
[Wei88] W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE Transactions

on Computers, C-37(12):1488{1505, December 1988.

[WHBM90] G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-level recovery. In Proceedings of the nineth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Nashville, pages

109{123, 1990.

19



[LN88] K. Li and J. F. Naughton. Multiprocessor main memory transaction processing. In Proceedings

of the International Symposium on Databases in Parallel and distributed Systems, pages 177{187,

1988.

[Lor77] R. A. Lorie. Physical integrity in a large segmented database. ACM Transactions on Database

Systems, 2(1):91{104, March 1977.

[LS90] E. Levy and A. Silberschatz. Log-driven backups: A recovery scheme for large memory database

systems. In The Jerusalem Conference of Information Technology (JCIT 90), 1990. Also available

as technical report TR-89-24, Computer Sciences department, The University of Texas at Austin.

[MHL

+

90] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A transaction recovery

method supporting �ne-granularity locking and partial rollbacks using write-ahead logging. Tech-

nical Report RJ 6649 (63960), IBM Research, February 1990. A revised vesion. To appear in ACM

Transactions on Database Systems.

[MLC87] J. E. B. Moss, B. Leban, and P. K. Chrysanthis. Finer grained concurrency for the database cache. In

Proceedings of the Third International Conference on Data Engineering, Los Angeles, pages 96{103,

February 1987.

[Moh87] C. Mohan. Directions in system architectures for high transaction rates. In Proceedings of ACM-

SIGMOD 1987 International Conference on Management of Data, San Francisco, pages 6{7, 1987.

A panel session, whose participants were Mohan, C. (chairperson), Gawlick, D., Gray, J., Klein, S.,

Lassettre, E., and Neches, P.

[Moh90] C. Mohan. Commit-LSN: A novel and simple method for reducing locking and latching in trans-

action processing systems. In Proceedings of the Sixteenth International Conference on Very Large

Databases, Brisbane, 1990. A vesion available as IBM research report RJ 7344.

[Moh91] C. Mohan. A cost-e�ective method for providing improved data availability during DBMS restart

recovery after a failure. Unpublished manuscript, 1991.

[MP91] C. Mohan and H. Pirahesh. ARIES-RRH: restricted repeating of history in the ARIES transaction

recovery method. In Proceedings of the Seventh International Conference on Data Engineering,

Kobe, Japan, April 1991.

[PGK88] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays of inexpensive disks

(RAID). In Proceedings of ACM-SIGMOD 1988 International Conference on Management of Data,

Chicago, pages 109{116, 1988.

[Pu86] C. Pu. On-the-
y, incremental, consistent reading of entire databases. Algorithmica, (1):271{287,

1986.

[Rap75] R. L. Rappaport. File structure design to facilitate on-line instantaneous updating. In Proceedings

of ACM-SIGMOD 1975 International Conference on Management of Data, San Jose, pages 1{14,

1975.

[Reu84] A. Reuter. Performance analysis of recovery. ACM Transactions on Database Systems, 9(4):526{559,

December 1984.

[SGM87a] K. Salem and H. Garcia-Molina. Checkpointing memory-resident databases. Technical Report

CS-TR-126-87, Princeton University, Computer Science Department, 1987.

[SGM87b] K. Salem and H. Garcia-Molina. Crash recovery for memory-resident databases. Technical Report

CS-TR-119-87, Princeton University, Computer Science Department, 1987.

[Tan87] Tandem Computers Corporation. Remote Duplicate Facility (RDF), System Management Manual,

March 1987.

18



[BSW88] C. Beeri, H.-J. Schek, and G. Weikum. Multi-level transaction management, theoretical art or

practical need? In International Conference on Extending Database Technology, Lecture Notes on

Computer Science, volume 303. Springer Verlag, 1988.

[CBDU75] K. M. Chandy, J. C. Brown, C. W. Dissly, and W. R. Uhrig. Analytic models for rollback and

recovery strategies in database systems. IEEE Transactions on Software Engineering, SE-1(1):100{

110, March 1975.

[CKKS89] G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The case for safe RAM. In Proceedings of

the Fifteenth International Conference on Very Large Databases, Amsterdam, pages 327{336, 1989.

[DKO

+

84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, and M. R. Stonebraker. Implementation

techniques for main memory database systems. In Proceedings of ACM-SIGMOD 1984 International

Conference on Management of Data, Boston, pages 1{8, 1984.

[EB84] K. Elhard and R. Bayer. A database cache for high performance and fast restart in database systems.

ACM Transactions on Database Systems, 9(4):503{525, December 1984.

[Eic86] M. Eich. Main memory database recovery. In 1986 Proceedings ACM-IEEE Fall Joint Computer

Conference, Dallas, pages 1226{1232, 1986.

[Eic87] M. Eich. A classi�cation and comparison of main memory database recovery techniques. In Pro-

ceedings of the Third International Conference on Data Engineering, Los Angeles, pages 332{339,

1987.

[G

+

81] J. N. Gray et al. The recovery manager of the system R database manager. ACM Computing

Surveys, 13(2):223{242, 1981.

[GMS90] H. Garcia-Molina and K. Salem. System M: A transaction processing testbed for memory resident

data. IEEE Transactions on Knowledge and Data Engineering, 2(1):161{172, 1990.

[Gra78] J. N. Gray. Notes on database operating systems. In Lecture Notes in Computer Science, Operating

Systems: An Advanced Course, volume 60, pages 393{481. Springer-Verlag, Berlin, 1978.

[Hag86] R. B. Hagmann. A crash recovery scheme for memory-resident database system. IEEE Transactions

on Computers, C-35(9):839{843, September 1986.

[HR83] T. Haerder and A. Reuter. Principles of transaction oriented database recovery | a taxonomy.

ACM Computing Surveys, 15(4):289{317, December 1983.

[KGMHP88] R. P. King, H. Garcia-Molina, N. Halim, and C. Polyzois. Management of a remote backup copy

for disaster recovery. Technical Report CS-TR-198-88, Princeton University, Computer Science

Department, 1988.

[Lam81] B. W. Lampson. Atomic transactions. In Lecture Notes in Computer Science, Distributed Systems

| Architecture and Implementation: An Advanced Course, pages 246{265. Springer-Verlag, Berlin,

1981.

[LC87] T. J. Lehman and M. J. Carey. A recovery algorithm for a high-performance memory-resident

database system. In Proceedings of ACM-SIGMOD 1987 International Conference on Management

of Data, San Francisco, pages 104{117, 1987.

[Lev91] E. Levy. Incremental restart. In Proceedings of the Seventh International Conference on Data

Engineering, Kobe, Japan, April 1991.

[Lin80] B. G. Lindsay. Single and multi-site recovery facilities. In Distributed Databases, chapter 10, pages

247{284. Cambridge University Press, Cambridge, U.K., 1980. Also available as IBM Research

Report RJ2571, San Juse, July, 1979.

17



can be adopted for such purposes, but this deserves separate attention. On the other hand, since the

log-driven design is predicated on a partial-residence assumption, it can accommodate partially-resident

databases e�ciently by enforcing rules Safe-Fetch, and Single-Propagation.

