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Abstract

The use of data at different levels of information content is essential to the performance of
multimedia, scientific, and other large databases because it can significantly decrease I/O and
communication costs. The performance advantages of such a multi-resolution scheme can only
be fully exploited by a data model that supports the convenient retrieval of data at different
levels of information content. In this paper we extend the relational data model to support
multi-resolution data retrieval. In particular, we introduce a new partial set construct, called
the sandbag, that can support multi-resolution for the types of data used in a wide variety of
next-generation database applications, as well as traditional applications. We extend the re-
lational algebra operators to analogous operators on sandbags. The resulting extension of the
relational algebra is sound and forms a foundation for future database management systems
that support these types of next-generation applications.

Keywords: databases, relational algebra, information theory, graphics, partial information,
partial data model, incomplete information, incomplete data model, multimedia, multimedia
database, raster images, progressive refinement, adaptive refinement, progressive transmission,
denotational semantics, image databases.

1 Introduction

Manipulating very large data objects such as images, sounds and scientific data incurs large I/O and
communication costs. A relatively unexplored approach to decreasing these costs is to retrieve and
use a smaller version of an object rather than the complete object when such an approach is feasible.
For some types of data, such as representations of continuous functions, (e.g., images and sounds),
we can compute a smaller version of the data, or an approzimation, that retains the character of
the data and is satisfactory for many purposes. An approximation provides less information than
the data that is its source, but is completely consistent with it. Such an approximation is called
partial or incomplete data, similar in principle to the partial data of existing models of incomplete
information [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. When an approximation suffices and is
significantly smaller than the original, complete data object, retrieving it instead may incur lower
costs because fewer bytes are accessed or moved.

*This material is based in part upon work supported by NSF grants TRI-9003341, and TRI-9106450, and by grants
from the IBM corporation, HP corporation, and the NEC corporation.



For example, consider a multimedia database that contains raster images. A typical high-
resolution (1024 x 1024 pixel) full color (24-bit) raster image contains 3 megabytes. In typical
current computing environments, such an image is likely to take more than a second to retrieve
(perhaps much more). However, a 256 X 256 pixel 8-bit color raster image of the same scene is
satisfactory for many purposes. This approximation is 1/48th the size of the original, complete
image. The costs of operations on large bodies of data are dominated by throughput limitations
rather than overhead, seek time, and propagation delay, so lower resolution images can be retrieved
much more rapidly than higher resolution images. The lower resolution pictures will often be useful
in their own right or as rapidly appearing previews of the complete pictures. We call a system that
can produce approximations as well as complete data a multi-resolution data retrieval system. The
term multi-resolution is borrowed from graphics, but we apply it to all kinds of data.

Many applications of growing importance [15] manipulate huge quantities of data. These in-
clude multimedia databases, voice-mail systems, image processing applications, HDTV, graphics
applications such as CAD/CAM, flight simulators, and virtual reality systems, geographic [16] and
astronomic databases [17], and scientific applications such as seismic processing. A multi-resolution
data retrieval system is essential to the performance of these applications. Multi-resolution is a
natural approach already used in an ad hoc manner to decrease 1/0, storage, and communication
costs [18]. The approach presented in this paper is a logical but novel extension of ideas in the
fields of graphics [19, 20, 21] and databases to systematically address the needs of these types of
next-generation applications.

Database management systems (DBMSs) are commonly used for accounting and record keeping
and other “traditional” applications because they provide convenient data storage and retrieval
services for these types of data. If DBMSs are to fully address the needs of the growing number
of applications that demand multi-resolution, they must be extended to retrieve data at multiple
resolutions conveniently. We propose to accomplish this by:

¢ extending existing data models to give precise meaning to multi-resolution data and queries,
¢ allowing the user to control the resolution of query results, and

o developing techniques for efficiently implementing this extended model.

This paper describes a formal multi-resolution relational data model that forms the foundation
of and the necessary first step towards a practical multi-resolution DBMS. In Section 2 we motivate
multi-resolution and show that existing data models and techniques do not suffice to exploit it
conveniently. Section 3 presents multi-resolution primitives and tuples. Section 4 introduces a new
construct for representing incomplete information about sets, called the sandbag. In that section
we also discuss the expressiveness of the sandbag and define operations analogous to the standard
relational operations for sandbags. Section 5 describes a multi-resolution data model and an algebra
that is a generalization of the relational algebra. Finally, in Section 6 we briefly mention some of
the future work that needs to be accomplished in order to usefully implement and exploit this data
model.

We address the implementation and computational complexity of sandbag operations and pro-
vide algorithms in [22]. Such issues are outside the scope of this paper and not discussed further
here. The proofs of all theorems stated in this paper appear in a technical report [23].

2 Why Multi-Resolution

Multi-resolution is the concept of viewing data at different levels of information content. The
fields of denotational semantics [11, 14, 24] and information theory [25, 26, 27, 28] provide an



intuitive and a formal definition of information content and other concepts that underlie multi-
resolution (approzimation, consistency, resolution, information-theoretic partial order). We repeat
the informal definitions of these concepts here to provide the reader the necessary intuitions.

Data describes the real world. Some data is more descriptive than other data. For instance,
the daily list of stock volumes, opening prices and closing prices is more descriptive of market
history than averages and indices computed over many stocks, such as the Dow Jones Industrial
Average. Similarly, a high quality audio recording is more descriptive of music played than a poor,
scratchy recording. The more descriptive data is, the more information it contains. We use the
term resolution synonymously with “information content”.

Only by considering the meaning of computer-manipulated data, or the descriptions of the real
world we obtain from it, can we define the information-theoretic notion of approximation. A data
object X approzimates a data object Y if every world described by Y is described by X. The
approximates relation is a natural partial order of data that could be called the “goodness” or
“precision” of the data. X approximates Y if and only if Y describes the world better than X,
and is consistent with X. Intuitively, if ¥ describes the world, then X is a version of Y that tells
us less about the world than does Y, but from which we will not draw any false conclusions. The
meaning of data, and hence the notion of approximation, is always application dependent, as was
the case with the example of raster images mentioned in the introduction.

We focus on a particular property of approximations, that is generally true, though not univer-
sally obtained in practice.

If object X approximates object Y and X is lower-resolution than Y, then X requires
less space to be represented by a computer than Y.

Accessing a large object requires many accesses to main memory and/or many expensive I/O op-
erations. Our goal is to use the general relationship between approximations and space to improve
performance by computing against lower-resolution data when possible. Because the greatest sav-
ings in space, and hence time, are possible when approximating very large objects, our examples
and motivating applications tend to emphasize such objects. However, our proposed framework
applies to all sizes of objects.

2.1 Multi-Resolution is Demanded

In many applications, accessing low-resolution data is quite adequate. In some cases, the highest-
resolution data cannot always be used. For instance, when a raster image has higher-resolution than
a device it is to be a displayed upon, a lower-resolution approximation must be produced. Such
a reduction of resolution is done in an ad hoc manner in some graphic and scientific applications.
For instance, in databases of images [17, 18], “browse images” are created at low-resolution so
that an “overview” of the data is obtained, that allows preliminary examination of the data for
quality or interest, and for publication. A similarly “zooming” capability is useful in cartographic
applications. The enormous volume of data in astronomy, ecology, meteorology, geology, and
geography [16] databanks could be better exploited by database technology that systematically
and conveniently supports resolution control. Systematically treating smaller versions of very large
data items is a first step towards the difficult problems of terabyte-sized databases of any kind of
data, from images to financial data.

