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A Multi-Resolution Relational Data Model �Robert L. Read, Donald S. Fussell, and Avi SilberschatzDepartment of Computer Sciences,University of Texas,Austin, TX 78712-1188Email: read, fussell, avi@cs.utexas.eduMarch 11, 1992AbstractThe use of data at di�erent levels of information content is essential to the performance ofmultimedia, scienti�c, and other large databases because it can signi�cantly decrease I/O andcommunication costs. The performance advantages of such a multi-resolution scheme can onlybe fully exploited by a data model that supports the convenient retrieval of data at di�erentlevels of information content. In this paper we extend the relational data model to supportmulti-resolution data retrieval. In particular, we introduce a new partial set construct, calledthe sandbag, that can support multi-resolution for the types of data used in a wide variety ofnext-generation database applications, as well as traditional applications. We extend the re-lational algebra operators to analogous operators on sandbags. The resulting extension of therelational algebra is sound and forms a foundation for future database management systemsthat support these types of next-generation applications.Keywords: databases, relational algebra, information theory, graphics, partial information,partial data model, incomplete information, incomplete data model, multimedia, multimediadatabase, raster images, progressive re�nement, adaptive re�nement, progressive transmission,denotational semantics, image databases.1 IntroductionManipulating very large data objects such as images, sounds and scienti�c data incurs large I/O andcommunication costs. A relatively unexplored approach to decreasing these costs is to retrieve anduse a smaller version of an object rather than the complete object when such an approach is feasible.For some types of data, such as representations of continuous functions, (e.g., images and sounds),we can compute a smaller version of the data, or an approximation, that retains the character ofthe data and is satisfactory for many purposes. An approximation provides less information thanthe data that is its source, but is completely consistent with it. Such an approximation is calledpartial or incomplete data, similar in principle to the partial data of existing models of incompleteinformation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. When an approximation su�ces and issigni�cantly smaller than the original, complete data object, retrieving it instead may incur lowercosts because fewer bytes are accessed or moved.�This material is based in part upon work supported by NSF grants IRI-9003341, and IRI-9106450, and by grantsfrom the IBM corporation, HP corporation, and the NEC corporation.1



For example, consider a multimedia database that contains raster images. A typical high-resolution (1024 � 1024 pixel) full color (24-bit) raster image contains 3 megabytes. In typicalcurrent computing environments, such an image is likely to take more than a second to retrieve(perhaps much more). However, a 256 � 256 pixel 8-bit color raster image of the same scene issatisfactory for many purposes. This approximation is 1/48th the size of the original, completeimage. The costs of operations on large bodies of data are dominated by throughput limitationsrather than overhead, seek time, and propagation delay, so lower resolution images can be retrievedmuch more rapidly than higher resolution images. The lower resolution pictures will often be usefulin their own right or as rapidly appearing previews of the complete pictures. We call a system thatcan produce approximations as well as complete data a multi-resolution data retrieval system. Theterm multi-resolution is borrowed from graphics, but we apply it to all kinds of data.Many applications of growing importance [15] manipulate huge quantities of data. These in-clude multimedia databases, voice-mail systems, image processing applications, HDTV, graphicsapplications such as CAD/CAM, 
ight simulators, and virtual reality systems, geographic [16] andastronomic databases [17], and scienti�c applications such as seismic processing. A multi-resolutiondata retrieval system is essential to the performance of these applications. Multi-resolution is anatural approach already used in an ad hoc manner to decrease I/O, storage, and communicationcosts [18]. The approach presented in this paper is a logical but novel extension of ideas in the�elds of graphics [19, 20, 21] and databases to systematically address the needs of these types ofnext-generation applications.Database management systems (DBMSs) are commonly used for accounting and record keepingand other \traditional" applications because they provide convenient data storage and retrievalservices for these types of data. If DBMSs are to fully address the needs of the growing numberof applications that demand multi-resolution, they must be extended to retrieve data at multipleresolutions conveniently. We propose to accomplish this by:� extending existing data models to give precise meaning to multi-resolution data and queries,� allowing the user to control the resolution of query results, and� developing techniques for e�ciently implementing this extended model.This paper describes a formal multi-resolution relational data model that forms the foundationof and the necessary �rst step towards a practical multi-resolution DBMS. In Section 2 we motivatemulti-resolution and show that existing data models and techniques do not su�ce to exploit itconveniently. Section 3 presents multi-resolution primitives and tuples. Section 4 introduces a newconstruct for representing incomplete information about sets, called the sandbag. In that sectionwe also discuss the expressiveness of the sandbag and de�ne operations analogous to the standardrelational operations for sandbags. Section 5 describes a multi-resolution data model and an algebrathat is a generalization of the relational algebra. Finally, in Section 6 we brie
y mention some ofthe future work that needs to be accomplished in order to usefully implement and exploit this datamodel.We address the implementation and computational complexity of sandbag operations and pro-vide algorithms in [22]. Such issues are outside the scope of this paper and not discussed furtherhere. The proofs of all theorems stated in this paper appear in a technical report [23].2 Why Multi-ResolutionMulti-resolution is the concept of viewing data at di�erent levels of information content. The�elds of denotational semantics [11, 14, 24] and information theory [25, 26, 27, 28] provide an2



intuitive and a formal de�nition of information content and other concepts that underlie multi-resolution (approximation, consistency, resolution, information-theoretic partial order). We repeatthe informal de�nitions of these concepts here to provide the reader the necessary intuitions.Data describes the real world. Some data is more descriptive than other data. For instance,the daily list of stock volumes, opening prices and closing prices is more descriptive of markethistory than averages and indices computed over many stocks, such as the Dow Jones IndustrialAverage. Similarly, a high quality audio recording is more descriptive of music played than a poor,scratchy recording. The more descriptive data is, the more information it contains. We use theterm resolution synonymously with \information content".Only by considering the meaning of computer-manipulated data, or the descriptions of the realworld we obtain from it, can we de�ne the information-theoretic notion of approximation. A dataobject X approximates a data object Y if every world described by Y is described by X . Theapproximates relation is a natural partial order of data that could be called the \goodness" or\precision" of the data. X approximates Y if and only if Y describes the world better than X ,and is consistent with X . Intuitively, if Y describes the world, then X is a version of Y that tellsus less about the world than does Y , but from which we will not draw any false conclusions. Themeaning of data, and hence the notion of approximation, is always application dependent, as wasthe case with the example of raster images mentioned in the introduction.We focus on a particular property of approximations, that is generally true, though not univer-sally obtained in practice.If object X approximates object Y and X is lower-resolution than Y , then X requiresless space to be represented by a computer than Y .Accessing a large object requires many accesses to main memory and/or many expensive I/O op-erations. Our goal is to use the general relationship between approximations and space to improveperformance by computing against lower-resolution data when possible. Because the greatest sav-ings in space, and hence time, are possible when approximating very large objects, our examplesand motivating applications tend to emphasize such objects. However, our proposed frameworkapplies to all sizes of objects.2.1 Multi-Resolution is DemandedIn many applications, accessing low-resolution data is quite adequate. In some cases, the highest-resolution data cannot always be used. For instance, when a raster image has higher-resolution thana device it is to be a displayed upon, a lower-resolution approximation must be produced. Sucha reduction of resolution is done in an ad hoc manner in some graphic and scienti�c applications.For instance, in databases of images [17, 18], \browse images" are created at low-resolution sothat an \overview" of the data is obtained, that allows preliminary examination of the data forquality or interest, and for publication. A similarly \zooming" capability is useful in cartographicapplications. The enormous volume of data in astronomy, ecology, meteorology, geology, andgeography [16] databanks could be better exploited by database technology that systematicallyand conveniently supports resolution control. Systematically treating smaller versions of very largedata items is a �rst step towards the di�cult problems of terabyte-sized databases of any kind ofdata, from images to �nancial data.There are many applications where retrieving data at complete resolution takes too long, eitherbecause of some real-time constraint, or because the user is dissatis�ed with performance. Thisproblem can sometimes be addressed by retrieving low-resolution data quickly or before a deadline.The similar idea of imprecise computation has been suggested as an approach to meeting real-time3



