PARALLEL OPEN EAR DECOMPOSITION
WITH APPLICATIONS TO
GRAPH BICONNECTIVITY AND
TRICONNECTIVITY

Vijaya Ramachandran

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-92-02 January 1992

Parallel Open Ear Decomposition
with Applications to Graph Biconnectivity and
Triconnectivity *

Vijaya Ramachandran
Department of Computer Sciences
University of Texas
Austin, TX 78712

January 14, 1992

Abstract

This report deals with a parallel algorithmic technique that has proved to
be very useful in the design of efficient parallel algorithms for several prob-
lems on undirected graphs. We describe this method for searching undirected
graphs, called “open ear decomposition”, and we relate this decomposition to
graph biconnectivity. We present an efficient parallel algorithm for finding this
decomposition and we relate it to a sequential algorithm based on depth-first
search. We then apply open ear decomposition to obtain an efficient parallel
algorithm for testing graph triconnectivity and for finding the triconnnected

. components of a graph.

This material will appear as a chapter in the book, Synthesis of Parallel Al-

gorithms, edited by John Reif, which is to be published by Morgan-Kaufmann.

1 Introduction

In this report we introduce open ear decomposition, which is a method for searching
an undirected graph. We present an algorithm that either finds an open ear decom-
position in an undirected graph or reports that no open ear decomposition exists.
This algorithm runs in logarithmic time with a linear number of processors. A graph
has an open ear decomposition if and only if it is biconnected. Hence this algorithm
allows us to determine graph biconnectivity efficiently in logarithmic parallel time.

*This work was supported in part by NSF Grant CCR-8910707

We use open ear decomposition to obtain a logarithmic time parallel algorithm
using a linear number of processors to find the triconnected components of a graph.
This algorithm is fairly complex and we present it in a top-down manner by first
giving the high-level ideas leading to the algorithm and then giving efficient imple-
mentations of the various steps. In the last section we give some pointers towards
obtaining optimal logarithmic time parallel algorithms for graph biconnectivity and
triconnectivity.

Open ear decomposition has been used to obtain efficient parallel algorithms for
several other important graph problems such as graph four-connectivity [KR91], st-
numbering [MSV86] and graph planarity [RR89].

Algorithmic Notation

The algorithmic notation in this report is from Tarjan [Ta83]. We enclose com-
ments between a pair of curly brackets with asterisks (‘{*’ and ‘*}’). We incorporate
parallelism by use of the following statement that augments the for statement.

pfor iterator — statement list rofp

The effect of this statement is to perform the pfor loop in parallel for each value of
the iterator.

2 Ear Decomposition and Two-Connectivity

In this section we define ear decomposition and open ear decomposition and relate
these to graph two-edge-connectivity and two-vertez-connectivity (i.e., biconnectiv-
ity). We then describe efficient parallel algorithms to find these decompositions. We
also relate these parallel algorithms to the classical sequential algorithm for testing
graph biconnectivity, which is based on depth-first search.

2.1 Basic Definitions

An undirected graph G is a pair (V, E) where V is the set of vertices of G and E is
the set of edges of G; an edge is an unordered pair of distinct vertices. We denote the
undirected graph by G = (V, E) and we sometimes refer to it as G. An edge (u,v) is
incident on vertices u and v. Vertices u and v are adjacent in G if G contains edge
(u,v). The degree of a vertex is the number of edges incident on the vertex. We will
sometimes refer to an undirected graph as simply a graph.

A directed graph G = (V, E) consists of a vertexset V and an edgeset E containing
ordered pairs of elements from V. An edge (u,v) in a directed graph is directed from
u to v and is outgoing from u and incoming to v.

A multigraph G is a pair (V, E) where V is the set of vertices of G and E is the
multiset of edges of G; an edge of a multigraph is an unordered pair of vertices. We
allow edges of the form (v,v),v € V and we call such edges self-loops. An edge e in
a multigraph may be denoted by (a,b,7) to distinguish it from other edges between a

2

and b; in such cases the third entry in the triplet may be omitted for one of the edges
between a and b.

A path P in G is a sequence of vertices (v, ..., U) such that (vi-1,v;) € E,¢ =
1,...,k; P is directed or undirected depending on whether G is directed or undirected.
The path P contains the vertices vy, ..., v; and the edges (vo,v1), ..., (Vk—1,vx) and has
endpoints vo, vg, and internal vertices vy, ..., Vg-1. The path P is a simple path if
Vo, ..., Vg1 are distinct and vy, ..., v) are distinct, and all edges on P are distinct. A
simple path P = (vg, ..., vx) is a simple cycle if vy = vi; otherwise P is noncyclic. The
path (v) is a trivial path with no edges.

A graph G’ = (V',E') is a subgraph of a graph G = (V,E) f V! € V and
E' C E. The subgraph of G induced by V' is the graph H = (V',F) where F =
{(u,v) € E | u,v € V'}.

An undirected graph G = (V, E) is connected if there exists a path between every
pair of vertices in V. A connected component of a graph G is a maximal induced
subgraph of G which is connected.

Let G = (V, E) and H = (W, F) be a pair of graphs. The graph GUH is the graph
G = (VUW,EUF). HW CV then the graph G — H is the graph H = (V,E-F).

A tree is a connected graph containing no cycle. A leafin a tree is a vertex of
degree 1. Let T = (V, E) be a tree and let r € V. The out-tree T' = (V, E, r) rooted at
r (or simply the tree T rooted at r) is the directed graph obtained from T' by directing
each edge such that every path from r to any other vertex is directed away from r.
The in-tree rooted at r is the directed graph obtained from T' by directing each edge
such that the path from every vertex to r is directed towards r.

Let (z,y) be a directed edge in a rooted tree T'. Then, z is the parent of y and
y is a child of z in T. Vertex v is a descendant of vertex u (and equivalently, u is
an ancestor of v) if there is a directed path from u to v in T'. Vertex v is a proper
descendant of u (and u a proper ancestor of v) if v is a descendant of u and u # v.
Given a pair of vertices u,v € V, the least common ancestor of u and v, denoted by
lca(u,v) is the vertex w € V that is an ancestor of both u and v with no child of w
being an ancestor of both u and v. For an edge e = (u,v) the least common ancestor
of e, denoted by lca(e), is the vertex lca(u,v).

A preorder labeling of the vertices of a rooted tree T' labels the root of T' and then
the vertices in the subtree rooted at each child of the root in turn.

Let G = (V, E) be a connected graph. A spanning tree T of G is a subgraph of
G with vertex set V such that T is a tree. An edge in G — T is a nontree edge with
respect to T'.

Let T be a spanning tree of G. Any nontree edge e of G creates a cycle in the
graph TU{e}, called the fundamental cycle of e with respect to T'. Let r € V, and let
T be rooted at r.

Let e = (u,v) be a nontree edge in T = (V, E,r) and let lca(e) = I. The funda-
mental cycle of e with respect to T' consists of the path from I to u, followed by edge
e, followed by the path from v to . Let (I, a) be the first edge on the path from [to u

and (1, b) be the first edge on the path from [to v (it is possible for one of these edges
to be missing). Then edges (/,a) and (I,b) are the base edge(s) of the fundamental
cycle of e (when they exist) and the vertices a and b are the base vertice(s) of the
fundamental cycle of e (when they exist).

An edge e € E in a connected graph G = (V,E) is a cutedge if e does not lie
on a cycle in G. A connected undirected graph G = (V, E) is 2-edge connected if
it contains no cutedge. A 2-edge connected component of G is a maximal induced
subgraph of G which is 2-edge connected.

A vertex v € V is a cutpoint of a connected undirected graph G = (V, E) if the
subgraph induced by V—{v} is not connected. A connected graph G is biconnected
(or two-vertex connected) if it contains at least 3 vertices and has no cutpoint. A
biconnected component (or block) of G is a maximal induced subgraph of G which is
biconnected.

By Menger’s theorem a graph is 2-edge connected if and only if there are at
least two edge-disjoint paths between every pair of distinct vertices, and a graph is
biconnected if and only if the graph is connected and has no more than two vertices
or there are at least two vertex-disjoint paths between every pair of distinct vertices.

The two-connectivity problem is the problem of determining 2-edge connectivity
and biconnectivity in a connected graph.

2.2 Ear Decomposition

An ear decomposition D = [Py, P, ..., P,_1] of an undirected graph G = (V, E) is
a partition of F into an ordered collection of edge-disjoint simple paths F, ..., P,y
such that P, is an edge, Py U Py is a simple cycle, and each endpoint of P;, forz > 1,
is contained in some P;,j < %, and none of the internal vertices of P; are contained
in any P;,j < ¢. The paths in D are called ears. An ear is open if it is noncyclic and
is closed otherwise. A trivial ear is an ear containing a single edge. D is an open ear
decomposition if all of its ears are open.

Let D = [P,,..., P._1] be an ear decomposition for a graph G = (V,E). For
a vertex v in V, we denote by ear(v), the index of the lowest-numbered ear that
contains v; for an edge € = (z,y) in F, we denote by ear(e) (or ear(z,y)), the index
of the unique ear that contains e. A vertex v belongs to Peyr(v)-

Lemma 2.1 [Wh32] An undirected graph G = (V, E) has an ear decomposition if
and only if G is 2-edge connected.
Proof We first prove the if part of the lemma. Assume G is 2-edge connected. We
construct an ear decomposition for G as follows. To construct Py and P, we pick
any edge e = (u,v) in G. Since e is not a cutedge, there is a simple path between u
and v in G that avoids e. Let P be such a path. We construct Py as (e) and Py as
P. Then P, is an edge and Py U P; is a simple cycle as required.

Assume inductively that we have constructed H;_; = U;;{,Pj,i > 1. To construct
P;, we pick an edge (z,y) that is not contained in H;_; but with vertex = in H,_;.

4

We then find a simple path Q from y to = in G that avoids edge (z,y). Let z be the
first vertex on path Q that is contained in H;—;. We construct P; as the edge (z,y)
followed by the path @ from y to z. This path has each of its endpoints on some
P;,j <1, and none of its internal vertices on any P;, j < ¢. Hence it is an ear.

We now prove the only if part. Let D = [Py, ..., Pr—1] be an ear decomposition for
G. We will prove by induction on i for ¢ > 0 that the graph H; = Ui_,P; is 2-edge
connected. For the base case, Py U P, is a simple cycle, and therefore Hy is 2-edge
connected.

Assume inductively that H;_; is 2-edge connected and consider H;. To show that
H; is 2-edge connected it suffices to show that every edge on P; lies on a cycle. Let
the endpoints of P; be z and y and let @ be a path from z to y in H;;. The path Q
exists since H;_; is connected. Every edge on P; lies on the cycle P; U Q in H; and
hence H; is 2-edge connected.|]

Lemma 2.2 [Wh32] A graph has an open ear decomposition if and only if it is
biconnected.
Proof Exercise 1.[]

2.3 An Efficient Parallel Algorithm for Ear Decomposition

In this section we present an efficient parallel algorithm for finding an ear decomposi-
tion for a 2-edge connected graph. This algorithm is from [MR86] and [MSV86], and
is an efficient parallel implementation of an algorithm in [Lo85].

Algorithm 2.1: Ear Decomposition Algorithm

Input: A 2-edge connected graph G = (V, E), with |V| =n and |E| = m.
Output A numbering on the edges in E, specifying their ear number.

vertex v, r; edge e;

1. {* Preprocess. *} find a spanning tree T for G, pick a root vertex r and number
the vertices of T' in preorder from 0 to n — 1 with respect to root r;

2. {* Assign ear numbers to nontree edges in T'. *}

2a. label each nontree edge e in G by its least common ancestor lca(e) in T

2b. sort the labels of nontree edges in nondecreasing order and relabel them
in order as 1, 2, ...;

3. {* Extend the numbering assigned in step 2 to the tree edges by numbering
each tree edge t by the label of the nontree edge with smallest label whose
fundamental cycle contains t. *}

3a. label each vertex with the label of the nontree edge incident on it with the
minimum label;

3b. assign to each tree edge (parent(v),v) in T, the label of the minimum
label of any descendent of v (including v);

4. relabel the nontree edge labeled 1 by the label 0

end.