There are many applications where retrieving data at complete resolution takes too long, either
because of some real-time constraint, or because the user is dissatisfied with performance. This
problem can sometimes be addressed by retrieving low-resolution data quickly or before a deadline.
The similar idea of imprecise computation has been suggested as an approach to meeting real-time



constraints on database queries [5, 6, 29, 30, 31]. A multi-resolution system naturally extends and
complements this approach to real-time databases by supporting larger tradeofls in imprecision for
time.

For instance, a technique for displaying images called progressive transmission [21] is to display
a low-quality image immediately, so the user may peruse it while the larger, better image is being
retrieved via a network. The image is then gradually or abruptly improved, or refined, until it is
complete. Two similar ideas are adaptive refinement [19] and progressive refinement [20], that are
the incremental computation of the features of a graphic image in order of their visual importance
to a viewer. If a data model that supports multi-resolution is available, these ideas can be naturally
extended to include the idea of retrieving a series of data objects, each of which is better than the
last, until the complete answer is retrieved. We adopt the term progressive refinement to refer to
this approach to data retrieval from disk, network, and main memory. Progressive refinement is a
general technique for improving the utility of any query system, and is inherently a multi-resolution
technique. Although networks, disks, memory and CPUs continue to improve rapidly, the volume
of data demanded will always match their capabilities, and progressive refinment will remain a
useful technique.

2.2 Existing Technology and Data Models are Insufficient

Existing database technology does not support multi-resolution or progressive refinement con-
veniently. The database management system should hide the implementation details of multi-
resolution data retrieval, presenting resolution transparency to the user without sacrificing the
user’s ability to obtain specific resolutions. Computed fields and object-oriented approaches allow
approximations to primitive data objects to be computed and returned. However, since the rela-
tionship between levels of resolution is not part of these data models, a burden is placed on the
user to explicitly manage resolution without a unified or systematic framework. For instance, to
implement progressive refinement of a query in existing systems, the user must submit a separate
query explicitly for each desired improvement. Similarly, to meet some performance constraint, the
user needs to guess which resolution will be produced timely. Without a model of multi-resolution,
the system cannot dynamically adapt returned resolution to user’s constraints. Furthermore, exist-
ing systems do not allow systematic approximation of sets, although sets are fundamental to most
data models, and large sets with many elements are often manipulated.

A data model and query evaluation system that contains the relationship between data and
approximations offers advantages that cannot be obtained by existing systems:

e Resolution of responses can be traded for speed to meet real-time constraints at compile time
or at run time, based on the dynamic situation within the database.

e Progressive refinement has a precise meaning and can be provided systematically.
e Sets of values can be systematically approximated.

o The relationship between resolutions can be exploited by special storage structures and algo-
rithms.

3 Multi-resolution Primitive Types and Tuples

In this section we introduce multi-resolution primitive types and multi-resolution tuples. Multi-
resolution (MR) primitive types are needed because there are various types of data that we wish



to treat at different resolutions, and these are more conveniently represented as primitive types
rather than as tuples or relations. These types include images, sounds, and geometric figures. An
MR, primitive type 7 is a user-defined data type consisting of values at various resolutions. All
MR primitive types are partially ordered by a user-defined relation C, and have a bottom element
1 that is € all elements. The partial order C corresponds to the approximates relation defined
informally in Section 2. The highest-resolution elements of a primitive type are called the total
elements, designated by the predicate tot : 7 — {true,false}. (We denote function application by
an infix dot. Thus tot applied to z is written tot.z.)

The database programmer defines the MR primitive types according to his or her needs, includ-
ing the approximates relation ( C ). These types should not pervert the intention that the formally
defined relation C corresponds to the meaning of approzimate informally defined in Section 2.

In an implementation, the user will provide application dependent functions that can produce
low-resolution data from high-resolution data. The specification and use of such functions are
important implementation details.

Rich partially ordered primitive types with many different resolutions distinguish our approach
from research concerned mostly with the semantics of null values. Of course, many primitives types
within a given application, such as unique identifiers, boolean, and small integers, will have only
one useful resolution level, plus a null value (L). These types, and the functions mentioned above,
will be provided by the DBMS.

We illustrate these concepts with two typical examples. The first is the canonical example of a
partially ordered data type of real intervals [24]. The second example is a multi-resolution primitive
type whose members are rasters at different resolutions.

Example 1: A real number can be approximated by a real interval that contains it. We say a
narrower interval is higher-resolution than a wider interval. The type of real intervals consists of
all intervals, and is partially ordered by containment:

[a,0]Cle,d]=a<c¢ AN b>d

The total elements of this type are the intervals [a,a] that only contain one real number, i.e.
tot.[3.14, 3.14] = true. The bottom element (L) of this domain is [—00, +00]. O

Example 2: Consider a multi-resolution raster image primitive type, with five distinct levels
of resolution. An application programmer might construct the resolution levels such that:

o level 4 images are 1024 x 1024 24-bit color rasters,

o level 3 images are 256 X 256 8-bit color rasters,

o level 2 images are 128 x 128 black-and-white rasters,
o level 1 images are 16 x 16 black-and-white icons, and
e level 0 is a null value for this type.

The type of raster images consists of all images at these five resolution levels, in contrast to Example
1, which has an infinite number of resolution levels. The ordering C would be programmed by the
user so that:

XCY = X =Y orX andY are computed from the same picture and X has a lower
resolution level than Y.



The total elements of this type are the level 4 rasters. The level 0 element is the bottom element
(L) of this type. O

Having defined the concept of multi-resolution primitive types, we can now define the multi-
resolution tuple, that is constructed from user-defined and built-in MR primitive types. To specify
a tuple-type, the user merely specifies a sequence of types; the cross-product of these types is the
tuple-type. Because tuples are an inherent and basic type supported by the database, the user
does not have to specify any of the operations required by a primitive type to define a tuple-type.
However, we give definitions of some of these operations here, in order to define a complete data
model.

Definition 1: For a tuple-type 7 constructed from a sequence of N primitive types

(70, 71, ..., Tn-1),

e Given two tuples x and y in 7,
tCy = (Ve:0<e A e<N :zlc]Cylc])

e The bottom element (L) of 7 is the sequence of the bottom elements from each component
type of the tuple-type.

etotz = (Ve:0<c¢ A ¢c<N :tot(z[c])) O

Notice that tuples are partially ordered according to the resolution of their constituents.

4 Multi-Resolution Sets

The relational data model is built from primitive data types, tuples, and sets of tuples, or relations.
Constructing information content-based partial orders of primitive types and tuples is straightfor-
ward, as we have seen, and has been proposed in various forms even though it is not common in
practice. Some similar means of constructing a multi-resolution partial order of sets (or relations)
is required because sets are essential to most data models, including the relational. Furthermore,
sets with many members are large, and hence expensive. This is a surprisingly interesting problem
(2, 3, 5, 6, 12].