constraints on database queries [5, 6, 29, 30, 31]. A multi-resolution system naturally extends andcomplements this approach to real-time databases by supporting larger tradeo�s in imprecision fortime.For instance, a technique for displaying images called progressive transmission [21] is to displaya low-quality image immediately, so the user may peruse it while the larger, better image is beingretrieved via a network. The image is then gradually or abruptly improved, or re�ned, until it iscomplete. Two similar ideas are adaptive re�nement [19] and progressive re�nement [20], that arethe incremental computation of the features of a graphic image in order of their visual importanceto a viewer. If a data model that supports multi-resolution is available, these ideas can be naturallyextended to include the idea of retrieving a series of data objects, each of which is better than thelast, until the complete answer is retrieved. We adopt the term progressive re�nement to refer tothis approach to data retrieval from disk, network, and main memory. Progressive re�nement is ageneral technique for improving the utility of any query system, and is inherently a multi-resolutiontechnique. Although networks, disks, memory and CPUs continue to improve rapidly, the volumeof data demanded will always match their capabilities, and progressive re�nment will remain auseful technique.2.2 Existing Technology and Data Models are Insu�cientExisting database technology does not support multi-resolution or progressive re�nement con-veniently. The database management system should hide the implementation details of multi-resolution data retrieval, presenting resolution transparency to the user without sacri�cing theuser's ability to obtain speci�c resolutions. Computed �elds and object-oriented approaches allowapproximations to primitive data objects to be computed and returned. However, since the rela-tionship between levels of resolution is not part of these data models, a burden is placed on theuser to explicitly manage resolution without a uni�ed or systematic framework. For instance, toimplement progressive re�nement of a query in existing systems, the user must submit a separatequery explicitly for each desired improvement. Similarly, to meet some performance constraint, theuser needs to guess which resolution will be produced timely. Without a model of multi-resolution,the system cannot dynamically adapt returned resolution to user's constraints. Furthermore, exist-ing systems do not allow systematic approximation of sets, although sets are fundamental to mostdata models, and large sets with many elements are often manipulated.A data model and query evaluation system that contains the relationship between data andapproximations o�ers advantages that cannot be obtained by existing systems:� Resolution of responses can be traded for speed to meet real-time constraints at compile timeor at run time, based on the dynamic situation within the database.� Progressive re�nement has a precise meaning and can be provided systematically.� Sets of values can be systematically approximated.� The relationship between resolutions can be exploited by special storage structures and algo-rithms.3 Multi-resolution Primitive Types and TuplesIn this section we introduce multi-resolution primitive types and multi-resolution tuples. Multi-resolution (MR) primitive types are needed because there are various types of data that we wish4



to treat at di�erent resolutions, and these are more conveniently represented as primitive typesrather than as tuples or relations. These types include images, sounds, and geometric �gures. AnMR primitive type T is a user-de�ned data type consisting of values at various resolutions. AllMR primitive types are partially ordered by a user-de�ned relation v , and have a bottom element? that is v all elements. The partial order v corresponds to the approximates relation de�nedinformally in Section 2. The highest-resolution elements of a primitive type are called the totalelements, designated by the predicate tot : T 7! ftrue; falseg. (We denote function application byan in�x dot. Thus tot applied to x is written tot:x.)The database programmer de�nes the MR primitive types according to his or her needs, includ-ing the approximates relation (v ). These types should not pervert the intention that the formallyde�ned relation v corresponds to the meaning of approximate informally de�ned in Section 2.In an implementation, the user will provide application dependent functions that can producelow-resolution data from high-resolution data. The speci�cation and use of such functions areimportant implementation details.Rich partially ordered primitive types with many di�erent resolutions distinguish our approachfrom research concerned mostly with the semantics of null values. Of course, many primitives typeswithin a given application, such as unique identi�ers, boolean, and small integers, will have onlyone useful resolution level, plus a null value (?). These types, and the functions mentioned above,will be provided by the DBMS.We illustrate these concepts with two typical examples. The �rst is the canonical example of apartially ordered data type of real intervals [24]. The second example is a multi-resolution primitivetype whose members are rasters at di�erent resolutions.Example 1: A real number can be approximated by a real interval that contains it. We say anarrower interval is higher-resolution than a wider interval. The type of real intervals consists ofall intervals, and is partially ordered by containment:[a; b]v [c; d] = a � c ^ b � dThe total elements of this type are the intervals [a; a] that only contain one real number, i.e.tot:[3:14; 3:14] = true. The bottom element (?) of this domain is [�1;+1]. 2Example 2: Consider a multi-resolution raster image primitive type, with �ve distinct levelsof resolution. An application programmer might construct the resolution levels such that:� level 4 images are 1024 � 1024 24-bit color rasters,� level 3 images are 256 � 256 8-bit color rasters,� level 2 images are 128 � 128 black-and-white rasters,� level 1 images are 16 � 16 black-and-white icons, and� level 0 is a null value for this type.The type of raster images consists of all images at these �ve resolution levels, in contrast to Example1, which has an in�nite number of resolution levels. The ordering v would be programmed by theuser so that:Xv Y � X = Y or X and Y are computed from the same picture and X has a lowerresolution level than Y . 5



