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tp

1

: a := 1; tp

2

: if(a > 0) then c := b

if(c > 0) then b := 1

Let IC = (a > 0 ! b > 0) ^ c > 0. The conjuncts are de�ned over disjoint sets of data items.

Transaction programs tp

1

and tp

2

do not have �xed-structure. Consider the following schedule

resulting from the execution of tp

1

and tp

2

from database state f(a;�1); (b;�1); (c; 1)g.

S : w

1

(a; 1) r

2

(a; 1) r

2

(b;�1) w

2

(c;�1) r

1

(c;�1)

The database state resulting from the execution of the above schedule is f(a; 1); (b;�1); (c;�1)g,

which is inconsistent. Thus, PWSR schedules, resulting from the execution of transaction programs

that do not have �xed-structure may not preserve integrity constraints even if conjuncts are dis-

joint. 2

4 Conclusion

We have developed a theory of non-serializable executions. Our approach exploits the knowledge of

the set of data items over which the integrity constraints are de�ned in order to preserve database

consistency in spite of sacri�cing serializability. Our proof techniques were used to show that

PWSR schedules, under appropriate restrictions, preserve the integrity constraints. Our results

are applicable to a wide range of applications including computer-aided design and manufacturing,

and heterogeneous database systems, where serializability is too strict a correctness criterion and

a weaker notion of correctness based on non-serializable executions is required.

Most of the previous work on non-serializable executions resorts to informal reasoning. This

is mainly due to the limitation of the transaction models being used. The transaction model we

develop in this paper is suited for dealing with non-serializable executions. It di�ers from other

standard transaction models in that operations belonging to transactions have values associated

with them in addition to action and entity attributes. This new model allows us to provide a formal

basis for proving that non-serializable executions preserve database consistency.
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Case 1 (p 62 t): Trivially by IH, read(before(t; p; S)) is consistent.

Case 2 (p 2 t): Let entity(p) 2 d

k

, for some k = 1; 2; : : : ; l. Since S is PWSR, S

d

k

is seri-

alizable. Let a serialization order of transactions in S

d

k

be t

1

; t

2

; : : : ; t

j

; t; t

j+1

; : : : ; t

l

.

As p 2 t, p 62 t

i

, for all i = 1; 2; : : : ; j. Thus, by case 1 of the induction step above,

read(before(t

i

; p; S)) is consistent, for all i = 1; 2; : : : ; j. Hence, since transaction pro-

grams have �xed-structure, from Lemma 4, state(t; V S(t; p; d

k

; S); S;DS) is consistent.

By Lemma 3, RS(before(t

d

k

; p; S)) � V S(t; p; d

k

; S). Thus, read(before(t

d

k

; p; S)) is

consistent. By IH, read(before(t

D�d

k

; p; S)) is consistent. Since d

e

\ d

f

= ;, e 6= f , by

Lemma 1, read(before(t; p; S)) is consistent. 2

Theorem 1: Let IC = C

1

^ C

2

^ : : : ^ C

l

, where IC, C

e

are de�ned over data items in D, d

e

respectively such that d

e

\ d

f

= ;, e 6= f . Let S be a schedule consisting of transactions resulting

from the execution of transaction programs with �xed-structure. If S is a PWSR schedule, then it

is strongly correct.

Proof: Let DS

1

be a consistent database state such that legal(DS

1

; S). Let fDS

1

gSfDS

2

g.

By Lemma 5, for all t 2 � , read(t) is consistent (Choose p to be the last operation in the schedule).

We now show that DS

d

k

2

, for any k = 1; 2; : : : ; l is consistent. Let t

1

; t

2

; : : : ; t

n

be a serialization

order of transactions in S

d

k

. Since DS

d

k

1

is consistent, and d

e

\ d

f

= ;, e 6= f , by Lemma 4,

state(t

n

; d

k

; DS

1

; S) is consistent (Choose p to be the last operation in the schedule). DS

d

k

2

can be

shown to be consistent by a simple application of Lemma 2. Thus, by Lemma 1, DS

2

is consistent,

and hence, S is strongly correct. 2

If transaction programs do not have �xed-structure or if the conjuncts are not de�ned over

disjoint set of data items, PWSR may not preserve database consistency as is shown in Example 5

and Example 6 below.