An approach to approximating a set of total data elements from a partially ordered set has been
suggested in [2], where the authors have introduced the sandwich concept. A sandwich describes a
set B of total elements by “sandwiching” them between two sets. These are a consistent set, that
contains tuples guaranteed to approximate (in the partial order of tuples) some tuple in B, and a
complete set, each tuple of which is guaranteed to be approximated by some tuple in B. If these
sets are restricted to total elements, as in [5, 6], then they are simply a subset and a superset of
B, respectively. For instance, the set {Alice, Bob, Carla} could be approximated by the consistent
set {Alice, Bob} and the complete set {Alice, Bob, Carla, Dan, Jo}.

This idea was used in [2] to construct a consistent semantics for complex objects [1] and to
present a very expressive approximate query system. In contrast, this idea was used in [5] to
construct a query system that exhibits progressive refinement, which is more in the spirit of this

paper.

4.1 The Sandbag Scheme

Because the sandwich construct cannot capture information about cardinality, we extend the sand-
wich to a new partial set construct, called the sandbag. (Throughout this paper, the capital letters



P, Q, 5, and T stand for sandbags, the capital letters B and C stand for sets of total elements,
and the calligraphic letters D and 7 stand for domains or types of elements that are partially
ordered and have a bottom element.) For instance, consider the set B = {1.1,3.14,5.0}. The fact
that B has three members cannot be represented by a sandwich. A related problem is that the
sandwiching sets are restricted to co-chains in the partial order of the set’s elements, so that even
if cardinality could be captured, one could not represent the facts that B contains three elements,
two of them are greater than 2.5, and one of them is 3.14.

The sandbag can represent these facts. The basic idea of the sandbag is to approximate a set B
of total elements by using partial data elements. Each partial data element d € D is mapped into a
range that provides lower and upper bounds on the number of elements in B that are approximated
by d. We call the number of total elements in some set approximated by d the number above d. To
formalize this concept we define the following:

Definition 2: Let D be a partially ordered data domain, B C D be a set of total elements,
and d € D be any data element. The number of total elements above the element d in the set B is
denoted by numa.B.d, and defined by:

numa.B.d= |{z|dCaz AN 2 € B}| O

To illustrate this, consider B defined above, that can be considered a shorthand for the set of
total elements from the partially ordered domain of real intervals (Example 1) {[1.1,1.1],[3.14,3.14],
[5.0,5.0]}. The number of elements above the partial data element d = [2.5,6.0]is 2 (numa.B.d = 2).
A sandbag describing B might provide a lower bound for d of 1 and an upper bound of 3. This
is consistent with B, but is not the most precise consistent bounding interval possible, that would
of course be [2,2]. The capacity for imprecision is essential to the sandbag. Before presenting

additional examples, we formally define the concept of a sandbag.

Definition 3: Let N’ be the set of naturals (N) plus infinity, NU {0}, and let D be a partially
ordered data domain. A sandbag .5 is characterized by two functions, denoted mina.5 and maxa.$5.

e mina.5.d: D — N, a lower bound on the number of total elements in a set consistent with S
that are above d.

e maxa.5.d : D — N, an upper bound on the number of total elements in a set consistent with
S that are above d. O

We now present a definition that formalizes the concept that a sandbag is consistent with, (or
approximates) a set.

Definition 4: Let D be a partially ordered data domain, and B C D a set of total elements.
We say that a sandbag 5 is consistent with a set B, denoted sbcons.S.B, when:

(Vd:d €D :mina.5.d < numa.B.d A maxa.5.d > numa.B.d) O

4.2 Using the Sandbag to Approximate Sets

The sandbag construct can usefully approximate sets of diverse types. For instance, it can represent
a set of raster images of different resolutions. Raster images representing the covers of a weekly
magazine for a year could be approximated by a sandbag that indicates there are exactly 52 images
in the set, 4 of them (A, B, C, and D), are available at full resolution, 3 (x, y, and z) are available
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Figure 1: A sandbag representing magazine cover rasters.

(Ferrari, blue) (Corvette, red)

(Corvette, L )
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Figure 2: A sandbag representing facts about a set of cars.

at some lower resolution, and no others are mentioned. This can be represented diagrammatically,
as in Figure 1.

In this style of diagrammatic representation of a sandbag, a node represents an element of the
multi-resolution type over which the sandbag is defined. An arrow indicates the approximation
relationship (an arrow from p to ¢ indicates pC¢). The small numbers to the left and right of
a node indicate the mina and maxa value of that node, respectively. The height of a node in the
diagram loosely corresponds to its resolution.

The sandbag can represent incomplete information in the form of constraints expressed via a
partial order. For example, suppose it is known that a car rental company has between 4 and 6
cars ready for rental, 2 to 4 of them are sports cars of unspecified color, at most 2 are Corvettes,
at least 1 is a blue Ferrari, and exactly 1 is a red Corvette. This can be represented by a sandbag,
and is depicted in Figure 2.

Note that in this example we are using the partial ordering of tuples, and assuming partial
orders for both the ‘color’ type and the ‘make’ type. ‘color’ and ‘make’ have a bottom element,
and ‘make’ is assumed to have at least one intermediate resolution, of ‘car style’, of which ‘sport’
is an example. Thus, ‘sport’ C ‘Corvette’.

One of the most interesting uses of a sandbag is to construct compact, imprecise representations
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Figure 3: Some facts about a bank account relation and its sandbag.
of an ordered set. For example, consider a relation of bank accounts. If integer intervals are a
primitive, the sandbag could represent a conglomeration of facts such as:

(a) At most five and at least four accounts between account #100 through #112 have a balance
in the range $60,000 to $100,000.

b) Account #107 has exactly $43,737.

)
¢) Account #108 has between $40,000 and $49,000.
d) Accounts #50 through #500 have exactly 100 accounts with less than $10,000.

(

(

(

(e) Accounts #50 through #500 have at most 200 and at least 150 accounts with more than
$50,000.

These facts are depicted in Figure 3, wherein a partial data element is represented as a rectangle
labeled near its lower left corner. The mina and maxa values of these partial elements are to the

left and right of the label, respectively.

The mina and maxa functions enable queries on the sandbag to obtain interesting information.
The precision in the results will depend on the quality of the facts from which it is constructed.
For instance, given the facts above:

e A selection of accounts having between $40,000 and $45.,000 will definitely include account
#108 (mina applied to #108 will produce 1), but cannot exclude #107 (maxa applied to #107
will produce 1, and mina will produce 0).

e The number of accounts in the range #100 to #200 with less than $8,000 is at most 100
(maxa is 100), and we cannot be sure that there are any such accounts (mina is 0).

Similarly, the population of any rectangular region of the Earth may be represented more or less
precisely based on a rectangular population data at different levels of detail, from square meter, to



square kilometer, to nation-sized areas. The compactness of such a sandbag, as well as its precision,
depends on the information it contains and its implementation.

The sandbag can represent the fact that a tuple z is a maybe tuple [4, 12] in a relation, if
mina.z = 0 and maxa.z = 1. The maybe tuple is closely related to the sandwich and the I-table [6].
Both provide a means of stating that the tuples in a relation cannot be excluded but are not known
to be in the set. The sandbag can model these constructs in a straightforward manner without any
particular use of an underlying partial order. Similarly, “normal” relations and sets consisting of
only total elements, such as are used in traditional relational databases, are trivially modeled.

Thus, the sandbag can represent approximations of at least four distinct kinds of sets:

e sets of objects at various resolutions,

e incompletely specified sets,

e sets of points in continuous spaces, and
e sets of normal tuples and maybe tuples.

