NMR case. The field of system diagnosis has explored
solutions of this type for over twenty years [Preparata et al 1967], and the results are
applicable to wafer scale integration, large, loosely-coupled, distributed computer networks
and to other kinds of multicomputer systems [Rangarajan et al. 1990; Somani and Agarwal
1989; Kuhl and Reddy 1980]. Surveys on system diagnosis may be found in [Dahbura 1988;
Friedman and Simoncini 1980; Kreutzer and Hakimi 1987; Kime 1986; Malek and Liu 1980].

A problem with diagnosis is that the fault status of the system is obsolete, although
possibly correct, as soon as it is calculated. Most likely, a fault will require a recovery.
Therefore, NMR techniques may still be needed when any recovery procedure would be too
costly. But, implementation of NMR requires an ultra-reliable voting mechanism, accessible
by the n replicated PEs, that is typically not available in a distributed system. Without
this voter, all fault-free processors must be able to reach, by message passing, a CONsensus
on some global datum, namely the correct result, despite the specious outputs of the faulty
PEs. Work on the Byzantine Generals Problem (BGP) or Byzantine agreement explores
this consensus problem. A survey may be found in [Raynal 1988].

Despite their different charactéristics, solutions to the BGP and system diagnosis both



have very similar goals, namely to produce a correct result despite a number of faults.
But the two areas have developed entirely apart with entirely different assumptions guiding
their development. One goal of this paper is to show the similarities in purpose of the two
approaches, and to allow future research to draw from both areas rather than to continue
apart.

In this second section, the problems of system diagnosis and Byzantine agreement are
discussed as they were originally presented. Included in this discussion are some of the
immediate ramifications of these proposals. In later sections, the extensions and transfor-

mations that these early works underwent are outlined.

2.1 The PMC Model

A system operating in a tightly- or loosely-coupled, distributed environment must avoid
giving tasks to or using results from faulty processing elements. Therefore, it is necessary
for a centralized operating system, or for every processing element, to be aware of the
condition of all the active PEs. In 1967, Preparata, Metze and Chien (PMC) formed the
framework for much of the research in the system diagnosis area with their model of this
problem [Preparata et al. 1967]. They eliminated the steep cost of NMR and special testing
hardware by considering that a PE could test other PEs and that the results could be used
to find the state of the system. However, test results may not be reliable if the testing PE
is faulty!

The PMC model uses a graph G(V, E) to model the system’s testing convention. PEs
make up the set V and directed edges in E represent one processor applying a test to another

processor, i.e., the edge (A4, B) denotes that A tests B. The edges are labeled with a 0(1)



if the test produces a passing(failing) result. The set of results is known as a syndrome.
After completion of testing according to G, a centralized arbiter interprets the syndrome
and deems each PE to be either faulty or fault free. Certain assumptions are made about

the faulty processors.

A1 Al failures are hard or permanent faults.

A2 A fault-free processor is always able to determine accurately the condition

of a PE it is testing.
A8 A faulty processor produces unreliable test results.

A4 Not more than ¢t PEs may be faulty.

These assumptions are not necessarily valid nor desired in a fault-tolerant, distributed
network, and later work has deeﬂt with removing these restrictions. The first problem with
the PMC assumptions is supervisor-controlled diagnosis. The implication is that all test
data must be gathered, analyzed and redistributed by a single PE. This is costly in terms
of time, message-passing and system reliability, which is directly related to the reliability
of the supervisor. Assumption A disallows intermittent and transient faults. A2 assumes
that a test exists which is complete or has 100% fault coverage. In reality, the coverage will
be less than 100% even for a simple PE. A4 may exclude many, practical, fault situations.

Fig. 2 shows a five processor system where 4 is faulty. The “X” on the edge (A, B)
means that this result may be a one or a zero according to A3. If it is assumed in A/
that ¢ = 1, then it is possible to identify A as being faulty. First notice that edge (E,A)
is labeled “1” meaning A is faulty if E is fault free. If E were faulty, then it would be the

single faulty member of the system. So diagnosis depends on deducing the condition of E.
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Either E is faulty or A is. Assume E is faulty in which case D must be fault free since £ = 1.
But this leads to a contradiction of A2 because the label “0” on edge (D, F) implies that
fault-free D misdiagnosed faulty E. Thus, E is fault free and A is faulty by A2 regardless
of the actual value of “X”. If more than one PE is faulty, then credible system diagnosis is

not feasible under this model [Preparata et al. 1967].

Tester Tested Result
FF FF 0

FF F 1
F FF X
F F X
Figure 2: Example of the PMC Model.

Preparata ef al. were primarily interested in systems that allowed unambiguous diagno-
sis in all cases under assumptions A1 through A4. Such systems are said to be t-diagnosable.
In other situations, though, they considered diagnosis in conjunction with system repair.
If it is not practical to diagnose a system in multiple phases, then it must be possible to
identify all the faulty processors after one round of testing. In this case, diagnosis is called
one-step diagnosis or diagnosis without repair. If the system is repairable, then it is only
necessary to locate at least one faulty PE if it exists. In this case, after a PE is diagnosed as

faulty, it can be repaired and the testing continued to eventually diagnose all the faulty PEs.
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Such diagnosis is called k-step diagnosis, sequential diagnosis, or diagnosis with repair. For
example, in Fig. 2 consider that A and B are both faulty. The syndrome is valid since
tests given by both A and B are unreliable. With these two faulty PEs, it is not possible
to determine with the given syndrome whether B is faulty. However, using our previous
argument, A must be faulty. After repairing A, the condition of B is made obvious in the
next round of testing.

Unless otherwise stated, “diagnosis” will refer to diagnosis without repair in the remain-
der of this paper.

Preparata ef al. showed that if as many as 1 members of the PE population may be
faulty according to A4, then it is necessary for the system to contain n members, n > 2{+1,
to be diagnosable in all cases. Moreover, it is necessary that each PE be tested by at least
¢ distinct other PEs. Hakimi and Amin showed that for the special case when no two
processors test each other, these necessary conditions are also sufficient for ¢-diagnosability
[Hakimi and Amin 1974]. Formally, a system is t-diagnosable if all faulty PEs may be
uniquely identified, without repair, given the test syndrome, and provided that the number
of faulty PEs does not exceed ¢ [Preparata et al. 1967].

The characterization problem is to find necessary and sufficient conditions for a testing
assignment to achieve a given level of diagnosability given a fault model and an allowable
family of fault sets. Hakimi and Amin gave a general solution for one-step i-diagnosable
networks [Hakimi and Amin 1974]. As before, n > 2t + 1 and each PE must be tested by
at least ¢ distinct other PEs. But also, for each integer p,0 < p < i, every subset X of

processors, whose cardinality is equal to n—2¢+p, must be tested by more than p processors

outside of X. Huang et al. characterized sequentially i-diagnosable systems [Huang et al.



1989].

The diagnosability problem is to determine the family of fault sets that a given testing
assignment can diagnose for some fault model. Sullivan solved the diagnosability prob-
lem given the PMC assumptions using network flow [Sullivan 1984; Dec 1974]. With his
O(|E|n') algorithm, where E is the number of tests, it is possible to calculate the t-
diagnosability of a given testing assignment. Recently, Raghavan and Tripathi improved
the efficiency of the t-diagnosability algorithm to O(nt”®) [Raghavan and Tripathi 1991a].
They also showed that finding the diagnosability of repairable systems, i.e., sequential di-
agnosability, is co-NP-complete [Raghavan and Tripathi 1991b].

The diagnosis problem is to determine a fault set from a given family, for a given testing
assignment, fault model, and syndrome. Fujiwara and Kinoshita showed that it is an NP-
complete problem to find a set of minimal cardinality that, if faulty, could produce a given
syndrome on a graph with arbitrary testing assignments [Fujiwara and Kinoshita 1978].
Thus, arbitration of conflicting test results is also NP-complete.

Still, work has been done on diagnosis in restricted situations. For i-diagnosable systems,
Kameda, Toida and Allan (KTA) gave an O(¢|E|) algorithm, where |E| is the number of
tests, in which PEs are successively supposed to be faulty or fault free [Kameda et al.
1975]. This supposition and the test syndrome implicate the states of other PEs. If a
contradiction occurs, the algorithm backtracks and tries again until it finds a consistent
fault set. Recently, Sullivan improved the KTA solution to O(#® 4 |E|), which is the best
known solution when ¢ is small (O(n%/8)) compared with n [Sullivan 1988}.

Otherwise, the best solution in terms of worst-case efficiency is given by Dahbura and

Masson [Dahbura and Masson 1984a]. They presented a O(n??®) algorithm in which an



undirected graph G is created whose vertices are the processors in the system and whose
edges represent the implied faulty sets of each PE. The procedure is as follows: choose a PE
and assume it is fault free. If this implies by the test syndrome that some PEs are faulty,
then an edge should be drawn between the assumed fault-free PE and the implied faulty
PEs. Note that self-loops might be produced. Repeat this for all the processors to create
C. Then the faulty PEs are the unique minimum vertez cover set of G [Deo 1974], and
by virtue of the class of graphs that must include G, these faulty processors are locatable
in polynomial time. Dahbura and Masson gave a practical variation of their algorithm in
[Dahbura and Masson 1984b].

Dahbura et al. studied the practical efficiency of the O(n?®) algorithm with respect to
the KTA procedure and found that for small n (n < 30) the KTA method is almost always
more efficient [Dahbura et al. 1985a]. Even for larger values of n, the KTA algorithm
performs more efficiently on average than the method given by Dahbura and Masson. The
KTA scheme guesses at a correct solution and backtracks if necessary. For an obvious fault
syndrome, little or no backtracking is needed. But with the O(n??) algorithm, 2 standard
procedure must be executed for every fault situation and herein lies the discrepancy between
the efficiency of the two approaches.

There are many special classes of t-diagnosable systems that support more efficient
diagnosis techniques than those previously mentioned, and this is reason to believe that an
O(|E|) diagnosis solution exists for all #-diagnosable systems. Preparata et al. defined the
Ds; structure in which processor u; tests u; if and only if j — ¢ = ém (modulo n) where
m=1,2,...,t. They showed that if § and n are relatively prime, then the system is one-step

t-diagnosable [Preparata et al. 1967]. Meyer and Masson, Mallela, and Chwa and Hakimi
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all gave O(nt) solutions to the case of § =1 [Meyer and Masson 1978; Mallela 1980; Chwa
and Hakimi 1981b]. (Note that the characterization of t-diagnosable systems makes nt the
minimum value of E [Hakimi and Amin 1974].) Maheshwari and Hakimi described the Zr
systems, Chwa and Hakimi gave the D(n,10, X ) class, and Dahbura et al. defined a group
of “self-implicating” structures all of which have O(|E |) diagnosis algorithms [Maheshwari
and Hakimi 1976: Chwa and Hakimi 1981b; Dahbura et al. 1985b]. Sullivan developed
an O(|E|) algorithm for the most general class of test graphs among these mentioned, the
+-vertex-connected digraphs which are a superset of the self-implicating structures given by
Dahbura et al. [Sullivan 1984].

