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can be adopted for such purposes, but this deserves separate attention. On the other hand, since t
log-driven design is predicated on a partial-residence assumption, it can accommodate partially-reside
databases efficiently by enforcing rules Safe-Fetch, and Single- Propagation.

e above comparison favors the log-driven approach. Among the rest, fuzzy algorithms seem to be close co
titors. We note that fuzzy algorithms stand out (considering CPU overhead during normal operation) accordi
the performance evaluation studies of Salem and Garcia-Molina [SGM87b].

We should note that other methods that are log-driven in spirit can be found in [Eic86] and [LN88]. Tt
eresting to note that in [Eic86], log records of a transaction are marked after the transaction has committ
that only log records of committed transactions would affect the BDB. It should also be mentioned that a I
ven approach is often used to manage remote backups for disaster recovery purposes (e.g., [KGMHP88, Tan8’

) Conclusions

e increasing size of contemporary databases; and the availability of stable memory and very large physi
mories are bound to impact the requirements from, and the design of recovery components. In particular, -
~ckpointing and restart processing, the traditional approach becomes inappropriate for high rates of transactic
d very large databases. An incremental approach, that exploits the new technological advances, is a natu
ution. In this paper we described in a high-level manner such a solution.

The main thrust of this paper is the design of recovery techniques in a manner that would allow their
leaving with normal transaction processing. The techniques exploit stable memory and are geared to me
> demands of systems that incorporate large main memories. We have proposed both restart algorithm (cal
-remental restart) and a checkpointing-like technique (called log-driven backups) that operate in an incremen
winner, n parallel with transaction processing. The prominent original concepts motivating our design are
lows:

e Associating restoration activities with individual data objects, and assigning priorities to these activit
according to the demand for these objects. Consequently, recovery processing is interleaved with norn
transaction processing. By contrast, the conventional restart procedure for example, treats the database
a single monolithic data object, and enables resumed transaction processing only after its termination.

e A direct consequence of the previous point is the grouping of recovery-related information (e.g., log recor
on data objects basis. This structuring is aimed to facilitate the efficient restoration of individual d:
objects.

e Carrying out recovery processing and transaction execution in parallel implies decoupling the respect:
resources to reduce contention as much as possible. In the log-driven backups technique both data a
processing resources for checkpointing are separate from the resources required for forward transacti
processing.
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Delaying restart activities was first described in [Rap75]. There, restart does not perform any recovery activi
stead, reading a data item triggers a validity check that finds the committed version of the data item that shot
read. The incremental restart procedure we propose resembles this early work in that data items are recover
ly once they are read.

A more conventional approach to speeding up restart is proposed in [MP91] in the context of the ARI
msaction processing method. The idea there is to shorten the redo pass of conventional restart by performi
ective redo. Instead of repeating the history by redoing all the actions specified in the log, only those actic
>cified in winner log records are redone. It is also mentioned there that undo of loser transactions can
erleaved with the processing of new transactions if locks (similar to RS-locks) protect the uncommitted d:
ms updated by the loser transactions. During the analysis pass of restart, the identity of these data items
covered, whereas in our scheme such data items are already marked as stale.

The concept of deferred restart (which is similar to incremental restart) is discussed in [MHLT90] also in t
itext of ARIES. Tt is mentioned that in IBM’s DB2 redo/undo for objects that are off-line can be deferr:
e system remembers the LSN ranges for that objects and makes sure that they are recovered once they :
>ught on-line and before they are made accessible to other transactions. DB2 employs physical, page-le
ging. Problems related to logical undoing and deferred restart are also discussed in [MHL190]. Our we
fers from the ARIES work in exploiting stable memory and as it presents a simple algorithmic description
> fundamentals of incremental restart in the context of both physical and operation logging.

Another noteworthy approach to fast restart is the Database Cache [EB84]. There, dirty pages of acti
nsactions are never flushed to the backup database. At restart, the committed state 1s constructed immediat

loading the recently committed pages from a log device (called safe there). The main disadvantages
s approach are that locking is supported only at the granularity of pages, full-page physical logging is us
contrast to our entry logging, update-intensive transactions need to be treated specially, and that comr
scessing includes a synchronous I/0O. The DB cache idea is refined to accommodate finer granularity locki

[MLC87], however this extension does not deal with operation logging and concurrency among semantica
mpatible operations.

Work on improving restart processing is reported in [Moh91]. The approach there is to adapt the pas;
traditional restart and admit new transactions during these passes. Also, associating freshness status w
committed pages is discussed there and in [Moh90].

A thorough survey of different MMDBS checkpointing policies, their impact on overall recovery issues, a
ir performance can be found in [SGM87b].

Next, we compare our log-driven backups scheme with several variations of MMDBS checkpointing (e.

KO*84, Pu86, Hag86]).

e Checkpointing interferes in one way or another with transaction processing, since both activities comps
for the PDB and the main CPU. Taking a consistent checkpoint requires bringing transaction activity
a quiescent state, since a transaction-consistent checkpoint reflects a state of the database as produced
completed transactions. In the extreme case, transactions have to be aborted to guarantee the consisten
of the checkpoint [Pu86]. Even in fuzzy algorithms, which do not produce consistent checkpoints [Hag8
memory contention is inevitable since both normal transactions and the checkpointer must access the ve
same memory. By contrast, in the log-driven backups scheme, transaction processing and propagation to t
BDB do not use the same memory and may use different processors. This separation is the key advant:
of the scheme.

o It has been observed in [SGM8&7b] that consistent checkpoints must be supported by two copies of t
database on secondary storage, since there is no guarantee that the entire checkpoint will be atomic. Mc
precisely, there 1s always one consistent checkpoint of the entire database on secondary storage that v
created by the penultimate checkpoint run, while the current run creates a new checkpoint. This probl
does not arise in the log-driven backups technique since the propagation to the BDB is continuous and 1
periodic.

e It is not clear how checkpointing algorithms can be adjusted to support our assumption of a partially reside
database. The correctness of these algorithms may be jeopardized by arbitrary fetching and flushing
database pages. It seems that fuzzy checkpointing, which is the simplest type of checkpointing algorithr



HL*T90, Gra78]. In our case, since updates are not propagated before the commit of an operation, the W.
e means that the high-level undo record should be written to the high-level log prior to the commit point
> corresponding operation.

