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Abstract

We study in this paper the problem of minimizing channel density by simultane-
ously shifting the blocks that form the two sides of a channel and the terminals on the
boundary of each block. Several special cases of this problem have been investigated,
but no optimal algorithm was known for the general case. We present an optimal
algorithm for solving this problem. For long channels, we also propose effective heuris-
tic techniques to speed up our algorithm. Extensions as well as aplications of our
algorithms to detailed routing in building-block layout design are also discussed.

1 Introduction

The channel routing problem plays an important role in the physical design of VLSI circuits
and has been extensively studied in the past [8]. Conventional channel routers assume all
terminals (pins) on the two sides of the channel have fixed positions. However, it is typical in
practice that the exact positions of the terminals are not completely fixed at the beginning
of the routing phase [1, 2, 3, 5, 6, 7]. The existence of floating terminals can be used to our

advantage to obtain further area reduction.

In this paper, we consider the problem of minimizing channel density by shifting blocks

and terminals. Each side of the channel consists of a row of blocks, and the terminals are

*This work was partially supported by the National Science Foundation under grant MIP-8909586, by
an IBM Faculty Development Award, and by an ACM SIGDA scholarship.
tA preliminary version of this paper was presented at ICCAD-91 [4].






located on the boundaries of these blocks, as illustrated in Figure 1(a). The relative ordering
of the blocks on each side of the channel, as well as the relative ordering of the terminals
on the boundary of each block are fixed. The problem is to laterally shift the blocks and
the terminals, subject to the constraint that the terminals stay in the blocks they belong to,

such that the density of the resulting channel is minimized.

No optimal algorithm was previously known for this problem, although optimal algo-
rithms for several special cases of this problem have been developed before. In [7], the
authors considered the case where each side of the channel consists of exactly one block, and
only the blocks are allowed to be shifted. This was generalized in [3, 5] to allow multiple
blocks on each side of the channel under the formulation of a channel pin assignment prob-
lem. Another special case was considered in [6]. Again each side of the channel consists of
exactly one block, but this time only the terminals are allowed to be shifted, not the blocks.
The restriction that each side of the channel consists of exactly one block was relaxed again
in [3, 5]. Note that the channel pin assignment model presented in [3, 5] cannot be used to

formulate the general problem of shifting blocks and terminals to minimize channel density.

Figure 1 shows that by allowing the blocks and the terminals both to be shifted, more
reduction in channel density can be achieved than by allowing only the terminals or only the
blocks to be shifted. For the original channel shown in Figure 1(a), the minimum density
achievable by shifting only the blocks is 3. as shown in Figure 1(b); the minimum density
achievable by shifting only the terminals inside each block is 4, as shown in Figure 1(c).
However, if the blocks and the terminals are allowed to be shifted, we can achieve minimum

density 2, as shown in Figure 1(d).

The remainder of this paper is organized as follows. Preliminaries, including terminolo-
gies and notations are given in Section 2. The optimal algorithm is then presented in Section
3. Section 4 extends the algorithm to handle channels with exits, irregular boundaries, and
independent terminals, and to handle additional pin/block assignment constraints. Section
5 proposes fast heuristic approaches for speeding up the algorithm. Section 6 presents some
preliminary experimental results. Section 7 discusses applications of our algorithms. Finally,

Section 8 concludes the paper with some remarks.



(d) After shifting blocks and terminals d = 2

Figure 1: Minimizing channel density by shifting blocks and terminals



2 Preliminaries

In this section we present some useful terminologies and preliminary results.

2.1 Basic Terminologies

Given a channel with length L, as before let TOP = {t1,t,...,t,} and BOTTOM =
{by,ba,..., by} be the set of terminals on the top and bottom of the channel (from left to
right in that order), respectively, where p = [TOP| and ¢ = |BOTTOM)|. The set of nets
N = {N;, Na,..., N} connecting these terminals is a partition of TOP U BOTTOM, such
that N; C TOP U BOTTOM contains the set of terminals of the ith net, 1 <1 < n. Let
Ti,Ts,...,T. and By, B;, ..., By be the sets of blocks that form the top and bottom side of
the channel (from left to right in that order), respectively. The length of the block containing
terminal #; is denoted by 1;, 1 <1 < p, and the length of the block containing terminal b; 1s
denoted by l;, 1< <qg.

For convenience of presentation, we introduce a terminal at each corner of a block, which
by itself forms a trivial net. These terminals ave called corner terminals and their positions
inside the blocks are fixed (at the corners of the blocks). The positions of the corner terminals
will be used to determine the positions of the blocks. We also make use of two Boolean
functions lefi_corner and right-corner, such that for any terminal ¢, left_corner(t) = true if
and only if ¢ is a terminal located at the left corner of a block. Similarly, right_corner(t) =
true if and only if t is a terminal located at the right corner of a block. It is convenient to
introduce an auxiliary column 0, and two additional terminals to and bg, each by itself forms
of a trivial net. We also require that g (by) be the leftmost terminal on the top (bottom) of

the channel.