Researchers have refined and detailed the model given by Preparata et al. in search
of more realistic assumptions and more practical solutions. Several of these extensions are

examined later in the paper.

2.2 The Byzantine Generals Problem

The Byzantine Generals Problem is concerned with agreement among the fault-free segment
of a population. The historical problem involves a group of Byzantine generals who have
surrounded the enemy with their many armies. They wish to organize a concerted attack by
sending messengers back and forth amongst themselves. The enemy is clever, though, and
has been sending his own messengers with sometimes false and sometimes true messages
to the Byzantine generals. The problem is to devise a scheme that will guarantee that the
Byzantine generals agree to either attack or retreat.

The Byzantine generals are replaced by processing elements in a distributed computing

environment. Every PE has a secret, binary value that it wishes to broadcast to every
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other processing element. In a correct solution, all fault-free PEs should form identical
vectors (consistency) whose elements corresponding to other fault-free PEs should be the
secret values of those processors (meaningfulness). Together, these two conditions assure
interactive consistency [Pease et al. 1980]. Faulty PEs may work in collusion to try to
break the agreement by sending inconsistent information to different processors.

Pease et al. introduced and studied the Byzantine Generals Problem [Pease et al. 1980;
Lamport et al. 1982]. They assumed that any two PEs have direct communication across
a network that is not affected by the failure of connected processors, nor prone to failure
itself, and has negligible delay. The sender of a message is identifiable by the receiver. With
no other assumptions, including no centralized arbiter as in the PMC model, they showed
that for Byzantine agreement to be reached, it is necessary that n > 3t + 1, where n is the
number of PEs and £ is the maximum number of those that may be faulty.

As an example, let n = 4 and ¢ = 1. Byzantine agreement is reached after two rounds
of message passing. In the first round, the processors exchange their private values. If
a PE fails to receive an expected message, then it simply assigns a default value to that
message. In the second round, the PEs exchange all of their information obtained from the
first round. Now every processor has three numbers for the secret value of each other PE.
Pease et al. showed that the majority (which will exist as the values are binary) among the
three numbers for a particular PE is the secret value for that PE or the default value, and
that all fault-free PEs will reach the same decision about the value held by each other PE.

Unlike the system diagnosis algorithms in which arbitration of conflicting test results
is NP-complete except for special cases, this Byzantine agreement procedure can resolve

conflicting values by simply taking a majority vote of the values received at each processor.
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Not only is arbitration simple, but it is also completely distributed.

The algorithm for solving the Byzantine Generals Problem with n PEs involves the same
sort of message passing as in the previous example and requires ¢ + 1 rounds to complete
(Fischer and Lynch chowed that at least { + 1 rounds are needed for all deterministic
solutions to the Byzantine Generals Problem [Fischer and Lynch 1982}) [Lamport et al.
1982]. Unfortunately, the message size grows exponentially with each round. Work on more
efficient BGP algorithms may be found in Section 5.2.1.

There are a number of important points that need to be mentioned about the algorithm
given by Pease et al.. First, the target system must be synchronous, ie., a processor’s
failure to send a message is detectable. Without some sort of synchronization, Fischer et
al. proved that Byzantine agreement is impossible even if only one processor crashes during
the protocol [Fischer et al. 1985]. Second, the system is completely connected with private
communication channels. Although this is unnecessary, Dolev showed that the connectivity
of the communication graph must be at least 2 + 1, and that reducing the connectivity
will most likely result in more rounds required for Byzantine agreement [Dolev 1981; Dolev
1982]. Third, the secret values of the PEs are binary. Byzantine agreement protocols incur
an extra cost if the secret values of the PEs each consist of k bits, although in the worst case
one could simply iterate the algorithm k times to form a consensus on k bits. Obviously,
this increases the cost of the algorithm by a factor of k [Turpin and Coan 1984]. Finally,
messages are unauthenticated.

A message is authenticated if: 1) a message signed by a fault-free PE is unforgeable; 2)
any corruption of the message is detectable; and 3) the signature can be authenticated by

any other PE. Obviously, this limits the capabilities of the faulty processor. In this situa-
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tion, there is no limit on the number of faulty processors that are tolerable and the network
no longer requires private communication channels between PEs. (Actually, it is precisely
private (point-to-point) links that provide the opportunity for inconsistency!) Trivially, the
connectivity of the communication graph must be ¢+ 1. Dolev and Reischuk gave an algo-
rithm using authenticated messages that requires ¢ + 2 rounds and O(t?) messages [Dolev
and Reischuk 1985]. Algorithms using authentication have been less researched than their
non-authenticated counterparts because of the demands placed on the processors and com-
munication system by the authentication process. Until the efficiency of the authentication
process is given, the true efficiency of an algorithm using authentication is unknown.

With a system diagnosis algorithm, every processor must pass a trial of tests. If it
passes, then its output is assumed to be correct. In this way, every processor may operate
on its own set of jobs. With a Byzantine agreement protocol, though, every processor is
treated as if it were fault free, but enough processors are doing the same task that all faulty
results may be masked out. At a high level, the two solutions are behaving identically. That
is, a multiprocessor is given a set of inputs, and despite any failures, it is returning a correct
set of outputs. The difference lies in the performance of the two algorithms. The system
diagnosis solution should operate with a high throughput until a fault requires recovery,
but the Byzantine agreement protocol should perform with extremely high reliability, and
with a consistent, though lower, throughput. Simply, they are two similar algorithms with
different performance characteristics.

In later sections, the evolution and extensions of the Byzantine agreement protocols are

examined. First, though, the characteristics of a faulty processor are discussed.
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3 THE FAULTY ELEMENT

Knowing how a processor element fails is key to making realistic assumptions and creat-
ing workable algorithms to detect and tolerate the faulty PE. Careful examination of the
characteristics of faulty processors has resulted in the proposition of many fault models.
The relevance of any model depends on the system in question, but in general, the more

constraints in the fault model, the easier it will be to form a consensus.

2.1 Fault Models

Determining the interactions of faulty PEs is the essence of the consensus problem. For
system diagnosis, these interactions are most pronounced during testing when test results
have different possible interpretations given the assumptions about how processors fail. In
the PMC model, a faulty PE performing a test on another PE will report unreliable results
and a fault-free PE performing a test on another PE will always produce correct test results.
This is known as symmetric invalidation. Fig. 3 shows some other proposed test result
models. Barsi et al. introduced the BGM model in [Barsi et al. 1976]. Their assumption
was that a faulty processor would always appear faulty regardless of the condition of the
testing processor. Given a large number of test stimuli, it is reasonable that at least one
set of expected and actual results will mismatch if the tested PE is faulty, even if the tester
is faulty. This assumption is known as asymmetric invalidation. Hakimi and Kreutzer
extended this assumption by proposing that a faulty tester would always report a non-
faulty PE as being faulty [Kreutzer and Hakimi 1983]. The HK Model 1 and HK Model 2

are called reflezive and irreflerive invalidation, respectively.
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Figure 3: Test Validity Models. (A directed edge denotes a test by a PE on another PE.
A 0(1) denotes a pass(fail). An X indicates that the PE will produce an unreliable result

after performing the test. Faulty PEs are gray.)

Classically, solutions that reach Byzantine agreement make no assumptions about the
characteristics of the faulty processor. In fact, faulty processor members are assumed, in
the worst case, to work in collusion with complete knowledge about the state of the system.
This adversary model is of course the safest and most conservative approach one could take
to modeling a real system, but the lack of limitations means a defense will be expensive.
Methods such as message authentication techniques or providing hardware broadcast mech-
anisms, i.e., a bus, do constrain the faulty PEs by imposing limits on their computational
power or on their maliciousness. Of course, the adversary must be constrained to some
extent. For example, the number of processors controlled by the adversary is limited so
that it cannot simply cause every processor to fail immediately. Chor and Coan gave four

principal handicaps to the adversary: 1) the adversary may corrupt fewer than one third of
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the processors (see Section 2.2 for a description of this limit); 2) the communication system
is reliable and unreliable links must be simulated by corrupting one of the two communicat-
ing processors; 3) the adversary may not predict random events; and, 4) the adversary must
obey the synchrony of the system [Chor and Coan 1985]. As in system diagnosis, limiting

the fault model simplifies the solution [Lamport et al. 1982].

3.2 Fault Classes

A diagnostic procedure must take into account the possible fault classes. Processor faults
are categorized as transient, infermitient, or permanent. Transient faults are caused by
events that come from a system’s environment, and do not imply that the system is faulty.
An intermittent or soft fault originates from inside the system when hardware is faulty.
By its nature, an intermittent fault will not occur consistently, which makes its diagnosis
a probabilistic event over time unless the fault becomes permanent or hard. Permanent
faults are software or hardware faults that always produce errors when they are exercised
[Johnson and Malek 1989].

Tt is difficult to determine the difference between a transient and an intermittent fault
by simply observing the system. A fault caused by external events may have the same
characteristics as one caused by internal events. The importance of the distinction is that
the transient fault does not necessarily imply that the system should be declared faulty
although the unstable environment might warrant a temporary shutdown. On the other
hand, if the fault is intermittent, the system should be declared faulty until the problem
is corrected. If it were assumed that only transients faults occurred, or that intermittent

faults were very rare, then it would possibly be more productive to leave the affected PEs
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in the processor pool, performing recovery procedures as necessary, than to remove, repair,

and rejoin them.

Figure 4: A Time Domain Fault Classification.

Cristian et al. classified processor faults into four major groups [Cristian et al. 1986].
These are crash faults, omission faults, timing faults, and Byzantine faults. Each class is

a subset of the class that is listed next. Fig. 4 shows a graphical representation of this.

crash fault: The fault that occurs when a processor loses its internal state or
halts. For example, a PE that has had the contents of its instruction

pipeline corrupted, or has lost all power has suffered a crash fault.

omission fault: The fault that occurs when a processor fails to meet a deadline

or begin a task.

timing fault: The fault that occurs when a processor completes a task either
before or after its specified time frame. This is sometimes called a perfor-

mance fault.

Byzantine fault: An arbitrary fault such as when one processor sends differing
messages during a broadcast to its neighbors. More generally, this is every

fault considered in the system model.
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incorrect computation fault: The fault that occurs when a processor fails to pro-

duce the correct result in response to the correct inputs.

The incorrect computation fault class is a superset of the crash, omission, and timing
fault classes and a subset of Byzantine failures. The first characteristic is true because a
miscalculation may take place in time or space. Since the fault is consistent to all out-
side observers, though, the incorrect computation class is stricter than Byzantine faults
[Laranjeira et al. 1991].

The most basic fault classes, crash, timing and performance failures, are problems that
occur in the time domain, and are problems that are detectable in the time domain. This
is in contrast to the more common fault classes mentioned previously that stress error

detection in the data domain.