The total elements of this type are the level 4 rasters. The level 0 element is the bottom element(?) of this type. 2Having de�ned the concept of multi-resolution primitive types, we can now de�ne the multi-resolution tuple, that is constructed from user-de�ned and built-in MR primitive types. To specifya tuple-type, the user merely speci�es a sequence of types; the cross-product of these types is thetuple-type. Because tuples are an inherent and basic type supported by the database, the userdoes not have to specify any of the operations required by a primitive type to de�ne a tuple-type.However, we give de�nitions of some of these operations here, in order to de�ne a complete datamodel.De�nition 1: For a tuple-type T constructed from a sequence of N primitive types[T0; T1; :::; TN�1],� Given two tuples x and y in T ,xv y � (8 c : 0 � c ^ c < N : x[c]vy[c])� The bottom element (?) of T is the sequence of the bottom elements from each componenttype of the tuple-type.� tot:x � (8 c : 0 � c ^ c < N : tot:(x[c])) 2Notice that tuples are partially ordered according to the resolution of their constituents.4 Multi-Resolution SetsThe relational data model is built from primitive data types, tuples, and sets of tuples, or relations.Constructing information content-based partial orders of primitive types and tuples is straightfor-ward, as we have seen, and has been proposed in various forms even though it is not common inpractice. Some similar means of constructing a multi-resolution partial order of sets (or relations)is required because sets are essential to most data models, including the relational. Furthermore,sets with many members are large, and hence expensive. This is a surprisingly interesting problem[2, 3, 5, 6, 12].An approach to approximating a set of total data elements from a partially ordered set has beensuggested in [2], where the authors have introduced the sandwich concept. A sandwich describes aset B of total elements by \sandwiching" them between two sets. These are a consistent set, thatcontains tuples guaranteed to approximate (in the partial order of tuples) some tuple in B, and acomplete set, each tuple of which is guaranteed to be approximated by some tuple in B. If thesesets are restricted to total elements, as in [5, 6], then they are simply a subset and a superset ofB, respectively. For instance, the set fAlice, Bob, Carlag could be approximated by the consistentset fAlice, Bobg and the complete set fAlice, Bob, Carla, Dan, Jog.This idea was used in [2] to construct a consistent semantics for complex objects [1] and topresent a very expressive approximate query system. In contrast, this idea was used in [5] toconstruct a query system that exhibits progressive re�nement, which is more in the spirit of thispaper.4.1 The Sandbag SchemeBecause the sandwich construct cannot capture information about cardinality, we extend the sand-wich to a new partial set construct, called the sandbag. (Throughout this paper, the capital letters6



P , Q, S, and T stand for sandbags, the capital letters B and C stand for sets of total elements,and the calligraphic letters D and T stand for domains or types of elements that are partiallyordered and have a bottom element.) For instance, consider the set B = f1:1; 3:14; 5:0g. The factthat B has three members cannot be represented by a sandwich. A related problem is that thesandwiching sets are restricted to co-chains in the partial order of the set's elements, so that evenif cardinality could be captured, one could not represent the facts that B contains three elements,two of them are greater than 2.5, and one of them is 3.14.The sandbag can represent these facts. The basic idea of the sandbag is to approximate a set Bof total elements by using partial data elements. Each partial data element d 2 D is mapped into arange that provides lower and upper bounds on the number of elements in B that are approximatedby d. We call the number of total elements in some set approximated by d the number above d. Toformalize this concept we de�ne the following:De�nition 2: Let D be a partially ordered data domain, B � D be a set of total elements,and d 2 D be any data element. The number of total elements above the element d in the set B isdenoted by numa:B:d, and de�ned by:numa:B:d = j fx j dvx ^ x 2 Bg j 2To illustrate this, consider B de�ned above, that can be considered a shorthand for the set oftotal elements from the partially ordered domain of real intervals (Example 1) f[1.1,1.1], [3.14,3.14],[5.0,5.0]g. The number of elements above the partial data element d = [2:5; 6:0] is 2 (numa:B:d = 2).A sandbag describing B might provide a lower bound for d of 1 and an upper bound of 3. Thisis consistent with B, but is not the most precise consistent bounding interval possible, that wouldof course be [2,2]. The capacity for imprecision is essential to the sandbag. Before presentingadditional examples, we formally de�ne the concept of a sandbag.De�nition 3: Let N0 be the set of naturals (N) plus in�nity, N[ f1g, and let D be a partiallyordered data domain. A sandbag S is characterized by two functions, denoted mina:S and maxa:S.� mina:S:d : D 7! N0, a lower bound on the number of total elements in a set consistent with Sthat are above d.� maxa:S:d : D 7! N0, an upper bound on the number of total elements in a set consistent withS that are above d. 2We now present a de�nition that formalizes the concept that a sandbag is consistent with, (orapproximates) a set.De�nition 4: Let D be a partially ordered data domain, and B � D a set of total elements.We say that a sandbag S is consistent with a set B, denoted sbcons:S:B, when:(8 d : d 2 D : mina:S:d � numa:B:d ^ maxa:S:d � numa:B:d) 24.2 Using the Sandbag to Approximate SetsThe sandbag construct can usefully approximate sets of diverse types. For instance, it can representa set of raster images of di�erent resolutions. Raster images representing the covers of a weeklymagazine for a year could be approximated by a sandbag that indicates there are exactly 52 imagesin the set, 4 of them (A, B, C, and D), are available at full resolution, 3 (x, y, and z) are available7
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Figure 2: A sandbag representing facts about a set of cars.at some lower resolution, and no others are mentioned. This can be represented diagrammatically,as in Figure 1.In this style of diagrammatic representation of a sandbag, a node represents an element of themulti-resolution type over which the sandbag is de�ned. An arrow indicates the approximationrelationship (an arrow from p to q indicates pv q). The small numbers to the left and right ofa node indicate the mina and maxa value of that node, respectively. The height of a node in thediagram loosely corresponds to its resolution.The sandbag can represent incomplete information in the form of constraints expressed via apartial order. For example, suppose it is known that a car rental company has between 4 and 6cars ready for rental, 2 to 4 of them are sports cars of unspeci�ed color, at most 2 are Corvettes,at least 1 is a blue Ferrari, and exactly 1 is a red Corvette. This can be represented by a sandbag,and is depicted in Figure 2.Note that in this example we are using the partial ordering of tuples, and assuming partialorders for both the `color' type and the `make' type. `color' and `make' have a bottom element,and `make' is assumed to have at least one intermediate resolution, of `car style', of which `sport'is an example. Thus, `sport' v `Corvette'.One of the most interesting uses of a sandbag is to construct compact, imprecise representations8
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square kilometer, to nation-sized areas. The compactness of such a sandbag, as well as its precision,depends on the information it contains and its implementation.The sandbag can represent the fact that a tuple x is a maybe tuple [4, 12] in a relation, ifmina:x = 0 and maxa:x = 1. The maybe tuple is closely related to the sandwich and the I-table [6].Both provide a means of stating that the tuples in a relation cannot be excluded but are not knownto be in the set. The sandbag can model these constructs in a straightforward manner without anyparticular use of an underlying partial order. Similarly, \normal" relations and sets consisting ofonly total elements, such as are used in traditional relational databases, are trivially modeled.Thus, the sandbag can represent approximations of at least four distinct kinds of sets:� sets of objects at various resolutions,� incompletely speci�ed sets,� sets of points in continuous spaces, and� sets of normal tuples and maybe tuples.As far as we know, this 
exibility is not o�ered by any other representation of incomplete informa-tion about a set, nor is it systematically available in any proposed data model [1, 2, 3, 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14]. If the e�ciency and convenience of the sandbag can match its expressiveness,it may be a useful part of multi-resolution databases. The sandbag construct is a tradeo� between
exibility and ease of implementation that leans towards 
exibility.4.3 A Partial Order of SandbagsIn this subsection we develop the machinery that allows sandbags to be general multi-resolutiontypes. Fundamental to this is the notion that sandbags, like primitives types and tuples, are par-tially ordered by the amount of information they provide about the sets that they approximate.The tighter the bounds provided by a sandbag, the more informative it is. A sandbag P approx-imates a sandbag Q if the bounds provided by mina and maxa on Q are at least as tight as andconsistent with those of P .De�nition 5: Let D be a partially ordered data domain. The approximates relation v onsandbags is de�ned by:P vQ � (8 x : x 2 D : mina:P:x � mina:Q:x ^ maxa:P:x � maxa:Q:x) 2The relation v de�ned as above is in fact a partial order of sandbags, because it is re
exive,transitive, and antisymmetric.Sandbags have a bottom element and a notion of totality, just as did primitives and tuples.If for all x the lower limit mina:S:x = 0 and the upper limit maxa:S:x = 1, then S provides noinformation whatsoever. This is the null value of sandbags in our model. Since a sandbag S is apair of functions mina:S and maxa:S, we formally de�ne a sandbag by de�ning the value of mina:Sand maxa:S on every element of D.De�nition 6: The bottom element of the sandbag type is denoted ?SB and de�ned by:� mina:?SB:x = 0� maxa:?SB:x =1 10