As far as we know, this flexibility is not offered by any other representation of incomplete informa-
tion about a set, nor is it systematically available in any proposed data model [1, 2, 3, 4, 5, 6, 7, 8,
9,10, 11, 12, 13, 14]. If the efficiency and convenience of the sandbag can match its expressiveness,
it may be a useful part of multi-resolution databases. The sandbag construct is a tradeoff between
flexibility and ease of implementation that leans towards flexibility.

4.3 A Partial Order of Sandbags

In this subsection we develop the machinery that allows sandbags to be general multi-resolution
types. Fundamental to this is the notion that sandbags, like primitives types and tuples, are par-
tially ordered by the amount of information they provide about the sets that they approximate.
The tighter the bounds provided by a sandbag, the more informative it is. A sandbag P approx-
imates a sandbag () if the bounds provided by mina and maxa on ) are at least as tight as and
consistent with those of P.

Definition 5: Let D be a partially ordered data domain. The approximates relation T on

sandbags is defined by:
PCQ = (Vo :2 €D :mina.P.z < mina.Q.z A maxa.P.z > maxa.Q).z) O

The relation T defined as above is in fact a partial order of sandbags, because it is reflexive,
transitive, and antisymmetric.

Sandbags have a bottom element and a notion of totality, just as did primitives and tuples.
If for all # the lower limit mina.5.2 = 0 and the upper limit maxa.5.2 = oo, then 5 provides no
information whatsoever. This is the null value of sandbags in our model. Since a sandbag 5 is a
pair of functions mina.5 and maxa.5, we formally define a sandbag by defining the value of mina.§
and maxa.5 on every element of D.

Definition 6: The bottom element of the sandbag type is denoted 1 and defined by:

mina.lsz.x =0
maxa.lgsz.Tz = ¢

10



for every element z in a partially ordered data domain D. O
The bottom-most element of sandbags under the partial order T is in fact Lgg. Similarly, if
for all 2 mina.5.2 = maxa.5.z, then the sandbag is total.

Definition 7: Let D be a partially ordered data domain. A sandbag S is total, denoted tot.5,
if and only if:

(Vo : 2 €D : mina.S.2 = maxa.5.z) O

Total sandbags are in fact the top-most elements of the type of sandbags. If a sandbag is total,
there is at most one set consistent with it, and the members of that set can be exactly determined
from the sandbag. Between these two extremes of zero and total information, a sandbag provides
varying degrees of information about a set it approximates. Alternatively, we think of a sandbag as
limiting the number of sets consistent with it. The more informative a sandbag is, the fewer sets are
consistent with it. All sets are consistent with L¢p (i.e. (VB : B is a set of total elements from D :
sbeons. Ls5.B)).

Unfortunately, a sandbag need not be consistent with any set, because the values of mina and
maxa can easily contradict each other. We say a sandbag 5 is externally consistent if there exists
a set consistent with it.

Definition 8: Let S be a sandbag and B be a set of total elements. We say that S is externally
consistent, denoted by extcons.S, if and only if: (3 B : : shcons.S.B) O

As might be expected, we are exclusively concerned with externally consistent sandbags, because
we are only interested in using sandbags to inform us about actual sets.

The sandbag concept was inspired by [2], in which the authors develop the sandwich represen-
tation of partial sets and a meaningful partial order of that representation. The sandbag concept
extends that work because it is a more expressive partially ordered set construct. Thus, sandbags
may be very useful in data models based on complex objects or higher-order relations. Because we
are primarily concerned with improving performance by retrieving approximations and thus saving
I/O costs, we develop a flat relational model for the sake of simplicity rather than a higher-order
model.

5 A Multi-Resolution Relational Algebra

A relation is a set of tuples. We call a sandbag over a multi-resolution tuple-type a multi-resolution
relation. Following tradition, we construct a relational-like algebra by defining analogs for each
relational operators (N, U, —, X, o, m, and M) that take sandbags as arguments and produce a
sandbag as a result. We define each of these operators so as to produce the best results possible
that are guaranteed to be consistent with the arguments. It is therefore not surprising that each
of these MR operators enjoys properties essential to a partial data model:

¢ Property 1 (Soundness): A binary sandbag operator setop’ is said to be sound with respect
to a set operator setop if and only if for all sandbags P and ¢ and sets B and ("

sbcons.P.B A sbcons.().C' = sbcons.(P setop’ Q).(B setop (')

Intuitively, an MR operator is sound if the result of applying it to approximations to total
sets is always consistent with the result of the standard relational operator applied to the
total sets.

11



e Property 2 (Completeness): A binary sandbag operator setop’ is said to be complete with
respect to a set operator setop if and only if for externally consistent sandbags P and ¢ and
sets B and ("

(VP,Q : (Va =
(3B,C :sbcons.P.B A sbcons.).C' : numa.(B setop C').z = mina.(P setop’ Q).z) A
(3B,C :sbcons.P.B A sbcons.).C' : numa.(B setop C).x = maxa.(P setop’ Q).x)))

Intuitively, an MR operator is complete if it provides the most informative result that is
guaranteed to be consistent.

An operator has the Completeness Property if for each partial data element there exist some sets
consistent with its arguments for which the bounds provided are the correct numa value. Two
further useful properties follow from Soundness and Completeness:

e Property 3 (Monotonicity): A binary sandbag operator setop’ is monotonic if and only

if:
PCQ N SCT = P setop SCQ setop’ T

Intuitively, an MR operator is monotonic if the results of the operator never get worse (contain
less information) when it is applied to arguments that are better (contain more information,
or are higher-resolution).

e Property 4 (Totality Preservation): A binary sandbag operator setop’ is totality preserv-
ing if and only if:

tot.P A tot.)Q = tot.(P setop’ Q)

Intuitively, an MR operator preserves totality if it produces a total result when applied to
total arguments.

These properties are defined analogously for unary operators, such as projection of a list L (7))
and selection by a predicate 8 (oyg).

5.1 Relational Operators on Sandbags Defined

In order to extend the relational algebra to a multi-resolution relational algebra as naturally as
possible we define sandbag operators analogous to each relational operator. We denote the sand-
bag operator analogous to a relational operator setop by priming it, e.g. setop’ . Thus, the MR
relational operators corresponding to N, U, —, X, o, 7, and X will be denoted by n’, U’, -/, x’, ¢/,
7', and X', respectively. Intuitively, Properties 1-4 will hold for sandbag operators only if we define
them to produce the most informative sandbag guaranteed to be consistent with their arguments.

Definition 9: For any binary set operator setop, a binary sandbag operator setop’ can be
generated by:

e mina.(P setop’ Q). = (min B, : sbcons.P.B A sbcons.QQ.C' : numa.(B setop C).z)
o maxa.(P setop’ Q).2 = (max B,C : sbcons.P.B A sbcons.().C' : numa.(B setop C').z) O

A similar but simpler definition suffices for unary operators.
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Definition 10: For any unary set operator setop, a unary sandbag operator setop’ can be
generated by:

e mina.(setop’.P).x = (min B : sbcons.P.B : numa.(setop.B).x)
e maxa.(setop.P).x = (max B : sbcons.P.B : numa.(setop.B).z:) O

Any sandbag operator generated from Definition 9 or Definition 10 is well-defined if its argu-
ments are externally consistent, so that the sets quantified over by min and max are non-empty.

