
A Systolizing CompilerMichael BarnettDepartment of Computer SciencesThe University of Texas at AustinAustin, Texas 78712{1188mbarnett@cs.utexas.eduTR{92{13 May 1992

AbstractWe present an automatic scheme to generate programs for distributed-memory multiprocessors. We beginwith a source program that contains no references to concurrency or communication. The source programcorresponds to a systolic array: as such, it is a nested loop program with regular data dependences. The loopbounds may be any linear function of enclosing indices and of variables representing the problem size. Thetarget programs are in an abstract syntax that can be translated to any distributed programming languagewith asynchronous parallelism and rendezvous communication; so far, a translator to occam 2 has beencompleted.The scheme is based on a formal theory of linear transformations and has been formally veri�ed. Thecomplexity of the scheme is independent of the problem size. It has been implemented.In contrast to other compilation methods, the scheme derives every aspect of the distributed program,including i/o and communication directives. It represents the �rst complete software realization of generalsystolic arrays.Keywords: distributed memory, parallelizing compilers, program transformation, systolic arraysCopyright c
1992 by Michael Barnett. All rights reserved.

AcknowledgmentsAlthough a thesis is supposed to be one person's work, in reality there are many people one becomes indebtedto before �nishing. Their assistance varies from the inspirational to wrestling over the �ne details of proofs.I have had the good fortune to encounter many people who have helped me understand that which I wasattempting. If I cannot repay my debts, I can at least acknowledge them.My most profound debt is to my advisor, Chris Lengauer. Finding an advisor contains an element ofchance; I shall not expect to ever be so lucky again. He guided me not only in the technical details ofpursuing my research, but in my overall development as a scientist. My successes are due to him; my failuresresult from those times I did not follow his advice. I pay him the ultimate compliment from a graduatestudent: I wish every student could have such an advisor.The following people must be thanked and, at the same time, exonerated from the responsibility for anyremaining mistakes. My fellow graduate students were always ready to lend an ear and a critical eye: I wouldlike to especially thank John Bunda, Ken Calvert, Duncan Hudson, Ravi Jain, Nic McPhee, Raju Pandey,Randy Pollack, J.R. Rao, and Rob Read. Donald Prest, at the University of Edinburgh, helped with thegrammar for the distributed programming language and wrote the translator to occam 2. Prof. Alan Clineprovided a role model as well as more practical advice. Prof. Jim Daniel (UT-Math) helped to explain some�ne points of linear algebra.Many others in the �eld were quick and generous with their time when answering my unceasing questions.I would like to thank Hudson Ribas for help with the linear algebra model and many discussions on the �nepoints of his thesis. Michael Wolf was instrumental in pointing a way to a simpler answer and in explainingthe world of parallelizing compilers. Jingling Xue provided a lot of help with both the presentation andcontent. Lee-Chung Lu and Allan Yang explained their method and Crystal. Corinne Ancourt and PaulFeautrier responded quickly and patiently to my many vague, long questions.My committee was very helpful in many areas. Conversations with Don Fussell, Mohamed Gouda, andMartin Wong clari�ed many aspects of my thesis. Their suggestions helped me examine the relationshipbetween my work and other work in parallelizing compilers. I am especially thankful to my co-advisor,Robert van de Geijn. He o�ered immense encouragement and help. Whatever I understand of the practicalside of parallel computing and linear algebra is due to him. I am grateful for my time with Ham Richards;I hope to carry on his dedication to clarity and precision.My parents provided their un
agging support and sympathy even in the hardest times. My children,Alex, Zack, and Keri, kept me focused on the important things in life | and I still managed to �nish anyway.Most important was the support o�ered by my wife, Abby. She kept me going each time I was ready to quit.Without her belief in me, I would not have �nished.During the course of my dissertation research I have been �nancially supported, in part, by the LockheedMissiles and Space Corporation, grant no. 26-7603-35, the National Science Foundation, grant no. DCR-8610427, the O�ce of Naval Research, University Research Initiative, contract no. N00014-86-K-0763, anda grant from the Science and Engineering Research Council, grant no. GR/G55457.

Contents1 Introduction 11.1 The Problem Domain : 11.2 The Target Architecture : 21.3 Thesis Contribution : 21.4 Outline : 22 Notation 42.1 Logic : 42.2 Sets and Sequences : 42.3 Types : 42.4 Functions : 52.5 Linear Algebra and Polyhedra : 52.6 Miscellaneous : 63 The Source and the Model 73.1 The Source Program : 73.2 The Systolic Array : 83.3 The Geometric Model : 93.4 An Example: Sorting : 104 The Speci�cation of the Systolic Program 144.1 The Computation Processes : 144.1.1 The Process Space Basis : 154.1.2 The Computation Processes | Basic Statements : 154.2 The I/O Processes : 164.2.1 The I/O Processes | Layout : 164.2.2 The I/O Processes | Communications : 164.3 The Computation Processes | Data Propagation : 174.4 The Bu�er Processes : 185 The Systolization Scheme 195.1 The Process Space Basis : 195.2 The Computation Processes | Basic Statements : 215.2.1 Deriving inc : 215.2.2 Identifying the Faces : 225.2.3 Constructing and Solving the Equations for �rst and last : : : : : : : : : : : : : : : : : 225.2.4 Coping with Non-Integer Solutions : 235.2.5 Deriving the Bounds : 255.2.6 Augmenting the Basic Statement : 255.2.7 Extraneous Boundaries : 255.3 The I/O Processes | Layout : 265.4 The I/O Processes | Communications : 265.5 The Computation Processes | Data Propagation : 27i

CONTENTS ii5.6 The Bu�er Processes : 286 The Distributed Programming Language 296.1 Extra De�nitions : 296.1.1 Propagation : 296.1.2 Loading and Recovery : 296.1.3 Repeaters : 306.2 A Simpli�cation : 306.3 On the Translation to other Languages : 316.3.1 occam : 316.3.2 C : 316.4 Sorting: The Complete Program : 317 Unimodularity 337.1 Parallelizing Compilation : 337.2 A Common Framework : 337.3 Unimodular Transformations : 357.4 Non-Unimodular Transformations : 388 Example Programs 418.1 Linear Phase Filter : 418.1.1 The Source Program : 418.1.2 The Systolic Array : 428.1.3 The Process Space Basis : 428.1.4 The Computation Processes | Basic Statements : 438.1.5 The I/O Processes | Layout : 438.1.6 The I/O Processes | Communication : 438.1.7 The Computation Processes | Data Propagation : 448.1.8 The Bu�er Processes : 448.1.9 The Complete Program : 448.2 LU-Decomposition : 468.2.1 The Source Program : 468.2.2 The Systolic Array : 468.2.3 The Process Space Basis : 478.2.4 The Computation Processes | Basic Statements : 478.2.5 The I/O Processes | Layout : 488.2.6 The I/O Processes | Communication : 488.2.7 The Computation Processes | Data Propagation : 498.2.8 The Bu�er Processes : 498.2.9 The Complete Program : 509 The Implementation 539.1 The Source Format : 539.2 The Target Format : 5410 Related Work 5510.1 Systolic Design : 5510.2 Parallelizing Compilation : 5610.3 Loop Transformations : 5610.4 Architectural Restrictions : 5711 Conclusions 5811.1 Correctness : 5811.2 E�ciency : 5811.3 Unimodularity : 59

CONTENTS iiiA Theorems 60B Distributed Program Syntax 65C Notation Summary 67

List of Figures3.1 Sorting: The source program. : 113.2 Sorting: The index space. It contains only integer points. The thick lines represent the loopbounds. The four vertices are labeled v0 to v3. : 113.3 Sorting: The systolic array. : 123.4 Sorting: The index space with outward normals. : 135.1 Sorting: maxP : 205.2 Sorting: The index space and chords. The arrows represent the direction of inc. : : : : : : : : 225.3 Sorting: The index space and chords for the alternative place function. The arrows representthe direction of inc. : 245.4 Example of extraneous boundaries. : 256.1 Sorting: The distributed program. : 327.1 The index space for the example. : 367.2 The target space produced by a unimodular transformation. The thick lines represent theloop bounds of the target program. : 367.3 The target space produced by a non-unimodular transformation. : : : : : : : : : : : : : : : : 397.4 The convex hull produced by a non-unimodular transformation. : : : : : : : : : : : : : : : : : 407.5 Non-convex boundaries for the synchronous program. : 408.1 Linear phase �lter: The distributed program. : 458.2 LU-decomposition: The process space and its rectangular closure. : : : : : : : : : : : : : : : : 478.3 LU-decomposition: The basic statement of the distributed program. : : : : : : : : : : : : : : 508.4 LU-decomposition: The external bu�ers of the distributed program. : : : : : : : : : : : : : : 518.5 LU-decomposition: The distributed program. : 52
iv

Chapter 1IntroductionThis thesis is a contribution to the mathematics of program construction. Its concern is the mechanicalcalculation of parallel programs, in a formal setting that guarantees both correctness and reasonable e�ciency.We wish to construct parallel programs from high-level algorithmic speci�cations that do not contain thenotions of concurrency or communication; yet, the resulting programs must not be naive to the point ofimpracticality. We care about parallelism as a means of achieving fast execution.The calculation of a program is made possible by reliance on a formal theory. For instance, equationaltheories have been applied to the derivation of functional programs: the application of the theory transformssimple but ine�cient code to complex but e�cient programs [11]. There are many general theories forparallel programming, such as Unity [13], CSP [34], and CCS [57]. These theories are concerned with thebasic semantics of parallel systems, and are not usually used to derive programs mechanically. In order tojointly achieve the goals of mechanization and e�ciency, we restrict the problem domain until it is amenableto a formal approach to the infusion of parallelism.1.1 The Problem DomainSystolic design provides such a domain. A systolic array is a restricted form of parallel architecture [47]. Thepast decade has seen the development of formal, mechanical systems for the derivation of systolic arrays fromhigh-level algorithmic speci�cations [29, 35, 59, 62]. Working within the domain of systolic design enablesus to achieve the �rst of our goals: correctness.Traditionally, systolic arrays have been hardware devices | custom VLSI chips | designed to implementspeci�c algorithms. A systolic array comprises a set of simple processors laid out in a regular topology. Alldata connections are local and the parallelism is usually synchronous. (Synchrony is not required [48], butit simpli�es VLSI implementations of communication.) These restrictions require algorithms that exhibitsimple and regular data access patterns [68].Recent developments in parallel architecture are promising to deliver processor networks that resembleprogrammable versions of systolic arrays. They are massively parallel, with hundreds or thousands of pro-cessors connected in a regular topology with simple, e�cient communication links between neighbouringprocessors [1, 40, 70, 73]. The cost of communication, relative to the cost of computation so dreadfully highin earlier machines, has come within one order of magnitude, and future designs promise to improve theratio even further. This presents the possibility of achieving the second of our goals: e�ciency.There are further reasons for investigating a connection between systolic arrays and processor networks.The non-determinism in parallel programs removes even the theoretical possibility of achieving correctness byexhaustive testing. Thus, at least some mechanical help in the programming task becomes urgent. Programsthat are produced by a compiler that has been proven correct provide a degree of con�dence and convenienceunavailable by any other method.Programs meeting the restrictions imposed in systolic design are ideally suited for execution on the newgeneration of general-purpose processor networks. Algorithms suitable for systolization arise in diverse areassuch as signal, image, and language processing, graphics, and linear systems.1

CHAPTER 1. INTRODUCTION 2The parallelization of programs is certainly not a new idea. There has been a great deal of researchin the area of parallelizing compilation [46]. It has di�ered from our approach in two respects. Althoughparallelizing compilers also produce parallel programs, it is only recently that they have become availablefor asynchronous distributed-memory multiprocessors, i.e., processor networks. Before, they targeted vectorprocessors (supercomputers) and sometimes shared-memory multiprocessors [77]. Also, as a result of ac-cepting more general programs than those that can be implemented on systolic arrays, their design was notbased on a theoretical framework. However, there have been theoretical developments which have led to arecent convergence between the �elds of systolic design and parallelizing compilers. We discuss some of thecommonalities in a later chapter.Our contribution is a formal method for transforming programs expressed in a high-level notation intoprograms that are suitable for execution on distributed-memory asynchronous processor networks. Thismethod is based on a formal theory in which transformations can be proven correct. Starting with a sourceprogram and a systolic array derived from the program, we completely and mechanically generate every partnecessary for a software implementation. We have implemented our method and used it to derive a numberof programs.1.2 The Target ArchitectureWe envision that our systolic programs are executed on a rectangular mesh of processors, with only the borderprocessors connected to i/o devices. This matches the architectural model of modern processor networks;even though some of the newer machines allow i/o to arbitrary processors [73], performing i/o only at theborders reduces network contention.The systolic programs that we derive can be implemented in any distributed programming language thathas the following constructs:� a construct for the creation of parallel processes indexed over a linear dimension, i.e., arrays of processes;� a construct for the creation of communication channels indexed over a linear dimension, i.e., arrays ofchannels;� the ability to enforce synchronous communication, e.g. by rendezvous primitives;� standard constructs and combinators of general-purpose imperative programming languages.Examples are W2 [5], occam [38], and C enhanced with communication directives [23].1.3 Thesis ContributionThis thesis presents an implementable method for the parallelization of programs for distributed-memoryprocessor networks. The method is based on a formal theory and has been formally veri�ed. It is intendedfor programs that do not already specify concurrency or communication explicitly. The method expectstwo sources: the program and an abstractly speci�ed systolic array that it corresponds to. A number ofautomatic methods for deriving the systolic array exist; some have been implemented.Traditionally, systolic arrays have been realized in hardware; this thesis presents the �rst completesoftware realization of general systolic arrays (based on uniform recurrence equations), including all i/oand data communications. Previous work either derived only partial aspects of a distributed program or wasrestricted to certain architectures. We have fully implemented the method and used the implementation toderive several non-trivial programs that are beyond the scope of previous methods.1.4 OutlineWe begin by introducing in Chapter 2 notation that will be used throughout the thesis. Later chapters alsointroduce further, local notation. Chapter 3 presents the inputs to the compilation scheme and the modelin which the scheme operates. A general speci�cation of basic properties of systolic arrays and distributed

CHAPTER 1. INTRODUCTION 3programs is given in Chapter 4. Then, in Chapter 5 we present our compilation method, with an exampleillustrating each step. Chapter 6 introduces the programming notation used to express the distributedprograms; we use a general notation that can be translated directly to any particular programming language.Unimodularity, a key concept in the parallelization of programs, provides a means to compare our approachwith others in the �eld; it is introduced and explained in Chapter 7. Several features of the compilationscheme do not appear in Chapter 5, so in Chapter 8 a few further examples are shown to illustrate thesepoints. Our implementation is brie
y described in Chapter 9. Finally, Chapter 10 presents a generaldiscussion on other work in the �eld of parallelization, and our conclusions are presented in Chapter 11. Theappendices contain all theorems referred to in the text and their proofs (Appendix A), a BNF grammar forour distributed programming notation (Appendix B), and a summary of all the notations used in the thesis(Appendix C).

Chapter 2NotationIn this chapter, we present the notation used throughout the thesis. Later chapters introduce additionalnotation and de�nitions; they are all collected for reference in Appendix C.2.1 LogicThe logical connectives are: ^ (conjunction), _ (disjunction),) (implication), ((follows from),and � (equivalence). The logical constants are denoted by true and false. Quanti�cation over a dummyvariable, x, is written as (Q x : R:x : P:x), following [21]. Q is the quanti�er, R is a function of x rep-resenting the range, and P is a term that depends on x. When context makes the range clear, it will beomitted. The symbol A is used for universal quanti�cation, E for existential quanti�cation. We will use(N x : R:x : P:x) to stand for the number of values of x for which P:x holds when R:x holds. Formally, itis a shorthand for (sum x : R:x ^ P:x : 1), where sum is the summation quanti�er, generalizing addition.In general, any binary, commutative, associative operator that has an identity element may be used as aquanti�er; quanti�cation makes it an operator of arbitrary arity [21]. For instance, the functions min andmax will be used as quanti�ers, with �1 and +1 as the identities, respectively.Proofs and derivations are written, in the style of [21], as sequences of formulae connected by the symbols= ,) , and (, which have the following meanings:= The two formulae are equivalent.) The �rst formula implies the second.(The �rst formula follows from the second.Usually the connectives will be on a separate line followed by a hint enclosed in curly braces.2.2 Sets and SequencesThe notation (set x : R:x : P:x) is equivalent to the more traditional fP:x j R:xg. N, Z, Q, and R representthe set of natural numbers, the set of integers, the set of rational numbers, and the set of real numbers,respectively. An ordered sequence with n elements is written: (seq i : 0� i<n : x:i). Fixed-size sequences,e.g., pairs or triples, are framed with angled brackets.2.3 TypesThe notation x :: t denotes that the variable x has type t. The type of a function f is denoted f :: t0 �! t1,meaning that its domain has type t0 and its range has type t1. We use a naming scheme for implicit typing.When not otherwise indicated, the following conventions hold: integers are denoted by the letters i throughn, real numbers by greek letters, and vectors (points) by the letters w through z.4

CHAPTER 2. NOTATION 5Thus, m�n is the product of two scalar quantities, while m�x is the multiplication of a point by a scalar;it represents the component-wise multiplication by m. The symbol = is used for division; it may appear intwo di�erent contexts. m=n denotes the ordinary division of two numbers. x=m represents the division ofeach component of x by the number m, i.e., (1=m) � x. We denote the integer m such that m � y = x byx == y. It is well-de�ned only if x is a multiple of y. The notation (x; i : e) refers to a point equal to x, exceptthat the i-th component is expression e.2.4 FunctionsThe application of a function f to an argument x is denoted by f:x. Function application is left-associativeand has higher binding power than any other operator. A function of multiple arguments may be writtenin a curried form, e.g., for a function f with two arguments: f:x:y. We will occasionally use the lambdanotation for functions: given an expression e with a free variable x, the notation (�x:e) represents a functionof one argument whose value upon application to x0 is e with all occurrences of x replaced by x0. A linearfunction is uniquely represented by a matrix [50]. We shall attribute the properties of the matrix to thefunction. For instance, the set of points that a linear function f maps to zero will be called the null spaceof f and denoted null:f . Other properties include the dimensionality and rank.A function de�ned on the elements of a set may also be applied to a subset; in this case, the value isthe set of values obtained by the pointwise application of the function to the subset. For example, given afunction, f :: A �! B, and a subset C of A:f:C = (set x : x 2 C : f:x)2.5 Linear Algebra and PolyhedraWe identify n-tuples with points in n-space; we use the terms point and vector interchangeably. Primarilywe will be concerned with points whose coordinates are all integer. x:i denotes the i-th coordinate of pointx. For two points x and y, both n-vectors, x�y denotes their inner product:x�y = (sum i : 0� i<n : x:i � y:i)and is unde�ned when they do not have the same number of components.A line is an in�nite set of points. Given two points, x and z, z 6= 0, it is de�ned as:line:x:z = (set � : � 2 R : x+ � � z)A point may indicate a direction; then we think of it as a vector whose source is the origin and whose targetis the point. A line is de�ned by the point x and the direction of the vector z. We may also regard a pointas de�ning a �nite line segment | we call it a chord | consisting of the points between 0 and the point. Apoint w lies on the chord de�ned by x if (E t : 0 � t � 1 : w = t � x). We denote this by (w on x).For a matrix M , M:i refers to row i; thus, the element in row i and column j is written M:i:j (matriceswill always be denoted by capital letters). The point whose components are all zero is denoted by 0, theidentity matrix by I; the context indicates their dimensionality. The multiplication of a matrix M and avector x is denoted by juxtaposition: M x, as is the multiplication of two matrices. The transpose of amatrix M is denoted MT; when it is invertible, its inverse is M�1.Each vector x de�nes a hyperplane to which x is a normal; x together with an integer c de�ne aparticular hyperplane located in the vector space x belongs to. The hyperplane is the set of points:(set y : x�y = c : y).A polyhedron is a set of points de�ned by a �nite set of linear inequalities, when it is bounded, it is apolytope. When a polyhedron is de�ned by the set of linear inequalities (also called a system of inequalities):Ax � beach row of A together with the corresponding component of b de�ne a hyperplane that is a supportingboundary of the polyhedron [33]. The row of A is the outward normal to the boundary.