We now prove the correctness of Algorithm 2.1 and then provide implementation
details.
Lemma 2.3 Algorithm 2.1 obtains an ear decomposition of a 2-edge connected graph.
Proof We first observe that the label given to tree edge t = (parent(v), v) in step 3b
is the label of the nontree edge with smallest label whose fundamental cycle contains
t. This is because any such nontree edge e must be incident on a descendant of v,
and any nontree edge n incident on a descendant of v with lca(n) < v must include
edge t in its fundamental cycle.

We now prove by induction on 7 that the edges with label ¢ form a simple path
that satisfies the definition of ear P;.
BASE: P, and P;. Let e be the nontree edge given label 1 in step 2b. Then by step 3
every tree edge in the fundamental cycle of e will be assigned label 1. Further any tree
edge not on the fundamental cycle of e will be assigned a label greater than 1. Hence
the edges labeled 1 at the end of step 3 are exactly the edges in the fundamental cycle
of e and these form a simple cycle as required for Py U P;. By step 4 the label of e
is set to be 0. Hence Py = {e} and P; becomes a simple noncyclic path with its two
endpoints on e.
INDUCTION STEP: Assume the result is true for up to P;—q, ¢ > 1, and consider
the nontree edge f = (u,v) with label i. Let lca(f) = I. Hence the tree edges in the
fundamental cycle of f are the edges on the tree path P from [to u and on the tree
path Q from [to v.

Consider the tree path P. Assume that P contains at least one edge with label
j # i and let (z,y) be the first edge on R = PU{f} that has label :. We claim that
every edge on R from z to v has label ¢ and every edge in P from I to « has label less
than 2. To see the first part of the claim we note that by step 3 f is the nontree edge
with smallest label whose fundamental cycle contains tree edge (z,y). Every edge on
P from y to u lies on the fundamental cycle of f, so if any edge on this path does not
have label : then it must have a label j < :. But then the nontree edge g with label
4 has lca(g) < I by the labeling in step 2b. But then, edge (z,y) would be in the
fundamental cycle of g and would be labeled j rather than ¢, which is a contradiction.
Hence every edge on P from z to u is labeled 7. Finally, edge (u,v) is labeled ¢ by
assumption. Hence all edges on R from x to v have label i.

To see the second part of the claim, consider tree edge s = (x, parent(x)). Since
by assumption the edge s has a label j that is different from z, we know that tree

edge s lies on the fundamental cycle of a nontree edge h with label j and that j <.
Further since j < ¢ we must have lca(h) < [and hence every edge on the path P from
I to z lies on the fundamental cycle of h. Hence the label of every edge on P from [
to x is at most j and hence is less than :.

A similar argument holds for the path @ for the case when @ contains at least one
edge with label j # . Hence the edges with label i form a simple path that consists
of a portion of tree path P starting at some vertex z and extending up to u, followed
by edge (u,v) followed by a portion of the tree path @ from v to some vertex z > [;
further the two endpoints of this path are contained in ears numbered lower than :.

Finally, if P or QQ contains no edge with label j # 7 then we note that the label
of tree edge (parent(l),1) is less than ¢ since any nontree edge g whose fundamental
cycle contains this tree edge has lca(g) < I. Further, such a nontree edge ¢ must exist
since the graph is 2-edge connected. Hence vertex [is contained in an ear P, with
k < 7 and hence the endpoints of ear P; are contained on an ear with label smaller
than 7.[]

Let us analyze the complexity of Algorithm 2.1.

Step 1 requires the computation of a spanning tree T' and its preorder numbering
with respect to the root r [CV86].

Step 2a requires the computation of least common ancestors in T' [SV88].

Step 2b requires sorting of integers in the range [0..n — 1] [C88].

Step 3a requires the computation of the minimum value in each adjacency list [KR90].
Step 3b can be performed efficiently in parallel by the following simple method using
the Euler tour technique on trees [TV84]. Note that the vertices that are the descen-
dants of a vertex v in the tree T lie between the first and last occurrences of v in
the Euler tour of T. In step 3b we need to compute the minimum value in each such
interval. For this we first build a table of such minimum values for all intervals of
length 2,0 < ¢ < logn. This table can be constructed in O(logn) time using n pro-
cessors. Once we have this table, the minimum value for any other interval I can be
computed from the precomputed minimum values of two overlapping intervals whose
union gives I. This part of the computation can be performed in constant time using
one processor for each interval.

Step 4 is trivial to implement.

As seen above all of the steps in Algorithm 2.1 can be performed in logarithmic
time with a linear number of processors using well-known efficient parallel algorithms.
We also leave it as an exercise for the reader to verify that Algorithm 2.1 runs in linear
sequential time.

2.4 Ear Decomposition and Depth-First Search

Algorithm 2.1 of the previous section computes an ear decomposition of a graph in
linear sequential time. The computation in Algorithm 2.1 can be simplified consid-
erably in the sequential algorithm if the spanning tree T' is a depth-first search tree

rooted at r. In that case, the lca computation in step 2a is immediate, since every
nontree edge in the depth-first search tree goes from a vertex to its ancestor, and
this ancestor will be the lca. We defer step 2b to the end of the algorithm and to
compute step 3, we define the following two functions on vertices. (We assume that
the vertices are numbered in preorder, starting with 0, and that the input graph has
n nodes.)

low(v) = min({w|w lies on the fundamental cycle of a nontree edge incident on
a descendant of v} U {n})

ear(v) = lezmin({(w,z)|(w,z) is a nontree edge with = a descendant of v} U

{(n,n)})

The values low(v) and ear(v) can be computed incrementally during the depth-
first search of G that generates 7. This is given in Algorithm 2.2 below. Note that
Algorithm 2.2 is essentially the well-known linear time sequential algorithm for graph
biconnectivity [Ta72].

Algorithm 2.2: Sequential Ear Decomposition Algorithm

Input: A connected graph G = (V, E) with a root r € V, and with |[V| = n.
Output: A depth-first search tree of G, together with a label on each edge in E,
indicating its ear number.

set T of edges ; integer count;
Procedure df s(vertex v);

{* This is a recursive procedure. The call dfs (v) of the main program constructs
a depth-first search tree T of G rooted at r; the recursive call dfs(w) constructs
the subtree of T rooted at w. The depth-first search tree is constructed by
placing the tree edges in the set T and labeling the vertices in the subtree
rooted at vertex v in preorder numbering, starting with count. The procedure
assigns ear labels to the edges of G while constructing the depth-first search tree.

An edge that does not belong to any ear is given the label (0o, c0). Initially, all
vertices are unmarked. *}

vertex w;

‘mark’ v;

preorder(v) := count; count := count + 1; low(v) := n;ear(v) :=
(n,n);

for each vertex w adjacent tov —

{* This for loop performs a depth-first search of each child of v in turn
and assigns ear labels to the tree and nontree edges incident on vertices in
the subtrees rooted at the children of v. *}

8

if w is not marked —
add (v,w) to T; parent(w) := v; dfs(w);

if low(w) > preorder(w) — ear(parent(w), w) := (oo, 0)
0. |low(w) < preorder(w) — ear(parent(w), w) := ear(w)
fi;
1. low(v) := min(low(v), low(w));
2. ear(v) := lezmin(ear(v), ear(w))

| w is marked —
if w # parent(v) —
3. low(v) := min(low(v), preorder(w));
4. ear(w,v) := (preorder(w), preorder(v))
5. ear(v) = lezmin(ear(v), ear(w,v));
fi

fi

rof
end df s;
{* Main program. *}
T := ¢; count := 0; dfs(r);

sort the ear labels of the edges in lexicographically nondecreasing order and
relabel distinct labels (except label (00, 00)) in order as 1, 2, ...;

relabel the nontree edge with label 1 as 0

end.

In the following we assume, for convenience, that the vertices are labeled by their
preorder number.
Lemma 2.4 Tree edge (parent(v), v) is a cutedge if and only if low(v) > v. If
low(v) < v for all v # r then Algorithm 2.2 constructs an ear decomposition with
each tree edge (parent(v), v) contained in ear Peyp(y)-
Proof By the computation in steps 1 and 3 in Algorithm 2.2, low(v) is the lowest
numbered vertex w such that (z,w) is a nontree edge with = a descendant of v. Since
nontree edges in a depth-first search tree go from a vertex to its ancestor, low(v) is
also the lowest numbered vertex in a fundamental cycle of a nontree edge incident on a
descendant of v. If low(v) > v then every nontree edge (y, z) incident on a descendant
y of v has z > v. Hence tree edge (parent(v),v) does not belong to any fundamental
cycle and is a cutedge. Conversely, if low(v) < v then there exists a nontree edge

f = (z,low(v)) with z a descendant of v. Hence tree edge (parent(v), v) lies on the
fundamental cycle of f and is not a cutedge.

Each nontree edge (w,v), w < v, is labeled (w, v) instep 4. We havelca(w,v) = w
since nontree edges in a depth first search go from a vertex v to an ancestor w < v.
Hence the labels for the nontree edges are distinct and in nondecreasing order of their
Ica as required in step 2 of Algorithm 2.1.

By the computation in steps 2 and 5 in Algorithm 2.2, ear(v) is set to be the
lexicographic minimum among all nontree edges (u,w), with u < w such that w is
a descendant of v. In step 0 this label is assigned to tree edge (parent(v), v). This
is exactly the computation of step 3 of Algorithm 2.1 for assigning ear labels to tree
edges. Hence by Lemma 2.3, Algorithm 2.2 constructs an ear decomposition for the
input graph when it is 2-edge connected.[]

While Algorithm 2.2 is an ear decomposition algorithm, it also gives an open ear
decomposition in case G is biconnected. We establish this in the next lemma.

Lemma 2.5 Algorithm 2.2 constructs an open ear decomposition if all of the following
three conditions hold:

a) The root r has exactly one child ¢;
b) low(c) = r;
¢) For all vertices v other than r and ¢, low(v) < parent(v).

Further, G is biconnected if and only if a), b) and c¢) hold.
Proof We first prove that conditions a) through ¢) imply that Algorithm 2.2 constructs
an open ear decomposition. We prove this by establishing that the ear containing
each tree edge is open. This suffices to establish this part of the lemma since any
ear that contains no tree edge consists of a single nontree edge, and such an ear is
guaranteed to be open.

Consider tree edge t = (parent(i), 7). Let low(i) = w and ear(z) = q.
Case 1: ¢ = 1. Then ¢ is contained in ear P; which is an open ear.
Case 2: ¢ > 1. The ear containing edge t consists of the nontree edge with label ¢,
call it (w,v), followed by part of the tree path from v to w (this was shown in the
proof of Lemma 2.3). Let the part of the tree path from v to w that is contained in
ear P, extend from v to u, where u is a descendant of w and a proper ancestor of ¢
(see figure 2.1). In order to show that ear P, is open, it suffices to show that u # w.

Let (w,z) be the first tree edge on the path from w to ¢ (figure 2.1). If w is not
the root, then low(z) < w (by condition ¢) and hence ear(z) < g. Thus edge (z,w)
is not contained in ear P,. Hence u > z, and since z > w, we are done. If w is the
root then since ¢ > 1, edge (w, z), which is equal to edge (0, 1), has label 1, which is
less than ¢q. Hence u > z, and since z > w, we have u > w.

