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Abstract

We present in this paper a linear time optimal algorithm for minimizing the density
of a channel (with exits) by permuting the terminals on the two sides of the channel.
This compares favorably with the previously known near-optimal algorithm presented
in [6] that runs in super-linear time. Our algorithm has important applications in
hierarchical lavout design of intergrated circuits. We also show that the problem of
minimizing wire length by permuting terminals is NP-hard in the strong sense.

1 Introduction

Channel routing is an important problem in VLSI layout design and has been extensively
studied before [2, 9, 12, 22, 26]. Conventional channel routers assume the positions of the
terminals on each side of the channel are fixed. However, it is typical in practice that
after the placement phase, the positions of the terminals are not completely fixed, and
there is some degree of freedom to choose positious for the terminals. This freedom should
be used to our advantage to make the subsequent routing task easier and hence obtain
reduction in routing area. This type of problems have been studied by many researchers
before [3, 4, 5, 8,11, 13, 14, 15, 16, 17, 18, 20, 23, 24, 25]. We study in this paper the problem
of permuting the terminals on the two sides of a channel to minimize the channel density. An

important application of routing channels with permutable (interchangeable) terminals is for
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solving the pin assignment and global routing problem in building-block layout design, as
it was shown that the combined pin assignment and global routing problem can be reduced

Ly d

to routing a set of channels with permutable terminals [7, 21].

Several special cases of the problem of minimizing channel density by permuting terminals
have been studied before. In [19], an optimal algorithm was presented for the case where
the channel has no exit. Another optimal algorithm was given in [7] for basic channels, i.e.,
channels containing only two-terminal nets with one terminal on each side of the channel. No
optimal polynomial time algorithm for the general case was known before. Recently, a near-
optimal polynomial time algorithm was presented in [6], which can guarantee to produce
results that are within one of the optimal channel density. We show in this paper that the
general problem can be solved optimally in polynomial time by presenting a linear time exact
algorithm for this problem. We also show that the closely related problem of permuting the
terminals so that the channel can be routed in minimum wire length is NP-hard in the strong

sense.

The remainder of this paper is organized as follows. Section 2 introduces notations and
terminologies. Some preliminary results are presented in Section 3. Section 4 describes the
alternate packing algorithm whose use simplifies the presentation of our algorithm. Section
5 presents our algorithm in details. Section 6 proves the optimality of our algorithm. Section
7 gives the NP-hardness result of the wire 1@1’1gth minimization problem. Finally, Section 8

concludes the paper with some remarks.

2 Notations and Terminologies

We assume there is a grid superimposed on the layout. All terminals must be placed on grid
points and all wires must follow the grid lines. Routing is done in the two-layer Manhattan
model, in which there are two layers for routing. All horizontal wires are routed in one layer,
all vertical wires are routed in the other layer and no wire overlappings are allowed. Wires
on different layers are connected by contact holcs or vias. We shall consider a horizontal
channel, in which the terminals are placed on its two sides, called the top and bottom of the
channel. A column of a channel is a vertical grid line having its endpoints on the two sides
of the channel. The columns of a channel are numbered consecutively from left to right.

The length of a channel is the number of columus in the channel. A net is said to intersect a
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column if it has one terminal on or to the left of the column, one terminal on or to the right
of the column, and at least one terminal outside of the column. Two nets are said to cross
each other if they intersect a common column, and they are said to cross each other at that
column. The local density of a channel at a column is the total number of nets that intersect
the column. The density of a channel is the maximum number of nets intersecting a column,
i.e., the maximum local density of the channel at a column over all columns of the channel.
The width of a channel is the minimum number of tracks (horizontal grid lines) needed to
complete the routing in the two-layer Manhattan model. It is clear that the density of a

channel is a lower bound of the width of a channel.

A channel routing solution or a routed channel is a channel with its connections routed
in the two-layer Manhattan model. The width of a routed channel is the number of tracks
used in the routed channel. There are many channel routing solutions for the same channel,

the width of the channel is equal to the minimum width of its channel routing solutions.

With respect to a channel, a net is said to have a left exit (vespectively, right exit) if
it has a terminal to the left (respectively, right) of the channel (outside the channel). A
channel is said to have an exit if it has a net with either a left or a right exit. Each net
N, is specified by an ordered pair (g, by ), where 4 is the number of terminals on the top of
the channel (called fop terminals), and by is the number of terminals on the bottom of the
channel (called bottom terminals). We say Ny is of the form (tg, by) and use the notation
Ni = (tg, br) A net Ny is called a positive net if t, > bk, a negative net if t; < by, If either
t, = 0 or by = 0, then Ny is called a one-sided net, otherwise it is a two-sided net. If ¢, = 0,

then N, is a bottom-sided net. If by = 0, then Ny 1s a top-sided net.