CHAPTER 2. NOTATION 62.6 MiscellaneousWe use the guarded command notation for conditionals [20]. The guard else represents the negation of thedisjunction of all of the other guards in the command. We often use a function which determines the sign ofa number: sgn:m = if m < 0 ! �1[] m = 0 ! 0[] m > 0 ! +1�We call the constants �1 and +1 unit values. The notation a j b is de�ned as:a j b = (E c : c 2 Z : a � c = b)In programs, this is expressed as: b mod a = 0.

Chapter 3The Source and the ModelOur method expects two sources: a program and a systolic array that corresponds to it. The systolic arrayis assumed to be correct with respect to the source program. In this chapter, the format for acceptablesource programs is given in Section 3.1. In Section 3.2, systolic arrays are de�ned and explained. Then, thegeometric model used for both is presented in Section 3.3. An example is presented in Section 3.4; it will beused to demonstrate the method in Chapter 5.3.1 The Source ProgramThe source program is a set of r nested loops:for x0 = lb0 st0 ! rb0for x1 = lb1 st1 ! rb1. . .for xr�1 = lbr�1 str�1 ! rbr�1(x0; x1; : : : ; xr�1)with a loop body, called the basic statement, of the form:(x0; x1; : : : ; xr�1) : if B0:x0:x1: � � � :xr�1 ! S0[] B1:x0:x1: � � � :xr�1 ! S1[] � � � ! � � �[] Bt�1:x0:x1: � � � :xr�1 ! St�1�Let the range of ` be 0�`<r, and the range of i be 0� i<t. The bounds lb` (left bound) and rb` (rightbound) are linear expressions in the loop indices x0 to x`�1 (0�`<r), in integer constants, and in a set ofvariables called the problem size.Note: Our method works by the symbolic manipulation of linear equations. Thus, we even allow in�niteloop bounds. During the symbolic simpli�cation, an in�nite loop bound is treated like any other programvariable; we denote it by infty. If the in�nite loop bound remains after simpli�cation, we instantiate it withthe value 1 and apply the arithmetic rules for in�nity, e.g.,1�const=1. Restrictions are imposed duringcompilation to ensure that the target program is implementable. (End of Note)The loop strides st` are either �1 or +1; loops with other strides may always be normalized to unit strides.The guards Bi are boolean functions; the computations Si may contain composition, alternation, or iterationbut contain no non-local references other than to a set of global variables indexed by the loop indices. Vis the set of names of these variables. We look at the loop body as a procedure parameterized solely by7

CHAPTER 3. THE SOURCE AND THE MODEL 8the loop indices. Neither the values of the loop indices nor the values of the problem size variables may bechanged by any statement in the loop body. The left bound and right bound of each loop are related by:(A ` : 0�`<r : lb` � rb`)Interpreted as a sequential program, if the stride is positive, the loop is executed from the left bound to theright bound; if the stride is negative, it is executed from the right bound to the left bound. This implicitcase distinction at this point is unorthodox, but it simpli�es later notation. An instantiation of the basicstatement with values for the loop indices, each within its bounds, will also be called a basic statement whenno confusion should result. If the di�erence is important, we will refer to the former as an instance of thebasic statement.The set V contains the data of interest: we call them indexed variables rather than arrays (to avoidconfusion with the term systolic array). An indexed variable is a mapping from a �nite subset of Zn to a setof elements; n is the dimension of the indexed variable. The domain of the mapping is not any arbitrarysubset of Zn; in each dimension, it is a non-empty sequence of consecutive integers. The elements of therange are called the elements of the indexed variable. They may be of any type, but are usually either
oating point numbers (of type
oat) or integers (of type int). We require all indexed variables to havedimensionality r�1.A stream represents the set of elements referred to by an occurrence of the name of an indexed variablealong with an index vector. An index vector is an (r�1)-tuple; each component is a linear expression of theloop indices. A stream s is written as a triple hv; Ms; o�si, where v is the name of the indexed variable,Ms is a linear function from Zr to Zr�1 and o�s is a constant vector in Zr�1. Ms and o�s together de�ne theindex vector. Ms is called the index map and o�s is the o�set. The index map is written either as a linearfunction or as an integer matrix.For instance, if the indexed variable A is written in a source program (with three loops whose indices arei, j, and k) as A[i+k+1,j-k-2] then:hv; Ms; o�si = hA; � 1 0 10 1 �1 � ; (1;�2)iThe index map (which can also be written (� (i; j; k):(i+k; j�k))) has dimensionality (r�1)�r and musthave rank r�1. The same indexed variable may appear with di�erent index vectors, but certain criteriamust be met; these are found in [9].These restrictions are a result of the limitations of systolic arrays. As we shall see, streams are sets ofvariable elements that travel through a systolic array with a common (constant) direction and speed, beingread and/or written by the processors they encounter. Streams whose index maps in the source programhave less than r�1 dimensions in their range are given extra indices during the derivation of the systolicarray, which enforce the required pipelining of their accesses. A stream whose rank is less than r�1 willbe split into several streams (for example, see LDU-decomposition in [9]). Our approach does not permitr-dimensional variables directly, but they can be added by using two index vectors, e.g., in matrix-vectormultiplication, a program with two loops, the matrix could be indexed as a one-dimensional vector, each ofwhose components are one-dimensional vectors.Depending on its index map and o�set, each stream references some subset of the elements of the indexedvariable. We call this subset the access space of s and denote it by As, for stream s.We require each basic statement to refer to some element of each stream [9, 78] and each element of astream to be accessed by some basic statement.3.2 The Systolic ArrayTwo distribution functions completely determine a systolic array; they are called step and place. Together,they are referred to as the space-time mapping. An additional useful function that is de�ned in terms ofstep and place is
ow. We restrict ourselves to linear systolic arrays; that is, we assume place and step tobe linear functions. Several automatic systems for deriving systolic arrays guarantee the optimality of step[14, 30, 35, 59]. Let S be the set of streams and Op the set of basic statements.

CHAPTER 3. THE SOURCE AND THE MODEL 9step :: Op �! Z speci�es the temporal distribution; elements mapped to the same step number are performedin parallel. step de�nes a partial order that respects the data dependences in the source program.place :: Op �! Zr�1 speci�es the spatial distribution. The range of place is called the process space anddenoted as P. It has one dimension fewer than the number of arguments of the basic statement (i.e.,the number of nested loops). The rank of place is r�1.
ow :: S �! Qr�1 speci�es the direction and distance that stream elements travel at each step. It is de�nedas follows: pick an arbitrary element of stream s; if it is accessed by distinct instances of the basicstatement op0 and op1 then
ow:s = place:op1�place:op0step:op1�step:op0
ow is well-de�ned only if the choices of the pair hop0; op1i and of the element of stream s are immaterial.step is the primary function that determines a systolic array. Once it has been derived, many di�erent placefunctions are possible; each must be compatible with the partial order de�ned by step. This is formallystated as follows: (A op0; op1 : op0; op1 2 Op :place:op0 = place:op1) (step:op0 6= step:op1 _ op0 = op1)) (3:1)That is, two distinct statements projected onto the same point must not be assigned the same step number:processes are sequential. As a whole, the space-time mapping is a function from Zr to Zr; Formula 3.1requires it to be injective. It distributes the operations in space-time in such a way that the data arepipelined through space-time, encountering each process (in space) exactly when they are needed (in time).Rather than phrasing our de�nitions in terms of an abstract unit distance, we require that adjacent stepsdi�er by 1.Systolic arrays do not allow shared access to a variable, either in reading or in writing. If two basicstatements refer to the same element of a variable, that element must move in accordance with the way placeprojects those basic statements. Function
ow describes this movement. It follows from the regularity ofthe source program and the linearity of step and place that the movement of a stream element must be in aconstant direction and at a constant speed; i.e.,
ow is well-de�ned (Theorem 8 of Appendix A and Theorem2 of [35]). At present, our compilation scheme is restricted to systolic arrays with neighbouring connectionsonly. Predicate nb is de�ned on Zn and, when applied to the di�erence of two points, identi�es whether theyare neighbours: nb:x = (A i : 0� i<n : j x:i j � 1) (3:2)Connectivity is restricted to constrain the range of
ow: this is to ensure that two processes that access astream element that is not accessed by any processes in between are neighbours in the process space. Asa result, our systolic programs use only nearest-neighbour communication. Fractional
ows are permitted:a stream element may take several steps to reach a neighbouring process; the respective communicationchannel must have bu�ers to hold these elements on their journey. Our formal requirement on
ow is:(A s : s 2 S : (E n : n > 0 : nb:(n �
ow:s))) (3:3)3.3 The Geometric ModelNot surprisingly, given the geometric nature of systolic arrays, the source programs are modeled geometrically.The loop bounds of the source program de�ne the boundaries of a convex polyhedron in r-dimensional space.(When the loop bounds are �nite, the polyhedron is a polytope.) The statements of the program correspondto the set of integer points within the polyhedron. For simplicity, we require every integer point to correspondto a statement. (This condition means that the stride of each loop is either �1 or +1, a requirement thatcan always be met by scaling the loop strides.) The polyhedron is called the index space and denoted byI; when there is no confusion, it will refer either to the entire polyhedron in Rr or just to the enclosed set

CHAPTER 3. THE SOURCE AND THE MODEL 10of integer points. We shall name its elements x, x0, etc. Each axis of I corresponds to a loop index of thesource program; the axes are ordered from the outermost to the innermost loop.There is a one-to-one correspondence between I and Op. This correspondence will be exploited by usingelements from I and Op interchangeably. In the model, step and place are linear functions over Rr (that is,the source program is injected into the space Rr , the systolic array into the space Rr�1). The loops in thedistributed program, like those in the source program, require integer-valued loop indices. We ensure thatall values that we derive are integer and thus can be interpreted as program components.A loop bound is a linear expression comprising integer constants, problem size variables, and enclosingloop indices. We represent it by a pair hc; di; c is a row vector in Z1�r containing the coe�cients of the loopindices (with 0 for all absent indices), while d is the rest of the linear expression. We denote the left boundof loop `, 0�`<r, by L`, the right bound by R`. When the distinction is irrelevant, we write bound `.We require the concept of the application of a loop bound to a point x. The application of a loop boundbound = hc; di to a point x is de�ned by:bound :x = c�x + d (3.4)The standard notation for describing polyhedra is by a system of linear inequalities using matrix notation.We derive such a description from the source program, using a simpli�ed version of Ribas' notation [69]: weknow that our loop strides are �1 or +1 and that, for each `, L` � R`. We construct a matrix E and avector f from the left bounds of all loops, and a matrix G and a vector h from the right bounds. Row `of each matrix is the vector c from the corresponding loop ` (i.e., the left bound of loop ` is used for E,the right bound for G). Each component ` of vector f is the function d from the left bound of loop `; inh it is taken from the right bound. f and h are linear expressions. These matrices and vectors are used torepresent the index space. By the de�nition of the loop bounds:(A `; x : 0�`<r ^ x 2 I : L`:x�x:`�R`:x)which becomes in matrix form: E x+ f � x � Gx+ hSimplifying the inequalities, the matrix form can be rewritten as:� E � II �G � x � � �fh � (3.5)We denote the matrix on the left by A, the vector on the right by b. We can now formally specify the indexspace as: I = (set x : x 2 Zr ^ Ax � b : x) (3.6)Our polyhedral index space is thus the set of points x satisfying Inequation 3.5. Matrix A and vector b arecalled the normal form of the index space [69]. (For typographical reasons, we often write the normal formas two inequalities; one for the left bounds, the other for the right bounds.) Each row in A is the outwardnormal to the associated boundary of the index space [33, 51]. A vertex of the index space, i.e., an extremepoint, is the intersection of r boundaries, each from a distinct loop. We say the vertex is de�ned by theboundaries; since each boundary is speci�ed by its normal, we use the same term for the normals. There are2r vertices; they result from taking all possible combinations of loop bounds, component ` of each vertex iseither the left bound or right bound of loop `. Every point x within I meets all of the inequalities in A andb; for the points on a boundary, the corresponding row in Inequation 3.5 becomes an equality.3.4 An Example: SortingIn Chapter 5, the example of sorting is used to demonstrate each part of the compilation scheme. Here,we present the program and demonstrate its representation in the model. The source program is displayedin Figure 3.1. The example is from Rao [67], who shows that, although the source program is a selectionsort, di�erent place functions induce di�erent sorts. The index space is depicted in Figure 3.2. The array

CHAPTER 3. THE SOURCE AND THE MODEL 11
for j = 1 1! nfor i = j 1! nif i = j ! m[j] := x[i][] i 6= j ! m[j]; x[i] := max(x[i];m[j]);min(x[i];m[j])� Figure 3.1: Sorting: The source program.

-6 ji 1 n1n tttt ttt tt t������v0v1 v2v3ss s
Figure 3.2: Sorting: The index space. It contains only integer points. The thick lines represent the loopbounds. The four vertices are labeled v0 to v3.

CHAPTER 3. THE SOURCE AND THE MODEL 12step:(j; i) = j + i place:(j; i) = i� jFigure 3.3: Sorting: The systolic array.x contains the unsorted elements. The array m is initialized during the execution of the program. Upontermination, it contains the sorted elements. We refer to each indexed variable by its name: to m[j] by mand to x[i] by x.Rao considers three di�erent place functions. We use the third, which is the only one that is not aprojection along one of the axes of the index space. Such projections correspond to a simple permutation ofthe loops in the source program; code generation becomes likewise simple. The systolic array is depicted inFigure 3.3: step corresponds to a wavefront of 45� in the index space; place is a diagonal projection whichtakes advantage of the triangularity of the index space: only n processes are created (in a rectangular indexspace the same projection would create 2 � n� 1 processes).First, we demonstrate how to extract the coe�cients from the loop bounds. The vector c for eitherbound of the outer loop is always 0. For the inner loop, the vector c for the left bound is (1; 0) because thecoe�cient of j in that bound is 1. For the right bound, the vector is (0; 0) since the coe�cient of j is 0. Thevalue d for the left bound of the outer loop is 1 from the constant in that loop bound; thus, the value for dfor both right bounds is n. Summarizing:` index L` R`0 j h0; 1i h0; ni1 i h(1; 0); 0i h0; niEach row of E is the corresponding vector c from the left bounds, while G is constructed from the rightbounds. The vectors f and h are constructed from the constants in the loop bounds: the values from theleft bounds are used for f and those from the right bounds for h. Thus, the matrices and vectors in theexample are: E f G h� 0 01 0 � � 10 � � 0 00 0 � � nn �Forming E � I, I �G, and �f : E � I I �G �f� �1 01 �1 � � 1 00 1 � � �10 �yields the normal form for the index space:A = � E � II � G � = 2664 �1 01 �11 00 1 3775 b = � �fh � = 2664 �10nn 3775Figure 3.4 depicts the normals for the example. Note that the normal (1; 0) is for a boundary which consistsof just one point. Such boundaries, called extraneous, are discussed in Section 5.2.7; they may produce aslight ine�ciency, but do not alter the correctness of the systolic programs. There are four vertices in theexample. We name them with the bounds which de�ne them:v0 = (L0; L1) v1 = (L0; R1) v2 = (R0; L1) v3 = (R0; R1)Once the normal form for the index space has been constructed, and the vertices identi�ed, the compilationmethod may be applied. Since the normal form is a collection of linear inequalities, it is possible to have

CHAPTER 3. THE SOURCE AND THE MODEL 13
-6 ji 1 n1n ������6 -@@@R�Figure 3.4: Sorting: The index space with outward normals.source programs with piecewise linear loop bounds. Such bounds translate to multiple rows of inequalitiesin the model. The identi�cation of the vertices becomes a problem with such an approach. As our methoddepends heavily on their identi�cation, we constrain ourselves to source programs with linear loop bounds.

Chapter 4The Speci�cation of the SystolicProgramThis chapter presents the basic properties of our distributed (systolic) programs, derived from the basicproperties of source programs and systolic arrays and based on the linearity of the space-time mapping. Forsimplicity, we identify processes with processors; later stages of compilation may merge several processesonto a single processor.Our systolic programs do not emulate the behaviour of systolic arrays exactly. Unlike a systolic array,which is synchronous, the processes are composed by an asynchronous parallel operator. The behaviourthat is imposed by the synchrony of the systolic array is governed by the
ow of data in the asynchronousprogram. We must ensure that the relaxation of the lock-step behaviour does not change the computation'sbehaviour. A theorem to this e�ect is proved in [54]. Our programs are related to wavefront arrays, whichare asynchronous hardware data-
ow architectures [48].The process and communication structure of the systolic program mirrors that of the systolic array; eachprocess is identi�ed with a point in (r�1)-dimensional Euclidean space and communication channels connectit only to its immediate neighbours. Communication is synchronous: both the sender and receiver areblocked from further execution until the communication has taken place. We assume that communicationson distinct channels may be performed concurrently.Our programs contain three types of processes: computation processes, i/o processes, and bu�er processes.The computation processes execute the basic statements of the source program. They are speci�ed furtherin Section 4.1. They also cooperate in passing along data that is not accessed by them, but accessed by otherprocesses. The code to accomplish this is separate from the computation code; it is presented separately, inSection 4.3.Input and output occur only at the border of the processor array; de�ning separate i/o processes at thosepoints makes the code for all computation processes uniform. Section 4.2 discusses the speci�cation for thei/o processes.Lastly, our approach to communication necessitates bu�er processes. These are processes needed eitherto pass data from the i/o processes to the computation processes, or to hold multiple data elements betweencomputation processes. Both kinds of bu�ers are described in Section 4.4.4.1 The Computation ProcessesThe speci�cation of the computation processes is split into two parts: the spatial layout of the processes,and the computations for each process.We represent each process with a language-independent for loop, called a repeater, which enumerates asequence of computations. A repeater is a triple:< �rst; last; inc >14

CHAPTER 4. THE SPECIFICATION OF THE SYSTOLIC PROGRAM 15where �rst and last are the �rst and last element of the sequence, and inc speci�es how each element isderived from its predecessor. We will show that �rst and last are parameterized over the process space,i.e., that they are expressions in the coordinates of the process space; inc, on the other hand, is a constantexpression independent of the process space. The concept of a repeater was previously introduced with aslightly di�erent but equivalent de�nition in [54].4.1.1 The Process Space BasisThe distributed program contains one process for each point in the range of place, i.e., in the process space.The process space can be an arbitrary polytope (it is the linear projection of a polytope); it is easier to specifyits rectangular closure. (The process space is speci�ed in the distributed program by parallel loops; only arestricted class of polytopes can be speci�ed this way if the loop bounds are linear. Also, this correspondsto our target architecture as outlined in Section 1.2.) We create a process for each point in the rectangularclosure; the points that do not lie in the range of place execute the empty program. The rectangular closureis speci�ed by two points: minP and maxP. They have the following property:(A i : 0� i<r�1 : minP :i = (min x : x 2 I : place:x:i))(A i : 0� i<r�1 : maxP:i = (max x : x 2 I : place:x:i))These two points will be referred to as the process space basis. The basis de�nes the rectangular closure ofP: rect :P =(set z : z 2 Zr�1 ^ (A i : : minP:i�z:i�maxP :i) : z) (4:1)Obviously, P � rect:P. The points in rect:P but not in P correspond to processes that do not execute anybasic statements but, as already pointed out, are involved in the movement of data.4.1.2 The Computation Processes | Basic StatementsThis section is concerned only with the de�nition of the computations at the points in P. Each processis also involved in the movement of data inside the processor network. Because the movement of data isindependent of the computation code, it is discussed in a separate section.Each basic statement corresponds to a point in I. The sequence of basic statements that a process y inP executes corresponds to the set of points:chord :y = (set x : x 2 I ^ place:x = y : x)The linearity of place ensures that chord :y is a straight line segment (Theorem 4). When there is no confusion,chord :y also refers to the extension of the segment to a line.Consider a process y. The repeater component �rst is the point x in chord:y with the minimum stepvalue of all points in chord:y:�rst:y = xwhere step:x = (min x0 : x0 2 chord:y : step:x0) ^ x 2 chord:yNote that �rst depends on y. The component last is the point with the maximum step value:last:y = xwhere step:x = (max x0 : x0 2 chord:y : step:x0) ^ x 2 chord:ySince a chord is a convex domain and step is a linear function, the step value reaches a minimum at one endof the chord and a maximum at the other end. These two points may not lie on a boundary of the indexspace. Consider the extension of the chord :y to an in�nite line. When �rst or last do not lie on a boundary,they are the points closest to the intersection of the line with a boundary of the index space. To calculatethem, the intersection of the extension is computed and then perturbed to the nearest integer-valued pointalong the line towards the interior of I. We note that the intersections of a chord:y with the boundaries ofthe index space are at points which lie on boundaries to which chord:y is not parallel. (The points may alsobe on other boundaries to which it is parallel, if chord:y lies entirely on such a boundary.)