for every element x in a partially ordered data domain D. 2The bottom-most element of sandbags under the partial order v is in fact ?SB. Similarly, iffor all x mina:S:x = maxa:S:x, then the sandbag is total.De�nition 7: Let D be a partially ordered data domain. A sandbag S is total, denoted tot:S,if and only if:(8 x : x 2 D : mina:S:x = maxa:S:x) 2Total sandbags are in fact the top-most elements of the type of sandbags. If a sandbag is total,there is at most one set consistent with it, and the members of that set can be exactly determinedfrom the sandbag. Between these two extremes of zero and total information, a sandbag providesvarying degrees of information about a set it approximates. Alternatively, we think of a sandbag aslimiting the number of sets consistent with it. The more informative a sandbag is, the fewer sets areconsistent with it. All sets are consistent with ?SB (i.e. (8B : B is a set of total elements from D :sbcons:?SB:B)).Unfortunately, a sandbag need not be consistent with any set, because the values of mina andmaxa can easily contradict each other. We say a sandbag S is externally consistent if there existsa set consistent with it.De�nition 8: Let S be a sandbag and B be a set of total elements. We say that S is externallyconsistent, denoted by extcons:S, if and only if: (9 B : : sbcons:S:B) 2As might be expected, we are exclusively concerned with externally consistent sandbags, becausewe are only interested in using sandbags to inform us about actual sets.The sandbag concept was inspired by [2], in which the authors develop the sandwich represen-tation of partial sets and a meaningful partial order of that representation. The sandbag conceptextends that work because it is a more expressive partially ordered set construct. Thus, sandbagsmay be very useful in data models based on complex objects or higher-order relations. Because weare primarily concerned with improving performance by retrieving approximations and thus savingI/O costs, we develop a 
at relational model for the sake of simplicity rather than a higher-ordermodel.5 A Multi-Resolution Relational AlgebraA relation is a set of tuples. We call a sandbag over a multi-resolution tuple-type a multi-resolutionrelation. Following tradition, we construct a relational-like algebra by de�ning analogs for eachrelational operators (\, [, �, �, �, �, and 1) that take sandbags as arguments and produce asandbag as a result. We de�ne each of these operators so as to produce the best results possiblethat are guaranteed to be consistent with the arguments. It is therefore not surprising that eachof these MR operators enjoys properties essential to a partial data model:� Property 1 (Soundness): A binary sandbag operator setop0 is said to be sound with respectto a set operator setop if and only if for all sandbags P and Q and sets B and C:sbcons:P:B ^ sbcons:Q:C ) sbcons:(P setop0 Q):(B setop C)Intuitively, an MR operator is sound if the result of applying it to approximations to totalsets is always consistent with the result of the standard relational operator applied to thetotal sets. 11



� Property 2 (Completeness): A binary sandbag operator setop0 is said to be complete withrespect to a set operator setop if and only if for externally consistent sandbags P and Q andsets B and C:(8P;Q : (8x ::(9B;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x = mina:(P setop0 Q):x) ^(9B;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x = maxa:(P setop0 Q):x)))Intuitively, an MR operator is complete if it provides the most informative result that isguaranteed to be consistent.An operator has the Completeness Property if for each partial data element there exist some setsconsistent with its arguments for which the bounds provided are the correct numa value. Twofurther useful properties follow from Soundness and Completeness:� Property 3 (Monotonicity): A binary sandbag operator setop0 is monotonic if and onlyif: P vQ ^ SvT ) P setop0 SvQ setop0 TIntuitively, an MR operator is monotonic if the results of the operator never get worse (containless information) when it is applied to arguments that are better (contain more information,or are higher-resolution).� Property 4 (Totality Preservation): A binary sandbag operator setop0 is totality preserv-ing if and only if:tot:P ^ tot:Q ) tot:(P setop0 Q)Intuitively, an MR operator preserves totality if it produces a total result when applied tototal arguments.These properties are de�ned analogously for unary operators, such as projection of a list L (�L)and selection by a predicate � (��).5.1 Relational Operators on Sandbags De�nedIn order to extend the relational algebra to a multi-resolution relational algebra as naturally aspossible we de�ne sandbag operators analogous to each relational operator. We denote the sand-bag operator analogous to a relational operator setop by priming it, e.g. setop0 . Thus, the MRrelational operators corresponding to \, [, �, �, �, �, and 1 will be denoted by \0, [0, �0, �0, �0,�0, and 10, respectively. Intuitively, Properties 1-4 will hold for sandbag operators only if we de�nethem to produce the most informative sandbag guaranteed to be consistent with their arguments.De�nition 9: For any binary set operator setop, a binary sandbag operator setop0 can begenerated by:� mina:(P setop0 Q):x = (minB;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x)� maxa:(P setop0 Q):x = (maxB;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x) 2A similar but simpler de�nition su�ces for unary operators.12