A channel is said to be derivable from another channel if and only if it can be obtained
from that channel by shifting blocks and terminals. Hence the problem we consider is to

compute a minimum density channel derivable from a given channel.

2.2 (i,4,k, u,v)-Channels

A channel is said to be an (¢, j. k,u, v)-channel if and only if
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Figure 2: An (4,7, k, u,v)-channel

1. to,t1,...,ti, boy by, ..., b; are the only terminals on the first k columns of the channel;

2. The left corner of the block containing terminal ¢; is on the (k — u)th column of the

channel; and

3. The left corner of the block containing terminal b; is on the (k — v)th column of the

channel.

This is illustrated in Figure 2. Note that the last two arguments are introduced to make
sure that no terminal is shifted out of the block it belongs to. We can further classify the
(4,7, k,u,v)-channels into the following four types, according to how the two endpoints of

column k are occupied by terminals.

e Type 0: No terminal is on column ;

o Type 1: Ouly ¢; is on column k;

e Type 2: Ounly b; is on column k;

e Type 3: Both t; and b; are on column k.

Lemma 2.1 All (4,],k,u,v)-channels of the same type which are derivable from the same

channel have the same local density at column k.

Proof: The local density at column k& of a channel only depends on how the terminals

are distributed with respected to column k, ¢.e., which terminals are located to the left of



column k, which terminals are located on column %, and which terminals are located to the
right of column k. Since all (z, j, k, u, v)-channels of the same type which are derivable from
the same channel have the same distribution of nets which respect to column k, their local

densities at column % are equal. O

2.3 Crossing Numbers

The common local density of an (7, J, &, u, v)-channel of type 1 derivable from a given channel

is equal to the number of nets with one terminal in

{tlvtzv‘ = ',ti'lablvb?ﬂ,' . 'vbj}a
and one terminal in

TOP U BOTTOM — {t1,ts, ...t b1, b, ..., b}

plus 8, where § = 1 if the net containing terminal #; is not a trivial net, and it has not been
accounted for already, otherwise it is 0. Clearly, this number is independent of the values of
k, v and v, and it is well defined even if there is no (7,7, k, u, v)-channel of type 1 derivable
from the given channel exists. We will denote this number by Ry(z,7). If there exists an
(1,7, k,u,v)-channel of type 1 derivable from the given channel, then Ry(z, j) is equal to the
common local density at column k& of all (7,7, k, u,v)-channel of type 1 derivable from the
given channel, otherwise it is just a number with no meaning associated with it. We can
similarly define the numbers Ro(¢,7), R2(7,7) and R3(7,7). The number Ry(7,7,) is referred
to as the crossing number of type h at (1,3), 0 < h < 3. The crossing numbers at (z,7) is
similar to the crossing numbers at (7, j, k) as defined in [3, 5], except that position constraints
are not considered in this case. In much the same way as computing the k-densities for a
given channel, the crossing numbers can be computed in O(pgL) time for all 0 < 7 < p,
0<7<gq

2.4 Generalized Crossing Numbers

We now introduce the generalized crossing numbers, which play an important role in our al-
gorithm. Intuitively, the generalized crossing number of type h (0 < h < 3) at (¢, 5, k,u,v) is
equal to +oo if we can detect “easily” at column £ that the given channel has no (2, 7, k, u, v)-

channel derivable from it, otherwise it is equal to the crossing number of type h at (z,5), i.e.,
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Ri(i,7). Therefore, if the given channel has an (7, j, k, u, v)-channel of type h derivable from
it, then the generalized crossing number of type h at (7,7, k, u,v) is equal to the local density
at column k of any (i, ], k, u,v)-channel derivable from the given channel of type h. Besides
this, the generalized crossing numbers also help us to detect if the given channel has no deriv-
able channel of a specific form. The precise definition of the generalized crossing numbers
is given by Procedure Generalized Crossing-Numbers. For each 5-tuple (i, ], k, u,v), Pro-
cedure Generalized_Crossing_Numbers computes four numbers w(z, j, k, u,v), (2, j, k, u,v),

y(i,7, k,u,v), and z(7, 7, k,u,v), which are referred to as the generalized crossing number of

type 0, type 1, type 2, type 3, respectively, at (¢, J, kyu,v). !