The Density Minimization problem is the problem of permuting the terminals on the
two sides of a channel to minimize its density. An instance of the Density Minimization
problem is a 3-tuple I = (N, L, R), where N is the set of nets to be routed, L, R N are,

respectively, the set of nets in N with left, right exits. We use n = |N| to denote the number




of nets in N. For any subset N' C N, we define’

ty = }: t:

NpeN'

by = Z by;

NyeN'

Iy = min, th;
’ :\'kE}V

by = min by
’ NyeN'’

my = max{ty, by}
j\rkeN’

We may assume that ty = by = [, where [ is the length of the channel. This assumption is
possible because we can always realize it by introducing trivial nets, i.e., nets of the form
(0,1) or (1,0) without exits. Trivial nets represent nets requiring no connections. Without
loss of generality, we may also assume no net in V has the form (0, 0). It is easy to see that no
matter how the terminals are permuted, the density of the channel is at least max{|L|,|R[}
because all the nets in L cross the leftmost colummn of the channel, and all the nets in R

cross the rightmost column of the chanunel.

Given an instance II = (N, L, R) of the Density_Minimization problem, we use B=LNR
to denote the set of nets with both left and right exits, and M = N—-LU R to denote the set
of nets without exits. The set of trivial nets M7 is a subset of M, and we let Mp = M — M.
Also, welet L* = L — B and R = R— B. L is said to be top critical if

tr. > U= bypune = brony = bos + beunir,
bottom critical if
b > L —tarpure = tLuaiy = tos + tBuny,

and critical if it is either top critical or bottom critical. That R is top critical, bottom critical

and critical are similarly defined. Let

{ 1 if L is critical
b =

0 otherwise,

1¥or convenience of presentation, we define

E r = minz = maxz = 0.
ree reEQ
TES
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Figure 1: Illustration of definitions

and similarly define ég. We also make use of a variable §, such that § = 1 if |L| = |R|,
6 = 6p = 0, and either
batgos < (tre — bie) + (tre — bre)
or
tarpun < (bp. —tr) + (bge — tre),
and 6 = 0 otherwise.

Example 1: Consider the channel shown in Figure 1, we have n = 7, [l = 16, N; =
(3.1), Ny = (1), Ny = (L10), Ny = (1.2), N = (2,1}, No = (1.0), N7 = (4,1),
L= {Ni,NauNa}, I = { N0 Mo}, B = {Ny N2} B = {5}, B = {N,}, M = {Ny, Ny, N},
Mp = {Ng}, Mp = {N3,Ns}. Since |L| = 2 > |R| = 1, we have § = 0. Since brup, =
1+14+24+0=4 >t'L. =3 and tpun, =3+4+1+1=9> bIL. = 1, L is not critical and
hence 67 = 0. Since bpup, =2+1=3< t’R‘ =4, R is top critical and hence ép =1. O

The significance of L being top critical is that no matter how the terminals are permuted,
the density of the resulting channel is at least |L] 4+ 1. To see this, consider the net Nj € L
with the property that the rightmost column that contains a terminal of Ny is the leftmost
among all such rightmost columns of the nets in L*. Since t7. > bruny,, among the ty > t7.
columns with a top terminal of Nj on it, at least one of them has a bottom terminal of a
net in R* U Mp on it. Hence this net crosses every net in L at this column, making the local
density at this column at least |L| + 1. We can also claim that if 6 = 1, then the minimum
channel density that can be achieved by permuting terminals is at least |L| + 1 or |R| + 1.
Suppose

batun < (tpe = boe) + (tge = bpe),

then t;. —bg. > 0 and tge —bge > 0, for otherwise we have either tr. > barpus +bre = brumy

or t’R‘ > bruny. contradicting the fact that 6; = 6p = 0. To avoid a net in R*U Mp crossing



all the nets in L at some column, we need t’u — by« bottom terminals from the nets in BU M7y
to be assigned to columns with a terminal of a net in L* on them . Similarly, to avoid a net
in L* U Mp crossing all the nets in R at some column, we need t'R. — bp+ bottom although
there are enough bottom terminals from the nets in B U Mgy to accomplish either one of the
goals, there are not enough such bottom terminals to accomplish both goals at the same

time. Hence the claim follows.

3 Preliminaries

We present in this section some preliminary results. Theorem 3.1 provides a lower bound
for the minimum channel density achievable by permuting terminals. Lemma 3.2 states a

result used in establishing the optimality of our algorithm.

Theorem 3.1 Given an instance II = (N, L, R) of the Density-Minimization problem, the

minimum channel density achievable by permuting terminals is at least
Dp = max{|B| + dj. max{|L| + 6., |R| + ér} + 6},

where

if tr by <1 for all Ny € M
if 1 > mpsunipune
otherwise.

dy =

N o= O

In other words. the channel cannot be routed in Jewer than Dn tracks.