The above comparison favors the log-driven approach. Among the rest, fuzzy algorithms seem to be close com-

petitors. We note that fuzzy algorithms stand out (considering CPU overhead during normal operation) according

to the performance evaluation studies of Salem and Garcia-Molina [SGM87b].

We should note that other methods that are log-driven in spirit can be found in [Eic86] and [LN88]. It is

interesting to note that in [Eic86], log records of a transaction are marked after the transaction has committed,

so that only log records of committed transactions would a�ect the BDB. It should also be mentioned that a log-

driven approach is often used to manage remote backups for disaster recovery purposes (e.g., [KGMHP88, Tan87]).

10 Conclusions

The increasing size of contemporary databases, and the availability of stable memory and very large physical

memories are bound to impact the requirements from, and the design of recovery components. In particular, for

checkpointing and restart processing, the traditional approach becomes inappropriate for high rates of transactions

and very large databases. An incremental approach, that exploits the new technological advances, is a natural

solution. In this paper we described in a high-level manner such a solution.

The main thrust of this paper is the design of recovery techniques in a manner that would allow their in-

terleaving with normal transaction processing. The techniques exploit stable memory and are geared to meet

the demands of systems that incorporate large main memories. We have proposed both restart algorithm (called

incremental restart) and a checkpointing-like technique (called log-driven backups) that operate in an incremental

manner, in parallel with transaction processing. The prominent original concepts motivating our design are as

follows:

� Associating restoration activities with individual data objects, and assigning priorities to these activities

according to the demand for these objects. Consequently, recovery processing is interleaved with normal

transaction processing. By contrast, the conventional restart procedure for example, treats the database as

a single monolithic data object, and enables resumed transaction processing only after its termination.

� A direct consequence of the previous point is the grouping of recovery-related information (e.g., log record)

on data objects basis. This structuring is aimed to facilitate the e�cient restoration of individual data

objects.

� Carrying out recovery processing and transaction execution in parallel implies decoupling the respective

resources to reduce contention as much as possible. In the log-driven backups technique both data and

processing resources for checkpointing are separate from the resources required for forward transaction

processing.

References

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, Reading, MA, 1987.

[Bit86] D. Bitton. The e�ect of large main memory on database systems. In Proceedings of ACM-SIGMOD

1986 International Conference on Management of Data, Washington, pages 337{339, 1986. A panel

session, whose participants were Bitton, D. (chairperson), Garcia-Molina, H., Gawlick, D., and

Lomet, D.

[BR87] B. R. Badrinath and K. Ramamritham. Semantic-based concurrency control: Beyond commuta-

tivity. In Proceedings of the Third International Conference on Data Engineering, Los Angeles,

1987.

16



Delaying restart activities was �rst described in [Rap75]. There, restart does not perform any recovery activity.

Instead, reading a data item triggers a validity check that �nds the committed version of the data item that should

be read. The incremental restart procedure we propose resembles this early work in that data items are recovered

only once they are read.

A more conventional approach to speeding up restart is proposed in [MP91] in the context of the ARIES

transaction processing method. The idea there is to shorten the redo pass of conventional restart by performing

selective redo. Instead of repeating the history by redoing all the actions speci�ed in the log, only those actions

speci�ed in winner log records are redone. It is also mentioned there that undo of loser transactions can be

interleaved with the processing of new transactions if locks (similar to RS-locks) protect the uncommitted data

items updated by the loser transactions. During the analysis pass of restart, the identity of these data items is

discovered, whereas in our scheme such data items are already marked as stale.

The concept of deferred restart (which is similar to incremental restart) is discussed in [MHL

+

90] also in the

context of ARIES. It is mentioned that in IBM's DB2 redo/undo for objects that are o�-line can be deferred.

The system remembers the LSN ranges for that objects and makes sure that they are recovered once they are

brought on-line and before they are made accessible to other transactions. DB2 employs physical, page-level

logging. Problems related to logical undoing and deferred restart are also discussed in [MHL

+

90]. Our work

di�ers from the ARIES work in exploiting stable memory and as it presents a simple algorithmic description of

the fundamentals of incremental restart in the context of both physical and operation logging.

Another noteworthy approach to fast restart is the Database Cache [EB84]. There, dirty pages of active

transactions are never 
ushed to the backup database. At restart, the committed state is constructed immediately

by loading the recently committed pages from a log device (called safe there). The main disadvantages of

this approach are that locking is supported only at the granularity of pages, full-page physical logging is used

in contrast to our entry logging, update-intensive transactions need to be treated specially, and that commit

processing includes a synchronous I/O. The DB cache idea is re�ned to accommodate �ner granularity locking

in [MLC87], however this extension does not deal with operation logging and concurrency among semantically

compatible operations.

Work on improving restart processing is reported in [Moh91]. The approach there is to adapt the passes

of traditional restart and admit new transactions during these passes. Also, associating freshness status with

uncommitted pages is discussed there and in [Moh90].

A thorough survey of di�erent MMDBS checkpointing policies, their impact on overall recovery issues, and

their performance can be found in [SGM87b].

Next, we compare our log-driven backups scheme with several variations of MMDBS checkpointing (e.g.,

[DKO

+

84, Pu86, Hag86]).

� Checkpointing interferes in one way or another with transaction processing, since both activities compete

for the PDB and the main CPU. Taking a consistent checkpoint requires bringing transaction activity to

a quiescent state, since a transaction-consistent checkpoint re
ects a state of the database as produced by

completed transactions. In the extreme case, transactions have to be aborted to guarantee the consistency

of the checkpoint [Pu86]. Even in fuzzy algorithms, which do not produce consistent checkpoints [Hag86],

memory contention is inevitable since both normal transactions and the checkpointer must access the very

same memory. By contrast, in the log-driven backups scheme, transaction processing and propagation to the

BDB do not use the same memory and may use di�erent processors. This separation is the key advantage

of the scheme.

� It has been observed in [SGM87b] that consistent checkpoints must be supported by two copies of the

database on secondary storage, since there is no guarantee that the entire checkpoint will be atomic. More

precisely, there is always one consistent checkpoint of the entire database on secondary storage that was

created by the penultimate checkpoint run, while the current run creates a new checkpoint. This problem

does not arise in the log-driven backups technique since the propagation to the BDB is continuous and not

periodic.

� It is not clear how checkpointing algorithms can be adjusted to support our assumption of a partially resident

database. The correctness of these algorithms may be jeopardized by arbitrary fetching and 
ushing of

database pages. It seems that fuzzy checkpointing, which is the simplest type of checkpointing algorithms,

15



[MHL

+

90, Gra78]. In our case, since updates are not propagated before the commit of an operation, the WAL

rule means that the high-level undo record should be written to the high-level log prior to the commit point of

the corresponding operation.

By structuring the high-level recovery on top of our incremental restart method, we intend to give the overall

recovery scheme incremental 
avor. The major challenge in making this multi-level recovery scheme incremental

is the fact that we can no longer treat single pages as the individual unit for recovery, since operations a�ect

several pages. Had we used single pages, we would have violated the high-level action atomicity requirement

mentioned above. For this reason we devise the notion of a recovery unit (RU). An RU is a set of pages, such that

it is not possible for any high-level operation to a�ect more than one RU. For instance, if an INSERT operation

is used for updating both index and data �les, then the index and the corresponding data �le constitute an RU.