3.3 Fault Impact

The impact of a fault is the functionality reduction caused by that fault. A fault in one
module of a system may or may not affect the operation of other modules. The impact of a
fault on a PE will determine both if a particular test c;n that PE will declare it faulty, and if
that PE can reliably perform a particular test. After a fault, a PE may stop communicating,
start sending corrupted data, slow down its computations, stop performing some functions,
begin performing functions incorrectly, or some combination of the above, that may or may

not affect its ability to perform the tasks assigned to it.
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4 THE TEST

After the faulty processing element has been characterized, the next step is to derive a test
that will uncover it. This is the case for system diagnosis algorithms, and various techniques
are discussed in this section. Byzantine agreement does not intentionally diagnose elements,
and therefore, is not restricted by the limitations of a test.

The nature of tests in system diagnosis is a major point of contention in practical
systems. Typically, processor A tests processor B by giving it certain inputs and comparing
the resulting outputs with some set of correct responses. A quick and complete test is desired
because without one, a faulty PE could go undiagnosed for an unacceptable period of time,
or forever, and cause unrecoverable damage to the system state. It is obvious that a test
cannot be allowed to tie up a normally busy PE with diagnostic tasks nor can it overload a
congested network. Yet, for a highly complex system, a test could take hours or days and
still not produce accurate results. This section looks at the test and the means of making

it efficient.

4.1 Self-Testing

Testing may be performed by each processing element on itself in a series of self-tests.
Thus, a direct test of processor A on B becomes a simple request for the status of B to
which the self-checking mechanisms of B will respond. In this case, all free time at B
may be spent testing without using the network. Kuh! and Reddy describe a hierarchical
system of self-tests that permit a PE to deem itself faulty or fault free, including varying

degrees of self-diagnosability, by means of hardware or software checkers, watchdog timers,
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error-detecting codes, or redundancy with voting [Kuhl and Reddy 1980].

4.2 Group Testing

A test may only be able to determine whether a group of PEs is faulty or fault free, and
reaching a single PE resolution might require multiple tests. Also, the execution of a test
may require multiple units where failure of one of these units would invalidate the result
[Kime 1978; Russell and Kime 1975a; Russell and Kime 1975b]. If many independent mod-
ules are required to perform a test, then the system is described as Multiple Invalidations
Per Test (MIPT) as opposed to Single Invalidation Per Test (SIPT) that is the case in the
PMC model. If a test has only multiple module resolution, i.e., the test cannot pinpoint a
fault to a single module, then the model is referred to as Multiple Units Per Test (MUPT)
as opposed to Single Unit Per Test (SUPT) that again is the case in the PMC model. The
tests in a MIPT or MUPT environment might be simpler to write and quicker to execute,
because less demands are made on them, and depending on the impact of a fault, the test
might be sufficient. When tests fail, a table may be examined to determine what specific
faults or group of faults could cause the test set to fail. A table also could be used to
schedule the next round of tests to locate or avoid faulty units. Maheshwari and Hakimi
characterized MIPT/MUPT systems while Holt and Smith examined their diagnosability

and diagnosis [Maheshwari and Hakimi 1976; Holt and Smith 1981].

4.3 Comparison Testing

Typically, a test consists of performing an action and comparing the result of that action

with that which is expected. If the tesult disagrees with the expected answer, then an
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error has occurred. The problem with this approach is that typical electronic units are too
complex to have such a test be able to determine unambiguously in a reasonable amount of
time whether they are faulty or fault free.

A practical method of detecting faulty components is by comparison. Determination of
the faulty or fault-free status of elements in the system is made by assigning a task to a
pair of elements and comparing the results. When comparing results from two PEs one can
detect, but not diagnose, a failure. When comparing results from more than two PEs, one
can diagnose up to [n/2] — 1 processors using NMR techniques. If the failure rate of two
PEs is low, then it is not expected that they will fail at the same time, nor is it necessarily
expected that they will fail in the same manner. Therefore, two similar PEs performing
identical, deterministic tasks should produce identical results unless one, or even both, of
them have failed. The comparison method is not foolproof, though. An intermittently faulty
PE could produce correct results for certain test tasks, or two faulty PEs could report the
same incorrect results. Nonetheless, the comparison technique promises high fault coverage
with detection in a short amount of time [Rangarajan et al. 1990].

Whereas the tests of the PMC model are performed in rounds between system tasks,
comparison tests can occur in conjunction with productive tasks. A fault is detected when
it happens and allows maximum fault containment much in the same way as Byzantine
agreement algorithms which also use a form of comparison. The comparison of results
can be implemented by creating and comparing signatures, such as checksums or cyclic
redundancy codes, of the results.

Malek introduced the comparison approach in the context of system diagnosis and pre-

sented a method to assign comparison edges in the system graph [Malek 1980]. A syndrome
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of comparison results is created and diagnosed by a centralized supervisor. Chwa and
Hakimi proposed a similar comparison approach independently [Chwa and Hakimi 1981a].
Maeng and Malek broached the problem of decentralizing the arbitration of comparisons
by considering the use of a third processor to compare the results of two other processors
[Maeng and Malek 1981]. The Maeng/Malek fault model is given in Table 1 where a 0
means the processors agreed, a 1 implies that they did not, and an X is an unpredictable

result.

Table 1: Fault Model for Maeng/Malek Comparisons.

Comparator | Compared 1 | Compared 2 | Result
fault free fault free fault free 0
fault free fault free faulty 1
fault free faulty faunlt free 1
faunlt free faulty faunlty 1

faulty fault free fault free X
faulty fault free faulty X
faulty faulty fault free X
faulty faulty faulty X

As an example, consider the four processor system of Fig. 5 in which A is faulty. (Note
that, in this case, at most one PE can be faulty for diagnosis without repair.) Each PE is
performing the same task for comparison purposes. When a processor completes its copy

of the task, the result is broadcast to the other processors. After all tasks are completed,
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each processor will have four values including its own. For example, say that each has
received values 10,24,24,24 from A, B,C, and D respectively. The resulting syndrome,
which each fault-free PE can construct, is shown in Fig. 5. The next step is to analyze this
syndrome, for example, using the O(n?*?) algorithm of Dahbura and Masson described in
Section 2.1 [Dahbura and Masson 1984a]. A graph G is created with the same processors
as in the system. Assuming A is fault free implies that B,C,and D are faulty, so the edges
(A, B),(A,C),and (4, D) are added. Assuming B,C, and D are faulty adds no new edges
to the system. Then, the minimum vertex cover set of G is A since all edges have one end

at A. Therefore, A is the faulty processor.

Figure 5: An Example of Comparison Testing and Diagnosis.

Finding the complete and correct set of faulty processors using the comparison model
is NP-complete, but if the system is t-diagnosable, the problem is solvable in polynomial
time [Sengupta and Dahbura 1989]. Sengupta and Dahbura characterized the comparison

assignments of the system and gave an algorithm using the Maeng/Malek model.

4.4 'Time Domain Testing

Cristian models processor faults in the time domain, Fig. 4, and processors are tested with

respect to time [Cristian 1991a]. If a PE fails to complete a task, or send or receive a
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message within some time frame, then an error has occurred. Timing faults can be detected
with simple tests using timestamps and time-outs in the case of a global set of synchronized
clocks. Moreover, this time-domain fault-model is orthogonal to the data domain techniques
previously described.

Most early system diagnosis research did not concentrate on the limitations of the test.
Instead, it was assumed that a test was available with whatever requirements were needed.
In the next section, though, much work is presented that weakens the classic assumption of
100% coverage. The explicit details of the test are ignored, yet it is understood that any

implementation of the test will be imperfect.

5 SPECIFYING THE CONSENSUS PROBLEM

Research on the consensus problem has focused on specification. That is, the assumptions
associated with the problem have been strengthened or weakened dependent on the specific
system which is to support the consensus protocol. This section looks at extensions given
to the basic system diagnosis model, the PMC model, and to the Byzantine agreement

algorithm given by Pease et al..

5.1 Extensions to the PMC Model

The original system diagnosis model and diagnosis goals set forth by Preparata et al. made
a number of stringent demands on the underlying hardware [Preparata et al. 1967]. As
a result, system level diagnosis has had a limited impact on fault-tolerant system design.
Dahbura gave several, simplifying assumptions that have guided much research in the area

and which need to be examined to change this situation [Dahbura 1988].
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Test scheduling. Often, diagnosis is considered the only task of the system, and the
effect of operating in conjunction with other tasks is ignored. But in fact, it is desirable
that test scheduling minimally impact the throughput of the system without diagnosis.
One way of doing this is to use the spare capacity, or temporarily unused resources, of the
multiprocessor system to perform testing and analysis. For moderately loaded systems, a
sufficient percentage of jobs may be duplicated in the spare capacity to provide a basis
for fault detection and diagnosis with virtually no degradation to system response time
[Dahbura et al. 1989]. Roving diagnosis introduced by Nair et al. uses a time-varying
subset of PEs to perform the system tasks while the other PEs conduct testing and diagnosis
[Friedman and Simoncini 1980]. Concurrent and adaptive diagnosis techniques strive to
reduce the effect of testing and analysis on system performance.

Worst-case approach to diagnosis. Typically, fault diagnosis algorithms are designed to
identify the fault set under all circumstances including such improbable cases as faulty PEs
colluding to diagnose fault-free PEs as faulty and vice versa. More efficient algorithms can
be developed if these situations are ignored, or if the straightforward solution is a priority
of the strategy. The effect of this was discussed in Section 2.1 and studied in [Dahbura et
al. 1985a).

Hardware faults. System diagnosis has been intended primarily for treating hardware
faults as opposed to design flaws in software or operator errors. The redundancy manage-
ment aspects of system diagnosis are surely applicable, but the haréware/ software analogy
has not been carried through fully. For example, the implications of testing a piece of soft-
ware or user inputs need examining. It is uncertain whether hardware or software faults will

predominate future multiprocessor systems, and it is uncertain what role system diagnosis
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will play in the latter situation.

Ceniralized diagnosis. Often it has been assumed that an ultrareliable, supervising ar-
biter is available to analyze test syndromes, and disseminate diagnosis information. The
implementation of such a device would place a bottleneck on performance, reduce availabil-
ity, and impair expandability. For these reasons, distributed diagnosis has been introduced
and studied [Kuhl and Reddy 1980; Kuhl and Reddy 1981; Hosseini et al. 1985].

The relaxation of these simplifying assumptions is the focus of the next several sections.
Together they represent the current status of system-level diagnosis and, in many ways, a

new approach to fault-tolerant system design.

5.1.1 Set Diagnosis

Friedman proposed that replacing a set of processors, including some that could be fault
free, might be acceptable when single processor diagnosability is not practical. He called
a system 1/s-diagnosable if the set of at most ¢ faulty PEs are identifiable to within a set
of at most s PEs [Friedman 1975]. Karunanithi and Friedman looked at the effect of 1/s-
diagnosability on the diagnosis of certain network topologies [Karunanithi and Friedman
1977).