CHAPTER 4. THE SPECIFICATION OF THE SYSTOLIC PROGRAM 16The density of I (the fact that every point with integer coordinates within the given bounds is in I) andthe linearity of place ensure that there is a well-de�ned \unit" distance, a vector in Zr, between any twoadjacent points along any chord:y (Theorem 7 and the following corollary). We call this distance inc. It isalso called the iteration vector [67]. In order to specify it, we de�ne a precedence relation over the pointsthat lie on chord:y: x � x0 = x; x0 2 chord:y ^ step:x < step:x0 (4:2)Since the lines of all y in P are parallel, inc is well-de�ned; that is, it does not depend on y. inc must meetthe speci�cation: (A w; z : w � z ^ :(E x : : w � x ^ x � z) : w + inc = z) (4:3)w and z are adjacent points on chord:y. From the speci�cation of inc, we prove that inc 2 null:place(Theorem 5) and step:inc > 0 (Theorem 6).4.2 The I/O ProcessesWithin the layout, the data on which a systolic program operates is organized in streams. In the host, it isorganized as indexed variables (as declared in the source program). The input and output processes act asan interface. The identity of an element of an indexed variable is not available inside the systolic array; astream element consists only of its value. Each stream has its own input and output processes. At a laterstage, these may be merged into fewer processes; our systolic program is still somewhat abstract.Following a corresponding restriction on systolic arrays, input from and output to the host is allowed onlyat the boundaries of the process space. In fact, we will allow i/o only at the boundaries of the rectangularclosure of the process space. Each i/o process communicates with a single process on the boundary.Given that each i/o process is for a particular stream, that it performs exclusively input or exclusivelyoutput, and that the process with which it communicates is �xed, a communication is completely speci�ed bythe identity of the element. A repeater for an i/o process for stream s represents a sequence of communicationsand is written: < �rsts; lasts; incs >We stress again, that we see our repeater speci�cations of systolic programs still as abstract. Optimiza-tions need to be performed to arrive at e�cient concrete descriptions.4.2.1 The I/O Processes | LayoutOnly a subset of the boundary points of rect:P is needed for the injection and extraction of a stream.Picture a stream as a wave approaching rect:P; only those boundaries which the wave encounters are neededfor injection. The boundaries on the opposite side of the closure are needed for the stream's extraction.More precisely, given a stream s, there must be processes on those boundaries that are not parallel to linesde�ned by the direction vector
ow:s. The input processes are located along the boundaries at one side ofthe closure (the \upstream" side) and the output processes are located on the boundaries at the other side(the \downstream" side). Each i/o process has the same coordinates as the process in rect :P with which itcommunicates.4.2.2 The I/O Processes | CommunicationsConsider a stream s = hv; M; o�i and its access space A. Just As the process space is de�ned by itsprojection from I via place, A is de�ned by its projection from I via M and o� . And as with the processspace, it is easier to use its rectangular closure. The rectangular closure is speci�ed by two points: minAand maxA (which are subscripted when the stream they are de�ned for is not clear from context). Theyhave the following property:(A i : 0� i<r�1 : minA:i = (min x : x 2 I : (M:x+ o�):i))(A i : 0� i<r�1 : maxA:i = (max x : x 2 I : (M:x+ o�):i))

CHAPTER 4. THE SPECIFICATION OF THE SYSTOLIC PROGRAM 17These two points will be referred to as the access space basis. The basis de�nes the rectangular closure of A:rect :A =(set z : z 2 Zr�1 ^ (A i : : minA:i�z:i�maxA:i) : z) (4:4)Obviously, A � rect:A. The points in rect:A but not in A correspond to elements of the indexed variablethat are not accessed as part of the stream s. These extra elements may propagate through the processspace, but will not be used during the program.Note: The propagation of the extra elements may result in a longer execution time for the distributedprogram as the extra elements
ow through the processes. There are two ways to avoid this: either describeA exactly (and the same could be done for P), or use a guarded command in the i/o processes to access onlythose elements that are actually used. The latter option is similar to the way the computation processesexecute statements only if they are in the range of P . For now, we continue with the simplest method. Laterstages of optimization may correct the problem. See Section 8.2.8 for an example. (End of Note)Note that rect:A is still a subset of the elements of the indexed variable, since variable declarations in sourceprograms require a rectangular amount of storage.The elements of A are partitioned into chords; each input process provides a distinct chord as a pipelineto a chord of processes. The chord of processes is de�ned by the location of the input process at one endand by the stream's
ow. At the other end, an output process extracts each element from the pipeline andrestores it to the indexed variable. Each chord of points in A is the set of elements of the indexed variableused in any basic statement executed by any process along the pipeline, for a particular input process.Remember that the components �rsts and lasts of the i/o repeater are points in Zr�1; their componentsare expressions in the coordinates of P. The component incs is a constant in Zr�1; it de�nes a total order onthe identities of the elements in each partition.Let y be an i/o process for stream s.The set of processes that access elements that y injects or extractsis: pipe:y = (set z : z 2 P ^ z 2 line:y:(
ow:s) : z)The set of basic statements that are executed by processes in pipe :y is:comps :y = (set x : (E z : z 2 pipe:y ^ z 2 P : x 2 chord:z) : x)For any basic statement, x, the identity of the element of s that it uses is given byM:x+o� . So the elementsthat y must access is the set: elems:y = (set x : x 2 comps:y : M:x+ o�)With these de�nitions, �rsts and lasts can be speci�ed:�rsts:y = wwhere incs�w = (min w0 : w0 2 elems:y : incs�w0)ŵ 2 elems:ylasts:y = wwhere incs�w = (max w0 : w0 2 elems:y : incs�w0)ŵ 2 elems:y4.3 The Computation Processes | Data PropagationEach computation process needs support for the movement of data. The connection with the host is providedby i/o processes; the kind of support depends on the type of the stream. There are two types: stationaryand moving.

CHAPTER 4. THE SPECIFICATION OF THE SYSTOLIC PROGRAM 18Stationary streams do not move between processes during the execution. Consider an element of astationary stream. All the statements that access it are mapped to the same point by the place function.We must load the element at that point before the computations (mapped to that point) and recover theelement from that point after the computations.Of a moving stream, each computation process requires the propagation of a set of elements, not allof which need to be used in the statements that the process executes. Once a process executes its �rststatement, every stream element that arrives is used and passed on through the last statement executed; thisis guaranteed by our restriction on
ow and the restriction that at each statement must access an element ofevery stream. Elements that arrive before or after the computation must also be passed on. The propagationphase beforehand is called soaking, the phase afterwards, draining.The only di�erence between loading and soaking is that, on loading, the computation process retainsthe �rst element that it receives instead of passing it on; the only di�erence between recovery and drainingis that, on recovery, the computation process ejects its local stream element after passing on others. Thisprotocol is only one of many possible choices, but it has the advantage of maintaining the same order in theloading and recovery of stationary streams as is used in the propagation of moving streams. This order |\�rst-in-�rst-out" | means that the same loop speci�cations are used for both input and output processes.Loading and recovery may be performed at any boundary of rect:P; it is not speci�ed by the systolic array.A loading & recovery vector must be supplied as part of the compilation process; it speci�es the direction(and as we shall show, the de�nition) of the input and output of a stationary stream. Whenever a referenceis made to the
ow of a stationary stream, it will mean the loading & recovery vector.Using the notation of the previous section, let y be an i/o process and z be a computation process inpipe:y. The number of elements of stream s that z soaks is:(N w : w 2 elems:y : incs�w < incs�(M:(�rst:z)))The number of elements of stream s that z drains is:(N w : w 2 elems:y : incs�w > incs�(M:(last:z)))This also covers the loading and recovery of stationary streams, once an increment has been derived fromthe provided loading & recovery vector. The number of elements to be passed on during loading is the sameas the number to be drained if the stream was a moving stream; similarly, recovery is equivalent to soaking.4.4 The Bu�er ProcessesTwo types of bu�er processes may be needed: bu�ers inside and bu�ers outside the computation space. IfP is not equal to rect :P, then bu�er processes are needed to transport stream elements between the i/oprocesses on the boundary of rect :P and the processes that are on the boundary of P. The set of bu�erprocesses is the set of points in rect:P, but not in P.In a systolic array, a stream's
ow may specify that its elements travel too slowly to encounter a pro-cessor at each time step in the synchronous execution; extra latches are added in a hardware re�nement toaccommodate these elements. In our target programs these latches are represented by bu�er processes thatare inserted between computation processes. These bu�ers may be realized as separate processes or may beincorporated into the computation processes in a later compilation step.

Chapter 5The Systolization SchemeIn this chapter, we present the method for deriving the systolic program. Section 5.1 presents the derivationof the boundaries of the process space. Section 5.2 presents the core of the systolization scheme: thederivation of the computation processes. The layout of the i/o processes, i.e., the points on the border ofrect:P at which the input and output processes for each stream are located is derived in Section 5.3, Theactual process de�nitions are derived in Section 5.4. The method for deriving the supporting communicationsthat the computation processes perform is described in Section 5.5. Finally, the derivations of the internalbu�ers and external bu�ers are presented in Section 5.6. The sorting program of Section 3.4 is used in eachsection as an example. Features that are not illustrated by it are demonstrated in examples in Chapter 8.Section 6.4 contains the complete distributed program for the sorting program.5.1 The Process Space BasisIn terms of the model, each component of minP is the minimum value a linear function attains in the indexspace, while each component of maxP is the maximum value. The linear function is the correspondingcomponent of place. Let P:i represent the unique vector associated with the linear function of componenti in place, 0� i<r�1. Thus, each component of minP and maxP is the solution of a linear program thateither minimizes the value of P:i�x (for minP), or maximizes it (for maxP), given the system of inequalitiesAx � b. For any value m, the points that satisfy P:i�x = m lie on a hyperplane, whose normal is P:i.In the sorting example, the process space is one-dimensional; both minP and maxP have a single compo-nent. Since place:(j; i) = i�j, the linear program minimizes (�1; 1)�x forminP and maximizes it for maxP.Figure 5.1 (a) shows the index space and the hyperplane along with its normal. The value of P:i�x increasesas the hyperplane is moved in the direction of P:i; it decreases as the hyperplane is moved in the directionof �P:i. From linear programming, we know that when the value P:i�x is at a maximum (minimum), thena vertex of the index space lies on the hyperplane. This vertex (which need not be unique) can be found bymoving the hyperplane as far as possible in the direction of P:i (�P:i), while still intersecting I. Any vertexon the hyperplane has the property that P:i (�P:i) is a non-negative linear combination of the normals thatde�ne the vertex (Theorem 11). Geometrically, these are the normals between which P:i (�P:i) lies. InFigure 5.1, the vertex at the base of the normal (�1; 1) lies between the normals (�1; 0) and (0; 1). A vectorv is a linear combination of a set of vectors (set k : 0�k<n : vk) if and only if a solution for x exists inthe system of equations V x = v, where V is a matrix whose columns are the vk. Thus, to see whether avertex x provides the maximum (minimum) for P:i (�P:i), we construct a matrix Vx whose columns arethe r normals that de�ne x. The columns must be ordered in increasing value by their corresponding loopnumbers, i.e., column ` is the normal to the boundary de�ned by loop `. Then we solve the system of linearequations: Vxyx = pfor each vertex of I, with p replaced by P:i for maxP and by �P:i for minP . When the solution yx isnon-negative, i.e., yx � 0, then the vertex x from which Vx was derived is the vertex we are searching for.Matrix Vk is derived from vertex vk by entering the rows for the respective loop bounds in A as the columns19

CHAPTER 5. THE SYSTOLIZATION SCHEME 20
-6 ji 1 n1n ����������� (�1; 1)�x = m@@@I -6 ji 1 n1n �����6(0; 1)- (1; 0)@@@R (1;�1)�(�1; 0) @@I(a) (b)Figure 5.1: Sorting: maxPof Vk: V0 V1 V2 V3� �1 10 �1 � � �1 00 1 � � 1 10 �1 � � 1 00 1 �The four solutions to Vkyk = (�1; 1), 0�k<4, are:y0 = (0;�1) y1 = (1; 1) y2 = (0;�1) y3 = (�1; 1)In this case, there is only one solution that is non-negative: y1. Consequently, there is a unique vertex, v1,for which P:i reaches a maximum. For (1;�1), i.e., �P:i, the solutions are �yk, 0�k<4; both v0 and v2achieve a maximum (of �P:i, i.e., a minimum of P:i).Note: The solution for vertex v3 does not provide the minimum, even though the vertex is coincident withvertex v2 whose solution does provide the minimum. This is a consequence of the extraneous boundarylocated between the two vertices. Had the constants been di�erent in the loop bounds, there would bea vertical boundary there | clearly v3 does not provide the minimum in such a situation. Section 5.2.7explains this fully. (End of Note)This procedure is performed for each of the r� 1 components in the range of P . In the worst case, for eachcomponent, a linear system must be solved for each vertex. There are 2r vertices; therefore there are at most(r � 1) � 2r systems of equations to solve. In practice, r is at most 5 [71] and there are many circumstancesfor which the same vertex can be used in the derivation of many components. Also, if P:i (�P:i) is equal toa normal of the index space, which is frequently the case, the solution is trivial.Once Vx is found, the vertex x itself is constructed (remember, the above process only identi�es thevertex by its de�ning normals). The vertex is the unique point in the index space for which the r de�ningbounds are equalities, rather than inequalities. Thus, consider the system of equations:V Tx x = bxwhere bx is a vector whose components are the components of b corresponding to each normal. (Note thatV Tx , being the transpose of the matrix Vx, has as its rows the normals de�ning x.) The solution of thissystem of equations is the vertex x.P:i achieves the maximum at vertex v1; this is the vertex where the left boundary of the outer loopintersects the right boundary of the inner loop: vertex (L0; R1). To construct this vertex symbolically, wesolve, symbolically:

CHAPTER 5. THE SYSTOLIZATION SCHEME 21V T1 x = (�1; n)= f previous derivations g� �1 00 1 � � ji � = � �1n �= f simpli�cation g�j = �1 ^ i = n= f simpli�cation gj = 1 ^ i = nyielding x = (1; n).Finally, after x is constructed, the value of maxP:i is just the value of place:x:i, which also can beevaluated symbolically. In the present example, there is only one component:maxP= f de�nition gplace:(1; n)= f place:(j; i) = i � j gn� 15.2 The Computation Processes | Basic StatementsThe �rst step in deriving the computation process code is to derive inc (Subsection 5.2.1). The informationcontained in inc allows the identi�cation of certain boundaries of the index space that are of particularinterest. They are called faces and are the boundaries which contain the points �rst and last for all points inthe process space (Subsection 5.2.2). In general, �rst and last are piecewise functions from the process spaceto points in the index space. Each piece represents the projection of a face; the boundaries of each projectionmust be derived (Subsection 5.2.5). The values of �rst and last are derived from the solutions of systems oflinear equations; this is presented in Subsection 5.2.3. When the solutions are not all integer, they must beperturbed to the nearest integer-valued point towards the interior of the index space. This is the subject ofSubsection 5.2.4. Subsection 5.2.6 describes the augmentation of the basic statement with communicationsto e�ect the necessary data transfers.Boundaries may exist that are not facets; they introduce a slight ine�ciency. These extraneous boundariesare discussed in Subsection 5.2.7.5.2.1 Deriving incThe null space of place has rank 1 (Theorem 1): it is the span of a single vector. We begin the derivation ofinc by picking an arbitrary (non-zero) element, w, of null:place. Let k = (gcd i : 0� i<r : w:i), then:inc = sgn:(step:w) � (1=k) �w (5.1)The sign ensures that inc points in the right direction relative to the step function (Theorem 6). step:w = 0is not possible: step and place would be inconsistent, contrary to our assumption that the systolic array iscorrect (Theorem 3). For the example, with place:(j; i) = i � j and step:(j; i) = j + i, let w be (�3;�3).Then: inc= f (5.1) gsgn:(step:w) � (1=k) �w= f w = (�3;�3)) k = 3 gsgn:(�3 +�3) � (1=3) � (�3;�3)= f simpli�cation gsgn:(�6) � (�1;�1)= f simpli�cation g�1 � (�1;�1)= f simpli�cation g(1; 1)

CHAPTER 5. THE SYSTOLIZATION SCHEME 22
-6 ji 1 n1n �������������������������rr rr r rr r r rFigure 5.2: Sorting: The index space and chords. The arrows represent the direction of inc.5.2.2 Identifying the FacesThe derivation of �rst and last begins by identifying the faces of the index space that contain them. Thisleaves r� 1 equations with r� 1 unknowns, which can be solved exactly for the remaining r� 1 componentsof �rst (or last). In the general case, the boundaries of interest are the ones that share a (single) point witha chord :y. These are the boundaries that are not parallel to any chord :y. If a boundary is parallel to anychord :y, then it must intersect exactly one chord :y and be coincident with it; for that y, �rst and last lie onother boundaries that are not parallel to the chord. All of the chords are mutually parallel, since they areall de�ned by the same direction vector: inc. Thus, for each boundary, it su�ces to consider whether or notinc is orthogonal to the normal of that boundary: if it is, then the boundary is parallel to the chords and isnot needed to derive �rst and last.A boundary that is not parallel to inc is called a face. A face associated with a left (right) bound of loop` is denoted by F :L` (F :R`). For each boundary of the index space, we compute inc�w for the normal w tothat boundary. When the result is 0, inc is orthogonal to the normal; thus, it is parallel to the boundary.Since each row of A is a normal to the boundary de�ned by the corresponding loop bound, the result ofmultiplyingA by inc is the inner product of the corresponding row with inc. The results of the inner productsfor sorting are: (E � I) inc = � �1 01 �1 �� 11 � = � �10 �(I � G) inc = � 1 00 1 � � 11 � = � 11 �Each boundary for which the inner product is not zero is a face. When the inner product is less than zero,the boundary is used for the derivation of �rst. When it is greater than zero, the boundary is used for thederivation of last. In the example, there is one face for �rst: F :L0. There are two faces for last: F :R0 andF :R1 (the extraneous boundary). Figure 5.2 depicts the index space and the chords.5.2.3 Constructing and Solving the Equations for �rst and lastOnce the faces have been identi�ed, one system of equations per face is constructed in order to derive �rstand one to derive last. We discuss only �rst; for last, the roles of the left and right bounds are reversed.Let x be the vector of loop indices. Then the value for �rst is the solution to the system of equations forF :bound `: place:(x; ` : e) = ywhere e is the result of applying bound i to x (this amounts to substituting the bound of loop i as it appearsin the program). In the example, the bound for �rst is L0. Then, the vector x is (j; i), and e is the result ofapplying L0 to x:

