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Most of the previous research on real-time transaction management addresses the speci�c prob-

lems associated with combining concurrency control mechanisms and timing constraints directly.

Our approach is di�erent in that it localizes commitment and recovery, and translates global time-

constraints to local ones for transaction executions. Employing this localization strategy enables

us to consider a distributed RTDB to consist of several communicating centralized RTDBs. From

the emerging principles of building such centralized RTDBs (e.g., see [Koo90, Son88, WHMZ90]),

we have identi�ed some of the problems that will impact on building a distributed RTDB, and we

have also provided some partial solutions. Hence, we assume that the techniques for building the

component RTDBs exist, and we base the characterization and solution of certain problems in a

distributed RTDB on this assumption.

10 Conclusions

The problems associated with maintaining logically correct concurrent transaction executions while

meeting their temporal constraints, are di�cult to handle. In a distributed environment, the

traditional correctness criteria that include atomicity of multi-site transactions compounds these

di�culties since aborting the constituent local subtransactions cannot be achieved autonomously.

This also impacts on the performance of real-time concurrency control protocols, and may cause

problems of priority inversion.

By taking advantage of newly developed techniques for relaxing the logical correctness criteria,

we are able to provide adaptive mechanisms for the commitment protocols that may be used to

achieve coordination between the separate local executions. In case of time delays or transient over-

loads, these mechanisms can be adopted by autonomous local decisions. While these mechanisms

compromise the traditional atomicity requirements, they ensure the relaxed criterion of semantic

atomicity which is amenable to time-critical applications. The examples and suggestions for the

implementation indicate that the approach may be a viable option for time-critical environments.

Further study with speci�c applications is needed to gauge the potential of this approach.
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concerned sites. The correctness of this new approach is established using techniques similar to

those discussed in [SKS91, Lev91]. The discussion of the overhead involved in handling sensitive

transactions is outside the scope of this paper.

9 Discussions

Since it is important to initiate compensations as early as possible, compensating subtransactions

should execute with a short deadline in a deadline-driven system. Furthermore, to invoke the

compensatory rapidly, the local site that causes the entire transaction to abort could broadcast

this information to all the sites instead of waiting for the coordinator to do so. There is the

possibility that several compensating transactions may have to be executed during periods of very

heavy overload | and we do not speculate on how that can be handled (since such situations

correspond to a load beyond the capacity of the system).

Consider the log records necessary for the compensating transactions. In typical DBMSs, these

are stored on stable storage, and reading them involves accessing secondary storage devices | a

time-consuming activity. These delays may be alleviated through the use of large stable RAM

devices (e.g., see [CKKS89, SAJK91]). The log bu�er space in the main memory from which data

is transferred to the stable storage should not be discarded immediately, and instead, used by the

compensating processes. The technology trend of large main memories permits such an approach.

The data corresponding to transactions that become semantically atomic can be discarded, and a

mechanism similar to the scheme to discard markings (see Section 8) can be utilized. Also, since in

an RTDB application the data that becomes outdated need not be moved to the disk at all, that

part of the log bu�er may be maintained entirely in a stable RAM device.

With regard to enforcing aborts at the time of overload, it is possible that there may be no

time for an orderly undo of an aborted transaction. It is only by means of compensation that the

system may postpone the undo to a light load period. This use of compensation di�ers from the

one described thus far since the compensating transaction has to recover an incomplete forward

transaction. The task of a compensating transaction is more di�cult if the associated forward

transaction is interrupted before completion. Hence, if we allow the preemption (i.e., the enforced

abort) of the forward transaction to occur only at certain pre-de�ned break-points, the di�culties

are likely to be alleviated (e.g., see [Son88]). The breakpoints decompose the transaction into

logically coherent units of work that can be compensated-for on a completed-unit basis. When the

transient overload passes, and the system returns to normal conditions, compensations can undo

the completed units up to the break-point of preemption.

