
(T

i

; st

1

:v)(st

1

:v; st

2

:v) � � � (st

j�1

:v; st

j

:v)(st

j

:v; w) such that (st

1

:v; st

2

:v) is not a committed edge.

Thus, since w is marked \special" (edge (w; T

i

) is in the TSG) and aborted edges (which are also

not committed) are deleted from the TSG in Step 1 of Detect Cycles1, there is a cycle in the TSG

(T

i

; st

1

:v)(st

1

:v; st

2

:v) � � � (st

j

:v; w)(w; T

i

) such that (st

1

:v; st

2

:v) is not a committed edge and all

the edges are either unmarked or committed edges. Thus, insertion of T

i

's edges into the TSG

violates the edge insertion rule. 2

Algorithm Detect Cycles1 thus determines if the insertion of a transaction T

i

's edges into the

TSG violates the edge insertion rule (point 1 of the augmented edge insertion rule). Algorithm

Detect Cycles2, presented below, determines if insertion of transaction T

i

's edges into the TSG

violates point 2 of the augmented edge insertion rule.

procedure Detect Cycles2((V;E); exec(T

i

)):

for (every transaction T

j

2 V)

begin

S = exect(T

i

) [exec(T

j

);

if for all sites s

q

2 S, (T

j

; s

q

) is a committed edge or for all sites s

q

2 S, (T

j

; s

q

) is an aborted edge

then skip

else return (\violates");

end

return(\does not violate")

35

Lemma 8: Consider a state st

j

of Detect Cycles1 and states st

1

; st

2

; : : : ; st

j�1

such that st

j

!

st

j�1

, st

j�1

! st

j�2

, : : :, st

1

! st

0

denote the sequence of reverse transitions from st

j

to st

0

. If edge

(u; w) is marked \used" by Detect Cycles1 when it is in state st

j

(st

j

:v = u) and w 6= st

k

:v, for all k,

k = 0; 1; 2; : : : ; j, then there is a path from T

i

tow, (T

i

; st

1

:v)(st

1

:v; st

2

:v) � � � (st

j�1

:v; st

j

:v)(st

j

:v; w)

such that (st

1

:v; st

2

:v) is not a committed edge (if j = 1, st

2

:v = w).

Proof: We prove the lemma by induction on j.

Basis (j = 0): If (u; w) is marked \used" by Detect Cycles1 when it is in state st

0

, then since

st

0

:v = u = T

i

, the path from T

i

to w is (T

i

; w).

Induction: Assume the lemma is true for j = r, r � 0. We show that the lemma is true

for j = r + 1. Thus, edge (u; w) is marked \used" by Detect Cycles1 when it is in state st

r+1

,

st

r+1

:v = u and w 6= st

k

:v, k = 0; 1; 2; : : : ; r + 1, where st

r+1

! st

r

, : : :, st

1

! st

0

denote

the sequence of reverse transitions from st

r+1

to st

0

. Consider the transition st

r

! st

r+1

that

results in st

r+1

:v being marked \visited" and edge (st

r

:v; st

r+1

:v) being marked \used". Since

st

r+1

:v is not marked \visited" just before the transition st

r

! st

r+1

is made, st

r+1

:v 6= st

k

:v

for all k, k = 0; 1; 2; : : : ; r. Thus, by the induction hypothesis, there is a path from T

i

to

st

r+1

:v: (T

i

; st

1

:v)(st

1

:v; st

2

:v) � � � (st

r

:v; st

r+1

:v). Further, since there is a path from T

i

to st

r+1

:v,

w 6= st

k

:v, for all k, k = 0; 1; 2; : : : ; r + 1, and (st

r+1

:v; w) is an edge in the TSG, there is a path

from T

i

to w, (T

i

; st

1

:v)(st

1

:v; st

2

:v) � � � (st

r

:v; st

r+1

:v)(st

r+1

:v; w). If r � 1, then by induction hy-

pothesis, (st

1

:v; st

2

:v) is not a committed edge. If, on the other hand, r = 0, then since st

1

:v is

marked \special" in Step 1 and (st

1

:v; w) is marked \used" when Detect Cycles1 is in state st

1

,

(st

1

:v; w) is not a committed edge.2

Theorem 8: If Detect Cycles1 returns \violates", then insertion of T

i

's edges into the TSG

violates the edge insertion rule.

Proof: Let us assume that just before Detect Cycles1 returns \violates", it is in state st

j

and it marks edge (u; w) \used" (st

j

:v = u). Thus, w must be marked \special", current 6= w

and u 6= T

i

. Let st

j

! st

j�1

, st

j�1

! st

j�2

, : : :, st

1

! st

0

denote the sequence of reverse

transitions from st

j

to st

0

. Since st

j

:v 6= T

i

and the TSG is bipartite, ji1. Also, since w is

marked \special", w 6= T

i

or w 6= st

0

:v. Further, by Lemma 6, since until the reverse transition

st

1

! st

0

is made, no nodes that are marked \special" can be marked \visited" (as a result,

none of st

k

:v for all k, k = 2; : : : ; k are marked \special"), w 6= st

k

:v, for all k, k = 2; : : : ; j and

current = st

1

:v. Since current 6= w, w 6= st

1

:v. Thus, by Lemma 8, there is a path from T

i

to w:

34

Theorem 7: If insertion of T

i

's edges into the TSG violates the edge insertion rule, then

Detect Cycles1((V,E), exec(T

i

)) returns \violates".

Proof: If the edge insertion rule is violated by the insertion of transaction T

i

's edges, then there

exists a cycle in the TSG of the form (T

i

; v

1

); (v

1

; v

2

); : : : ; (v

r�1

; v

r

); (v

r

; T

i

), ri2, such that edge

(v

1

; v

2

) is not a committed edge. Further edges (T

i

; v

1

); (v

1

; v

2

); : : : ; (v

r�1

; v

r

); (v

r

; T

i

) are either

unmarked or committed edges, and nodes v

2

; : : : ; v

r�1

are not marked \special", while v

1

and v

r

are marked \special" in Step 1.

Since all of the edges in the cycle are either unmarked or committed edges, none of them are

deleted from the TSG in Step 1. By lemmas 4 and 5, Detect Cycles1 must make a transition

st

0

! st

j

during its execution, where st

0

:v = T

i

and st

j

:v = v

1

(unless Detect Cycles1 terminates

earlier in which case it returns \violates" and the theorem is proved). Also, none of v

2

; : : : ; v

r�1

are marked \visited" when Detect Cycles1 makes the transition st

0

! st

j

. (Suppose at least one

of v

2

; : : : ; v

r�1

is marked \visited" before Detect Cycles1 makes the transition st

0

! st

j

. Let

v

m

, for some m = 2; : : : ; r � 1, be the �rst to be marked \visited" among v

2

; : : : v

r�1

as a result

of Detect Cycles1 making the transition st

k

! st

l

(st

l

:v = v

m

). There is a path from v

m

to

v

1

: (v

m

; v

m�1

); : : : ; (v

2

; v

1

), such that none of v

m

; : : : ; v

2

are marked \special". Further, none of

v

m�1

; : : : ; v

1

are marked \visited" when v

m

is marked \visited". Thus, by Lemma 7, (v

2

; v

1

) is

marked \used" before the reverse transition st

l

! st

k

takes place. As a result, v

1

, a node that

is marked \special", is marked \visited" before the reverse transition st

l

! st

k

takes place, thus

contradicting Lemma 6.)

Thus, by Lemma 7, since v

2

; : : : ; v

r�1

are not marked \special" and are not marked \visited"

when v

1

is marked \visited" due to transition st

0

! st

j

, and edge (v

1

; v

2

) is not a committed edge,

edge (v

r�1

; v

r

) is marked \used" before the reverse transition st

j

! st

0

is made. Further, since by

Lemma 6, no node marked \special" is marked \visited" before Detect Cycles1 makes the reverse

transition st

j

! st

0

, current = v

1

at least until the reverse transition st

j

! st

0

is made. Thus,

current = v

1

when (v

r�1

; v

r

) is marked \used". Since v

r

is marked \special", ri2, and by the

de�nition of path, v

1

6= v

r

, Detect Cycles1 returns \violates". 2

We now prove that if Detect Cycles1 returns \violates", then insertion of T

i

's edges into the

TSG violates the edge insertion rule.

33

Lemma 6: If Detect Cycles1 makes a state transition st

k

! st

l

(causing node st

l

:v to be

marked \visited"), then no other node marked \special" is marked \visited" before Detect Cycles

makes the reverse transition st

l

! st

k

.

Proof: Suppose a state transition st

i

! st

j

results in a node marked \special" being marked

\visited". By Lemma 5, st

i

= st

0

. However, the only way Detect Cycles1 can be in state st

0

(the

initial state) is by �rst making a reverse transition st

l

! st

k

. 2

Lemma 7: If there is a path from node v

0

to node v

j

, (v

0

; v

1

)(v

1

; v

2

) � � � (v

j�1

; v

j

), in the TSG

(V;E) such that

� for all k = 1; 2; : : : ; j � 1, if v

k

is marked \special", then edge (v

k

; v

k+1

) is not a committed

edge, and

� when v

0

is marked \visited" due to state transition st

j

! st

k

(st

k

:v = v

0

), none of v

1

; v

2

; : : : ; v

j�1

are marked \visited",

then edge (v

j�1

; v

j

) is marked \used" during the execution of Detect Cycles1 before the reverse

transition st

k

! st

j

is made.

Proof: We prove the above lemma by induction on j.

Basis (j = 1): Trivially, if (v

0

; v

1

) is not marked \used", then before making the reverse transition

st

k

! st

j

, Detect Cycles1 marks (v

0

; v

1

) \used" (in case v

0

is marked special, then since (v

0

; v

i

) is

not a committed edge, it will be marked \used").

Induction: Assume the lemma is true for j = r, ri0. We need to show that the lemma is true

for j = r + 1. Let the path be (v

0

; v

1

)(v

1

; v

2

) � � � (v

r�1

; v

r

)(v

r

; v

r+1

). By the induction hypoth-

esis, (v

r�1

; v

r

) is marked \used" before Detect Cycles1 makes the reverse transition st

k

! st

j

.