Procedure: Generalized_Crossing_-Numbers (C');
(* C is a given channel *)
begin
for (4,7, k,u,v):=(0,0,0,0,0) to (p.q,L,L,L) do
begin

if (u = 0) or (v = 0) or (max{u,v} > k)
then w(i,j,k,u,v) =+
else w(i,j,k,u,v) = Ro(i,7);

if (right-corner(t;) and u # [;) or (max{u,v} > k) or
(left_corner(t;) and u # 0) or
(not (left_corner(¢;)) and u = 0) or (v = 0)
then 2(7,j, k,u,v) := 4+
else z(7,7,k,u,v) = R1(t,7);

if (right_corner(b;) and v # l;-) or (max{u,v} > k) or
(left_corner(b;) and v # 0) or
(not (left_corner(d;)) and v = 0) or (u = 0)
then y(z,j,k,u,v) 1= +o¢
else y(i,j,k,u,v) = Ro(i, J)s

if (right-corner(?;) and u # [;) or (right_corner(b;) and v # l;) or
(max{u,v} > k) or
(left_corner(t;) and u # 0) or (left.corner(b;) and v # 0) or
(not (left_corner(t;)) and u = 0) or (not (left_corner(b;)) and v = 0)
then z(1,j,k,u,v) = +oc
else z(¢,j. k,u,v) := R3¢, j)

IWe use “for (41,92, ..,%m) i= (a1,Q2, ..., Qy) to (b1,b2,...,by) dO” as a shorthand for

for ¢; 1= a; to by do
for i, := a; to b3 do

for i,, := a,, to b,, do.



end
end;

The properties of the generalized crossing numbers are stated in the following lemmas,
whose proofs are immediate once we observe that whenever a generalized crossing number
is set to +oo by Procedure Generalized_Crossing-Numbers, there is no (¢, j, k,u, v)-channel

of the corresponding form derivable from the given channel.

Lemma 2.2 Given a channel, if there exists an (i, j, k,u,v)-channel of type 0 (type 1, type
2, type 3, respectively) derivable from it, then w(i,j,k,u,v) (2(7,5,k,u,v), y(i,7,k,u,v),
(1,7, k,u,v), respectively) equals the common local density at column k of all (,7,k, u,v)-

channels of type 0 (type 1, type 2, type 3, respectively) derivable from the given channel.

Lemma 2.3 Given a channel, if w(i,j. k,u,v) (2(i,7,k,u,v), y(i,75, k,u,v), 2(2,7, k, u,v),
respectively) = +o00, then there is no (i, j, k,u,v)-channel of type 0 (type 1, type 2, type 3,

respectively) derivable from the given channel.

It should be noted that the converse of Lemma 2.3 is not true, i.e., it is possible that
w(i, §, k,u,v) (2,5, kw,0), y(e, 0,k u,v), 20,5,k w,v), respectively) < +oo and yet the
given channel has no derivable (i, j, &, u, v)-channel of type 0 (type 1, type 2, type 3, re-
spectively). In this case, there is no meaning associated with w(3,J, k,u,v) (z(z, 5, kv, v),
y(3, 7, k,u,v), 2(1, 7, k,u,v), respectively). This is deliberately done in order to facilitate the

design of our algorithm. We conclude this section by stating the following lemma.

Lemma 2.4 All the generalized crossing numbers of a given channel can be computed in

O(pqL?®) time and space.

Proof: The crossing numbers can be computed in O(pgL) time. Once the values of the cross-
ing numbers are computed, each generalized crossing number can be computed in constant

time according to Procedure Generalized_Crossing-Numbers. Hence the lemma follows. O

3 The Optimal Algorithm

We present in this section our optimal algorithm. Section 3.1 introduces the concept of a

density function of a given channel. Our algorithm is based on the computation of a density
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function. Section 3.2 presents the optimal algorithm.

3.1 Density Function

Our algorithm first computes a density function f, then constructs a channel derivable from
the given channel with minimum density based on f. Ideally, we would like to define the
density function f of a given channel to be the unique function whose value at (¢, 7, k, u,v),
0<i<p,0<5<¢q 0Lk u,v <L, isequal to the minimum k-density of any (z, 7, k, u, v)-
channel derivable from the given channel, so that f(,7,k,u,v) = 400 if the given channel
has no derivable (¢, j, k, u,v)-channel. However, this simplistic definition renders the compu-
tation of a density function intractable. We avoid this difficulty by defining a density function

with respect to the given channel to be a function f satisfying the following conditions:

1. Forall 0 <:<p, 0 <) <¢q,0<ku,v <L, if the given channel has an (¢, 7, k,u,v)-
channel derivable from it, then f(z, 7, k, u,v) is equal to the minimum k-density of any

(1,7, k,u,v)-channel derivable from it;

2. For all 0 < k,u,v < L, if the given channel has no (p, ¢, k, u, v)-channel derivable from

it, then f(p,q, k,u,v) = +o0.

According to this definition, it 1s no longer true that for allz, j, 1 < < p, 1 <j <gq,
the given channel has no (¢, j, k, u, v)-channel derivable from it implies f(7, 7, k, u,v) = 4o0.
However, Condition 2 is still strong enough to guarantee the correctness of our algorithm.