Hence the ear containing edge (7, parent(z)) is open. This concludes the proof of
the statement that each tree edge is contained in an open ear. To complete the proof

10

L
. w
® X ,lblrzw
s L B
¢ - :
or : ® U
q : ® u g>1
:]
L
P e |
r.
¢ | N
eV
-V

Figure 2.1: Illustrating case 2 in the proof of Lemma 2.5

of the lemma we show that, if any one of conditions a) through c) is not satisfied,
then G is not biconnected.

If condition a) is not satisfied, let ¢ and d be two children of r with ¢ < d. Then
every path between ¢ and d passes through r and hence r is a cutpoint and G is not
biconnected.

If condition b) is not satisfied, then edge (r,¢c) is a cutedge and cis a cutpoint of
G.

If condition c) does not hold, let v be a vertex for which it does not hold. The
vertex v is neither the root nor the child of the root. If low(v) > parent(v) then edge
(parent(v),v) is a cutedge (by proof of Lemma 2.4) and hence G is not biconnected. If
low(v) = parent(v) = w then any path between v and parent(w) must pass through
w. Hence w is a cutpoint of G.[]

Corollary to Lemma 2.5 Algorithm 2.2 constructs an open ear decomposition for
a biconnected graph.

Lemma 2.5 does not hold if we use Algorithm 2.1 in place of Algorithm 2.2. Figure
2.2 gives two different ear decompositions that are obtained using Algorithm 2.1 on a
given input graph with the same spanning tree but with two different edge orderings.
Of these, one is an open ear decomposition while the other is not.

11

Open ear decomposition
constructed by Algorithm 2.1
for a biconnected graph G.

Ear decomposition (not open)
constructed by Algorithm 2.1
for G.

Figure 2.2: Examples of ear decompositions constructed by Algorithm 2.1

2.5 An Efficient Parallel Algorithm for Open Ear Decom-
position

In the last section we noticed that Algorithm 2.1, when implemented using a depth-
first search tree as the spanning tree for the input graph, serves as an algorithm to
find an open ear decomposition of a biconnected graph; but if an arbitrary spanning
tree is used, Algorithm 2.1 may no longer construct an open ear decomposition of a
biconnected graph. Since no efficient parallel algorithm is known for finding a depth-
first search tree in an undirected graph, we need to use a general spanning tree in an
efficient parallel implementation of Algorithm 2.1.

Intuitively, the reason why a depth-first search tree is effective in finding an open
ear decomposition is that all nontree edges go from a descendant to an ancestor. As
a result the fundamental cycle of any nontree edge e contains only one base vertex
v. Note that lca(e) = parent(v). If the graph is biconnected, then there must be a
path between v and some proper ancestor w (if it exists) of lca(e) that avoids lca(e).
But this requires that edge (parent(v),v) be contained in an ear that is incident on
a proper ancestor of lca(e).

When an arbitrary spanning tree is used in place of a depth-first search tree, the
above property no longer need hold, and it is this that prevents Algorithm 2.1 from
constructing a open ear decomposition for a biconnected graph. In order to address
this, we will modify step 2 of Algorithm 2.1 to introduce some ordering among nontree
edges with the same lca. The modified version of step 2 is given below.

Step 2'.

{* Assign ear numbers for an open ear decomposition to nontree edgesin T'. *}

pfor each vertex v € V—{r} — compute low(v) and ‘mark’ v if low(v) <

12

parent(v) rofp;

a. construct an auxiliary multigraph H = (V',E’) with V' = V—{r} and for
each nontree edge e in G place an edge in E’ between the base vertices of its
fundamental cycle;

{* In case e has only one base vertex u we place a self-loop at u. *}
pfor each connected component C of H —

b. let a be any vertex in C and let b be the parent of a in T'; label(C) :=
preorder number of b in T,

c. find a spanning tree S for C, root it at a ‘marked’ vertex if one exists, and
number the vertices of S in preorder as 0, ..., k;

d. label each tree edge (parent(y), y) in S by the ordered pair (label(C),y);

e. label the nontree edges in S (including multiple copies and self-loops) as
(label(C), k+ 1);

rofp;

pfor each nontree edge n in G — label(n) := label of the edge in H that was
placed in H by n rofp;

sort the labels of the nontree edges in G in lexicographically nondecreasing order
and relabel them in order as 1,2, ...

end 2';

Lemma 2.6 Algorithm 2.1 with step 2 replaced by step 2’ constructs an ear decom-
position if G is two-edge connected.

Proof Let C be any connected component in H. The value of label(C) computed in
step b is the lca of the fundamental cycle of every nontree edge that places an edge
in C in step a. Hence the labels assigned to nontree edges of G by step 2’ continue to
be nondecreasing in the lca of their fundamental cycle and hence by Lemma 2.3 the
modified algorithm constructs an ear decomposition for G.[]

Lemma 2.7 Let C be a connected component in H.

a) If label(C) # 0 and C contains no marked vertex then G is not biconnected;

b) If label(C) = 0 and there is another connected component C’ with label(C’) = 0
then G is not biconnected.

Proof The proof is similar to the proof of the converse of Lemma 2.5 and is left as an
exercise.|]

Theorem 2.1 Algorithm 2.1 with step 2 replaced by step 2’ constructs an open ear
decomposition of G if G is biconnected.

13

Proof By Lemma 2.6, P; is an open ear.

Let n be the nontree edge of T with label ¢, 7 > 1. Then by Lemma 2.3 we know
that the edges in G with label ¢ form a simple path p that is part of the fundamental
cycle ¢ of n. We will show that p # ¢ thereby establishing that P; is an open ear.

Let Ica(n) = [and let @ and b be the base vertices of the fundamental cycle of
n. (Let b = a if there is only one base vertex.) Then a and b belong to the same
connected component C in H. Let a < b in the numbering of step c. We will show
that edge (I, a) must belong to an ear numbered lower than z.

Consider ear(l,a). If a is a ‘marked’ vertex then edge (I, a) belongs to the funda-
mental cycle of a nontree edge whose lca is less than I and hence ear({, a) <t Ifa
is not ‘marked’ then if a has a parent p in S, the spanning tree of C, then consider
the nontree edge n’ in G that introduced edge (a,p) in C. By the labeling scheme
in steps d and e we have label(n') < label(n). Further the fundamental cycle of n'
contains the edge (a,1). Hence ear(a,l) < label(n') < 1.

Finally if a is neither ‘marked’ nor has a parent in S (i.e., a is the root of 5) then
C = 0 by Lemma 2.7 and hence ear(a,l) =1 < i.[]

Step 2 requires the computation the low value for the vertices, the computation
of connected components, spanning trees, preorder numbering, and sorting. All of
these computations can be performed in logarithmic time using a linear number of
processors using well-known algorithms. Hence the over-all open ear decomposition
algorithm (i.e., Algorithm 2.1 with step 2 replaced by step 2') has the same processor-
time bounds.

3 Graph Triconnectivity

In this section we describe an algorithm for testing three-vertex connectivity (or tri-
connectivity) of a biconnected graph using an open ear decomposition of the graph.
We then extend this algorithm to one that decomposes the biconnected graph into
certain pieces called triconnected components. This material is from Miller & Ra-
machandran [MR87].

We start by presenting several definitions in Section 3.1. Since our algorithm is
fairly complex, we give a high-level description of the approach in Section 3.2. In Sec-
tion 3.3 we give the details of the triconnectivity algorithm and prove its correctness.
In Section 3.4 we extend this algorithm to finding triconnected components.

In this section we only establish the correctness of the algorithm to test triconnec-
tivity and find triconnected components using open ear decomposition. In Section 4
we describe implementations of the various steps in the algorithm that run in loga-
rithmic time with a linear number of processors. At the end of the report we provide
some pointers towards achieving optimal performance of the algorithm in logarithmic
parallel time.

14

3.1 Further Graph-theoretic Definitions

We first need to add to the graph-theoretic definitions given in Section 2.2.

Let G be a biconnected graph with an open ear decomposition D = [Po, ..., Pro1]
Two ears are parallel to each other if they have the same endpoints; an ear P; is a
parallel ear if there exists another ear P; such that P; and P; are parallel to each
other.

An st-numbering of a graph G is a numbering of the n vertices of G from s =1 to
t = n, such that every vertex v (other than s and t) has adjacent vertices u,w with
u < v < w. An st-graph is a directed acyclic graph G = (V, E) with (s,t) € E such
that every vertex in V' lies on a path from s to t.

Let P = (vo, ...,vx—1) be a simple path. The path P(v;,v;),0 <1,7 <k —1 is the
simple path connecting v; and v; in P, i.e., the path (v;,vita, e, 0j), if ¢ < j or the
path (vj,v41, -, vi), if j < ¢. Analogously, Plv;,v;] consists of the path (segments)
obtained when the edges and internal vertices of P(v;,v;) are deleted from P.

Given a noncyclic path P = (vo, ..., v}), the innard of P is the path (vq, ..., vk-1),
i.e., the path obtained from P by deleting the first and last vertices.

Let G = (V, E) be a biconnected graph, and let @ be a subgraph of G. We define
the bridges of Q in G as follows: Let V' be the vertices in G — @, and consider the
partition of V' into classes such that two vertices are in the same class if and only
if there is a path connecting them which does not use any vertex of @. Each such
class K defines a nontrivial bridge B = (Vp, Eg) of Q, where B is the subgraph of
G with Vg = KU {vertices of Q that are connected by an edge to a vertex in K 1,
and Ep containing the edges of G incident on a vertex in K. The vertices of @ which
are connected by an edge to a vertex in K are called the attachments of B on @); the
connecting edges are called the attachment edges. An edge (u,v) in G — @, with
both v and v in Q, is a trivial bridge of Q, with attachments u and v and attachment
edge (u,v). The nontrivial and trivial bridges of @ together form the bridges of Q.
The operation of removing a bridge B of Q from G is the removal from G of all edges
and all nonattachment vertices of B.

Let G = (V, E) be a graph and let V/ C V with the subgraph of G induced on |
being connected. The operation of collapsing the vertices in V' consists of replacing
all vertices in V' by a single new vertex v, deleting all edges in G whose two endpoints
are in V' and replacing each edge (z,y) with z in V' and y in V — V' by an edge
(v,y). In general this results in a multigraph even though G is not a multigraph.

Let G = (V, E) be a biconnected graph, and let Q be a subgraph of G. The bridge
graph of @, S = (Vs, Es) is obtained from G by collapsing the nonattachment vertices
in each nontrivial bridge of Q and by replacing each trivial bridge b = (u, v) of @ by
the two edges (23, u) and (z5,v) where z; is a new vertex introduced to represent the
trivial bridge b. Note that in general the bridge graph is a multigraph.

Let G = (V,E) be a biconnected graph with an open ear decomposition D =
[Py, ..., Pr—1]. We will denote the bridge graph of ear P; by C;. The anchor bridges of
P; are the bridges of P; in G that contain nonattachment vertices belonging to ears

15

numbered lower than i. For any two vertices x,y on P;, we denote by V;(z,y), the
internal vertices of P;(z,y), i.e., the vertices in P;(z,y)—{z,y}; we denote by Vi[z,y],
the vertices in Pz, y]—{z,y} together with the nonattachment vertices in the anchor
bridges of P;. Figure 3.1 illustrates some of our definitions relating to bridges.

A star is a connected graph in which exactly one vertex has degree greater than
1. The unique vertex of a star that has degree greater than 1 is called its center.