Example 5: Consider a database containing data items D = fa; b; cg and the following trans-

action programs tp

1

and tp

2

.

tp

1

: b := c� 5 tp

2

: temp := b;

a := temp+ 5;

c := temp

Let IC = a > b ^ a > c. The conjuncts are not disjoint and share a data item a. Transaction

programs tp

1

and tp

2

have �xed-structure. Consider the following schedule resulting from the

execution of tp

1

and tp

2

from database state f(a; 30); (b; 10); (c; 25)g.

S : r

1

(c; 25) r

2

(b; 10) w

2

(a; 15) w

2

(c; 10) w

1

(b; 20)

The database state resulting from the execution of the above schedule is f(a; 15); (b; 20); (c; 10)g,

which is inconsistent. Thus, if conjuncts are de�ned over sets of data items which are not disjoint,

PWSR schedules may not preserve integrity constraints. 2

Example 6: Consider a database containing data items D = fa; b; cg and the following trans-

action programs tp

1

and tp

2

.
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Proof: RS(before(t

d

1

; p; S)) � d = V S(t

1

; p; d; S). Thus, the result holds for t

1

. To show that

the result holds for any t

i

, i = 2; 3; : : : ; n, we will show that if d

0

2 d, and d

0

62 V S(t

i

; p; d; S),

then d

0

62 RS(before(t

d

i

; p; S)). From the de�nition of the view-set of a transaction, we have the

following property about data items which do not belong to a transaction's view-set. If d

0

2 d, and

d

0

62 V S(t

i

; p; d; S), then for some j < i, d

0

2 WS(after(t

d

j

; p; S)) and for all k, k = j +1; : : : ; i� 1,

d

0

62 WS(t

d

k

). Since S

d

is serializable and t

j

is serialized before t

i

, if t

i

reads d

0

, then t

i

must read

the value of d

0

written by t

j

. Thus, before p, t

i

cannot read d

0

; that is, d

0

62 RS(before(t

d

i

; p; S)). 2

We now use Lemma 2 and Lemma 3 to develop assertions about the database state during the

execution of �xed-structure transaction programs.

Lemma 4: Let IC = C

1

^ C

2

^ � � �C

l

, where IC, C

e

are de�ned over data items in D, d

e

respectively such that d

e

\ d

f

= ;, e 6= f . Let S be a schedule resulting from the execution of

transaction programs with �xed-structure such that for some k, k = 1; 2; : : : ; l, S

d

k

is serializable

with serialization order t

1

; t

2

; : : : ; t

n

. Let p be an operation in S and DS be a database state such

that legal(DS;S), and DS

d

k

is consistent. If for all j = 1; 2; : : : ; i � 1, read(before(t

j

; p; S)) is

consistent, then state(t

i

; V S(t

i

; p; d

k

; S); S;DS) is consistent, i = 1; 2; : : : ; n.

Proof: The proof is by induction on the number of transactions.

Basis (i = 1): Trivial, as state(t

1

; d

k

; S;DS) = DS

d

k

, which is given to be consistent.

Induction: Assume true for i = m, that is, if for all j = 1; 2; : : : ; m � 1, read(before(t