Proof: Let d be the minimum channel density achievable by permuting terminals. It is
obvious that dy > |B] because every net in B mtersects every column of the channel. If
dy = 1, then there exists a net in M with at least two terminals on the same side of the
channel. Hence this net crosses all the nets in B at some column c, therefore dn > |B|+ 1.
If & = 2, then | < mp-uapuR:- In this case, there exist two distinct nets in L* U Mp U R”
having their terminals assigned to the same column. Hence these two nets together with
all nets in B cross this column and the density of the channel is therefore at least |B| + 2.
Thus dy > |B| + dj;. To show that dn 2 max{|L| + 6, |R| + 8r} + &, observe that dn 2
max{|L|,|R|}. Hence it suffices to consider the case where max{éy,8,8r} = 1. We consider

the following cases:



e Case 1: 6 =0.
Without loss of generality assume |L| + &, > |R| 4+ 0g. If ép = 0, then

dn > max{|L|,|R|} = max{|L| + é..,|R| + ér} + 6.
Suppose §;, = 1 and L is top critical, then
dy > |L| + 1 = max{|L| + 6., |R| + ér} + 6.
The case where L is bottom critical can be proved in a similar way.

o Case 2: 6 =1.
In this case, |L| = |R| and é;, = ér = 0. Hence either dy > |L|+ 1 or dn > [R|+1. In

either case we conclude that

dn > max{|L|,|R|} + é = max{|L| + é1, |R| + 6r} + 0.

Therefore, the theorem follows. O

Theorem 3.1 provides a lower bound on the minimum density of a channel achievable by
3 Y

permuting terminals. For the example shown in Figure 1, we have
mpsonipore = (34+4) +(104+2) +4 =23 >,

hence df = 2. Since |B| =1, |L| =3, |R| =2, 6p = 1 and ¢y = 6 = 0, we have Dy = 3.
Figure 1 shows a terminal permutation that actually achieves channel density 3. Later on,
we will show that this bound is always achievable by presenting an algorithm that constructs
a channel that achieves it. The following lemma is used in showing the optimality of the

algorithm.

Lemma 3.2 Lel X = (21, 29....,2y) and Y = (y1,Yy2....,Ys) be sequences of non-ngative

integers, such that u>v, a1 <23 <. S a1 292 2 - 2 Wy and

S = Z‘T'i = Z (IR
i==1 =1
then for 1 <k <w,

k k
ap=p v <y Y= B
=1 J=1

-1



Proof: Since X is nondecreasing, we have

S—ap = Z T;
j=hk+1
> (u—Fk)rrq
5 H- k
Qs
2 o
from which we get
k
ar < 5.
u
Similarly, we can show that
k
By 2 =S,

v
It now follows from the assumption that u > v that for 1 <k < v, ap < B, D

4 Alternate Packing

It is convenient to present our algorithm using a technique called alternate packing [6, 19],
which computes a terminal permutation by “packing nets” one at a time. After a net is
“packed”, the positions of all its terminals on one side of the channel are determined. The
algorithm proceeds in such a way that after the packing of a net, there is at most one
partially assigned net (PAN for short). €., a net for which the positions of some but not
all of its terminals are determined, and all the unassigned terminals of the PAN are on the
same side of the channel. If these terminals are on the top of the channel, then the next
net to be packed is a negative net, if there is any, otherwise the next net to be packed is a

positive net. This technique is described formally in the following algorithm.

Algorithm: Alternate-Packing (2):

(* Q= (N1, Ng...., Np) s an ordered sequence of the nets to be routed *)
Begin
pan := 0; (* the index of the PAN *)
o:=0; (* |o] is the number of unassigned terminals of the PAN *)
current := 13 (* the index of the next net to be packed *)

column = 1;t 1= #y; b := by;
while Q # ¢ do
begin
Remove the current net from €;
ifo>0
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Figure 2: Alternate Packing

(* the PAN has ¢ unassigned top terminals and *)
(* the current net is *)
then for k:= 1 to min{t + 0,0} do
if £ < min{o,b -t}
then Assign-Column (column + k — 1, pan, current)
else Assign-Column (column + k& — 1, current, current)
(* 0 < 0, the PAN has —o unassigned bottom terminals, and *)
(* the current net is positive *)
else for k£ := 1 to min{t.b -0} do
if k <min{t - b,0}
then Assign.Column (column + & — 1, current, pan)
else Assign-Column (column + k — 1, current, current);
ifo+(t-b)>0
(* the new PAN has only unassigned top terminals *)
then N, := the next negative net in {2
else N; := the next positive net in {2
if |t = b] 2 ||
then pan := current;
column := column + k; 0 1= o + ({ — b); current := j; L :=t;; b= b;
end
End.