Since v

r

is not marked \visited" when Detect Cycles1 makes transition st

j

! st

k

, v

r

is marked

\visited" before Detect Cycles1 makes the reverse transition st

k

! st

j

and after it makes the

transition st

j

! st

k

. Thus, if v

r

is marked \visited" due to transition st

l

! st

m

(st

m

:v = v

r

),

then Detect Cycles1 makes the reverse transition st

m

! st

l

before it makes the reverse transition

st

k

! st

j

. Since Detect Cycles1 marks edge (v

r

; v

r+1

) \used" before making the reverse transition

st

m

! st

l

, Detect Cycles1 marks (v

r

; v

r+1

) \used" before making the reverse transition st

k

! st

j

(in case v

r

is marked special, then since (v

r

; v

r+1

) is not a committed edge, it will be marked

\used"). 2

32

Corollary 2: Detect Cycles1 terminates in a �nite number of steps.

Proof: Every time a transition st

0

! st

j

is made, by Lemma 4, a reverse transition st

j

! st

0

is made in a �nite number of steps. Since there are a �nite number of choices in state st

0

, each

choice is eliminated when a transition st

0

! st

j

is made, and no further transitions can be made

once all choices have been eliminated, Detect Cycles1 terminates in a �nite number of steps. 2

In order to prove that Detect Cycles1 returns \violates" i� insertion of T

i

's edges into the TSG

violates the edge insertion rule, we �rst de�ne the notion of a path in the TSG.

De�nition 4: In a TSG (V;E), (v

0

; v

1

)(v

1

; v

2

) � � � (v

k�1

; v

k

), ki0, is a path from v

0

to v

k

i�

� for all i, i = 0; 1; 2; : : : ; k � 1, (v

i

; v

i+1

) 2 E, and

� for all pairs (i; j), such that i; j = 0; 1; 2; : : : ; k, i < j, the following is true: v

i

6= v

j

.

If, in addition, (v

k

; v

0

) 2 E, then the set of edges (v

0

; v

1

); (v

1

; v

2

); : : : ; (v

k�1

; v

k

)(v

k

; v

0

) form a cycle.

2

We begin by showing that if insertion of T

i

's edges into the TSG violates the edge insertion

rule, then Detect Cycles1((V,E), exec(T

i

)) returns \violates". We �rst need to prove the following

lemmas.

Lemma 5: Consider a state transition st

k

! st

l

that results in node st

l

:v being marked

\visited". If node st

l

:v is marked \special", then st

k

:v = T

i

(or alternatively, st

k

= st

0

).

Proof: Suppose st

k

:v 6= T

i

. Then, before st

l

:v is marked \visited", Detect Cycles1 would

terminate and return \violates" since just before Detect Cycles1 makes transition st

k

! st

l

,

current 6= st

l

:v (since st

l

:v is not marked \visited" before the transition st

k

! st

l

), and st

l

:v

is marked \special". This leads to a contradiction since it is given that transition st

k

! st

l

results

in st

l

:v being marked \visited". Thus, st

k

:v = T

i

. Since no state transitions are caused by nodes

that are already marked \visited", and T

i

is marked \visited" in Step 2, the only state st

k

for which

st

k

:v = T

i

is st

0

. Thus, st

k

= st

0

. 2

31

where v

0

; v

1

; : : : ; v

n

are nodes in the TSG. We denote the values of v, F (v

i

), v

i

2 V in state st

j

, by

st

j

:v, st

j

:F (v

i

) respectively. Detect Cycles1 is said to be in state st

j

at a point in between the exe-

cution of any two of its steps, if at that point, v = st

j

:v, and for all nodes v

i

2 V , F (v

i

) = st

j

:F (v

i

).

Certain steps in Detect Cycles1 cause it to move from one state to another. When a step causes

Detect Cycles1 to move from state st

j

to state st

k

, Detect Cycles1 is said to make a state transi-

tion st

j

! st

k

. Note that only steps 4 and 5 cause state transitions (we assume that the state of

Detect Cycles1 is unde�ned before the execution of Step 2 and after Detect Cycles1 terminates).

Lemma 4: If Detect Cycles1 makes a state transition st

j

! st

k

due to Step 4, then after the

execution of a �nite number of steps, Detect Cycles1 also makes the reverse transition st

k

! st

j

(due to Step 5).

Proof: We prove the above lemma by induction on num, where num is the number of edges

marked \unused" in the TSG just after the transition st

j

! st

k

is made.

Basis (num = 0): In this case, since all the edges in the TSG are marked \used", there is no

further choice of edges from v in state st

k

(Step 3). As a result, Detect Cycles1 executes Step 5,

and thus makes the reverse transition st

k

! st

j

in a �nite number of steps.

Induction: Assume the lemma is true for num = r. We show that the lemma is true for

num = r + 1. Thus, just after the transition st

j

! st

k

is made, the number of edges marked

\unused" in the TSG is r + 1. For every choice of edges (v; u) while in state st

k

, if u is marked

\visited", then the choice is eliminated in one step by marking edge (v; u) \used". If u is not marked

\visited", then Detect Cycles1 marks edge (v; u) \used" and makes a state transition st

k

! st

l

due

to Step 4, where st

l

:v = u, st

l

:F (v) = st

k

:v. As a result, the number of edges marked \used" in

the TSG just after the transition st

k

! st

l

is made is r. Thus, by the induction hypothesis, De-

tect Cycles1 makes a reverse transition st

l

! st

k

in a �nite number of steps. Since there are a �nite

number of choices of edges in state st

k

, each choice is eliminated when a transition st

k

! st

l

is made,

and no further state transitions (due to Step 4) can be made once all choices have been eliminated,

Detect Cycles1 makes the reverse transition st

k

! st

j

(due to Step 5) in a �nite number of steps. 2

A consequence of the Lemma 4 is that algorithm Detect Cycles1 terminates in a �nite number

of steps. We refer to the initial state (the state immediately after the execution of Step 2 of De-

tect Cycles1) as st

0

. Thus, st

0

:v = T

i

and st

0

:F (v) = null for all nodes v in the TSG.

30

-Appendix C-

The following algorithm, Detect Cycles1, has complexity similar to the depth-�rst search algo-

rithm for graphs, and determines if insertion of T

i

's edges into the TSG violates the edge insertion

rule. Detect Cycles1 takes as arguments the TSG and the set of sites at which T

i

executes. It re-

turns \violates" i� insertion of T

i

's edges into the TSG violates the edge insertion rule. It traverses

edges in the TSG marking them \used" as it goes along so that an edge is not traversed multiple

times. In Detect Cycles1, v is the current node being visited, and F (v) is the node from which v

is visited and to which backtracking from v must take place.

procedure Detect Cycles1((V;E); exec(T

i

)):

1. Delete aborted edges (which are also not committed edges) from the TSG. Add T

i

's edges to

the TSG each of which is neither committed nor aborted.

2. Mark all edges \unused". For all nodes v in the TSG, mark v \unvisited" and set F (v) = null.

Mark all site nodes at which T

i

executes \special". Also, v := T

i

, and mark T

i

\visited".

3. If every edge (v; u) is marked \used", then go to step (5).

If v is marked \special" and for every edge (v; u), either

� (v; u) is marked \used", or

� (v; u) is a committed edge,

then go to step (5).

4. Choose an edge (v; u) that is not marked \used" and in addition, if v is marked \special",

then (v; u) is not a committed edge.

Mark edge (v; u) \used".

If v = T

i

, then current := u.

If v 6= T

i

, u 6= current and u is marked \special", return(\violates").

If u is not marked \visited", then F (u) := v, v := u and u is marked \visited".

Go to step (3).

5. If v 6= T

i

, then temp := F (v), F (v) := null and v := temp.

6. return(\does not violate").

We now prove that Detect Cycles1 returns \violates" i� insertion of T

i

's edges into the TSG

violates the edge insertion rule. For this purpose, we introduce the notion of a state of De-

tect Cycles1. A state of Detect Cycles1, denoted by st

j

, is a tuple (v; F (v

0

); F (v

1

); : : : ; F (v

n

)),

29

wait for other transactions). Thus, T

i

must be a compensating transaction whose edges have not

been inserted into the TSG.

We now show that it is impossible for there to be a cycle consisting of only compensating trans-

actions. Suppose there is a cycle consisting of compensating transactions CT

1

; CT

2

; : : : ; CT

n

;

CT

1

such that CT

1

waits for CT

2

, CT

2

waits for CT

3

, : : :, CT

n

waits for CT

1

. Thus, there must

exist a cycle of weakly terminated transactions T

1

; T

2

; : : : ; T

n

; T

1

that have not strongly terminated

such that T

(i mod n)+1

commits and aborts at two sites at which T

i

commits (since CT

i

executes at

sites at which T

i

commits and CT

i

waits for CT

(i mod n)+1

). Due to the augmented edge insertion

rule, T

(i mod n)+1

's edges must have been inserted into the TSG after T

i

's edges are inserted into

the TSG. Thus T

2

's edges are inserted into the TSG after T

1

's edges are inserted into the TSG, T

3

's

after T

2

's and so on. Thus, T

n

's edges are inserted into the TSG after T

1

's edges are inserted and

T

1

's edges are inserted into the TSG after T

n

's edges are inserted. This leads to a contradiction,

and thus, the GTM concurrency control protocol is deadlock-free. 2

28

ensures that if T

i

is serialized before T

j

, then T

j

's edges cannot be inserted into the TSG before

T

i

's edges are inserted into the TSG.

Proof: Suppose T

j

's edges are inserted before T

i

's edges are inserted into the TSG. Since T

j

commits at least two sites at which T

i

executes, T

i

's edges cannot be inserted into the TSG until

T

j

commits at all sites s

k

, s

k

2 (commit(T

j

) \ exec(T

i

)) (otherwise, the edge insertion rule may

be violated). Thus, T

i

is not serialized before T

j

at any site s

k

2 (commit(T

i

) \ commit(T

k

)).