It is the responsibility of the base recovery to bring an RU to an operation-consistent state before any high-level

undo can be applied to it.

When a post-crash transaction requests to access an RU, the incremental restart algorithm is applied to all the

pages of that RU. Once this phase is completed, the RU is in an operation-consistent state. Then, the high-level

recovery brings the RU to its committed state by applying the high-level undo operations for loser transactions

in the reverse order of the appearance of the corresponding log records. To facilitate fast restoration of individual

RUs, high-level log records should be grouped on an RU basis on the high-level log (see [Lev91] for techniques for

grouping log records). A high-level undo operation is treated as a regular operation, keeping both base and high-

level logging in e�ect. Care should be taken to undo only operations whose e�ect actually appears in the backup

database (the high-level action idempotence requirement of [WHBM90]). Therefore, the base recovery passes to

the high-level recovery an indication which of the operations of loser transactions were winner operations, and

hence were redone, in the base recovery phase.

By partitioning the database to RUs the incremental e�ect is obtained. RUs can be of coarse granularity,

thereby diminishing the bene�ts of incremental restart. For example, an entire relation and the corresponding

index structure must be recovered before a post-crash transaction may read any of the tuples. This observation

calls for as small RUs as possible.

Example 2. Consider again the three transactions of Example 1. This time, however, T

11

and T

12

are

high-level operations (subtransactions of T

1

), and T

21

is the sole operation of T

2

. The same sequence of events is

used. The stale/fresh marking of a; b and c, and the winner/loser status of the operations remain as in Example

1 in this execution. Pages a; b and c constitute an RU, and the high-level log for that RU is as follows (we

represent the logged undo information for operation T

ij

as undo(T

ij

)):

undo(T

11

); undo(T

21

); c

2

; undo(T

12

)

In terms of transactions, T

1

is a loser, whereas T

2

is a winner. Base recovery for the three pages takes place

exactly as in Example 1 (i.e., only page a is recovered). In the high-level recovery phase, only T

11

is undone, since

T

12

was a loser in the base-level. 3

The presented scheme is not e�cient mainly since it performs excessive log I/O while committing the high-

level operations. A more e�cient version of the scheme would probably employ the improvements outlined in

the second approach in [WHBM90]. The goal of presenting the above scheme was only to demonstrate how

incremental restart can be used as the base for a more complex and higher-level recovery, using the modular

multi-level model of [WHBM90].

9 Related Work

The work reported in this paper is a continuation of our earlier work in this area [Lev91, LS90]. A general

stale/fresh marking algorithm that is not based on no-steal bu�er management is presented in [Lev91].

A proposal for incremental restart is presented in [LC87] in the context of a main-memory database (MMDB).

Stable memory is used extensively to implement this approach. There are several aspects that distinguish our

work from the work on [LC87]. Some aspects there are peculiar to entirely-resident MMDBs. Namely, there is no

consideration of paging activity. Integrating full-
edged operation logging is not discussed in [LC87] at all. Also,

stale/fresh partition and the improvements it entails are lacking from the work in [LC87].

14



8 Incremental Recovery for High-Level Recovery Management

A common way of enhancing concurrency is the use of semantically-rich operations instead of the more primitive

read and write operations. Having semantically-rich operations allows re�ning the notion of con
icting versus

commutative operations [BR87, Wei88]. It is possible to examine whether two operations commute (i.e., do

not con
ict); such operations have the nice property that they can be executed concurrently. Semantics-based

concurrency control is often cited as a very attractive method for handling high contention to data (i.e., `hot

spots') [MHL

+

90, BR87, Wei88]. The problem, however, is that the simple state-based (i.e., physical) recovery

methods no longer work correctly in conjunction with these operations. Only operation logging, referred to also

as logical-transition logging [HR83], can support this type of enhanced concurrency. For instance, consider the

increment and decrement operations which commute with each other and among themselves. A data item can be

incremented concurrently by two uncommitted transactions. If one of the transactions aborts, its e�ect can be

undone by decrementing the item appropriately. However, reverting to the before image may erase the e�ects of

the second transaction also, resulting in an inconsistent state.

One of the problems of using operation logging is that the logged high-level operations may be implemented

as a set of lower-level operations, and hence their atomicity is not guaranteed. Therefore, when logged operations

are undone or redone after a crash, they should not be applied to a backup database that re
ects partial e�ects

of operations. Therefore, a key assumption in any operation logging scheme is that operations must appear as

though they were executed atomically. This requirement is a prerequisite to any correct application of operation

log records to the BDB at restart time, and is referred to as high-level action atomicity in [WHBM90]. As an

illustration, we mention System R [G

+

81] which employs operation logging. There, at all times, the BDB is in an

operation-consistent state | a state that re
ects the e�ects of only completed operations, and no partial e�ects

of operations. This property is obtained by updating the BDB atomically, and only at checkpoint time, using

a shadowing technique [Lor77]. At restart, the operation log is applied to the consistent shadow version of the

database.

The problem of implementing operation logging is best viewed as a multi-level recovery problem. A very

elegant and simple model of (standard, non-incremental) multi-level recovery is introduced in [WHBM90]. In

what follows, we make use of that model to construct an incremental multi-level recovery scheme.

A transaction consists of several high-level operations. A high-level operation is de�ned over �ne-granularity

items (e.g, tuples, records), and is implemented by several base-level primitives that collectively may a�ect more

than a single page. The base level primitives are read and write that a�ect single pages|primitives that are

consistent with our page-level model.

In other words, transactions are nested in two levels. Serializability of transactions is enforced by a multi-level

concurrency control that uses strict two-phase locking at each level [BSW88].

Recovery is also structured in two levels. Our page-based incremental method constitutes the base recovery.

It ensures persistence and atomicity of higher-level operations and not of complete transactions. That is, the

high-level operations are regarded as transactions as far as the base recovery module is concerned. Persistence of

a committed transaction is obtained as a by-product of the persistence of its operations (i.e., if all operations of a

transaction have committed, then the transaction itself has committed). Observe that both the log-driven backups

and marking algorithms refer to operations rather than transactions in the current context. Any occurrence of a

transaction there should be substituted with an operation.

We still require that dirty pages are not 
ushed unless the operation that updated them is committed (i.e.,

no-steal policy with respect to operations is enforced). This is not a major restriction since operations update a

small number of pages. Imposing this restriction also helps avoiding the extra overhead due to the hierarchical

layering. Consequently, the log of the base recovery, called the base log, is a redo log and there is no need to

perform base-level undo at restart.

The high-level recovery is based on operation logging and it guarantees atomicity of complete transactions.

The high-level log is separate from the base log and it holds only high-level undo information. The high-level

Undo log does not participate in the log-driven backups 
ow, and may, in fact, be implemented as a traditional log

on disk. The overall plan is to use the base recovery to redo committed transactions and committed operations,

thereby bringing the BDB to an operation-consistent state, and then apply high-level undo in order to undo the

operations of loser transactions.