j

; p; S)),

is consistent, then state(t

m

; V S(t

m

; p; d

k

; S); S;DS) is consistent. We need to show the above

to be true for i = m + 1. By IH, we know that state(t

m

; V S(t

m

; p; d

k

; S); S;DS) is consis-

tent. By Lemma 3, RS(before(t

d

k

m

; p; S)) � V S(t

m

; p; d

k

; S). Since d

e

\ d

f

= ;, e 6= f , and

read(before(t

m

; p; S)) is given to be consistent, by Lemma 1, state(t

m

; V S(t

m

; p; d

k

; S); S;DS) [

read(before(t

m

; p; S)) is consistent. As transaction program tp

m

has �xed-structure, by Lemma 2,

state(t

m+1

; V S(t

m

; p; d

k

; S) [ WS(before(t

d

k

m

; p; S); S;DS) �WS(after(t

d

k

m

; p; S); S;DS) is con-

sistent. As V S(t

m+1

; p; d

k

; S) = V S(t

m

; p; d

k

; S) [WS(before(t

d

k

m

; p; S)) �WS(after(t

d

k

m

; p; S)),

state(t

m+1

; V S(t

m+1

; p; d

k

; S); S;DS) is consistent. 2

Lemma 5: Let IC = C

1

^ C

2

^ � � � ^ C

l

, where IC, C

e

are de�ned over data items in D, d

e

respectively such that d

e

\ d

f

= ;, e 6= f . Let S be a schedule consisting of transactions resulting

from the execution of transaction programs with �xed-structure and p be an arbitrary operation in

S. If S is a PWSR schedule, then for all transactions t 2 S, read(before(t; p; S)) is consistent.

Proof: Let DS be a consistent database state such that legal(DS;S). The proof is by induction

on depth(p).

Basis (depth(p) = 0): There are two cases:

Case 1 (p 62 t): read(before(t; p; S)) = ;, which is consistent.

Case 2 (p 2 t): Since depth(p) = 0, read(before(t; p; S)) � DS, which is consistent.

Induction: Assume for depth(p) = m, for all transactions t 2 S, read(before(t; p; S)) is consistent.

We need to show for depth(p) = m+1, for all transactions t 2 S, read(before(t; p; S)) is consistent.

Consider two cases.

9



and the lemma has been proven. 2

We next associate the notion of a \state" with a transaction. The state associated with the

transaction is a possible database state the transaction may have seen. The state seen by the

transaction is an abstract notion and may never have been physically realized in a schedule.

De�nition 4: Let S be a schedule and d � D such that S

d

is serializable. Let t

1

; t

2

; : : : ; t

n

be a serialization order of transactions in S

d

and DS be a database state such that legal(DS; S).

The state of the database before the execution of each transaction with respect to data items in d

is de�ned as follows.

state(t

i

; d; S;DS) =

(

DS

d

; if i = 1

state(t

i�1

; d�WS(t

d

i�1

); S;DS)[ write(t

d

i�1

); if i > 1 2

state(t

i

; d; S;DS) is the state of the database with respect to data items in d as seen by t

i

. The

state of a transaction depends on the initial state and the serialization order chosen and thus, may

not be unique. Note that, read(t

d

i

) � state(t

i

; d; S;DS)

2

. In Example 4, S is serializable with

serialization orders t

i

; t

j

or t

j

; t

i

. With serialization order t

i

; t

j

,

state(t

j

; fa; b; cg; S;DS) = f(a; 0); (b; 5); (c; 5)g.

However, with serialization order t

j

; t

i

,

state(t

j

; fa; b; cg; S;DS) = f(a; 0); (b; 10); (c; 5)g.

We now introduce the notion of the view-set of a transaction. The view set of a transaction is

de�ned with respect to a set of data items, and an operation in the schedule.

De�nition 5: Let S be a schedule and d � D such that S

d

is serializable. Let t

1

; t

2

; : : : ; t

n

be a serialization order of transactions in S

d

and p be an operation in S. The view-set of each

transaction t

i

, before operation p, with respect to data items in d is de�ned as follows.