However, since T

i

is serialized before T

j

, by Lemma 3, T

j

's edges cannot be inserted into the TSG

before T

i

's edges are inserted. 2

Proof of Theorem 3: By Theorem 1, the GTM commit protocol ensures that every non-

atomic transaction is compensated for. The LTMs are assumed to ensure that schedules at local

sites are serializable. This, coupled with the fact that aborted subtransactions are not redone from

logs, but are retried, ensures the schedules at local sites are serializable even in the presence of

failures. Thus, from Theorem 2, we can conclude that the schedule S is serializable.

We now show that for every transaction T

j

in the schedule, if T

i

is serialized before T

j

in S

j

, and

T

i

aborts at any other site at which T

j

commits, then CT

i

is not serialized after T

j

. Since T

i

and

T

j

have more than one site in common at which they execute (let s

q

and s

r

denote sites such that

T

j

commits at both s

q

and s

r

, while T

i

commits and aborts at sites s

q

and s

r

respectively), and

T

i

is serialized before T

j

, by Corollary 1, edges (T

i

; s

q

) and (T

i

; s

r

) must be inserted into the TSG

before edges (T

j

; s

q

) and (T

j

; s

r

) are inserted. Furthermore, edge (T

i

; s

r

) is either an unmarked or

an aborted edge, while edge (T

i

; s

q

) is either an unmarked, committed or aborted edge. By the

augmented edge insertion rule, edges (T

j

; s

q

) and (T

j

; s

r

) can be inserted into the TSG only if either

edges (T

i

; s

q

) and (T

i

; s

r

) are deleted from the TSG, or both are aborted edges. In both cases, due

to the augmented edge deletion rule, CT

i

must commit at every site s

k

2 (commit(CT

i

)\exec(T

j

))

before T

j

's edges are inserted into the TSG. Thus, by Lemma 3, CT

i

is not serialized after T

j

. 2

Proof of Theorem 4: We show that no cycle of the form T

1

; T

2

; : : : ; T

n

; T

1

such that T

1

waits

for T

2

, T

2

waits for T

3

, : : : , T

n

waits for T

1

exists. Consider any transaction T

i

, i = 1; 2; : : : ; n in

the cycle. If T

i

's edges are in the TSG, then T

i

cannot wait for any other transaction since the

concurrency control followed by the local DBMSs does not cause transactions to wait. As a result,

T

i

's edges are not in the TSG. Furthermore, no transaction can wait for T

i

if T

i

's edges are not in

the TSG unless T

i

is a compensating transaction (since local DBMSs do not cause transactions to

27

� there exists a site s

r

such that s

r

2 (commit(T

i

) \ commit(T

j

)), and

� for all s

q

2 (commit(T

i

) \ commit(T

j

)), T

i

is not serialized before T

j

at s

q

.

If the edge management scheme is used, then T

j

's edges are not inserted into the TSG before T

i

's

edges are inserted.

Proof: Since for all s

q

2 (commit(T

i

) \ commit(T

j

)), T

i

is not serialized before T

j

at site

s

q

, and T

i

is serialized before T

j

, without loss of generality, there must exist global transactions

T

1

; T

2

; : : : ; T

n

, and sites s; s

1

; s

2

; : : : ; s

n

, ni0, such that sub(T

i

; s) is serialized before sub(T

1

; s) at

s, sub(T

1

; s

1

) is serialized before sub(T

2

; s

1

) at s

1

, : : :, sub(T

n

; s

n

) is serialized before sub(T

j

; s

n

) at

s

n

, and s 6= s

1

, s

1

6= s

2

, : : :, s

n�1

6= s

n

(for the purpose of simplifying the proof, we assume that

iin, jin, and the sites are numbered similar to the transactions). Suppose T

j

's edges are inserted

into the TSG before T

i

's edges are inserted. By Lemma 2, since T

i

is serialized before T

j

, no edge

incident on T

j

is deleted before T

i

weakly terminates. Further, since commit(T

i

)\commit(T

j

) 6= ;,

and T

j

's edges are inserted into the TSG before T

i

's edges are inserted, by the edge deletion rule,

T

j

weakly terminates before any of T

i

's edges are deleted from the TSG. Due to Lemma 2, for all k,

k = 1; 2; : : : ; n, no edge incident on T

k

is deleted before T

i

weakly terminates, and no edge incident

on T

j

is deleted before T

k

weakly terminates. As a result, since a transactions' edges (at least one of

whose subtransactions commits) are inserted into the TSG before it weakly terminates, at some time

during the execution, the TSG contains edges incident on all the transactions T

i

; T

1

; T

2

; : : : ; T

n

; T

j

.

Let T

k

be the last transaction among T

i

; T

1

; T

2

; : : : ; T

n

, whose edges are inserted into the TSG. The

insertion of T

k

's edges into the TSG violates the edge insertion rule since all edges in the cycle

(s

r

; T

i

); (T

i

; s); (s; T

1

); : : : ; (T

n

; s

n

); (s

n

; T

j

); (T

j

; s

r

) are either unmarked or committed edges and

� if k = i, then (s; T

1

) is not a committed edge at the time of insertion of t's edges, (since

sub(T

i

; s) is serialized before sub(T

1

; s)).

� if k = 1; 2; : : : ; n� 1, then (s

k

; T

k+1

) is not a committed edge at the time of insertion of T

k

's

edges, (since sub(T

k

; s

k

) is serialized before sub(T

k+1

; s

k

)).

� if k = n, then (s

n

; T

j

) is not a committed edge at the time insertion of T

n

's edges (since

sub(T

n

; s

n

) is serialized before sub(T

j

; s

n

)). 2

Corollary 1: Let T

i

, T

j

be global transactions, and s

q

, s

r

be sites such that s

q

; s

r

2 commit(T

j

),

s

q

; s

r

2 exec(T

i

), and either s

q

2 commit(T

i

) or s

r

2 commit(T

i

). The edge management scheme

26

are deleted, then trivially due to the edge deletion rule, T

i

weakly terminates before T

1

's edges are

deleted. On the other hand, if T

i

's edges are in the TSG when the �rst edge incident on T

1

is deleted

from the TSG, then since both sub(T

i

; s) and sub(T

1

; s) commit, edges (T

i

; s) and (T

1

; s) are either

committed or unmarked edges. Thus, by the edge deletion rule, T

i

must have weakly terminated. 2

Proof of Theorem 2: Suppose schedule S is not serializable. Since schedules at local sites are

serializable, without loss of generality, there exists a cycle T

1

; T

2

; : : : ; T

n

; T

1

, ni1, in S consisting of

only global transactions, and sites s

1

; s

2

; : : : ; s

n

, such that sub(T

1

; s

2

) is serialized before sub(T

2

; s

2

)

at site s

2

, sub(T

2

; s

3

) is serialized before sub(T

3

; s

3

) at site s

3

, : : :, sub(T

n

; s

1

) is serialized before

sub(T

1

; s

1

) at site s

1

(for the purpose of simplifying the proof, the sites are numbered similar to the

transactions). Since for all i, i = 1; 2; : : : ; n, commit(T

i

) 6= ;, the edge insertion rule ensures that

all of T

i

's edges are inserted into the TSG before T

i

weakly terminates. Further, by Lemma 2, no

edge incident on T

2

is deleted before T

1

weakly terminates, : : :, no edge incident on T

1

is deleted

before T

n

weakly terminates.

Thus, at some time during the execution of the transactions, for all i, i = 1; 2; : : : ; n, the TSG

contains all the edges belonging to T

i

and T

i

has weakly terminated. Due to serializability of

schedules at local sites, for some i, i = 1; 2; : : : ; n, s

i

6= s

(i mod n)+1

. Since there exists a path

in the TSG from T

i

to T

(i mod n)+1

, i = 1; 2; : : : ; n, (both T

i

and T

(i mod n)+1

have subtransac-

tions that execute at site s

(i mod n)+1

), there exist two di�erent paths from T

i

to T

(i mod n)+1

,

one through (T

i

; s

(i mod n)+1

), and another through (T

i

; s

i

). Thus, there exists a cycle (T

1

; s

2

),

(s

2

; T

2

), (T

2

; s

3

), (s

3

; T

3

), : : :, (T

n

; s

1

), (s

1

; T

1

) in the TSG. Since T

1

; T

2

; : : : ; T

n

have weakly termi-

nated, every edge in the cycle is a committed edge. Furthermore, for all i, i = 1; 2; : : : ; n, since

sub(T

i

; s

(i mod n)+1

) is serialized before sub(T

(i mod n)+1

; s

(i mod n)+1

), ser(sub(T

i

; s

(i mod n)+1

))

executes before ser(sub(T

(i mod n)+1

; s

(i mod n)+1

)) executes. However, this leads to a contradic-

tion since the edge insertion rule ensures that for some i, i = 1; 2; : : : ; n, ser(sub(T

i

; s

(i mod n)+1

))

does not execute before ser(sub(T

(i mod n)+1

; s

(i mod n)+1

)) executes. Thus, S is serializable. 2

In order to prove Theorem 3, we need to �rst establish the following results.

Lemma 3: Let T

i

and T

j

be two global transactions such that:

� T

i

is serialized before T

j

,

25

-Appendix B-

Proof of Theorem 1: If the pivot subtransaction commits, then all cohorts are sent hcommit; T

i

i

message. Further, due to the commit protocol, before the pivot subtransaction commits all com-

pensatable cohorts have sent the GTM a hack commit; T

i

i message. Thus, all compensatable sub-

transactions have committed. Hence any subtransaction that aborts is a retriable subtransactions.

Since each cohort receives a hcommit; T

i

i message from the GTM, the retriable subtransactions

are retried and eventually commit. Thus, all subtransactions commit. If the pivot subtransaction

does not commit, then all subtransactions are aborted by either the LTM or executing compen-

sating transactions. The proof of this is similar to the proof of the previous case and thus omitted. 2

In order to prove Theorem 2, we need the following lemma. For the proof of the lemma and the

theorem we represent the subtransaction of a transaction T

i

at a site s

j

(that is, T

ij

) by sub(T

i

; s

j

).