Since the high-level log deals with Undo log records, it should obey the Write{Ahead{Log (WAL) rule

13



requested R W

held

R X

W X X

RS X

Figure 2: Lock compatibility matrix.

allowed even greater 
exibility. Indeed, stale pages cannot be read by post-crash transactions; however, writing

data items in a stale page is possible.

One way to view this improvement is to consider a new type of locks, called restart locks, that lock all stale

pages, and no other pages, after a crash. An imaginary restart transaction acquires these locks as soon as the

system is rebooted and before post-crash transactions are processed. In Figure 2, we present the lock compatibility

matrix for the three lock modes read (R), write (W), and restart (RS). Since restart locks are not requested,

but rather are held by convention by the restart transaction, the compatibility matrix lacks the request column

for the new lock type. An entry with \X" in this table, means that the corresponding locks are incompatible.

Observe that restart locking does not interfere with the normal concurrency control. This can be shown by

observing that the imaginary restart transaction is a two-phased transaction that is serialized before any post-

crash transaction that attempts to access a stale page. Also, restart locking cannot introduce deadlocks, since

the restart transaction is granted the RS locks on all the stale-marked pages unconditionally at reboot time.

An RS lock held on a stale page x is released when the page is brought up-to-date. This happens only when

x is explicitly brought up-to-date by the incremental restart procedure, by applying log records to the backup

image.

A write of a stale page results in an update log record containing only the after image of the update, since

the page has not been recovered yet. Such a log record will actually a�ect the relevant page once the page is

recovered and brought up-to-date (unless the transaction that generated the record aborts).

In summary, the above protocol allows post-crash transactions to be processed concurrently with the incre-

mental restart processing. Some transactions are scheduled without being delayed by the recovery activity at all,

and some are delayed only as a result of recovering data items they need.

7.2 Further Improvements

In this subsection, we brie
y mention several points that can further improve an implementation of the incremental

restart algorithm.

� RS-locking can be used to combine incremental and standard restart for di�erent sets of pages, thereby

avoiding the need to maintain stale/fresh marking for too many pages. The set of pages that are recovered

using standard restart should be RS-locked until they are made consistent. Only predicted `hot spot' data

can be supported by incremental restart (and the stale/fresh marking). This improvement allows a very

attractive and 
exible use of incremental restart even in very large databases.

� Background process(es) can recover the remaining portions of the database, while priority process(es) recover

pages demanded by executing transactions. Once a page is recovered and made consistent, the RS lock can

be released. This technique provides even greater concurrency between restart and transaction processing.

� It is not necessary to log restart activities in order to guarantee its idempotence. It is advised, though, to


ush previously stale pages that are made up-to-date, thereby marking them fresh. Doing this will save

recovery e�orts in case of repeated failures.

� Assuming a very large number of pages for which stale/fresh marking is managed using a sophisticated

data structure, updating the marking data structure can become a bottleneck. A queue in stable memory

that records recent updates to the marking can prevent this undesirable phenomenon. Applying the queued

updates to the actual marking data structure can take place whenever the CPU is not heavily loaded.

12



6 Correctness Aspects

We prove two claims that underlie the correctness of our integrated architecture. The correctness of the marking

algorithm is stated concisely by the hypothesis of Lemma 1 below:

Lemma 1. At all times, in particular following a crash, if a page x is stale then x:stale holds. Formally:

(8x : (backup[x] 6= committed[x])) x:stale) is invariant. 2

Proof. Consider the state space formed by the variables we have introduced. We model the execution

of transactions and fetching and 
ushing of pages, as transitions over that state space. We prove the claim by

showing that the invariant holds initially and that it is preserved by each of these transitions.

Assuming that initially all pages are fresh, the invariant holds vacuously when the algorithm starts. Flush-

ing a page is modeled as an assignment to backup[x], and committing a page is modeled as an assignment to

committed[x]. There are four state transitions that may a�ect the validity of the invariant: an execution of

the assignment statement speci�ed in one of the rules Dirty{Stale, Flush{Fresh, the commitment of an updating

transaction, and the 
ushing of a page. We prove that the invariant holds by showing that each of these state

transitions preserves the invariant:

� Rule Dirty{Stale: Under no circumstances setting x:stale to true can violate the invariant.

� Commit of T : Consider an arbitrary page x updated by the just committed transaction T (i.e., x 2

T:writeset). Since a strict concurrency protocol is employed at a page level, we are assured that no other

transaction has updated x subsequently to T 's update and before T 's commitment. If x is dirty, then

T 's commitment renders it stale. However, since the assignment in Dirty{Stale is executed prior to the

commitment of T , x:stale holds, and the invariant still holds.

� Flushing x: According to our assumptions regarding bu�er management policy, 
ushing a page x always

renders it fresh (since only committed pages are 
ushed). Therefore, the invariant holds vacuously.

� Rule Flush{Fresh: Since this rule's execution follows immediately the 
ushing of x, x is fresh after the


ush, and hence falsifying x:stale preserves the invariant.

Thus, the invariant holds. 2

It should be realized that if x:stale holds it does not necessarily mean that x is indeed stale, however the

converse implication does hold, as stated in Lemma 1. Hence, notice that x:stale and \x is stale" are not

interchangeable.

Lemma 2. For all pages x, if x is not in the PDB, then x is fresh. Formally: (8x : x 62 PDB )

(backup[x] = committed[x])). 2

Proof. A backup page can be updated by either the bu�er manager or the propagator. If a page is not

in the PDB the propagator does not update it because of the Safe{Fetch rule. Regarding the bu�er manager,


ushing a page is allowed only if the page is committed. Therefore, all pages that are not in the PDB are fresh.

2

7 Improvements

In this section we present several possible enhancements and re�nements to the techniques we have presented

earlier.

7.1 Improving Restart Processing

Using the fresh/stale marking post-crash transactions can access fresh pages as soon as the system is up. An

attempt to access a stale page triggers the recovery of that individual page. The transaction that requested this

access is delayed until the page is recovered. Interestingly, aided by the marking, post-crash transactions can be

11



1. Each page x is assigned a boolean variable x:stale that is used for the stale/fresh marking. This set of

variables is the only data structure that is maintained in stable memory. All other data structures are kept

in volatile memory and are lost in a crash. We stress that the boolean variables are introduced only to

present the algorithm, and we do not intend to implement them directly.

2. Each transaction T is associated with a set, T:writeset, that accumulates the IDs of the pages it modi�es.

The algorithm is given by the following two rules, each of which includes assignment that is coupled with the

temporal event that triggers it:

� Dirty & Stale. Prior to the commit point of T : if (x 2 T:writeset ^ x:dirty) then x:stale := true

� Flush & Fresh. After 
ushing a dirty page x: x:stale := false

An assignment and its triggering event need not be executed as an atomic action. All that is required is that

no events that a�ect the variables we have introduced occur between the triggering event and the corresponding

assignment. The key idea in the algorithm is to always set x:stale to true just prior to the event that actually

causes x to become stale. As a consequence, a situation where x:stale holds but x is still fresh is possible.

Likewise, falsifying x:stale is always done just following the event that causes x to become fresh.

We illustrate the marking scheme with the following example.

Example 1. Consider the following three transactions

1

that read and write (R/W) the pages a; b and c.