The scheme outlined in this paper is similar in several respects to the paradigms used in real-time

systems. For example, notice that the scheme is typical of optimistic methods where it is assumed

that untoward problems occur infrequently (e.g., see [HCL90b, Mok91, WHMZ90]). In such cases,

at times of overload, the system adapts to a di�erent mode of operation, and in doing so, must make

certain sacri�ces (e.g., see the monitor baseline approach of [Mok91], the adaptive control approach

in [MG91], and contingency plans of [C

+

89]). Also, avoiding the problem of priority inversion (e.g.,

see [SRL90, SRL88]) is bene�ted if it becomes more feasible to perform rapid aborts | something

that is often precluded by typical commit protocols due to blocking. It has been felt that real-time

systems have special characteristics that make time-consuming mechanisms to ensure the ACID

properties (see Section 3) for transactions unnecessary [Sta88, Son88]. In this regard, our paper

presents an approach in which the correctness requirements may be relaxed on demand.
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In a particular execution that uses our adaptive commitment approach, suppose that T

12

aborts,

whereas T

11

commits locally. Compensation for T

11

includes crediting by the amount a, whereas

CT

12

in this case is a simple abort. Consider a transaction T

2

that performs an audit at the two

sites, C

1

, and C

2

by reading the balances at each site. The serialization orders illustrated next

exhibit the problem (each line represents the serialization order at a site from left to right).

� site C

1

: T

11

T

21

CT

11

� site C

2

: T

12

CT

12

T

22

This particular execution is of interest since at site C

1

, T

2

is scheduled after T

1

and prior to CT

11

,

whereas at site C

2

, T

2

is serialized to follow CT

12

. Clearly, in the above scenario, T

2

reads a globally

inconsistent state, where the amount a is incorrectly accounted.

The above problem arises because the notion of R-commutativity allows a transaction to be

a�ected by a committed subtransaction that is eventually undone by a compensating subtransaction

(e.g., T

21

being serialized after T

11

in the above example). Let S

0

; S

2

denote the initial states of

the accounts at C

1

and C

2

, respectively, and let S

1

; S

3

denote the corresponding �nal states. Let

(T

11

�CT

11

�T

21

)(S

0

) = S

4

. Although CT

11

and T

21

R-commute, and as a result S

4

R S

1

, this does

not change the fact that S

1

and S

3

do not satisfy a global consistency constraint of maintaining

consistent total balances. Thus, the anomalous situation where T

2

is a�ected by both compensated-

for and locally committed subtransactions cannot be recti�ed by R-commutativity.

This problem arises because the relation R is based on local predicates alone, and does not

guarantee global consistency among the distributed data items. We refer to transactions that

require such a global consistency constraint to hold on the data they access as sensitive transactions.

For a sensitive transaction T

s

that interacts with a non-sensitive global transaction T

i

, we require,

in addition to the requirements of Section 4, that whenever there exists a path from T

ip

to T

sp

in

SG

p

, there should not be a path from CT

iq

to T

sq

in every other SG

q

.

8.2 Handling Sensitive Transactions

The following scheme is compatible with the protocol of Section 7. We provide a simple marking

of data items with respect to transactions. A data item accessed by T

i

can be either unmarked or

marked with respect to T

i

| where a marked state has a connotation that T

i

is undone. If a site

decides to abort T

i

, or if a compensating subtransaction is scheduled locally, then the data items

accessed by T

i

is marked with respect to T

i

. Hence, a sensitive transaction is handled by ensuring

that all data items accessed by T

s

are either all marked with respect to T

i

at sites common to T

i

and T

s

, or they are all unmarked with respect to T

i

at those sites. To e�ect this, the vote to the

coordinator to commit a sensitive transaction also includes the state of the local markings of the

data items accessed. The coordinator validates the execution by the above rule. Hence, in such

situations, a traditional 2PC protocol may be used to ensure the rule.

Discarding the markings necessitates a few additional message exchanges. This activity can

be decoupled from the execution and commit procedure of the transactions, and may be done as

a garbage-collection activity during periods of light loads and for several transactions together |

so as to amortize the overhead. To e�ect this, a coordinator disseminates messages to a set of

sites which respond by including the identity of all global transactions whose local compensating

subtransactions completed successfully. Markings can be discarded for global transactions all of

whose compensations have completed as may be determined by the information obtained from the
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for a subtransaction T

ip

(corresponding to a global transaction T

i

) executing at site C

p

. In the

above protocols, if site C

p

has not yet sent a message indicating preparedness to commit to the

coordinator of T

i

, then T

ip

may be unilaterally aborted. On the other hand, if that message has

already been sent, then T

ip

may be optimistically committed | the expectation is that the �nal

decision regarding the fate of a global transaction will usually be to commit it. Notice that it would

be incorrect to abort T

ip

prior to receiving a �nal decision to abort from the coordinator of T

i

since

such an action would be contrary to the intent of the message sent by C

p

that indicated a state of

preparedness to commit T

ip

.

Some important points regarding the above protocols need to be stated. Although the above

scheme uses strict two-phase locking to guarantee serializability, similar mechanisms could be de-

vised for other concurrency control techniques by using careful synchronization (e.g., see [SKS91]).