CHAPTER 5. THE SYSTOLIZATION SCHEME 23(x; ` : e)= f x = (j; i), ` = 0, e = L0:x g((j; i); 0 : L0:(j; i))= f L0 = h(0; 0); 1i g((j; i); 0 : h(0; 0); 1i:(j; i))= f Equation 3.4 g((j; i); 0 : 0 � j + 0 � i+ 1)= f simpli�cation g((j; i); 0 : 1)= f simpli�cation g(1; i)which just replaces the left bound of the loop indexed by j for the �rst component of the point. The systemof equations has been reduced to one with only r � 1 unknowns, and can now be solved exactly:place:(1; i) = p= f place:(j; i) = i � j gi� 1 = p= f simpli�cation gi = p+ 1Substituting the solution back into the point, we have �rst = (1; p+ 1). Since p is always an integer (wecreate only integer-valued loop indices), this is always an integer point; no non-integer solutions arise in thisexample.A system of equations is constructed for each face.5.2.4 Coping with Non-Integer SolutionsThe solution to the system of linear equations is the intersection of (a line extending) chord :y with a boundaryof the index space. When the solution is not integral, there are processes y such that �rst:y and last:y donot lie on the boundaries of the index space. The intersection is instead a point in Qr . As such, it cannotbe used as the value of �rst or last: we must use the nearest integer point towards the interior of the indexspace instead. It is always possible to detect the presence of non-integer solutions; they are indicated bynon-unit denominators.Consider the set of equations for a particular face, F :bound `, i.e., a boundary de�ned by a bound fromloop `, with its outward normal y`. Let x0 be the solution to the system of equations. When a non-integersolution occurs, the guard for that clause of �rst (resp. last) is augmented with a conjunct that guaranteesthat the solution is integer. The functions num and den return the numerator and denominator of a rationalnumber, respectively. The conjunct is of the form:(A `0 : 0�`0<r ^ `0 6= ` : den:(x0:`0) j num:(x0:`0))The chosen place function for sorting does not produce any non-integer solutions, as noted previously.A di�erent place function that does is place:(j; i) = 2 � j + i. The index space and the chords are depictedin Figure 5.3. For this place function, inc is (�1; 2) and there are two faces for �rst: F :R0 and F :L1. Thesolution for �rst using F :L1 is (p=3; p=3) and the conjunct added to the clause for that face reduces to 3 j p.Let s be the least common multiple of the denominators in x0:s = (lcm k : 0�k<r : den:(x0:k))There are s clauses for this face: x0 and s � 1 other clauses that are speci�ed by the set:(set k : 2�k�s : x0 � 1=k � inc) (5:2)where � is addition when y`�inc < 0 and subtraction when y`�inc > 0. (Remember: if y`�inc = 0, there is noface for the associated boundary.) The purpose is to perturb the point x0 towards the interior of the indexspace along the line chord :y. The s� 1 new clauses, each with its own conjunct, are added to the expression

CHAPTER 5. THE SYSTOLIZATION SCHEME 24
-6 ji 1 n1n ������AAAAAAAAK AAAAAAAAK AAAAAAAAK AAAAAAAAK AAAAAAAAK AAAAAAAAK AAAAAAAAK AAAAAAAAK AAAAAAAAK AAAAAAAAKss ss s ss s s s

Figure 5.3: Sorting: The index space and chords for the alternative place function. The arrows representthe direction of inc.for �rst (resp. last) in addition to the �rst clause derived. In the example, s = 3, so two new clauses arederived.Note: Although large values for s can occur in theory, in practice s is usually no larger than 2, given the kindof place functions used for systolic arrays. Otherwise there are unnecessarily many processors in the array: sis the number of processes created in the process space per unit along the face. (Also, large values for s causenon-nearest neighbour communication.) For example, with the new place function, the three chords per unitthat intersect the j-axis (Figure 5.3) generate as many processes. Under certain circumstances, non-integersolutions to the system of equations do not require the creation of new clauses. When the largest absolutevalue of the denominators of the components of x0 is 2, it is possible to use the functions
oor and ceiling toperturb the solution. When s is 2, Formula 5.2 speci�es one extra clause. (End of Note)The alternative place function de�nes one face as the left bound of the loop indexed by i, the second loop,whose normal is (1;�1). Referring to Equation 5.2, k is 3, and with inc = (�1; 2), (1;�1)�inc is �3, so � isaddition. The new clause for �rst is:x0 � 1=k � inc= f x0 = (p=3; p=3), k = 3, � = +, inc = (�1; 2) g(p=3; p=3)+ 1=3 � (�1; 2)= f simpli�cation g(p=3; p=3)+ (�1=3; 2=3)= f simpli�cation g((p� 1)=3; (p+ 2)=3)The conjunct for it reduces to 3 j (p � 1). Without showing the derivation, the other new clause for �rst is((p� 2)=3; (p+ 4)=3) with the additional conjunct 3 j (p � 2). Thus, the complete expression for �rst (forthis boundary of the index space) is:if 3 j p ! (p=3; p=3)[] 3 j (p� 1) ! ((p� 1)=3; (p+ 2)=3)[] 3 j (p� 2) ! ((p� 2)=3; (p+ 4)=3)�

CHAPTER 5. THE SYSTOLIZATION SCHEME 25for i = 0 1! nfor j = i 1! m(i; j) ���m > n ����m � nFigure 5.4: Example of extraneous boundaries.5.2.5 Deriving the BoundsOnce the values of �rst and last have been derived, the guards that de�ne the regions of the process spacefor which those values apply are derived from �rst (resp. last) and the bounds of the loops in the sourceprogram. Let x0 be the solution of the set of equations place:x = y, where x0 is a point in F :bound`. Thenthe guard for the clause is a predicate de�ning the bounds of the projection of the face in the process space.It uses the bounds from all loops other than loop `:(A ` : 0�`<r ^ ` 6= `0 : L`:x0�x0:`�R`:x0) (5:3)Using the expression for �rst for the sorting example with the original place function, the only loop capturedby (5.3) is the inner loop. The predicate for �rst is simply 1�p+ 1�n, which can be reduced to 0�p�n� 1.5.2.6 Augmenting the Basic StatementThe basic statement from the source program is augmented in two ways: the indexed variables are changedto scalars; and communication directives are inserted to receive the non-local variables (i.e., streams thatare not stationary). The general form is:(x0; x1; : : : ; xr�1) : if B0:x0:x1: � � � :xr�1 ! S00[] B1:x0:x1: � � � :xr�1 ! S01[] � � � ! � � �[] Bt�1:x0:x1: � � � :xr�1 ! S0t�1�where S0i, 0� i<t, is an augmentation of the statement Si achieved by replacing the indexed variables withscalars, pre�xing it with receive commands for the variables that are read, and post�xing it with sendcommands for the variables that are written (or propagated).5.2.7 Extraneous BoundariesWe call boundaries that contain only a single point extraneous. An example is the boundary associated withthe right bound of the outer loop in Figure 3.2: it contains only the point (n; n). Not every extraneousboundary can be ignored, as Figure 5.4 illustrates. The outward normals derived from the loop boundsare (�1; 0), (1;�1), (1; 0), and (0; 1). When m � n, the boundary corresponding to the normal (1; 0) isextraneous, but when m > n it is not. The values of m and n may not be available at compile time. Thereare cases where a compile-time analysis could determine boundaries that may be deleted, but our presentimplementation does not do so. Deleting an extraneous boundary can be computationally expensive [69]. Forsorting, the boundary de�ned by the right bound of the outer loop is an extraneous face, i.e., an extraneousboundary that is used to derive �rst or last. The inner product of its normal with inc is positive, so it is usedto derive last. Without showing the derivation, the result for last is:last = if 0�p�0 ! (n; p+ n)[] 0�p�n� 1 ! (n� p; n)�

CHAPTER 5. THE SYSTOLIZATION SCHEME 26The projection of the extraneous face is onto the point 0. The �rst clause in last is for this point. Note thatthe values of the two clauses are equal for that process.5.3 The I/O Processes | LayoutWe have chosen one way of deriving the layout of the i/o processes; other possibilities do exist. Our currentmethod has the advantage of simplicity, if not e�ciency or elegance. Because the i/o processes are laidout along the boundaries of rect:P, the non-zero components of
ow:s, for each stream s, determine thedimensions in which i/o processes are created (because the vector represented by
ow:s will be parallel to aboundary of the closure precisely when its corresponding component is zero). For each non-zero componenti of
ow:s, the following set of processes is created:IOs:i = (set y : y 2 rect:P ^ (y:i = minP :i _ y:i = maxP:i) : y)When
ow:s:i is greater than 0, then the points whose i-th component is minP:i are input processes, andthose whose i-th component is maxP :i are output processes. If
ow:s:i is less than 0, then the two arereversed. Depending on the bounds of the indexed variable, some processes in each set may perform nullcommunications, analogously to the processes that are not in P . Whenever there is more than one non-zerocomponent of
ow:s (yielding more than one set of i/o processes), there will be points that are in more thanone set. Sets that are not disjoint must be made so: we derive the process de�nitions in order of increasingdimension number, from 0 to r�2. In each dimension, duplicate processes are omitted.Since the current example has a one-dimensional process space, the latter point does not arise; for anexample where it does, see Section 8.2.5.For sorting, there is one input process and one output process for each stream. Stream m has a positive
ow. Its input process is located at minP; it communicates with process 0. Its output process is locatedat maxP; it communicates with process n� 1. Stream x has a negative
ow; its i/o processes are reversedfrom those of m.5.4 The I/O Processes | CommunicationsFirst, we derive rect:As for each stream s by deriving minA and maxA. This is done in the same waythat minP and maxP are derived. For each component of the index vector, we obtain the vertex of I thatachieves a minimum for it and a maximum for it, and then derive the point in As which that vertex accesses.For stream m in the example, the range of the index map, (1; 0), has a single component, and both verticesof I, v2 and v3 achieve a maximum for it, while both vertices v0 and v1 achieve the minimum. However, forstream x with an index map of (0; 1), although both vertices v1 and v3 achieve the maximum, only vertexv0 achieves the minimum. Both streams have an o�set of 0, so minA and maxA are the projection of theappropriate vertices by the index map. Without presenting the derivations, the results are:s minAs maxAsm 1 nx 1 nThe restriction to neighbouring communication means that the increment between stream elements isdirectly related to the increment between consecutive basic statements (i.e., inc): if a process performs twoconsecutive statements, the stream elements that are used must be neighbours in the pipeline. Let M bethe index map for stream s and o� its o�set. Then incs is M:inc (Theorem 9); incs is a constant, because incis. This means that the elements accessed by an i/o process lie on a line in As; the vector de�ning the lineis incs. In analogy with the computation processes, the interaction of incs with the boundaries of rect :Asdetermine the faces of rect :As. But, because of its rectangularity, it is enough to consider only the slope ofincs: a boundary is a face if and only if the corresponding component of incs is non-zero.The elements accessed �rst and last are �rsts and lasts. �rsts is the point at the intersection of a boundaryof rect:As with a line; the line is de�ned by the vector incs and a point in rect:As. We know incs; we needto determine the point in rect :As. Since we have assumed that every basic statement accesses an element of

CHAPTER 5. THE SYSTOLIZATION SCHEME 27s, any statement can be used to calculate this point. Taking an arbitrary basic statement, x, expressed inthe coordinates of P , e.g., from any of the alternatives for �rst or last, the point is M:x+ o�. For each face,`, of rect:As, the following expression de�nes the intersection point, �rsts, in rect:As:�rsts = M:x� ((M:x:`� �rsts:`)=incs:`) � incs (5.4)Symmetrically, to calculate the intersection point, lasts:lasts = M:x+ ((lasts:` �M:x:`)=incs:`) � incs (5.5)These are not circular de�nitions. The values of �rsts:` and lasts:` are known (just as one of the componentsfor �rst and last are when they are derived); it is the remaining components that are derived from theseequations. Note that o� was not needed as it was factored into the derivation of minA and maxA.The values derived for �rsts (lasts) are composed into a guarded command, as was done for �rst (last).The guards for each clause are de�ned by the predicate in Formula 5.3.From the restrictions in Section 3.1, one-dimensional systolic arrays always have one-dimensional streams;for these the above de�nitions reduce to a simpler form. We de�ne a simple stream to be one which hasexactly one non-zero component in incs. For a simple stream s, if incs is positive, then �rsts = minA andlasts = maxA; if incs is negative, the two are reversed. (incs can never be zero: when Ms:inc = 0 the streamis stationary and the non-zero loading & recovery vector is used as incs instead.) Simple streams never needguards; the range for the quanti�ed variable in Formula 5.3 is empty. For an example where the guards areneeded, see Section 8.2.6.Thus, the i/o processes for the example are:s �rsts lasts incsm 1 n 1x 1 n 15.5 The Computation Processes | Data PropagationThe de�nition of the i/o processes is used to derive the code for soaking and draining. Again, let M bethe index map for stream s. Consider a pipeline of s; �rsts de�nes the �rst element of the stream alongthe pipeline. Elements in the pipeline that arrive at a process before the �rst element to be used must besoaked. Their number is: soaks = (M:�rst��rsts) == incs (5.6)Symmetrically, elements that arrive after the last element used must be drained. Their number is:drains = (lasts�M:last) == incs (5.7)As stated previously for stationary streams, the number of elements of stream s that a process passes onduring loading is the same as drains, the number during recovery, soaks.For example, the derivation for soakx:soakx= f (5.6) g(M:�rst��rsts) == incs= f M = (� (j; i):i), �rst = (1; p+ 1), �rsts = 1, incs = 1 g((� (j; i):i):(1; p+ 1)�1) == 1= f simpli�cation g((p+ 1)� 1) == 1= f simpli�cation gp

CHAPTER 5. THE SYSTOLIZATION SCHEME 28Summarizing all of the derivations: s soaks drainsm 0 0px p p0Some entries have more than one value. Since the soaking and draining code depends on the de�nition of�rst and last, when the latter are de�ned piecewise, so must the former. Here, for example, last is de�nedpiecewise, so the draining values of both streams are de�ned piecewise. The �rst value is for the processes p,such that 0�p�0 (i.e., for the extraneous boundary) and the second value is for p such that 0�p�n� 1.5.6 The Bu�er ProcessesTo de�ne the bu�ers external to the process space, the points in rect:P but not in P must be identi�ed. Theboundaries of P are de�ned by the guards in the expression for �rst (or last) | both are de�ned only forall points in the process space. A point is outside the process space when the disjunction of the guards failsto hold. Each bu�er passes along all of the elements of a stream that it receives. For stream s, bu�s is thenumber of elements bu�ered: bu�s = ((lasts � �rsts) == incs) + 1Of course, when any of these are de�ned piecewise, bu�s is also de�ned piecewise.Internal bu�ers are speci�ed for each stream with a fractional
ow. Recall that Formula 3.3 requires
ow:s to be of the form y=n for some n>0, where nb:y holds. The synchronous communication provides abu�er of size 1; we specify n � 1 bu�er processes in between each computation process.Neither kind of bu�er is required in the sorting example, but both may be found in the examples presentedin Chapter 8. Internal bu�ers are shown in Section 8.1.8. There, they are de�ned as separate processes,connected to the communication channels between computation processes. Section 8.2.8 contains externalbu�ers.

Chapter 6The Distributed ProgrammingLanguageThe distributed programs are written in a language-independent notation, which can be directly trans-lated to any particular distributed programming language with asynchronous parallelism and synchronouscommunication.A full BNF grammar is given in Appendix B. It is a simple language with basic constructs for sequentialand parallel composition. The construct parfor denotes the parallel composition of a set of indexed processes;par denotes the parallel composition of arbitrary processes. As in the source programs, for is used for thesequential composition of indexed processes and seq sequentially composes arbitrary processes. Scoping isindicated by vertical alignment (as in occam [38, 39]). Each stream s has its own set of channels. Channelsare distributed shared data structures indexed as arrays: for process y, channel s chan[y] connects to processy �
ow:s, channel s chan[y +
ow:s] connects to process y +
ow:s.The complete distributed program for sorting is given in Section 6.4.6.1 Extra De�nitionsIn addition to the standard grammar, certain patterns that occur frequently are de�ned as sub-processes.These may be thought of as macros or in-line procedures.6.1.1 PropagationOne frequent pattern is a bu�er process: a loop that propagates a number of stream elements without alteringthem. Both soaking and draining use this de�nition. Executed at a process y, the notation pass s chan ; nstands for the program: for counter = 1 1! n doseqreceive foo from s chan[y]send foo to s chan[y+
ow:s]end seqendThe scope of the variables counter and foo are local to the program. Since
ow:s is known at compile time,it is not included as an argument; the compiler constructs a separate pass procedure for each stream.6.1.2 Loading and RecoveryWhen stationary streams are loaded or recovered from the processor array, each process either keeps orejects one value, passing on the rest. Executed at a process y, the notation load s ; s chan ; n stands forthe program: 29

CHAPTER 6. THE DISTRIBUTED PROGRAMMING LANGUAGE 30seqreceive s from s chan[y]pass s chan ; nend seqThe notation recover s ; s chan ; n stands for the program:seqpass s chan ; nsend s to s chan[y +
ow:s]end seq6.1.3 RepeatersThe notation < �rst; last; inc > represents the sequence of calls to the (augmented) basic statement, withthe value of the indices corresponding to the components of the points. They are also used in communicationstatements. The notation comm s < �rsts; lasts; incs > dir s chan[x]where comm and dir are either send and to, or receive and from, respectively, represents a loop that sendsthe sequence of values: (seq i : 0� i� (lasts � �rsts) == incs : s[�rsts + i � incs])along channel s chan[x].6.2 A Simpli�cationIn the interests of making the distributed program syntax concise, the scope rules are extended by usingindentation as a control structure. When two statements are aligned vertically, the default is that they aresequentially composed. The only exception to this are constructs included in a par command. Also, insteadof a keyword ending a construct, a new construct beginning to the left of the current indentation signi�esthe end of the previous scope and the beginning of the new scope.For example, for the following programs the version on the left-hand side follows the grammar, while thecorresponding one on the right-hand side uses the simpli�ed form.parfor foo = 0 1! nseqABend seqend parfor foo = 0 1! nABend

CHAPTER 6. THE DISTRIBUTED PROGRAMMING LANGUAGE 31parfor foo = 0 1! nAendparBC parfor foo = 0 1! nAparBCThese rules are kept separate from the grammar in order to simplify the generation of other target languages.The output from the compiler does not use these rules.6.3 On the Translation to other Languages6.3.1 occamAn translation to occam 2 has been undertaken by Donald Prest at the University of Edinburgh. As occam2 is so similar to our language, the translation is particularly easy.6.3.2 CA translation to C, augmented with communication and parallel directives, requires process-oriented commu-nication as opposed to the channel-oriented communication in our intermediate language. Given our namingscheme for indexing channels, that should not pose any di�culty.6.4 Sorting: The Complete Program. The basic statement of the distributed program is:(j; i) :: parreceive m from m chan[p]receive x from x chan[p]if i = j ! m := x[] i 6= j ! m;x := max(x;m);min(x;m)�parsend m to m chan[p+1]send x to x chan[p�1]The program is shown in Figure 6.1.

CHAPTER 6. THE DISTRIBUTED PROGRAMMING LANGUAGE 32
program sortingchan m chan[0::n], x chan[�1::n� 1]par/********** Input Processes **********/send m < 1; n; 1 > to m chan[0]send x < 1; n; 1 > to x chan[n � 1]/********** Computation Processes **********/parfor p = 0 1! n � 1int m;xpass x chan ; p< (1; p+ 1); (n � p; n); (1; 1) >pass m chan ; p/********** Output Processes **********/receive m < 6; 1; 1 > from m chan[n]receive x < 1; 3; 1 > from x chan[�1]end parend sortingFigure 6.1: Sorting: The distributed program.