The following lemma follows directly from the definition of a density function.

Lemma 3.1 Let f be a densily function of a given channel, then

D= min f(p,q.L,u,v)< 400

0<u,v<L

is the minimum density of any channel derivable from the given channel.

To simplify the presentation of our algorithm, we define four intermediate functions dg,
dy, dy and ds in terms of a density function f of a given channel. For 0 <¢<p, 0<j <gq,
0 < k,u,v < L, we define dy(7, J, k,u,v), di(e, 7, b, w,v), do(t, g, kyu,v) and da(3, 7, k, u, v) as

follows. (For ease of exposition, we assume 0 — 1 = 0 in the rest of this paper.)



dO(iﬂj? k‘) u’ v)

di(1,7,k,u,v)

d?(i"ja kv U, 'U)

d3(‘i,j,k, U, U)

I

min{max{f(i,j,k - 1,u— 1,0 = 1), w(s,j,k,u,v)},
max{f(i~1,5,k—1,u~1,v—1),2(i,5, k,u,v)},
max{f(i,j — 1,k - 1,u—1,v—1),y(:,5,k,u,v)},
max{f(i - 1,5 — 1,k—Lu—1,v—1),2(4,4,k u,v)}},

min{max{f(¢,j,k—1,u—1,v—=1),w(i, j,k,u,v)},

max{ min f(:—1,j,k- Lu,v— 1), z(i, 4, k,u,v)},
0<u' <k

max{f(z’,j - 1~k - 1,1[ - 1,’0 - 1)9 y(iaj’kvuav)}’
max{ min f(i—1,j—-1,k— 1Lu',v—1),2(4, 7,k u,0)}},
o<’ <k
min{max{f(¢,j,k - 1,u—1,v—1),w(i,j,k u,v)},
max{f(i-1,j,k =1, u—1,v—1),2(¢,7,k u,v)},
max{ min f({,j—-1,k—-1,u— I,v'),y(i,j,k,u,v)},
0<v <k
max{ min f(i—-1,j—-1,k—1,u~ 1,17’),2(i,j,k,u,v)}},
o<’ <k
min{max{f(i,j. k-1, u—1,v—=1),w(i,j,ku,v)},

max{ min f(i— 1,5k~ 1L,u,v— 1),2(i,75, k,u,v)},
o<’ <k

max{ min f(i,j—1.k—-1,u— 1,17'),y(i,j,k,u,v)},
o<y’ <k

max{ min f(i—-1,j—-1,k- 1,u/,v'),z(i,j,k,u,v)}}.
o<u’ ' <k

The physical meanings of do(,j, k.u.v), di(i.j, k,u,v), da(2, J, k,u,v) and da(z, 7, k, u,v)

are related to the following four cases, depending on whether ¢; or b; is a left corner terminal.

e Case 0: Neither ¢; nor b; is a left corner terminal;

o Case 1: Only t; is a left corner terminal;

o Case 2: Ouly b; is a left corner terminal;

e Case 3: Both ¢; and b; are left corner terminals.

More specifically, we have
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Lemma 3.2 Let f be a density function of a given channel. If there ezists an (1,7, k,u,v)-
channel derivable from the given channel such that (t;,b;) is of Case b, 0 < h < 3, then
dn(2,7,k,u,v) is equal to the minimum k-density of any (1, j, k,u,v)-channel derivable from

the given channel where (t;,b;) is of Case h.

Proof: Suppose there exists an (2,7, k, u, v)-channel derivable from the given channel and
(t:,b;) is of Case 2. An (2,7, k, u, v)-channel derivable from the given channel with minimum
k-density is either of type 0, type 1, type 2 or type 3. If it is of type 0, then its k-density is
equal to the maximal of its local density at column k, which is w(z, 7, k, u,v) by Lemma 3.2,
and the minimum (k& — 1)-density of any (¢,7,k — 1,u — 1,v — 1)-channel derivable from the
given channel, which is f(7,7,k — 1,u — 1,v — 1) by the inductive hypothesis. Therefore, in

this case the k-density of this channel is given by
max{f(i,7,k — L,u—1,v—1),w(i,j, k,u,v)}.

If it is of type 2, then its k-density is equal to the maximal of its local density at column k,
which is y(¢, 7, k, u, v), and the minimum (k—1)-density of any (¢, j—1,k—1,u~1,v')-channel
derivable from the given channel with 0 < v" < k, which is min{f(z,7 — 1,k — 1,u — 1, v')
0 < v < k} by the inductive hypothesis. (Since bj is a left corner terminal, terminal b;_;
belongs to a new block, and the position of this block is not known. We have the freedom
of choosing a position for it so that the (k — 1)-density of the channel under consideration

is minimized.) Hence in this case the k-density of this channel is given by
max{ min f(¢,j — 1,k —1,u—1,v),y(4,7,k, u,v)}.
o<y’ <k
Similar analysis shows that if the channel is of type 1, then its k-density is given by
max{f(i —1,5.k — Lou—1,v—1),2(¢,7, k,u,v)},

and if 1t is of type 3, then its k-density is given by

max{ min f(i —1,j —1,k—1,u—1,v),2(4,7, kyu,v)}.