Lemma 2: If the GTM follows the edge management scheme, and global transaction T

i

is

serialized before global transaction T

j

in a schedule, then no edge incident on T

j

is deleted from

the TSG before T

i

weakly terminates.

Proof: If T

i

is serialized before T

j

, without loss of generality, there exist global transactions

T

1

; T

2

; : : : ; T

n

, n � 0, and sites s; s

1

; s

2

; : : : ; s

n

such that sub(T

i

; s) is serialized before sub(T

1

; s)

at site s, sub(T

1

; s

1

) is serialized before sub(T

2

; s

1

) at site s

1

, : : :, sub(T

n

; s

n

) is serialized before

sub(T

j

; s

n

) at site s

n

(for the purpose of simplifying the proof, we assume that iin, jin, and the

sites are numbered similar to the transactions). We show that no edge incident on T

1

is deleted

from the TSG before T

i

weakly terminates. By a similar argument, no edge incident on T

2

is deleted

from the TSG before T

1

weakly terminates, and so on. Thus, we conclude that no edge incident on

T

j

is deleted from the TSG before T

i

weakly terminates.

We now show that no edge incident on T

1

is deleted from the TSG before T

i

weakly terminates.

Due to the edge insertion rule, all of T

i

's edges are inserted into the TSG before ser(sub(T

i

; s))

executes. By the de�nition of serialization event, ser(sub(T

i

; s)) executes before ser(sub(T

1

; s))

since sub(T

i

; s) is serialized before sub(T

1

; s). Also, ser(sub(T

1

; s)) executes before sub(T

1

; s) com-

mits, and due to the edge deletion rule, sub(T

1

; s) commits before any of the edges incident on

T

1

are deleted. Thus, all of T

i

's and T

1

's edges are inserted into the TSG before any of the edges

incident on T

1

are deleted. If any of T

i

's edges are deleted from the TSG before any of T

1

's edges

24

Proof: Since S is an SRC schedule, S is serializable and every non-atomic transaction in S

is compensated for. Consider a schedule S

0

resulting from the execution of transaction programs

corresponding to atomic (committed) transactions in S such that the serialization order of trans-

actions in S

0

is consistent with that in S. Since S

0

is serializable and consists of only atomic

transactions, S

0

preserves database consistency. By the semantics of compensation, S preserves

database consistency.

We now show that every transaction T

i

in S sees a consistent database state. Let S re-

sult from the execution of transaction programs from a consistent database state DS, and d =

S

s

k

2commit(T

i

)

D

k

. Since transaction programs have no data dependencies, in order to show that

T

i

reads consistent data, we need to show that state(T

i

; d;DS;S) is consistent. Since S is an SRC

schedule, S is serializable and for all non-atomic transactions T

j

serialized before T

i

in S

d

such that

abort(T

j

) \ commit(T

i

) 6= ;, CT

j

is not serialized after T

i

in S

d

. Consider a schedule S

0

resulting

from the execution, from database state DS, of transaction programs corresponding to

� atomic (committed) transactions in S, and

� non-atomic transactions T

j

and their compensating transactions in S that satisfy the follwing

condition: CT

j

is serialized after T

i

in S

d

, and

such that the serialization order of transactions in S

0d

is consistent with that in S

d

. If T

0

i

denotes

the transaction corresponding to T

i

in S

0

, then in S

0d

, none of the non-atomic transactions serial-

ized before T

0

i

abort at any of the sites in commit(T

i

). Thus, by Theorem 5, state(T

0

i

; d;DS;S

0

) is

consistent. By the semantics of compensation, state(T

i

; d;DS;S) is consistent. 2

23

an earlier seat reservation transaction for
ight 101 which now needs to be compensated for. The

compensating transaction for the seat reservation transaction would be the cancellation of the seat

reserved. Assume that just before the execution of the compensating transaction,
ight 101 was

overbooked, and flag = true. Also assume that, as a result of the cancellation,
ight 101 is no

longer overbooked. Thus, unless the compensating transaction sets flag = false in addition to

cancelling the seat, it would leave the database in an inconsistent state. As a result, the appropriate

compensating transaction for the seat reservation transaction would be one which would cancel the

seat, and then set flag = false if the
ight was no longer overbooked.

We assign the following semantics to compensating transactions in terms of database consis-

tency. Let S be a non-atomic schedule (containing compensating transactions) resulting from

the execution of transaction programs with no data dependencies from database state DS. Let

d be an integral subset of D such that S

d

is serializable and let T

1

; T

2

; : : : ; T

n

be a serialization

order of transactions in S

d

, where T

i

is the transaction resulting from the execution of transac-

tion program TP

i

. Let T

i

, for some i, i = 1; 2; : : : ; n be a transaction such that for some j,

j = 1; 2; : : : ; i � 2, T

j

is a non-atomic transaction, and for some k, k = j + 1; : : : ; i � 1, T

k

=

CT

j

. Consider the schedule S

0

resulting from the execution of transaction programs in the order

TP

1

;TP

2

; : : : ;TP

j�1

;TP

j+1

; : : : ;TP

k�1

;TP

k+1

; : : : ;TP

i

; : : : ;TP

n

from database state DS. Let

the serialization order of transactions in S

0

be T

0

1

; T

0

2

; : : : ; T

0

j�1

; T

0

j+1

; : : : ; T

0

k�1

; T

0

k+1

; : : : ; T

0

i

; : : : ; T

0

n

,

where T

0

i

is the transaction resulting from the execution of transaction programTP

i

and commit(T

i

) =

commit(T

0

i

). If state(T

0

i

; d;DS;S

0

) is consistent, then state(T

i

; d;DS;S) is consistent. Note that

the above assertion is much weaker than the assertion that the databases states seen by T

i

and

T

0

i

are the same. Informally, an execution S preserves database consistency if the execution S

0

preserves database consistency, where

� S

0

results from the execution of transaction programs corresponding to atomic transactions

and non-atomic transactions that have not been compensated for in S,

� S

0

has a serialization order which is consistent with that in S, and

� transactions resulting from the execution of the same transaction program in both S and S

0

commit at the same sites.

Theorem 6: Every SRC schedule S resulting from the execution of transaction programs with

no data dependencies preserves database consistency, and transactions in S see consistent database

states.

22

cally realized in a schedule.

De�nition 3: Let S be a schedule that results due to the execution of transaction programs

from database state DS

1

, and d � D such that S

d

is serializable. Let T

1

; T

2

; : : : ; T

n

be a serializa-

tion order of transactions in S

d

. The state of the database before the execution of each transaction

with respect to data items in d is de�ned as follows:

state(T

i

; d; S;DS

1

) =

(

DS

d

1

if i = 1

DS

d

2

; where DS

1

fT

1

; T

2

; : : : ; T

i�1

gDS

2

if ii1 2

state(T

i

; d; S;DS

1

) is the state of the database with respect to data items in d as seen by T

i

.

The state of a transaction depends on the initial state and the serialization order chosen and thus,

may not be unique. The following theorem states conditions under which non-atomic schedules

preserve database consistency.

Theorem 5: Let S be a non-atomic schedule (containing no compensating transactions)

resulting from the execution of transaction programs with no data dependencies from database

state DS, and C be a set of sites. Let d =

S

s

k

2C

D

k

and S

d

be serializable with serialization order

T

1

; T

2

; : : : ; T

n

. If DS

d

is consistent, and for all j, j = 1; 2; : : : ; i � 1, if abort(T

j

) \ C = ;, then

state(T

i

; d; S;DS) is consistent, for all i, i = 1; 2; : : : ; n.

Proof: We prove the theorem by induction on i.

Basis (i = 1): state(T

1

; d; S;DS) = DS

d

is given to be consistent.

Induction: We assume the theorem is true for i = r. In order to show that the theorem is true for

i = r + 1, we �rst use the induction hypothesis to conclude that state(T

r

; d; S;DS) is consistent.

Since abort(T

r

) \ C = ; (given), d

S

s

k

2C

D

k

is an integral subset of D, and transaction programs

have no data dependencies, by Lemma 1, state(T

r+1

; d; S;DS) is consistent. 2

We now consider non-atomic schedules containing compensating transactions. Compensation,

as was mentioned earlier, is a semantically rich recovery paradigm which is used to undo committed

transactions without resorting to cascading aborts, and to restore database consistency. A simple

example would help in explaining our approach to compensation. Consider an airline database in

which reservation of a seat, cancellation of a seat etc. constitute transactions. In addition, let

there be the following integrity constraint: if flag = true, then
ight 101 is overbooked. Consider

21

de�ne the notion of data dependencies as follows.

De�nition 2: A transaction program TP

i

has no data dependencies if for all d such that d

is an integral subset of D, all pairs (DS

1

; DS

2

) of database states such that DS

d

1

= DS

d

2

, and

DS

1

fTP

i

gDS

3

and DS

2

fTP

i

gDS

4

, the following is true: DS

d

3

= DS

d

4

. 2

For a transaction program with no data dependencies and whose execution results in a non-

atomic transaction, the following is true.

Lemma 1: Let T

i

be a non-atomic transaction resulting from the execution of transaction

program TP

i

that has no data dependencies from database state DS

1

, and d be an integral subset

of D. If DS

d

1

is consistent and DS

1

fT

i

gDS

2

, then DS

(d�[

s

k

2abort(T

i

)

D

k

)

2

is consistent.

Proof: Let d

0

= d�

S

s

k

2abort(T

i

)

D

k

, DS

3

be a consistent database state such thatDS

d

0

3

= DS

d

0

1

and DS

3

fTP

i

gDS

4

. Note that d

0

is an integral subset of D. Since T

i

results from the execution

of TP

i

from DS

1

, T

i

does not abort at any site s

k

such that D

k

� d

0

, and TP

i

has no data

dependencies, DS

d

0

2

= DS

d

0

4

. Since TP

i

preserves database consistency, DS

4

is consistent. Thus,

DS

(d�[

s

k

2abort(T

i

)

D

k

)

2

is consistent. 2

In Lemma 1, it is important that transaction program TP

i

has no data dependencies. If TP

i

has data dependencies, then Lemma 1 may not hold as is illustrated by the following example.