By structuring the high-level recovery on top of our incremental restart method, we intend to give the over
overy scheme incremental flavor. The major challenge in making this multi-level recovery scheme incremen
the fact that we can no longer treat single pages as the individual unit for recovery, since operations affe
reral pages. Had we used single pages, we would have violated the high-level action atomicity requireme
ntioned above. For this reason we devise the notion of a recovery unit (RU). An RU is a set of pages, such t!
is not possible for any high-level operation to affect more than one RU. For instance, if an INSERT operati
used for updating both index and data files, then the index and the corresponding data file constitute an R
is the responsibility of the base recovery to bring an RU to an operation-consistent state before any high-le
do can be applied to it.

When a post-crash transaction requests to access an RU, the incremental restart algorithm is applied to all t
ges of that RU. Once this phase 1s completed, the RU is in an operation-consistent state. Then, the high-le
overy brings the RU to its committed state by applying the high-level undo operations for loser transactic
the reverse order of the appearance of the corresponding log records. To facilitate fast restoration of individ
Js, high-level log records should be grouped on an RU basis on the high-level log (see [Lev91] for techniques
uping log records). A high-level undo operation is treated as a regular operation, keeping both base and hij
el logging in effect. Care should be taken to undo only operations whose effect actually appears in the back
tabase (the high-level action idempotence requirement of [WHBM90]). Therefore, the base recovery passes
> high-level recovery an indication which of the operations of loser transactions were winner operations, a
nce were redone, in the base recovery phase.

By partitioning the database to RUs the incremental effect is obtained. RUs can be of coarse granulari
reby diminishing the benefits of incremental restart. For example, an entire relation and the correspondi
lex structure must be recovered before a post-crash transaction may read any of the tuples. This observati
ls for as small RUs as possible.

Example 2. Consider again the three transactions of Example 1. This time, however, 71; and Tis :
sh-level operations (subtransactions of 71), and T3 is the sole operation of T5. The same sequence of events
>d. The stale/fresh marking of a, b and ¢, and the winner/loser status of the operations remain as in Exam;
n this execution. Pages a, b and ¢ constitute an RU, and the high-level log for that RU is as follows (
resent the logged undo information for operation T;; as undo(T5;)):

undo(T11), undo(Ta1), ca, undo(Ti2)

terms of transactions, 7T is a loser, whereas 75 is a winner. Base recovery for the three pages takes pl:
actly as in Example 1 (i.e., only page a is recovered). In the high-level recovery phase, only T35 is undone, sir
, was a loser in the base-level.

The presented scheme is not efficient mainly since it performs excessive log I/O while committing the hig
el operations. A more efficient version of the scheme would probably employ the improvements outlined
> second approach in [WHBM90]. The goal of presenting the above scheme was only to demonstrate h
remental restart can be used as the base for a more complex and higher-level recovery, using the modu

ti-level model of [WHBM90].

Related Work

e work reported in this paper is a continuation of our earlier work in this area [Lev9l, LS90]. A gene
le/fresh marking algorithm that is not based on no-steal buffer management is presented in [Lev9l].

A proposal for incremental restart is presented in [LC87] in the context of a main-memory database (MMD]
1wble memory 1s used extensively to implement this approach. There are several aspects that distinguish c
rk from the work on [LC87]. Some aspects there are peculiar to entirely-resident MMDBs. Namely, there is
1sideration of paging activity. Integrating full-fledged operation logging is not discussed in [LC87] at all. Al
le/fresh partition and the improvements it entails are lacking from the work in [LC87].
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common way of enhancing concurrency is the use of semantically-rich operations instead of the more primit
ad and write operations. Having semantically-rich operations allows refining the notion of conflicting vers
nmutative operations [BR87, Wei88]. Tt is possible to examine whether two operations commute (i.e.,

t conflict); such operations have the nice property that they can be executed concurrently. Semantics-bas
rcurrency control is often cited as a very attractive method for handling high contention to data (i.e., ‘I
ots”) [MHLT90, BR87, WeiB8]. The problem, however, is that the simple state-based (i.e., physical) recove
thods no longer work correctly in conjunction with these operations. Only operation logging, referred to a

logical-transition logging [HR83], can support this type of enhanced concurrency. For instance, consider t
-rement and decrement operations which commute with each other and among themselves. A data item can
remented concurrently by two uncommitted transactions. If one of the transactions aborts, its effect can
done by decrementing the item appropriately. However, reverting to the before image may erase the effects
> second transaction also, resulting in an inconsistent state.

One of the problems of using operation logging is that the logged high-level operations may be implement
a set of lower-level operations, and hence their atomicity is not guaranteed. Therefore, when logged operatic
> undone or redone after a crash, they should not be applied to a backup database that reflects partial effe
operations. Therefore, a key assumption in any operation logging scheme is that operations must appear
>ugh they were executed atomically. This requirement is a prerequisite to any correct application of operati
- records to the BDB at restart time, and is referred to as high-level action atomicily in [WHBM90]. As
1stration, we mention System R [G181] which employs operation logging. There, at all times, the BDB is in
eration-consistent state — a state that reflects the effects of only completed operations, and no partial effe
operations. This property is obtained by updating the BDB atomically, and only at checkpoint time, usi
hadowing technique [Lor77]. At restart, the operation log is applied to the consistent shadow version of t
tabase.