0<v' <k

Hence dy (2, j, k, u, v) is equal to the minimum k-density of any (1, j, k, u, v)-channel derivable
from the given channel if (¢;, b;) is of Case 2. The proofs of the other three cases are similar
to that of Case 2. O
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Although it appears that in the worst case we need O(L) time to compute dy(2,7, k,u,v),
da(7,7, k,u,v), and O(L?) time to compute ds(1, J, k,u,v), we can reduce the computation

time to O(1) by introducing the following auxiliary functions.

For0<i<p 0<j<¢q0<kuwv<lL,define

filig ko) = min f(id, k)
0<u <u

24,7,k u,v) = min f(z, 7, kv, v');
0<v' <v

falisjokyuv) = min  f(i 5,k u,0).
OSu'Su,OSu’SU

Obviously, we have

fi(i, 3, k. 0,v) = f(i,7,k,0,v);
fa(z, 7,k u,0) = f(i,7,k,u,0);
fali, 7, k,0,0) = fale,7,k,0,v);
fali, g, k,u,0) = fi(e,9,k,u,0).

In general, these functions can be computed recursively according to the following formulas:

Al kaee) = ming fili, gk = 10), £l ko)
faliy g ko) = min{falé, j, kw0 = 1), f(i, 5,k u,0) }
f3(1, 7, kousv) = min{ f3(7, 7, kou = 1,0), fa(7, 5, k, u,0) }

= min{f3(¢,J, kou,v = 1), fi(i, 7, k,u,0)}

The formulas for d;, do, and ds can now be rewritten as follows:

di(i,j,k,u,v) = min{max{f(i,j,k—-1,u—-1,v~- D), w(i,j,k,u,v)},
max{fi(i— 1,7,k = 1,k—1,0v=1),2(¢, 4,k u,v)},
max{f(i,j - 1,k = 1iu—1,0v—1),y(i,j,k,u,0v)},
max{fi(i—1,j—-1,k=-1,k~ 171)— 1), 2(4,5,k,u,v)}};

do(iy gk, u,v) = min{max{f(i,j, k- L, u—1,v=1),w(ijkuv)}
max{f(i— 1,7,k — Liu—=1,v—1),2(¢,7,k u,v)},
max{fo(i,j — L,k—1,u—1,k—=1),y(i,j,k,u,v)},
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max{fo(i — 1,7 — LLk—=1,u=1,k—=1),2(¢,7,k, u,v)}};

ds(i, 7, k,u,v) = min{max{f(i,7,k—1,u—1,v—1),w(i,j,k,u,v)},
max{fi(i— 1,5,k =1,k =1,v—1),2(2,7,k,u,v)},
max{fo(i,j — L,k—1,u—1,k—=1),y(i, 5,k u,v)},
max{fz(i— 1,7 -1, k= 1,k—1,k=1),2(i,5,k,u,v)}}.

It is now clear that the value of dy(z, j, k, u, v), d2(i, j, k, u,v), d3(2, J, k, u, v) can be computed

in O(1) time from the previously computed values.

3.2 The Algorithm

We are now ready to present our algorithm. The algorithm first computes a density func-
tion f based on the formulas presented in the last subsection using dynamic programming,
then it calls Procedure Generalized Crossing-Numbers to construct an optimal solution by

backtracking.

Algorithm: Minimizing_Channel.Density (C');
(* C is a given channel *)
Begin
(* initialize *)
for (i,j,u,v):=(0,0,0,0) to (p,q,L,L) do
F(5,3,0,u,0) = +00;
for (k,u,v):=(0,0,0)to (L,L,L) do
if £ > max{u, v}
then f(0,0,k,u,v):=0
else f(0,0.k,u,v) = +x;
(* compute a density function f using dynamic programming *)
for (k,i,7,u,v):=(1,0,0.0.0) to (L.p.¢. L. L) do
if left_corner(t;) and left_corner(;)
then f(i,j.k,u,v):=ds(i, 7,k u v)
else if left_corner(b;)
then f(i,7,k,u,v):=dy(e,j. kouv)
else if left_corner(;)
then f(7,j,k,u,v):= dy(4, ],k u.v)
else f(i,j,k,u,v) = do(s,7, k. u,v);
(* construct an optimal solution using backtracking *)
Call Procedure Construct-Optimal_Channel to construct an optimal channel

End.
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Given a density function f of the given channel, Procedure Construct.Optimal Channel
determines a position for each block (the position of a block is determined by those of its
corner terminals) and a position for each terminal on its block based on the values of f,
such that the resulting channel has minimum density among all channels derivable from the

given channel.