De�nition 10: For any unary set operator setop, a unary sandbag operator setop0 can begenerated by:� mina:(setop0:P ):x = (min B : sbcons:P:B : numa:(setop:B):x)� maxa:(setop0:P ):x = (maxB : sbcons:P:B : numa:(setop:B):x) 2Any sandbag operator generated from De�nition 9 or De�nition 10 is well-de�ned if its argu-ments are externally consistent, so that the sets quanti�ed over by min and max are non-empty.Theorem 1: Any sandbag operator setop0 generated from a set operator setop with eitherDe�nition 9 or De�nition 10 has the Properties of Soundness, Completeness, Monotonicity, andTotality Preservation. 2In particular \0, [0, �0, �0, �0, �0, and 10 have the properties of Soundness, Completeness,Monotonicity and Totality Preservation.Although these de�nitions are not constructive, nevertheless there exist reasonably e�cientimplementations of these operations that sacri�ce the Completeness Property to gain speed [22].5.2 The Multi-resolution data modelThe MR relational operators (\0, [0, �0, �0, �0, �0, and 10) form a query language over MRrelations analogous to the relational algebra. We have de�ned these operations so that they arestrictly more general than and completely consistent with the relational operators. This fact isexpressed by Theorem 1, that is used to show that these operators on sandbags form a languagethat is a generalization of the relational algebra. We call this the multi-resolution relational algebra,although the algebraic laws of the relational algebra hold only in modi�ed forms for our language.Consider a relational database Y consisting of N relations Y = fR0; R1; R2; :::RN�1g. A corre-sponding multi-resolution relational database Z consists of N sandbags Z = fS0; S1; S2; :::SN�1g.We say an MR relational database Z approximates a relational database Y if and only if(8 i : i � 0 ^ i < N : sbcons:Si:Ri). Note that the quality of Z is not speci�ed; it may con-tain all of the information of Y (i.e., be total) or very little. A relational expression E over Y isa tree of relational operators that uses relations from Y . The corresponding multi-resolution rela-tional algebra expression, denoted E 0, is an operator-for-operator substitution of sandbag operatorsfor relational operators and sandbags from Z for relations from Y . The result of a query expressionon an MR database is de�ned to be the result of applying the MR operators to the MR relations.We extend the de�nitions of Soundness, Completeness, Monotonicity and Totality Preservationfor individual operators to analogous properties on multi-resolution query languages, such as theMR relational algebra. We denote the result of applying an expression E to a database Y by E:Y .Let Z be an MR database approximating a relational database Y . For a query language we de�nethe following four Query Language (QL) Properties:� Property 5 (QL Soundness): A query language is sound if and only if sbcons:(E 0:Z):(E:Y ),for every expression E.� Property 6 (QL Completeness): A query language is complete if and only for everyexpression E, E0 on Z always provide the tightest bounds consistent with Y .(8x :: (9Y : Z approximates Y : numa:(E:Y ):x = mina:(E 0:Z):x) ^(9Y : Z approximates Y : numa:(E:Y ):x = maxa:(E 0:Z):x))13



� Property 7 (QL Monotonicity): A query language is monotonic if and only if any im-provements in the information of the sandbags of Z do not make E 0 worse, for any query E.If Z and X are MR databases, Z = fS0; S1; S2; :::SN�1g and X = fP0; P1; P2; :::PN�1g:(8 i : i � 0 ^ i < N : SivPi) ) E 0:ZvE 0:X� Property 8 (QL Totality Preservation): A query language is totality preserving if andonly if every expression is total (tot:(E 0:Z)) when every sandbag in Z is total.Theorem 2: The multi-resolution relational algebra has the Query Language Properties ofSoundness, Monotonicity, and Totality Preservation. 2Unfortunately, the QL Completeness Property does not hold for the multi-resolution relationalalgebra. A counter-example to completeness can be constructed from queries that mention the samerelation more than once. If P is a non-total sandbag approximating a relation R in a database,the MR query expression P �0 P yields a non-total sandbag as a result that is consistent withnon-empty sets.For instance, consider a sandbag P over real intervals in which the total interval x = [3:14; 3:14]is a maybe tuple (i.e., mina:P:x = 0 and maxa:P:x = 1). By the de�nition of the �0 operator,maxa:(P �0 P ):x = 1. This result is sound. However, the sandbag operators, including �0, do notutilize the identity of their arguments. For any relation R, R�R is the empty set �. So for any R,numa:(R�R):x = 0, and maxa:(P �0P ):x = 1, and so (8R : : numa:(R�R):x 6= maxa:(P �0 P ):x).Therefore :(9Y : Z approximates Y : numa:((R � R):Y ):x = maxa:(((P �0 P ):Z):x)). Thisproves the MR query language is incomplete, and is an example of an algebraic law that fails tohold in unmodi�ed form for the MR query language.Incompleteness is a disadvantage that appears to be a fundamental problem of approachesthat do not preserve identity, such as [6]. [7, 13] discuss this problem. We choose to toleratethis disadvantage, for two reasons. Most importantly, any implementation based on our approachto constructing sandbags described in [22] must immediately sacri�ce the Completeness Property(Property 2), because calculating the optimal mina and maxa values is NP-hard for that approach.Secondly, we suspect that this incompleteness has little impact on our overall purpose of supportingthe resolution/performance tradeo�. A signi�cant di�erence between our approach and most previ-ous work on partial data models is our motivation of high performance rather than clean semanticsfor incomplete data.5.3 Multi-resolution Queries and Progressive Re�nementA query in the multi-resolution relational algebra is essentially a relational query. This has theadvantage that queries are easily understood, and the choice of response resolution is orthogonalto the formulation of the query.This data model admits the concept of progressive re�nement that is not available in the stan-dard relational model. In both models, a query has a single, well-de�ned, result. However, in theMR model this query result has many lower-resolution approximations, that we call responses. Wede�ne P to be a response to a query E 0 on an MR database Z if and only if P vE 0:Z. Both thenotions of response and result are mathematically de�ned based on the MR data model.It is the low-resolution responses to queries that are the focus of our work, rather than thehighest-resolution results, because our fundamental goal is to improve performance by allowing14
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ChainFigure 4: Progressive re�nement of multi-resolution queries.resolution of database query answers to be traded for speed. Furthermore, the idea of progressivere�nement can now be made precise. A database progressively re�nes the answer to some querywhen it produces a chain of responses, each of which approximates the result of the query andimproves upon the last response. Because the responses to a query are sandbags and sandbags arepartially ordered, we can depict the responses to a query diagrammatically, as in Figure 4.6 ConclusionsWe have developed a multi-resolution data model that forms a basis for building a useful databasemanagement system that o�ers the performance advantages of multi-resolution. The data modelprovides a sound theoretical framework and makes precise the notions of multi-resolution andprogressive re�nement. We hope that the similarity to the relational data model will allow usto leverage the technology and widespread understanding of that model, both for the reader'sunderstanding and to construct an e�cient implementation.We are in the process of developing e�cient algorithms to implement the sandbag and the sand-bag operations [22]. Two other goals must be met if a useful multi-resolution database managementsystem is to be constructed:1. A query language extension must be developed that allows the user to conveniently specifythe desired resolution of the response to a query. We plan to extend the MR relational algebraby allowing queries to be annotated with resolution/performance constraints.2. Special algorithms, data structures, and storage structures that exploit the lower-bandwidthrequirements of low-resolution data should be utilized systematically. These include a cachestorage structure that directly utilizes the size relationship between resolution levels to man-age storage of di�ering speed to provide good performance across the entire spectrum ofresolutions. The quadtree representation of raster images is an inherently multi-resolutiondata structure. Structures such as a bit-striped transposed representation of sets of ordered15
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A Proofs of Theorems and AssertionsIn this Appendix we formalize and prove the theorems and the various informally stated assertions appearingin the paper body. We number the assertions here although they are not numbered in the paper body.� Subsection A.1 proves statements about the consistency of sandbags and the partial order de�ned onthem:{ v on sandbags is a partial order, which follows from:� Assertion 1: v on sandbags is re
exive,� Assertion 2: v on sandbags transitive, and� Assertion 3: v on sandbags is antisymmetric.{ Assertion 4: ?SB is a unique bottom element of the partial order of sandbags.{ Assertion 5: The total sandbags, (de�ned by the tot predicate) are topmost elements, or crowns,of the partial order of sandbags.{ Assertion 6: If a sandbag S is total, there is only one set of total elements that is consistent withit.{ Assertion 7: If P is an approximation to Q then any set consistent with Q is consistent with P .� In Subsection A.2 we show that each of the multi-resolution relational operators, (\0, [0, �0, �0, �0,�0, and 10){ is sound (Theorem 3),{ is complete (Theorem 4),{ is monotonic (Theorem 5),{ and preserves totality (Theorem 6),thus proving Theorem 1 from the paper body.� In Subsection A.3 we show that the multi-resolution relational algebra formed by the MR operators issound, monotonic, and preserves totality (Theorems 7, 8, and 9). This proves Theorem 2 from thepaper body. (A counter-example to the completeness property is given in the paper.)A.1 A Partial Order on Sandbags and Other PreliminariesIn this subsection we prove Assertions 1 - 7. These assertions follow from the pertinent de�nitions in astraightforward manner.Note that mina and maxa produce numbers in the range N [ f1g. We use the special symbol 1 todenote the absence of any known bound on the maximum number of elements above some partial element.In this paper, that does not discuss implementation, we do not need arithmetic operators, so the lemmaneeded for this extended number system is simple:Lemma 1: (8 x : : x � 1) 2Thus, by the antisymmetry of �, 1 = 1, which is reasonable for our purposes. We utilize this fact aswell as the fact that the the ranges of mina and maxa contain only non-negatives.We also use the following lemmas stated without proof.Lemma 2: B = C � (8 x : : numa:B:x = numa:C:x) 2Lemma 3: extcons:S ) (8 x : : mina:S:x � maxa:S:x) 2We now present the proofs of Assertions 1 - 7.Assertion 1: The relation v is re
exive. 18