The problem of implementing operation logging is best viewed as a multi-level recovery problem. A ve
gant and simple model of (standard, non-incremental) multi-level recovery is introduced in [WHBM90].
at follows, we make use of that model to construct an incremental multi-level recovery scheme.

A transaction consists of several high-level operations. A high-level operation is defined over fine-granular
ms (e.g, tuples, records), and is implemented by several base-level primitives that collectively may affect me
an a single page. The base level primitives are read and write that affect single pages—primitives that :
nsistent with our page-level model.

In other words, transactions are nested in two levels. Serializability of transactions is enforced by a multi-le
rcurrency control that uses strict two-phase locking at each level [BSW8S].

Recovery is also structured in two levels. Our page-based incremental method constitutes the base recove
ensures persistence and atomicity of higher-level operations and not of complete transactions. That is, t
rh-level operations are regarded as transactions as far as the base recovery module is concerned. Persistence
ommitted transaction is obtained as a by-product of the persistence of its operations (i.e., if all operations o
nsaction have committed, then the transaction itself has committed). Observe that both the log-driven backu
d marking algorithms refer to operations rather than transactions in the current context. Any occurrence o
nsaction there should be substituted with an operation.

We still require that dirty pages are not flushed unless the operation that updated them is committed (i.
-steal policy with respect to operations is enforced). This is not a major restriction since operations update
all number of pages. Imposing this restriction also helps avoiding the extra overhead due to the hierarchi
ering. Consequently, the log of the base recovery, called the base log, is a redo log and there is no need
rform base-level undo at restart.

The high-level recovery is based on operation logging and it guarantees atomicity of complete transactio
e high-level log is separate from the base log and it holds only high-level undo information. The high-le
1do log does not participate in the log-driven backups flow, and may, in fact, be implemented as a traditional ]
disk. The overall plan is to use the base recovery to redo committed transactions and committed operatio
reby bringing the BDB to an operation-consistent state, and then apply high-level undo in order to undo t
erations of loser transactions.

Since the high-level log deals with Undo log records, it should obey the Write-~Ahead-Log (WAL) r1
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Figure 2: Lock compatibility matrix.

owed even greater flexibility. Indeed, stale pages cannot be read by post-crash transactions; however, writi
ta items in a stale page is possible.

One way to view this improvement is to consider a new type of locks, called restart locks, that lock all st
ges, and no other pages, after a crash. An imaginary restart transaction acquires these locks as soon as t
stem 1s rebooted and before post-crash transactions are processed. In Figure 2, we present the lock compatibil
wtrix for the three lock modes read (R), write (W), and restart (RS). Since restart locks are not requeste
t rather are held by convention by the restart transaction, the compatibility matrix lacks the request colur
- the new lock type. An entry with “X” in this table, means that the corresponding locks are incompatible.

Observe that restart locking does not interfere with the normal concurrency control. This can be shown
serving that the imaginary restart transaction is a two-phased transaction that is serialized before any po
ish transaction that attempts to access a stale page. Also, restart locking cannot introduce deadlocks, sir
> restart transaction is granted the RS locks on all the stale-marked pages unconditionally at reboot time.

An RS lock held on a stale page x is released when the page is brought up-to-date. This happens only wh
s explicitly brought up-to-date by the incremental restart procedure, by applying log records to the back
age.

A write of a stale page results in an update log record containing only the after image of the update, sit
> page has not been recovered yet. Such a log record will actually affect the relevant page once the page
overed and brought up-to-date (unless the transaction that generated the record aborts).

In summary, the above protocol allows post-crash transactions to be processed concurrently with the inc
ntal restart processing. Some transactions are scheduled without being delayed by the recovery activity at :
d some are delayed only as a result of recovering data items they need.

2 Further Improvements

this subsection, we briefly mention several points that can further improve an implementation of the incremen
tart algorithm.

e RS-locking can be used to combine incremental and standard restart for different sets of pages, there
avoiding the need to maintain stale/fresh marking for too many pages. The set of pages that are recover
using standard restart should be RS-locked until they are made consistent. Only predicted ‘hot spot’ de
can be supported by incremental restart (and the stale/fresh marking). This improvement allows a ve
attractive and flexible use of incremental restart even in very large databases.

e Background process(es) can recover the remaining portions of the database, while priority process(es) reco
pages demanded by executing transactions. Once a page is recovered and made consistent, the RS lock ¢
be released. This technique provides even greater concurrency between restart and transaction processir

e It is not necessary to log restart activities in order to guarantee its idempotence. It is advised, though,
flush previously stale pages that are made up-to-date, thereby marking them fresh. Doing this will se
recovery efforts in case of repeated failures.

e Assuming a very large number of pages for which stale/fresh marking is managed using a sophisticat
data structure, updating the marking data structure can become a bottleneck. A queue in stable memc
that records recent updates to the marking can prevent this undesirable phenomenon. Applying the queu
updates to the actual marking data structure can take place whenever the CPU is not heavily loaded.



Correctness Aspects

> prove two claims that underlie the correctness of our integrated architecture. The correctness of the marki
orithm is stated concisely by the hypothesis of Lemma 1 below:

Lemma 1. At all times, in particular following a crash, if a page x s stale then x.stale holds. Formai
v : (backuplx] # committed[x]) = x.stale) is invariant.

Proof. Consider the state space formed by the variables we have introduced. We model the executi
transactions and fetching and flushing of pages, as transitions over that state space. We prove the claim
>wing that the invariant holds initially and that it is preserved by each of these transitions.