A call to procedure Assign-Column (¢, 4, ) assigns a top terminal of net N; to column
¢, a bottom terminal of net N; to column c¢. Since we can use two linked lists to sep-
arately store the positive nets and the negative nets, the algorithm can be implemented
to run in O(l) time, where [ is the length of the channel. Figure 2 shows a channel ob-
tained by applying Algorithm Alternate Packing on the example shown in Figure 1 with
Q = (Ny, Ny N3, Ny, N5, Ng, N7). The nets are actually packed in the following order:
(Ny, N3, N, N5, Ng, Nz, Ny). The density of the channel is equal to 4, instead of the op-

timal value 3.



Note that if the channel has no exits, then the density of the channel obtained by
Algorithm Alternate Packing is at most two. This is because at most two nets intersect
each column, one of them is the PAN when the column is under consideration, the other
is the net under packing at that time. By carefully ordering the nets in L* and R”, the
algorithm can also be used to compute a terminal permutation for a given channel with

exits so that the resulting channel has density within one of the optimal value [6].

Observe that for any net of the form (k, k), Algorithm Alternate Packing assigns all of
its terminals to k consecutive columns. In particular, any net of the form (1,1) have both

its terminals assigned to the same column.

5 The Optimal Algorithm

We present in this section our linear time exact algorithm for the Density Minimization
problem. Our algorithm computes a terminal permutation that achieves minimum channel

density, which is always equal to the lower bound given in Theorem 3.1.

As we have seen in the last section. Algorithm Alternate Packing is not optimal in
general. In order to achieve optimiality, the terminals of the nets have to be carefully
distributed, so that, for example, no net in Mp U R™ is to cross all nets in L at some
column, if this is necessary and possible (i.e., when Dy = |L| and hence max{é, 6} =0).
A convenient way of doing this is to partition the nets into a number of “smaller” nets,
each containing a subset of the set of terminals of the original net. This is done in the
following procedure. (We use X.Y" to denote the concatenation of two sequences X and Y.
This notation extends to the case that X or Y is a set because we can consider a set as a

sequence by arbitrarily ordering its elements.)

Procedure: Distribute Nets (II);
(* Il = (N, L,R)is an instance of the Density-Minimization problem *)
Begin
(* decompose the nets in L* and R™ *)

L':=¢ R =¢ (* € is the empty sequence )
for N, € L™ do
it +bp =0

then L' := L'.(Ny)
else begin
Ny = (t,0); Ny := (0,bg); L' = L' (N N}

10



end ;
for N, € R* do
iftg b =0
then R := R .(Ny)
else begin
Np = (1, 0); Ny = (0,b5); R = R.(N}, NY)

end ;
S = AJT;
(* decompose nets in B into trivial nets *)
for N; € B do
for j:=1tot; +0b; do
begin
ifj<t
then N; := (1,0)
else N; := (0, 1)
S = S.(Nij)
end;

(* distribute the nets in 5 *)
Sp = ¢; SR =
if D = |L|
then if t}J. > b
then 5L := the first (I'L,. — br+) negative nets of §
else Sy := the first max{0,b;. — {z+} positive nets of S;
if Dn = |R|
then if tg. > bpe
then Sp := the last (t;q. — bg+) negative nets of .S
else Sk := the last max{0.0y. — tg+} positive nets of S
Sy =S5 -5, USR

End.

obtained from decomposing Nj;).

A net of the form (¢,b) is said to have disparity |t —b|. A tag of L™ is a net Ny € L~

such that t; = t'L. if tpe > bpe, and by = bIL. otherwise. The tag of R is similarly defined.

Procedure Distribute_Nets decomposes each net in L* U R™ into two one-sided nets, if it

is not itself one sided. It also partitions each net in B into nets of the form (1,0) and (0,1).
These nets together with the trivial nets in My form the set S. Note that the set of new nets
obtained from decomposing the same net are grouped together and the ordering of the new
nets are consistent with the original ordering of the old nets (i.e., if an old net N; appeared

before N;, then all the new nets obtained from decomposing N; appear before all the nets

Sy, Sp and Spr. The set Sp is introduced to avoid having some net in Mp U R crossing

11

The set of new nets S is partitioned into three subsets
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Figure 3: Optimal Packing

every net in L at some column. This is necessary if D = |L|, because otherwise the density
of the channel is at least |L| +1 > Dp. It is also possible in this case because Dy = |L|
implies max{é,6.} = 0, hence there are enough terminals in L U Mt to pad the columns
with terminals of the tag of L* on it. The set Sp is similarly introduced to avoid having a
net in L* U Mp crossing every net in R. The set Sy is introduced to keep positive nets in
Mp from crossing negative nets in Ap. This is necessary if Dp = |B| + 1, for otherwise the

density of the channel would be at least |B| + 2. It is possible if dfy < 1.