Procedure: Construct-Optimal_.Channel (C');
(* C is a given channel *)
Begin
L=y =G o o
Compute u, v, such that f(p,¢, L, u,v) = min{f(p,¢,L,u,v):0<u,v < L};
for k:= L downto 1 do
case f(¢,7,k,u,v) of
max{ f(i, 7,k — Lyu—1,v=1),w(i,j,k,u,v)}:
u:=u—1l;vi=v-1;
max{f(i — 1,5,k = 1,u', 0~ 1), 2(i,j.k,u.v)} :
Assign t; to column k:
ii=i— 1 u:= u'; viz= v — 1
max{f(i,7 - 1L, k=1,u— o), yli, .k u,v)} e
Assign b; to column k;
j::j—-l;u::u——l;v::v';
max{f(i — 1,7 -1,k — Lu',v'), 24,4, kyu,v)}
Assign t;, b; to column k;
ti=i—1y7:=7—1iu:= u';v::v';
max{f(i—1,j - Lk—1,u—1,v—1),2(4,5,kuv)}:
Assign t;, b; to column k;
t=i—-Liji=j-Lu=u—-livi=v-1
max{f(i - 1,j,k— Liu—1,v—1),2(i.j,ku.v)}:
Assign t; to column k;
ti=i—Liui=u—1;v:=v—1;
max{f(i,j — L,k—1,u~1,0—1),y(¢,j,k,u,v)}:
Assign b; to column k;
ji=j-Lu=u—-lLvi=v-1;
max{f(i—1,j—1,k— Lu,v=1) 20,7k u,v)}
Assign t;, b; to column k;
i::i-l;j::j—l;u::u';v::v—l;
max{f(i — 1,7 — 1,k = 1,u—1,v"),2(i.j,k,u,v)} :
Assign t;, b; to column k;
i::i-l;j::j——l;u::u—l;v::v'
end

End.
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Note that we can also incorporated heuristics into Procedure Construct_Optimal _Channel
to avoid introducing cycles or long paths in the vertical constraint digraph of the resulting

channel.

Theorem 3.3 The function f computed by Algorithm Minimizing.Channel_Density is a

density function of the given channel.

The proof of Theorem 3.3 is based on induction on the column number % that the function
f satisfies the two conditions of being a density function of the given channel. We can now

state the correctness of Algorithm Minimizing Channel_Density.

Theorem 3.4 Algorithm Minimizing-Channel-Density correctly constructs a channel deriv-

able from the given channel with minimum density in O(pgL®) time and space.

Proof: The correctness of the algorithm follows from the above discussions. We have seen
earlier that the functions do, dy, d; and ds can be computed in O(pgL?®). Since each step
of the for loop in Procedure Construct-Optimal-Channel can be done in O(L?) time, the

whole procedure takes O(L?). Hence the overall complexity of the algorithm is seen to be

O(pgL?®). O

4 Extensions

Channels arisen in building-layout design typically have the form shown in Figure 3. A
channel is said to have exits, if it contains some net with outside connections; it is said to
have irregular boundaries, if the blocks that form its sides are not horizontally aligned; and it
is said to have independent terminals, if not all of its terminals are located on the boundaries
of the blocks. In this section, we discuss briefly how our algorithm can be adapted to handle
channels with exits, irregular boundaries and independent terminals. We will also show how
to extend our algorithm to incorporate additional pin/block assignment constraints, which

are often imposed by design rules and the design of previous phases.
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exits |

Figure 3: A typical channel arisen in building-block layout design
4.1 More General Forms of Channels

For each net with connection to the left of the channel, we introduce a pair of artificial
terminals for this net, one on each side of the channel, and place it to the left of all other
terminals on the same side of the channel. We can similarly introduce pairs of artificial
terminals for nets with connections to the right of the channel. The introduction of these
artificial terminals help to ensure that the contributions of the nets with outside connections
to the local densities of the channel are appropriately accounted for. The length of the
channel is also increased to an amount equal to the number of pairs of artificial terminals
added. Note that a pair of artificial terminals is introduced for each outside connection
because our algorithm cannot guarantee to place all the artificial terminals on one side of
the channel to the left (right) of all terminals on the other side of the channel. Hence one
artificial terminal per outside connection is not enough to guarantee the correctness of the
algorithm because the local densities of the channel at some columns may not be correctly

computed.

To handle channels with irregular boundaries, we choose a reference line for each side of
the channel (the dotted lines in Figure 3) and change the definition of the local density of a
channel at a column by adding or subtracting the irregularity of each side of the channel at
that column with respect to the reference lines, depending on whether the boundaries of the
channel at that column is above or below the reference lines. Since the boundaries of our
channel is formed by the boundaries of the blocks, and the blocks are allowed to be shifted,
the channel irregularity at a column depends on which block(s) the column intersects. In
our algorithm we keep track of the corner terminals of the current block, so we can always

determine the block(s) a column intersects and hence determine the channel irregularity at
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that column.