Assuming that initially all pages are fresh, the invariant holds vacuously when the algorithm starts. Flus
r a page is modeled as an assignment to backup[z], and committing a page is modeled as an assignment
mmitted[z]. There are four state transitions that may affect the validity of the invariant: an execution
> assignment statement specified in one of the rules Dirty-Stale, Flush—Fresh, the commitment of an updati
msaction, and the flushing of a page. We prove that the invariant holds by showing that each of these st:

nsitions preserves the invariant:
e Rule Dirty—Stale: Under no circumstances setting z.stale to true can violate the invariant.

e Commit of T: Consider an arbitrary page x updated by the just committed transaction T' (i.e., x
T.writeset). Since a strict concurrency protocol is employed at a page level, we are assured that no otl
transaction has updated z subsequently to 7”s update and before T’s commitment. If x is dirty, th
T’s commitment renders it stale. However, since the assignment in Dirty—Stale is executed prior to t
commitment of T', x.stale holds, and the invariant still holds.

e Flushing z: According to our assumptions regarding buffer management policy, flushing a page « alwe
renders it fresh (since only committed pages are flushed). Therefore, the invariant holds vacuously.

e Rule Flush—Fresh: Since this rule’s execution follows immediately the flushing of z, x is fresh after t
flush, and hence falsifying «.stale preserves the invariant.

us, the invariant holds.

It should be realized that if x.stale holds it does not necessarily mean that x is indeed stale, however t
wverse implication does hold, as stated in Lemma 1. Hence, notice that x.stale and “x is stale” are 1
erchangeable.

Lemma 2. For all pages x, if » is not in the PDB, then x is fresh. Formally: (Vo : « & PDB
wckuplz] = committed[z])).

Proof. A backup page can be updated by either the buffer manager or the propagator. If a page is 1
the PDB the propagator does not update it because of the Safe—Fetch rule. Regarding the buffer manag
shing a page is allowed only if the page is committed. Therefore, all pages that are not in the PDB are fre:

Improvements

this section we present several possible enhancements and refinements to the techniques we have present
rlier.

1 Improving Restart Processing

ing the fresh/stale marking post-crash transactions can access fresh pages as soon as the system is up. .
empt to access a stale page triggers the recovery of that individual page. The transaction that requested t|
ess 18 delayed until the page is recovered. Interestingly, aided by the marking, post-crash transactions can



1. Each page z is assigned a boolean variable z.stale that is used for the stale/fresh marking. This set
variables 1s the only data structure that is maintained in stable memory. All other data structures are ke
in volatile memory and are lost in a crash. We stress that the boolean variables are introduced only
present the algorithm, and we do not intend to implement them directly.

2. Each transaction 7" is associated with a set, T.writeset, that accumulates the IDs of the pages it modifi

The algorithm is given by the following two rules, each of which includes assignment that is coupled with t
nporal event that triggers it:

e Dirty & Stale. Prior to the commit point of T: if (& € T.writeset A x.dirty) then x.stale := true
e Flush & Fresh. After flushing a dirty page z: x.stale := false

| assignment and its triggering event need not be executed as an atomic action. All that is required is tl
events that affect the variables we have introduced occur between the triggering event and the correspondi
ignment. The key idea in the algorithm is to always set x.stale to true just prior to the event that actua
1ses & to become stale. As a consequence, a situation where z.stale holds but x is still fresh 1s possib
cewise, falsifying x.stale is always done just following the event that causes & to become fresh.

We illustrate the marking scheme with the following example.

Example 1. Consider the following three transactions® that read and write (R/W) the pages a, b and c.

T, = R/W(a), R/W(b)
Tis = R/W(a), R/W(b)
Ty = R/W(e), R/W(a)

e following sequence lists write operations of T;; on page & (w;;(z)), commit points of of T;; (¢;;), and pe
shes (flush(x)) in their order of occurrence in a certain execution that is interrupted by a crash:

wii(a), wii(b), c11, flush(b), wai(c), wai(a), car, flush(c), wia(a), wia(b), CRASH

ter the crash, a.stale holds (by Dirty-Stale prior to ca1), b.stale does not hold (by Flush-Fresh after flush(b
d c.stale also does not hold (by Flush-Fresh after flush(c)). Note that T1; and T5; are committed whereas ’
s to be aborted. We say that T7; and 75 are winner transactions, whereas T}9 is a loser transaction. Usi
> marking, only the updates of the winner transactions to page @ need to be redone, since only a is mark
Je.

3 The Integrated Architecture

summarize the integrated architecture we list the five components we have introduced and their correspondi
ictionality. We refer the reader to Figure 1 for a schematic description of this architecture.

e Buffer manager: Enforces no-steal policy.

e Accumulator: Operates entirely within the stable memory. Accumulates log records as they are produc
by transactions and forwards log records of committed transactions. In order to amortize page 1/0, t
accumulator groups log records that belongs to the same page together, so that the propagator will ap;
them all in a single /0.

e Propagator: Applies page-updates to BDB based on Redo log records.
o Logger: Writes Redo log records to the log on disk

e Marker: Reacts to page flushes by the buffer manager and BDB updates by the propagator and mainta
the fresh/stale marking in stable memory.

1'We use double subscripts for transactions since the same example is used again in the context of subtransactions in Section &



this case, we are assured that all the updates have been applied to the BDB already (by the propagator) a
re 1s no need to flush the page.

Implementing Single—Propagation can be very effective in large memory systems, where we assume that pagi
ivity is quite rare. By the time a page needs to be flushed to the BDB, it is quite possible that all t
evant updates have been propagated to the BDB by the propagator. We emphasize that incorporating Sing
opagation is only for performance reasons, and has nothing to do with correctness. By enforcing Safe-Fetch a
vgle- Propagation, the combination of propagator updates and page flushes as means for update propagation
vde optimal.

The log-driven backups technique ensures that the gap between the committed and backup images of t
tabase is not too wide. The technique is well-suited to MMDBs where most of the time all the accesses :

isfied by the PDB.