A special and important case of set diagnosis is ¢ /t1-diagnosis that was characterized
by Chwa and Hakimi [Chwa and Hakimi 1981b]. A system might be t-diagnosable and
11 /1;-diagnosable with ¢ < #;. If f < ¢, where f is the number of faults, then the fault set
is obviously identifiable. If ¢ < f < #; then Yang et al. showed that all the faulty PEs
except at most one could be correctly identified and isolated in a set of cardinality less

than or equal to 1;, which will contain, at most, one fault-free element [Yang et al. 1986].
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In addition, the status of each PE in the set can be determined to be either “faulty” or
“ynknown”. The importance of this class of set diagnosis was shown by Kavianpour and
Friedman who noted that if n 3> s, then only n[(s + 1)/2] tests are needed to construct a
1/s-diagnosable system [Kavianpour and Friedman 1978]. This is almost half the number
of tests required by a t-diagnosable system [Hakimi and Amin 1974].

Using conventional testing techniques, Yang et al. generalized the O(n%®) algorithm
of Dahbura and Masson to achieve the diagnosis described for t, /t1-diagnosable systems
[Dahbura and Masson 1984a; Yang et al. 1986]. Using the comparison approach, Yang and
Masson generalized the backtracking algorithm of Chwa and Hakimi, similar to the KTA
method given in Section 2.1, for O(|E|) diagnosis where |E| is the number of tests that were
given above [Chwa and Hakimi 1981a ; Yang and Masson 1986].

Kavianpour and Friedman, and later Chwa and Hakimi examined the D(n, g, X ) class of
systems which are 13 /;-diagnosable where ¢; may be much greater that {o [Kavianpour and
Friedman 1978; Chwa and Hakimi 1981b]. A system is a D(n, o, X ) system if for a positive
integer fg, to < |(n—1)/2], and a set of integers X, 1 < 21 <22 <+ < Ty < (n-1)/2],
an edge exists between PEs ¢ and j if and only if (i - 7) (modulo n) € X. Maxemchuk and
Dahbura showed the optimal design of such systems reach (2io— 1)/(2to — 1)-diagnosability
[Maxemchuk and Dahbura 1986].

Another special case of t/s-diagnosability is ¢/(n — 1)-diagnosability which guarantees
the location of one fault-free processor. This processor may be used in reliably testing other
PEs as in adaptive testing (see Section 5.1.2) or it may be used to select the correct result
from n PEs performing the same task. Xu examined t/(n — 1)-diagnosability and its use in

the diagnosis and repair of constant degree systems as well as software fault tolerance [Xu
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1991]. Optimal configurations for these systems were presented.

5.1.2 Adaptive Testing

Diagnosis is performed with or without repair. Without repair, all testing occurs in a single
round after which all diagnosis decisions must be made. With repair, though, a number of
rounds will pass before diagnosis is completed. Nakajima saw that tests could be adapted
as information was uncovered to optimize the speed and accuracy of the diagnostic process
[Nakajima 1981]. Whereas the testing assignment of a system is typically determined before
diagnosis, Nakajima proposed to determine this assignment dynamically. Blecher showed
that, in the worst case, at least n +1 — 1 tests are required for n > 3 [Blecher 1983]. An
adaptive testing algorithm given by Hakimi and Nakajima first uses testing with repair to
locate a fault-free processor. This processor then reliably tests {(given that the processor
does not subsequently fail) all other PEs in the system for efficient diagnosis [Hakimi and
Nakajima 1984]. The parallelization of this basic algorithm, via broadcast operations, can

diagnose a system in O(log|, ;| t) rounds with O(n) tests [Schmeichel et al. 1988].

5.1.3 Intermittent Faulis

Mallela and Masson were the first to included intermittent faults in their system model
[Mallela and Masson 1978]. This fault class adds complexity to the PMC model because
it can no longer be assumed that a fault-free tester will accurately judge the condition of
the PE that it is testing. So while all PEs that give faulty outputs are indeed faulty, other
defective PEs might go undiagnosed, thus leaving the diagnosis incomplete. The solution is

repeated testing until a test overlaps the occurrence of an intermittent fault. After a test
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is failed, though, it no longer needs to be repeated as the fault has been uncovered. After
every round of testing, a subsyndrome is produced. This subsyndrome is a subset of the
actual syndrome which is the testing result that would be produced if every faulty PE were
permanently faulty. Thus, a syndrome is pf-compatible or permanent-fault compatible as it
could be produced by a system suffering only from permanent faults. A problem arises when
a subsyndrome not equal to the system syndrome is also pf-compatible because its analysis
could lead to an incorrect diagnosis of the system. Mallela and Masson characterized ¢;-
diagnosable systems, where t; is the maximum number of intermittently faulty PEs. These
systems will never produce a pf-compatible subsyndrome leading to an incorrect diagnosis.
Thus, diagnosis is correct whenever a subsyndrome is pf-compatible, although it may not be
complete, i.e., 2 faulty PE might go undiagnosed, but a fault-free PE will never be labeled
faulty. They found that these systems have significantly more restrictive requirements than
systems that are only t-diagnosable for permanent faults.

The t;-diagnosability measure fails to account for PEs that exhibit hard-failure seman-
tics, and that omission could hamper analysis. This hybrid fault situation is modeled by a
iy /thi-diagnosable system in which at most 2, PEs are faulty and of these at most {;; are
intermittently faulty [Mallela and Masson 1980]. Hybrid fault systems were detailed further
as 1y /ipi/ini-diagnosable if all the permanent faults in the corresponding t5 /15;-diagnosable
system could be located [Yang and Masson 1985b]. Unfortunately, a system of this type
requires a large number of testing assignments, but a procedure has been given for designing
th /thi/tni-diagnosable systems [Kohda and Abiru 1988]. ¢4 /thi/7-diagnosability was intro-
duced as the masier diagnosability measure, so-called because it includes all the previous

hybrid fault diagnosability measures as special cases [Yang and Masson 1987]. Two types
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of intermittent failures are identified: almosi-hard failures that occur with great enough
frequency that a few tests will uncover them, and very-sofi failures that are elusive to de-
tection. Then t, and i; are the same values as previously defined, and 7 is the bound
on very-soft failures. The authors have characterized all the systems described by these
diagnosability measures.

The set of all test syndromes produced by a system that suffers from intermittent faults is
a superset of all test syndromes possible in the same system suffering only from permanent
faults. That is, some syndromes will not be pf-compatible. The implication of this is
that previous diagnosis algorithms are no longer directly applicable. Dahbura and Masson
introduced the idea of greedy diagnosis to identify faulty processors from a pf-incompatible
syndrome [Dahbura and Masson 1983a]. They also applied this approach to comparison-
based systems in [Dahbura and Masson 19835}. The algorithm requires that a bound be
put on the number of soft-failing PEs, and that the number of simultaneously failing PEs
also be bounded. Unfortunately, this approach does not lead to a polynomial-time diagnosis
algorithm in the most general case.

Yang and Masson reported an algorithm that correctly identifies all faulty PEs if the
syndrome is pf-compatible, and at least one faulty PE in many cases where the comparison
syndrome is not pf-compatible with O(|E|) efficiency (| E| is the number of tests required)

[Yang and Masson 1985a].

5.1.4 Probabilistic Diagnosis

The processing elements of a system are not necessarily homogeneous nor operating under

similar conditions. Therefore, the probability that one PE will fail in a given amount of time
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is not equal to the same failure probability of another PE. Considering this in the fault model
can make diagnosis more practical and more efficient. Techniques which assign probabilities
to the correctness of a test or to the reliability of a processing element fall into the area
of probabilistic diagnosis. It should be noted that an intermittent fault could be modeled
by a test with imperfect detection characteristics, or by assigning a reliability to the faulty
PE that corresponds to the probability that a test will detect the intermittently faulty PE.
Thus, probabilistic diagnosis is well suited for systems that experience intermittent faults.

Maheshwari and Hakimi assigned a reliability to each PE in the network [Maheshwari
and Hakimi 1976]. The reliability is simply the probability of a fault occurring in a given
PE. They defined a probabilistically ¢-diagnosable (p-t-diagnosable) system as having, for
every allowable syndrome, a unique, consistent, fault set whose probability of occurrence
is greater than p. They gave necessary and sufficient conditions for these systems, and
Dahbura generalized the O(n?®) diagnosis algorithm, see Section 2.1, for use with p-i-
diagnosable networks [Dahbura and Masson 1984a; Dahbura 1986].

Blount took a different approach to probabilistic diagnosis by assigning a probability of
correctness to each test rather than to the PEs themselves [Blount 1977]. Unlike Preparata
et al. who assumed that tests had perfect coverage, Blount assigned a probability to each
test, based on the conditions of the tester and the tested PEs, to specify the coverage.
Procedures were given for determining the probability of correct diagnosis for a particular
fault set, and for the entire system.

The general problem is to diagnose a system that suffers from intermittent failure and
that has tests with imperfect coverage. Dahbura, Sabnani and King were the first to examine

this problem using probabilistic diagnosis under the comparison approach [Dahbura ef al.
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1987]. They gave a simple diagnosis algorithm that diagnoses the system correctly with an
extremely high probability with O(n?) operations. This system model avoided many of the
pitfalls introduced by Preparata et al. including the need for complete tests, the permanent
nature of faults, off-line testing, and an upper bound on the number of simultaneously faulty
PEs.

Blough, Sullivan and Masson reexamined the problem based on the more conventional
approach of one PE testing another [Blough et al. 1988]. They assigned a reliability to the
processing elements, and a coverage probability to the tests. It was shown that performing
correct diagnosis with a probability approaching one is impossible with fewer than O(nlogn)
tests, where n is the number of PEs in the system. Blough et al. gave an O(|E]) solution
where | E| is the number of tests and is at least w(n)nlogn where w(n) approaches infinity
(arbitrarily slowly) as n approaches infinity.

Blough et al. continued their work to reduce the number of required tests which in turn
reduces the communication overhead of diagnosis and the need for physical communication
paths. It was shown that probabilistic diagnosis is almost surely correct in a system sparsely

and randomly connected by its test assignments [Blough et al. 1989; Scheinerman 1987].

5.1.5 Distributed Diagnosis

One drawback of the PMC model is that a centralized arbiter must gather and analyze the
global test syndrome to diagnose the system. This dedicated processing unit or specialized
hardware must not only be ultrareliable, but it must also have guaranteed communica-
tion links to all the members of the network. This function is difficult and expensive to

implement in 2 truly distributed system, and is a weak spot in a fault-tolerant design.

34



Therefore, methods for distributed diagnosis have been developed in which every processor
decides independently what is the fault-free population. Thus, as long as the bounds for
diagnosability are met, the hardware to perform the diagnosis is available.

Of course, one problem with removing the centralized supervisor is relaying the diagnosis
information to the system user. If the user is unable to test a processor, then it is a problem
to decide from which PE to take the system diagnosis information as any of them might
be faulty. Kreutzer and Hakimi discussed this quandary in [Kreutzer and Hakimi 1988].
Basically, they sought the minimal connections required between a centralized observer, that
is, the user, and a i-diagnosable system in which every fault-free processor has the correct
diagnosis of the system. They found that if authenticated messages, or message passing,
were available, then only ¢ + 1 PEs needed to be queried to learn the correct diagnosis.
Without authenticated messages, 2t + 1 PEs needed to be probed.

Smith gave simple system diagnosis algorithms that do not use a centralized observer
and can be applied regardless of the system structure, but he did not describe the manner
in which the test data would be distributed nor did he couch his discussion in a distributed
system framework [Smith 1979].