Chapter 7UnimodularityOur work is closely related to other work on code generation in two areas:1. systolic arrays, and2. parallelizing compilation.We defer the general discussion of related work to Chapter 10; here we discuss a technical feature of interest:the unimodularity of program transformations.In both areas, systolic arrays and parallelizing compilation, one starts with a source program, SP, with-out parallelism and produces a target program, T P, with parallelism. But, for a long time, both areasunderstood the derivation of the target from the source in di�erent terms. In systolic design, the two pro-grams were related by a space-time transformation [68], in parallelizing compilation by a set of heuristicloop transformations schemes like loop jamming, loop reversal, strip mining, skewing, tiling, and unrolling[2, 12, 61, 77]. Recent work in parallelizing compilation expresses each transformation scheme as a matrix[8, 76]. A compound transformation then becomes the functional composition of its components; thus, theentire transformation is expressed as a matrix.A brief introduction to the �eld of parallelizing compilation is given in Section 7.1. We then present auni�ed framework for both areas in Section 7.2. Section 7.3 de�nes unimodular transformations and explainstheir importance. In Section 7.4, we discuss methods for coping with non-unimodular transformations. Someconclusions about unimodularity are in Section 11.3.7.1 Parallelizing CompilationParallelizing compilers create only two types of loops: DOALL loops and DOACROSS loops. DOALL loopshave the property that each iteration is completely independent of the others. When each iteration of aDOALL loop is executed on a separate processor, no communication is needed between the processors. Theiterations of a DOACROSS loop may depend on each other. They are constrained to execute in sequence,either on the same processor or on di�erent processors. In the latter case, communication must enforce thesequencing. In our notation, both DOALL and DOACROSS loops are parfor loops: a DOALL loop is aparfor loop without communications in its body.The �rst step in determining which iterations are independent is to capture the dependences that couldconstrain the order of their execution. The dependences are represented by direction vectors. Conditions onthe set of direction vectors determine which loops may be executed in parallel. When these conditions arenot met, certain transformations, when legal (that is, preserving the desired aspects of the source program'sbehaviour), can establish them by changing the loops and/or the way variables are indexed. Recent researchhas provided a theory for these transformations [8, 56, 76], but only for DOALL loops.7.2 A Common FrameworkBoth areas are concerned with the discovery of two functions:33

CHAPTER 7. UNIMODULARITY 34T :: I �! T S This space-time transformation must, under preservation of the dependences of SP, providea distribution of its operations in time and space | preferably such that at least some dimensions ofT S can be represented by parallel rather than sequential loops. T S is called the target space.CG :: (SP; T) 7�! T P This code generator takes a source program and a space-time transformation of itand produces a distributed program. The barred arrow indicates that SP, T , and T P are not types,but elements of their respective types.In parallelizing compilation, T is the compound transformation performed on SP. In systolic arrays, Tis the combination of step and place. That is, if step is represented by the row vector S and place by thematrix P , then T = � SP �(S need not be the �rst row, but it simpli�es the discussion.) Since, in our presentation, there are r nestedloops, T is a matrix in Zr�r .Most work in both areas has focused on T : how to derive it so that it has certain properties such asminimizing the extent of the temporal dimension(s) of T S , or the extent of the spatial dimension(s) of T S,or maximizing throughput, or a combination of these. This thesis concentrates on CG, assuming that T isalready speci�ed.T is a transformation from one space to another. Its domain is the index space, I, as introduced inChapter 3. Remember that I is described by the set of inequalities:Ax � bfor a matrix A and a vector b derived from SP. The set of inequalities de�ne a convex polyhedron; therestrictions imposed in this thesis, which are standard ones in both areas, allow us to identify the polyhedronwith its convex hull, since every integer point within the hull belongs to I.In both areas, one would like the transformation T to be invertible. Otherwise, two operations may bemapped to the same place and the same time, which contradicts the premiss that the multiprocessor arrayconsists of sequential processors (from the programmer's point of view). Given an invertible T , its inverse,T�1 has the property: T�1 y = x (7.1)where y is a point in T S. This lets us describe the convex hull of the transformed space as:Ax � b= f Equation 7.1 gA (T�1 y) � b= f Associativity of Matrix Multiplication g(AT�1) y � bThat is, the transformed space lies within the boundaries of the polyhedron de�ned by AT�1 and the vectorb. In general, the inequalities represented by AT�1 are not in a form suitable for loop bounds. (Loopsprovide a constrained way of describing a polyhedron since each loop bound can only depend on outer loopbounds; remember the special structure of A.) Algorithms for converting such a set into a form that can beenumerated by loop structures can be found in Wolf and Lam [76], Irigoin [41], Feautrier [25], and Ancourt[4]. Ribas [69] uses an algorithm that covers only simple cases (linear loop bounds) and decomposes thetarget space when necessary.However, not every point within the convex hull of T S necessarily corresponds to a point in I; whenT�1 has rational components, it maps only a subset of the points in T S back to integer points in I. This iswhere unimodularity comes in.

CHAPTER 7. UNIMODULARITY 357.3 Unimodular TransformationsDe�nition 1 A transformation is unimodular if and only if1. it is invertible,2. it maps integer points to integer points, and3. its inverse maps integer points to integer points.An integer matrix is unimodular if and only if it has a unit determinant.Thus, a unimodular transformation T and its inverse T�1 are both matrices in Zr�r.Unimodularity has extremely pleasant consequences for the derivation of the target program. When Tis unimodular, T S can be identi�ed with its convex hull, just as I, since every integer-valued point withinthe hull belongs to T S; we say all of the points within the boundaries are \good" points. The loop boundsmay contain division operations but, since all of the points are good, it su�ces to coerce non-integer pointsderived in the target space to the closest interior integer points (using
oor or ceiling functions).A non-unimodular transformation creates \holes" in the target space: these are integer points within theconvex hull of T S that are not in the range of T .For unimodular transformations, CG becomes very simple: obtain a description of T S by its convex hull(via loop structures), which provides the loop bounds for T P , and, for each iteration, execute the operationde�ned by applying T�1. Both of these problems are well understood, although solutions to the former maycontain some ine�ciencies. The ine�ciencies are due to redundant loop bounds, some of which may not bediscarded during the simpli�cation process.Consequently, researchers in both �elds restrict themselves to unimodular transformations, for example,Ancourt [4], Banerjee [7], Dowling [22], Feautrier [25], Irigoin [41], Leverge, Mauras and Quinton [52], Ribas[69], and Wolf and Lam [76].As it turns out, the basic transformations in parallelizing compilation correspond to elementary matricesthat are unimodular [7]. Moreover, the composition of the transformations corresponds to the matrix product| which preserves unimodularity. Dowling [22] and Irigoin [41] present algorithms for deriving a unimodulartransformation from an initial vector representing the wavefront direction (for programs that are amenableto wavefronting). Ribas [69] uses only unimodular transformations, taking the position that unimodulartransformations are su�cient for the actual programs one encounters. Leverge, Mauras and Quinton [52]require unimodularity. For a non-unimodular transformation, they de�ne a unimodular extension on a targetspace with one added dimension.An ExampleThe following program multiplies the coe�cients of two polynomials a and b, both of degree n, and producesa polynomial c of degree 2 � n. for i = 0 1! nfor j = 0 1! nc[i+ j] := c[i+ j] + a[i] b[j]Figure 7.1 depicts the index space I of the program. The normal form of this polytope is:2664 �1 00 �11 00 1 3775x � 2664 00nn 3775One valid transformation and its inverse are:T = � 2 11 1 � T�1 = � 1 �1�1 2 �

CHAPTER 7. UNIMODULARITY 36
-6 ij0 n0n ssssss ssssss ssssss ssssss ssssss ssssssFigure 7.1: The index space for the example.

-6 t
p
0 n 2n 3n0n2n ����������������������������������s s s s s ss s s s s ss s s s s ss s s s s ss s s s s ss s s s s s

Figure 7.2: The target space produced by a unimodular transformation. The thick lines represent the loopbounds of the target program.

CHAPTER 7. UNIMODULARITY 37In parallelizing compilation terms, T skews the inner loop and then wavefronts both loops. It is unimodularand has the determinant +1. This transformation produces the target space depicted in Figure 7.2. Thehorizontal axis, with coordinate t (for time), can be implemented by a sequential loop. The vertical axis,with coordinate p (for process), can be implemented by a parallel loop | a DOALL loop if it is the innerloop. The convex hull of the target space can be described by the polytope (AT�1) y � b :2664 �1 11 �21 �1�1 2 3775 y � 2664 00nn 3775representing the set of inequalities: �t + p � 0t� 2 � p � 0t� p � n�t + 2 � p � nwhich cannot be used directly to de�ne a set of loops, as each inequality is dependent on both t and p. Thealgorithms mentioned in Section 7.2 take such a set and transform them into an equivalent set | a set thatdescribes the same polyhedron | which can be used to de�ne loop bounds. The process may create multipleloop bounds for a loop. For instance, in Figure 7.2, two loop bounds are needed to precisely describe thelower bounds for p, as one linear bound can not su�ce. Multiple bounds for a loop are combined using themax function for lower bounds and the min function for upper bounds. Each integer division is coerced toan integer by applying the ceiling function in a lower bound and the
oor function in an upper bound. Thefollowing set of inequalities also de�ne T S:26666664 �1 01=2 �11 �11 0�1 1�1=2 1 37777775 y � 26666664 00n3 � n0n=2 37777775which represents the set of inequalities: t � 0p � 1=2 � tp � t� nt � 3 � np � tp � (n+ t)=2which can be directly used to de�ne a set of loops, with t as the outer loop index, since the �rst and fourthinequalities only involve t. The other inequalities de�ne the bounds of the inner loop: the second and third,the lower bound; the �fth and sixth, the upper bound.The target program is executed by enumerating the points within these bounds, and applying a modi�edoperation to each point. The point that (t; p) in the target space corresponds to in the index space is givenby: (i; j) = T�1 (t; p) = (t� p; 2 � p� t)In the target program, variables must be indexed in terms of target space coordinates; for example, c[i+ j]becomes c[(t� p) + (2 � p� t)] = c[p]. The target program is:for t = 0 1! 3 � nparfor p = max(dt=2e; t � n) 1! min(t; b(t + n)=2c)c[p] := c[p] + a[t� p] b[2 � p� t]

CHAPTER 7. UNIMODULARITY 38To preserve the dependences of the source program, a barrier synchronization between iterations of the outerloop is required: all processes p of one for iteration must terminate before the next for iteration can begin.That is, the for loop imposes synchrony on the parfor loop.As written above, the target program implicitly assumes the use of a shared-memory multiprocessor.Execution on a distributed memory machine requires the insertion of communication directives for theexchange of non-local data between processors. (On an asynchronous distributed architecture, one can savethe overhead of the barrier synchronization by making the for loop the inner loop; then the data dependencesare imposed by the data communications per se.)7.4 Non-Unimodular TransformationsAny approach that permits non-unimodular transformations must ensure that only the \good" points |those in T S | are actually executed; integer points that do not correspond to iterations of the sourceprogram must not be executed. Perhaps the simplest solution is to enumerate every integer point in asuperset of T S | the convex hull is particularly simple | and then to check each point at run time tosee whether T�1 maps it to a point in I. With this strategy, one can use the same methods as for theunimodular case. The question is whether it is possible to move (at least some of) the computation involvedin determining \goodness" from run time to compile time. A related question is what amount of run-timeoverhead such compilation methods induce.This is the approach of Lu and Chen [56]. They do not make clear how ine�cient this method is or whatthe complexity of the tests must be. (In their examples they hand-optimize them to simple inequalities.)Yang and Choo [79], who belong to the same research group as Lu and Chen, also disregard unimodularitybut express the boundaries of the target space as linear equations instead of loop bounds. A transformationof the linear equations to loop bounds is possible but may introduce ine�ciencies, [25, 41], as discussed inSection 7.2.A more complicated, but also more accurate approach is to enumerate the points in T S precisely. Thisis the approach of this thesis. The target program is de�ned piecewise. By using piecewise loop bounds andnon-unit strides in the target programs, we avoid the imprecise bounds of Wolf and Lam [76] and the holesof Leverge, Mauras and Quinton [52].The Example RevisitedOne valid non-unimodular transformation and its inverse are:T = � 2 11 �1 � T�1 = � 1=3 1=31=3 �2=3 �The determinant of T is �3, the target space is depicted in Figure 7.3. Note that it is not dense in theintegers: points in T S are separated by integer points not in T S.We illustrate �rst the simple approach. Figure 7.4 depicts the convex hull of T S . The bounds are derivedjust as in the synchronous case. The synchronous program with a guard that establishes \goodness" is:for t = 0 1! 3 � nparfor p = max(�t; d(t� 3 � n)=2e) 1! min(bt=2c; 3 � n� t)if T�1(t; p) 2 I !c[(2 � t� p)=3] := c[(2 � t� p)=3] + a[(t+ p)=3] b[(t� 2 � p)=3][] T�1(t; p) 62 I ! skip�The guard T�1(t; p) 2 I may be simpli�ed, but it is not clear how much of the simpli�cation can bemechanized.Following the second approach, Figure 7.5 shows the precise bounds of the target space. A synchronousprogram that speci�es these bounds and uses non-unit strides to omit the points that do not correspond toiterations in the source program is:

CHAPTER 7. UNIMODULARITY 39
-6 tp

0 n 2n 3n�n0n s s s s s ss s s s s ss s s s s ss s s s s ss s s s s ss s s s s sFigure 7.3: The target space produced by a non-unimodular transformation.for t = 0 1! 3 � nlb; rb := f:t, g:tparfor p = lb 3! rbc[(2 � t� p)=3] := c[(2 � t� p)=3] + a[(t+ p)=3] b[(t� 2 � p)=3]where f:t = if 0� t�n ! �t[] n� t�3 � n ^ 2 j (t� 3 � n) ! (t � 3 � n)=2[] n� t�3 � n ^ 2 6 j (t � 3 � n) ! (t � 3 � n+ 3)=2�and g is a similar piecewise linear function. Recalculating the number of active processes on each sequentialiteration may be ine�cient, in general. Consider, however, an asynchronous program { one de�ned byindexing the inner instead of the outer loop by t. In the absence of a synchronous loop enforcing the datadependences, the data communication constrains the order of execution, as explained before. Each processbegins by calculating the loop bounds for its sequential loop. Given asynchronous processes that are staticand do not contain nested loops (which is the case for full-dimensional systolic arrays), the overhead incurredby this calculation should be negligible. This is our approach. Our asynchronous target program is:parfor p = � n 1! nlb; rb := f:p, g:pfor t = lb 3! rbreceive a[(t+ p)=3] from p+ 1receive b[(t� 2 � p)=3] from p� 1receive c[(2 � t� p)=3] from p� 2c[(2 � t� p)=3] := c[(2 � t� p)=3] + a[(t+ p)=3] b[(t� 2 � p)=3]send a[(t+ p)=3] to p� 1send b[(t� 2 � p)=3] to p+ 1send c[(2 � t� p)=3] to p+ 2where f and g are similar as before. Our method generates these functions automatically, but may createmore processes than necessary: for simplicity, we use the rectangular closure of the dimensions of T S thatare represented by parallel loops. A better algorithm that calculates more accurate loop bounds could beused, for instance, those listed in Section 7.2. When there is only one parallel loop, as in our example, ourmethod creates no extra processes.

CHAPTER 7. UNIMODULARITY 40
-6 tp

0 n 2n 3n�n0n @@@@@@����������������������@@@@@@s s s s s ss s s s s ss s s s s ss s s s s ss s s s s ss s s s s sFigure 7.4: The convex hull produced by a non-unimodular transformation.
-6 tp

0 n 2n 3n�n0n ��� ��� ��� ��� ���@@ @@ @@ @@ @@��� ��� ��� ��� ���@@ @@ @@ @@ @@@@@@@@ @@@@@@s s s s s ss s s s s ss s s s s ss s s s s ss s s s s ss s s s s sFigure 7.5: Non-convex boundaries for the synchronous program.

Chapter 8Example ProgramsIn this chapter, we illustrate those features that are not present in the sorting example of Chapter 5 with twofurther examples. The parts of the programs that are new are derived in detail; the others are summarized.The features that are new, and the sections containing them are:in�nite index space Section 8.1.1internal bu�ers Section 8.1.8external bu�ers Section 8.2.8duplicate i/o processes Section 8.2.5non-simple streams Section 8.2.68.1 Linear Phase FilterThis example is taken from Quinton et al. [53, 52]. The linear phase �lter is used for signal processing; it is adigital �lter that introduces a time delay whose length corresponds to the slope of the signal. The algorithmis a convolution [62] whose coe�cients form a palindrome. The following is a speci�cation of a linear phase�lter of order 3 [48]: (A i : 6� i : yi = (sum j : 1�j�3 : aj � (xi�j+1 + xi+j�6)))The values a1, a2, a3 and (set i : 1� i : xi) are given.8.1.1 The Source ProgramThe following program represents an imperative re�nement of the speci�cation. It assumes that each elementof array y has an initial value of 0.int a[1::3], x[1::1], y[6::1]for i = 6 1!1for j = 1 1! 3y[i] := y[i] + a[j] � (x[i�j+1] + x[i+j�6])The normal form of the index space is:A = 2664 �1 00 �11 00 1 3775 b = 2664 0�113 377541

CHAPTER 8. EXAMPLE PROGRAMS 428.1.2 The Systolic ArrayWe emulate the following array, which can be derived from the given program for the linear phase �lter [52]:step:(i; j) = 2 � i + j place:(i; j) = jThe process space is one-dimensional; we name its coordinate p. We refer to stream y[i] by y, to a[j] by a,to x[i�j+1] by x1, and to x[i+j�6] by x2. The streams are de�ned as follows (ws is an arbitrary vector inthe nullspace of the index map for stream s):s Ms o�s ws
owsy (� (i; j):i) 0 (0; 1) 1a (� (i; j):j) 0 (1; 0) 0x1 (� (i; j):i�j) 1 (1; 1) 1=3x2 (� (i; j):i+j) �6 (1;�1) �1We load the stationary stream a into the array using the loading & recovery vector 1.8.1.3 The Process Space BasisWe allow in�nite loop bounds but restrict the compilation process to implementable programs. A targetprogram speci�es an in�nite computation if and only if the source program does. We do not create anin�nite number of processes. With respect to the process space basis, this means that the components ofplace corresponding to any loop with an in�nite bound must be zero (each loop can have at most one suchbound). The result for the linear �lter is that the only permissible place functions are place:(i; j) = j andplace:(i; j) = �j (a non-unit coe�cient for j leads to non-neighbouring
ows).The consequence for deriving the process space basis is that no vertices need be de�ned for the in�nitebound(s). For the linear �lter, there are only two vertices, both de�ned by the intersection of the left boundof the outer loop with a bound of the inner loop. Thus, to derive maxP, only two systems of equations needto be solved: v0 = (L0; L1) v1 = (L0; R1)� �1 00 �1 � y0 = � 01 � � �1 00 1 � y1 = � 01 �The solutions are: y0 = � 0�1 � y1 = � 01 �The components of each vertex are derived by solving the following system of equations:� �1 00 �1 � v0 = � 6�1 � � �1 00 1 � v1 = � 63 �The solutions are: v0 = � 61 � v1 = � 63 �The spatial projection of vertex v0 is minP, that of vertex v1 is maxP.minP= f previous derivation gplace:(6; 1)= f place:(i; j) = j g1 maxP= f previous derivation gplace:(6; 3)= f place:(i; j) = j g3