2 Stale/Fresh Marking

e goal of the marking technique is to enable very fast restart after a crash. The key observation is tl
msaction processing can be resumed immediately as the system is up, provided that access to stale pages
nied until these pages are recovered and brought up-to-date. An attempt by a transaction 7' to access a pe
riggers the following algorithm:

if z is stale then begin
fetch the backup image of z;
Retrieve all the relevant log records for & from the log;
Apply these log records to #’s image in order to make = up-to-date;
end
Let T access x

To support this approach to restart, a stale/fresh marking that indicates which pages are (potentially) st

~ds to be implemented. The updates needed to bring a stale page up-to-date are always Redo updates becat
our assumptions. The log records with the missing updates can be found either in the log tail or on the log d
~ording to the trade-off presented earlier regarding the timing of discarding a log record from stable memo
[Lev91] we elaborate on how to support efficient retrieval of the needed log records from a disk.

The stale/fresh marking of data pages is the crux of the algorithm. The marking enables resuming trans:
n processing immediately after a crash, while preserving the consistency of the database. Typically, the ]
res enough information to deduce the stale/fresh status of pages. However, this information is not availal
mediately. The marking also controls the recovery of data pages one by one according to the transactio
mands. In order for the algorithm to be practical, it is critical to both maintain the stale/fresh marking
in memory, as well as have it survive a crash. Therefore, we underline the decision to maintain the stale/fr
irking in stable memory. We do not elaborate on how to manage the marking efficiently. However, in light
> scale of current databases, an appropriate data structure holding page IDs that supports efficiently inser
etes, and searches is deemed crucial. Observe that the functions of the analysis pass [MHL*90] in stands
tart procedures are captured by the stale/fresh marking, and are ready for use by restart without the need
alyze the log first.

The partition of the set of the backup pages into a set of stale pages and a set of fresh ones varies dynamica
transaction processing progresses. There are two events that trigger transitions in that partition:

e the commit event of an updating transaction, and

e the updates to BDB pages by either the buffer manager or the propagator.

hen a transaction commits, its dirty pages become stale since they were not written to the BDB (see r
rty—Stale below). When flushing occurs, the transitions depend on whether the page is committed or n
1ice we enforce the no-steal policy, we consider only flushing a committed page — an event that makes the pe
sh (see rule Flush—Fresh below).

Based on the above transitions we present a reactive algorithm that manages a stale/fresh marking of pa;
indicate whether they are stale or fresh. In order to present the algorithm formally, we introduce the followi
riables and conventions:



The pipeline of log records can be efficiently mapped onto a multi-processor shared-memory architecture.
rticular, the propagator and the logger tasks can be carried out by dedicated processors. This way, recover
ated I/0 is divorced from the main processor that executes the transactions processing activity.

The timing of discarding log records from the stable memory presents a trade-off. A log record may
carded only after it is written to the log disk by the logger. However, such an early discarding implies tl
the record has not yet been processed by the propagator, then its update will not be reflected in the BI
nce it skipped the propagator processing stage). The propagator can fetch the missing records from the d
» but this would really delay the propagation. Alternatively, the pages whose updates where skipped by t
pagator can be marked stale (see below on how the marking is managed), thereby postponing handling of t
ssing updates to a later time. These difficulties can be avoided when log records are not discarded from stal
mory before they have been processed by the propagator. However, the trade-off arises as it is anticipat
1t the propagator would lag behind the logger because the former performs random access I/O whereas t
ter performs sequential I/O. In [LS90] we analyze this trade-off and propose to use a RAID I/O architectt
(GK88] for the propagator in order to balance the I/O load between the logger and the propagator.

Independently from the log-driven activity, database pages are exchanged between the buffer and the BD
dictated by the demands of the executing transactions. The Buffer Manager is in charge of this exchange.
iphasize that the buffer manager flushes only pages that reflect updates of already committed transactions
> no-steal policy. Observe that the principle of Redo-Only BDB is implemented by both sources of updates
> BDB; the buffer manager as well as the propagator.

Conceptually, the scheme could have been designed without flushing database pages at all. That is, propagati
dates by the propagator would have been the sole mechanism for keeping the BDB up-to-date. The proble
th such an approach is that page fetching must be delayed until the most recent committed values are appl;
the propagator. Such a delay of transaction processing is intolerable. Since only committed database pages :
shed (no-steal buffer management), flushing can serve as a very effective means for keeping the BDB up-to-da

The fact that the BDB is updated by both the propagator and by flushing buffered pages must be consider
th care. First, one should wonder whether these double updates do not interfere with the correctness of t
ieme. Second, since two 1dentical updates are redundant, one of them should be avoided for performance reaso
garding correctness, a problem arises when the propagator writes an older image of a page, overwriting t
st up-to-date image that was written when the page was previously flushed by the buffer manager. If the pe
fetched before the up-to-date images are written to the BDB by the propagator, transactions read inconsiste
ta. The problem can be solved by imposing the following Safe-Feich rule:

The propagator applies updates only to database pages that are in the PDB. Updates pertaining to
pages that are not in the PDB are ignored by the propagator.

tice that because of this rule, a page that is fetched from the BDB was last modified when it was flushed
> buffer manager. Therefore, the page is up-to-date when it is fetched to the PDB. The rule is referred to
fe-Fetch since it ensures that a page fetched from the BDB is always up-to-date (except for following a cras

Implementing Safe—Fetch implies that the propagator should know which pages are in the PDB. We assus
1t the propagator initially knows which pages are in the PDB, and it is notified about each page replacement
> buffer manager. We assume that the propagator and the buffer manager share some memory for this purpo
ternatively, since a single I/O controller serves 1/0O requests of both the propagator and the buffer manag
forcing Safe-Fetch can be implemented by a smart controller. In any case, since page flushes are assumed to
requent, implementing this rule should not incur too much of an overhead.