Theorem 1: Any sandbag operator setop’ generated from a set operator setop with either
Definition 9 or Definition 10 has the Properties of Soundness, Completeness, Monotonicity, and
Totality Preservation. O

In particular N/, U/, =/, x’, o', 7', and X’ have the properties of Soundness, Completeness,
Monotonicity and Totality Preservation.

Although these definitions are not constructive, nevertheless there exist reasonably efficient
implementations of these operations that sacrifice the Completeness Property to gain speed [22].

5.2 The Multi-resolution data model

The MR relational operators (n', U, =/, x’, o', 7', and W) form a query language over MR
relations analogous to the relational algebra. We have defined these operations so that they are
strictly more general than and completely consistent with the relational operators. This fact is
expressed by Theorem 1, that is used to show that these operators on sandbags form a language
that is a generalization of the relational algebra. We call this the multi-resolution relational algebra,
although the algebraic laws of the relational algebra hold only in modified forms for our language.

Consider a relational database Y consisting of N relations Y = { R, Ry, R2,...Rn_1}. A corre-
sponding multi-resolution relational database Z consists of N sandbags Z = {Sg, 51,52, ...5n8_1}-
We say an MR relational database Z approzimates a relational database Y if and only if
(Vi:1>0 A i< N :sbeons.5;.R;). Note that the quality of Z is not specified; it may con-
tain all of the information of Y (i.e., be total) or very little. A relational expression F over Y is
a tree of relational operators that uses relations from Y. The corresponding multi-resolution rela-
tional algebra expression, denoted E’, is an operator-for-operator substitution of sandbag operators
for relational operators and sandbags from Z for relations from Y. The result of a query expression
on an MR database is defined to be the result of applying the MR operators to the MR relations.

We extend the definitions of Soundness, Completeness, Monotonicity and Totality Preservation
for individual operators to analogous properties on multi-resolution query languages, such as the
MR relational algebra. We denote the result of applying an expression F to a database Y by F.Y.
Let Z be an MR database approximating a relational database Y. For a query language we define
the following four Query Language (QL) Properties:

e Property 5 (QL Soundness): A query language is sound if and only if sbecons.(E’.Z).(E.Y),
for every expression F.

e Property 6 (QL Completeness): A query language is complete if and only for every
expression F, E' on Z always provide the tightest bounds consistent with Y.

(Vo i (Y : Z approximates Y : numa.(E.Y ).z = mina.(E".Z).z) A
(3Y : Z approximates Y : numa.(E.Y).x = maxa.(F'.7).2))
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¢ Property 7 (QL Monotonicity): A query language is monotonic if and only if any im-
provements in the information of the sandbags of Z do not make E’ worse, for any query F.

If Z and X are MR databases, Z = {5y, 51, 59, ...5nv-1} and X = {Py, Py, P2, ...Pn_1}:
(Vi:i>0 A i<N:SCP) = E.ZCE.X

e Property 8 (QL Totality Preservation): A query language is totality preserving if and
only if every expression is total (tot.(E’.Z)) when every sandbag in Z is total.

Theorem 2: The multi-resolution relational algebra has the Query Language Properties of
Soundness, Monotonicity, and Totality Preservation. O

Unfortunately, the QL Completeness Property does not hold for the multi-resolution relational
algebra. A counter-example to completeness can be constructed from queries that mention the same
relation more than once. If P is a non-total sandbag approximating a relation R in a database,
the MR query expression P —' P yields a non-total sandbag as a result that is consistent with
non-empty sets.

For instance, consider a sandbag P over real intervals in which the total interval z = [3.14, 3.14]
is a maybe tuple (i.e., mina.P.z = 0 and maxa.P.z = 1). By the definition of the -’ operator,
maxa.(P —' P).z = 1. This result is sound. However, the sandbag operators, including —', do not
utilize the identity of their arguments. For any relation R, R — R is the empty set ¢. So for any R,
numa.(R— R).z = 0, and maxa.(P —" P).z = 1, and so (VR :: numa.(R — R).2 # maxa.(P —' P).z).

Therefore =(3Y : Z approximates Y : numa.((R — R).Y ).z = maxa.(((P —' P).Z).z)). This
proves the MR query language is incomplete, and is an example of an algebraic law that fails to
hold in unmodified form for the MR query language.

Incompleteness is a disadvantage that appears to be a fundamental problem of approaches
that do not preserve identity, such as [6]. [7, 13] discuss this problem. We choose to tolerate
this disadvantage, for two reasons. Most importantly, any implementation based on our approach
to constructing sandbags described in [22] must immediately sacrifice the Completeness Property
(Property 2), because calculating the optimal mina and maxa values is NP-hard for that approach.
Secondly, we suspect that this incompleteness has little impact on our overall purpose of supporting
the resolution/performance tradeoff. A significant difference between our approach and most previ-
ous work on partial data models is our motivation of high performance rather than clean semantics
for incomplete data.

5.3 Multi-resolution Queries and Progressive Refinement

A query in the multi-resolution relational algebra is essentially a relational query. This has the
advantage that queries are easily understood, and the choice of response resolution is orthogonal
to the formulation of the query.

This data model admits the concept of progressive refinement that is not available in the stan-
dard relational model. In both models, a query has a single, well-defined, result. However, in the
MR model this query result has many lower-resolution approximations, that we call responses. We
define P to be a response to a query F’ on an MR database Z if and only if PC E’.Z. Both the
notions of response and result are mathematically defined based on the MR data model.

It is the low-resolution responses to queries that are the focus of our work, rather than the
highest-resolution results, because our fundamental goal is to improve performance by allowing
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Figure 4: Progressive refinement of multi-resolution queries.

resolution of database query answers to be traded for speed. Furthermore, the idea of progressive
refinement can now be made precise. A database progressively refines the answer to some query
when it produces a chain of responses, each of which approximates the result of the query and
improves upon the last response. Because the responses to a query are sandbags and sandbags are
partially ordered, we can depict the responses to a query diagrammatically, as in Figure 4.

6 Conclusions

We have developed a multi-resolution data model that forms a basis for building a useful database
management system that offers the performance advantages of multi-resolution. The data model
provides a sound theoretical framework and makes precise the notions of multi-resolution and
progressive refinement. We hope that the similarity to the relational data model will allow us
to leverage the technology and widespread understanding of that model, both for the reader’s
understanding and to construct an eflicient implementation.

We are in the process of developing efficient algorithms to implement the sandbag and the sand-
bag operations [22]. Two other goals must be met if a useful multi-resolution database management
system is to be constructed:

1. A query language extension must be developed that allows the user to conveniently specify
the desired resolution of the response to a query. We plan to extend the MR, relational algebra
by allowing queries to be annotated with resolution/performance constraints.

2. Special algorithms, data structures, and storage structures that exploit the lower-bandwidth
requirements of low-resolution data should be utilized systematically. These include a cache
storage structure that directly utilizes the size relationship between resolution levels to man-
age storage of differing speed to provide good performance across the entire spectrum of
resolutions. The quadtree representation of raster images is an inherently multi-resolution
data structure. Structures such as a bit-striped transposed representation of sets of ordered
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values [32, 33] may allow multi-resolution to be applied to common, built-in types more
efficiently.