T

11

= R=W (a); R=W (b)

T

12

= R=W (a); R=W (b)

T

21

= R=W (c); R=W (a)

The following sequence lists write operations of T

ij

on page x (w

ij

(x)), commit points of of T

ij

(c

ij

), and page


ushes (flush(x)) in their order of occurrence in a certain execution that is interrupted by a crash:

w

11

(a); w

11

(b); c

11

; flush(b); w

21

(c); w

21

(a); c

21

; flush(c); w

12

(a); w

12

(b); CRASH

After the crash, a:stale holds (by Dirty{Stale prior to c

21

), b:stale does not hold (by Flush{Fresh after flush(b)),

and c:stale also does not hold (by Flush-Fresh after flush(c)). Note that T

11

and T

21

are committed whereas T

12

has to be aborted. We say that T

11

and T

21

are winner transactions, whereas T

12

is a loser transaction. Using

the marking, only the updates of the winner transactions to page a need to be redone, since only a is marked

stale. 3

5.3 The Integrated Architecture

To summarize the integrated architecture we list the �ve components we have introduced and their corresponding

functionality. We refer the reader to Figure 1 for a schematic description of this architecture.

� Bu�er manager: Enforces no-steal policy.

� Accumulator: Operates entirely within the stable memory. Accumulates log records as they are produced

by transactions and forwards log records of committed transactions. In order to amortize page I/O, the

accumulator groups log records that belongs to the same page together, so that the propagator will apply

them all in a single I/O.

� Propagator: Applies page-updates to BDB based on Redo log records.

� Logger: Writes Redo log records to the log on disk

� Marker: Reacts to page 
ushes by the bu�er manager and BDB updates by the propagator and maintains

the fresh/stale marking in stable memory.

1

We use double subscripts for transactions since the same example is used again in the context of subtransactions in Section 8.

10



In this case, we are assured that all the updates have been applied to the BDB already (by the propagator) and

there is no need to 
ush the page.

Implementing Single{Propagation can be very e�ective in large memory systems, where we assume that paging

activity is quite rare. By the time a page needs to be 
ushed to the BDB, it is quite possible that all the

relevant updates have been propagated to the BDB by the propagator. We emphasize that incorporating Single-

Propagation is only for performance reasons, and has nothing to do with correctness. By enforcing Safe-Fetch and

Single-Propagation, the combination of propagator updates and page 
ushes as means for update propagation is

made optimal.

The log-driven backups technique ensures that the gap between the committed and backup images of the

database is not too wide. The technique is well-suited to MMDBs where most of the time all the accesses are

satis�ed by the PDB.

5.2 Stale/Fresh Marking

The goal of the marking technique is to enable very fast restart after a crash. The key observation is that

transaction processing can be resumed immediately as the system is up, provided that access to stale pages is

denied until these pages are recovered and brought up-to-date. An attempt by a transaction T to access a page

x triggers the following algorithm:

if x is stale then begin

fetch the backup image of x;

Retrieve all the relevant log records for x from the log;

Apply these log records to x's image in order to make x up-to-date;

end

Let T access x

To support this approach to restart, a stale/fresh marking that indicates which pages are (potentially) stale

needs to be implemented. The updates needed to bring a stale page up-to-date are always Redo updates because

of our assumptions. The log records with the missing updates can be found either in the log tail or on the log disk

according to the trade-o� presented earlier regarding the timing of discarding a log record from stable memory.

In [Lev91] we elaborate on how to support e�cient retrieval of the needed log records from a disk.

The stale/fresh marking of data pages is the crux of the algorithm. The marking enables resuming transac-

tion processing immediately after a crash, while preserving the consistency of the database. Typically, the log

stores enough information to deduce the stale/fresh status of pages. However, this information is not available

immediately. The marking also controls the recovery of data pages one by one according to the transactions'

demands. In order for the algorithm to be practical, it is critical to both maintain the stale/fresh marking in

main memory, as well as have it survive a crash. Therefore, we underline the decision to maintain the stale/fresh

marking in stable memory. We do not elaborate on how to manage the marking e�ciently. However, in light of

the scale of current databases, an appropriate data structure holding page IDs that supports e�ciently inserts,

deletes, and searches is deemed crucial. Observe that the functions of the analysis pass [MHL

+

90] in standard

restart procedures are captured by the stale/fresh marking, and are ready for use by restart without the need to

analyze the log �rst.

The partition of the set of the backup pages into a set of stale pages and a set of fresh ones varies dynamically

as transaction processing progresses. There are two events that trigger transitions in that partition:

� the commit event of an updating transaction, and

� the updates to BDB pages by either the bu�er manager or the propagator.

When a transaction commits, its dirty pages become stale since they were not written to the BDB (see rule

Dirty{Stale below). When 
ushing occurs, the transitions depend on whether the page is committed or not.

Since we enforce the no-steal policy, we consider only 
ushing a committed page | an event that makes the page

fresh (see rule Flush{Fresh below).

Based on the above transitions we present a reactive algorithm that manages a stale/fresh marking of pages

to indicate whether they are stale or fresh. In order to present the algorithm formally, we introduce the following

variables and conventions:

9



The pipeline of log records can be e�ciently mapped onto a multi-processor shared-memory architecture. In

particular, the propagator and the logger tasks can be carried out by dedicated processors. This way, recovery-

related I/O is divorced from the main processor that executes the transactions processing activity.

The timing of discarding log records from the stable memory presents a trade-o�. A log record may be

discarded only after it is written to the log disk by the logger. However, such an early discarding implies that

if the record has not yet been processed by the propagator, then its update will not be re
ected in the BDB

(since it skipped the propagator processing stage). The propagator can fetch the missing records from the disk

log but this would really delay the propagation. Alternatively, the pages whose updates where skipped by the

propagator can be marked stale (see below on how the marking is managed), thereby postponing handling of the

missing updates to a later time. These di�culties can be avoided when log records are not discarded from stable

memory before they have been processed by the propagator. However, the trade-o� arises as it is anticipated

that the propagator would lag behind the logger because the former performs random access I/O whereas the

latter performs sequential I/O. In [LS90] we analyze this trade-o� and propose to use a RAID I/O architecture

[PGK88] for the propagator in order to balance the I/O load between the logger and the propagator.

Independently from the log-driven activity, database pages are exchanged between the bu�er and the BDB,

as dictated by the demands of the executing transactions. The Bu�er Manager is in charge of this exchange. We

emphasize that the bu�er manager 
ushes only pages that re
ect updates of already committed transactions|

the no-steal policy. Observe that the principle of Redo-Only BDB is implemented by both sources of updates to

the BDB; the bu�er manager as well as the propagator.

Conceptually, the scheme could have been designed without 
ushing database pages at all. That is, propagating

updates by the propagator would have been the sole mechanism for keeping the BDB up-to-date. The problem

with such an approach is that page fetching must be delayed until the most recent committed values are applied

by the propagator. Such a delay of transaction processing is intolerable. Since only committed database pages are


ushed (no-steal bu�er management), 
ushing can serve as a very e�ective means for keeping the BDB up-to-date.