Simoncini et al. saw the problem as distributing the centralized analysis of the syndrome
[Ciompi et al. 1981]. In their MuTeam approach, testing was carried out as required for
i-diagnosability, but once completed, results were not sent to a centralized observer, but
rather were disseminated using a consensus protocol similar to Byzantine agreement. Then,
each PE could calculate the system diagnosis from these results. The problem with this
approach is that, while it assures that all processors have a consistent view of the diagnosis of

the system, the syndrome dissemination is expensive and halts useful processing. Therefore,
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techniques resulting in dynamic diagnosis have been explored.

Kuhl and Reddy introduced distributed diagnosis in [Kuhl and Reddy 1980]. A processor
in a distributed environment has reliable information about only those PEs in its neigh-
borhood, i.e., those that it can communicate with via direct communication paths. Data
about the rest of the system is indirectly available from PEs outside of the neighborhood.
Distributed fault tolerance is the notion that each fault-free PE should be able to indepen-
dently and correctly diagnose the entire system, then use this knowledge to refrain from
dealing with any elements deemed to be faulty, and to initiate fault recovery techniques
[Kim and Yang 1986]. The authors assumed that fault-free PEs could accurately test any
other PE, and that faulty PEs conducted tests with unreliable results.

Kuh!l and Reddy, joined later by Hosseini, presented a series of SELF algorithms in
[Kuhl and Reddy 1980; Kuhl and Reddy 1981; Hosseini et al. 1985]. SELF2, which meets
distributed fault tolerance as described above, is outlined here. It is assumed that faults
are permanent. Each processor F; calculates a fault vector F; whose jt* element is a 0(1)
if P; concludes that P; is fault free (faulty). A processor P tests each of its neighbors and
completes part of the fault vector. If a neighbor is faulty then this condition is broadcast to
all the fault-free PEs that themselves test P (obviously P has a direct connection to each
of these PEs). Whenever P receives a diagnostic message about some faulty processor @
that was previously considered fault free, it first checks that it believes the last relay PE of
the message is fault free. P tests this sender again and if it passes, the information about
Q is saved in the fault vector and the message is forwarded to all those fault-free PEs that
test P. Otherwise, the diagnostic message is ignored, the sender is marked as faulty, and

this information is sent to the testers of P [Kuhl and Reddy 1980].

36



Bagchi and Hakimi gave an optimal algorithm for the system model of Kuhl and Reddy
that assumes no more than ¢ faults and fault-free communication links [Bagchi and Hakimi
1991]. Their algorithm requires at most n—1+p(i+ 1) diagnosis operations and 3nlog p +
O(n + pt) messages from fault-free PEs where p is the number of fault-free PEs.

In SELF3, Kuhl and Reddy extended the SELF2 algorithm to cover message corrup-
tions caused by faults in the communication paths or by relaying a message through a
faulty processor. They also weakened the necessary condition that the network have a con-
nectivity of ¢ to be t-self-diagnosable [Kuhl and Reddy 1981; Deo 1974]. In the Modified
Algorithm SELF3, Hosseini et al. altered SELF3 such that fault-free PEs are never tem-
porarily misdiagnosed as faulty [Hosseini et al. 1985]. See also the NEW _SELF algorithm
described in [Hosseini ef al. 1984].

The work of Hosseini et al. illustrates the trend towards more reliable accounting of the
nuances of an actual system. Liaw et al. modeled a heterogeneous distributed system with
a graph theoretical model where processors are marked as testing or non-testing units [Liaw
et al. 1982]. A testing unit is a processing element with the capability to test at least one
other processor. A non-testing unit does not test any objects and relies on other PEs to
give it diagnosis information. Communication links are categorized and may handle general
communications, testing communications, or both. Distributed diagnosis procedures are
given to specify between failed PEs and links. Hosseini et al. used these ideas in their
algorithm for non-homogeneous distributed systems [Hosseini et al. 1985]. The problem of
link failures also may be examined as a routing problem. A discussion of this may be found
in [Bertsekas and Gallager 1987].

Yang and Masson considered the distributed diagnosis of a #;-diagnosable system [Yang
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and Masson 1988]. The soft-fail model they employed covers intermittent faults in both the
PEs and links as long as the total number of faults does not exceed t;. Because a faulty PE
or faulty communication link does not necessarily produce errors at any particular time it
is being exercised, the system may act in a very capricious way, and in a Byzantine manner.
Therefore, the diagnosis is not and cannot be guaranteed complete. A set of maliciously
faulty processors could postpone diagnosis indefinitely.

Fussell and Rangarajan used probabilistic diagnosis in a distributed environment to
assure, with high probability, correct diagnosis in a system with arbitrary connectivity
[Rangarajan and Fussell 1988; Fussell and Rangarajan 1989]. This result is similar to that
of Blough et al. who showed that correct diagnosis could be attained in systems with
constant connectivity [Blough et al. 1989]. (Berman and Pelc used the probabilistic model
of Blough et al. in a distributed diagnosis scheme [Berman and Pelc 1990].) Using their
diagnosis scheme, which requires only two testers per processor, Fussell and Rangarajan
showed that reliable diagnosis was available for such minimal networks as rings.

Fussell and Rangarajan accomplished the reliable diagnosis of sparsely connected net-
works by comparing processor results across several tasks [Fussell and Rangarajan 1989].
They exploited the fact that a failed processor might not cause an error in every task it
completes, and therefore, its results may still be used to test other processors. Since many
tests are performed on each PE, many syndromes are created, none of which must match
any of the other syndromes. This multiple syndrome diagnosis will be correct with a very
high probability if the number of tests, not unique testing processors, of each processor
grows as logn. Therefore, their technique is applicable to arbitrarily connected networks.

A more efficient algorithm was given by Lee and Shin [Lee and Shin 1990]. Similar work
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based on directed testing and diagnosis with repair has given equally promising results for
low, constant-degree systems [Blough and Pelc 1990].

Realizing that the testing scheme should not be limited by the PE with the lowest
connectivity in the system, Rangarajan and Fussell adapted their algorithm to tailor itself
to any system topology [Rangarajan and Fussell 1991]. Previously, the number of testers
was set at two for each PE, but in fact the number of testers is variable. The method
they gave requires only that the product of the number of tests conducted on each processor
by one of its testers X the number of such testers grows as O(logn). Thus, the diagnosis
algorithm may be adjusted at each PE as desired and limited only by the network topology

at that PE.

5.1.6 Processor Membership

ristian examined a problem similar to distributed diagnosis that he called processor mem-
bership [Cristian 1991b]. A processor is in the membership, or fault free, if it can maintain
a timely schedule of “present” messages. The problem is to keep all the fault-free PEs in-
formed of the membership regardless of whether PEs are joining or leaving the system. The
solutions were given as an overlay of a synchronous system with atomic broadcasts which
were described in [Cristian et al. 1986]. The atomic broadcast assures that all or none of the
fault-free processors will Teceive the message (atomicity), that every receiver gets messages
in the order that they are sent {order), and that the broadcast is completed in some known
time bound A (fermination). With this mechanism, Cristian presented three protocols for
processor membership: the periodic broadcast protocol, the atiendance list protocol, and

the neighbor surveillance protocol [Cristian 1991b]. These protocols handle the cases of
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faulty processors leaving the membership and fault-free or repaired processors joining the
membership.

Cristian considered processor faults only in the time domain and at the message passing
level. Data domain faults may be corrected or at least detected at a lower level using coding
techniques. To detect timing faults, it is assumed that each processing element has a local
clock that is synchronized to within a constant of every other local clock. A processor is
faulty only if it fails to send an expected message during an expected time.

The periodic broadcast protocol requires that every processor broadcast a “present”
message with some predetermined and globally known frequency. A membership begins
when a processor broadcasts a “new-group” message at time 7' that will be received by all
the fault-free PEs within T + A by the nature of the atomic broadcast. In response, each
good processor broadcasts a “present” message. Therefore, at T + 24, every fault-free PE
knows the membership of the system. This implies that the delay to join the membership is
9A. New rounds of “present” messages are scheduled to occur at T+2A+kI1, k= 1,2,3,...
where II is some time interval based on the reliability of the system and the frequency of
testing that is desired. If a PE falls out of the membership, then this will be detected when
it fails to send a “present” message. The worst case is if this PE just initiated a “new-group”
message, then at most A + II time units will pass before it is detected [Cristian 1991b].

Consider the system in Fig. 6 in which A has become faulty. Assume that the ring is
a broadcast bus and that & is the broadcast delay, i.e., § = A. Initially, A was not faulty,
and all PEs were in the membership. Every II time units, each processor would broadcast
its “present” message on the bus, and thus the membership was maintained. A fails. The

failure of A will be detected at § after the next scheduled round of broadcasts, and at the
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same time, all fault-free processors will have the new membership. Eventually, a repaired
A may return by broadcasting a “new-group” message.

An obvious problem with the periodic broadcast protocol is that it fills the communi-
cation network with “present” signals at every testing round. This congestion is reduced
for point-to-point networks by the attendance list and neighbor surveillance protocols at
the expense of the system response time to faulty PEs leaving the membership. Thus, a
highly volatile membership could be inappropriate for these techniques. In the attendance
list protocol, one PE is assigned the task of periodically initiating a roll call that circulates
around a logical cycle through the membership. Each PE must timestamp the attendance
list and forward it. If the completed list does not return to the originator within a specified
time frame then an error has occurred and a “new-group” request is made. The result
is that the message overhead is decreased compared with the periodic broadcast protocol
while maintaining the maximum time to join the membership and increasing the maximum
time to detect a departure. The maximum departure detection time is proportional to the

time it takes the attendance list to circulate through the membership [Cristian 1991b].

Figure 6: A Processor Membership Example.

Again consider Fig. 6, but suppose that the network uses point-to-point communica-

41



tion with & being the delay on any direct link. Thus, A is [n/ 216 making a broadcast a
significantly more costly operation than in the previous example. To overcome this cost,
the attendance list protocol is used. Initially, A is fault free, and an election algorithm has
chosen A to periodically initiate the roll call. Every Il time units, n messages are sent,
taking né time, as the attendance list is passed through the membership. A fails. B does
not receive the list at the next scheduled round, and so broadcasts a “new-group” message
which results in the formation of the new membership.

The neighbor surveillance protocol works in a manner similar to the attendance list
protocol. A logical cycle of the processors in the membership is specified and given a
direction. Periodically, each processor requests a neighbor confirmation of its predecessor.
If the confirmation is not received during the correct time frame then a failure has occurred
and a “new-group” request is initiated to establish the new membership. In the case of
a single member departure, the worst case detection delay is better than the attendance
list protocol since all neighbor confirmation messages may occur in parallel. The worst
case detection delay is worse, though, in the case of multiple member departures [Cristian
1991b].