These issues, however, are beyond the scope of this paper.
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A Proofs of Theorems and Assertions

In this Appendix we formalize and prove the theorems and the various informally stated assertions appearing
in the paper body. We number the assertions here although they are not numbered in the paper body.

e Subsection A.l proves statements about the consistency of sandbags and the partial order defined on
them:

— L on sandbags is a partial order, which follows from:

# Assertion 1: C on sandbags is reflexive,

* Assertion 2: on sandbags transitive, and

C
# Assertion 3: C on sandbags i1s antisymmetric.
— Assertion 4: 1lgp is a unique bottom element of the partial order of sandbags.

— Assertion 5: The total sandbags, (defined by the tot predicate) are topmost elements, or crowns,
of the partial order of sandbags.

— Assertion 6: If a sandbag S is total, there is only one set of total elements that is consistent with
it.
— Assertion 7: If P is an approximation to ¢} then any set consistent with ) is consistent with P.

e In Subsection A.2 we show that each of the multi-resolution relational operators, (N, U, =/, x’, o/,
and M)

~

bl

— is sound (Theorem 3),
— is complete (Theorem 4),
— is monotonic (Theorem 5),

— and preserves totality (Theorem 6),

thus proving Theorem 1 from the paper body.

e In Subsection A.3 we show that the multi-resolution relational algebra formed by the MR, operators is
sound, monotonic, and preserves totality (Theorems 7, 8, and 9). This proves Theorem 2 from the
paper body. (A counter-example to the completeness property is given in the paper.)

A.1 A Partial Order on Sandbags and Other Preliminaries

In this subsection we prove Assertions 1 - 7. These assertions follow from the pertinent definitions in a
straightforward manner.

Note that mina and maxa produce numbers in the range N U {co}. We use the special symbol co to
denote the absence of any known bound on the maximum number of elements above some partial element.

In this paper, that does not discuss implementation, we do not need arithmetic operators, so the lemma
needed for this extended number system 1s simple:

Lemma 1: (V2 :: 2 <o00) D
Thus, by the antisymmetry of <, oo = oo, which is reasonable for our purposes. We utilize this fact as
well as the fact that the the ranges of mina and maxa contain only non-negatives.

We also use the following lemmas stated without proof.

Lemma 2: B=C = (Y« :: numa.B.x = numa.C.z) O

Lemma 3: extcons.S = (V& :: mina.S.¢ < maxa.S.z) O

We now present the proofs of Assertions 1 - 7.

Assertion 1: The relation C is reflexive.
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rPCP
Proof:

PCP
= { Definition 5 (C) }
(Ve :: mina.A.xz < mina. A.x
A maxa.A.x > maxa.A.z)
= { < and > are reflexive }
true

(End of Proof)

The properties of transitivity and antisymmetry are a consequence of the definition of C in terms of the
transitive and antisymmetric relations < and >, and have similar proofs.

Assertion 2: The relation C is Assertion 3: The relation C is
transitive. antisymmetric.
PCQ AN QCS = PLCS PCQ NQCEP = P=Q
Proof: Proof:
PCQ AN QCS PCQAQLCP

= { Definition 5 (C) } =  { Definition 5 (C) }

(Vo ::mina.P.x < mina.Q).z A maxa.P.x > maxa.Q.z) (Vo :: mina.P.z < mina.Q.x# A maxa.P.x > maxa.().x)

A A

(Vo :mina.Q.z < mina.S.x A maxa.Q.z > maxa.S.x) (V& ::mina.).x < mina.P.z A maxa.Q).z > maxa.P.x)
= { Distribution of ¥ over A } = { Distribution of ¥ over A }

(Vo ::mina.P.x < mina.QQ.z A maxa.P.z > maxa.Q.x (Vo ::mina.P.x < mina.QQ.z A maxa.P.z > maxa.Q.x

A mina.().xz < mina.S.z A maxa.QQ.z > maxa.S.z) A mina.().z < mina.P.z A maxa.().z > maxa.P.x)
= { Commutativity and Associativity of A } = { Commutativity and Associativity of A }

(Vo ::mina.P.x < mina.Q.# A mina.().x < mina.S.» (Vo ::mina.P.x < mina.Q).z A mina.().x < mina.P.x

A maxa.P.z > maxa.Q.x# A maxa.Q).xz > maxa.S.x) A maxa.P.z > maxa.Q).x A maxa.Q).x# > maxa.P.z)
= { < and > are transitive } = { < and > are antisymmetric }

(Vo ::mina.P.x < mina.S.z A maxa.P.x > maxa.5.z) (Vo ::mina.P.x = mina.Q).# A maxa.P.z = maxa.Q.x
= { Definition 5 (C) } = { Definition 3 (sandbags) }

PCS P=0Q

(End of Proof) (End of Proof)

Assertion 4: The sandbag | gg is a bottom element of the domain of sandbags.
(V P J—SB E P)
Proof:

(VP :: LsgCP)

= { Definition 5 (C) }
(VP ::(Ya:: minalgp.

N maxa. L gp.

= { Definition 6 (Lsp) }
(VP :: (Vx ::0<mina.Px A 00> maxa.P.x))

= { The range of mina contains only non-negatives }
(VP :: (V& ::00> maxa Px))

= { Lemmal }
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(VP :: (VY ::true))
= { Predicate calculus }
true

(End of Proof)
Assertion 5: Nothing is higher than a total sandbag in the partial order of sandbags.
tot.5 A SCP A extconsP = P =S
Proof:

tot.5 A SC P A extcons. P
= { Definition 5 (C ), Definition 7 (tot), and Lemma 3 }
(V2 ::mina.S.¢ = maxa.S.x)
A (Yz ::mina.S.x < mina.P.x A maxa.S.z > maxa.P.z)
A (Y& ::mina.P.x < maxa.P.z)
{ distribution of ¥ over A }
(V& :: mina.S.z = maxa.S.»
A mina.S.x < mina.P.x
A maxa.S.x > maxa.P.x
A mina.P.z < maxa.P.z)
= { Transitivity of = }
(V& :: mina.S.z < mina.P.x
A mina.S.x > maxa.P.x
A mina.P.z < maxa.P.z)
= { commutativity of <, commutativity of A }
(V& :: maxa.P.ae < mina.Sx
A mina.S.x < mina.P.x
A mina.P.z < maxa.P.z)
= { antisymmetry of < }
(V& :: mina.S.z = mina.P.x
A mina.P.z = maxa.P.z)
= { Definition 3 (sandbag) and extensionality }
S=P

(End of Proof)
Assertion 6: At most one set is consistent with a total sandbag.
tot.S = (V B,C :: sbecons.S.B A sbeons.S.C' = B =)
Proof:

(VB,C :: sheons.S.B A sheons.S.C' = B =)
= { Definition 4 (sbcons) }
(VB,C :: (V& ::mina.S.e < numa.B.x A maxa.S.x > numa.B.z)
A (Vz ::mina.S.e < numa.C.z A maxa.S.x > numa.C.x))
= B=C()
= {VYover A, and Lemma?2 }
(VB,C ::(Va :: mina.Se <numa.B.x A maxa.S.z > numa.B.x
A mina.S.z < numa.C.z A maxa.S.z > numa.C.z)
= numa.B.z = numa.C.z)
< { Transitivity and antisymmetry of < }
(VB,C :: (V& ::mina.S.x = maxa.S.z))
= { free variable, Definition 7 (tot) }
tot.S
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(End of Proof)
Assertion 7: Any set consistent with P is consistent with any approximation of P.
PCQ = (VB ::shcons.Q.B = sbhcons.P.B)
Proof:

(VB :: sbcons.Q.B = sbcons.P.B)
= { Definition 4 (sbcons) }
(VB :: (Vz ::mina.Q.2 <numa.B.x A maxa.().z > numa.B.x)
= (Vz ::mina.P.x <numa.B.x A maxa.P.x > numa.B.z))
< {VYover A }
(VB ::(Va:: mina.Q.x <numa.B.x A maxa.Q).z > numa.B.x
= mina.P.x < numa.B.x A maxa.P.z > numa.B.z))
< { Transitivity of < }
(V B,z :: mina.P.x < mina.Q.# A maxa.QQ.z < maxa.P.z)
= { Bisfree, Definition 5 (C) }
P CQ

(End of Proof)

A.2 The Properties of the Multi-Resolution Relational Operators

In this subsection we prove that all the MR relational operators are sound, monotonic, complete, and totality
preserving. This is Theorem 1 of the paper body. This fact is not surprising, since each operator is generated
from a relational operator by defining it to be the best possible result that cannot produce an inconsistency.
Each of the MR operators discussed in this paper is defined by an instance of Definition 11 or Definition 12.

Definition 11: For any binary set operator setop a binary sandbag operator setop’ applicable to ex-
ternally consistent sandbags can be generated by:

e mina.(setop’.P.QQ).x = (min B, C : sbcons.P.B A shcons.()Q.C' : numa.(B setop C).x)
e maxa.(setop’ . P.QQ).x = (max B, : sbcons.P.B A shcons.)Q.C' : numa.(B setop C).x) O

The MR operators N, U/, -/, x’ and X’ are generated from these two formulas from the relational
operators N, U, —, x, and X respectively.

Definition 12: For any unary set operator sefop, a unary sandbag operator setop’ applicable to an
externally consistent sandbag can be generated by:

e mina.(setop’.P).x = (min B : sbeons.P.B : numa.(setop.B).xz)
e maxa.(setop’.P).z = (max B : sbcons.P.B : numa.(setop.B).z) O

The unary MR operators o} (selection by any specific predicate #) and 7’ (projection by any specific list
of labels L) are generated from Definition 12 via the relational operators og and 7, respectively.

Definition 13: The guarded minimum quantification is defined by:
(ming : Pa: fa)=2 = Qy:Py: fy=z) AN Vy: Py: fy>ux)

and the guarded maximum is defined similarly. Quantification over two variables, as in the above Defi-
nition 11, is similarly defined by:

(mina,b : Pab: fab)=2 = (Jy,z: Pyz: fyz=2) AN Vy,z: Pyz: fyz>x) O

21



Note that (min a : P.a : f.a) is a defined value only if there exists some a such that P.a = true. Since
in the case of Definition 11 and Definition 12 the predicate quantified over is sbeons (consistency with the
argument sandbags), these operators are defined only for argument sandbags that are externally consistent.
In what follows, we will implicitly assume that all mentioned sandbags are externally consistent, and will
not formalize this important condition.

Because nothing is assumed about the function setop in these definitions, we are able prove that any
sandbag operator generated from Definition 11 and Definition 12 will have some properties we desire.

The definition of the unary multi-resolution operators and the proofs of their properties differ from those
of the binary operators only in notation. For the sake of brevity, we do not give the definitions or the proofs
for the properties of the unary operators. Technically, we may define selection, projection, or any other
unary operator by some binary operator that ignores its second argument. Then the assertions and proofs
developed in this paper work perfectly well for the unary case.

Another issue we ignore in the proofs below is that of the well-formedness and type-correctness of
expressions and operator applications. Although these are important in practice, they are orthogonal to the
properties of sandbags. We therefore simply assume that all expressions are well-formed and type-correct.

The proofs below require some lemmas about the quantifiers min and max that we state without proof.
If X CY, then the minimum of X is at most the minimum of Y. Using the guarded quantifier notation,
this can be stated:

(minag : ¢ €Y : fia) < (mina : a € X : f.a).

Since the guarded min quantifier notation uses logical predicates to define the set quantified over, this can
be restated in terms of predicates L and M:

Va::(L.a = Ma)) = (mina : Ma : fa)<(mina : La : f.a)

A number of such simple lemmas are required:

Lemma 4: For any predicates L and M and any function f:

e WVa::(Laa = Ma)) = (mina : Ma : fa)<(mina : L.a: fa)

e Wa::(Laa = Ma)) = (maxa : M.a: fa)>(maxa : La: fa) D
Lemma 5: For any predicates L and M and any function f:

(Vab::(La AN Mb) = a=b) = (mina : M.a : faa) = (maxa : La : fa) O
Lemma 6: For any predicates L and M and any function f:

e Lb= (mina: La: fa)< fb

e Lb = (maxa : La: fa)>fb O
Lemma 7: For any function f:

c=(mina : L.a: faa) = (Ab:: fb=¢) O

We now give four proofs that taken together prove Theorem 1.

Theorem 3: Any multi-resolution relational operator generated by Definition 11 is is sound.
sbcons. P.B A sbcons.P.C = sbeons.( setop’ .P.Q).(B setop C)
Proof:

sbeons.( setop’ .P.Q).(B setop C)
= { Definition 4 (sbcons) }
(V& :: mina.( setop’ .P.Q).x < numa.(B setop C).x
A maxa.( setop’ .P.Q).xz > numa.(B setop C).x)
= { Definition 11 }
(Ve :: (min E,F : sbcons.P.E A sbcons.Q.F : numa.(E setop F).x) < numa.(B setop C).x
A (max G, H : sbecons.P.G A sbcons.Q.H : numa.(G setop H).x) > numa.(B setop C').z)
< { Strengthening }
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(Va,f:: (min E F : sbcons. P.E A sbecons.Q.F : f.E.F.x)< f.B.Cx
A (max G, H : sbeons.P.G A sheons.Q.H : f.G.H.z)> f.B.C.x)
< { Lemma6 }
sbcons.P.B A shcons.Q.C

(End of Proof)

Theorem 4: Any multi-resolution relational operator generated by Definition 11 1s is complete.

(Vo (IB,C :shcons.P.B A sbcons.QQ.C': numa.(B setop C).x = mina.( setop’ .P.QQ).x)

A (AB,C :shcons.P.B A sbcons.QQ.C': numa.(B setop ).z = maxa.( setop’ .P.Q).x))) O
Proof:

(Vo (IB,C :shcons.P.B A sbcons.QQ.C': numa.(B setop ).z = mina.( setop’ .P.QQ).x)
A (AB,C :shcons.P.B A sbcons.QQ.C': numa.(B setop C).x = maxa.( setop’ .P.Q).x))
< { Lemmal3 }
(Vo (minB,C :sbecons.P.B A sbeons.Q.C': numa.(B setop C).x = mina.( setop’ .P.Q).x)
A (minB,C :sbhcons.P.B A sbcons.Q.C': numa.(B setop C).x = maxa.( setop’ .P.Q).z))
< { Definition 11 }
true