V S(t

i

; p; d; S) =

(

d; if i = 1

V S(t

i�1

; p; d; S)[WS(before(t

d

i�1

; p; S))�WS(after(t

d

i�1

; p; S)); if i > 1 2

The view-set of a transaction denotes the set of data items the transaction can read before an

operation p in a schedule S. In the following lemma, we show that in a schedule S such that S

d

is serializable, if a transaction t reads a data item d

0

2 d before operation p, then d

0

2 V S(t; p; d; S).

Lemma 3: Let S be a schedule and d � D such that S

d

is serializable. Let t

1

; t

2

; : : : ; t

n

be a

serialization order of transactions in S

d

and p be an operation in a schedule S. For all i = 1; 2; : : : ; n,

RS(before(t

d

i

; p; S)) � V S(t

i

; p; d; S).

2

This may not be true if S

d

is �nal-state serializable (FSR) but not view serializable [8], however it is true if S

d

is view serializable, as we assume here.
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� for all consistent database states DS

1

, if fDS

1

gSfDS

2

g, then DS

2

is consistent, and

� for all transactions t 2 � , read(t) is consistent. 2

Every serializable

1

schedule is strongly correct, but there are strongly correct schedules that

are not serializable. In the next section, we show that PWSR schedules are strongly correct if

transaction programs and integrity constraints are of a restricted nature. In the remainder of the

paper we assume that all transaction programs and transactions are correct.

3 Predicatewise Serializability

The notion of predicatewise serializability (PWSR) was introduced as an alternative consistency cri-

terion to serializability for applications with long-duration transactions, CAD/CAM applications,

etc. [4]. In this section, we identify a set of restrictions on integrity constraints and transactions

which ensure that a PWSR schedule is strongly correct. Formally, PWSR is de�ned as follows.

De�nition 3: Let IC = C

1

^ C

2

^ � � � ^ C

l

, where IC, C

e

are de�ned over data items in D, d

e

respectively. A schedule S is is said to be PWSR if for all e, e = 1; 2; : : : ; l, S

d

e

is serializable. 2

In order to prove that a PWSR schedule is strongly correct, we �rst develop conditions under

which database consistency is preserved during the execution of transactions and schedules. For

an arbitrary transaction, it is di�cult to make any assertion about the consistency of the database

state during the execution, since all we know about a transaction is that, as an atomic unit, it is cor-

rect. However, if we restrict transactions to those resulting from the execution of �xed-structured

transaction programs, we can make assertions about the states which exist during its execution.

In the following lemma, we state an important property of transactions resulting from execution of

�xed-structured transaction programs.

Lemma 2: Let S be a schedule consisting of a transaction t which results from the execution

of a �xed-structure transaction program tp (note that S = t). Let p be an operation belonging to

schedule S and DS

1

be a database state such that fDS

1

gtfDS

2

g. If DS

d

1

[ read(before(t; p; S)) is

consistent, then DS

d[WS(before(t;p;S))�WS(after(t;p;S))

2

is consistent.

Proof: Let DS

3

be a consistent database state such that DS

d[RS(before(t;p;S))

3

= DS

d

1

[

read(before(t; p; S)). Let fDS

3

gtpfDS

4

g. Let t

0

be the transaction and S

0

be the schedule re-

sulting from the execution of tp from DS

3

(note that S

0

= t

0

). Since tp has �xed-structure,

struct(t

0

) = struct(t). Thus, there exists an operation p

0

in S

0

such that RS(before(t; p; S)) =

RS(before(t

0

; p

0

; S

0

)) and WS(after(t; p; S)) = WS(after(t

0

; p

0

; S

0

)). Since DS

RS(before(t;p;S))

3

=

read(before(t; p; S)) and struct(t

0

) = struct(t), read(before(t; p; S)) = read(before(t

0

; p

0

; S

0

)).

Since writes are a function of the reads before them, t and t

0

result from the execution of the

same transaction program tp and struct(t

0

) = struct(t), DS

d[WS(before(t

0

;p

0

;S

0

))�WS(after(t

0

;p

0

;S

0

))

4

=

DS

d[WS(before(t;p;S))�WS(after(t;p;S))

2

: Since tp is a correct transaction program, DS

4

is consistent,

1

In this paper, unless stated otherwise, by serializability we refer to view serializability (VSR) [8].
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2.3 Schedules

A schedule is a sequence of operations resulting from the concurrent execution of a set of transaction

programs. A schedule S = (�;�

S

) is a �nite set � of transactions, together with a total order, �

S

,

on all operations of the transactions. Also, if for two operations o

1

; o

2

in S and some transaction

t 2 � we have o

1

�

t

o

2

, then o

1

�

S

o

2

. In order to develop properties of schedules we shall need to

consider projections of schedules on sets of data items. Let d � D. We denote by S

d

the projection

of S on data items in d.