Besides the correctness aspect, Safe-Fetch enables the heavily loaded propagator to avoid processing sor
» records. Safe-Fetch deals with cases where a page was flushed to the BDB before the corresponding upda
re applied to the BDB by the propagator. 1/O activity can be reduced considering the opposite case too,
posing the following Single—Propagation rule:

When all of the log records corresponding to a page have been applied to the BDB by the propagator,
flushing that page to the BDB is useless. In such a case, the buffer manager can stmply discard the
page without issuing a flush to the BDB.

is rule can be easily implemented using the log-sequence-number (LSN) mechanism [MHL190, Gra78]. Flushi
the page can be avoided if the page’s LSN is at most the LSN of the page that was last written by the propagat
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We incorporate the above principles in the proposed architecture. We do not assume an entirely-reside
MIDB, in the spirit of the first principle. Consequently, we deal with buffer management issues. The seco
nciple 1s enforced by insisting on using the no-steal buffer management policy. Namely, only updates
mmitted transactions are propagated to the BDB. This is an explicit assumption of our design.

The preservation of the third principle is the crux of the problem. Fortunately, stable memory is the technolo
1t enables promoting this principle. In the architecture we propose, the log tail is stored in stable memo
mmitting a transaction, thereby making its updates persistent, is guaranteed by writing the commit log recc
the log tail in stable memory. Any further recovery activity is totally separated from transaction processii
> emphasize that in the architecture we propose the log tail is kept in stable memory (i.e., non-volatile RAN
- making the fast stable memory the only point of friction between transaction and recovery processing
1ieve the goal of decoupling the two as much as possible.

The Incremental Techniques

ere are two techniques that are integrated in our architecture:

e Log-driven backups: The key idea is to use log records as the means for propagating updates to the BI
rather than relying on page flushes.

o Fresh/Stale Marking: Maintaining in stable memory a “freshness” status of each database page. Con
quently, restart processing is simplified and made very fast.

> first review each of these techniques separately.

1 Log-Driven Backups

e flow of log records in our architecture is a central element to the understanding the log-driven techniq
e abstraction we are using here is that of a stream of log records that continuously flows from a compone

its successor in a pipelined fashion. These components manipulate the log records and pass them along to t
xt component down the pipeline. The flow of log records is depicted schematically in Figure 1.

Log records are produced by active transactions as they access the PDB, and are appended to the log t:
ere, a component referred to as the accumulator processes the stream of log records as follows before
wards them to the next stage in the pipeline. Log records of active transactions are queued and delayed ur
> transaction either commits or aborts. If a transaction aborts, its log records are used for the undoing of t
responding updates on the relevant PDB pages and then discarded. Log records of committed transactic
> grouped together on a page-basis and then transferred to the next stage in the pipeline. That is, all recor
cumenting updates to a certain database page are grouped together. Thus, the accumulator filters out |
ords of active and aborted transactions and forwards only log records of committed transactions grouped or
tabase page basis. The accumulator operates entirely within the non-volatile stable memory. Observe that |
ords that pass the accumulator are Redo-Only log records, and have no before-image information since th
cument only committed updates.

Next in the pipeline are two parallel components: the logger and the propagator. The logger flushes log recor
the log disk in order to make room in the (limited-size) stable memory.

The task of the propagator is to update the BDB pages to reflect the modifications specified by the log recor
order to amortize page I/0, the accumulator groups log records that belongs to the same page together, so tl
> propagator will apply them all in a single I/O. Since the updates of the BDB are driven by the log recor

coin the name log-driven backups accordingly.

Notice that the propagator applies to the BDB updates of only committed transactions. In effect, following t
-umulator, there are only Redo log records. These log records are grouped on a database page basis. They
itten to the log on disk by the logger, and are used to guide a continuous update of the BDB by the propagat
hen rearranging the log records, the accumulator can also reorder the records to minimize seek-time when t
pagator applies the corresponding updates to the BDB.



e Backup image. The image of xz as found in secondary memory at this particular instance, regardless
relevant log information. The backup image of « is denoted backup|].

e Committed image. The image that reflects the updates performed by the last committed transaction so f
The committed image of « is denoted committed|[x].

The committed image of a page may not be realized directly on either secondary or main memory. Howev
should always possible to restore the committed image by applying log records to the backup image. Followi
rash, the backup image of the database pages is available on secondary storage. It may not reflect updates
mmitted transactions (depending on the buffer management policy) may reflect updates of aborted ones. Tl
it differs from the committed image.

We use the term Primary Database (PDB) to denote the set of database pages that reside in main memo
e set of backup pages stored on secondary storage is referred to as the Backup Database (BDB). The BDB
instance of the entire database, and the PDB is just a subset of the database pages.

Following a crash, the restart procedure brings the database up-to-date based on the BDB and the log. Duri
rmal operation, updates to the PDB are propagated to the BDB keeping it close to being up-to-date (an activ
refer to as checkpointing).

We use the following terminology to denote the properties of a page . We say that:

e page x is dirty iff backup[z] # current[z]
e page x is stale iff backup[z] # commitied[z]
e page z is up-to-date iff current[z] = committed[z]

nversely, when x is not dirty, we say that x is clean, and similarly we say that x is fresh when it is not stale.
lows from our definitions that a page that does not reside in main memory is clean. These three notions (dir
le, up-to-date) are central to recovery management.

We use the variable z.dirty to denote the clean/dirty status of page . Whenever a PDB page is updated t!
riable is set. Conversely, once a page x is flushed, z.dirty is cleared and we say that z.clean holds.

In the sequel, z.dirty is interchangeable with the phrase “z is dirty”, and similarly for z.clean and “x
an”. Formally: (V& : (backuplx] # current[z]) = x.dirty). Notice that using our terminology, a page may
ty and up-to-date. Such a situation arises when the committed image of the page has not been propagated
> BDB.