Example 3: Consider an MDBS consisting of sites s

1

, s

2

and s

3

. Let D

1

= fag, D

2

= fbg and

D

3

= fcg. Let IC = (cia) ^ (cib)^ (a = b). Consider the following transaction program TP

1

that

contains data dependencies.

TP

1

: c := a+ 1

Consider an atomic transaction T

1

that results when TP

1

executes from database state DS

1

=

f(a; 1); (b; 3); (c; 5)g (T

1

commits at both sites s

1

and s

3

). Let DS

1

fT

1

gDS

2

. Even though DS

fb;cg

1

is consistent, DS

fb;cg

2

= f(b; 3); (c; 2)g is inconsistent. 2

We next introduce the notion of \state" which is a possible database state that a transaction

might have seen. The state of a transaction is an abstract notion and may never have been physi-

20

-Appendix A-

We begin by �rst exploring conditions under which non-atomic schedules (that do not contain

compensating transactions) preserve database consistency. We then extend these results to non-

atomic schedules containing compensating transactions. We denote the set of data items at site s

k

by D

k

. We denote the set of all the data items in the MDBS by D; thus D =

S

m

i=1

D

i

. We assume

that the local databases are disjoint; that is, D

i

\ D

j

= ;, i 6= j. For each data item d

0

2 D,

Dom(d

0

) denotes the domain of d

0

. A database state maps every data item d

0

to a value v

0

, where

v

0

2 Dom(d

0

). Thus, a database state, DS, can be expressed as a set of ordered pairs of data items

in D and their values, DS = f(d

0

; v

0

) : d

0

2 D and v

0

2 Dom(d

0

)g

3

.

Integrity constraints (denoted by IC) in a database distinguish inconsistent database states

from consistent ones. A database state DS is consistent i� it satis�es the integrity constraints of

the database. DS

d

denotes the state of the database restricted to data items in the set d, where

d � D. Thus, DS

d

= f(d

0

; v

0

) : d

0

2 d and (d

0

; v

0

) 2 DSg. DS

d

is consistent i� there exists a

consistent database state DS

1

such that DS

d

1

= DS

d

. For example, consider a database consisting

of data items a and b and IC = (a = b). A database state DS = f(a; 5); (b; 6)g is not consistent.

However, DS

fag

= f(a; 5)g is consistent and DS

fbg

= f(b; 6)g is consistent.

A transaction is a sequence of operations resulting from the execution of a transaction program.

A transaction program is usually written in a high level programming language with assignments,

loops, conditional statements and other complex control structures. Thus, execution of a transac-

tion program starting at di�erent database states may result in di�erent transactions. A transaction

program, when executed in isolation, is always assumed to preserve database consistency (the in-

tegrity constraints of the database). We use the notation DS

1

fTP

i

gDS

2

to denote the fact that

execution of transaction program TP

i

from database stateDS

1

results in database state DS

2

. Sim-

ilar notation is used to denote execution of transactions and schedules (the intended meaning will

be clear from the context). For a schedule S and a set of data items d, S

d

denotes the restriction

of S to operations that access data items in d. In addition, we use the following terminology. A

set of data items d is an integral subset of D if, for some set of sites C, d =

S

s

k

2C

D

k

. We formally

3

DS has the property that if (d

0

; v

0

1

) 2 DS and (d

0

; v

0

2

) 2 DS, then v

0

1

= v

0

2

.

19

[GRS91] D. Georgakopolous, M. Rusinkiewicz, and A. Sheth. On serializability of multidatabase

transactions through forced local con
icts. In Proceedings of the Seventh International

Conference on Data Engineering, Kobe, Japan, 1991.

[LKS91a] E. Levy, H. F. Korth, and A. Silberschatz. An optimistic commit protocol for distributed

transaction management. In Proceedings of ACM-SIGMOD 1991 International Confer-

ence on Management of Data, Denver, Colorado, pages 88{97, May 1991.

[LKS91b] E. Levy, H. F. Korth, and A. Silberschatz. A theory of relaxed atomicity. In Proceedings of

the ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August

1991.

[Pap86] C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science

Press, Rockville, Maryland, 1986.

[Pu88] C. Pu. Superdatabases for composition of heterogeneous databases. In Proceedings of

the Fourth International Conference on Data Engineering, Los Angeles, 1988.

[Ske82] D. Skeen. Non-blocking commit protocols. In Proceedings of ACM-SIGMOD 1982 In-

ternational Conference on Management of Data, Orlando, pages 133{147, 1982.

18

to relax some of the restrictions on transactions that need to be imposed if traditional recovery

techniques were followed. However, since such executions may no longer consist of atomic trans-

actions, thereby preservation of database consistency may be jeopardized. It was necessary for us

to develop a new correctness criteria that ensures that transactions see consistent database states,

and database consistency is preserved.

We also developed a new commit protocol and a new concurrency control scheme that ensures

that all generated schedules are correct. The new commit protocol eliminates the problem of

blocking, which is characteristic of the standard 2PC protocol. The concurrency control protocol

we presented can be used in any MDBS environment irrespective of the concurrency control protocol

followed by the local DBMSs in order to ensure serializability.

Acknowledgements.

We would like to thank Eliezer Levy for discussions that helped us develop a better understanding

of compensation and its role in transaction management.

References

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, MA, 1987.

[BS88] Y. Breitbart and A. Silberschatz. Multidatabase update issues. In Proceedings of ACM-

SIGMOD 1988 International Conference on Management of Data, Chicago, pages 135{

141, 1988.

[BST90] Y. Breitbart, A. Silberschatz, and G. R. Thompson. Reliable transaction management in

a multidatabase system. In Proceedings of ACM-SIGMOD 1990 International Conference

on Management of Data, Atlantic City, New Jersey, pages 215{224, 1990.

[DE89] W. Du and A. K. Elmagarmid. Quasi serializability: a correctness criterion for global

concurrency control in InterBase. In Proceedings of the Fifteenth International Confer-

ence on Very Large Databases, Amsterdam, pages 347{355, 1989.

[ED90] A.K. Elmagarmid and W. Du. A paradigm for concurrency control in heterogeneous

distributed database systems. In Proceedings of the Sixth International Conference on

Data Engineering, 1990.

17

� If the insertion of T

i

's edges into the TSG results in a violation of the edge insertion rule due

to a transaction T

j

that has not weakly terminated, then T

i

waits for T

j

.

� Let T

i

and T

j

have two sites in common at which they execute, T

j

commits at one of the sites

and aborts at the other. If T

j

has not yet been compensated for, then the insertion of T

i

's

edges into the TSG results in a violation of the augmented edge insertion rule. As a result,

T

i

waits for CT

j

.

It turns out that waits that result from the GTM protocol cannot result in a deadlock situation.

Thus, if no waits are introduced by the local DBMSs, no deadlock can occur. The following theorem

states this more precisely.

Theorem 4: If each of the local DBMSs follow a concurrency control protocol that does not

require a transaction to wait for another transaction, then the GTM concurrency control protocol

is deadlock-free.

Proof: See Appendix B. 2

If the local DBMSs follow a concurrency control protocol that requires a transaction to wait on

another transaction (e.g., 2PL), then deadlocks can occur. A transaction T

i

may wait for another

transaction T

j

at the local site, while T

j

may be waiting for T

i

, since T

i

's edges may have been

inserted into the TSG and it may not be possible to insert T

j

's edges until T

i

's edges have either

committed or aborted. These deadlocks can be detected and resolved by the GTM either by using

timeouts or the scheme presented in [BST90].

6 Conclusion

We proposed a transaction model for MDBS applications that exploits the semantics of the transac-

tions. Global subtransactions in our model are either one of the following types: compensatable| if

the subtransaction commits, then it can be compensated for, retriable| if a subtransaction aborts,

then it can be retried. Further, every global transaction has a pivot subtransaction that may be

neither compensatable nor retriable.

Our enriched transaction model impacts the transaction management and recovery techniques

employed in an MDBS environment. Instead of using traditional recovery techniques like redoing

transactions from logs, we use compensation and retrying for recovery purposes. Thus, it is possible

16

� If there exists a transaction T

j

(di�erent from T

i

) and distinct sites s

q

and s

r

such that

(T

j

; s

q

); (s

q

; T

i

); (T

i

; s

r

); (s

r

; T

j

) are edges in the cycle, then either (T

j

; s

q

) and (s

r

; T

j

) are

both committed edges, or (T

j

; s

q

) and (s

r

; T

j

) are both aborted edges.

Augmented Edge Deletion Rule: Let � be a set of transactions such that for any pair of

transactions T

i

; T

j

, if T

i

2 � and T

j

is connected to T

i

by a path consisting of either committed

or unmarked edges, then T

j

2 � . If every transaction in � has strongly terminated, then edges

incident on all transactions in � are deleted from the TSG.

Since a strongly terminated transaction is also weakly terminated, if the augmented edge dele-

tion rule holds, then the edge deletion rule also holds. Thus, the augmented edge deletion rule is

more restrictive than the edge deletion rule developed earlier.

Theorem 3: If every LTM ensures the serializability of local schedules, and the GTM commit

protocol and the augmented edge management scheme are used, then every resulting schedule S is

SRC.

Proof: See Appendix B. 2

An e�cient algorithm to ensure that the augmented edge management scheme is not violated

can be found in Appendix C. Permitting the TSG to contain cycles, besides providing a higher

degree of concurrency, is essential for the recovery of non-atomic transactions using compensation.

Due to the augmented edge deletion rule, a non-atomic transaction's edges are not deleted from

the TSG until it is compensated for, since otherwise non-SRC schedules may result. Further,

the compensating transaction for a non-atomic transaction executes at those sites the non-atomic

transaction has committed. As a result, it is essential that the TSG be permitted to contain cycles,

since otherwise it may be impossible to compensate for a non-atomic transaction.