(End of Proof)
Theorem 5: Any multi-resolution relational operator generated by Definition 11 is is monotonic.
PCQ ASLCT = setop .P.SC setop’ .Q.T
Proof:

setop’ .P.SC setop’ .Q.T
= { Definition 4 (sbcons) }
(V& :: mina.( setop’ .P.S)
A maxa.( setop’ .P.S)
= { Definition 11 }
(Ve :: (min E | F : sbcons.P.E A shcons.S.F' : numa.(E sefop F))
< (min B, F : sheons.Q.F A sbeons.T.F' : numa.(E sefop F))
A (max G, H : sbecons.P.G A sbcons.S.H : numa.(G setop H))
> (max G, H : shcons.Q.G A sbeons. T.H : numa.(G setop H))
< { Lemma 4, Assertion 7 }
PCQ A SCT A
(Ve :: (max G, H : sbecons.P.G A sbcons.S.H : numa.(G setop H))
> (max G, H : shcons.Q.G A sbeons. T.H : numa.(G setop H))
< { Lemma 4, Assertion 7 }
PCQ A SCT

mina.( setop’ .Q.T)
maxa.( setop’ .Q.T).x)

x <
x>

(End of Proof)

Theorem 6: Any multi-resolution relational operator generated by Definition 11 is is totality preserving.

tot.P A tot.Q = tot.( setop’ .P.Q)
Proof:

tot.( setop’ .P.Q)
{ Definition 7 (tot) }
(V& :: mina.( setop’ .P.Q).x = maxa.( setop’ .P.Q).x)
= { Definition 11 }
(Ve :: (min E | F : sbcons.P.E A shcons.Q.F' : numa.(E setop F))
= (max G, H : sbcons.P.G A sbecons.Q.H : numa.(G setop H)))
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< { Lemmab }
(Ve ::(VE,F,G,H :: (sbcons.P.E A shcons.(Q.F') A (sbcons.P.G A sbecons.QQ.H)
= (F=G AN F=H)))
< { Predicate Calculus }
(Ve :: (VE G ::(sbeons.P.E A sbecons.P.G) = FE =()
A (VP H ::(sbeons.Q.F A sbeons.Q.H) = F = H))
< { Definition 7 (tot) }
(Vo tot.P A tot.))
= { xisfree }
tot.P A tot.Q

(End of Proof)

A.3 The Multi-resolution Relational Algebra is Sound, Monotonic, and Total-
ity Preserving

Three of the four important query language properties hold for the multi-resolution relational algebra. These
are Property 5 (QL Soundness), Property 7 (QL Monotonicity), and Property 8 (QL Totality Preservation).
This is Theorem 2 of the paper body. The proofs of these theorems are simple inductive proofs on the
structure of queries. In the proofs below, the inductive case for unary operators is always exactly analogous
to the case for binary operators. We have included it explicitly only because the proof of each subcase is at
most four steps long.

Throughout this subsection, let ¥ be a relational database, a set of N relations Y = {Ry, R1, Ra, ... Rn—1}-
Let Z be a multi-resolution relational database, a set of N sandbags Z = {Sp,51,52,..Sn-1}. For a
relational algebra expression F on Y, let E’ be constructed by substituting for each operator of E the
corresponding MR relational operator, and substituting .S; from Z for each relation R; mentioned in E.

We repeat the definition of the soundness property of a query language from Definition 12:

QL Soundness: A query language is sound if and only if for every expression F|
sbeons.(E'.Z).(E.Y) O
Theorem 7: The MR, relational Algebra has the property of soundness.
(VE :: sbeons.(E'.7).(E.Y))
Proof: We prove Theorem 7 by induction on the structure of the query E.
Base Case: £ = R;

true

=  { Construction of F’ and case assumption }
=S NE=R;

= { Application of query }
E'Z=5 NEY =R,

= { Definition of approximates on DBs }
E'Z=5 N EY =R; N sbcons.S; . IR;

= { Transitivity of equality }
sbeons.(B'.Z).(EY)

Inductive Case (i): F = (F; setop E,)

true
=  { Inductive Hypothesis }

sbeons.(E,".Z).(E;.Y) A sbeons.(E,".Z).(E,.Y)
=  { Theorem 3 }

sbeons.( setop’ (E/'.Z).(E,.Z)).((E; setop E,.).Y).
= { Construction of E’ and case assumption }

sbeons.(B'.Z).(EY)
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Inductive Case (ii): B = (setop.Fsus)

true
=  { Inductive Hypothesis }
sbeons.(Egup’-2) (Esup.Y)
=  { Theorem 3 }
sbeons.( setop’ (Esui'.2)).(setop.(Esyp.Y)).
= { Construction of E’ and case assumption }

sbeons.(B'.Z).(EY)
(End of Proof)

Let Z approximate Y, defined in Subsection 5.2 to mean: (Vi :4>0 A i< N : sbecons.S;.R;). We
repeat the definition of query language monotonicity:

QL Monotonicity: A query language is monotonic if and only if any improvements in the information
of the sandbags of 7 does not make E’ worse, for any query F.

If Z and X are MR databases, ZC X = E' ZCE'.X O

Theorem 8: The MR relational Algebra has the property of monotonicity. Let Z and X be MR
databases, Z = {SQ, Sl, 52, ~~~SN—1} and X = {Xo,Xl,Xz, ~~~XN—1}~

Z/CX = F'.ZCFE.X O
Proof: We prove Theorem 8 by induction on the structure of the query E.
Base Case: £ = R;

ZCX

= { Definition of “approximates” }
(Vi:i<0 A i>N: SCX;)

=  { Weakening }

S; C X,
= { Definition of E’ and case assumption }
EZCE.X
Inductive Case (i): F = (F; setop E,)
7 CX

= { Inductive Hypothesis }
ElZCE.X A ELZCE.X
= { Theorem 5 }
setop’ (E].Z).(E..Z)C setop’ (E].X).(EL.X)
= { Construction of E’ and case assumption }
EZCE.X

Inductive Case (ii): B = (setop.Fsus)

7 CX
= { Inductive Hypothesis }
= { Theorem 5 }

setop’ (B! . Z2)C setop’ (EL,,.X)
= { Construction of E’ and case assumption }

EZCE.X
(End of Proof)

We repeat the definition of the totality preservation property of a query language from Definition 12:
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QL Totality Preservation: A query language is totality preserving if and only if every ex-
pression is total (tot.(E’.7)) when every sandbag in 7 is total. O

Theorem 9: The MR relational Algebra has the property of totality preservation.
(V.S : S = Z[] : tot.S;) = tot.(E'.7)
Proof: We prove Theorem 9 by induction on the structure of the query E.
Base Case: £ = R;

(V S; 0 S = Z[Z] : ESZ)
=  { Weakening }
tot.S;

= { Case assumption, construction of E’ }
tot.(E'.7)

Inductive Case (i): F = (F; setop E,)

(V S; 0 S = Z[Z] : ESZ)
= { Inductive Hypothesis }
tot.(E/.Z) A tot.(E,'.Z)
=  { Theorem 6 }
tot.( setop’ .(E/.Z).(E,'.7))
= { Construction of E’ and case assumption }
tot.(F’.7)

Inductive Case (ii): B = (setop.Fsus)

(V S; 0 S = Z[Z] : ESZ)
= { Inductive Hypothesis }
tot.(E/.Z) A tot.(E,'.Z)
=  { Theorem 6 }
tot.( setop’ .(E/.Z).(E,".7))
= { Construction of E’ and case assumption }
tot.(E'.7)

(End of Proof)
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