Let P be a simple noncyclic path in a graph G. If each bridge of P in G contains
exactly one vertex not on P, then we call G the star graph G(P). Each bridge of
G(P) is a star and is called a star of G(P). Note that, in a connected graph G, the
bridge graph X of any simple noncyclic path in G is a star graph X(P). For example,
in figure 1, the bridge graph X of P, is a star graph X(P;). We will sometimes refer
to a star graph G(P) by G if the path P is clear from the context.

Let G(P) be a star graph and let P = (0,1,...,k). Given a star S of G(P) with
attachments vg < v1 < ... < v, on P, we will call v and v, the end attachments of
S and the remaining attachments the internal attachments of S; the vertex vo is the
leftmost attachment of S, and the vertex v, is its rightmost attachment; attachments
v; and vy are consecutive, for i =0,...,r — 1.

Two stars in a star graph G(P) interlace if one of following two hold:

1) There exist four distinct vertices a, b, ¢, d in increasing order on P such that ¢ and
¢ are attachments of one of the stars and b and d are attachments of the other
star; or

2) There are three distinct vertices on P that belong to both stars.

The operation of coalescing two stars S; and Sy is the process of forming a single
new star S; from S; and Sy by combining the centers of S; and Si, and deleting S;
and Si. Given a star graph G(P), a coalesced graph G, of G is the graph obtained
from G by repeatedly coalescing a pair of interlacing stars in the current star graph
until no pair of stars interlace; a partially coalesced graph of G is any graph obtained
from G by performing this repeated coalescing at least once.

A planar embedding of a graph G is a mapping of each vertex of G to a distinct
point on the plane and each edge of G to a curve connecting its endpoints such that
no two edges intersect. A face of a planar embedding is a maximal region of the
plane that is bounded by edges of the planar embedding. The outer face of a planar
embedding is the face with unbounded area. An inner face of a planar embedding is
a face with finite area.

Let G(P) be a star graph in which no pair of stars interlace. If G(P) contains no
star that has attachments to the endpoints z and y of P, then add a virtual star X to
G(P) with attachments to z and y. The star embedding G*(P) of G(P) is the planar
embedding of (the possibly augmented) G(P) with P on the outer face. From some
well-known results in planarity, it can be established that a star graph G(P) has a
planar embedding with P on the outer face if and only if no pair of stars interlace. We
give some further definitions on planar combinatorial embeddings in Section 4.2.3.

16

G with open ear decomposition D = [Po, Py, P2, P3, Pa, Bs); Py = {a, b),

Py = (b,c,d,e,a), P, = (c,9,f.e), Pa= (d,f), Psy= (g,h,f), Ps = (c,i,¢e).

C c c
b
. d
1
a
f
e e e
B, B, B,

Bridges of Ps.

Bridge graph X of P,. Anchor bridges are B, and B3

Figure 3.1: Illustrating the definitions

17

Let G(P) be a star graph with a star embedding G*(P). Let B and B’ be two
stars in G(P). Then B is the parent-star of B and B’ is a child-star of B if there is
a face in the star embedding G*(P) that contains the end attachment edges of B’ as
well as an attachment edge of B on either side of the end attachments of B’'.

Let G be a biconnected graph with an open ear decomposition D = [Py, ..., Pr—1].
Let By, ..., B; be the anchor bridges of ear P;. The ear graph of P;, denoted by Gi(F;),
is the graph obtained from the bridge graph of P; by

a) Coalescing all stars corresponding to anchor bridges;

b) Removing any multiple two-attachment bridges with the endpoints of the ear as
attachments; and

c) Replacing all multiple edges by a single copy.

We will call the star obtained by coalescing all anchor bridges, the anchoring star of
Gi(P).

We conclude our list of definitions by defining the triconnected components of a
biconnected multigraph (see, e.g., [Tu66, HT72]).

A pair of vertices a, b in a multigraph G = (V, E) is a separating pair if and only if
there are two nontrivial bridges, or at least three bridges, one of which is nontrivial,
of {a,b} in G. A biconnected graph with at least four vertices is triconnected if it
has no separating pair. The pair a,b is a nontrivial separating pair if there are two
nontrivial bridges of a,b in G. These definitions apply to a (simple) graph as well;
in this case, all separating pairs are nontrivial. By Menger’s theorem, a graph is
triconnected if and only if it is biconnected and has at most 3 vertices or there are 3
vertex-disjoint paths between every pair of distinct vertices.

Let {a,b} be a separating pair for a biconnected multigraph G = (V, E). For
any bridge X of {a,b}, let X be the induced subgraph of G on (V — V(X))U {a, b}.
Let B be a bridge of {a,b} such that |E(B)| > 2,|E(B)| > 2 and either B or B is
biconnected. We can apply a Tutte split s(a,b,t) to G by forming G; and G, from G,
where Gy is BU{(a, b,%)} and G is BU{(a, b,%)}. Note that we consider G; and G, to
be two separate graphs. Thus it should cause no confusion that there are two edges
labeled (a, b, 7) since one of these edges is in G and the other is in G;. The graphs Gy
and G, are called split graphs of G with respect to a,b. The Tutte components of G
are obtained by successively applying a Tutte split to split graphs until no Tutte split
is possible. Every Tutte component is one of three types: i) a triconnected simple
graph; ii) a simple cycle (a polygon or iii) a pair of vertices with at least three edges
between them (a bond the Tutte components of a biconnected multigraph G are the
unique triconnected components of G.

3.2 Brief Overview of Results

In this section we give a high-level description of the results leading to our triconnec-
tivity algorithm. Given a biconnected graph, our algorithm finds all separating pairs

18

in the graph. The input graph is triconnected if and only if the algorithm finds no
separating pair in the graph.

In Section 3.3 we show that if z,y is a separating pair in a biconnected graph G
with an open ear decomposition D, then there exists an ear P; in D that contains z and
y as nonadjacent vertices, and further, every bridge of P; has an empty intersection
with either Vi(x,y) or V;[z,y]. This is the basic property that we use in our algorithm.

We further show that the above property is not altered by the operation of coa-
lescing interlacing stars in the bridge graph C;(P;) and thus applies to the ear graph
of P; as well as its coalesced graph. Finally we show that separating pairs satisfying
the basic property with respect to P; are simply those pairs of nonadjacent vertices
on P; that lie on a common face in the star embedding of this coalesced graph.

The above results lead to the following high-level algorithm for finding separating
pairs in a biconnected graph G: Find an open ear decomposition D for G and for
each nontrivial ear P; in D, form the coalesced graph of its ear graph and extract
separating pairs from its star embedding.

In Section 3.4 we build on the above results to give an efficient parallel algorithm
to find the triconnected components of a graph. This algorithm finds the triconnected
components using Tutte splits in contrast to the earlier algorithm based on depth first
search [HT72], which used certain other types of splits that required a clean-up phase
at the end of the algorithm.

The definition of triconnected components given in Section 3.1 may appear con-
trived at first, but in reality it decomposes a biconnected graph into substructures
that preserve the triconnected structure of G. In particular, questions relating to
graph planarity and isomorphism between a pair of graphs can be mapped onto re-
lated questions regarding the triconnected components. Thus the problem of finding
the triconnected components of a graph is an important one.

3.3 The Triconnectivity Algorithm

Lemma 3.1 Let D = [P,,..., P._;] be an open ear decomposition of a biconnected
graph G and let = and y be the endpoints of ear P;. Then every anchor bridge of P;
has attachments on z and y.

Proof Let B be an anchor bridge of P; and let H = ;;%Pj. By definition, the
nonattachment vertices in B are the vertices in a connected component C of G—{P;}
that contains a vertex in H—{z,y}.

The graph (H—{z,y}) N P; is empty since none of the internal vertices of P; are
contained in ears numbered lower than ¢. Hence C' must contain all vertices in one or
more connected component(s) of H—{z,y}. Let D be one such connected component
contained in C. Since H has an open ear decomposition, it is biconnected by Lemma
2.2. Hence D contains vertices adjacent to x and y in H, since otherwise z or y would
be a cutpoint of H. But this implies that C' contains vertices adjacent to z and y in

G—{P;}, i.e., bridge B of P; has attachments on z and y.[]

19

Figure 3.2: Case 1 in the proof of Lemma 3.2

Lemma 3.2 Let G = (V, E) be a biconnected undirected graph for which vertices
¢ and y form a separating pair. Let D = [Py, ..., P,_1] be an open ear decomposition
for G. Then there exists a nontrivial ear P; in D that contains « and y as nonadjacent
vertices, such that every path from a vertex in Vi(z,y) to a vertex in Vi[z,y] in G
passes through either x or y.

Proof Since z and y form a separating pair, the subgraph of G induced by V—~{z,y}
contains at least two connected components. Let X and X, be two such connected
components.

Case 1: The ear P; contains no vertex in X, (see figure 3.2):

Consider the lowest-numbered ear, P;, that contains a vertex v in Xj. Since the
endpoints of P; are distinct and must be contained in ears numbered lower than i,
P; must contain z and y. Further, all vertices in Vi(z,y) lie in X;, and none of the
vertices in Vi[z,y] lie in Xz. Hence every path from a vertex in Vi(z,y) to a vertex
in V;|z,y] in G passes through either z or y. Further, = and y are not adjacent on P;
since v lies between = and y.

Case 2: P, contains a vertex in Xj:

If P, contains no vertex in X, then case 1 applies to X;. Otherwise P, contains at
least one vertex from X7, and one vertex from X,. But then, since PoU P; is a simple
cycle, and Py contains both vertices in Py, we have the result that P, must contain z
and y. Hence, by the argument of Case 1, every path from a vertex in Vi(z,y) to a
vertex in Vi[z,y] must contain either z or y, and z and y are not adjacent on P;.[]

We will say that a separating pair z,y separales ear P; if z and y are nonadjacent
vertices on P;, and the vertices in Vi(z,y) are disconnected from the vertices in Vilz, y]
in the subgraph of G induced by V— {z,y}. By Lemma 3.2, every separating pair
in G separates some nontrivial ear. (Note that a separating pair may separate more
than one nontrivial ear; for instance, in the graph G in figure 3.1, the pair ¢,e is a
pair separating ears Py and Ps,—note that ¢, e does not separate Ps.)

20

Lemma 3.3 Let G = (V, E) be a biconnected graph with an open ear decomposition
D = [Py,...,P,—1]. Let ear P; contain z and y as nonadjacent vertices. Then z,y
separates P; if and only if every bridge of P; has an empty intersection with either
Vi(z,y) or Vi[z,y].
Proof Let every bridge of P; have an empty intersection with either Vi(z,y) or
Vi[z,y] and suppose z,y does not separate ear P;. Hence, there exists a path P =
{a,wy,...,wy, b) in G, with a in V(z,y) and b in Vi[z,y], that avoids both z and y.
This implies that there is a subpath P’ of P with P’ = (w,, ..., ws) such that w, is in
Vi(z,y), ws is in V[, y], and none of the intermediate wy lie on P;. Hence there is a
bridge B of P; containing w, and w;, i.e., B has a nonempty intersection with both
Vi(z,y) and V;[z,y], which is not possible by assumption. Hence z,y must separate
ear P;.

Conversely suppose B is a bridge of P; containing a vertex a in Vi(z,y) and a
vertex b in Vi[z,y]. Then we have a path from a vertex in Vi(z,y) to a vertex in
Vi[z,y] that avoids both z and y. Hence z,y does not separate P,.[]

Corollary to Lemma 3.3 Let 2 and y be the endpoints of a nontrivial ear P; in
an open ear decomposition D of a graph G. Then z,y separates P; if and only if no
anchor bridge of P; has an attachment in Vj(z,y).