5.4 Deadlocks

We now shift our attention to the deadlock problem. Deadlocks within a site are handled by

the local DBMS. Global deadlocks may occur if either the local DBMSs or the GTM follow a

concurrency control protocol that may require transactions to wait for other transactions. In our

scheme a transaction T

i

is required to wait in the following two circumstances:

15

commits at both s

1

and s

2

(since G

1

does not abort in Example 2, and insertion of G

2

's edges would

violate the edge insertion rule). As a result, G

2

does not execute until G

1

completes execution, and

thus the non-serializable schedule in Example 2 cannot result.

Edge Deletion Rule: Let � be a set of transactions such that for any pair of transactions

T

i

; T

j

, if T

i

2 � and T

j

is connected to T

i

by a path consisting of either committed or unmarked

edges, then T

j

2 � . If every transaction in � has weakly terminated, then edges incident on all

transactions in � are deleted from the TSG.

It must be noted that if edges incident on any transaction in � are deleted before all transactions

in � have weakly terminated, then non-serializable schedules may result.

Theorem 2: If every LTM ensures the serializability of local schedules, and the GTM follows

the edge management scheme, then every global schedule is serializable.

Proof: See Appendix B. 2

5.3 The Augmented Edge Management Scheme

The edge management scheme described above ensures that the resulting schedules are serializable.

However, it does not guarantee that such schedules are SRC. For example, the schedule in Example

1 is serializable but not SRC; it could be generated by the above scheme as follows. The fund

transfer transaction T

1

executes �rst and edges corresponding to it are inserted. After the GTM

receives a message that T

1

at site s

2

is aborted, edge (T

1

; s

2

) is an aborted edge. Thus, the above

edge insertion rule will allow the audit transaction T

2

to execute since the cycle caused by it in the

TSG contains an aborted edge, resulting in a non-SRC schedule.

In order to ensure that schedules are SRC, the edge insertion and deletion rules are augmented

as follows:

Augmented Edge Insertion Rule: For every cycle that results due to the insertion of T

i

's

edges, the following two requirements must hold:

� The edge insertion rule of the edge management scheme, is satis�ed.

14

5.2 The Edge Management Scheme

We now present the rules used by the GTM for deciding when edges can be safely inserted and

deleted in the TSG. In contrast to the scheme used in [BST90], our scheme permits the TSG to

contain cycles.

In order to describe the scheme we need to de�ne the following terminology. If the GTM

receives a hack commit; T

i

i message from the cohort at site s

j

, then edge (T

i

; s

j

) is referred to as

a committed edge. Similarly, if the GTM receives a hack abort; T

i

i message from the cohort at site

s

j

, edge (T

i

; s

j

) is referred to as an aborted edge. If the GTM has not received any message from

the cohort at site s

j

, then edge (T

i

; s

j

) is referred to as an unmarked edge. Thus, edge (T

i

; s

j

) is a

committed edge only if T

ij

has committed at site s

j

. If edge (T

i

; s

j

) is an aborted edge but not a

committed edge, then T

ij

must have aborted at site s

j

. Further, if edge (T

i

; s

j

) is both a committed

and an aborted edge, then the compensating transaction for T

ij

has committed at site s

j

.

Edges of a transaction T

i

are inserted into the TSG only if the insertion of T

i

's edges does

not violate the edge insertion rule described below. The GTM inserts edges belonging to only one

transaction at a time.

Edge Insertion Rule: For every cycle that results due to the insertion of T

i

's edges at least

one of the following condition holds:

1. The cycle contains an edge that is aborted but not committed.

2. There exists transactions T

j

, T

k

(di�erent from T

i

) and distinct sites s

q

, s

r

such that (T

j

; s

q

),

(s

q

; T

i

), (T

i

; s

r

) and (s

r

; T

k

) are edges in the cycle, and both (T

j

; s

q

), (s

r

; T

k

) are committed

edges.

The edge insertion rule ensures that cycles in the TSG do not cause cycles in the serialization

graph [BHG87]. To see this, consider a cycle in the TSG that satis�es condition 1. Since an aborted

subtransaction does not con
ict with any other transaction, such a cycle does not cause a cycle in

the serialization graph. For a cycle in the TSG that satis�es condition 2 we see that, since ser(T

i

)

occurs after ser(T

j

) at site s

q

, and ser(T

i

) occurs after ser(T

k

) at site s

r

, T

i

is serialized after T

j

and T

k

at s

q

and s

r

respectively. Thus, such a cycle does not cause a cycle in the serialization

graph.

In Example 2, if the GTM follows the edge insertion rule, G

1

's edges are �rst inserted into the

TSG before G

1

executes at site s

1

. Further, G

2

's edges are not inserted into the TSG until G

1

13

Edges in the TSG are inserted as a result of the execution of certain serialization events [ED90].

For a given concurrency control protocol, the serialization event, ser, is a function that maps

transactions to operations such that, for any pair of transactions T

i

and T

j

in a schedule that

results from the protocol, if T

i

is serialized before T

j

, then ser(T

i

) executes before ser(T

j

) in

the schedule

2

. Further, for every transaction T

i

, ser(T

i

) does not execute after T

i

commits. For

example, for the timestamp ordering scheme, ser(T

i

) is the operation that results in transaction T

i

being assigned a timestamp. Similarly, in case of 2PL, ser(T

i

) is the operation that results in T

i

obtaining its last lock.

Serialization events may not exist for certain protocols (e.g., serialization graph testing) [Pu88].

For such protocols, serialization events can be introduced by forcing con
icts between transactions

[GRS91]. For example, we can require that every transaction update a particular data item, say,

ticket. If some transaction T

i

is serialized before another transaction T

j

, then T

i

must have updated

ticket before T

j

updated it. Thus, ser(T

i

) is the write operation of transaction T

i

on ticket.

We require that all the edges of a global transaction T

i

will be inserted in the TSG before

ser(T

ik

) is submitted to the server at s

k

, for any s

k

2 exec(T

i

). For example, consider a global

transaction T

1

that executes at sites s

1

and s

2

which follow the 2PL protocol and a timestamp

ordering scheme respectively. Further, suppose that in the timestamp ordering scheme followed

by the LTM at s

2

, a timestamp is assigned to a transaction before any of its operations execute.

Since s

1

follows the 2PL protocol and s

2

follows the timestamp ordering protocol, ser(T

11

) is the

operation that results in T

11

obtaining its last lock, and ser(T

12

) is the �rst operation of T

12

. In

our scheme, the GTM inserts both of T

1

's edges into the TSG before submitting the last database

operation of T

11

, and the �rst operation of T

12

to the respective servers.

Note that as the compensating transaction CT

i

corresponding to a non-atomic transaction T

i

is

also considered as a global transaction, edges corresponding to CT

i

must also be inserted into the

TSG. Let CT

i

consist of subtransactions CT

i1

; CT

i2

; : : : ; CT

ir

, where s

1

; s

2

; : : : ; s

r

are the sites in

commit(T

i

). Since the GTM does not control the execution of CT

ij

(which are directly executed by

the server on receipt of an habort; T

i

imessage from the GTM), the GTM inserts edges corresponding

to CT

i

before dispatching the habort; T

i

i message to the servers at the sites in commit(T

i

).

2

For a given protocol, various operations may satisfy the property required of a serialization event. We assume

that one of them is chosen to be ser.

12

strongly terminated are SRC. Our protocol involves insertion and deletion of edges from a graph.

We �rst develop an edge management scheme that ensures schedules consisting of global, local

and compensating transactions are serializable. We then augment the edge management scheme

developed in order to ensure that schedules are SRC.

5.1 The Transaction-Site Graph

Since local transactions execute outside the control of the GTM, the GTM may be unaware of the

indirect con
icts between global transactions at the local DBMSs due to local transactions. This

may result in non-serializable executions.

Example 2: Consider an MDBS environment consisting of two sites: s

1

with data items a

and b, and s

2

with data items c and d. Suppose that each local DBMS uses the 2PL protocol to

ensure serializability. Let:

G

1

: w

1

(a) w

1

(c)

G

2

: w

2

(b) w

2

(d)

be two global transactions, and let:

L

3

: r

3

(a) r

3

(b)

L

4

: r

4

(c) r

4

(d)

be two local transactions (L

3

at s

1

, and L

4

at s

2

).

Consider an execution in which transaction G

1

�rst executes at site s

1

followed by the execution

of L

3

. G

2

then executes at both s

1

and s

2

, followed by L

4

. Finally, G

1

executes at site s

2

resulting

in the following non-serializable schedule (we denote the local schedules at sites s

1

and s

2

by S

1

and S

2

respectively).

S

1

: w

1

(a) r

3

(a) r

3

(b) w

2

(b)

S

2

: w

2

(d) r

4

(c) r

4

(d) w

1

(c) 2

In order to prevent such non-serializable schedules, the GTM maintains a graph, called the

transaction-site graph (TSG), which is similar to the commit graph presented in [BST90]. A TSG

is an undirected bipartite graph consisting of nodes corresponding to local sites (site nodes) and

global transactions (transaction nodes). Edges in the TSG may be present only between transaction

nodes and site nodes. An edge between a transaction node T

i

and a site node s

j

indicates that

s

j

2 exec(T

i

), and is denoted by either (s

j

; T

i

) or (T

i

; s

j

). Edges (T

i

; s

k

) in the TSG, for all sites

s

k

2 exec(T

i

), are referred to as either T

i

's edges, or edges incident on T

i

.

11

a correctness criterion for non-atomic schedules called serializable with respect to compensation

(SRC). In order to de�ne SRC, we need to de�ne the following notation. The set of sites at which a

global transaction T

i

executes is denoted by exec(T

i

). The sites at which T

i

commits and aborts are

denoted by commit(T

i

) and abort(T

i

), respectively. Note that exec(T

i

) = commit(T

i

) [abort(T

i

).