With the nets decomposed as described in Procedure Distribute_Nets, we can distribute
the terminals to where we want them to be in applying Algorithm Alternate_Packing by

carefully ordering the nets. This is enough to achieve optimality.

Algorithm: Optimal Packing (I):
(* 1 = (N, L, R) is an instance of the Density_Minimization problem *)
Begin
Sort L* into increasing order of net disparities;
Sort R* into decreasing order of net disparities:
if Dy = |L| and ({7. > by or by, > tr+)
then Select a tag of L™ as its first net;
if Dp = |R| and (tIR, > bp+ or blR* > tRe)
then Select a tag of R* as its last net;



A/I; = {Np € Mp : 1y > bi}; Mp := Mp — .M;;; Distribute Nets (I);
if tr > bR*
then Q:= S;.L' .Mp.Sp.Mp.R .Sp
else Q:= §p.L . M{ .Sy .My R .Sr;
Alternate_Packing ()
End.

Example 2: Consider the channels shown in Figure 3. We have n = 7, Ny = (1,3),
N, = (1,5), N3 = (1,2), Ny = (5,0), N5 = (3,2), No = (3,1), Nz = (0,1); L = {N1, N, },
R = {Ny,Ns,N¢}, B = ¢; S = My = {N-}, Mp = {N3}. Since Dn =3 > |L| = 2 and
the = 3 = bp-, br. = 0 < tpe = 8, we have S| = Sp = ¢, and L is sorted into (N, N2), R 1s

sorted into (N4, Ng, Ns). After decomposing the nets, we obtain

o Rz o o , - rooar 1" o S
Q= (N,N, N, N, Ny, Nz, Ny, N, Ny, Ny, Ny).

IRA A A

The channel constructed by our algorithm is shown in Figure 3(a) which achieves optimal
density 3. Figure 3(b) shows the channel constructed by the algorithm in [6] which has
density equal to 4, one more than the optimal value. The difference is that because the nets
in L™ and R* are decomposed in our algorithm, net N3 does not cross every net in R in the
channel constructed by our algorithm, whereas it does in the channel constructed by the

algorithm in [6]. O

6 The Optimality of Our Algorithm

We show in this section that Algorithm Optimal _Packing constructs a channel with minimum
density given an instance of the Density Minimization problem. We first state the correctness

of the algorithm, which follows from the correctness of Algorithm Alternate Packing.

Theorem 6.1 Algorithm Optimal-Packing computes a valid terminal permutation of a given
instance of the Density-Minimization problem, i.e., each terminal is assigned a unique posi-

tion and no two terminals are assigned to the same position.
To establish the optimality of the algorithm, we need the following lemmas.

Lemma 6.2 In the channel produced by Algorithm Alternate-Packing, no net in L™ U R*

crosses two nels in Mp at some column.

13



T
|

Figure 4: Illustration of the proof of Lemma 6.2
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Proof: Assume, to the contrary, that N;, N; € Mp and N, € L* all intersect certain column
¢ of the channel, and that N; is packed before N;. Then one of N;, N; must be positive and
the other negative. Without loss of generality, assume N; 1s positive and N; is negative.
This scenario is illustrated in Figure 4. Since the nets in L* are placed before the nets in
Mp, the fact that N; is packed before Ny (for otherwise Ny would not cross N;) implies
that N} is positive. This, however, implies that Ny should have been packed before NN;, a

contradiction. O

Lemma 6.3 [fL* = R™ = ¢, then Algorithm Optimal-Packing produces a minimum density

channel.

Proof: We show that in this case the channel density is equal to Dy = |B| + df;. Since the
nets in Mp are not splitted in the algorithm. at most two nets in Mp intersect a column.
Hence the density of the channel is < |B| + 2. Thus if df = 2, then the lemma holds. If

x =0, then tx, by < 1 for any net (¢4, bi) € Mp. Since Algorithm Alternate Packing assigns
both terminals of any net of the form (1,1) to the same column, no net in Mp intersects any
column of the channel. Hence the density of the channel is |B|. In the remaining case we
have dj; = 1. Since the nets in M} precede the nets in S = Sy precede the nets i Mg, two
nets N; € M7 and N; € Mp cross each other only when all negative nets in 5 have been
exhausted. This implies that )4 > by/4 + bs = byrus = byvoarg However, because df = 1,
we have [ > myy, = tM; + bM;, i.e.. tM; <[ - bM; = bN_M;, which is a contradiction.

Hence the density of the channel is |B| + 1. This completes the proof of the lemma. O

Lemma 6.4 If Mp = &, then Algorithm Optimal-Packing produces a minimum density

channel.