The fact that the BDB is updated by both the propagator and by 
ushing bu�ered pages must be considered

with care. First, one should wonder whether these double updates do not interfere with the correctness of this

scheme. Second, since two identical updates are redundant, one of them should be avoided for performance reasons.

Regarding correctness, a problem arises when the propagator writes an older image of a page, overwriting the

most up-to-date image that was written when the page was previously 
ushed by the bu�er manager. If the page

is fetched before the up-to-date images are written to the BDB by the propagator, transactions read inconsistent

data. The problem can be solved by imposing the following Safe{Fetch rule:

The propagator applies updates only to database pages that are in the PDB. Updates pertaining to

pages that are not in the PDB are ignored by the propagator.

Notice that because of this rule, a page that is fetched from the BDB was last modi�ed when it was 
ushed by

the bu�er manager. Therefore, the page is up-to-date when it is fetched to the PDB. The rule is referred to as

Safe{Fetch since it ensures that a page fetched from the BDB is always up-to-date (except for following a crash).

Implementing Safe{Fetch implies that the propagator should know which pages are in the PDB. We assume

that the propagator initially knows which pages are in the PDB, and it is noti�ed about each page replacement by

the bu�er manager. We assume that the propagator and the bu�er manager share some memory for this purpose.

Alternatively, since a single I/O controller serves I/O requests of both the propagator and the bu�er manager,

enforcing Safe-Fetch can be implemented by a smart controller. In any case, since page 
ushes are assumed to be

infrequent, implementing this rule should not incur too much of an overhead.

Besides the correctness aspect, Safe-Fetch enables the heavily loaded propagator to avoid processing some

log records. Safe-Fetch deals with cases where a page was 
ushed to the BDB before the corresponding updates

were applied to the BDB by the propagator. I/O activity can be reduced considering the opposite case too, by

imposing the following Single{Propagation rule:

When all of the log records corresponding to a page have been applied to the BDB by the propagator,


ushing that page to the BDB is useless. In such a case, the bu�er manager can simply discard the

page without issuing a 
ush to the BDB.

This rule can be easily implemented using the log-sequence-number (LSN) mechanism [MHL

+

90, Gra78]. Flushing

of the page can be avoided if the page's LSN is at most the LSN of the page that was last written by the propagator.

8



update markers

BDB

Fetch & Flush

monitors updates to BDB

Bu�er Manager

PDB

Redo-only Log Recs.

Log Recs.

Transaction Processing

Stale/Fresh Marking

Log Tail

Stable Memory

Accumulator

Logger

Propagator

Marker

Redo-only Log Recs.

Log

Figure 1: A Schematic View of the Architecture

7



We incorporate the above principles in the proposed architecture. We do not assume an entirely-resident

MMDB, in the spirit of the �rst principle. Consequently, we deal with bu�er management issues. The second

principle is enforced by insisting on using the no-steal bu�er management policy. Namely, only updates of

committed transactions are propagated to the BDB. This is an explicit assumption of our design.

The preservation of the third principle is the crux of the problem. Fortunately, stable memory is the technology

that enables promoting this principle. In the architecture we propose, the log tail is stored in stable memory.

Committing a transaction, thereby making its updates persistent, is guaranteed by writing the commit log record

to the log tail in stable memory. Any further recovery activity is totally separated from transaction processing.

We emphasize that in the architecture we propose the log tail is kept in stable memory (i.e., non-volatile RAM).

By making the fast stable memory the only point of friction between transaction and recovery processing we

achieve the goal of decoupling the two as much as possible.

5 The Incremental Techniques

There are two techniques that are integrated in our architecture:

� Log-driven backups: The key idea is to use log records as the means for propagating updates to the BDB

rather than relying on page 
ushes.

� Fresh/Stale Marking: Maintaining in stable memory a \freshness" status of each database page. Conse-

quently, restart processing is simpli�ed and made very fast.

We �rst review each of these techniques separately.

5.1 Log-Driven Backups

The 
ow of log records in our architecture is a central element to the understanding the log-driven technique.

The abstraction we are using here is that of a stream of log records that continuously 
ows from a component

to its successor in a pipelined fashion. These components manipulate the log records and pass them along to the

next component down the pipeline. The 
ow of log records is depicted schematically in Figure 1.

Log records are produced by active transactions as they access the PDB, and are appended to the log tail.

There, a component referred to as the accumulator processes the stream of log records as follows before it

forwards them to the next stage in the pipeline. Log records of active transactions are queued and delayed until

the transaction either commits or aborts. If a transaction aborts, its log records are used for the undoing of the

corresponding updates on the relevant PDB pages and then discarded. Log records of committed transactions

are grouped together on a page-basis and then transferred to the next stage in the pipeline. That is, all records

documenting updates to a certain database page are grouped together. Thus, the accumulator �lters out log

records of active and aborted transactions and forwards only log records of committed transactions grouped on a

database page basis. The accumulator operates entirely within the non-volatile stable memory. Observe that log

records that pass the accumulator are Redo-Only log records, and have no before-image information since they

document only committed updates.

Next in the pipeline are two parallel components: the logger and the propagator. The logger 
ushes log records

to the log disk in order to make room in the (limited-size) stable memory.

The task of the propagator is to update the BDB pages to re
ect the modi�cations speci�ed by the log records.

In order to amortize page I/O, the accumulator groups log records that belongs to the same page together, so that

the propagator will apply them all in a single I/O. Since the updates of the BDB are driven by the log records,

we coin the name log-driven backups accordingly.

Notice that the propagator applies to the BDB updates of only committed transactions. In e�ect, following the

accumulator, there are only Redo log records. These log records are grouped on a database page basis. They are

written to the log on disk by the logger, and are used to guide a continuous update of the BDB by the propagator.

When rearranging the log records, the accumulator can also reorder the records to minimize seek-time when the

propagator applies the corresponding updates to the BDB.

6



� Backup image. The image of x as found in secondary memory at this particular instance, regardless of

relevant log information. The backup image of x is denoted backup[x].

� Committed image. The image that re
ects the updates performed by the last committed transaction so far.

The committed image of x is denoted committed[x].

The committed image of a page may not be realized directly on either secondary or main memory. However,

it should always possible to restore the committed image by applying log records to the backup image. Following

a crash, the backup image of the database pages is available on secondary storage. It may not re
ect updates of

committed transactions (depending on the bu�er management policy) may re
ect updates of aborted ones. That

is, it di�ers from the committed image.

We use the term Primary Database (PDB) to denote the set of database pages that reside in main memory.

The set of backup pages stored on secondary storage is referred to as the Backup Database (BDB). The BDB is

an instance of the entire database, and the PDB is just a subset of the database pages.

Following a crash, the restart procedure brings the database up-to-date based on the BDB and the log. During

normal operation, updates to the PDB are propagated to the BDB keeping it close to being up-to-date (an activity

we refer to as checkpointing).

We use the following terminology to denote the properties of a page x. We say that:

� page x is dirty i� backup[x] 6= current[x]

� page x is stale i� backup[x] 6= committed[x]

� page x is up-to-date i� current[x] = committed[x]

Conversely, when x is not dirty, we say that x is clean, and similarly we say that x is fresh when it is not stale. It

follows from our de�nitions that a page that does not reside in main memory is clean. These three notions (dirty,

stale, up-to-date) are central to recovery management.