Let seq be a subsequence of schedule S and p be an operation in S.

� We denote the subsequence of seq consisting of all the operations that precede p in S, by

before(seq; p; S). If p belongs to seq, then before(seq; p; S) includes p.

� We denote the subsequence of seq consisting of all operations not in before(seq; p; S), by

after(seq; p; S).

� The number of operations preceding operation p (but not including p) in schedule S is denoted

by depth(p; S).

Example 4: Consider the following transaction programs tp

i

and tp

j

.

tp

i

: if(a � 0) then b := c tp

j

: d := a

else c := d

Consider the schedule S below resulting from the execution of tp

i

and tp

j

from database state

DS = f(a; 0); (b; 10); (c; 5); (d; 10)g.

S : r

j

(a; 0) r

i

(a; 0) w

j

(d; 0) r

i

(c; 5) w

i

(b; 5)

Note that DS is a legal database state for S, thus legal(DS;S). The restriction of S to fa; cg,

S

fa;cg

= r

j

(a; 0) r

i

(a; 0) r

i

(c; 5)

If p = w

j

(d; 0), then

before(t

j

; p; S) = r

j

(a; 0) w

j

(d; 0)

after(t

i

; p; S) = r

i

(c; 5) w

i

(b; 5)

depth(p; S) = 2 2

2.4 Strong Correctness

In the traditional model, transaction programs, when executed in isolation, are assumed to be

correct; that is, transactions preserve the integrity constraints of the database. The task of the

concurrency control scheme is to ensure that schedules resulting from the concurrent execution of

the transaction programs preserve database consistency. However, a concurrency control scheme

which ensures that schedules preserve the database integrity constraints does not necessarily pre-

vent transactions from \seeing" inconsistent database states. To overcome this, we de�ne the notion

of strong correctness, which requires that transactions in a schedule read consistent data values, in

addition to the requirement that schedules preserve database integrity constraints.

De�nition 2: A schedule S = (�;�

S

) is strongly correct i�

6



WS(seq) denotes the set of data items written by operations in seq.

WS(seq) = fy : o 2 seq ^ y = entity(o) ^ action(o) = wg

write(seq) denotes the e�ects that the write operations in seq have on the database.

write(seq) = f(y; z) : o 2 seq ^ y = entity(o) ^ z = value(o) ^ action(o) = wg

seq

d

denotes the subsequence of seq consisting of all operations o such that entity(o) 2 d.

For the remainder of the paper, we shall use t

i

to denote the transaction resulting from the

execution of the transaction program tp

i

. Operations belonging to transaction t

i

will be subscripted

by i. Thus, a read operation on data item a belonging to transaction t

1

will be denoted by r

1

(a; v),

where v is the value returned by the read.

Example 2: Consider the transaction program tp

1

.

tp

1

: if(a = 0) then b := 0

else c := 0

The execution of tp

1

from database state DS

1

= f(a; 0); (b; 5); (c; 3)g results in the following trans-

action t

1

.

t

1

: r

1

(a; 0) w

1

(b; 0)

The execution of t

1

from DS

1

results in a database state DS

2

= f(a; 0); (b; 0); (c; 3)g. The following

assertions can be made about transaction t

1

.