14
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Figure 5: Illustration of the proof of Lemma 6.4

Proof: If no net in L* crosses any net in R*, then the density of the channel is equal to
max{|L|, |R|}, which is clearly optimal. Otherwise, due to the fact that the nets in L* U R*

are decomposed into one-sided nets, there must exist columns ¢; and ¢y, ¢; < ¢, such that

e All terminals of the nets in My U B are on either the leftmost ¢; — 1 columns or the

rightmost | — ¢z columns of the channel:

e All terminals of the nets in L™ on one side of the channel (say, the bottom of the

channel) are on the leftmost ¢; — 1 columns of the channel;

o All terminals of the nets in R~ on the other side of the channel (i.e., the top of the

channel) are on the rightmost [ — ¢, columms of the channel;
e No terminal of the nets in R~ is on the leftmost ¢; — 1 columns of the channel; and

e No terminal of the nets in L™ is on the rightmost [ — ¢ columns of the channel.

(In the example shown in Figure 3(a), we have ¢; = 1 and ¢; = 8.) Hence the maximal local

density of the leftmost ¢; — 1 columns of the channel is |L| and the maximal local density

of the rightmost | — ¢; columms of the channel is |R|. Let L' = {N,,N,,...,N;,} and
R = {N;,N;,,....] /;,} be the set of nets (from left to right in that order) obtained from

L* and R*, respectively, by excluding their terminals on the leftmost ¢; — 1 and rightmost
| — ¢y columns of the channel, then N;, = (t;,0) for 1 < k < wand N;, = (0,b;,) for
1 < k < v. Since the nets in L~, R™ are sorted into increasing, decreasing order of disparities,
respectively, we have t;; <ti, <... <t b 2 b, > ... > bj, and

u v

Ztik = Z)“\ = (7 — Cy + 1.

k=1 k=1

15



If u > v, then for ¢; < ¢ < ¢y, let

h
z. = min{h : Ztik >c—c +1}
k=1

and

h
ye = min{h: Y b >c—c 41},
k=1

then d. < (u — x.+1) +yc = (u+ 1) = (2. — y). (See Figure 5 for illustration.) According

to Lemma 3.2, we have
h

h
Dot <2 0b;
k=1

k=1

for 1 < h < v, implying z. < y.. Hence d. < u+ 1. Similarly, we can show that d. < v +1
if u < v. Therefore, in either case we have d. < max{u + 1,0+ 1}. We claim that d. < Dn
for ¢; < ¢ < ¢,. It suffices to show that « < Dp and v < Dp. Assume, to the contrary,
that w = Dp, then |L| = Dp because « < |L|. This implies that there exists a net in R
crosses every net in L, and hence b'L. > t;» and S;, = ¢. But this is impossible according to
Procedure Distribute_Nets. Hence u < Dy. Similarly, we can show that v < Dp. Therefore,
the density of the channel is < Dyy. O

Theorem 6.5 Given a Density_Minimization instance II, Algorithm Optimal-Packing pro-

duces a minimum density channel.

Proof: Let columns ., y, be, respectively, the rightmost, leftmost column with a terminal
of a net in L*, R* on it. To show that the channel has minimum density, we consider the

following two cases:

o Case 1: z < y.
In this case, there is no terminal of nets in R* on the leftmost x columns of the channel.
Since the rightmost net in L* intersects all of the leftmost « columns of the channel,
none of these columns is intersected by two nets in Mp by Lemma 6.2. Therefore,
the maximal local density at the leftmost @ columns of the channel is < |L| + 1, with
equality holds only if a net in Afp crosses the leftmost net in L*. This can happen
only when Dy > |L|. Hence the maximal local density at the leftmost z columns of

the channel is < Dy. Similarly, the maximal local density at the rightmost [ —y +1
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columns of the channel is at most Dpn. We proceed to show that the maximal local
density at the middle y —z — 1 columns of the channel (from column z + 1 to column
y —1) is < Dp. Note that no net in L* U R intersects any of these columns. As in the
proof of Lemma 6.3, only the case where df = 1 is of interest (for the maximal local
density at these columns of the channel 1s equal to |B| + dfj in the remaining cases).
It suffices to consider the case where Dy = |B|+1. Without loss of generality assume
tr < bps, then @ = SL.L'.AI;.SM.;’W]Z.R’.SR and bs, = 0. If anet N; € M} crosses a
net N; € Mp, then we have ;s un > brus,uMEUS Y- If L* = ¢, then SLUL = ¢,
otherwise since |L*| = 1 we have ts, = by — tr-. In either case tyr g = bL’uSL' We

can also show that bg g = Mp'- Therefore

tary > Z’L’usLuM;‘us,u‘“tL’usL

= l’;\t;usﬁ, - (tL’uSL - bL’uSL)

= b

MPusy:

On the other hand, since I > m /a,ur'» We have

bsLumgusM + (bSRUR' — mpg')
I)SLU‘\];USM

b:’\lgus‘\,ﬂ

which is a contradiction. Hence no two nets in Mp cross each other. Therefore, the
maximal local density at the middle y — @ —1 columns of the channel is also < Dp.