The processor membership problem is equivalent to the system diagnosis problem in
that both strive to determine which processors are faulty and which are not. A test in
the processor membership model is passed if a PE can transmit and forward messages in a
timely manner. Therefore, these protocols will not withstand the malicious adversaries of
the Byzantine Generals Problem, but they are adaptable to the work of Kuhl and Reddy.
Recall that Kuhl and Reddy suggested processing elements should be equipped with seli-

diagnosis mechanisms that allow a test to be as simple as querying another PE for its status

42



[Kuhl and Reddy 1980]. Assume these checkers were available on a system using processor
membership protocols. If a member has determined that it is faulty then it should refrain
from broadcasting any “present” messages.

Processor membership does have important differences with distributed diagnosis. First,
the protocols are closely related to time which means that they will detect timing failures
and that they are well suited for real-time deadlines. Second, Cristian recognized the high
cost of system overhead. He showed how detection time could be traded off for lower cost
protocols. Finally, processor membership leads to a consistent view of the system, that is,
every fault-free PE shares the same view of the system status with every other fault-free

PE at all times. For certain applications, this might be a necessity.

5.2 Research on the Byzantine Generals Problem

The original Byzantine agreement algorithm presented by Pease et al. was expensive in
both its communication and system requirements [Pease et al. 1980]. Therefore, two areas
of work have emerged: efficient Byzantine agreement algorithms, and necessary system

requirements for Byzantine agreement. In this section, these areas will be examined.

5.2.1 Efficient Byzantine Agreement

The algorithm given by Pease et al. requires n = 3t + 1 processors, ¢ + 1 rounds and
messages of the size O(n't?), as the amount of information exchanged between any two
processors increases exponentially [Pease et al. 1980]. For Byzantine agreement, there are
three independent resources: processors, rounds, and message size [Coan 1988]. An ideal,

deterministic, unauthenticated Byzantine agreement procedure would use 3¢+ 1 processors,
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{+1 rounds and messages of size one, and though it is possible to create procedures that are
optimal in some of these respects, no algorithm optimized in all three categories has been
found. For example, Coan gave an algorithm that uses O(i'®) processors, t + 1 rounds of
communication, and messages of size O(tlog n) while Toueg et al. presented a scheme with
3t + 1 processors, 2t + 1 rounds, and message sizes polynomial in the number of processors
[Coan 1988; Toueg et al. 1987].

Bar-Noy and Dolev asked if there even exists an algorithm that optimizes all three
parameters [Bar-Noy and Dolev 1991]. They suggested the following problem as a reduction
of this question: Is there an algorithm with one-bit messages that terminates after ¢ 4+ 1
rounds with n = O(2)? An algorithm using (2t+1)(t+1) processors, t-+1 rounds, and one-bit
messages, and which did not need to know where messages originated, was presented. One
of the most exciting aspects of the algorithm is the ease with which it could be implemented
in hardware. This is because: 1) messages contain only one bit of information; 2) rounds
in which processors receive or send messages rely only upon the clock and are not data
dependent; and 3) processors need only a simple piece of circuitry to calculate the majority
result of a number of binary values to determine the message they should send.

Randomized Byzantine agreement. Randomized Byzantine agreement algorithms have
been proposed for their lower, average round and message requirements when compared
to deterministic algorithms. In fact, the system no longer must be synchronous, and the
number of rounds may be less than ¢ + 1. The idea is that at any particular round, there is
a probability that the faulty PEs can thwart the consensus, but there is also a probability
that Byzantine agreement will be reached. By randomizing the decision, it can be assured

that different situations will constantly arise and that the faulty PEs will eventually fail
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to break the consensus. Of course, the probability of this not happening in some expected
amount of time must be considered when calculating the reliability of the system.

The first randomized Byzantine agreement algorithms were given separately by Rabin
and Ben-Or for asynchronous systems [Rabin 1983; Ben-Or 1983].

Chor and Coan followed with an efficient algorithm for synchronous systems that takes
an expected O(t/logn) rounds and O(n*t/logn) messages [Chor and Coan 1985]. The
algorithm is completely distributed, and results in all the fault-free processors agreeing on a
single binary value. Initially, each processor receives some input that it considers the correct
value. This value is broadcast to all the other PEs. Upon receipt of these messages, each
processor may change what it considers to be the correct value. If at least n — { messages,
where n is the number of processors and ¢ is the maximum number of those which may be
faulty, have the same value, then this value is considered correct, otherwise, the processor
favors neither value as correct. A group of processors performs a random coin toss as
described later. Once again, each processor broadcasts its favored value or an “undecided”
message. A processor then counts the more popular value, other than “undecided,” that
it has received. Call this value v and let k be the count of messages with this value. If
k > n—t then the processor decides v is correct and exits the algorithm. Hn—-t>k2>t+1
then v becomes the favored value and the algorithm repeats itself. If £ +1 > k then the
processor assigns the value of the coin toss to its favored value, and the algorithm repeats.

The processors are divided into many disjoint groups of size g to perform the coin toss.
At any round, one group will perform the toss. Fach member tosses a coin and broadcasts
the results. Thus, the toss of the group is the majority of the individual tosses. If more than

half the group is faulty, then the toss will be to the advantage of the faulty PEs. Otherwise,



there is a sufficiently large probability that all the fault-free members of the group will
produce the same toss overriding the faulty members. In any case, there are at most 2¢/g
disjoint groups with a majority of faulty PEs, so after at most that many tosses, there will
be a toss whose result is to the disadvantage of the faulty processors with probability 1/2
[Chor and Coan 1985; Shamir 1979].

Chor and Coan proved that a configuration of groups could be formed such that the
coin tosses would be sufficiently random to foil any adversarial scheme. Moreover, they
showed that at any particular round, there is a value of the random coin that will cause the
algorithm to terminate, and that this value is unknown till the end of the round. Since the
adversary model (see Section 3.1) does not allow the prediction of random variables, the
algorithm will terminate with a probability arbitrarily close to one [Chor and Coan 1985].

Bracha proved that randomized algorithms for asynchronous systems require the number
of PEs to be greater than or equal to 3t+1 [Bracha 1987a). For synchronous systems, though,
an algorithm requiring n > 2t + 1 and only O(logn) rounds was given [Bracha 1987b].

Dispersed Joined Communications. A fundamental problem of fault-tolerant, multi-
processor systems is the acceptance of data from an external source. If the broadcast
mechanism for this source were suffering from Byzantine faults, then each processor could
receive a unique input value, and calculate a unique result. In this case, a fault-tolerant
system would fail, despite the fact that none of its PEs had failed, because no correct result
could be determined. This problem is known as the Input Problem [Krol 1991].

One solution to the Input Problem is to use Byzantine agreement after the set of inputs
have arrived. This will make the system view of the input consistent. Krol introduced a

set of algorithms called Dispersed Joined Communication (DJ C) algorithms which solve the
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Input Problem more efficiently, and in fact, which include the algorithm given by Pease et
al. as a special case [Krol 1991; Pease et al. 1980].

Classes A(1,k,s,D,N) of DJC algorithms are defined where ¢ is the maximum number
of faulty units, k£ is the number of rounds required, s is the source processor, IJ is the
set of destination processors, and N is the set of all processors in a fully interconnected,
synchronous system. The behavioral properties of the DJC algorithms are: 1) If the source
and the destination are fault free, then the message received by the destination is equal,
after deciphering, to the message held by the source; and 2) if two destination PEs hold
different messages after the termination of the k-round DJC algorithm, then a message has
traveled along a path of & distinct PEs all of which, including the source, behave maliciously.
Krol proved thatif ¢ > 1,k > 2,s €N, DCN, and |D| > k + 1 then the class of algorithms
A(t,k,s,D,N) is non-empty if and only if [N| > 2¢ + k. He went on to give recursive
procedures for designing these algorithms [Krol 1991].

Krol showed that the interactive consistency properties, which hold for all Byzantine
agreement algorithms, hold for the class of algorithms A(t,k,s,D,N) with ¢t > 1, k =
t + 1, and D=N. The flexibility of the DJC algorithms, though, can make them more
efficient. Krol noted that the PEs performing Byzantine agreement send, to the other PEs,
pieces of an error-correcting, coded message which are combined and deciphered by each
fault-free PE. Namely, the code is a simple, repetition code that only requires a majority
vote to decipher. That is, a processor will receive a series of values, say 1,1,1,0, and
it will take a majority vote of these values to determine the actual value, in this case 1.
The repetition code is not the most efficient error-correcting code, though, and the DJC

algorithms take advantage of this. The DJC algorithms are configurable to either increase
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coding, which reduces the number of messages but increases the minimal message size,
or increase voting, i.e., decrease coding, which reduces the message size but increases the
number of messages. Krol showed that for “practical” systems, ie., t < 3, these DIC
algorithms could be configured to outperform deterministic, synchronous, authenticated

Byzantine agreement algorithms [Krol 1991].

5.2.2 System Requirements

Fischer et al. gave the very important result that distributed, deterministic (see the previous
section on randomized algorithms) consensus was impossible in an asynchronous systern
with just one faulty processor [Fischer et al. 1985]. If no assumptions are made about
the upper bound on how long a message may be in transit A, nor about the upper bound
on the relative rates of processors ®, then a single process running the consensus protocol
could simply halt and delay the procedure indefinitely. In fact, Dolev et al. showed that
if either A or ® were unbounded, then consensus is impossible in the case of one fault
[Dolev et al. 1987]. Dwork et al explored the effects of partial synchrony, bounding A
and ® individually, on Byzantine agreement and gave algorithms that operate correctly on
partially synchronous systems [Dwork et al. 1988]. Earlier work bounding A was done by
Attiya [Attiya et al. 1984].

Asynchronous agreement. An interesting contrast to the need for synchronization was
given by Dolev et al. who studied a protocol designed to reach a consensus on a real value
rather than a binary value [Dolev et al. 1986]. The rules for agreement are that the final
values obtained by each correct processor should be in the range of all the initial values, and

that all values should be in agreement to within &. The uses of such an algorithm include
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clock synchronization and sensor stabilization. Using successive approximation techniques,
terminating algorithms were given that would agree on arbitrarily close values in either
synchronous or asynchronous environments.

Fekete also studied approximate agreement algorithms and gave asymptotically optimal
procedures [Fekete 1991]. Moreover, these algorithms guarantee exact agreement after 14 1
rounds and prior to that, try to locate faulty PEs to correct their outputs and cause a
quicker convergence of the agreement.

Redundant broadcast channels. In many cases, the price of a Byzantine agreement
protocol is too high. These protocols rely on redundancy in the time domain to mask
faulty processors and slow down system performance. Babaoglu and Drummond looked at
masking these processors in the space domain [Babaoglu and Drummond 1985]. Usually
this is done by replicating the processors, which implies a voter and extra communication
hardware, but it may also be done by putting redundancy into the network. In a broadcast
system, such as an Ethernet or a Token Ring, a single bus is replaced by b busses and
each processor is given ports to these lines. Cristian showed that in these systems, ¢ faults
may be masked with no more than ¢ + 1 messages on b = t + 1 busses regardless of the
total number of processors [Cristian 1989]. Moreover, some diagnostic information can be

gathered from each broadcast.