CHAPTER 8. EXAMPLE PROGRAMS 438.1.4 The Computation Processes | Basic StatementsWe take care not to specify something unimplementable. In�nity in a component of �rst is not permitted.In�nity in a component of last indicates non-termination of (part of) the distributed program. In this case,any communications speci�ed to succeed the computations will never happen and can be ignored. If non-termination is speci�ed but not really intended, as in converging computations, more complex schemes arenecessary. Sometimes, in�nity can be eliminated in the compilation process (Section 8.1.7).The derivations of �rst, last, and inc are as for sorting in Section 5.2, except that, in the derivation forlast, the right bound of the outer loop is substituted into the point and the system of equations is:place:(infty; j) = pThus last = (infty ; p) = (1; p). Note that the value infty is treated just as any other symbolic constant.8.1.5 The I/O Processes | LayoutBecause the process space is one-dimensional, the layout for the i/o processes are derived just as in Section 5.3.There is one input process and one output process for each stream. They are located at the ends of thelinear array of processes. The input processes for streams with a positive
ow are located at minP and theoutput processes are located at maxP and vice versa for streams with a negative
ow.8.1.6 The I/O Processes | CommunicationThe derivation of the access space basis for each stream proceeds as in Section 5.4. The only new situation isthat both streams x1 and x2 have a non-zero o�set; so, once the vertices on which their index maps reach theminimum and maximum are derived, minA and maxA are derived by applying the index maps and addingthe o�sets. For example, consider stream x2. Its index map corresponds to the vector (1; 1), which reachesa minimum at the vertex with coordinates (6; 1), and a maximum at the vertex with coordinates (infty; 3).Thus, the derivation for minAx2 is: minAx2= f previous derivations g(1; 1)�(6; 1) + (�6)= f simpli�cation g7� 6= f simpli�cation g1and the derivation for maxAx2 is: maxAx2= f previous derivations g(1; 1)�(infty; 3) + (�6)= f simpli�cation ginfty + 3� 6= f simpli�cation g1We omit the other derivations; the �nal results for all streams are:s Ms o�s minAs maxAs �rsts lasts incsy (� (i; j):i) 0 6 1 6 1 1a (� (i; j):j) 0 1 3 1 3 1x1 (� (i; j):i�j) 1 4 1 4 1 1x2 (� (i; j):i+j) �6 1 1 1 1 1

CHAPTER 8. EXAMPLE PROGRAMS 448.1.7 The Computation Processes | Data PropagationThe only di�erence from Section 5.5 is the treatment of in�nity as just another symbolic constant. Weillustrate with the derivation of the draining number for y:drainy:p= f Equ. (5.7) g(lasty:p�My:(last:p))=incy= f preceding derivations g(infty �My :(infty; p))=1= f simpli�cation ginfty�infty= f simpli�cation g08.1.8 The Bu�er ProcessesThe only internal bu�ers are for stream x1. The witness to the existentially quanti�ed variable in Equation 3.2is 3, so bu�x1 = 2; we create a set of pairs of single-element bu�er processes. To keep the computationprocesses uniform, we insert bu�ers between the input process for stream x1 and the �rst computationprocess (at coordinate 1). Each bu�er process uses the i/o repeaters as the bounds for a loop, the bodyconsisting of a matching receive and send. A later optimization could merge the single element bu�ers intoone larger bu�er.8.1.9 The Complete ProgramThe basic statement of the distributed program is:(i; j) :: parreceive y from y chan[p]receive x1 from x1 bu� [p; 2]receive x2 from x2 chan[p]y := y + a � (x1 + x2)parsend y to y chan[p+1]send x1 to x1 chan[p+1]send x2 to x2 chan[p�1]The rest of the distributed program for the linear phase �lter is shown in Figure 8.1.

CHAPTER 8. EXAMPLE PROGRAMS 45
program linear �lterchan y chan[1::4], a chan[1::4], x1 chan[1::4], x2 chan[0::3],x1 bu� [1::3; 1::2]par/********** Input Processes **********/send y < 6; 1; 1 > to y chan[1]send a < 1; 3; 1 > to a chan[1]send x1 < 4; 1; 1 > to x1 chan[1]send x2 < 1; 1; 1 > to x2 chan[3]/********** Bu�er Processes **********/parfor p = 1 1! 3parfor foo = 1 1! 2for bar = 0 1! nint bazif foo = 1 ! receive baz from x1 chan[p][] foo = 2 ! receive baz from x1 bu� [p; foo�1]�send baz to x1 bu� [p; foo]/********** Computation Processes **********/parfor p = 1 1! 3int y; a; x1; x2load a ; a chan ; p�1pass x1 chan ; 3�ppass x2 chan ; p�1< (6; p); (1; p); (1; 0) >pass x1 chan ; p�1pass x2 chan ; �p+6recover a ; a chan ; 3�p/********** Output Processes **********/receive y < 6; 1; 1 > from y chan[4]receive a < 1; 3; 1 > from a chan[4]receive x1 < 4; 1; 1 > from x1 chan[4]receive x2 < 1; 1; 1 > from x2 chan[0]end parend linear �lter Figure 8.1: Linear phase �lter: The distributed program.

CHAPTER 8. EXAMPLE PROGRAMS 468.2 LU-DecompositionLU-decomposition factors a matrixA into two matrices L and U , such that LU = A. L is a lower triangularmatrix, whose diagonal elements are all ones, while U is an upper triangular matrix.8.2.1 The Source ProgramA source program meeting our source restrictions is:int A[0::n� 1; 0::n� 1], L[0::n� 1; 0::n� 1], U [0::n� 1; 0::n� 1]for k = 0 1! n � 1for i = k 1! n� 1for j = k 1! n� 1if i = k ^ j = k ! U [k; j]; L[i; k] := A[i; j]; 1[] i = k ^ j > k ! U [k; j]; L[i; k] := A[i; j]; L[i; k][] i > k ^ j = k ! L[i; k] := A[i; j]=U [k; j][] else ! A[i; j] := A[i; j]� L[i; k] � U [k; j]�Each clause is required to access an element from each stream; thus, the diagonal elements of L are explicitlyassigned 1 by the �rst clause, and then propagated by the second clause. Sequential implementations usuallyoverwrite A with its decomposition, so the diagonal elements of L are implicit. When L is a moving streamin the systolic array, the propagation statements direct the diagonal elements of L to the borders of thearray. The matrices from the loop bounds are:E f G h24 0 0 01 0 01 0 0 35 24 000 35 24 0 0 00 0 00 0 0 35 24 n� 1n� 1n� 1 35Forming E � I, I �G, and �f : E � I I �G �f24 �1 0 01 �1 01 0 �1 35 24 1 0 00 1 00 0 1 35 24 000 35yields the normal form for the index space:A = � E � II � G � = 26666664 �1 0 01 �1 01 0 �11 0 00 1 00 0 1 37777775 b = � �fh � = 26666664 000n� 1n� 1n� 1 377777758.2.2 The Systolic ArrayWe emulate the following array, which is speci�ed by the same place function as the hexagonal Kung-Leisersonmatrix multiplication array [47]:step:(k; i; j) = k + i+ j place:(k; i; j) = (k � j; i� j)

CHAPTER 8. EXAMPLE PROGRAMS 47
���������������� -6 cr n� 1

1� nFigure 8.2: LU-decomposition: The process space and its rectangular closure.The process space is two-dimensional. Its points have two integer coordinates; we name them c (for column)and r (for row). We refer to stream A[i; j] by A, to L[i; k] by L, and to U [k; j] by U . The streams are de�nedas follows (ws is an arbitrary vector in the nullspace of each stream's index map):s Ms o�s ws
owsA (� (k; i; j):(i; j)) (0; 0) (1; 0; 0) (1; 0)L (� (k; i; j):(i; k)) (0; 0) (0; 0; 1) (�1;�1)U (� (k; i; j):(k; j)) (0; 0) (0; 1; 0) (0; 1)8.2.3 The Process Space BasisSince the process space is two-dimensional, minP and maxP have two components each. The derivationsare as in Section 5.1, except that there are eight vertices (some are coincident). minP is the projection ofthe vertex at the intersection of the left bounds of all three loops: the vertex is (0; 0; n� 1), its projection is(1� n; 1� n). maxP is the projection of the vertex at the intersection of the left bounds of the innermostand outermost loops and the right bound of the middle loop: the vertex is (0; n� 1; 0), its projection is(0; n� 1). P and its rectangular closure, rect:P, are depicted in Figure 8.2.3.8.2.4 The Computation Processes | Basic StatementsThe derivations of �rst, last, and inc proceed as those in Section 5.2. inc is (1; 1; 1). �rst has one face, lasthas three faces (one of which is an extraneous face). The guard of �rst de�nes the boundaries of the processspace: �rst = if 0�r�c�n�1 ^ 1�n�c�0 ! (0; r�c;�c)�There are two di�erent clauses for last, one for the triangle of processes below the c axis (the third clause)and one for the triangle above it (the second clause). The �rst clause is for the extraneous face, F :R0, which

CHAPTER 8. EXAMPLE PROGRAMS 48is projected onto the origin.last = if c = 0 ^ r = 0 ! (n�1; r�c+n�1;�c+n�1)[] 0�r�c�n�1 ^ c � 0 ^ r � 0 ! (c�r+n�1; n�1; n�1�r)[] 1�n�c�0 ^ c � 0 ^ r � 0 ! (c+n�1; r+n�1; n�1)�8.2.5 The I/O Processes | LayoutThe
ow of both streams A and U has only one non-zero component. Thus, only one set of i/o processes iscreated for each stream. Stream A is only input; only input processes are created for it. Stream U is onlyoutput; only output processes are created for it. The
ow for stream A is to the right; its input processesare on the left boundary of rect :P. Stream U
ows to the top; its output processes are on the top of rect :P.Stream L has two sets of i/o processes: along the left and bottom boundary of rect :P. They are notdisjoint since both contain the vertex at the bottom left of rect:P. As presented in Section 5.3, they mustbe made disjoint. The processes are derived in increasing order, i.e., �rst the processes de�ned for the leftside, then the processes for the bottom. The �rst set is de�ned at the points on the boundary of rect:Pfor which c = 1 � n, the second set at the points for which r = 1 � n. But we remove the process locatedat (1� n; 1� n) removed from the second set, since that point already is in the �rst set. The completede�nitions are in Section 8.2.9.8.2.6 The I/O Processes | CommunicationThe derivation of the access space for each stream proceeds as in Section 5.4. Because no streams has anon-zero o�set, the access spaces are the same as the declarations of the variables in the program. However,only a triangular section of the elements of L and U are modi�ed; the other elements just propagate throughthe array. For all three streams, incs = (1; 1). The streams are not simple streams, because both componentsare non-zero. Thus, we derive the values of �rsts and lasts according to the de�nitions in Equations 5.4 and5.5. We illustrate by deriving �rstA. Let the point x be the value of �rst (any values of last could have beenused instead). Two derivations are required: one for ` = 0 and another for ` = 1, since both components ofincA are non-zero. For ` = 0: �rstA= f Equation 5.4 gM:x� (M:x:`� �rsts:`)=incs:` � incs= f x = (0; r�c;�c), incs = (1; 1), ` = 0 gM:(0; r�c;�c)� (M:(0; r�c;�c):0� 0)=1 � (1; 1)= f M = (� (k; i; j):(i; j)) g(r�c;�c) � (r�c � (1; 1))= f simpli�cation g(r�c;�c) � (r�c; r�c)= f simpli�cation g(0;�r)The guard for this value of �rstA is derived by applying the bounds of the second dimension of the accessspace for A to the value. Since we are using rect :A, the bounds are constants, i.e., they do not depend onthe point. Thus the guard is: 0��r�n� 1which we simplify to 1� n�r�0.

CHAPTER 8. EXAMPLE PROGRAMS 49Without showing the other derivations, we summarize the results:s �rstsA if 1� n�r�0 ! (0;�r)[] 0�r�n� 1 ! (r; 0)�L if 0�c� r�n� 1 ! (0; c� r)[] 1� n�c� r�0 ! (r � c; 0)�U if 1� n�c�0 ! (0;�c)[] 0�c�n� 1 ! (c; 0)�s lastsA if 0�r�n� 1 ! (n� 1;�r+ n� 1)[] 1� n�r�0 ! (r + n� 1; n� 1)�L if 1� n�c� r�0 ! (n� 1; c� r + n� 1)[] 0�c� r�n� 1 ! (r � c+ n� 1; n� 1)�U if 0�c�n� 1 ! (n� 1;�c+ n� 1)[] 1� n�c�0 ! (c+ n� 1; n� 1)�8.2.7 The Computation Processes | Data PropagationThe derivation of the code for the data propagation also does not change. There are no stationary streams;there is soaking and draining, but no loading and recovery. The soaking code has two clauses for each streamsince there are two clauses for �rsts and one clause for �rst. The draining code is more complicated; twoclauses for both last and lasts result in four clauses for each stream. Many clauses are redundant and couldbe eliminated by a symbolic simpli�cation. As an example, the draining code for U is (the guards have beenhand-optimized already, but no redundant clauses have been eliminated):drainU = if c = 0 ^ r = 0 ! r � c[] c = 0 ^ r � 0 ! �c[] 1� n�c�0 ^ r � 0 ^ 0�r� c�n� 1 ! r[] 1� n�c�0 ^ r � 0 ! 0�There is no soaking of L and U (i.e., the derived values for soakL and soakU are zero) and no draining for A(the values derived for drainA are also zero). The rest of the soaking and draining code is presented alongwith the entire program in Section 8.2.9, where it has been simpli�ed by hand.8.2.8 The Bu�er ProcessesNone of the streams have a fractional
ow, so no internal bu�ers are required. But since the process space isnot rectangular, external bu�ers are needed to propagate stream elements between the boundaries of rect:Pand P. There are two triangles that are in rect :P but not in P. Note that the external bu�ers for L are onlyused to propagate the elements that are in rect:AL, but not in AL. A more accurate method for derivingthe access space would not need them. Because the i/o processes are de�ned piecewise, so are the bu�er

CHAPTER 8. EXAMPLE PROGRAMS 50(k; i; j) :: if i = k ^ j = k ! receive A from A chan[c; r]U, L := 1/A, 1parsend L to L chan[c� 1; r � 1]send U to U chan[c; r + 1][] i = k ^ j > k ! parreceive A from A chan[c; r]receive L from L chan[c; r]U, L := A, Lparsend L to L chan[c� 1; r � 1]send U to U chan[c; r + 1][] i > k ^ j = k ! parreceive A from A chan[c; r]receive U from U chan[c; r]L := A � Uparsend L to L chan[c� 1; r � 1]send U to U chan[c; r + 1][] else ! parreceive A from A chan[c; r]receive L from L chan[c; r]receive U from U chan[c; r]A := A � L � Uparsend A to A chan[c+ 1; r]send L to L chan[c� 1; r � 1]send U to U chan[c; r + 1]�Figure 8.3: LU-decomposition: The basic statement of the distributed program.processes: bu�A = if 1� n�r�0 ! n+ r[] 0�r�n� 1 ! n� r�bu�L = if 1� n�c� r�0 ! n+ c� r[] 0�c� r�n� 1 ! n� (c� r)�bu�U = if 0�c�n� 1 ! n� c[] 1� n�c�0 ! n+ c�Notice that the �rst clause for U is not needed; it is for points that are not even in rect:P. (The referencedelements are for the points in rect:AU but not in AU .)8.2.9 The Complete ProgramThe basic statement of the distributed program is shown in Figure 8.3. For clarity, the external bu�ers havebeen separated from the rest of the program; they are shown in Figure 8.4. Figure 8.5 shows the rest of thecode for the entire program.

CHAPTER 8. EXAMPLE PROGRAMS 51
/********** External Bu�ers **********/parfor c = 1� n 1! 0parfor r = 1� n 1! n � 1a b := if 1� n�r�0 ! n+ r[] 0�r�n � 1 ! n� r�parpass A chan ; a bpass L chan ; n � (c� r)pass U chan ; n + cFigure 8.4: LU-decomposition: The external bu�ers of the distributed program.

CHAPTER 8. EXAMPLE PROGRAMS 52program LU decompositionchan A chan[1� n::0;1� n::n� 1], L chan[�n::0;�n::n� 1],U chan[1� n::0;1� n::n]par/********** Input Processes **********/parfor r = 1� n 1! n � 1(int; int) �rst A, last A�rst A, last A := if 1� n�r�0 ! (0;�r); (r + n� 1; n � 1)[] 0�r�n � 1 ! (r; 0); (n � 1;�r+ n� 1)�send A < �rst A; last A; (1; 1) > to A chan[1 � n; r]/********** Computation Processes **********/parfor c = 1� n 1! 0parfor r = 1� n 1! n� 1a := if 1� n�r�0 ! r � c[] 0�r�n � 1 ! �c�pass A chan ; alst :=if 0�r�c�n�1 ^ c � 0 ^ r � 0 ! (c�r+n�1; n�1; n�1�r)[] 1�n�c�0 ^ c � 0 ^ r � 0 ! (c+n�1; r+n�1; n�1)�< (0; r � c;�c); lst; (1; 1; 1) >l := if r � 0 ! 0[] r � 0 ! �r�pass L chan ; lu := if r � 0 ! r[] r � 0 ! 0�pass U chan ; u< external bu�er processes >/********** Output Processes **********/parfor r = 1� n 1! n � 1(int; int) �rst L, last L�rst L, last L := if 1� n�c� r�0 ! (r � c; 0); (n � 1; c� r + n � 1)[] 0�c� r�n � 1 ! (0; c� r); (r � c+ n � 1; n � 1)�receive L < �rst L; last L; (1; 1) > from L chan[�n;r � 1]parfor c = 2� n 1! n � 1(int; int) �rst L, last L�rst L, last L := if 1� n�c� r�0 ! (r � c; 0); (n � 1; c� r + n � 1)[] 0�c� r�n � 1 ! (0; c� r); (r � c+ n � 1; n � 1)�receive L < �rst L; last L; (1; 1) > from L chan[c� 1;�n]parfor c = 1� n 1! 0(int; int) �rst U , last U�rst U , last U := if 1� n�c�0 ! (0;�c); (c+ n � 1; n � 1)[] 0�c�n � 1 ! (r; 0); (n � 1;�c+ n � 1)�receive U < �rst U; last U; (1; 1) > from U chan[c;n]end LU decomposition Figure 8.5: LU-decomposition: The distributed program.

Chapter 9The ImplementationThis chapter provides a brief discussion of the implementation of the compiler. The compiler is written inCommon Lisp [72], and contains (to date) approximately 6,000 lines of source code. It executes within aLisp environment either in interpreted or compiled mode.Systolizing compilation depends on symbolic simpli�cation. With several excellent symbolic mathematicspackages available, we decided to leave our simpli�cation routines in a rudimentary state.9.1 The Source FormatThe compiler accepts source programs in a format almost identical to that present in Chapter 3. To eliminatethe need for a lexical scanner, parentheses are added to enable the Lisp reader (parser) to parse it directly.Thus, e.g., the source program from Figure 3.1, reproduced here:for j = 1 1! nfor i = j 1! nif i = j ! m[j] := x[i][] i 6= j ! m[j]; x[i] := max(x[i];m[j]);min(x[i];m[j])�would be written as:(define-program:name sorting:indexed-vars ((m (1 n)) (x (1 n))):input-vars ((x i)):output-vars ((m j)):loops (for j = 1 <- 1 -> n(for i = j <- 1 -> n(sort-op j i))))with the basic operation sort-op written as:(define-statement:name sort-op:program sorting:type :guarded:statement (if((= j i) (:= (m j) (x i)))((not (= j i)) 53

CHAPTER 9. THE IMPLEMENTATION 54(:= (m j) (min (x i) (m j)))(:= (x i) (max (x i) (m j))))))9.2 The Target FormatCurrently, the compiler produces output in the language presented in Chapter 6. There are two options:ASCII text or LaTEX format. A translator to occam 2 [38] is in development at the University of Edinburgh.