P vPProof:P vP= f De�nition 5 (v ) g(8 x : : mina:A:x � mina:A:x^ maxa:A:x � maxa:A:x)= f � and � are re
exive gtrue(End of Proof)The properties of transitivity and antisymmetry are a consequence of the de�nition of v in terms of thetransitive and antisymmetric relations � and �, and have similar proofs.Assertion 2: The relation v istransitive.P vQ ^ QvS ) P vSProof:P vQ ^ QvS= f De�nition 5 (v ) g(8x ::mina:P:x � mina:Q:x^maxa:P:x � maxa:Q:x)^(8x ::mina:Q:x � mina:S:x ^maxa:Q:x � maxa:S:x)= f Distribution of 8 over ^ g(8x ::mina:P:x � mina:Q:x^maxa:P:x � maxa:Q:x^ mina:Q:x � mina:S:x ^maxa:Q:x � maxa:S:x)= f Commutativity and Associativity of ^ g(8x ::mina:P:x � mina:Q:x^mina:Q:x � mina:S:x^ maxa:P:x � maxa:Q:x^maxa:Q:x � maxa:S:x)) f � and � are transitive g(8x ::mina:P:x � mina:S:x ^maxa:P:x � maxa:S:x)= f De�nition 5 (v ) gP vS(End of Proof)
Assertion 3: The relation v isantisymmetric.P vQ ^ QvP ) P = QProof:P vQ ^QvP= f De�nition 5 (v ) g(8x :: mina:P:x � mina:Q:x^maxa:P:x � maxa:Q:x)^(8x ::mina:Q:x � mina:P:x^maxa:Q:x � maxa:P:x)= f Distribution of 8 over ^ g(8x ::mina:P:x � mina:Q:x^maxa:P:x � maxa:Q:x^ mina:Q:x � mina:P:x^maxa:Q:x � maxa:P:x)= f Commutativity and Associativity of ^ g(8x ::mina:P:x � mina:Q:x^mina:Q:x � mina:P:x^ maxa:P:x � maxa:Q:x^maxa:Q:x � maxa:P:x)= f � and � are antisymmetric g(8x ::mina:P:x = mina:Q:x^maxa:P:x = maxa:Q:x= f De�nition 3 (sandbags) gP = Q(End of Proof)Assertion 4: The sandbag ?SB is a bottom element of the domain of sandbags.(8 P : : ?SBvP )Proof:(8 P : : ?SBvP )= f De�nition 5 (v ) g(8 P : : (8 x : : mina:?SB:x � mina:P:x^ maxa:?SB:x � maxa:P:x))= f De�nition 6 (?SB) g(8 P : : (8 x : : 0 � mina:P:x ^ 1 � maxa:P:x))= f The range of mina contains only non-negatives g(8 P : : (8 x : :1� maxa:P:x))= f Lemma 1 g 19



(8 P : : (8 x : : true))= f Predicate calculus gtrue(End of Proof)Assertion 5: Nothing is higher than a total sandbag in the partial order of sandbags.tot.S ^ S vP ^ extcons.P ) P = SProof:tot:S ^ S vP ^ extcons:P= f De�nition 5 (v ), De�nition 7 (tot), and Lemma 3 g(8 x : : mina:S:x = maxa:S:x)^ (8 x : : mina:S:x � mina:P:x ^ maxa:S:x � maxa:P:x)^ (8 x : : mina:P:x � maxa:P:x)= f distribution of 8 over ^ g(8 x : : mina:S:x = maxa:S:x^ mina:S:x � mina:P:x^ maxa:S:x � maxa:P:x^ mina:P:x � maxa:P:x)) f Transitivity of = g(8 x : : mina:S:x � mina:P:x^ mina:S:x � maxa:P:x^ mina:P:x � maxa:P:x)= f commutativity of �, commutativity of ^ g(8 x : : maxa:P:x � mina:S:x^ mina:S:x � mina:P:x^ mina:P:x � maxa:P:x)) f antisymmetry of � g(8 x : : mina:S:x = mina:P:x^ mina:P:x = maxa:P:x)= f De�nition 3 (sandbag) and extensionality gS = P(End of Proof)Assertion 6: At most one set is consistent with a total sandbag.tot.S ) (8 B;C : : sbcons:S:B ^ sbcons:S:C ) B = C)Proof:(8 B;C : : sbcons:S:B ^ sbcons:S:C ) B = C)= f De�nition 4 (sbcons) g(8 B;C : : ((8 x : :mina:S:x � numa:B:x ^ maxa:S:x � numa:B:x)^ (8 x : :mina:S:x � numa:C:x ^ maxa:S:x � numa:C:x))) B = C)= f 8 over ^ , and Lemma 2 g(8 B;C : : (8 x : : mina:S:x � numa:B:x ^ maxa:S:x � numa:B:x^ mina:S:x � numa:C:x ^ maxa:S:x � numa:C:x)) numa:B:x = numa:C:x)( f Transitivity and antisymmetry of � g(8 B;C : : (8 x : :mina:S:x = maxa:S:x))= f free variable, De�nition 7 (tot) gtot:S 20