Proof Let z,y separate P;. By Lemma 3.3, every bridge of P; has an empty intersec-
tion with either Vi(z,y) or Vi[z,y]. Since any anchor bridge of P; has a nonempty
intersection with V;[z,y], every anchor bridge must have an empty intersection with
Vi(z,y). Hence no anchor bridge can have an attachment in Vi(z,y).

Conversely, suppose no anchor bridge of P; has an attachment in V;(z,y). Then
every anchor bridge has an empty intersection with V;(z,y). Since and y are end-
points of P;, every nonanchor bridge has an empty intersection with Vi[z,y]. Hence
by Lemma 3.3, z,y separates P;.[|

We will call a pair of vertices z,y on an ear P; a candidate pair for P; if x,y is a
pair separating P; or (z,y) is an edge in P; or « and y are endpoints of P;. Clearly,
if we can determine the set of candidate pairs for P;, we can extract from it the pairs
separating P; by deleting pairs that are endpoints of an edge in P;, and checking if the
endpoints of P; form a pair separating P; using the criterion in the above Corollary.

More generally, let G(P) be a star graph. A pair of nonadjacent vertices x,y on P
will be called a pair separating P if the vertices in P(z,y)—{x,y} are separated from
the vertices in P[z,y]—{z,y} when & and y are deleted from G. A pair of vertices
z,y on P will be called a candidate pair for P in G if z,y is a pair separating P, or
z and y are endpoints of P, or (z,y) is an edge in P.

The proof of the following claim is similar to the proof of Lemma 3.3 and is
omitted.

Claim 3.1 Let G(P) be a star graph. A pair ,y separates P in G(P) if and only
if every bridge of P in G(P) has an empty intersection with either P(z,y)—{x,y} or
P[Sl?, y]_{xa y}

21

We now relate candidate pairs for P; in G with candidate pairs for P; in its bridge
graph Ci(F;).

Observation 3.1 Let G = (V, E) be a biconnected graph with an open ear decom-
position D = [Po, ..., P—1]. Then z,y is a candidate pair for P; in G if and only if it
is a candidate pair for P; in the bridge graph C;(F;).

ProofIf (z,y) is an edge in P; or if and y are endpoints of P;, then z,y is a candidate
pair for P; in both G and C;(F;). So in the following we assume that z,y separates
P; and = and y are not both endpoints of P;.

Let z,y separate P; in G. By Lemma 3.3 every bridge of P; in G has an empty
intersection either with Vi(z,y) - and hence with Pi(z,y)—{z,y} — or with Vi[z,y] -
and hence with P;[z,y]—{z,y}. By construction this implies that every bridge of P; in
Ci(P;) has an empty intersection either with P;(z,y)—{z,y} or with Pi[z,y]—{z,y}.
Hence by Claim 3.1, z, y separates P; in C;(F;).

Conversely, let z,y separate P; in C;(P;). By Claim 3.1, every bridge of P; in
C;(P;) has an empty intersection either with Py(z,y)—{z,y} or with Pz, y]—{z,y}.
Let By, ..., By be the bridges of P; in C;(P;) corresponding to the anchor bridges of
P; in G. By Lemma 3.1, each B; has attachments to the two endpoints e and f
of P; and by assumption either e or f is distinct from z and y. Assume without
loss of generality that e is different from = and y. The vertex e is in Pz, y]—{z,y}
and each B;,j = 1,...,k has an attachment on e. Hence each B; has a nonempty
intersection with Pi[z,y]—{z,y} and therefore must have an empty intersection with
Pi(z,y)—{z,y}. »

The above implies that every anchor bridge of P; in G has an empty intersection
with V;(z,y) and every nonanchor bridge has an empty intersection either with Vi(z,y)
or with Vi[z,y]. Hence, by Lemma 3.3, z,y separates P; in G.{]

By the above Observation we can work with the bridge graph of each ear in order

to find the candidate pairs for that ear in G. We now develop results that will lead
to an efficient algorithm to find candidate pairs in a star graph.
Lemma 3.4 Let G(P) be a star graph with stars Sy,...,Sk. For j = 1,...,k let H;
be the subgraph of G consisting of P U S; and let H;* be the star embedding of H;.
Then a pair of vertices z,y on P is a candidate pair for P if and only if either z and y
are the endpoints of P or z and y lie on a common inner face in each H;*,j =1,..., k.
ProofLet z,y be a candidate pair for P. If z and y are endpoints of P then the result
follows immediately. If (z,y) is an edge on P then z and y must lie on a common
inner face in each H;*. Otherwise, by Claim 3.1, each S; has an empty intersection
with either P(z,y)—{z,y} or Plz,y]—{=z,y}.

If S; has an empty intersection with Plz,y]—{z,y} then z and y belong to the
unique inner face of H} that contains the endpoints of P. If 5; has an empty inter-
section with P(z,y)—{z,y}, let (a1, ...,a;) be the attachments of S; on P in the order
that they are encountered on P from one endpoint of P to the other. The vertices z
and y must lie between a, and apy1, for some 1 < p < k. Then z and y lie on the
unique inner face of H,” containing a, and ap4;.

22

If z,y is not a candidate pair for P, then by Claim 3.1 there exists a star S; with
consecutive attachments a, b, with @ in P[z,y]—{z,y} and b in P(z,y)—{z,y}. Then,
one of z and y, say z, lies in P(a,b)—{a,b} and the other, y, lies in Pla, b]—{a, b}.
Then z lies on the unique inner face containing a and b in H} and y does not lies on

this face.[]

Corollary to Lemma 3.4 If G* is the star embedding of G(P), then a pair of vertices
z,y on P is a candidate pair for P if and only if either z and y are the endpoints of
P or z and y lie on a common inner face in G*.

In general, this corollary may not apply, because G(P) need not be planar. We
now introduce the star coalescing property: namely, we establish that if we enforce
the planarity required in the corollary by forming a coalesced graph G. of G(P) then
the corollary applies to G..

The coalesced graph G.(P) of a star graph G(P) is unique (exercise 3). Hence in
the following we refer to G, as ‘the’ coalesced graph of G (rather than ‘any’ coalesced
graph of G).

Theorem 3.1 Let G(P) be a star graph and let G1(P) be obtained from G(P) by
coalescing a pair of interlacing stars S and T'. Then a pair z,y on P is a candidate
pair for G(P) if and only if it is a candidate pair for G, (P).

Proof Let R be the star in G;(P) formed by coalescing S and T'.

If (z,y) is an edge on P or if z and y are endpoints of P then z,y is a candidate
pair for both G(P) and G1(P).

Let z, y separate P in G(P). Hence S and T have an empty intersection with either
P(z,y)—{z,y} or Plz,y]—{=,y}. Since S and T interlace, either both have empty
intersection with P(z,y)—{z,y} or both have empty intersection with P[z,y]—{z,y}.
Hence R, which contains the union of the attachments of S and T', must have an empty
intersection with either P(z,y)—{z,y} or with P[z,y]—{z,y}. Hence by Claim 3.1,
z,y separates P in G1(P).

Conversely suppose z, y separates P in G1(P) and let R have an empty intersection
with P(z,y)—{z,y} (P[z,y]—{z,y}). Then both S and T have an empty intersection
with P(z,y)—{z,y} (Plz,y]—{z,y}) and hence z,y separates P in G(P) by Claim
3.1.[]

Corollary to Theorem 3.1 Let G(P) be a star graph.

a) Let G'(P) be any partially coalesced graph of G(P). Then z,y is a candidate
pair for G(P) if and only if it is a candidate pair for G'(P).

b) A pair z,y is a candidate pair for G(P) if and only if it is a candidate pair for
the coalesced graph G.(P).

Let G(P) be a star graph and let G.(P) be its coalesced graph. Since no pair of
bridges of P interlace in G.(P), Lemma 3.4 and its Corollary apply to this graph. Let
us refer to the set of vertices on P that lie on a common inner face in G.* listed in the

23

order they appear on P as a candidate list for P. A pair of vertices is a candidate
pair for P if and only if it lies in a candidate list for P. A candidate list S for ear P
is a nontrivial candidate list if it contains a pair separating P.

Let G be a biconnected graph with an open ear decomposition D = [Py, ..., P,—1].
Since every separating pair for G is a candidate pair for some nontrivial ear P; (Lemma
3.2), any algorithm that determines the candidate lists for all nontrivial ears is an
algorithm that finds all separating pairs for a graph. By the results we have proved
above, we can find all candidate lists in G by forming the bridge graph for each
nontrivial ear, and then extracting the nontrivial candidate lists from the coalesced
graph of the bridge graph.

In order to obtain an efficient implementation of this algorithm, we will not use the
bridge graph of each ear, but instead the closely related ear graph which we defined
in Section 3.1.

Lemma 3.5 A pair of vertices x,y separates ear P; in G if and only if it separates P;
in the ear graph G;(P;).

Proof By Claim 3.1, z,y separates ear P; in G if and only if it separates P; in the
bridge graph C;(FP;).

Now consider the ear graph G;(P;). The ear graph G;(P;) is obtained from the
bridge graph C;(P;) by coalescing all anchor bridges, deleting multiple two-attachment
bridges with the endpoints of the ear as attachments, and deleting all multiple edges
by a single copy.

Deleting ‘a star with attachments only to the endpoints of an ear can neither
create nor destroy candidate pairs. Let C}(P;) = C;(P;)—{2-attachment bridges with
endpoints of P; as attachments}.

By Lemma 3.1, every anchor bridge of P; has the two endpoints of P; as attach-
ments, and hence every pair of anchor bridges with an internal attachment on P;
must interlace. Hence G;(F;) is the graph derived from C](P;) by coalescing some
interlacing stars. The lemma now follows from the Corollary to Theorem 3.1.]
Lemma 3.6 Let G = (V, E) be a biconnected graph with an open ear decomposition
D =[Py,..., P,_1], and let |[V]| = n and |E| = m. Then the total size of the ear graphs
of all nontrivial ears in D is O(m).

Proof Each ear graph consists of a nontrivial ear P; together with a collection of stars
on P;. The size of all of the P; is O(m). So we only need to bound the size of all of
the stars in all of the ear graphs.

Consider an edge (u,v) in G. This edge appears as an internal attachment edge
in at most two ear graphs: once for the ear P,,,(y) and once for ear Pe,p(,). Thus the
number of internal attachment edges in all of the stars is no more than 2m.

We now bound the number of attachment edges to endpoints of ears. Since we
delete all stars with only the endpoints of an ear as attachments, every star in an ear
graph G;(P;) with an attachment to an endpoint of P; also has an internal attachment
in P;. A star can contain at most two attachments to endpoints of an ear. Hence for
each star that contains attachments to endpoints of its ear, we charge these attach-

24

ments to an internal attachment. Since the number of internal attachment edges is
no more than 2m, the number of attachment edges to endpoints of ears is no more
than 4m. Hence the total size of all of the ear graphs is O(m).[]

The above results establish the validity of the following algorithm to find the
nontrivial candidate lists in a biconnected graph.

Algorithm 3.1: Finding the Nontrivial Candidate Lists
Input: A biconnected graph G = (V, E).
Output: The candidate lists for G.

integer j; vertex u, v;

1. find an open ear decomposition D = [Py, ..., P,—1] for G;
pfor each nontrivial ear P; —

2. construct the ear graph G;(P;);

3. coalesce all interlacing stars on G;(P;) to form the coalesced graph Gj,;

4. construct the star embedding of G, of Gj,, and identify each list of vertices
on P; on a common inner face in this embedding as a candidate list;
let u and v be the endpoints of Pj;
if [u,v] is a candidate list for P; and the anchoring star of P; has an internal
attachment on P; — delete candidate list [u, v] fi;

delete any candidate list for P; that contains only the two endpoints of an
edge in P;

rbfp
end.