RS(t

1

) = fag WS(t

1

) = fbg

read(t

1

) = f(a; 0)g write(t

1

) = f(b; 0)g

legal(DS

1

; t

1

) fDS

1

gt

1

fDS

2

g

t

fbg

1

: w

1

(b; 0)

struct(t

1

) : r

1

(a) w

1

(b)

Note that the execution of tp

1

from database state, say DS

3

= f(a; 10); (b; 12); (c; 15)g results in a

di�erent transaction t

0

1

.

t

0

1

: r

0

1

(a; 10) w

0

1

(c; 0)

The execution of t

0

1

from DS

3

results in a database state, DS

4

= f(a; 10); (b; 12); (c; 0)g. 2

De�nition 1: Transaction program tp has �xed-structure if for all pairs (DS

1

; DS

2

) of database

states, struct(t

1

) = struct(t

2

), where t

1

and t

2

are transactions resulting from the execution of tp

from DS

1

and DS

2

respectively. 2

Example 3: Consider the following transaction programs tp

1

and tp

2

.

tp

1

: if(x > 5) then y := 3 tp

2

: if(x > 5) then y := 3

else y := 5 else z := 5

Transaction program tp

1

has �xed-structure, while transaction program tp

2

does not. 2
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observation has serious implications when dealing with non-serializable executions as will become

evident later in the paper.

Formally, a transaction t = (O;�

t

), where O = fo

1

; o

2

; : : : ; o

n

g is a set of operations and �

t

is a

total order on O. An operation o

i

is a 3-tuple (action(o

i

); entity(o

i

); value(o

i

)). action(o

i

) denotes

an operation type, which is either a read (r) or write (w) operation. entity(o

i

) is the data item

on which the operation is performed. If the operation is a read operation, value(o

i

) is the value

returned by the read operation for the data item read. For a write operation, value(o

i

) is the value

assigned to the data item by the write operation. We assume, that for each transaction, a database

item is read at most once and written at most once, and that no database item is read after it is

written.

Our transaction de�nition di�ers from the way they are traditionally de�ned in the literature

(see for example [2], [8]). We include, along with every operation, a value attribute, in addition

to action and entity attributes. Since we relax the requirement of serializability as the correctness

criterion, we need to deal with certain non-serializable executions. The value attribute helps us in

proving that such non-serializable executions preserve database consistency.

We use the notation fDS

1

g tp fDS

2

g to denote the fact that when transaction program tp

executes from a database state DS

1

, it results in a database state DS

2

. Similar notation is used

to denote execution of operations, transactions and schedules (the intended meaning will be clear

from the context). Since operations have values associated with them, execution of operations is

possible only from certain database states. A database state DS is legal with respect to operation

o

i

, denoted by legal(DS; o

i

), if it is possible to execute o

i

from DS. Thus, legal(DS; o

i

) if

� either action(o

i

) = w,

� or if action(o

i

) = r, then (entity(o

i

); value(o

i

)) 2 DS.

A database state DS is legal with respect to a sequence of operations o

1

o

2

: : :o

p

if it is possible to

execute o

1

o

2

: : : o

p

from DS; that is, legal(DS; o

1

o

2

: : : o

p

) if:

� legal(DS; o

1

), and

� if p > 1, then legal(DS

0

; o

2

: : : o

p

), where fDSg o

1

fDS

0

g.

Execution of a sequence of operations o

1

o

2

: : :o

p

from a database state which is not legal with

respect to o

1

o

2

: : : o

p

is unde�ned.

Every transaction t has a structure associated with it denoted by struct(t), which is derived from

t by ignoring the values associated with the operations in t. Thus every operation o

i

in struct(t)

is a 2-tuple (action(o

i

); entity(o

i

)). In order to discuss properties of transaction executions, we

associate the following notation with a sequence seq of operations. RS(seq) denotes the set of data

items read by operations in seq.