Principles Underlying the Architecture

'st, we list the principles that should constitute a good design of a recovery component for a MMDB.

e Large memory and larger database. The database systems for which we target our study are characterized
having a very large database buffer, and an even larger physical database. It is assumed that by exploiti
the size of the buffer, the disk-resident portion of the database is accessed infrequently. By adhering to t
principle, we guarantee that the approach capitalizes on the performance advantages offered by MMDF
without precluding the possibility of having some portions of the database on secondary storage.

e Redo-only BDB. Having a very large buffer, it is anticipated that page replacements are not going to be ve
frequent or very urgent. Therefore, there is no need to complicate recovery by propagating uncommitt
updates to the BDB (i.e., the steal policy [HR83] should not be used). By enforcing this principle, a st
page is brought up-to-date by only redoing missing updates; there are no updates to undo. This princi
will contribute to fast and simple recovery management.

e Decoupling of transaction and recovery processing. Transaction processing should be interrupted as lit
as possible by recovery-related overhead. Otherwise, as noted earlier, the performance opportunities
MMDBs would remain unexploited. This principle can be satisfied only by virtually separating recove
and transaction processing.



2 Restart Processing

e notion of a restart procedure is common to a variety of transaction processing systems that rely on loggi
a recovery mechanism. After a system crash, the restart procedure is invoked in order to restore the datab:
its most recent consistent state. Restart has to undo the effects of all incomplete transactions, and to redo t
nmitted transactions, whose effects are not reflected in the database. Restart performs its task by scanni
suffix of the log. In some cases there are up to three sweeps of the suffix of the log (analysis, forward, a
ckward sweeps [Lin80, MHLT90]).

There are two major activities that contribute to the delay associated with restart processing. First, t
- suffix must be read from disk to facilitate the undoing and redoing of transactions. Second, bringing t
lire database up-to-date triggers a significant amount of updates that translate to substantial I/O activity. T
erval between consecutive checkpoints largely determines how long performing these two activities would te
cu84, CBDUT75]. The longer the interval, more log records are generated and accordingly more transactions
be undone and redone by restart. The key point i1s that normal transaction processing is resumed only af
tart’s termination. That 1s, standard restart processing is accounted as part of the down-time of the systen
The maximum tolerable down-time is a very important parameter, and in certain cases the delay caused
~cuting restart is intolerable. In systems featuring high transaction rates, for instance, restart has to be f:
ce even a short outage can cause a severe disruption in the service the system provides [Moh87]. We arg
1t the standard approach to restart is not appropriate in an advanced database management systems featuri
ge storage capacity and high transaction rates, since recovering the entire database by replaying the executi
uld contribute significantly (in the order of minutes) to the down-time of the system.

A Page-Based Recovery Model

the sequel we use the following terms and assumptions to define our model. The model is simplified for e:
exposition.

On the lowest level, a database can be viewed as a collection of data pages that are accessed by transactic
uing read and write operations. Pages are stored in secondary storage and are transferred to main memc
ffer to accommodate reading and writing. A buffer manager controls the transfer of individual pages betwe
ondary and main memory by issuing flush and fefch operations to satisfy the reading and writing requests
~cuting transactions. Flush transfers and writes a page from the buffer to secondary storage. Flushing a pe
secondary storage is made atomic by stable storage techniques (e.g, [Lam81]). A page is brought to the buf
m secondary storage by issuing the fetch operation. If the buffer is full, a page is selected and flushed, there
king room for the fetched page. It is assumed that executing a read or a write is not interrupted by pz
shes.

Abstractly, a log is an infinite sequence (in one direction) of log records which document changes in the datab:
te. A suffix of the sequence of log records is stored in a log buffer in memory, and is occasionally forced
ondary storage, where the rest of the log is safely stored. We refer to the portion of the log in main memc
the log’s tail. Whenever a page 1s updated by an active transaction, a record that describes this update
pended to the log tail. In order to save log space, each update log record includes only the old and new st:
so called the before and after images) of the affected portion of the updated page, along with an indication
Wt portion (e.g., an offset and length of affected portion) [Lin80]. Such a logging method is called entry logy
- partial physical logging).

Concurrency control is achieved through the use of a locking protocol. Appropriate locks must be acquir
or to any access to the database pages. We emphasize that (at this stage) locking granularity is entire pag
d that the protocol produces strict schedules with respect to pages [BHG87]. Granularity of locking is refin
Section 8. Strict locking means that only one active transaction can update a page, at any given instance.

In order to present our algorithms formally and precisely we introduce the following terminology and notatic
any given instance there are three images (or states) associated with each page »:

e Current vmage. If z is currently in main memory then its image there is its current image; otherwise
current image is found in secondary memory. The current image of # is denoted current|[z].



an tncremental fashion, concurrently with, and without impeding, transaction processing. The algorith

propose are motivated by the characteristics of an MMDB and exploit the technology of stable memory 11
1uine manner that differs from the numerous proposals for using these devices in transaction processing syste
g., [Eic87, DKOT84, LC87, CKKS89]).

The techniques we propose concentrate on incremental approach to restart processing and checkpointing
MDBs. We devise a scheme in which transaction processing resumes at once after a crash. Restoring d:
jects is done incrementally and is guided by the demand of the new transactions. Our checkpointing scher
bitalizes on the performance advantages of MMDBs without precluding the possibility of having some portic
the database on secondary storage. The scheme’s main feature is decoupling of recovery processing a
msaction execution, thereby almost eliminating the common effect of the former delaying the latter. The wc
yorted in this paper is a continuation of our earlier work in this area [Lev91, LS90].

Our intention in this paper is to emphasize the principles of an incremental approach to recovery processi
her than present an involved implementation. We first develop incremental recovery techniques that :
sed on physical entry logging for a simple page-based model. Then we use this algorithm as a module in t
1struction an incremental restart algorithm based on operation logging and multi-level transactions.