Independent terminals present no problem for our algorithm at all because terminals
that are outside of the blocks can simply be treated as special blocks having length 1 and

containing one single terminal (which is both the left and right terminal of the special block).

4.2 Additional Pin/Block Assignment Constraints

In many cases it is necessary to place additional constraints on where the terminals and
blocks can be assigned. Note that block assignment constraints can be translated into pin
assignment constraints on their corner terminals, hence we will only consider pin assignment
constraints. Two kinds of pin assignment constraints introduced in [3, 5] namely, position
constraints and separation constraints have been identified as being especially useful in
modeling many situations. Position constraints are useful in modeling the cases where some
terminals are forbidden to be placed in certain positions. Separation constraints are useful
in modeling the cases where certain constraints exist between consecutive terminals (for
example, the extremal terminals of consecutive blocks have to be at least certain distance
away from each other in order to guarantee that the two blocks not assigned overlapping

positions).

As in [3, 5], position constraints can be represented by associating with each terminal
the subset of positions that it can be assigned to. Hence violation of position constraints can
be easily checked. Therefore, to handle position constraints, all we need to do is to modify
the definitions of the generalized crossing numbers so that they are set to +oo if position
constraints are violated in that particular form of channel. This will not increase the worst
case time complexity of the algorithm. Position constraints within the blocks can also be
handled because positions inside a block can be determined by the distance from the left

corner terminals of the block.

Separation constraints between consecutive terminals can be represented by associating
with each pair of consecutive terminals a lower and a upper bound on the distance between
them. General separation constraints are more difficult to handle because when consider
a current terminal, we need to know where the terminal that is immediately to its left is
assigned to. This forces us to introduce additional arguments to the generalized crossing

numbers and the density function to remember the positions of the last assigned terminals.
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It can be achieved by replacing the argument k by two new arguments = and y which is the
position of the last terminal on the top, bottom of the channel, respectively. With the help of
these new arguments, violation of separation constraints can also be easily checked in a way
similar to that described in the last paper. The complexity of the algorithm now becomes
O(pqL®). In practice, it is the case the ounly special forms of separation constraints are
needed to model many situations. For the special forms of separation constraints considered

in [3, 5], our algorithm still works in O(pqL?) time.

5 Fast Heuristic Approaches

We have presented an optimal algorithm for minimizing channel density by shifting blocks
and terminals and shown its extensions to practical situations. However, optimality is not
absolutely necessary in many case if we can obtain results that are close to optimal. In these
cases our algorithm can be used to develop fast heuristic algorithms. We describe several
such heuristic approaches in this section. Our experimental results indicate that they are
both efficient and effective.

First we tentatively fix the blocks and the terminals on one side of the channel, say
the bottom of the channel, and then apply our algorithm to shift the blocks and terminals
on the top of the channel. In doing so we can drop the second and fifth arguments from
the function f and the generalized crossing numbers (because they are only related to the
bottom of the channel), and therefore the complexity of the algorithm is reduced to O(pL?).
We then apply our algorithm again, this time having the blocks and terminals on the top
of the channel fixed to the positions obtained as above, and shift the blocks and terminal
on the bottom of the channel. This takes O(gqL?) time. This process can be repeated a
constant number of times or until no further reduction in channel density is obtained, each
time changing the role of the two sides of the channel. The complexity of this heuristic
approach is O((p + ¢)L*). Note that this is about two orders of magnitude lower than the

complexity of the optimal algorithm.

In the case of very long channels, we can reduce the complexity of the algorithm by
partitioning the channel into m subchannels of roughly equal length and distributing the
blocks evenly among the subchannels. We then apply our algorithm to each subchannel

independently. Having shifted the blocks and terminals inside each subchannel, we can
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Figure 4: Partitions of a long channel

resume this process on a new partition of the channel obtained from the original one by
horizontally shifting the partition to the right by an amount of one half of the length of
a subchannel, as illustrated in Figure 4, so that in the next run blocks and terminals are
allowed to be shifted across one subchannel of the original partition to another. Again this
process can be repeated a constant number of times each time on a new partition obtained
from the previous one by shifting to the right half the length of a subchannel, or until no

further reduction in channel density is obtained. The complexity of this approach 1s

O(m * (p/m) * (g/m) * (L/m)®) = O(pgL®/m™).

To further reduce the running time of the algorithm, we can combine the two heuristics

above and thus reduce the complexity of the algorithm to

O((p + q)/m + (L/m)?) = O((p + Q) L*m?).