RS(seq) = fy : o 2 seq ^ y = entity(o) ^ action(o) = rg

read(seq) denotes the database state \seen" as a result of the read operations in seq.

read(seq) = f(y; z) : o 2 seq ^ y = entity(o) ^ z = value(o) ^ action(o) = rg

4



The terms and well-formed formulae are de�ned as in [1]. Let I be the standard interpretation

for numerical and string constants, function symbols, and comparison operators. Since a database

state maps data items (variables) to values it can be viewed as a variable assignment [1]. A database

state DS is consistent i� I j=

DS

IC. The restriction of DS to data items in d � D, DS

d

is con-

sistent i� there exists a consistent database state DS

1

such that DS

d

1

= DS

d

. In the remainder of

the paper, DS j= IC shall denote I j=

DS

IC.

Example 1: Consider a database consisting of data items a and b and IC = (a = b). A

database state DS = f(a; 5); (b; 6)g is not consistent. However, DS

fag

= f(a; 5)g is consistent, and

DS

fbg

= f(b; 6)g is consistent. 2

We need to establish the relation between the consistency of database states and consistency of

its subsets. This is done in the following lemma.

Lemma 1: Let IC = C

1

^ C

2

^ � � � ^ C

l

, where IC, C

e

are de�ned over data items in D, d

e

respectively such that d

e

\d

f

= ; for all e 6= f . Let d

0

e

� d

e

and DS be a database state.

S

l

e=1

DS

d

0

e

is consistent i� for all e = 1; 2; : : : ; l, DS

d

0

e

is consistent.

Proof:

(:

If

S

l

e=1

DS

d

0

e

is consistent, then for all e = 1; 2; : : : ; l, DS

d

0

e

is consistent . This follows directly

from the de�nition of database consistency.

):

We now prove that if for all e = 1; 2; : : : ; l, DS

d

0

e

is consistent, then

S

l

e=1

DS

d

0

e

is consistent.

Since DS

d

0

e

are consistent, there exist consistent database states, DS

e

, such that DS

d

0

e

e

= DS

d

0

e

,

e = 1; 2; : : : ; l. Let DS

0

be a database state such that DS

d

e

0

= DS

d

e

e

, e = 1; 2; : : : ; l (such a DS

0

exists since d

e

\ d

f

= ;; e 6= f). Since DS

e

j= C

e

, DS

d

e

0

= DS

d

e

e

, and C

e

is de�ned only over data

items in d

e

, DS

0

j= C

e

, e = 1; 2; : : : ; l. Thus, DS

0

j= C

1

^ C

2

^ � � � ^ C

l

. Also,

S

l

e=1

DS

d

0

e

� DS

0

.

Thus, there exists a consistent database state DS

0

such that

S

l

e=1

DS

d

0

e

� DS

0

. Hence, by de�ni-

tion of database consistency,

S

l

e=1

DS

d

0

e

is consistent. 2

Note that it is essential for the data items, over which conjuncts are de�ned, to be disjoint if

Lemma 1 is to hold. For example, let IC = ((a = 5 ! b = 5) ^ (c = 5 ! b = 6)). Consider

d

0

1

= fag and d

0

2

= fcg. Let DS

d

0

1

= f(a; 5)g and DS

d

0

2

= f(c; 5)g. Thus, even though DS

d

0

1

and

DS

d

0

2

are consistent, DS

d

0

1

[ DS

d

0

2

is inconsistent. Since d

1

\ d

2

6= ;, database state DS

0

in the

above proof does not exist.

2.2 Transactions

A transaction is a sequence of operations resulting from the execution of a transaction program.

A transaction program is usually written in a high level programming language with assignments,

loops, conditional statements and other complex control structures. Thus, execution of a trans-

action program starting at di�erent database states may result in di�erent transactions. This

3



knowledge of the structure of the integrity constraints and the set of data items over which they

are de�ned in order to prove that certain non-serializable executions preserve database consistency.

We also develop a transaction model suited for dealing with non-serializable executions. Using this

theory we show that PWSR schedules preserve database consistency if transaction programs and

integrity constraints are of a restricted nature. Our proof techniques are, however, more general

and can be used to prove various other non-serializable executions preserve database consistency

(see e.g., [6], [7]).