6 DIAGNOSIS VERSUS AGREEMENT

System diagnosis and Byzantine agreement are two means to the same end. A population

of faulty and fault-free processors must be reconciled to behave in a consistent, specified
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manner. This can be done either by masking (Byzantine agreement) or by diagnosing
(system diagnosis) the faulty processors. This section compares the two approaches to find
where their costs lie.

Fault coverage is a fundamental measure of any fault-tolerant scheme. If no assumptions
are made about failure characteristics, i.e., the system is Byzantine in nature, then the
protocol must operate despite malicious attempts to stop it. Stronger failure semantics
allow less robust algorithms, but require better-behaved environments.

Byzantine agreement protocols cope with weak (Byzantine faults) to strict (fail-stop,
message authentication, private communication channels) failure requirements. On the
other hand, system diagnosis is more concerned with the nature of the fault (permanent,
transient or intermittent) than its consequences. This is because these solutions count
on a test to reliably detect the fault, rather than on an approach which can ignore and
tolerate the faulty PE. As a result, system diagnosis research has focused on maximizing
the productivity of the test by looking at its nature (comparison versus directed) and the
testing assignment.

Comparison test diagnostics and Byzantine agreement protocols run in parallel with the
useful jobs of the system to achieve a high coverage at the cost of system performance. A
diagnosis algorithm which uses the directed test approach must do so off-line, thus requiring
recovery techniques to cope with errors. But this approach has an advantage in that there
is no redundancy. Every processor which was considered working at the last test period
may be given a unique job to perform. If it is later discovered to have failed, then the
tasks dating back to the last successful test must be performed again. In terms of real-time

systems, a high throughput is awarded for a long, worst-case delay in receiving a good
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result. Both comparison test and Byzantine agreement algorithms require redundancy to
detect and masks faults, respectively, but can meet stricter deadlines.

All consensus protocols must have access to an arbiter, but the implementation of this ar-
biter will strongly affect system performance. In centralized system diagnostic algorithms,
an ultrareliable, unbiased processor collects test results, performs diagnostic calculations
and returns processor conditions, i.e., faulty or fault free. As an arbiter, it must consis-
tently and correctly determine who is faulty and who is not from a syndrome with possibly
conflicting test results. Obviously, the reliability of these diagnosis schemes can be no
greater than the reliability of the centralized observer and all the communication channels
between it and the pool of processors. On the other hand, distributed system diagnosis and
Byzantine agreement routines implement the arbiter within the protocol. In effect, every
PE is its own arbiter. Now, reliability is no longer dependent on a single piece of hardware,
but intuitively the algorithm will be less efficient in some manner. For example, there will
no longer be a global snapshot of the condition of each processor, but rather a dynamic
view from each PE which may be inconsistent with the view from the other processors.

It is difficult to compare the costs of the Byzantine agreement and system diagnosis
protocols because of their differences and their unknowns. First, the size and nature of the
task results affect the basic Byzantine agreement protocol as well as the comparison test in
system diagnosis. Second, Byzantine agreement requires reliable communication between
pairs of processors unless messages may be authenticated or the network is replicated (al-
though, see Section 5.2.1). System diagnosis techniques may handle largely varying network
topologies. Third, directed-testing, system diagnosis protocols are strongly affected by the

frequency and complexity of the test. Byzantine agreement is dependent on the number
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of agreements that need to be made. Fourth, researchers in the two areas have adopted
different failure semantics for the faulty processor. This drastically affects efficiency. Fifth,
centralized system diagnosis, processor membership and Byzantine agreement all maintain
a consistent view of the system state. In other words, each fault-free PE is assured that
its view of the system is the same as that of each other fault-free PE. Distributed system
diagnosis can make the same assurance by adding timeouts or broadcasts. This is typically
not examined, though, and would affect diagnosis efficiency.

Preparata et al. proved that for their model it is necessary that n > 2t + 1 for a sys-
tem to be one-step i-diagnosable without repair [Preparata et al. 1967]. Depending on
repairability, network structure, and the use of probabilistic approaches, though, this limit
can change in either direction. Pease et al. proved that for Byzantine agreement, n > 3t+1
to mask ¢ malicious processors [Pease et al. 1980; Lamport et al. 1982]. This limit is
affected by assumptions on the authentication of messages, the synchrony of the system,
network replication, and the use of probabilistic approaches. These limits must also be as-
sociated with a probability that consensus will actually fail when these worst case limits are
reached. Babaoglu showed that there is a nonzero probability of correct Byzantine agree-
ment even when the number of faulty processors exceeds the resiliency bound [Babaoglu
1987a; Babaoglu 1987b]. Somani et al. had similar results for i-diagnosable systems [So-
mani ef al. 1987]. A qualitative comparison of system diagnosis and Byzantine agreement
is elusive.

In conclusion of this section, a graph of the various consensus models is presented. In
Fig. 7, a node represents a model and an edge between two model nodes represents the

major difference or extension between those models.
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As Fig. 7 shows, very little work has been done that combines system diagnosis with
Byzantine agreement despite the similarities of the two areas. Lombardi took the NMR
technique for fault masking and cast it into the system diagnosis framework [Lombardi
1985]: n processors in a i-diagnosable system perform a number of tasks such that no task
is done fewer than t + 1 times. Therefore, after the occurrence of any 1 faults, all tasks
will have been performed correctly at least once. First, results are compared using NMR
techniques to release a task as soon as possible, and to identify some faulty PEs. Next, if
faulty PEs remain unidentified, Byzantine agreement is used to collect the results reported
by each processor which are in turn used to diagnose the system. In other words, Byzantine
agreement is used to distribute the centralized arbiter assumed in classic system diagnosis.
A similar approach, i.e., disseminating the syndrome to avoid centralized analysis, was taken

in the MuTeam approach discussed in Section 5.1.5 [Ciompi et al. 1981}.

7 APPLYING CONSENSUS PROTOCOLS

The consensus problem takes many forms, and this section looks at some of the applications
and implementations of this family of protocols. Preparata et al. and Pease et al. introduced
the problem in fairly abstract terms. Their successors refined the models and assumptions
to reflect more closely the conditions in a distributed computer network, thereby creating
workable schemes for fault tolerance.

Often when ultrareliability is not an issue, fail-stop processors are assumed. That is,
1) a processor will halt rather than perform an unexpected state transition; 2) its status

is apparent to other fail-stop processors; and 3) it utilizes stable storage. Schneider used a



consensus protocol to create a virtual fail-stop PE from a pool of less consistent processors
[Schneider 1984]. Thus, when a highly available system is required, the algorithms designed
for fail-stop processors can be used in conjunction with the virtual fail-stop processor pro-
tocol.

A protocol similar to Cristian’s processor membership has been implemented at Tandem
Computers to manage the processors within their systems [Cristian 1988; Tandem 1989].
The basic assumption is fail-stop processing. Every second, each processor p broadcasts an
“I'm alive!” message. If processor p fails to receive a reply from processor g, it marks ¢
as possibly faulty. At the next round of broadcasts, p also includes a message to itself. If
g again fails to reply then p checks to see if it received its own message. If so, then g has
failed and recovery procedures are initiated. Otherwise p halts and another processor will
diagnose it as faulty after two more rounds of broadcasts.

Another example of a system using fail-stop processors is the Delta-4 Extra Performance
Architecture [Barrett et al. 1990]. A process might have several copies running on distinct
processors, but its results are issued from a single “leader.” A failure of the leader will
be uncovered through a timeout allowing a “follower” processor to use checkpointing or
simultaneous execution to take the role as leader. This method is very similar to Cristian’s
and Tandem’s membership protocols [Cristian 1988; Tandem 1989].

The Delta-4 systems also furnishes comparison testing of processes in the communication
layer. Several processors executing the same process provide a single result to another
group of processors. This is done using majority voting of signatures in the communication
subsystem which allows fault diagnosis without the fail-stop requirement [Barrett ef al.

1990].



Lamport uses consensus and strong failure semantics to create a database servicing
multiple clients with the state machine approach [Lamport 1989]. The service a client
requests must be committed or aborted in a manner which is apparent to the other clients.
A consensus is formed on the state of the database. The design is based on fail-stop
processors for a system of modest reliability. The algorithm is given in the guise of a
ancient parliamentary system which happens to be very similar to a three-phase commit
protocol.

Another popular application is the synchronization of a system of clocks. Synchroniza-
tion is a consensus on an arbitrary time value at some precise, real time. Lamport and
Melliar-Smith used Byzantine agreement solutions to synchronize clocks in a system with
faulty processors and clocks [Lamport and Melliar-Smith 1984].

An early example of system diagnosis may be seen in the Micronet, a self-healing net-
work for signal processing [DeGonia et al. 1978]. Multiple, homogeneous processors were
connected by a bus. Spare processors were used as standards by which the others were
checked, and monitors that actually compared results and reconfigured the system. A
scheme was developed such that intermittently faulty PEs would be correctly diagnosed
and taken ofi-line, and incorrectly diagnosed processors would be brought back on-line after
retesting. Moreover, the authors recognized that faulty PEs might still be able to perform
certain functions and so diagnosed them according to functionality loss. The entire system
was a hierarchical composition of these diagnosable, bus-based subsystems. Testing was
performed within and between levels such that eventually the entire system and all of its
functions would be tested.

Agrawal suggested a broadcast network connecting a pool of processors and controlled
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by a reliable scheduler and diagnostics manager as a fault-tolerant architecture [Agrawal
1985]. Diagnosis and fault tolerance is achieved by way of comparison testing. The scheduler
assigns tasks to different processors and the diagnostics manager compares these results.
If a match occurs, the result is considered correct, otherwise the task is rescheduled until
a match is found. In other words, the number of processors involved in the consensus is
increased from two until any pair of them match results.

Philips has incorporated Byzantine agreement into their fault-tolerant switching sys-
tem via the DJC algorithms given by Krol (see Section 5.2.1) [Krol 1991]. In this (4,2)-
concept fault-tolerant computer, there are four redundant processors accessing a single,
error-correcting coded memory divided into four, separate modules. Krol used the DJC
algorithms to ensure that the four processors would receive the same inputs whether the
system was connected to a single source or to another fault-tolerant multiprocessor [Krol
1991].

At the University of Erlangen-Niirnberg, system diagnosis was used for the DIRMU
(DIstributed Reconfigurable MUltiprocessor) system which contained 25 PEs [Maehle et al.
1986]. The algorithm implemented was similar to SELF3 given in [Hosseini et al. 1984]
and was able to diagnose PEs and communication links as well as determine the intact
configuration of the multiprocessor. Maehle reported that system diagnosis worked without
problem over the five year (1985-1990) lifespan of the DIRMU system [Maehle 1991].

At Carnegie-Mellon University, system diagnosis was applied to an Ethernet connecting
over 100 workstations by adopting the distributed diagnosis algorithm NEW_SELF given
by Hosseini et al. [Bianchini et al. 1990; Hosseini et al. 1984]. The CMU diagnosis solution

ases time to synchronize tests and detect faulty PEs; it allows for PEs to join and leave the
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set of fault-free PEs; it calls for testing reconfiguration after PE failures; and it assumes
system stability to minimize overhead. It does not test for faulty communication links.