Let s

1

; s

2

; : : : ; s

r

be the sites on which a non-atomic transaction T

i

commits; thus s

j

2 commit(T

i

),

where 1 � j � r. Let CT

ij

be the compensating transaction that executes to undo semantically

the e�ects of T

ij

. For the purpose of de�ning SRC, CT

i1

; CT

i2

; : : : ; CT

ir

are considered as sub-

transactions of a global transaction CT

i

, and CT

i

is referred to as the compensating transaction

corresponding to T

i

.

De�nition 1: A non-atomic schedule S is serializable with respect to compensation (SRC) if

all of the following hold.

� For each non-atomic transaction T

i

in S, there exists a compensating transaction CT

i

that is

committed in S.

� S is serializable.

� Let T

j

be an arbitrary global transaction in S, and S

commit(T

j

)

denote the projection of S on

the data items at sites at which T

j

commits. For all non-atomic transactions T

i

serialized be-

fore T

j

in S

commit(T

j

)

, if CT

i

is serialized after T

j

in S

commit(T

j

)

, then abort(T

i

)\commit(T

j

) =

;. 2

Note that in Example 1, in which the audit transaction T

2

sees an inconsistent database state,

commit(T

2

) = fs

1

; s

2

g. Further, since T

1

(the fund transfer transaction) aborts at s

2

, we have s

2

2

abort(T

1

). Thus, as T

2

at site s

1

is serialized between T

1

and CT

1

, and abort(T

1

)\commit(T

2

) 6= ;,

the resulting serializable schedule is not SRC. In an SRC schedule the audit transaction will execute

only after the debit subtransaction is compensated, and thus will see a consistent database state.

It can be shown that that if the schedule S is SRC, then each transaction sees a consistent

database state. The proof of this claim is substantial and can be found in Appendix A.

5 The GTM Concurrency Control Protocol

In this section, we present a GTM concurrency control protocol that irrespective of the concurrency

control protocol followed by the local DBMSs, ensures that schedules in which every transaction has

10

4 Correctness of Non-atomic Schedules

A global schedule S contains local, global, and compensating transactions. Consider a global

schedule S in which each of the global transactions has strongly terminated. Schedule S may

contain transactions which are non-atomic. A non-atomic transaction can be more easily de�ned

by stating what constitutes an atomic transaction. A transaction T

i

in a schedule S is atomic if

either of the following hold.

� T

i

is committed in S (in a distributed system, all subtransactions of T

i

are committed in S).

� If T

i

is aborted in S (in a distributed system if any of T

i

's subtransactions are aborted in S),

then it does not have any e�ect on the execution of other transactions in S or on the �nal

database state.

A non-atomic transaction is one that does not satisfy the above two conditions. Consider a partially

committed global transaction T

1

that commits at site s

1

but aborts at s

2

. Depending upon the

type of subtransaction T

11

and T

12

, either T

12

is retried, or T

11

is compensated for. Let S be the

global schedule in which T

1

has strongly terminated. If T

12

is retried, then T

1

is atomic (since all

its subtransactions are committed). However, if T

11

is compensated, then T

1

is non-atomic (since it

is committed at some sites but aborted at others). We refer to a schedule that contains non-atomic

transactions as a non-atomic schedule. In [LKS91b] it was shown that even though a non-atomic

schedule S is serializable, and the commit protocol ensures semantic atomicity, it is possible that

certain transactions \see" an inconsistent state of the database. To see this, consider the following

example, from our banking enterprise domain.

Example 1: Let T

1

be a transaction that transfers money from an account A at site s

1

to an

account B at site s

2

and consists of a debit subtransaction T

11

and a credit subtransaction T

12

.

Consider the scenario in which T

11

commits but T

12

aborts. Let T

2

be an audit transaction that

now executes (before T

11

is compensated for by crediting account A); T

2

reads the balances in both

accounts A and B, and sees a database state in which the sum of the balances of accounts A and

B is less than the actual sum. This situation is clearly unacceptable. 2

To prevent transactions from \seeing" an inconsistent database state, we must place restrictions

on the concurrency permitted in the system. To develop these restrictions we must �rst introduce

9

schedules CT

ij

for execution, where CT

ij

is a compensating transaction corresponding to the

subtransaction executing at the site. On commitment of CT

ij

at the local DBMS, the cohort

sends a hack abort; T

i

i message to the GTM.

In the above protocol, if any of the compensatable subtransactions or the pivot subtransaction

aborts, the GTM aborts the global transaction. If the pivot subtransaction commits, then the

GTM commits the global transaction. It should be noted that it is possible for the GTM to receive

a hack commit; T

i

i message followed by a hack abort; T

i

i message from a c-cohort. However, from

a p-cohort or a r-cohort, the GTM only receives either a hack commit; T

i

i or a hack abort; T

i

i

message.

Transaction T

i

is said to have strongly terminated if the GTM receives either a hack commit; T

i

i

message from every cohort, or a hack abort; T

i

imessages from every cohort. It is said to have weakly

terminated if the GTM receives either a hack commit; T

i

i or a hack abort; T

i

i messages from every

cohort. Thus, a strongly terminated transaction is also weakly terminated.

At various stages of the GTM commit protocol, processes are required to wait for messages

before progressing. This, in presence of communication and site failures could potentially result in

blocking. However, the problem is easily alleviated by using a timeout scheme. If a server is inter-

rupted by a timeout while waiting for a message from the GTM, it assumes that the GTM process

has failed and submits an abort operation to the local DBMS, thereby releasing the resources held

by the transaction. Since the GTM does not manage any data items directly we do not specify

any timeout actions for the GTM. Note, that it is possible that a retriable subtransaction that has

been aborted by the server on timeout may need to be retried if in case the GTM commits the

transaction. The GTM commit protocol, thus, does not cause blocking of local applications. Also,

if there are no failures, the protocol requires 2n messages and 6 rounds as compared to 3n messages

and 3 rounds needed by the standard 2PC protocol [BHG87], where n is the number of sites on

which the transaction executes.

Theorem 1: The GTM commit protocol preserves semantic atomicity of transactions.

Proof: See Appendix B. 2

8

� When the GTM receives hack commit; T

i

imessages from all the c-cohorts, it sends a hcommit; T

i

i

message to the p-cohort. If, however, it receives at least one hack abort; T

i

i message from any

of the c-cohorts, it aborts the global transaction, and sends all cohorts a habort; T

i

i message.

� When the p-cohort receives a hcommit; T

i

i message from the GTM, it submits the commit

operation for T

i

to the local DBMS. On receiving an acknowledgement from the local DBMS

that the subtransaction has committed at the local DBMS, it sends a hack commit; T

i

i mes-

sage to the GTM. If, however, the pivot subtransaction is aborted by the local DBMS, it

sends a hack abort; T

i

i message to the GTM.

Phase 3:

� When the GTM receives a hack commit; T

i

i message from the p-cohort, it commits the global

transaction and sends hcommit; T

i

i messages to each of the r-cohorts. If, however, it receives

a hack abort; T

i

i message from the p-cohort, it aborts the global transaction, and sends all

cohorts habort; T

i

i messages.

� When a r-cohort receives a hcommit; T

i

i message from the GTM, it submits the commit

operation for T

i

to the local DBMS. In case the local DBMS aborts the subtransaction, it

retries the subtransaction until it is committed at the local DBMS. When the subtransaction

�nally commits at the local DBMS, it sends a hack commit; T

i

i message to the GTM.

The above protocol speci�es the actions taken by a cohort when it receives the hcommit; T

i

i

message from the GTM. It also speci�es the actions the GTM takes when it receives either a

hack commit; T

i

i or a hack abort; T

i

i message from each of the cohorts. We now specify the actions

taken by the cohorts when they receive a habort; T

i

i message from the GTM.

� If the subtransaction has been aborted by the local DBMS, then the cohort sends a

hack abort; T

i

i message to the GTM (if it has not already done so).

� If the subtransaction has neither been aborted nor committed by the local DBMS, the cohort

submits the abort operation for T

i

to the local DBMS. On receiving an acknowledgement

from the local DBMS that the subtransaction has been aborted, it sends a hack abort; T

i

i

message to the GTM.

� If the subtransaction has been committed by the local DBMS (note that only c-cohorts can

receive a habort; T

i

i message from the GTM after T

i

has committed at the local DBMS), it

7

other transactions or the �nal database state). Transactions that transfer money between accounts

belonging to the same site are local transactions as are those that deposit or withdraw money from

an account.

3 The GTM Commit Protocol

The GTM commit protocol must ensure that either all subtransactions of a global transaction

are committed (i.e., they are either committed or retried), or all subtransactions are undone (i.e.,

they are either aborted by the LTM or are compensated for). A commit protocol that ensures

the above property of transactions is said to preserve semantic atomicity [LKS91a]. Since retriable

subtransactions of a global transaction in our model may not be compensatable, and compensatable

subtransactions may not be retriable, the GTM commit protocol must control the order in which

the subtransactions are committed. The protocol consists of three phases, each of which deals

with the commit of one of the subtransaction types. The commit protocol is invoked once all the

subtransactions of a global transaction have completed execution.

To describe the protocol we must �rst de�ne some terminology. The servers at sites at which a

global transaction T

i

executes are referred to as T

i

's cohorts. The server process executing at the

site at which T

i

's pivot subtransaction executes is referred to as the p-cohort. Similarly, servers

at sites on which compensatable and retriable subtransactions execute are referred to as c-cohorts

and r-cohorts respectively.

We are in a position now to de�ne the three phases in the GTM commit protocol, which are:

Phase 1:

� The GTM sends each c-cohort a hcommit; T

i

i message.

� When a c-cohort receives the hcommit; T

i

i message from the GTM, it submits the com-

mit operation for T

i

to the local DBMS. On receiving an acknowledgement from the local

DBMS that the subtransaction has committed, the c-cohort sends a hack commit; T

i

i mes-

sage to the GTM. If, however, the subtransaction is aborted by the local DBMS, it sends an

hack abort; T

i

i message to the GTM.