The paper is organized as follows. In Section 2 we briefly survey why conventional recovery techniques :
t suitable for MMDBs. Section 3 outlines a page-based recovery model that is used in the construction of t
ver layer of our architecture. The model and terminology established in this section are used in the rest of t
per. The principles that should underlie a sound design are presented in Section 4. The incremental techniqt

propose are described in Section 5, and proved correct in Section 6. Several improvements to the architectt
> proposed in Section 7. The applicability of our methods for high-level recovery management, which is 1
ge-based, 1s elaborated in Section 8. Related work is reviewed in Section 9. We sum up with conclusions
tion 10.

The Deficiencies of Conventional Approaches

> concentrate on the subjects of checkpointing a large buffer, and restart processing. Later, we propose
egrated solution for these problems that does not possess the deficiencies outlined in this section and thus
re suitable for MMDBs.

1 Checkpointing a Large Buffer

illustrate the problem of checkpointing large buffers, consider the direct checkpointing technique, variants
ich are offered as the checkpoint mechanism for MMDBs [Eic87, SGM8T7a]. A direct checkpoint is a perio
mp of the main memory database to disk, and is essential for the purposes of recovering from a system cra:
nsider a naive checkpointing algorithm which simply halts transaction processing and dumps the main memc
tabase to disk. For a database size in the order of Gbytes, execution of this algorithm takes hundreds of secon
ring which no transactions are processed! Moreover, as sizes of databases and memory chips are increasi
bidly, the problem will become more severe. Indeed, contemporary direct checkpointing algorithms are mu
re sophisticated and efficient than this naive algorithm, but still the periodic sweep of the main memory tl
ides the dumping to the disk is the basis to all of them. Therefore, any variation of direct checkpointing
und to delay transaction processing to a considerable extent.

Many of the proposed algorithms and schemes for MMDBs rely on the explicit assumption that the ent
tabase is memory-resident [GMS90, LN88, SGM87b, DKO*84]. Although other proposals acknowledge t!
s assumption is not valid for practical reasons, the issue is not addressed directly in their designs [LC87, Hag
:86]. Even though the size of main memory is increasing very rapidly the size of future databases is expected
rease even more rapidly. Indeed, there are a number of commercial database management systems in exister
th a Tera byte or more of active data. We stress that the assumption that the database is only partia
mory-resident must underlie a practical design of a practical database system.



Introduction

e task of a recovery manager in a transaction processing system is to ensure that, despite system and trar
ion failures, the consistency of the database is maintained. To perform this task, book-keeping activities
rformed during the normal operation of the system and restoration activities take place following the failu
aditionally, the recovery activities are performed in a quiescent state where no transactions are being processe
r instance, following a crash, transaction processing is resumed only once the database is brought up-to-d:
d its consistency is restored by a restart procedure. Essentially, restart processing is accounted as part of t
wn-time of the system, since no transactions are processed until it terminates. A similar effect of halting,
erfering with, transaction processing in order to perform a recovery-related activity is observed in connecti
th certain checkpointing techniques. To checkpoint a consistent snapshot of the database, transaction p:
sing has to halt. The appealing alternative is to perform these activities incrementally and in parallel w
nsaction execution.

This fundamental trade-off between recovery activities and forward transaction processing is underlined 11
tabase system incorporating very large semiconductor memory (in the order of Gbytes). Such Main Memc
ttabase systems are subsequently referred to as an MMDBs (see [Bit86], and the references there for an overvi
different aspects of MMDBs). The potential for substantial performance improvement in an MMDB is prorr
r, since 1/O activity is kept at minimum On the other hand, because of the volatility of main memory, t
ue of failure recovery becomes more complex in this setting than in traditional, disk-resident database systen
reover, since recovery processing is the only component in a MMDB that must deal with /O, this compone
1st be designed with care so that it would not impede the overall performance.

Another advancement in semiconductor memory technology is that of non-volatile RAM, which 1s refer

hereafter, as stable memory. An example of stable memory technology is battery-backup CMOS memor
1t are widely available [CKKS89]. In case of a power failure, the contents of this memory are not lost. Stal
mories are available in sizes on the order of tens of megabytes and have read/write performances two to fc
nes slower than regular RAMs, depending on the hardware. The reader is referred to [CKKS89] for more dete
this technology.

The traditional approach to recovery has to be revisited in light of he availability of large main memor
d stable memories. On the one hand, traditional recovery techniques fall short of meeting the requirements
rh-performance databases systems that incorporate very large volatile buffers. In such systems, the trade-
tween recovery and forward processing is sharpened and made more critical. On the other hand, by th
ture, stable memory devices are bound to advance the design of a recovery management subsystem.

The following points explain the impact of large main memories and stable memories on the approach
overy:

e The larger the database buffer, the less page replacement occurs. Therefore, in database systems where t
database buffer is huge, paging cannot be relied upon as the primary mechanism for propagating upda
to backup database on disk, since paging is expected to be a relatively rare activity. Many recent resear
efforts go to the extreme with this trend arguing that there are cases where the entire database can
in memory, thus eliminating paging entirely (e.g., [DKO"84, LN88, GMS90, SGM8&7a]). With infreque
page replacements, checkpointing and keeping a stable copy of the database may become a very disrupt
function.

o Typically, persistence and atomicity of transactions is guaranteed by performing disk 1/O at certain criti
points (e.g., flushing a commit log record at the end of transaction). Stable memory enables divorci
atomicity and persistence concerns from slow disk I/O. This simple, yet promising, approach was explor

in [CKKS89, DKO*84].

e Traditionally, a sequential I/O method, namely logging, is used to accommodate efficiently the book-keepi
needs of the recovery management system. Consequently, this information is a sequence of log recor
lacking any helpful structure or organization. The availability of a stable memory provides the means -
maintaining some of the recovery book-keeping information in randomly accessible and fast memory.

In light of the above factors, we propose an alternative to the traditional approach to recovery manageme
database systems. Our approach is based upon the principle that recovery activities should be perform
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