(End of Proof)Assertion 7: Any set consistent with P is consistent with any approximation of P .P vQ ) (8 B : : sbcons:Q:B ) sbcons:P:B)Proof:(8 B : : sbcons:Q:B ) sbcons:P:B)= f De�nition 4 (sbcons) g(8 B : : (8 x : : mina:Q:x � numa:B:x ^ maxa:Q:x � numa:B:x)) (8 x : : mina:P:x � numa:B:x ^ maxa:P:x � numa:B:x))( f 8 over ^ g(8 B : : (8 x : : mina:Q:x � numa:B:x ^ maxa:Q:x � numa:B:x) mina:P:x � numa:B:x ^ maxa:P:x � numa:B:x))( f Transitivity of � g(8 B; x : : mina:P:x � mina:Q:x ^ maxa:Q:x � maxa:P:x)= f B is free, De�nition 5 (v ) gP vQ(End of Proof)A.2 The Properties of the Multi-Resolution Relational OperatorsIn this subsection we prove that all the MR relational operators are sound, monotonic, complete, and totalitypreserving. This is Theorem 1 of the paper body. This fact is not surprising, since each operator is generatedfrom a relational operator by de�ning it to be the best possible result that cannot produce an inconsistency.Each of the MR operators discussed in this paper is de�ned by an instance of De�nition 11 or De�nition 12.De�nition 11: For any binary set operator setop a binary sandbag operator setop0 applicable to ex-ternally consistent sandbags can be generated by:� mina:(setop0:P:Q):x = (min B;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x)� maxa:(setop0:P:Q):x= (max B;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x) 2The MR operators \0, [0, �0, �0 and 10, are generated from these two formulas from the relationaloperators \, [, �, �, and 1 respectively.De�nition 12: For any unary set operator setop, a unary sandbag operator setop0 applicable to anexternally consistent sandbag can be generated by:� mina:(setop0:P ):x = (min B : sbcons:P:B : numa:(setop:B):x)� maxa:(setop0:P ):x = (max B : sbcons:P:B : numa:(setop:B):x) 2The unary MR operators �0� (selection by any speci�c predicate �) and �0 (projection by any speci�c listof labels L) are generated from De�nition 12 via the relational operators �� and �L, respectively.De�nition 13: The guarded minimum quanti�cation is de�ned by:(min a : P:a : f:a) = x � (9 y : P:y : f:y = x) ^ (8 y : P:y : f:y � x)and the guarded maximum is de�ned similarly. Quanti�cation over two variables, as in the above De�-nition 11, is similarly de�ned by:(min a; b : P:a:b : f:a:b) = x � (9 y; z : P:y:z : f:y:z = x) ^ (8 y; z : P:y:z : f:y:z � x) 221



Note that (min a : P:a : f:a) is a de�ned value only if there exists some a such that P:a = true. Sincein the case of De�nition 11 and De�nition 12 the predicate quanti�ed over is sbcons (consistency with theargument sandbags), these operators are de�ned only for argument sandbags that are externally consistent.In what follows, we will implicitly assume that all mentioned sandbags are externally consistent, and willnot formalize this important condition.Because nothing is assumed about the function setop in these de�nitions, we are able prove that anysandbag operator generated from De�nition 11 and De�nition 12 will have some properties we desire.The de�nition of the unary multi-resolution operators and the proofs of their properties di�er from thoseof the binary operators only in notation. For the sake of brevity, we do not give the de�nitions or the proofsfor the properties of the unary operators. Technically, we may de�ne selection, projection, or any otherunary operator by some binary operator that ignores its second argument. Then the assertions and proofsdeveloped in this paper work perfectly well for the unary case.Another issue we ignore in the proofs below is that of the well-formedness and type-correctness ofexpressions and operator applications. Although these are important in practice, they are orthogonal to theproperties of sandbags. We therefore simply assume that all expressions are well-formed and type-correct.The proofs below require some lemmas about the quanti�ers min and max that we state without proof.If X � Y , then the minimum of X is at most the minimum of Y . Using the guarded quanti�er notation,this can be stated:(min a : a 2 Y : f:a) � (min a : a 2 X : f:a).Since the guarded min quanti�er notation uses logical predicates to de�ne the set quanti�ed over, this canbe restated in terms of predicates L and M :(8 a : : (L:a ) M:a)) ) (min a : M:a : f:a) � (min a : L:a : f:a)A number of such simple lemmas are required:Lemma 4: For any predicates L and M and any function f :� (8 a : : (L:a ) M:a)) ) (min a : M:a : f:a) � (min a : L:a : f:a)� (8 a : : (L:a ) M:a)) ) (max a : M:a : f:a) � (max a : L:a : f:a) 2Lemma 5: For any predicates L and M and any function f :(8 a; b : : (L:a ^ M:b) ) a = b) ) (min a : M:a : f:a) = (max a : L:a : f:a) 2Lemma 6: For any predicates L and M and any function f :� L:b ) (min a : L:a : f:a) � f:b� L:b ) (max a : L:a : f:a) � f:b 2Lemma 7: For any function f :c = (min a : L:a : f:a) ) (9 b : : f:b = c) 2We now give four proofs that taken together prove Theorem 1.Theorem 3: Any multi-resolution relational operator generated by De�nition 11 is is sound.sbcons.P.B ^ sbcons.P.C ) sbcons.( setop0 .P.Q).(B setop C)Proof:sbcons:( setop0 :P:Q):(B setop C)= f De�nition 4 (sbcons) g(8 x : : mina:( setop0 :P:Q):x� numa:(B setop C):x^ maxa:( setop0 :P:Q):x � numa:(B setop C):x)= f De�nition 11 g(8 x : : (min E;F : sbcons:P:E ^ sbcons:Q:F : numa:(E setop F ):x) � numa:(B setop C):x^ (max G;H : sbcons:P:G ^ sbcons:Q:H : numa:(G setop H):x) � numa:(B setop C):x)( f Strengthening g 22



(8 x; f : : (min E;F : sbcons:P:E ^ sbcons:Q:F : f:E:F:x) � f:B:C:x^ (max G;H : sbcons:P:G ^ sbcons:Q:H : f:G:H:x)� f:B:C:x)( f Lemma 6 gsbcons:P:B ^ sbcons:Q:C(End of Proof)Theorem 4: Any multi-resolution relational operator generated by De�nition 11 is is complete.(8x :: (9B;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x = mina:( setop0 :P:Q):x)^ (9B;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x = maxa:( setop0 :P:Q):x))) 2Proof:(8x :: (9B;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x = mina:( setop0 :P:Q):x)^ (9B;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x = maxa:( setop0 :P:Q):x))( f Lemma 13 g(8x :: (minB;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x = mina:( setop0 :P:Q):x)^ (minB;C : sbcons:P:B ^ sbcons:Q:C : numa:(B setop C):x = maxa:( setop0 :P:Q):x))( f De�nition 11 gtrue(End of Proof)Theorem 5: Any multi-resolution relational operator generated by De�nition 11 is is monotonic.P vQ ^ S vT ) setop0 .P.S v setop0 .Q.TProof:setop0 :P:Sv setop0 :Q:T= f De�nition 4 (sbcons) g(8 x : : mina:( setop0 :P:S):x � mina:( setop0 :Q:T )^ maxa:( setop0 :P:S):x � maxa:( setop0 :Q:T ):x)= f De�nition 11 g(8 x : : (min E;F : sbcons:P:E ^ sbcons:S:F : numa:(E setop F ))� (min E;F : sbcons:Q:E ^ sbcons:T:F : numa:(E setop F ))^ (max G;H : sbcons:P:G ^ sbcons:S:H : numa:(G setop H))� (max G;H : sbcons:Q:G ^ sbcons:T:H : numa:(G setop H))( f Lemma 4, Assertion 7 gP vQ ^ S vT ^(8 x : : (max G;H : sbcons:P:G ^ sbcons:S:H : numa:(G setop H))� (max G;H : sbcons:Q:G ^ sbcons:T:H : numa:(G setop H))( f Lemma 4, Assertion 7 gP vQ ^ Sv T(End of Proof)Theorem 6: Any multi-resolution relational operator generated by De�nition 11 is is totality preserving.tot.P ^ tot.Q ) tot.( setop0 .P.Q)Proof:tot:( setop0 :P:Q)= f De�nition 7 (tot) g(8 x : : mina:( setop0 :P:Q):x= maxa:( setop0 :P:Q):x)= f De�nition 11 g(8 x : : (min E;F : sbcons:P:E ^ sbcons:Q:F : numa:(E setop F ))= (max G;H : sbcons:P:G ^ sbcons:Q:H : numa:(G setop H)))23