In Section 2.5 we described a logarithmic time parallel algorithm with a linear
number of processors on a CRCW PRAM for step 1 of Algorithm 3.1. In Section 4,
we give algorithms with similar processor-time bounds to perform steps 2, 3 and 4
in parallel for all nontrivial ears. Clearly the remaining steps in the pfor loop are
trivial to implement. Hence Algorithm 3.1 can be made to run in logarithmic time
with a linear number of processors. However, before proceeding to an efficient imple-
mentation of Algorithm 3.1, we show in Section 3.4, how to obtain the triconnected
components of a biconnected graph, given the nontrivial candidate lists.

3.4 Finding Triconnected Components

In this section we define a special type of split, called the ear split in a biconnected
graph with an open ear decomposition. This split has the desirable property that
the original open ear decomposition decomposes in a natural way into two open ear
decompositions, one for each split graph. This also leads to a natural algorithm

25

for finding triconnected components based on applying certain types of ear splits
successively.

We also consider some issues that arise in a parallel implementation of the above
algorithm. The obvious approach would be to perform all of the ear splits in parallel.
However, this leads to complications when a vertex is shared by several Tutte pairs.
We analyze some of the properties of ear splits in this section and we present a
method for performing all of the relevant ear splits on a single ear. This method runs
in logarithmic time with a number of processors linear in the size of the bridge graph
of the ear. In Section 4.3 we apply this method to the ‘local replacement graph’ which
is defined in Section 4.1 to obtain a logarithmic time algorithm using a linear number
of processors to find the triconnected components of the input graph.

We start by defining a special type of split, called an ear split, on a biconnected
graph G with an open ear decomposition D = [Py, ..., P,-1]. Let a,b be a pair sepa-
rating ear P;. Let By, ..., By be the bridges of P; with an attachment in V;(a, d), and
let Ti(a,b) = (U5oB;) U Pi(a,b). It is easy to see that Ti(a,d) is a bridge of a,b.
Then the ear split e(a, b,i) consists of forming the upper split graph Gy = Ti(a,b)U
{(a,b,i)} and the lower split graph Gz = Ti(a,b)U{(a,b,i)}. Note that the ear split
e(a,b,i) is a Tutte split if one of Gy—{(a,b,i)} or Go— {(a,b,1)} is biconnected.

Let S be a nontrivial candidate list for ear P;. A pair u,v in S is an adjacent
separating pair for P; if S contains no vertex in Vi(u,v). The pair u, v is a nonvacuous
adjacent separating pair for P; if u,v is an adjacent separating pair and there is a
bridge of P; with an attachment on V;(u,v). A pair a,bin S is an eztremal separating
pair for P;if | S| > 3 and S contains no vertex in Vi[a, b]. We will refer to a nonvacuous
adjacent or extremal separating pair as a Tutte pair.

We now prove the following theorem.

Theorem 3.2 Let G = (V, E) be a biconnected graph with an open ear decomposition
D =[P, ..., P,_1]. Let a,b be an adjacent (extremal) separating pair for F; in G, and
let Gy and G, be, respectively, the upper and lower split graphs obtained by the ear
split e(a, b,7). Then,

a) G1—{(a,b,7)} (Ga—{(a,b,7)}) is biconnected.

b) The ear decomposition Dy induced by D on Gi by replacing P; by the simple
cycle formed by P;(a, b) followed by the newly added edge (b, a, 1) is a valid open
ear decomposition for Gy; likewise, the ear decomposition D, induced by D on
G, by replacing P;(a,b) by the newly added edge (a,b,:) is a valid open ear
decomposition for Gj.

c) Let ¢,d be a pair separating some P;,0 < j < r—1in G. If {¢,d}#{a, b}ori#j
then ¢ and d lie in one of Gy or Gg, and c,d is a separating pair for P; in the

split graph in which P;, ¢, and d lie.

d) Every separating pair in Gy or in Gy is a separating pair in G.

26

Proof

a) Let a,b be an adjacent separating pair for P;. If G1— {(a,), i)} is not biconnected
then let ¢ be a cutpoint in the graph. The vertex ¢ cannot lie on P;(a,b) since this
would imply that it is part of the candidate list for which a, b is an adjacent separating
pair. But ¢ cannot lie on a bridge of Pi(a,b) since then ¢ would be a cutpoint of G
and this would imply that G is not biconnected.

Similarly Go— {(a,b,1)} is biconnected if a,b is an extremal separating pair.

b) We establish by induction on ear number j, for j > ¢, that the graph Py ; = Uj_, Pk
satisfies the property in part b) of the Theorem. The details are straightforward and
are omitted.

c and d) If ¢ # j let P; lie in Gy (where k =1 or 2). We note that the ear graph of
P; in Gy is the same as the ear graph of P; in G. Hence c,d is a pair separating P;
in G if and only if it is a pair separating P; in Gj.

If ; = j we note that in G; the bridges of P; are precisely those bridges of P; in G
that have attachments on an internal vertex of P;(a,). Hence if ¢ and d lie on P;(a, b)
then ¢, d separates P; in G if and only if it separates Pi(a,b) in Gi. An analogous
argument holds for G, in the case when ¢ and d lie on Pi[a, b].[]

We now present the algorithm for finding triconnected components.

Algorithm 3.2: Finding Triconnected Components

Input: A biconnected graph G = (V,E) with an open ear decomposition D =
[Py, ..., Pr—1], and the nontrivial candidate lists for each ear.

Output: The triconnected components of G.

vertex u, v; integer ¢;
pfor each nontrivial candidate list S in each nontrivial ear P; —

pfor each nonvacuous adjacent separating pair u,v in § —
form the upper split graph G, for the ear split e(u,v,) and replace G
by the lower split graph G, for the ear split e(u,v,4);
replace D by the open ear decomposition D; for the lower split graph
G, and form the open ear decomposition Dy for the upper split graph
G, as in part b) of Theorem 3.2

rofp;

if |S|>2 —
form the upper split graph G; and replace G by the lower split graph
G, for the extremal separating pair u,v in S;

form the open ear decompositions Dy and D; as in Theorem 3.2 and
replace D by D,. (if 7 = 1 and u and v are endpoints of ear P; then

perform this ear split only if there are at least two edges between u
and v)

27

fi
rofp;

split off multiple edges in the remaining split graphs to form the bonds

end.

Lemma 3.7 Algorithm 3.2 generates the Tutte components of G.
Proof By Theorem 3.2, each split performed in Algorithm 3.2 is a Tutte split, and at
termination there is no separating pair in any of the generated graphs.|]

For an efficient parallel implementation of Algorithm 3.2 we need a good method
to perform all of the Tutte splits in the algorithm in parallel. This is quite simple
if all of the Tutte pairs are disjoint. However, for the general case when the Tutte
pairs are not necessarily disjoint, we need to specify a method to process the splits in
parallel without causing conflicts between different splits that share a vertex in their
Tutte pairs. In the rest of this section we develop a method to perform in parallel all
of the splits on Tutte pairs in a single ear. This method is not necessarily efficient.
However, it will be used in a general algorithm described in Section 4.3 that performs
the splits corresponding to Tutte pairs in all ears in logarithmic time with a linear
number of processors.

We start by associating a triconnected component with each ear split correspond-
ing to a Tutte pair. Let €(a, b, ¢) be such a split. Then by definition Tj(a, b)U {(a, b,7)}
is the upper split graph associated with the ear split e(a, b,7). The triconnected com-
ponent of the ear split e(a, b,1), denoted by T'C(a, b,1), is Ti(a, b)U{(a,b,?)} with the
following modifications: Call a pair ¢, d separating an ear P; in Ti(a,b) a mazimal
pair for Ti(a,b) if there is no e, f in Ti(a,b) such that e, f separates some ear P
in Ti(a,b) and ¢,d is in Tk(e, f). In Ti(a, b)U{(a,b,i)} replace Tj(c,d) together with
all two-attachment bridges with attachments at ¢ and d, for each maximal pair ¢, d
of Ti(a,b), by the edge (c,d, j) to obtain T'C(a,b,7). We denote by T'C(0,0,0), the
unique triconnected component that contains Po.

Lemma 3.8 TC(a,b,?) is a triconnected component of G.

Proof Each split of T(a, b) in the above definition is a valid Tutte split, and the final
resulting graph contains no unprocessed separating pair. Hence TC(a, b,7) is a valid
triconnected component of G.[]

Lemma 3.9 Every triconnected component of G is T'C/(a, b, ¢) for some unique triplet
(a,b,17).

Proof Straightforward.]

We note that if @, b is an extremal pair separating P; then T'C(a, b,) is a polygon
and if a,b is a nonvacuous adjacent pair separating P; then T'C(a,b,7) is a simple
triconnected graph.

Let G = (V,E) be a biconnected graph with an open ear decomposition D =
[Po, Py, ..., Pr—1]. Let Ci(P;) be the bridge graph of F; and let D;(P;) be the coalesced
graph of C;. Note that D; is closely related to G; (P;), the coalesced graph of the ear

28

graph of P; in G, but is not exactly the same since D; retains multiple attachment
edges as well as multiple two-attachment bridges. (Note also that the sum of the sizes
of the D; over all nontrivial ears could be superlinear in the size of G.)

The proofs of the following two lemmas are left as exercises.
Lemma 3.10 Algorithm 3.1 with G, replaced by D; will output the nontrivial can-
didate lists of G.
Lemma 3.11 Let a,b be a nonvacuous adjacent separating pair for P; in G and let
(z,y) be an edge, not in P;, which is incident on a vertex y on P;. Then

a) The edge (z,y) is in Ti(a, b) if and only if it is in a star of D; with an attachment
on an internal vertex in P;(a,b);

b) D; contains at most one star B with attachments on a, b, and an internal vertex
in Py(a,b) , and if edge (z,y) is in TC(a, b,%) then it lies in B.

We now give a lemma about two-attachment bridges.

Lemma 3.12 Let B be a two-attachment bridge of P; in D; with attachments a and
b. Then

a) If the span [a, b] is degenerate (i.e., (a,b) is an edge in F;) or if there is a bridge B’
of P; with attachments on a and b and at least one other vertex, then the graph

D; — B defines the same set of polygons and simple triconnected components
TC(z,y,1), for ¢ fixed, as D;(F;).

b) If part a) does not hold then {a,b} is an extremal pair separating P; as well as
an adjacent pair separating P;.

Proof Let P; be the lowest-numbered ear in B. Then j > ¢ and ¢ and b are endpoints
of P;. Hence the ear split e(a,b, j) separates B from P;, and thus B is not part of
TC(z,y,1) for any pair {z,y} separating P;. So a two-attachment bridge of P; in
D; is never part of a triconnected component associated with a pair separating F,

though it may define some adjacent and extremal separating pairs as in case b) of
the lemma.

We now prove parts a) and b) of the lemma.

Part a): Suppose span [a,b] is degenerate. Then the triconnected component asso-
ciated with split e(a,b,) is the single edge (a,b), which is a bond. Otherwise, if
there is a bridge B’ with attachments on «a, b and at least one other vertex v, then
the triconnected component associated with split e(a,b,:) contains a portion of F;
between a and b, together with B’ if v is in the interval (a,b) and is a polygon if v
is not in [a,b]. Both of these situations can be inferred without the presence of B.
Note that it is not possible for B’ to have an attachment v in the interval (a,b) and
another attachment w that is not in [a, b], since the bridge B would interlace with B’
in such a case.