Chapter 10Related WorkThere are many avenues of research in the area of parallelization and just as many dimensions in whichto organize a discussion of it. We do not attempt to provide a general survey of the �eld, but only of theresearch which directly relates to our work.We de�ne our speci�c �eld as \code generation via loop transformations based on an algebraic theory".One of the �rst papers discussing parallelization in this manner is by Lamport [49]. He proposed the\wavefront" method, which produces parallel code for synchronous architectures. The wavefront methodprovides a geometric model for the source program as a set of integer points within a convex polyhedron:the index space. The data dependences between di�erent operations are then directed vectors within thepolyhedron. Parallelization is achieved by the discovery of a sequence of parallel hyperplanes that slice thepolyhedron. Independent operations that may be executed in parallel lie on the same hyperplane. Thehyperplanes are ordered (by the normal that de�nes each of them) so that dependent operations occur inthe correct order.10.1 Systolic DesignThe seminal paper in systolic design [45] de�nes the class of algorithms amenable to such techniques as thoseexpressed as uniform recurrence equations, a restricted form of functional speci�cations. Given an algorithmexpressed this way, it is possible to derive an optimal slicing of the index space, i.e., one that results in theminimal number of hyperplanes. Most research concentrated on mechanical methods for deriving this slicinghyperplanes [58, 62, 67], and, recently, for relaxing the restrictions on the dependences [63, 64]. Modernsystolic design systems, like ALPHA du CENTAUR [31] and PRESAGE [75] mechanize these methodsand express the array as space-time recurrence equations. In general, systolic arrays were assumed to beimplemented in hardware, although researchers seemed to be aware that the space-time equations can beinterpreted as a synchronous program [14].Asynchronous software implementations of systolic arrays began with SDEF [23], which �lls in a programskeleton with appropriate communication directives and computations, but only for a �xed-size array. Amore ambitious attempt is the thesis of Ribas [69]. It presents a comprehensive method for deriving sys-tolic programs, but speci�cally for the processor array WARP [5]. WARP is a one-dimensional 10-elementprocessor array equipped with systolic communication, i.e., communication is as fast as computation. Thetargeting of WARP imposes restrictions on the possible communication patterns: only one-dimensional sys-tolic arrays with uni-directional communication patterns can be emulated. In addition, as in SDEF, thesource program must be for a �xed problem size. Ribas presents an algorithm for code generation whichis limited to unimodular transformations, and only produces linear loop bounds. Nevertheless, his resultsshow that mechanical compilation can produce e�cient systolic code for distributed-memory machines, atleast for a machine which supports fast communication.All of the preceding work is mechanical. Non-mechanical methodologies for software implementationsof systolic arrays have proceeded from more general theories that transcend the systolic paradigm. Theystart with a high-level (potentially unimplementable) speci�cation and massage program invariants until anacceptably e�cient algorithm results; see [44, 74] for examples. Using UNITY [13], such a methodology can55

CHAPTER 10. RELATED WORK 56be founded on a theory that provides proof rules as guidance during the derivation. Fencl and Huang [27]discuss the generation of code from systolic algorithms (among other types of algorithms) but only specifythe template of such programs without providing a method. There have also been many ad-hoc approachesfor creating systolic programs, e.g., [28].10.2 Parallelizing CompilationThe area of parallelizing compilers [2, 77] was concerned with discovering which loops in a loop nest couldbe executed in parallel and then moving them inwards to derive loops that could be executed on a vectorprocessor (e.g., Cray supercomputers or the Alliant FX/8). Parallelizing compilers target a more generalclass of programs | virtually any scienti�c code. This led to a less theoretical, more ad-hoc catalogue ofloop transformations that are applied heuristically.Recently, two developments in parallelizing compilation have created a bridge to the �eld of systolicdesign. First, in parallel compilation, attention has begun to focus on distributed-memory machines [12, 61].Second, a formal theory is bringing order to the welter of transformations. Both Banerjee [8] and Wolfand Lam [76] recognized many of the basic loop transformations as linear transformations on the indexspace. As discussed in Chapter 7, the general approach has been to insist on unimodular transformations.For instance, Banerjee [8] describes an algorithm for code generation given exactly two nested loops anda unimodular transformation. He also presents algorithms for deriving the transformation: in general,synchronous programs are created. Wolf and Lam [76] present a general framework for the transformationof nested loop algorithms. Like Banerjee, they consider only unimodular transformations. Besides handlingmore general transformations, they present an algorithm for producing a target program where all loops butthe outermost loop are fully parallel. Their code generation algorithm produces conservative loop bounds forall but the innermost loop. This means that the outer loops may specify a superset of the intended iterations,but the innermost loop guarantees that only the proper iterations take place. As such, their target programsexhibit some ine�ciencies. Their method allows for piecewise linear loop bounds in the source programs, aslong as the resulting index space is convex.10.3 Loop TransformationsThis section presents work that is close to our own, but which does not �t neatly into either of the previoussections. Systolic design (for software) and parallelizing compilation both seek the same result at present:massively parallel programs for the emerging �ne-grained architectures. Code generation methods in bothareas are based on the algebraic theory of loop transformations.As noted above, Chen started out in the systolic world, but has moved much closer to the work inparallelizing compilation [56]. Her group has begun to concentrate on explicit code generation. Her studentsLu [55, 56] and Yang and Choo [79] permit non-unimodular transformations, but pay little attention to loopbound generation and e�ciency considerations. Instead, they focus on the derivation of the transformationsthemselves. For instance, their target programs are expressed in the functional language Crystal [15]. Oneresult is that they do not produce loop bounds in a format suitable for imperative programs, a non-trivialtask.Irigoin [41], presents an algorithm for generating code based on the hyperplane method. In [42], hepresents a method for reordering a set of nested loops to increase parallelism: it combines the detectionof parallelism with loop interchanging and the hyperplane method. Ancourt [3, 4], using an extension ofhis method, aims at the movement of data through memory hierarchies. She derives code to enumeratethe data elements that are referenced by a set of nested loops. The same methods can be applied toloop transformations. Other work by Irigoin and Triolet [43] uses similar techniques for coarser-grainedparallelism.Others, independently, have used similar methods. Feautrier [24, 25, 26] has proposed an algorithm forgenerating loop bounds (the central problem for code generation) created by unimodular transformationson source programs. He uses a variant on the simplex algorithm which permits integer solutions and isfast on the sort of \small" problems arising in loop transformations. Dowling [22] also represented loop

CHAPTER 10. RELATED WORK 57transformations using unimodular matrices and, similar to Wolf and Lam, produces fully parallel inner loopsin the target program.10.4 Architectural RestrictionsThe previously discussed work derives abstract target programs that are re�ned subsequently to conformto the restrictions of a particular architecture or machine. Some work addresses architectural limitationsearlier: at the design stage.For instance, Ramanujamand Sadayappan [65, 66] produce parallel code for distributed memorymachinesusing hyperplanes as well, but they target present day parallel architectures for which excessive communica-tion leads to poor performance. As a result, they are concerned with deriving communication-free partitionsand a coarser grain of parallelism. A more recent paper by Huang and Sadayappan [36] further develops thenecessary hyperplane theory.It is also possible to perform mapping and partitioning on the systolic array at an abstract level toreduce the number of logical processes. Following on early work by Moldovan and Fortes [60], both Clauss,Mongenet, and Perrin [16] and Bu, Deprettere, and Dewilde [10] develop a formal method for mappingseveral cells of the systolic array to the same cell. But they do not address the problem of deriving theexplicit form of the distributed program. There are also methods for mapping systolic programs [37] ornon-systolic programs [32] to particular architectures.As a last point, the parallel processes we create synchronize by data transfers. In parallelizing compi-lation, this corresponds to DOACROSS loops [17, 18]. The correspondence is misleading, however, sinceDOACROSS loops do not seem to have a theoretical basis.

Chapter 11ConclusionsWe have presented a method for the derivation of systolic programs for execution on asynchronous distribu-ted-memory processor networks. A prototype compiler has been implemented. Our primary concern was aformal basis for establishing the correctness of the target programs; e�ciency was a second priority.11.1 CorrectnessWriting an incorrect program is easier than understanding a correct one.|UNIX1 fortuneIt has long been recognized that programming should be a problem solving activity. Issues that have nothingto do with the problem should, if at all possible, not be the burden of the programmer but should be resolvedduring the compilation process. This idea was initially promoted as \structured programming" [19], whichdiscouraged the use of the goto. In our setting, parallelism and communication are concepts as \low-level"as the goto | only, they are even harder to specify correctly.A program's correctness can be achieved in many ways. The e�ects of temporal non-determinism rendersystematic testing impractical for parallel programs. There are many theories and methodologies for verifyinga program's correctness, once it is written, or for deriving a program by calculation. They provide precisionand formality, if applied correctly, but applying them manually can be error-prone. Mechanical assistancein formal veri�cation is an area of active research; it provides reliability but present-day veri�cation systemsusually require detailed and meticulous guidance through a proof. This entails a large amount of e�ort| well worth paying if 100% certainty is essential. For the programmer, the most reliable and convenientapproach to reliable programming is a mechanized method. Once the method is proven correct, correct input(speci�cations or, as in our case, source programs) are guaranteed to yield correct output. Our method isbased on a mathematical theory, and its transformations have been veri�ed with respect to that theory. Thedesign methods that derive one of our sources, the systolic array, are based on the same mathematical theory.The reliance on an established theory gives us a high degree of con�dence in the programs generated by ourscheme. Our proof of the method was carried out by hand, since much of it draws on textbook results, buta mechanical proof may be worth while, once the method has settled.The bene�t of handling low-level details during compilation is illustrated by considering register alloca-tion. At one time, programmers had to specify register allocation explicitly. Being sure of correctness meantverifying each program separately. Once a general register allocation scheme was devised and proven correct,the register allocation of individual programs no longer had to be veri�ed.11.2 E�ciencyEach stage of the programming process presents opportunities for introducing e�ciency (or ine�ciency).For a given source program, methods for systolic design produce a systolic array with the minimal execution1UNIX is a trademark of AT&T. 58

CHAPTER 11. CONCLUSIONS 59time (relative to a set of constraints). It is possible that a di�erent source program may solve the sameproblem and yield a shorter execution, but the proper choice of source program is beyond the scope of ourwork and of systolic design. The e�ciency of our programs depends on the correspondence between themodel of the systolic array and the model of the target processor network. A mismatch between the arraymodel and the machine model can result in crass ine�ciencies. In general, there are two methods for copingwith a mismatch: either perform optimizations on the distributed program to compensate for the di�erence,or take the di�erences into account during the calculation of the distributed program. As was mentionedin Chapter 10, Ribas [69] chose the latter approach and demonstrated its feasibility. By using a methoddesigned for a very speci�c machine model, WARP [5], he generated e�cient code for that machine. However,a general method that is sensitive to particular architectural details must either be more complicated (andthus, harder to prove correct) or must embody many di�erent methods, each for a particular architecture.We discuss here several mismatches. Some of them are not addressed directly in our work; in these caseswe believe that an optimization at a later stage is preferable. The �rst mismatch is between the synchronousexecution of the systolic array and the asynchronous parallelism of the processor networks on which weexecute our programs. We have chosen to account for this di�erence, and have designed our method toproduce asynchronous programs.Systolic arrays are characterized by their balanced amount of communication and computation. This canlead to another mismatch. A processor network whose cost of communication is many orders of magnitudehigher than that of computation clearly cannot emulate systolic arrays e�ciently. However, current archi-tectures have brought the cost of communication within one order of magnitude of the cost of computation,e.g., the T9000 transputer [40]. Designs for some future machines, like the Mosaic at CalTech [6] and theConcurrent Rewrite Machine [1], promise an even closer balance.Several mismatches may occur with respect to communication. First, communication in a systolic arrayis localized; but processes that are neighbours in the systolic array may not be mapped to neighbouringprocessors in the processor network. Second, communication channels that exist in the systolic array maynot exist in the processor network. And third, even when they exist, mapping several logical channels of thesystolic array to the same channel of the processor network may cause contention. For these mismatches wedo not propose a solution. We believe they are best handled either at the design stage of the systolic arrayor at a later stage of the programming process.Machines that do not provide synchronous communicationmay incur extra overhead to simulate it. Here,our method may be modi�ed. As long as there are bu�ered communication channels (which deliver messagesin the order they are sent), we could allow asynchronous communication and save both the overhead ofsynchronous communication and the creation of the internal bu�er processes.Lastly, following the systolic paradigm, we exclude all shared access to data, even shared reading. Pro-grammable computers with fully connected communication networks and hardware broadcasting capabilitiesmay bene�t from lifting this restriction.11.3 UnimodularityOur investigation of unimodularity reveals the connections between the areas of systolic design and of par-allelizing compilers. We believe that both theory and practice are causing a convergence between the areas,of which unimodularity is a Unimodularity clearly simpli�es the derivation of the target program, but itis not essential. The most obvious concept introduced by non-unimodular transformations, non-unit loopstrides in the target program, is the easiest part of the problem. A much more di�cult matter is the precisedescription of the non-convex boundaries that delineate the \good" points. Methods for coping with non-unimodular transformations require not only the ability to generate piecewise linear loop bounds but alsoto analyze the space-time transformation in order to specify the non-convex boundaries. There certainly isenough information available at compile-time to make the alternative | testing at run time | unnecessary.Research intended for slightly di�erent purposes (for example, [3]) may be adaptable to such derivations.Possibly, the \folding" proposed by Clauss, Mongenet, and Perrin [16] could also be used to make non-convexdomains convex.

Appendix ATheoremsThis appendix lists the proofs of all claims cited in the text. In the text, they are referred to by number.1. Theorem: dim :(null:place)=1Proof:true= f linear algebra gdim :(null:place)+rank:place = r= f rank:place = r�1 gdim :(null:place)=1(End of Proof)2. The null space of place is the span of a single element, call it nullp. Note that nullp 6= 0. This meansthat: (A x : x 2 null:place : (E � : � 2 R : x = � � nullp))nullp can be any element in the null space; it is not unique. Without loss of generality, let nullp 2 Zr.Note that, for any x 2 Zr , � is a rational number.3. Theorem: step:nullp 6= 0Proof:step:nullp = 0= f let nullp = �(x� x0), for some x; x0 such thatplace:x = place:x0 ^ x 6= x0, and � 2 R gstep:(�(x� x0)) = 0= f linear algebra g� � step:(x� x0) = 0= f nullp 6= 0) � 6= 0, algebra gstep:(x� x0) = 0= f linear algebra gstep:x� step:x0 = 0= f algebra gstep:x = step:x0) f Formula 3.1 gfalse(End of Proof) 60

APPENDIX A. THEOREMS 614. Theorem: (All of the points projected by place onto any y lie on a straight line)(A y : : (E line : : (A x : : place:x = y � x 2 line)))Proof: Given an arbitrary y 2 Zr�1, we need to show the existence of a line. This requires a point anda vector. Given the dimensions of place, there always exists a non-trivial solution to place:x = y [50];let x0 be such a solution. Then let x0 be the point and nullp the vector. Obviously x0 lies on this line.So it su�ces to show that for any other x, place:x = y � x 2 line.place:x = y= f place:x0 = y gplace:(x� x0) = 0= f def. of null:place gx� x0 2 null:place= f Theorem 2: null:place = span:nullp g(E m : m 2 Q : x� x0 = m � nullp)= f algebra g(E m : : x = x0 +m � nullp)= f def. of line gx 2 line(End of Proof)5. Theorem: inc 2 null:placeProof:inc 2 null:place= f de�nition of the null space of a matrix gplace:inc = 0= f Speci�cation 4.3: place:w = place:z ^ step:w < step:z gplace:(z �w) = 0= f linear algebra gplace:z = place:w= f place:w = place:z gtrue(End of Proof)6. Theorem: step:inc > 0Proof:step:inc > 0= f Speci�cation 4.3: step:w < step:z gstep:(z � w) > 0= f linear algebra gstep:z � step:w > 0= f step:w < step:z gtrue(End of Proof)

APPENDIX A. THEOREMS 627. Theorem (The number of points in Zr that lie on a vector x 2 Zr, x 6= 0, is k+1, where k =(gcd i : 0� i<r : x:i). Each point can be written as (m=k)�x where 0�m�k)(E m : m 2 Z ^ 0�m�k : p = (m=k) � x) � p 2 Zr ^ (p on x)Proof:): m = 0: Trivially since (A x : : (0 on x)).m = 1: ((1=k) � x on x) ^ (1=k) � x 2 Zr= f de�nition of on g(E t : 0� t�1 : (1=k) � x = t � x) ^ (1=k) � x 2 Zr= f x 6= 0 ^ k = (gcd i : : x:i)) k > 0 ^ 0�1=k�1,let t = 1=k gtrue ^ (1=k) � x 2 Zr= f linear algebra g(A i : 0� i<r : (1=k) � x:i 2 Z)= f k = (gcd i : : x:i)) (A i : : k j x:i) gtrue1 < m � k: ((m=k) � x on x) ^ (m=k) � x 2 Zr= f linear algebra g((m=k) � x on x) ^ m � ((1=k) � x) 2 Zr= f previous case: (1=k) � x 2 Zr g((m=k) � x on x) ^ true= f predicate calculus g((m=k) � x on x)= f de�nition of on g(E t : 0� t�1 : (m=k) � x = t � x)= f 1 < m � k) 0�m=k�1, let t = m=k gtrue(: p 2 Zr ^ (p on x)= f de�nition of on, algebra, pred. calc. g(E t : t 2 Q ^ 0� t�1 : p = t � x ^ p 2 Zr)= f de�nition of Q, let t = u=v, without loss of generalityu and v are relatively prime, i.e., gcd.(u,v) = 1 g(E u; v : u; v 2 Z ^ 0� (u=v)�1 : p = (u=v) � x ^ p 2 Zr)= f linear algebra g(E u; v : u � v ^ v 6= 0 : (A i : : p:i = (u=v) � x:i) ^ p:i 2 Z))) f p:i 2 Z ^ gcd.(u,v) = 1) (A i : : v j x:i)) v j k,therefore (E c : : v � c = k). so let m = u � c,then m=k = (u � c)=(c � v) = u=v,and u � v) u � c � v � c) u � c � k g(E m : m 2 Z ^ 0�m�k : p = (m=k) � x)(End of Proof)Corollary: Given a vector, x, in Zr, we can calculate a \unit" distance along that vector as 1=k � x.This unit is a constant vector in Zr and has the property that for any line de�ned with that vector,any two adjacent points are 1 unit apart. We also conclude:(A x; x0 : place:x = place:x0 : (E m : m 2 Z : x� x0 = m � inc))

APPENDIX A. THEOREMS 638. Theorem: (
ow is single-valued) Let M be the index map for stream s and w and z arbitrary elementsin null:M . place:w=step:w = place:z=place:zProof:place:w=step:w = place:z=step:z= f (A x : x 2 Zr ^ M:x = 0 : (E �; n : : x = � � n)),where span:n = null:M gplace:(� � n)=step:(� � n) = place:(� � n)=step:(� � n)= f algebra gplace:(� � n) � step:(� � n) = place:(� � n) � step:(� � n)= f linear algebra g� � � � place:n � step:n = � � � � place:n � step:n= f algebra gtrue(End of Proof)9. Theorem: Let M be the index map for the stream s and o� its o�set. Then the increment betweenconsecutive stream elements in a pipe is M:inc. Each statement accesses an element of s; consecutivestatements are separated by inc.Proof:(M:(x + inc) + o�) � (M:x+ o�)= f M is a linear mapping, algebra gM:(x+ inc � x)= f algebra gM:inc(End of Proof)10. Theorem: (A property of vertices in convex polyhedra.) Let x be a vertex of a convex polyhedron C,and let the set (set i : 0� i<r : ni) be the outward normals to the r boundaries of which x is theintersection. (A x0 : x0 2 C : (A i : : ni�(x0 � x) � 0))Proof: (Sketch) Since x is a vertex, the r inequalities corresponding to the r normals are equalities.If, for any i, x0:i = x:i, then ni�x0 = 0, since x0 is on that boundary. If, for any i, x0:i 6= x:i, thenni�x0 < 0, else x0 would be outside the boundary.(End of Proof)