( f Lemma 5 g(8 x : : (8 E;F;G;H :: (sbcons:P:E ^ sbcons:Q:F ) ^ (sbcons:P:G ^ sbcons:Q:H)) (E = G ^ F = H)))( f Predicate Calculus g(8 x : : (8 E;G :: (sbcons:P:E ^ sbcons:P:G) ) E = G)^ (8 F;H :: (sbcons:Q:F ^ sbcons:Q:H) ) F = H))( f De�nition 7 (tot) g(8 x : : tot:P ^ tot:Q)= f x is free gtot:P ^ tot:Q(End of Proof)A.3 The Multi-resolution Relational Algebra is Sound, Monotonic, and Total-ity PreservingThree of the four important query language properties hold for the multi-resolution relational algebra. Theseare Property 5 (QL Soundness), Property 7 (QL Monotonicity), and Property 8 (QL Totality Preservation).This is Theorem 2 of the paper body. The proofs of these theorems are simple inductive proofs on thestructure of queries. In the proofs below, the inductive case for unary operators is always exactly analogousto the case for binary operators. We have included it explicitly only because the proof of each subcase is atmost four steps long.Throughout this subsection, let Y be a relational database, a set ofN relations Y = fR0; R1; R2; :::RN�1g.Let Z be a multi-resolution relational database, a set of N sandbags Z = fS0; S1; S2; :::SN�1g. For arelational algebra expression E on Y , let E0 be constructed by substituting for each operator of E thecorresponding MR relational operator, and substituting Si from Z for each relation Ri mentioned in E.We repeat the de�nition of the soundness property of a query language from De�nition 12:QL Soundness: A query language is sound if and only if for every expression E,sbcons:(E0:Z):(E:Y ) 2Theorem 7: The MR relational Algebra has the property of soundness.(8 E : : sbcons:(E0:Z):(E:Y ))Proof: We prove Theorem 7 by induction on the structure of the query E.Base Case: E = Ritrue) f Construction of E0 and case assumption gE0 = Si ^ E = Ri= f Application of query gE0:Z = Si ^ E:Y = Ri) f De�nition of approximates on DBs gE0:Z = Si ^ E:Y = Ri ^ sbcons:Si:Ri) f Transitivity of equality gsbcons:(E0:Z):(E:Y )Inductive Case (i): E = (El setop Er)true) f Inductive Hypothesis gsbcons:(El0:Z):(El:Y ) ^ sbcons:(Er0:Z):(Er:Y )) f Theorem 3 gsbcons:( setop0 :(El0:Z):(Er0:Z)):((El setop Er):Y ).= f Construction of E0 and case assumption gsbcons:(E0:Z):(E:Y ) 24



Inductive Case (ii): E = (setop:Esub)true) f Inductive Hypothesis gsbcons:(Esub0:Z):(Esub:Y )) f Theorem 3 gsbcons:( setop0 :(Esub0:Z)):(setop:(Esub:Y )).= f Construction of E0 and case assumption gsbcons:(E0:Z):(E:Y )(End of Proof)Let Z approximate Y , de�ned in Subsection 5.2 to mean: (8 i : i � 0 ^ i < N : sbcons:Si:Ri). Werepeat the de�nition of query language monotonicity:QL Monotonicity: A query language is monotonic if and only if any improvements in the informationof the sandbags of Z does not make E0 worse, for any query E.If Z and X are MR databases, Z vX ) E0:ZvE0:X 2Theorem 8: The MR relational Algebra has the property of monotonicity. Let Z and X be MRdatabases, Z = fS0; S1; S2; :::SN�1g and X = fX0; X1; X2; :::XN�1g.Z vX ) E0:Z vE0:X 2Proof: We prove Theorem 8 by induction on the structure of the query E.Base Case: E = RiZ vX= f De�nition of \approximates" g(8 i : i � 0 ^ i > N : SivXi)) f Weakening gSivXi= f De�nition of E0 and case assumption gE0:Z vE0:XInductive Case (i): E = (El setop Er)Z vX= f Inductive Hypothesis gE0l :Z vE0l:X ^ E0r:Z vE0r:X) f Theorem 5 gsetop0 :(E0l :Z):(E0r:Z)v setop0 :(E0l :X):(E0r:X)= f Construction of E0 and case assumption gE0:Z vE0:XInductive Case (ii): E = (setop:Esub)Z vX= f Inductive Hypothesis gE0sub:Z vE0sub:X) f Theorem 5 gsetop0 :(E0sub:Z)v setop0 :(E0sub:X)= f Construction of E0 and case assumption gE0:Z vE0:X(End of Proof)We repeat the de�nition of the totality preservation property of a query language from De�nition 12:25



QL Totality Preservation: A query language is totality preserving if and only if every ex-pression is total (tot:(E0:Z)) when every sandbag in Z is total. 2Theorem 9: The MR relational Algebra has the property of totality preservation.(8 Si : Si = Z[i] : tot:Si) ) tot:(E0:Z)Proof: We prove Theorem 9 by induction on the structure of the query E.Base Case: E = Ri(8 Si : Si = Z[i] : tot:Si)) f Weakening gtot:Si= f Case assumption, construction of E0 gtot:(E0:Z)Inductive Case (i): E = (El setop Er)(8 Si : Si = Z[i] : tot:Si)= f Inductive Hypothesis gtot:(El0:Z) ^ tot:(Er 0:Z)) f Theorem 6 gtot:( setop0 :(El0:Z):(Er 0:Z))= f Construction of E0 and case assumption gtot:(E0:Z)Inductive Case (ii): E = (setop:Esub)(8 Si : Si = Z[i] : tot:Si)= f Inductive Hypothesis gtot:(El0:Z) ^ tot:(Er 0:Z)) f Theorem 6 gtot:( setop0 :(El0:Z):(Er 0:Z))= f Construction of E0 and case assumption gtot:(E0:Z)(End of Proof)
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