Part b): Let the span [a,b] be non-degenerate and let the portion of P; between a
and b be (@ = a1,...,a, = b). Since there is no k-attachment bridge, k > 2, with

29

span [a, b], there must exist an a;, 1 <1 <k such that @, a;, and b are in the same
candidate list C, and no vertex outside [a,b] is in C. Hence {a,b} is an extremal
separating pair. Also, since there is no bridge with attachments on a, b and some
other vertex ¢ outside [a,b], there must be some vertex ¢ on P such that either
c<a<bora<b<c and a, b, and c are in the same candidate list C’. Further, no
vertex in the interval (a,b) can belong to C'. Hence {a, b} is an adjacent pair in the
candidate list C".[]

Let us consider the case of a graph in which any pair of ear splits e(a,), (¢, d, j)
with ¢ # j are disjoint. In this case we can perform the ear splits in Algorithm 3.2
corresponding to different ears in parallel. To process separating pairs on a single ear
P; we run the following algorithm.

Algorithm 3.3: Performing Ear Splits on a Single Ear

Input A biconnected graph G together with D;(P;), the coalesced graph of the bridge
graph of a nontrivial ear P; in an open ear decomposition of G, with P; = (0,1, ..., k).
Output: The split graphs of G after all Tutte splits on F; have been performed.

vertex j, u, v, w, x, y; {* These vertices may be subscripted. *}

delete redundant two-attachment bridges;

pfor each attachment vertex v of each star B in D; — make a copy vp of v
rofp;

pfor each internal vertex v on P; —

if there is no star with an internal attachment on v — make an additional
copy vp of v to represent the lower split graph formed when all adjacent
separating pairs containing v have been processed fi;

rofp;
pforj = 0tok—-1—

if there is no bridge with its leftmost attachment on j - replace edge
(4,7 +1) on P; by an edge incident on jc, where C is B if there is a bridge
B with an internal attachment on j and is P otherwise fi

rofp;
pforj = 1tok —

if there is no bridge with its rightmost attachment on j — replace edge
(j—1,j) on P; by an edge incident on jp, where D is B’ if there is a bridge
B’ with an internal attachment on j and is P otherwise fi

30

rofp;
{* Process nonvacuous adjacent separating pairs. *}
pfor each star B in D; —

let the end attachments of B on P; be v and w, v < w;
replace all edges in B incident on v by edges incident on vp;
replace all edges in B incident on w by edges incident on wg;

if B has no child-star B’ with an attachment at v — replace edge (v,v+1)
on P by an edge incident on vg fi;

if B has no child star B’ with an attachment at w — replace edge (w—1,w)
by an edge incident on wp fi;

place a virtual edge (vg, wg, 1), and another virtual edge (vo,wp, %), where
C (resp. D) is the parent-star of B if the parent star of B has an attach-
ment at v (resp. w) and is P otherwise;

replace each internal attachment edge of B on a vertex u in P; by an edge
incident on upg

rofp;

{* Process extremal pairs. *}

pfor each star B in D; —

let the attachments of B on P; be vg < vy < ... < vy

pfor each j in {0,...,1 — 1} for which (vj,v;j41,) is not an edge in the
current component containing B —
for convenience of notation let z denote v; and let y denote v;;1;
make a copy zp, of z and a copy yp, of y;

replace the edge on P; connecting zp to the next larger vertex in the
current graph by an edge incident on zp,;

replace the edge on P; connecting yp to the next smaller vertex in the
current graph by an edge incident on yp,;

place a virtual edge (zp,ys,?) and another virtual edge (z5,,y5,,?)

rofp

rofp

31

end.

Algorithm 3.3 is an implementation of Algorithm 3.2 on ear P; using the results
of Lemmas 3.10, 3.11 and 3.12. We leave the proof of correctness of the algorithm
to the reader. We also leave it to the reader to verify that all steps in the algorithm
can be performed in logarithmic time with a linear number of processors in the size
of Dz

There are two problems with using this approach in an efficient logarithmic time
algorithm for forming the triconnected components of a graph. One is that we are
working with the D; and the total size of these graphs need not be linear in the size
of G. The second is that this approach will not work if a vertex a appears in an
ear split for two different ears. For instance, two-attachment bridges corresponding
to nonvacuous adjacent separating pairs will be separated on two different ears and
this would cause processor conflicts. In Section 4.3 we show how to overcome these
two problems to obtain logarithmic time parallel algorithm using a linear number of
processors for finding the triconnected components of a general biconnected graph.

4 Efficient Implementation of Triconnectivity Al-
gorithm

This section deals with a logarithmic time, linear processor implementation of Algo-
rithms 3.1 and 3.2.

Section 4.1 gives such an algorithm for constructing the ear graphs of the nontrivial
cars in an open ear decomposition (step 2 of Algorithm 3.1). Section 4.2 gives an
algorithm with these bounds for constructing the coalesced graph of a star graph, and
for extracting the candidate lists from its star embedding (steps 3 and 4 of Algorithm
3.1). In Section 4.3 we show that the results in sections 4.1 and 4.2 lead to a simple
implementation of Algorithm 3.2 that runs in logarithmic time with a linear number
of processors.

The algorithm in Section 4.1 for constructing the ear graphs is fairly intricate. A
considerably simpler algorithm for this problem is given in Miller & Ramachandran
[MR87] (exercise 4). However, although the algorithm in [MRAT7] is efficient, it needs
log® n parallel time.

4.1 Forming the Ear Graphs

In this section we develop a parallel algorithm to find the ear graph of each nontrivial
car. This algorithm is based on material from Fussell, Ramachandran & Thurimella
[FRT89], though the development here is somewhat different.

We begin by describing in Section 4.1.1 a simple linear processor, logarithmic
time algorithm to find the bridge graph of each path in a collection of vertex-disjoint
paths in a given graph. The set of nontrivial ears does not form a collection of

32

vertex-disjoint paths since the endpoints of an ear are contained in other ears. Hence
we cannot apply the algorithm in Section 4.1.1 to obtain the bridge graphs or ear
graphs of nontrivial ears. However, in Sections 4.1.2 and 4.1.3 we present a collection
of results that allow us to transform the input graph G, together with an open ear
decomposition D = [Py, ..., Pr—1], into a modified graph G, together with a collection
of edge-disjoint paths [P, ..., P/_] with the useful property that the innard of each P/
is P; and the ear graph of each nontrivial ear P; in D can be derived from the bridge
graph of P; in G;. This property allows us to use the simple technique of section 4.1.1
on the innards of the P!, since these paths are vertex-disjoint.

The technique presented in section 4.1.3 is called the ‘local replacement technique’.

4.1.1 Bridges of Disjoint Collection of Paths

In this section we present an algorithm for constructing the bridge graph of each path
in a collection of vertex-disjoint paths in a graph.

Algorithm 4.1: Forming the Bridge Graph of Each Path in a Collection of
Vertex-Disjoint Paths

Input: Graph G = (V, E), together with a collection of vertex-disjoint paths {Qoy .y Qr—1}.
Output: The bridge graph of each @Q;,2 =0,...,k— 1.

integer i; vertex a, b, v; {* v will be subscripted by an integer. *}
pfor each i — collapse the vertices in @Q; into a vertex v; rofp;

let the resulting graph be G™;

pfor each z —

pfor each block § of G~ with cutpoint v; — form a nontrivial bridge B of
Q; with the edges of G~ in 3 that are incident on v; as attachment edges
rofp;

pfor each edge (a,b) in G— {Q;} with a and b in @; — form a bridge of
Q; with attachments a and b rofp

rofp

end.

It is straightforward to see that this algorithm correctly constructs the bridge
graph of each of the @;, and that it runs in logarithmic time with a linear number of
Processors.

In the following sections we will use Algorithm 4.1 to find the ear graphs of the
nontrivial ears in an open ear decomposition of a biconnected graph. We start by
relating open ear decomposition to an st-graph in the next section.

33

4.1.2 The st-graph

Let G = (V,E) be a biconnected graph with an open ear decomposition D =
[Po, ..., Pr_1] with Py = (s,t). Since G is biconnected, it has an st numbering (exercise
2).

Lemma 4.1 Let G be a biconnected graph with an open ear decomposition D =
[P, ..., P,—1], where Py = (s,t). Then it is possible to direct each ear in D from one
endpoint to the other such that the resulting directed graph Gy is an st graph.
Proof We prove the lemma by establishing, by induction on 7, that the graph Po; =
Ui_oP; satisfies the statement of the lemma.

BASE: i = 0. Direct (s,t) from s to t.

INDUCTION STEP: Assume that the result is true until ¢ — 1 and consider 3.

Let D;_; be the directed graph obtained from Py ;-1 by directing its ears according
to the statement of the lemma. Assume that the vertices in Py;-1 are numbered
according to an st numbering consistent with D;_;.

Let v and v be the endpoints of ear P; and assume without loss of generality that
u is numbered lower than v in the st numbering for Py ;1. Direct P; from u to v.

We claim that D;_; U{P; directed from u to v} satisfies the statement of the lemma.
This follows from the following construction. Number the internal vertices of P; in
order from u as v,v+1,...,v+k — 1, where k is the number of internal vertices of P;.
Replace the number of each vertex w in Py ;-1 with w > v by w + k. The resulting
numbering is a valid st numbering for Py ; and D;_1U{P; directed from u to v} is its
st graph.[]

Given an open ear decomposition D = [P,,..., P,_1], Maon, Schieber & Vishkin
[MSV86] give a parallel algorithm to direct each ear in D as in Lemma 4.1 such that
the resulting directed graph is an st graph. Let G, be this graph, which we will call
the st-graph of D. The graph Ty, the st-tree of D, is the directed spanning tree
obtained from G, by deleting the last edge in each ear except Py. We can similarly
construct Gy, and its directed spanning tree T}, by considering Py to be directed from
t to s. We will refer to G4, as the reverse directed graph of G and vice versa.

We now state two simple but useful properties of open ear decomposition and the

trees T and Tjs.
Property 4.1 Let P; and P; be two ears in an open ear decomposition D of graph
G with i < j. Then, all vertices and edges of P; belong to a single bridge of P; in G.
Property 4.2 Let p = (uo,...,u;) be a directed path in Tj; or Ty. Then the ear
numbers of the vertices in p are nondecreasing when going from uo to u;.

4.1.3 The Local Replacement Graph

In this section we describe a transformation of a biconnected graph G with an open
ear decomposition D = [P, ..., P,_;] into a new graph Gi, called the local replacement
graph of (G; D). In the graph Gy, each ear P; in G is converted into a path P; with

34

the innard of P/ being P; and with the bridge graph of P; in G| corresponding to the
ear graph of P; in G.

Consider any vertex v in G. Let the degree of v be d (d > 2). Of the d edges
incident on v, two belong to Pe,,v). Each of the remaining d — 2 edges incident on
v is an end edge of some ear P;, with j > ear(v). In the local replacement graph G;
we will replace v by a rooted tree with d — 1 vertices, with one vertex for each ear
containing v. The root of this tree will be the copy of v for the ear containing v. The
actual form of the tree is computed from T; and Ty as in the algorithm below. The
tree representing vertex v will be called the local tree of v and will be denoted by T,.