We conclude that in this case the density of the channel 1s < Dp.

o Case2: x 2 y.
In this case, the part of the channel from column y to column x must of the form as
shown in Figure 5. Similar to the proof of Lemma 6.3, we can show that the maximal
local density at these columns of the channel is at Dp. According to to the analyses
in Case 1, the maximal local density at the leftmost y — 1 columns and the rightmost

] — 2 columns of the channel is at most Dp. Hence the density of the channel is < Dn.

Thus in both case we conclude that the density of the channel is Dy, which is optimal

according to Theorem 3.1. O



Since both L* and R* can be sorted in linear time by bucket sort [1], the running time

of the algorithm is easily seen to be linear, as stated in the following theorem.

Theorem 6.6 The running time of Algorithm Optimal_Packing is O(l), where l is the length

of the channel.

7 NP-Hardness Results

In this section, we show that the problem of permuting the terminals of a channel so that
it can be routed in minimum wire length is NP-hard in the strong sense by proving the

following decision version of the problem is NP-complete in the strong sense.

Wire_Length-Minimization (WLM)
INSTANCE: A set of nets N = {N;, N,,..., N, } to be routed with

Yot = =1,
k=1 k=1

and a positive integer W.
QUESTION: Is there a permutation of the terminals such that the channel can be routed

in total wire length < W7

Theorem 7.1 The WLM problem is NP-complele in the strong sense even for channels

with no exits.

We prove Theorem 7.1 by a polynomial time transformation from the following 3-
Partition problem, which is known to be NP-complete in the strong sense [10]. (I* stands

for the set of positive integers.)

3-Partition
INSTANCE: A finite set A of 3m elements, a bound b € I, and a “size” s(a) € It for each
a € A, such that each s(a) satisfies b/4 < s(a) < b/2 and such that

Z s(a) = mb.

a€A
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Figure 6: Illustration of the proof of Lemma 7.2

QUESTION: Can A be partitioned into m disjoint sets A A, ..., A, such that, for 1 <

1 < m,

S sla) = b7

a€Ad,

Given an instance of the 3-Partition problem, we construct an instance of the WLM

problem with [ = 2mb + 5m, W = 8mb + 15m and n = 5m nets such that

N, = (b+1,1) for 1 <k <2m

Ny = (1,2s8(ag—2m) + 1) for 2m+1 <k < 5m.

The first 2im nets are called {op nets, the last 3m nets are called bottom nets. Each bottom

net corresponding to an element of A. It 1s easy to check that

[ = Z ty = Z by, = 2mb 4+ 5m.
k=1 k=1

We claim that the given 3-Partition instance has a solution if and only if the answer to the

corresponding WLM instance 1s yes.

Lemma 7.2 If the given 3-Partition instance has a solution, then the corresponding WLM

instance also has a solution.

Proof: Let Ay, A,,..., A, be a solution to the given 3-Partition instance such that A; =
{a;),as, a5, } for 1 <o <m. Then s{a;,) + s{a;,) + s(ay,) = Bfor1 <1 <m. We construct

a solution for the WLM instance as follows. Partition the channel into m sub-channels
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g 1

Nk N

(a) A left-matched bottom net (b) A right-matched bottom net
Figure 7: Matched bottom nets
each of length 2b + 5, and assign two top nets and three bottom nets Ny, Ni,, Ni, to the

sth subchannel and route it as shown in Figure 6. Let Wj,, W, be, respectively, the total

horizontal, vertical wire lengths in the routing of the 7th subchannel, then

Wy = 2b+ (2s(a;,) + 2s(ay,) + 2s(ai,))
= 4b, and

W, = 104+2(b+1)+ (2s(ai,) + 2s(a;,) + 2s(ai,) +3)
= 4b+15.

Hence the total length in the routing of the ith subchannel is Wi = Wy, + W,, = 8b + 15,

and the total wire length in the routing of whole channel is

Z W, = 8mb+ 15m = W.

=1

Hence the terminal permutation so determined is a solution to the WLM instance O

A net Np € N of a channel is said to be proper if all terminals of Nj are assigned to
max{tx, by} consecutive columns. A bottom net Ny is said to be left-matched (right-matched,
respectively) if its top terminal is assigned to the leftmost (rightmost, respectively) column
having a terminal of Ny on it. (See Figure 7 for illustration.) To prove the converse of

Lemma 7.2, we need the following lemma.

Lemma 7.3 For any lerminal permutation of the WLAM instance as constructed above, the
resulting channel has to be routed in wire length > W, and equality holds only if all nets are

proper.