The implementation uses self-tests initiated by outside PEs. When a processor A tests
another processor B, it actually sends a request to B that it test itself. B spawns a
subprocess which reads from the disk and executes floating point operations. Thus, the
operation of the disk, the operating system software, and some portion of the CPU are
tested without starving any productive tasks of resources. The diagnosis algorithm treats
the result of this test as complete and the authors reported that this simple test caught
every processor fault that occurred over a period of two years.

One of the major concerns of this work was the communication overhead required by the
NEW_SELF algorithm. A significant reduction may be had by combining test requests
and tesults. If processor p is being tested by all of its neighbors, then it need run the
self-test only once and report the same result to these testers. If processor p is testing some
processor ¢ and Teceives a request for another test of g, then p may combine these requests
and disseminate the test result accordingly. These simplifications work for two reasons: the
benign failure of processors, and the implementation of the test as a seli-test.

Another technique used for reducing message transmissions was to take advantage of
the stability of the system. That is, a stable system has no faults or joins occurring, and
thus, requires no new diagnosis. The authors devised an event-driven algorithm in which
diagnostic information is not passed unless a fault or join occurs.

Table 2 compares major characteristics of NEW_SELF [Hosseini et al. 1984}, Cristian’s
processor membership [Cristian 1991b], and the CMU diagnosis solution [Bianchini et al.

1990].
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System Model

Physical Network

The Test

Tested By

Diagnosis Time

Test Rounds

Table 2: A Comparison of Diagnosis Strategies.

NEW_SELF

Processor Membership

CMU Diagnosis

Graph model of physical
interconnection net-
work with test graph

embedded on it.

Physical model with
communication delays
and completely con-
nected logical graph
with test graph embed-

ded on it.

Graph model of physical
interconnection net-
work and completely
connected logical graph
with test graph embed-

ded on it.

Arbitrary point to

point network.

Arbitrary point to

point network.

Viewed as a bus based

network.

Fault-tolerant mecha-
nisms included with the
PE {self-testing cir-
cuits, monitors, watch-
dogs) report PE status

on demand.

Self-tests implied, on
top of these is the
ability to send and re-
ceive messages via a
reliable broadcast in a

timely manner.

Self- test process

tests OS process
handling, disk I/0, and
Hoating point unit
operation. Must be
able to send and re-
ceive test results via
reliable communications

in a timely manner.

Physically adjacent

Logical neighbors. Pre-

Closest neighbors on

neighbors. ferably physical neigh- one side of bus, also
bors. logical neighbors.
O{diameter of testing Of{diameter of physical | O{diameter of testing
graph} graph) or O{number of | graph)
PEs)
Asynchronous, but fi- Synchronized by a glo- Synchronous.

nite in length.

bal clock which implies

timing fault coverage.
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Table 2: A Comparison of Diagnosis Strategies (continued).

Fault Classes

Fault Validation

Joining

Leaving

System Stability

NEW._SELF

Processor Membership

CMU Diagnosis

Faulty processing ele-
ments and communi-

cation links.

Crash faults, omission
faults, timing faults,
Byzantine faults
(through atomic broad-

cast).

Faulty PE, omission

faults, timing faults.

Test the PE reporting
the fault at the next

test round.

All PEs broadcast their

presence to reform the

group.

Immediately test the PE

reporting the fault.

New or repaired
PEs clear their
old messages.
Diagnosability is

affected.

A new or repaired PE
initiates a group
broadcast to reform the
membership and get the

membership list.

Test graph is reconfi-
gured. The new PE

gets the system diag-
nosis from the PEs it

tests.

PE is diagnosed as
faulty and is ignored
by the fault-free PEs.
System diagnosability

is decreased.

A faulty PE is detected
and a group broadcast
occurs so the member-
ship reconfigures.
Diagnosability based on

new membership.

A faulty PE may be re-
moved from the system
causing a reconfigu-
ration of the fest
graph and possibly the

same diagnosability.

Redundant diagnosis
messages are sent with
high system overhead

even without faults.

Neighborhood Surveil-
lance Protocol only has
test communications be-
tween neighbors when
there are no faults or

joins.

Send only test requests
and results when there
are no faults or joins.
If there is a fault or
join then pass on the
new diagnosis infor-

mation.
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Bianchini and Buskens continued the experiment at CMU with an adaptive diagnosis
algorithm again based on the NEW _SELF algorithm [Bianchini and Buskens 1991; Hos-
seini et al. 1984]. Previously, the testing assignment for the system was defined a priori,
but in this case, tests are performed as indicated by the current fault set. The result is
correct diagnosis despite an unlimited number of faulty PEs, as well as further reduced

communication overhead.

8 FUTURE RESEARCH

The trend in consensus problem research has been towards incorporating higher levels of
realism into the solutions with the ultimate goal being implementation. Probabilistic ap-
proaches have emerged due to their efficiency compared with deterministic solutions. Fault
models and test models that aim to describe actual events in a distributed computing en-
vironment have also been examined. This section outlines many points of practicality for
creators of future consensus protocols.

Losing and gaining processor elements. An admission that processors will fail is made
simply by the pursuit of consensus algorithms. When a PE fails, it should be removed
from the fault-free membership to improve diagnosability and diagnosis efficiency. In large
distributed systems, there will be new or repaired fault-free computers to be added to the
system in an on-line manner. Therefore, the ability to add elements without disrupting
diagnosis is required, even if it is simply to accommodate users who turn their workstations
off in the evening and on in the morning. This point is explicitly considered by Cristian

and Hosseini et al. [Cristian 1988; Hosseini el al. 1984]. Little work has been done to
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incorporate the diagnosis of failed PEs into Byzantine agreement algorithms.

Imperfect tests. One of the most disturbing phrases in the system diagnosis research is
«Processor A tests Processor B.” Testing can be done in simple ways by using comparison
testing [Malek 1980; Chwa and Hakimi 1981}, fault detection mechanisms like watchdog
timers as in the Tandem ‘16 computers, or simple diagnostic processes which run on the
target processor [Bianchini et al. 1990]. The CMU experiment has shown that a simple
self-test gives practical fault coverage. This coverage may not be enough for certain sys-
tems, though, leaving open the question of whether direct-testing schemes are sufficient in
ultrareliable systems.

Distributed diagnosis. Fault tolerance is the ultimate goal of system diagnosis; therefore,
centralizing the diagnosis function, and thereby creating a “weak link,” is usually unaccept-
able. Diagnosis should be performed by each processing element to increase fault tolerance
and diagnostic responsiveness.

General network topologies. Related to distributed diagnosis is the structure of the
network. Much work has been done searching for classes of testing graphs that satisfy the
requirements of certain diagnosis algorithms, but more needs to be done to learn how to
overlay these testing assignments efficiently on physical communication systems [Fussell and
Rangarajan 1989]. This includes adapting to changing topologies due to data link failures
OT repairs.

System overhead. As always, algorithm efficiency is of interest. It is necessary to reduce
the number and size of the messages until their effect on other communications is virtually
transparent. Otherwise, diagnosis itself might become the system bottleneck. Currently,

Byzantine agreement protocols can handle only a few faults, i.e., three or fewer, before the
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overhead becomes unbearable [Krol 1991].

Very Large Systems. The desire to connect equipment is overwhelming and the result
has been very large computer networks such as Arpanet and Internet. Obviously, no single
PE needs to know the status of every other element in the system. Therefore, one should
consider hierarchical schemes of diagnosis and computing in which a processor knows if
a server pool is still operating. Information would be on the basis of what partition of
servers is desired, while in that partition, diagnosis or masking would occur in one of the
many manners described in this paper. That is, each group of servers would have its own
consensus protocol dependent on the goal of that partition. At the next level, partitions
would diagnose each other to determine if the number of faulty elements within a group
had precluded correct diagnosis or masking.

Time. Analysis in the time domain is perhaps the most important characteristic of the
work done in processor membership [Cristian 1991b). It is reasonable, with the increasing
popularity of responsive or real-time, fault-tolerant systems, to construct diagnosis algo-
rithms in the time domain. Many processor failures are detectable with timing constraints.
A crash or omission fault will cause a receiver to timeout, and a timing fault implies a
receiver received a message when it was not expecting one. In all cases, the test of a pro-
cessor should cover the ability to send and receive messages in a timely manner. Fischer
et al. showed the importance of synchronization and time, and that ignorance of the time
performance of a processor can render Byzantine agreement impossible [Fischer et al. 1985].

Bounded faults. The notion of ¢-diagnosability is rather conservative in many realms.
In a small network of common workstations, which tend to be highly reliable, more than

+wo or three faults could be unreasonable. Given such constraints, very efficient diagnosis
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algorithms might exist. More general algorithms could still be required for low yield, wafer
scale systems or non-repairable, “mission” systems. One solution is to develop algorithms
which make no assumptions about the number of faulty PEs, but which are almost always
correct such as [Dahbura et al. 1987].

Network characterization. Little has been reported on the frequency and types of faults
experienced in large, distributed networks. Practical information of this sort could greatly
increase the potential usefulness of the consensus protocols that have been surveyed. For
example, the class of Byzantine faults is far-flung and includes situations that are arguably
nonexistent. The rarity of a faulty PE sending two different, yet valid, messages to two of

its neighbors, when the communications should have been identical, needs to be guantified.

9 CONCLUSIONS

In many cases, a consensus protocol dictates certain characteristics of its target system. It
may assume private communications or a centralized arbiter among others. Moreover, the
protocol can influence the type of decision to be made. An algorithm may operate on the
basis that a single result is incorrect or that a processor is untrustworthy. In the future,
consensus protocols will impact decision systems and decision making rather than vice versa.
Their presence at all levels of computing guarantees a high priority of efficiency. A natural
dilemma arises: either researchers examine a generic framework which will apply to any
system, e.g., computing, economics, government, etc., which is reminiscent of Byzantine
agreement, or Tesearchers assume a computing environment, develop requirements for high

performance, and then find an analogy for, or start anew on other systems, which is the
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direction system diagnosis research is taking. Whatever the outcome, these fundamental
consensus algorithms will persist despite the underlying framework and will affect systems
of multiple computing elements to come. Thus, the work presented in this paper is an

outline for a new method of fault-tolerant system design.

10 SUMMARY

The importance of the consensus problem stems from its ubiquitous nature in dis-
tributed fault-tolerant computing. It is alternately veiled as a synchronization problem,
a reliable communication protocol, a resource allocator, a task scheduler or a diagno-
sis/reconfiguration scheme, among others. Playing a role in so many aspects of computing
makes it fundamental. In this paper, the particular consensus application of producing a
correct result in an environment that includes faulty processors was examined. Two schools
of thought reign: system diagnosis in which a population keeps tabs on its faulty proces-
sors, and Byzantine agreement in which faulty processors are masked by an abundance of
fault-free constituents. The history of these two areas was outlined with the hopes that
future researchers would reconcile both fields or at least draw from the more appropriate
source depending on the application. The paper also discussed how these ideas are being
put to work in real systems. Finally, directions for more work were proposed with the belief

that practicality and implementability will be of high priority.
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