The remainder of the paper is organized as follows. In Section 2, we develop a transaction

model that is suited for dealing with non-serializable executions. In Section 3, we prove that

PWSR schedules preserve the database integrity constraints under certain restrictions. Concluding

remarks are o�ered in Section 4.

2 The Transaction Model

In this section, we develop a new transaction model, that allows us to reason about non-serializable

executions. We also develop a new notion of correctness as a requirement on schedules which

requires more than just preservation of database consistency.

2.1 Database Consistency

In order to develop a theory of non-serializable executions, wemust explicitly de�ne what constitutes

a consistent database state; which for our purpose is done in terms of integrity constraints.

A database consists of a countable set, D, of data items. For each data item d

0

2 D, Dom(d

0

)

denotes the domain of d

0

. A database state maps every data item d

0

to a value v

0

, where v

0

2

Dom(d

0

). Thus, a database state, denoted by DS, can be expressed as a set of ordered pairs of

data items in D and their values,

DS = f(d

0

; v

0

) : d

0

2 D and v

0

2 Dom(d

0

)g.

DS has the property that if (d

0

; v

0

1

) 2 DS and (d

0

; v

0

2

) 2 DS, then v

0

1

= v

0

2

. The restriction of DS

to data items in d � D, is denoted by DS

d

. Thus, DS

d

= f(d

0

; v

0

) : d

0

2 d and (d

0

; v

0

) 2 DSg.

Let d

1

� D, d

2

� D, and DS

1

, DS

2

be database states. The union of DS

d

1

1

and DS

d

2

2

is denoted

by DS

d

1

1

[DS

d

2

2

. The [ operation is similar to the one traditionally de�ned for sets, except that

DS

d

1

1

[DS

d

2

2

is unde�ned if (d

0

; v

0

1

) 2 DS

d

1

1

, (d

0

; v

0

2

) 2 DS

d

2

2

, and v

0

1

6= v

0

2

.

Integrity constraints, denoted by IC, distinguish inconsistent database states from consistent

ones. Traditionally, integrity constraints are de�ned as a subset of all the possible database states,

and a database state is consistent if it belongs to that subset [8]. In our model, integrity constraints

are quanti�er-free formulae over a �rst order language consisting of:

� Numerical and string constants (e.g., 5, 100, `Jim'),

� Functions over numeric and string constants (e.g., +, max),

� Comparison operators (e.g., >, =), and

� Set of variables (data items in D).

2
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1 Introduction

In the standard transaction model [8], a consistent database state is implicitly de�ned by assuming

that each transaction, when executed in isolation, maps a consistent database state to another

consistent database state. In the case of concurrent transaction executions, database consistency is

ensured by requiring that the schedule resulting from the concurrent executions of transactions be

serializable; that is, equivalent to a serial schedule [8]. Since each transaction, when executed alone,

is assumed to preserve database consistency, a serializable execution preserves database consistency.

This approach has the advantages of simplicity since it does not require the users to state explicitly

what constitutes a consistent database state.

Serializability, however, may be too strong a correctness criterion for many applications. For ex-

ample, in applications such as computer-aided design, transactions are of a long duration, implying

that the serializability requirement may result in a low degree of concurrency and poor perfor-

mance. Also, in a heterogeneous distributed database system environment, ensuring serializability

is a di�cult task due to the desire of preserving the local autonomy of the various sites [6].

One way to eliminate these di�culties is to relax the serializability requirement and allow

non-serializable schedules that preserve database consistency. The predicate-wise serializability

(PWSR) correctness criterion introduced in [4] is a relaxation of the serializability requirement

that is applicable to environments in which transactions are of a long duration. In the nutshell,

the PWSR correctness criterion states that if the database consistency constraint is expressed as a

conjunction of predicates, then for each possible schedule, the projection on the set of data items

in every conjunct is serializable.

In this paper, we continue our work on PWSR schedules. We �rst develop a theory of non-

serializable executions that preserve database consistency. The cornerstone of our theory is the

notion of integrity constraints, in terms of which database consistency is de�ned. We exploit the

�
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