Algorithm 4.2: Constructing the Local Replacement Graph

Input:

A biconnected graph G = (V, E);

an open ear decomposition D = [Py, ..., P._1] for G, with Py = (s,1);

the st-graph G with its spanning tree Ty; and the ts-graph Gy, with its spanning
tree T,

Output: The local replacement graph G; of (G; D).
integer i, j; {* These integers range in value from 0 to r — 1. *}
vertex a, q, u, v, w; {* ¢, u, v and w may be subscripted by an integer. *}

edge a, e, f, n; {* e and f will be subscripted by an integer. *}

rename each vertex v in G by v;, where ear(v) = j;
{* We will refer to the vertex ve,,(y) interchangeably as either v or veq,(y). *}
1. pfor each outgoing ear P; at each vertex v in G4 —

let the edge in P; incident on v be e; and let the nontree edge in P; be f;;
detach edge e; from v and label the detached endpoint as v;;
let @ be a base edge of the fundamental cycle created by f; in T with

ear(a) # t;
if ear(a) < ear(v) — Vear(y) = parent(v;)
| ear(a) > ear(v) — YVear(a) := parent(v;) fi;

direct this edge from parent(v;) to v;
rofp;

let the undirected version of the graph obtained in step 1 be G, the directed
version be G, and its associated spanning tree be T, and the reverse directed
graph be G}, and its associated spanning tree be T};

35

2. repeat step 1 using G, and T} and let the resulting undirected graph be G?,
the resulting directed graph be G2, and its associated spanning tree be T, and

the reverse directed graph be G2, and its associated spanning tree be T3;
g st P g st

{* In the following we process parallel ears by constructing a new graph H. *}
pfor each parallel ear P; — create a vertex ¢; rofp ;

pfor each nontree edge n in T2 —

if the base edges of the fundamental cycle of n belong to ears P; and P;,
where P; and P; are parallel to each other — create an edge between ¢;
and ¢; fi

rofp;
call the resulting graph H;

find a spanning tree in each connected component of H and root it at the vertex
corresponding to the minimum numbered ear in the connected component;

3. pfor each vertex ¢; in H that is not a root of a spanning tree —

let P; be directed from endpoint u to endpoint w in Gg; let ¢; be the
parent of ¢; in the spanning tree in H;

replace the parent of u; in T2 by u; and the parent of w; in TZ by w;
rofp;

denote the undirected version of the graph formed in step 3 by G, the directed
graph from s to ¢ by G%, and its associated spanning tree by T, and the reverse
directed graph by G}, and its associated spanning tree by T},; call G; the local
replacement graph of G;

call the underlying undirected tree constructed in steps 1, 2 and 3 from each
vertex v in G the local tree T,; call veqp(y) the root of T, and consider T, to
be an out-tree rooted at veq,(v). Call the part of T, constructed by assigning
parents in T2 the o-tree OT, of T, and the part of T, constructed by assigning
parents in 72 the i-tree IT, of T.;

{* In G2, OT, is an out-tree rooted at vear(v) and IT, is an in-tree rooted at
Vear(v) and vice-versa in G?. *}

denote by P! the ear P;, together with the edge connecting each endpoint of F;
to its parent in its local tree in Gi;

{* Note that the innard of P/ (i.e., the path P; excluding its two end edges) is

denote the first vertex on P/ when directed as in G, by L(P/), the left endpoint
of P!, and the last vertex on P/ when directed as in G}, by R(P/), the right
endpoint of P].

36

‘s €
6‘6 64
Out-tree at vertex ¢ Out-tree at vertex ¢
after step 1 of after step 3 of Algorithm 4.2

Algorithm 4.2 (f& , P5 and Ig are parallel ears)

Figure 4.1: Constructing G; from G

end.
An example of the construction in Algorithm 4.2 is shown in figure 4.1.
We will prove the following;:

1. All ears with endpoints as descendant of v; in T, must belong to the same bridge
of P; in G.

9. An ear P; with v; not a descendant of v; in T, must be part of an anchor bridge
of P; or of a bridge of P; with attachments to only the endpoints of P; in G.

We start with the following preliminary lemmas.
Lemma 4.1 Let v; be a proper ancestor of v; in T, the local replacement tree of
vertex v. Then either P; and P; are parallel to each other or ¢ < j.
Proof Without loss of generality we assume that v; and v; belong to OT,.

By the construction in Algorithm 4.2, either v; is a proper ancestor of v; in T, or
v; and v, are unrelated in T}; and v; becomes a proper ancestor of v; in step 3. In
the latter case, v; and v; are parallel to each other and we are done. So for the rest
of the proof we assume that v; is a proper ancestor of v; in T}.

37

Let T! be the out-tree for vertex v at the end of step 1 of Algorithm 4.2. The
vertex set of 71! is {v; | vertex v is contained in P; in G}. We claim that the subscripts
of the vertices are strictly increasing in any directed path in T}. To see this, let vk
be the parent of v; in T}. If k = ear(v) then k < j since one endpoint of P; in G
is v. If k # ear(v) let w be the other endpoint of P;. By the construction in step
1 of Algorithm 4.2, w is a proper descendant of v in Ty. Hence by Property 4.2,
k < ear(w) and since ear(w) < j we have k < j.

Hence if v; is a proper ancestor of v; in T then ¢ < j.]

Definition Let (v, w) be the first edge on P; in Gy;. Then Tq(7) is the subtree of T
rooted at w. Similarly if (z,y) is the first edge on P; in Gy, then T;s(2) is the subtree
of T}s rooted at y.

Lemma 4.2 Let v; and v; be vertices in T, such that neither is a descendant of the
other. Then in G, the following two properties hold.

a) Either P; and P; are ears parallel to each other, or ;N P; = {v};
b) If v; € OT, then P; N Ty(7) ={v} and if v; € IT, then P; N Tis(2) ={v}.

Proof Exercise.|]

Lemma 4.3 Let v; be a vertex in T}, and let

S; = {ears P; in G | P; contains v and v; is not a proper descendant of v; in T,}.
Let vy be a child of v; in T, and let T} be the subtree of T, rooted at vg.

Then, all of the ears P, in G such that v is in T} belong to a single bridge of S; in G.
Proof By induction on the height of T;. We assume, without loss of generality that
v; € oT,.

BASE: Height of T, = 0. Then T} contains only one vertex and the claim is vacuously
true since the corresponding ear P, must belong to some single bridge of S; (by
Property 4.1 and Lemma 4.1 for those ears P; in Sj with v; an ancestor of v;, and by
Lemma 4.2, part a) for those P; in Sy with v; unrelated to v; in T,,).

INDUCTION STEP: Assume that the lemma is true for height of T up to h —1 and
let height of T; be h. Let v; be any child of vg. Then T; has height at most h — 1
and hence by the induction hypothesis, all of the ears whose corresponding vertices
lie in 7} belong to a single bridge of S;U {P;} in G. Hence all of these ears belong to
a single bridge B of S; in G.

We now claim that bridge B contains ear Py as well. The proof is a case analysis

depending on whether v; was made the parent of v; in T, in step 1 or in step 3 of
Algorithm 4.2.
Case 1: v, was made parent of v; in step 1. Then P, and P, are not parallel to each
other. Let (z,y) be the nontree edge (with respect to Ty) in ear P (figure 4.2a).
Then by construction, y is a descendant of w, where (v,w) is the first edge on Py in
G (since vy # Vear(v)).- But by Property 4.1, Lemma 4.1 and Lemma 4.2, none of the
vertices on the tree path from w to y can be contained in an ear in S;. Hence all
vertices and edges in ear P belong to bridge B of S; in G.

38

Case 1: Configuration of Case 2: Configuration of
P,and P, in G, P, and P, in G}
(@ (b)

Figure 4.2: Illustrating the proof of Lemma 4.2

Case 2: vy, was made parent of v in step 3. Then P, and P, are parallel to each other.
Further since vx was made parent of v; in step 3, there is a nontree edge n (with
respect to T2) whose fundamental cycle C' contains both vg and v; (figure 4.2b). But
none of the vertices in C other than the lca can belong to an ear in S; by Lemma 4.2,
part b, since all of these vertices are in either Ty;(k) or Te(l). Hence Py is contained
in bridge B of S; in G.

This concludes the proof of the induction step and the lemma, is proved.]
Corollary to Lemma 4.3 Let v; be a vertex in T, and let v; be a child of v; in T},
Then all ears P in G with vg in T} belong to a single bridge of P; in G.

Proof This follows immediately from Lemma 4.3 by observing that P; is contained in
Si-(]

Lemma 4.4 Let v; be a vertexin T, and let v; be another vertex in T, which is not a
descendant of v;. Then in G, P; either belongs to the anchoring star of P; or belongs
to a bridge of P; that has attachments only to the endpoints of P;.

Proof Without loss of generality we assume that v; € OT,. If v; € IT, then the
outgoing edge e of P; in G cannot be a descendant of v (since in that case G would
contain a cycle). Further P; N P; = {v} by Lemma 4.2. But then, there is a path
from s to P; in G that avoids ear F; and hence P; belongs to the anchoring star of
P; (since ear(s) =0.)

For the rest of the proof we assume that v; € OT,. Let lca(vi,v;) = Vk.

Case 1: v; = vg. If vj is not parallel to v;, then i < j by Lemma 4.1, and hence P;
belongs to the anchoring star of F.
If P; is parallel to P;, let v be the root of the spanning tree of its connected

39

component in H formed in step 2 of Algorithm 4.2. By construction, v; must be an
ancestor of v;.

Case 1.1: If v; = v; then j < 7 (since the spanning tree is rooted at the vertex with
minimum index) and hence P; is part of the anchoring star of P,.

Case 1.2: If v; is a proper ancestor of v; then consider a sequence of nontree edges
that caused the edges on the path from v; to v; in T, to be placed in H. None of the
vertices in the fundamental cycle of any of these nontree edges in G lie on P;. Hence
in G, these nontree edges, together with appropriate tree edges, induce a path from
a vertex in P; to a vertex in P; that avoids all vertices in P;. Hence P; is in the same
bridge of P; as P, and hence belongs to the anchoring star of P; (since I must be less
than 7).

Case 2: vj # vk.

In this case v; is a proper ancestor of v;. Let v, be the child of vy that is an
ancestor of v;. Then all ears with corresponding vertices in T, lie on a single bridge
of P; (by Corollary to Lemma 4.3).

Let v; be the nearest ancestor of v; such that P, is not parallel to P;.

Case 2.1: v; is a proper descendant of vy.

In this case, P, is not parallel to P;, since otherwise, by step 3 of Algorithm
4.2, v,, would be a descendant of v;. Also, by Lemma 4.2, P, N P; = {v}. Finally,
the nontree edge in P,, completes a fundamental cycle in G, one of whose base edges
belongs to some P,, g < k. None of the vertices other than v in this fundamental cycle
belongs to P;, since by step 1 of Algorithm 4.2, the two base edges in the fundamental
cycle of which P; is part, belong to P; and P,. Hence, Pp, (and thus P;) belongs to
the same bridge of P; as P, and is thus part of the anchoring star of P;.

Case 2.2: v; = v (the nontrivial case).

Let y be the last vertex on P; and let z be the child of v in T3 that is an ancestor
of y. By construction (step 1 of Algorithm 4.2), either vy = vear(v) Or 2z lies in Ty(k).
Case 2.2.1: If v,, is not parallel to v; then let (w, z) be the last edge in P, in G. The
vertex ¢ is contained in P,, for some ¢ < k and z is not contained in P; (by Lemma
4.2, part a). If z lies on the path from v to y then P, (and hence P;) is part of the
same bridge of P; as P, and hence is part of the anchoring star of P;. Otherwise, z
is not an ancestor of ¥ and by the st-numbering property, there is a path from z to
t (and hence to s) in G that avoids all vertices in P;. Hence again we have the case
that P; is part of the anchoring star of F;.

Now consider the case when P,, is parallel to P; and assume that P, (and hence
P;) is part of a bridge B of P; with an internal attachment on P;. We will show that
B must be an anchor bridge of P;.

Since B has an internal attachment on P;, there is a path p in G; from v,, to some
vertex u that is internal to P; that avoids all other vertices in P;. The path p must
contain at least one nontree edge whose lca is < vi. Let n be the first such nontree
edge encountered when traversing p from v, to u.

Case 2.2.2: lca(n) < v in T),. Then there is a path in G from a vertex in P, to

40