The initial placement and distribution of blocks and terminals from which we start our
heuristic algorithms can affect the optimality of the final results. To improve the quality of
the solutions, we may apply our algorithm to several different initial solutions and select the

best result we obtain.
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6 Applications

In the detailed routing phase of building-block layout design, the blocks and terminals
typically can still be shifted without destroying the placement, the global routing or violating
any design rules. Figure 5 shows that this kind of freedom can be used to obtain further
area reductions. Figure 5(a) shows the layout without allowing the blocks and terminals to
be shifted (area = 540). Figure 5(b) shows the layout obtained by allowing only the blocks
to be shifted (area = 437), and Figure 5(c) shows the layout obtained by allowing both the

blocks and terminals to be shifted (area = 396).

Our algorithm is particularly well suited for applications to detailed routing of building-
block layout design where the placements are slicing structures [9]. Detailed routing is done
one channel at a time. Our algorithm can be applied to compute positions for the blocks
and terminals on the sides of the channel so that the density of the resulting channel is
minimized. A detailed router is then used to complete the routing. When a channel is
routed, an intermediate building block is formed which consists of the channel together with
the blocks that form the sides of the channel. These intermediate building blocks are treated

the same as basic blocks in later stages.

Although our algorithm is optimal with respect to a single channel, minimizing density
of each individual channel may not lead us to a final layout with minimum area. In view of
this, we generate several different implementations for each intermediate building block and
store them for later use. Different implementations of intermediate building blocks can be
generated by specifying different channel lengths in applying our algorithm. There is a trade-
off between channel length and channel density. Long channels tend to have small densities
because the blocks and terminals have more freedom to move. The different implementa-
tions of intermediate building blocks are then used in forming different implementations of
higher level intermediate building blocks. Among the set of implementations generated for

the entire layout, we choose the one with minimum area as our final result.

7 Experimental Results

We have implemented our algorithm and the first heuristic approach in C language on a

Sun SPARC station 1. Preliminary experimental results on channels are shown in Table 3.1.
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Ex. | Length | #Terminals | Original Optimal Heuristic

L p+q density | density | time | density | time
Ex1 10 14 3 2 8.9 2 0.05
Ex2 29 30 6 2 306.5 3 1.1
Ex3 10 12 4 1 6.5 1 0.02
Ex4 15 20 5 1 26.4 1 0.1
Ex5 29 30 6 2 287.9 2 0.7
Ex6 34 40 6 4 1059.9 4 1.1

Table 1: Experimental results of Algorithm Minimizing-Channel Density

Ex. | #Blocks | #Terminals | Old Area | New Area | Time | Reduction
Ex1 3 33 540 396 0.7 26.7%
Ex2 14 132 1512 1218 10.8 19.4%
Ex3 5 60 736 559 3.2 24.0%
Ex4 6 18 377 290 1.0 23.1%
Ex5 6 20 442 374 1.5 15.4%

Table 2: Experimental results on building-block layouts

CPU times were measured in seconds. As can be seen from the table, significant reductions in
channel densities were obtained by both the optimal algorithm and the heuristic algorithm.
The heuristic approach was able to obtain optimal or near optimal results most of the time

while drastically reducing the running time.

Table 3.2 shows some results of applying our algorithm to detailed routing in building-
block layout designs. These results were obtained by using the first heuristic algorithm

instead of the optimal one.

8 Concluding Remarks

We present in this paper an optimal algorithm for a channel pin assignment problem where
the blocks and the terminals of the channel are allowed to shift and the objective is to
minimize channel density. Our study is motivated by many practical situations arisen in the

layout design of VLSI circuits. Our algorithm can be easily adapted to handle situations
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that are often encountered in standard-cell and building-block layout designs. Based on
our optimal algorithm we also propose fast heuristic approaches which run much faster
than the optimal algorithm and produce results that are very close to optimal. These
heuristic algorithms are especially useful in situations where optimality is not necessary and
computational resources are critical. Preliminary experimental results of our algorithms are
very encouraging. Substantial reductions in channel densities were obtained in moderate

computation times.

Our algorithms have been successfully incorporated into detailed for building-block lay-
outs. In such applications minimizing the density of an individual channel is no longer
enough to guarantee the optimality of the final result. Interactions between channels have
to be taken into consideration. One novel application of our algorithm is to generate differ-
ent implementations of intermediate building blocks by specifying different channel lengths,
so that when routing a next higher level channel, we have the freedom of choosing the best

implementation of the blocks generated earlier.

Future research will focus on optimizing the current implementation of the algorithm,
on wire length minimization, and on the generalization of our algorithm to the case of
multiple parallel channels, as in standard cell layout design. Also of interest are extensions
of our algorithms to more general forms of separation constraints, for example, separation
constraints between nonconsecutive terminals and separation constraints between terminals
on opposite sides of the channel. We would also like to consider cases where certain pin

permutations are allowed, for example, if the blocks are allowed to be flipped.
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