We use the variable x:dirty to denote the clean/dirty status of page x. Whenever a PDB page is updated this

variable is set. Conversely, once a page x is 
ushed, x:dirty is cleared and we say that x:clean holds.

In the sequel, x:dirty is interchangeable with the phrase \x is dirty", and similarly for x:clean and \x is

clean". Formally: (8x : (backup[x] 6= current[x]) � x:dirty). Notice that using our terminology, a page may be

dirty and up-to-date. Such a situation arises when the committed image of the page has not been propagated to

the BDB.

4 Principles Underlying the Architecture

First, we list the principles that should constitute a good design of a recovery component for a MMDB.

� Large memory and larger database. The database systems for which we target our study are characterized by

having a very large database bu�er, and an even larger physical database. It is assumed that by exploiting

the size of the bu�er, the disk-resident portion of the database is accessed infrequently. By adhering to this

principle, we guarantee that the approach capitalizes on the performance advantages o�ered by MMDBS,

without precluding the possibility of having some portions of the database on secondary storage.

� Redo-only BDB. Having a very large bu�er, it is anticipated that page replacements are not going to be very

frequent or very urgent. Therefore, there is no need to complicate recovery by propagating uncommitted

updates to the BDB (i.e., the steal policy [HR83] should not be used). By enforcing this principle, a stale

page is brought up-to-date by only redoing missing updates; there are no updates to undo. This principle

will contribute to fast and simple recovery management.

� Decoupling of transaction and recovery processing. Transaction processing should be interrupted as little

as possible by recovery-related overhead. Otherwise, as noted earlier, the performance opportunities in

MMDBs would remain unexploited. This principle can be satis�ed only by virtually separating recovery

and transaction processing.

5



2.2 Restart Processing

The notion of a restart procedure is common to a variety of transaction processing systems that rely on logging

as a recovery mechanism. After a system crash, the restart procedure is invoked in order to restore the database

to its most recent consistent state. Restart has to undo the e�ects of all incomplete transactions, and to redo the

committed transactions, whose e�ects are not re
ected in the database. Restart performs its task by scanning

a su�x of the log. In some cases there are up to three sweeps of the su�x of the log (analysis, forward, and

backward sweeps [Lin80, MHL

+

90]).

There are two major activities that contribute to the delay associated with restart processing. First, the

log su�x must be read from disk to facilitate the undoing and redoing of transactions. Second, bringing the

entire database up-to-date triggers a signi�cant amount of updates that translate to substantial I/O activity. The

interval between consecutive checkpoints largely determines how long performing these two activities would take

[Reu84, CBDU75]. The longer the interval, more log records are generated and accordingly more transactions are

to be undone and redone by restart. The key point is that normal transaction processing is resumed only after

restart's termination. That is, standard restart processing is accounted as part of the down-time of the system.

The maximum tolerable down-time is a very important parameter, and in certain cases the delay caused by

executing restart is intolerable. In systems featuring high transaction rates, for instance, restart has to be fast

since even a short outage can cause a severe disruption in the service the system provides [Moh87]. We argue

that the standard approach to restart is not appropriate in an advanced database management systems featuring

huge storage capacity and high transaction rates, since recovering the entire database by replaying the execution

would contribute signi�cantly (in the order of minutes) to the down-time of the system.

3 A Page-Based Recovery Model

In the sequel we use the following terms and assumptions to de�ne our model. The model is simpli�ed for ease

of exposition.

On the lowest level, a database can be viewed as a collection of data pages that are accessed by transactions

issuing read and write operations. Pages are stored in secondary storage and are transferred to main memory

bu�er to accommodate reading and writing. A bu�er manager controls the transfer of individual pages between

secondary and main memory by issuing 
ush and fetch operations to satisfy the reading and writing requests of

executing transactions. Flush transfers and writes a page from the bu�er to secondary storage. Flushing a page

to secondary storage is made atomic by stable storage techniques (e.g, [Lam81]). A page is brought to the bu�er

from secondary storage by issuing the fetch operation. If the bu�er is full, a page is selected and 
ushed, thereby

making room for the fetched page. It is assumed that executing a read or a write is not interrupted by page


ushes.

Abstractly, a log is an in�nite sequence (in one direction) of log records which document changes in the database

state. A su�x of the sequence of log records is stored in a log bu�er in memory, and is occasionally forced to

secondary storage, where the rest of the log is safely stored. We refer to the portion of the log in main memory

as the log's tail. Whenever a page is updated by an active transaction, a record that describes this update is

appended to the log tail. In order to save log space, each update log record includes only the old and new state

(also called the before and after images) of the a�ected portion of the updated page, along with an indication of

that portion (e.g., an o�set and length of a�ected portion) [Lin80]. Such a logging method is called entry logging

(or partial physical logging).

Concurrency control is achieved through the use of a locking protocol. Appropriate locks must be acquired

prior to any access to the database pages. We emphasize that (at this stage) locking granularity is entire pages,

and that the protocol produces strict schedules with respect to pages [BHG87]. Granularity of locking is re�ned

in Section 8. Strict locking means that only one active transaction can update a page, at any given instance.

In order to present our algorithms formally and precisely we introduce the following terminology and notation.

At any given instance there are three images (or states) associated with each page x:

� Current image. If x is currently in main memory then its image there is its current image; otherwise its

current image is found in secondary memory. The current image of x is denoted current[x].

4



in an incremental fashion, concurrently with, and without impeding, transaction processing. The algorithms

we propose are motivated by the characteristics of an MMDB and exploit the technology of stable memory in a

genuine manner that di�ers from the numerous proposals for using these devices in transaction processing systems

(e.g., [Eic87, DKO

+

84, LC87, CKKS89]).

The techniques we propose concentrate on incremental approach to restart processing and checkpointing in

MMDBs. We devise a scheme in which transaction processing resumes at once after a crash. Restoring data

objects is done incrementally and is guided by the demand of the new transactions. Our checkpointing scheme

capitalizes on the performance advantages of MMDBs without precluding the possibility of having some portions

of the database on secondary storage. The scheme's main feature is decoupling of recovery processing and

transaction execution, thereby almost eliminating the common e�ect of the former delaying the latter. The work

reported in this paper is a continuation of our earlier work in this area [Lev91, LS90].

Our intention in this paper is to emphasize the principles of an incremental approach to recovery processing

rather than present an involved implementation. We �rst develop incremental recovery techniques that are

based on physical entry logging for a simple page-based model. Then we use this algorithm as a module in the

construction an incremental restart algorithm based on operation logging and multi-level transactions.

The paper is organized as follows. In Section 2 we brie
y survey why conventional recovery techniques are

not suitable for MMDBs. Section 3 outlines a page-based recovery model that is used in the construction of the

lower layer of our architecture. The model and terminology established in this section are used in the rest of the

paper. The principles that should underlie a sound design are presented in Section 4. The incremental techniques

we propose are described in Section 5, and proved correct in Section 6. Several improvements to the architecture

are proposed in Section 7. The applicability of our methods for high-level recovery management, which is not

page-based, is elaborated in Section 8. Related work is reviewed in Section 9. We sum up with conclusions in

section 10.