Proof: Let Wy, W, be, respectively, the total horizontal, vertical wire lengths in a routed

channel resulted from a terminal permutation of the WLM instance, and let w be the width
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Bl

Figure 8: A segment of a channel

of this routed channel. Then we have

Wy > 2mb + Z 2s5(a) = 4mb,
a€A

where equality holds if and only if for each net Ny € N, all terminals of N are assigned to

max{ty, by} consecutive columns. We also have

W, = 2m(b+ 1)+ 5mw + Z(Zb(a) +1)
aEA

= 4mb+ 5mw +1).

Since

b = 2mb -+ dm,

1=5t, =
1 1

k3 ko
k’: k:
and there exists a net Ny, € N with ¢ # by, we must have w > 2. Therefore, the total wire
length in this routed channel is at least W, + W, > 8mb + 15m, where equality holds if and
only if W, = 4mb and w = 2. Since this holds for any routed channel resulted from any

terminal permutation, the lemma follows. O

Lemma 7.4 If the WLM instance as constructed above has a solution, then the given in-

stance of the 3-Partition instance also has a solution.

Proof: Suppose the WLM instance has a solution. According to Lemma 7.3, all nets in
N are proper, Therefore, for any two bottom nets N, and Nj, 2m + 1 < 2,7 < 5m, all the
terminals of one of them are assigned the left of all the terminals of the other in the solution.
Hence we can talk about a bottom net which is to the left (right) of another bottom net. It

can be seen that the following conditions must hold in any solution to the WLM instance.

1. The leftmost bottom net is left-matched;

2. The rightmost bottom net is right-matched;
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3. Each right-matched bottom net is followed immediately by a left-matched bottom net;

4. No left-matched bottom net is immediately followed by a right-matched bottom net.

The last statement is a consequence of the constraint b/4 < s(a) < b/2 on the sizes of
elements of A. Therefore, the channel can be partitioned into segments, each starts with
a left-matched bottom net and ends with the first right-matched bottom net after it (see
Figure 8). Let Ny, Ni,, ..., Ni, be the set of bottom nets in a segment of the channel from
left to right in that order. Since for 1 < ¢ < r, by, = 2s(a) + 1 for some a € A, we have
b, < b+ 1< by, +bi,. For 1 <i<r, let

7
S = Z bk].,
i=1

then we have s; < i(b+1) <s;yy forl <i<r—1lands, =(r— 1)(b+ 1). This is because
if s;41 < j(b+ 1) for some j, 1 < j < 7 — 1, then either the bottom net Ny or a top net
is not proper, contradicting Lemma 7.3. Hence the number of top nets in a segment of the
channel is exactly one fewer than the number of bottom nets in the same segment. Because
there are m more bottom nets than top nets, the number of segments in the channel must be
exactly m. Furthermore, according to the statment 4 above, the number of bottom nets in
a segment is at least three. Since there are 3m bottom nets in total, each segment contains
exactly three bottom nets. Let @, y, = be the elements of A corresponding to the bottom

nets in a segment of the channel, then
(2s(2) + 1)+ (2s(y) +1) + (2s(z) + 1) + 2 =2(b+ 1) + 3,

i.e., s(z) + s(y) + s(z) = b. Hence 4y, 45,..., 4, is a solution to the 3-Partition instance,
where A; contains the elements of A corresponding to the bottom nets in the 7th leftmost

segment of the channel, 1 <1 <m. 0.

Theorem 7.1 now follows from Lemmas 7.2 and 7.4 and the observation that the trans-
formation can be carried out in polynomial time. From the definition of NP-hardness, we

also have

Corollary 7.5 The problem of computing a terminal permutation so that the resulting chan-
nel can be routed in minimum wire length is NP-hard in the strong sense even for channels

without exits.

3]
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Define the wire span of a channel routing solution to be the total length of the horizontal
wires. We can show that the problem of computing a terminal permutation so that the
resulting channel can be routed in minimum wire span is also NP-hard in the strong sense
by showing the decision version of it is NP-complete in the strong sense. The proof is

identical to that of Theorem 7.1 except that W replaced by W) = 4mb. Hence we have

Corollary 7.6 The problem of finding a terminal permutation so that the resulting channel
can be routed in minimum wire span is NP-hard in the strong sense even for channels without

exits.

8 Concluding Remarks

We present in this paper an optimal linear time algorithm for computing a permutation of the
terminals of a channel so that the resulting chaunel has minimum density. The previously
known best result for this problem is a near optimal algorithm that runs in superlinear
time. Hence our algorithm improves both the efficiency and optimality of the previous
known algorithm. We also show that the problem of computing a terminal permutation so
that the resulting channel can be routed in minimum wire length is NP-hard in the strong

sense.

We believe that our algorithm can be modified to generate a channel that can be routed
in minimum width as well. Several related problems are currently under investigation. These
include the case where one or both ends of the channel are not aligned; the case where the
sides of the channel are slidable; and the case where the positions of the terminals on one
side of the channel are completely fixed. We believe that some of these problems can also

be solved optimally in polynomial time.
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