APPENDIX A. THEOREMS 6411. Theorem: (Hyperplanes and Vertices.) Let x be a vertex of a convex polyhedron, and the set(set i : 0� i<r : ni) be the outward normals to the r boundaries of which x is the intersection. Leth be a hyperplane and m the maximum value it attains on the polyhedron, i.e., m = (max x : : h�x).(h = (sum i : : �i � ni) ^ (A i : : �i � 0))) h�x = mProof:h�x = m= f de�nition of max g(A x0 : x0 2 I : h�x0 � h�x)= f let x0 be an arbitrary element of I gh�x0 � h�x= f h = (sum i : : �i � ni) g(sum i : : �i � ni)�x0 � (sum i : : �i � ni)�x(f (A i : : �i � 0), monotonicity of inner product g(sum i : : ni)�x0 � (sum i : : ni)�x= f distributivity of inner product g(sum i : : ni�x0) � (sum i : : ni�x)(f monotonicity of addition g(A i : : ni�x0 � ni�x)= f Theorem 10, x is a vertex gtrue(End of Proof)

Appendix BDistributed Program Syntax� Bold indicates a keyword.� Roman indicates a non-terminal.� Italic indicates a non-terminal for which no rule is given. This is for standard programming construc-tions.� f x g means zero or one occurrence of x.� f x g� means any number of occurrences of x (including zero).� x j y means either x or y, but not both.� Terminal non-alphanumeric characters, c, are written as c .program ::= program program-namechan channel-decl f , channel-decl g�f procedure g�beginf process g�end program-nameNote: The number of nested indexed-parallel-processes in the program must be the same as the dimensionof the channels.channel-decl ::= channel-name [bounds f , bounds g�]Note: The number of bounds in the channel declaration is the dimension of the channel. All channels havethe same dimension.bounds ::= expr .. exprprocedure ::= procedure proc-name (f param f , param g� g)beginf process g�end proc-nameparam ::= type-name variable-nameprocess ::= simple-process j composite-processcomposite-process ::= guarded-process jparallel-process jindexed-parallel-process jsequential-process jindexed-sequential-process jguarded-process ::= if process-clausef [] process-clause g�� 65

APPENDIX B. DISTRIBUTED PROGRAM SYNTAX 66process-clause ::= guard �! simple-processguard ::= conjunct f & conjunct g�conjunct ::= expr � expr � exprparallel-process ::= parf decls gf process g�end parindexed-parallel-process ::= parfor name = expr step ! exprf decls gf process g�endsequential-process ::= seqf decls gf process g�end seqindexed-sequential-process ::= for name = expr step ! exprf decls gf process g�enddecls ::= decl f ; decl g�decl ::= type-name variable-name f , variable-name g�simple-process ::= assignment-process j communication j procedure-callassignment-process ::= variable-name := valuevalue ::= simple-value j guarded-valueguarded-value ::= if value-clausef [] value-clause g��value-clause ::= guard �! simple-valuesimple-value ::= expr j pointpoint ::= < expr f , expr g� >Note: The number of expressions in the point is the point's arity.step ::= +1 j 1 j �1program-name, channel-name, proc-name, variable-name ::= stringNote: The sets of channel names, procedure names, and variable names are mutually disjoint.expr ::= term j expr + term j expr � termterm ::= element j term � element j term = elementelement ::= variable-name j rational-numbercommunication ::= send var-name f repeater g to channel-speci�er jrecv var-name f repeater g from channel-speci�erchannel-speci�er ::= channel-name [expr f , expr g�]Note: the number of expr's in the speci�er must match the dimension of the channel.procedure-call ::= proc-name (expr f , expr g�) jproc-name : repeaterNote: the number of parameters declared in the procedure de�nition must match: either the number ofexpr's in the argument list, or, the arity of the points in the repeater.repeater ::= f point point point g jf variable-name variable-name point gNote: the arity of the points must all be the same. if variables are used, they must be of the same arity asthe third point.

Appendix CNotation Summarysymbol meaningLogic^ conjunction_ disjunction) implication(follows from� equivalenceQuanti�ersA universal quanti�cationE existential quanti�cationN number ofgcd greatest common divisorlcm least common multiplemax maximummin minimumset set ofseq ordered sequencesum summationSetssymbol meaningN Natural NumbersZ IntegersQ Rational NumbersR Real NumbersLinear Algebrasymbol meaningg, h hyperplanesi, j, k, l, m, n integersr number of loops, dimension of index spacew, x, y, z points, vectorsA{Z matrices` loop numbers67

APPENDIX C. NOTATION SUMMARY 68Index of Symbolssymbol meaning �rst use/de�nition� precedence relation Equation 4.2b vector de�ning I Section 3.3c linear function of the loop indices Section 3.3chord �nite line segment Section 2.5d linear expression in a loop bound Section 3.3maxA maximum point of rect:A Section 4.2.2maxP maximum point of rect:P Section 4.1.1minA minimum point of rect:A Section 4.2.2minP minimum point of rect:P Section 4.1.1nb neighbour predicate Equation 3.2rect:S rectangular closure of S Formula 4.1A matrix de�ning I Section 3.3I Identity Matrix Section 2.5Op set of basic statements Section 3.1A access space Equation 4.4I index space Equation 3.6P process space Section 3.2S set of streams Section 3.1V set of indexed variable names Section 3.1inc increment of an ordered sequence Section 4.1�rst �rst element of an ordered sequence Section 4.1
ow data movement Section 3.2last last element of an ordered sequence Section 4.1place parallel spatial schedule Section 3.2step parallel time schedule Section 3.2

Bibliography[1] H. Aida, J. A. Goguen, and J. Meseguer. Compiling cuncurrent rewriting onto the rewrite rule machine. InS. Kaplan and M. Okada, editors, Conditional and Typed Rewriting Systems, Lecture Notes in Computer Science516. Springer-Verlag, 1991. Also: Technical Report SRI-CSL-90-03R, SRI Int., Dec. 1990.[2] R. Allen and K. Kennedy. Automatic translation of FORTRAN programs to vector form. ACM Transactionson Programming Languages and Systems, 9(4):491{542, Oct. 1987.[3] C. Ancourt. Code generation for data movements in hierarchical memory machines. In Int. Workshop onCompilers for Parallel Computers, pages 91{102, Dec. 1990.[4] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In Proc. Third ACM SIGPLAN Symp. onPrinciples & Practice of Parallel Programming (PPoPP), pages 39{50. ACM Press, Apr. 1991.[5] M. Annaratone, E. Arnould, T. Gross, H. T. Kung, M. Lam, O. Menzilcioglu, and J. A. Webb. The Warp com-puter: Architecture, implementation, and performance. IEEE Transactions on Computers, C-36(12):1523{1538,Dec. 1987.[6] W. C. Athas and C. L. Seitz. Multicomputers: Message-passing concurrent computers. IEEE COMPUTER,pages 9{24, Aug. 1988.[7] U. Banerjee. Dependence Analysis for Supercomputing. The Kluwer Int. Series in Engineering and ComputerScience: Parallel Processing and Fifth Generation Computing. Kluwer Academic Publishers, 1988.[8] U. Banerjee. Unimodular transformations of double loops. In A. Nicolau, D. Gelernter, T. Gross, and D. Padua,editors, Advances in Languages and Compilers for Parallel Processing, chapter 10, pages 192{219. MIT Press,1991.[9] J. Bu and E. F. Deprettere. Converting sequential iterative algorithms to recurrent equations for automaticdesign of systolic arrays. In IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP 88), volumeIV: VLSI; Spectral Estimation, pages 2025{2028. IEEE Press, 1988.[10] J. Bu, E. F. Deprettere, and P. Dewilde. A design methodology for �xed-size systolic arrays. In S. Y. Kungand E. E. Swartzlander, editors, Application Speci�c Array Processors, pages 591{602. IEEE Computer Society,1990.[11] R. M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal of theAssociation for Computing Machinery, 24(1):44{67, Jan. 1977.[12] D. Callahan and K. Kennedy. Compiling programs for distributed-memory processors. Journal of Supercomput-ing, 2(2):151{169, Oct. 1988.[13] K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988.[14] M. C. Chen. A design methodology for synthesizing parallel algorithms and architectures. Journal of Paralleland Distributed Computing, 3(4):461{491, Dec. 1986.[15] M. C. Chen, Y. Choo, and J. Li. Compiling parallel programs by optimizing performance. Journal of Supercom-puting, 2:171{207, 1988.[16] Ph. Clauss, C. Mongenet, and G. R. Perrin. Calculus of space-optimal mappings of systolic algorithms onprocessor arrays. In S. Y. Kung and E. E. Swartzlander, editors, Application Speci�c Array Processors, pages4{18. IEEE Computer Society, 1990.[17] R. Cytron. DOACROSS: Beyond vectorization for multiprocessors. In Proc. Int. Conf. on Parallel Processing,pages 836{844, Aug. 1986. Extended Abstract.[18] R. Cytron. Limited processor scheduling of DOACROSS loops. In Proc. Int. Conf. on Parallel Processing, pages226{234, Aug. 1987. 69

BIBLIOGRAPHY 70[19] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming. A.P.I.C. Studies in Data Pressing 8.Academic Press, 1972.[20] E. W. Dijkstra. A Discipline of Programming. Series in Automatic Computation. Prentice-Hall, 1976.[21] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Texts and Monographs inComputer Science, Springer-Verlag, 1990.[22] M. L. Dowling. Optimal code parallelization using unimodular transformations. Parallel Computing,16(2{3):157{171, Dec. 1990.[23] B. R. Engstrom and P. R. Cappello. The SDEF programming system. Journal of Parallel and DistributedComputing, pages 201{231, 1989.[24] P. Feautrier. Array expansion. In Proc. Int. Conf. on Supercomputing, pages 429{441. ACM Press, 1988.[25] P. Feautrier. Semantical analysis and mathematical programming. In M. Cosnard, Y. Robert, P. Quinton, andM. Raynal, editors, Parallel and Distributed Algorithms, pages 309{320. North-Holland, 1989.[26] P. Feautrier. Data
ow analysis of array and scalar references. Int. Journal of Parallel Programming, 20(1):23{53,Feb. 1991.[27] H. A. Fencl and C. H. Huang. On the synthesis of programs for various parallel architectures. In Proc. 1991 Int.Conf. on Parallel Processing, Vol. II, pages 202{206. Pennsylvania State University Press, 1991.[28] A. Fern�andez, J. M. Llaber��a, and J. J. Navarro. On the use of systolic algorithms for programming distributedmemory multiprocessors. In J. McCanny, J. McWhirter, and E. Swartzlander Jr., editors, Systolic Array Pro-cessors, pages 631{640. Prentice-Hall Inc., 1989.[29] P. Frison, P. Gachet, and P. Quinton. Designing systolic arrays with DIASTOL. In S.-Y. Kung, R. E. Owen,and J. G. Nash, editors, VLSI Signal Processing II, pages 93{105. IEEE Press, 1986.[30] P. Gachet, B. Joinnault, and P. Quinton. Synthesizing systolic arrays using DIASTOL. In A. McCabe W. Mooreand R. Urquhart, editors, Systolic Arrays, pages 25{36. Adam Hilger, 1987.[31] P. Gachet, C. Mauras, P. Quinton, and Y. Saouter. A language for the design of regular parallel algorithms.In F. Andr�e and J. P. Verjus, editors, Hypercube and Distributed Computers, pages 189{202. Elsevier (North-Holland), 1989.[32] T. Gross and A. Sussman. Mapping a single-assignment language onto the Warp systolic array. In G. Kahn,editor, Proc. Functional Programming Languages and Computer Architecture, pages 347{362. Springer-Verlag,1987. Published as Lecture Notes in Computer Science 274.[33] G. Hadley. Linear Algebra. Series in Industrial Management. Addison-Wesley, 1961.[34] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall Inc., 1985. Series in Computer Science.[35] C.-H. Huang and C. Lengauer. The derivation of systolic implementations of programs. Acta Informatica,24(6):595{632, Nov. 1987.[36] C.-H. Huang and P. Sadayappan. Communication-free hyperplane partitioning of nested loops. In 4th Workshopof Languages and Compilers for Parallel Computation. MIT Press, 1992. To appear.[37] R. P. Hughey. Programmable Systolic Arrays. PhD thesis, Brown University, May 1991.[38] INMOS Ltd. occam 2 Reference Manual. Series in Computer Science. Prentice-Hall Inc., 1988.[39] INMOS Ltd. transputer Reference Manual. Prentice-Hall Inc., 1988.[40] INMOS Ltd. The T9000 transputer � Products Overview � Manual. SGS-Thompson Microelectronics Group,�rst edition, 1991.[41] F. Irigoin. Code generation for the hyperplane method and for loop interchange. Technical Report ENSMP-CAI-88-E102/CAI/I, Ecole Nationale Superieure des Mines de Paris, Oct. 1988.[42] F. Irigoin. Loop reordering with dependence direction vectors. Technical Report EMP-CAI-I A/184, EcoleNationale Superieure des Mines de Paris, Nov. 1988.[43] F. Irigoin and R. Triolet. Dependence approximation and global parallel code generation for nested loops. InM. Cosnard, Y. Robert, P. Quinton, and M. Raynal, editors, Parallel & Distributed Algorithms, pages 297{308.North-Holland, 1989.[44] A. Kaldewaij and M. Rem. A derivation of a systolic rank order �lter with constant response time. In J. L. A.van de Snepscheut, editor, Mathematics of Program Construction, pages 307{324. Springer-Verlag, 1989. Pub-lished as Lecture Notes in Computer Science 375.

BIBLIOGRAPHY 71[45] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for uniform recurrence equations.Journal of the Association for Computing Machinery, 14(3):563{590, July 1967.[46] D. J. Kuck. The Structure of Computers and Computations. John Wiley & Sons, 1978.[47] H. T. Kung and C. E. Leiserson. Algorithms for VLSI processor arrays. In C. Mead and L. Conway, editors,Introduction to VLSI Systems. Addison-Wesley, 1980.[48] S.-Y. Kung. VLSI Array Processors. Prentice-Hall Inc., 1988.[49] L. Lamport. The parallel execution of DO loops. Communications of the ACM, 17(2):83{93, Feb. 1974.[50] S. Lang. Linear Algebra. Undergraduate Texts in Mathematics. Springer-Verlag, 3rd edition, 1987.[51] S. Lay. Convex Sets and Their Applications. Series in Pure and Applied Mathematics. John Wiley & Sons, 1982.[52] H. Le Verge, C. Mauras, and P. Quinton. A language-oriented approach to the design of systolic chips. In Int.Workshop on Algorithms and Parallel VLSI Architectures. North-Holland, 1990. To appear in J. VLSI SignalProcessing.[53] H. Le Verge and P. Quinton. The palindrome systolic array revisited. In J.-P. Banâtre and D. Le M�etayer,editors, Research Directions in High-Level Parallel Programming Languages, Lecture Notes in Computer Science574. Springer-Verlag, 1992.[54] C. Lengauer, M. Barnett, and D. G. Hudson. Towards systolizing compilation. Distributed Computing, 5(1):7{24,1991.[55] L.-C. Lu. A uni�ed framework for systematic loop transformations. In Proc. Third ACM SIGPLAN Symp. onPrinciples & Practice of Parallel Programming (PPoPP), pages 28{38. ACM Press, Apr. 1991.[56] L.-C. Lu and M. Chen. New loop transformation techniques for massive parallelism. Technical ReportYALEU/DCS/TR-833, Yale University, Oct. 1990.[57] R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-Hall Int., 1989.[58] D. I. Moldovan. On the design of algorithms for VLSI systolic arrays. Proc. IEEE, 71(1):113{120, Jan. 1983.[59] D. I. Moldovan. ADVIS: A software package for the design of systolic arrays. IEEE Trans. on Computer-AidedDesign, CAD-6(1):33{40, Jan. 1987.[60] D. I. Moldovan and J. A. B. Fortes. Partitioning and mapping algorithms into �xed-size systolic arrays. IEEETransactions on Computers, C-35(1):1{12, Jan. 1986.[61] K. Pingali and A. Rogers. Compiler parallelization of SIMPLE for a distributed memory machine. TechnicalReport TR 90-1084, Cornell University, Jan. 1990.[62] P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent equations. In Proc. 11th Ann. Int.Symp. on Computer Architecture, pages 208{214. IEEE Computer Society Press, 1984.[63] P. Quinton and V. van Dongen. The mapping of linear recurrence equations on regular arrays. Journal of VLSISignal Processing, 1(2):95{113, Oct. 1989.[64] S. V. Rajopadhye. Synthesizing systolic arrays with control signals from recurrence equations. DistributedComputing, 3:88{105, May 1989.[65] J. Ramanujam. Compile-Time Techniques for Parallel Execution of Loops on Distributed Memory Multiproces-sors. PhD thesis, Department of Computer and Information Science, The Ohio State University, Sept. 1990.[66] J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs for multicomputers and complexmemory multiprocessors. In Supercomputing '89, pages 637{646, Nov. 1989.[67] S. K. Rao. Regular Iterative Algorithms and their Implementations on Processor Arrays. PhD thesis, StanfordUniversity, Oct. 1985.[68] S. K. Rao and T. Kailath. Regular iterative algorithms and their implementations on processor arrays. Proc.IEEE, 76(2):259{282, Mar. 1988.[69] H. B. Ribas. Automatic Generation of Systolic Programs from Nested Loops. PhD thesis, Department ofComputer Science, Carnegie-Mellon University, June 1990. Technical Report CMU-CS-90-143.[70] C. E. Seitz. Multicomputers. In C. A. R. Hoare, editor, Developments in Concurrency and Communication,chapter 5, pages 131{200. Addison-Wesley, 1990.[71] Z. Shen, Z. Li, and P.-.C. Yew. An empirical study of FORTRAN programs for parallelizing compilers. IEEETransactions on Parallel and Distributed Systems, 1(3):356{364, July 1990.[72] G. L. Steele Jr. Common LISP: The Language. Digital Press, 1984.

BIBLIOGRAPHY 72[73] Thinking Machines Corporation. The Connection Machine CM-5, Technical Summary, Oct. 1991.[74] J. L. A. van de Snepscheut and J. Swenker. On the design of some systolic algorithms. Journal of the Associationfor Computing Machinery, pages 826{840, 1989.[75] V. van Dongen. PRESAGE: a tool for the parallelization of nested loop programs. In L. J. M. Claesen, editor,Formal VLSI Speci�cation and Synthesis (VLSI Design Methods-I), pages 341{359. North-Holland, 1990.[76] M. Wolf and M. Lam. A loop transformation theory and an algorithm to maximize parallelism. IEEE Transac-tions on Parallel and Distributed Systems, 2(4):452{471, Oct. 1991.[77] M. Wolfe. Optimizing Supercompilers for Supercomputers. Research Monographs in Parallel and DistributedComputing. MIT Press, 1989.[78] J. Xue and C. Lengauer. On one-dimensional systolic arrays. In Proc. ACM Int. Workshop on Formal Methodsin VLSI Design. Springer-Verlag, Jan. 1991. To appear.[79] J. A. Yang and Y.-I. Choo. Parallel-program transformation using a metalanguage. In Proc. Third ACMSIGPLAN Symp. on Principles & Practice of Parallel Programming (PPoPP), pages 11{20. ACM Press, Apr.1991.