2 The De�ciencies of Conventional Approaches

We concentrate on the subjects of checkpointing a large bu�er, and restart processing. Later, we propose an

integrated solution for these problems that does not possess the de�ciencies outlined in this section and thus is

more suitable for MMDBs.

2.1 Checkpointing a Large Bu�er

To illustrate the problem of checkpointing large bu�ers, consider the direct checkpointing technique, variants of

which are o�ered as the checkpoint mechanism for MMDBs [Eic87, SGM87a]. A direct checkpoint is a periodic

dump of the main memory database to disk, and is essential for the purposes of recovering from a system crash.

Consider a naive checkpointing algorithm which simply halts transaction processing and dumps the main memory

database to disk. For a database size in the order of Gbytes, execution of this algorithm takes hundreds of seconds

during which no transactions are processed! Moreover, as sizes of databases and memory chips are increasing

rapidly, the problem will become more severe. Indeed, contemporary direct checkpointing algorithms are much

more sophisticated and e�cient than this naive algorithm, but still the periodic sweep of the main memory that

guides the dumping to the disk is the basis to all of them. Therefore, any variation of direct checkpointing is

bound to delay transaction processing to a considerable extent.

Many of the proposed algorithms and schemes for MMDBs rely on the explicit assumption that the entire

database is memory-resident [GMS90, LN88, SGM87b, DKO

+

84]. Although other proposals acknowledge that

this assumption is not valid for practical reasons, the issue is not addressed directly in their designs [LC87, Hag86,

Eic86]. Even though the size of main memory is increasing very rapidly the size of future databases is expected to

increase even more rapidly. Indeed, there are a number of commercial database management systems in existence

with a Tera byte or more of active data. We stress that the assumption that the database is only partially

memory-resident must underlie a practical design of a practical database system.

3



1 Introduction

The task of a recovery manager in a transaction processing system is to ensure that, despite system and trans-

action failures, the consistency of the database is maintained. To perform this task, book-keeping activities are

performed during the normal operation of the system and restoration activities take place following the failure.

Traditionally, the recovery activities are performed in a quiescent state where no transactions are being processed.

For instance, following a crash, transaction processing is resumed only once the database is brought up-to-date

and its consistency is restored by a restart procedure. Essentially, restart processing is accounted as part of the

down-time of the system, since no transactions are processed until it terminates. A similar e�ect of halting, or

interfering with, transaction processing in order to perform a recovery-related activity is observed in connection

with certain checkpointing techniques. To checkpoint a consistent snapshot of the database, transaction pro-

cessing has to halt. The appealing alternative is to perform these activities incrementally and in parallel with

transaction execution.

This fundamental trade-o� between recovery activities and forward transaction processing is underlined in a

database system incorporating very large semiconductor memory (in the order of Gbytes). Such Main Memory

Database systems are subsequently referred to as an MMDBs (see [Bit86], and the references there for an overview

of di�erent aspects of MMDBs). The potential for substantial performance improvement in an MMDB is promis-

ing, since I/O activity is kept at minimum On the other hand, because of the volatility of main memory, the

issue of failure recovery becomes more complex in this setting than in traditional, disk-resident database systems.

Moreover, since recovery processing is the only component in a MMDB that must deal with I/O, this component

must be designed with care so that it would not impede the overall performance.

Another advancement in semiconductor memory technology is that of non-volatile RAM, which is referred

to, hereafter, as stable memory. An example of stable memory technology is battery-backup CMOS memories

that are widely available [CKKS89]. In case of a power failure, the contents of this memory are not lost. Stable

memories are available in sizes on the order of tens of megabytes and have read/write performances two to four

times slower than regular RAMs, depending on the hardware. The reader is referred to [CKKS89] for more details

on this technology.

The traditional approach to recovery has to be revisited in light of he availability of large main memories

and stable memories. On the one hand, traditional recovery techniques fall short of meeting the requirements of

high-performance databases systems that incorporate very large volatile bu�ers. In such systems, the trade-o�

between recovery and forward processing is sharpened and made more critical. On the other hand, by their

nature, stable memory devices are bound to advance the design of a recovery management subsystem.

The following points explain the impact of large main memories and stable memories on the approach to

recovery:

� The larger the database bu�er, the less page replacement occurs. Therefore, in database systems where the

database bu�er is huge, paging cannot be relied upon as the primary mechanism for propagating updates

to backup database on disk, since paging is expected to be a relatively rare activity. Many recent research

e�orts go to the extreme with this trend arguing that there are cases where the entire database can �t

in memory, thus eliminating paging entirely (e.g., [DKO

+

84, LN88, GMS90, SGM87a]). With infrequent

page replacements, checkpointing and keeping a stable copy of the database may become a very disruptive

function.

� Typically, persistence and atomicity of transactions is guaranteed by performing disk I/O at certain critical

points (e.g., 
ushing a commit log record at the end of transaction). Stable memory enables divorcing

atomicity and persistence concerns from slow disk I/O. This simple, yet promising, approach was explored

in [CKKS89, DKO

+

84].

� Traditionally, a sequential I/O method, namely logging, is used to accommodate e�ciently the book-keeping

needs of the recovery management system. Consequently, this information is a sequence of log records

lacking any helpful structure or organization. The availability of a stable memory provides the means for

maintaining some of the recovery book-keeping information in randomly accessible and fast memory.

In light of the above factors, we propose an alternative to the traditional approach to recovery management

in database systems. Our approach is based upon the principle that recovery activities should be performed

2



Incremental Recovery In Main Memory Database Systems

�

Eliezer Levy

Avi Silberschatz

avi@cs.utexas.edu (512) 471-9706

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712

Abstract

In traditional database management systems, recovery activities, like checkpointing and restart, are

performed in a quiescent state where no transactions are active. This approach impairs the perfor-

mance of on-line transaction processing systems. Recovery related overhead is particularly troublesome

in an environment where a large volatile memory is used. The appealing alternative is to perform

recovery activities incrementally and in parallel with transaction execution. An incremental scheme

for recovery in main memory database systems is presented in this paper. We propose a page-based

incremental restart algorithm that enables the resumption of transaction processing as soon as the

system is up. Pages are recovered individually and according to the demands of the post-crash transac-

tions. In addition, an incremental method for propagating updates from main memory to the backup

database on disk is also provided. Here the emphasis is on decoupling the I/O activities related to

the propagation to disk from the forward transaction execution in memory. Finally, we construct a

high-level recovery manager based on operation logging on top of the low-level page-based algorithms.

The algorithms we propose are motivated by the characteristics of main memory database systems,

and exploit the technology of non-volatile RAM.

Keywords

Transaction management; Recovery; Main-Memory Databases

�

Work partially supported by grants from Unisys Roseville Operations, the National Science Foundation (IRI-8805215, IRI-

9003341, IRI-9106450), and the IBM corporation.

1



INCREMENTAL RECOVERY IN

MAIN MEMORY DATABASE SYSTEMS

Eliezer Levy and Avi Silberschatz

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712-1188

TR-92-01 January 1992

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712