Phase 2:

6

A global transaction has at most one pivot subtransaction. As in [DE89], we assume that no data

dependencies exist between the subtransactions of a global transaction; that is, the execution of a

global transaction at one site is independent of its execution at other sites.

With each compensatable subtransaction, a compensating transaction is associated. Compen-

sating transactions are transactions that restore database consistency by semantically undoing

committed transactions, without resorting to cascading aborts [LKS91a]. Let T

i

be a global trans-

action and T

ij

be a compensatable subtransaction of T

i

that committed at site s

j

. To undo the

e�ects of T

ij

, a compensating transaction for T

ij

, denoted by CT

ij

, is executed. CT

ij

follows T

ij

in

the execution, is a separate transaction from T

ij

, and is always serialized after T

ij

in any schedule.

Executing CT

ij

, however, does not guarantee that all the e�ects of T

ij

are undone and thus ensures

only a weaker form of atomicity [LKS91a]. In our model, we further assume the following about

compensating transactions:

� Since no data dependencies exist between subtransactions of a global transaction, CT

ij

exe-

cutes only at the site at which T

ij

commits.

� CT

ij

may itself be aborted by the local DBMSs, but if retried a su�cient number of times, it

eventually succeeds.

� CT

ij

is independent of the transactions that execute between T

ij

and CT

ij

in the schedule.

It depends only on T

ij

, and the integrity constraints of the database.

We now illustrate the expressive power of above developed transaction model by applying it

to a banking enterprise. In such an environment, transfer of money between accounts, audits that

return the current balance in accounts, deposits and withdrawals from accounts, constitute trans-

actions that can be modeled using our scheme. For example, transactions that transfer money

between accounts belonging to di�erent sites can be modeled as global transactions with two sub-

transactions, one which credits a bank account, and another which debits a bank account. The

credit subtransaction is retriable, while the debit subtransaction is compensatable (the compensat-

ing transaction for a debit transaction is a credit transaction, which can be assumed to succeed if

retried a su�cient number of times

1

). Similarly, an audit transaction can be modeled as a global

transaction, all of whose subtransactions are compensatable (the compensating transaction for a

read only transaction does nothing, since a read only transaction has no e�ects on the execution of

1

In case the account is deleted, we assume that an exception is raised, and the money is mailed directly to the

account-holder.

5

2 The MDBS Model

A heterogeneous distributed database consists of a set of autonomous pre-existing centralized local

database systems located at sites s

1

; s

2

; : : : ; s

m

respectively. Transactions, in our model, are a

sequence of read and write operations followed by either a commit operation or an abort operation.

A local schedule consists of a sequence of operations resulting from the concurrent execution of

transactions at a site. A global schedule is a distributed schedule [Pap86] consisting of operations

belonging to transactions (global and local) with a partial order on them. The LTM at each site s

i

ensures the atomicity of transactions and serializability of local schedules at s

i

.

The execution of global transactions is carried out by the GTM which communicates with the

LTMs by means of a server process that executes at each site on top of the local DBMSs. We

assume that the interface between a server and an LTM provides for operations to be submitted

by the server to the LTM, and the LTM to acknowledge the completion of operations to the server.

The GTM does not schedule an operation belonging to a global transaction for execution unless it

receives an acknowledgement from the server that the previous operation of the global transaction

has been executed at the local site. We also assume that the GTM is centrally located, and the

sites at which a global transaction executes are known to the GTM a priori. In addition, the LTM

does not distinguish between local transactions and global subtransactions executing at its site.

In order to exploit the semantic recovery options of compensation and retrial we develop an

extended transaction model. Each global transaction, in our model, consists of a number of sub-

transactions, each of which is one of the following:

� Compensatable: a subtransaction whose execution at the site can be undone by running

a compensating transaction after it commits. For example, a subtransaction that reserves a

seat in an airline reservation system can be compensated for by a subtransaction that cancels

the reservation.

� Retriable: a subtransaction that can be retried and eventually succeeds if retried a su�cient

number of times. Cancellation of a seat in an airline reservation system, or crediting a bank

account, are examples of retriable subtransactions.

� Pivot: a subtransaction that is neither retriable nor compensatable.

4

refer to such a global transaction as a partially committed transaction. Partially committed trans-

actions may result in the loss of consistency of the MDBS. The proposed approaches to deal with

this problem can be characterized as being either forward or backward in nature. The forward

approach was �rst suggested in [BST90], where the aborted subtransactions of a partially com-

mitted transaction are redone from logs maintained by the GTM. Since the GTM has no control

over the execution of local transactions, certain local transactions may execute before the GTM

completes the redo of an aborted global subtransaction resulting in a non-serializable execution

[BST90]. Thus, in order to ensure both atomicity and serializability, restrictions are placed on the

data items read and updated by global and local transactions.

The backward approach was adopted in [LKS91a] in the context of a general distributed system

to alleviate the problem of blocking. It utilizes compensating transactions to undo the e�ects of

committed subtransactions of a partially committed transaction. Since compensation only guar-

antees a weaker form of atomicity, the authors recognize the need for, and propose a correctness

criterion for executions in which compensation is used for recovery purposes.

In this paper, we develop a fault-tolerant transaction management scheme for an MDBS en-

vironment that combines both the forward and backward approaches. In contrast to the scheme

developed in [BST90], where redo logs were used to restore database consistency, our forward ap-

proach is based upon retrying of the appropriate aborted subtransactions. Our combined recovery

approach allows us to relax some of the restrictions imposed on which data items the transactions

can read and update [BST90]. A correctness criterion similar to the one in [LKS91a] is adopted.

We also present new commit and concurrency control protocols used by the GTM that ensure the

correctness of executions and do not violate the local autonomy of sites.

The remainder of the paper is organized as follows. In Section 2, we introduce the MDBS

model and the global transaction model based on retriable and compensatable types of transactions.

Section 3 discusses the GTM commit protocol. In Section 4, a correctness criterion for executions

containing compensating transactions is proposed. In Section 5, we present the GTM concurrency

control protocol and show that the protocol ensures resulting schedules are correct. Section 6

contains concluding remarks.

3

� Local transactions, those transactions that execute at a single site, and execute outside

the control of the GTM.

� Global transactions, those transactions that may execute at several sites, and execute

under the control of the GTM. Each global transaction consists of a set of subtransactions

each of which is executed as a local transaction.

A distinguishing feature of MDBSs is the requirement that each local DBMS preserve its local

autonomy. In this paper, as in [DE89], local autonomy is de�ned to consist of:

� Design Autonomy. The local sites are free to follow any concurrency control protocol in

order to ensure local database consistency.

� Communication Autonomy. The LTMs do not communicate any information (e.g., con-

ict graph) relevant for concurrency control or transaction management to the GTM.

� Execution Autonomy. Each LTM has complete control over those transactions that are

executing at its site. Thus, the LTM is free to abort a transaction as long as the transaction

in question has not committed yet.

The execution autonomy requirement is essential in an MDBS environment since local DBMSs

may not, in general, permit transactions to hold onto resources, or execute, for an unbounded

period of time. This requirement, however, has a serious impact on the way the atomicity of global

transactions in an MDBS environment can be achieved [BST90]. For example, the two-phase

commit (2PC) protocol, which is the standard protocol used to ensure the atomicity of global

transactions [BHG87] cannot be used. The main problem with using 2PC protocol, or any other

atomic commit protocol (e.g., three phase commit protocol [Ske82]), in an MDBS environment is

that such protocols require that in presence of failures, a global subtransaction in the prepared

state be allowed to hold onto resources for an unbounded period of time [Ske82]. As a result, local

transaction may be blocked to ensure atomicity of global transactions which is clearly unacceptable

due to the execution autonomy requirement. Furthermore, since the pre-existing local DBMSs may

not provide for a prepared state, substantial changes may need to be made to the existing DBMS

software to support an atomic commit protocol, the result is the violation of the design autonomy!

In the absence of an atomic commit protocol it is possible that certain subtransactions of a

global transaction abort, whereas others commit, thereby violating the atomicity property. We

2

A Transaction Model for Multidatabase Systems

�

Sharad Mehrotra

Rajeev Rastogi

Henry F. Korth

y

Abraham Silberschatz

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712-1188 USA

Abstract

A multidatabase system (MDBS), consists of a number of sites, each of which runs a distinct

commercial database management system (DBMS). The goal of an MDBS is to integrate the various

DBMSs to allow applications to access data from several DBMSs, without requiring modi�cations

to the individual DBMSs. This implies that each site is allowed a high degree of local autonomy.

This autonomy requirement makes the task of ensuring both, the atomicity and isolation properties

of transactions, in the presence of failures, di�cult. In this paper, we develop a semantically rich

transaction model for MDBS applications. We relax the atomicity requirement on transactions and

propose a new suitable correctness criterion. We also develop new commit and concurrency control

protocols that ensure correctness and do not violate the local autonomy of the various sites.

1 Introduction

The problem of transaction management in a multidatabase system (MDBS) has received con-

siderable attention from the database community in recent years (e.g., [BS88], [BST90], [ED90],

[GRS91]). The basic problem is to integrate a number of pre-existing local database manage-

ment systems (DBMSs) located at di�erent sites, into an MDBS environment that allows transac-

tions to access data residing at multiple sites. Each local DBMS has a local transaction manager

(LTM) which is responsible for ensuring local database consistency. The global transaction man-

ager (GTM), built on top of the existing databases, is responsible for ensuring global database

consistency.

Transactions in an MDBS are of two types:

�

Work partially supported by NSF grants IRI-8805215, IRI-9003341, grants from the IBM corporation, and the

NEC corporation.

y

Current address: Matsushita Information Technology Laboratory, 182 Nassau street, Princeton, NJ 08542-7072

A TRANSACTION MODEL FOR MULTIDATABASE SYSTEMS

Sharad Mehrotra

Rajeev Rastogi

Henry F. Korth

Avi Silberschatz

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712-1188

TR-92-14 March 1992

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

austin, texas 78712