Also, we note that in the techniques described above, concurrent global transactions may each use

a di�erent notion of atomicity. Furthermore, even for the same global transaction, the constituent

subtransactions may actually be engaged in di�erent commit protocols. This is important because

not all subtransactions may be compensatable. For example, those involving real actions [Gra81],

such as �ring a weapon or dispensing cash, may not be compensatable.

8

Such subtransactions must

always follow the traditional 2PC protocol, whereas its sibling subtransactions may continue to use

an optimistic 2PC approach. Thus, the non-compensatable subtransactions are informed of a �nal

decision to commit only after the coordinator ascertains that all the compensatable subtransactions

also commit. This is achieved by using a complete version of the optimistic 2PC protocol [LKS91a]

where each participant informs the coordinator after it commits its corresponding subtransaction.

8 Anomalous Behaviors

Our relaxed correctness criteria may not be su�cient for certain types of applications. The follow-

ing example of a high-performance DBMS application illustrates the problem and motivates the

subsequent solution.

8.1 The Problem

Consider a distributed environment consisting of sites each of which monitors the trends in the

stock prices tracked at that site (e.g., see [PR88]). These trends are recorded locally, and also

sent to some global coordinator to reach marketing-strategy decisions. The coordinator gathers

the trends and makes decisions regarding the sale or buying of options, and sends these to the

sites to e�ect the transactions. The need for a coordinated set of actions at the di�erent sites is

evident. Also, the need for fast, real-time responses is necessary to exploit the trends in the market

[AGM89]. We assume that there is a need to transfer money from one site to another, or to audit

the total amount of money that exists in accounts managed at more than one site. Such systems

are usually designed using a transaction processing paradigm.

Consider a global transaction T

1

that transfers funds from an account A at site C

1

to an account

B at site C

2

. The decomposition of T

1

into local subtransactions is:

� T

11

{ debit account A by amount a

� T

12

{ credit account B by amount a

8

This provides a reason why our scheme is not universally applicable to distributed transactions.
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su�er from the following shortcomings with regard to distributed RTDBs. First, notice that once a

participant indicates its preparedness to commit, it cannot allow the subtransaction in question to

relinquish the locks held by committing or aborting until such time that the �nal decision is obtained

from the coordinator. This is clearly problematic since it may cause other local subtransactions

awaiting the decision to miss their deadlines. Second, if the �nal commit message arrives after

the deadline for the local subtransaction has passed, the commitment must still be e�ected to

achieve traditional atomicity. Also, note that since an indication of preparedness requires that the

participant be in a position to change the database as dictated by the subtransaction in question

despite failures, it is necessary to save the appropriate log records on stable storage prior to a

noti�cation of preparedness. Accessing stable storage is a time-consuming activity, and thus, there

is an additional delay before the participant may notify its preparedness | however, this factor is

not speci�c to real-time environments alone.

To alleviate the above problems, a protocol based on an optimistic 2PC protocol [LKS91a] may

be used adaptively under adverse conditions. This protocol is similar to the traditional 2PC up

to the point that the request for the state of preparedness is received by the participating sites.

6

At this point, the synchronization to ensure serializability is achieved, and the phase that follows

ensures semantic atomicity. Due to the exibility o�ered by semantic atomicity, no message need be

sent to the coordinator unless the subtransaction is aborted. In the event that the subtransaction

is aborted, the coordinator is alerted by a message in a manner similar to the case of simple

synchronization of Section 6, and this causes the coordinator to trigger compensations at all sites

that committed their subtransactions so as to maintain semantic atomicity.

7

We assume in this

discussion that the requirements of R-commutativity as detailed in Section 4 are met.

Notice that in the above protocol, locks may be released at any time after the �rst phase by

simply aborting the subtransaction | which is not possible after the point that preparedness is

guaranteed in the traditional 2PC protocol. Therefore, the problem of blocking due to remote

failures or delays is avoided, and also, the same expedient of aborting the subtransaction may be

employed in the case of a local transient overload. Furthermore, if a subtransaction attempting to

commit fails to do so | say due to the lack of resources | then the site could choose to abort it,

and to subsequently inform the coordinator. As regards the time delay in saving the log records,

note that they can be saved at any time prior to the �nal commit for the subtransaction, and

therefore, the delay does not a�ect the commitment as severely.

We now describe the adaptive strategy that assures semantic atomicity as a contingency mea-

sure. The idea is that in situations of overload, or when blocking becomes imminent, sites should

decide locally to switch from the traditional 2PC to the optimistic 2PC. This decision may be taken

at any time after the �rst phase of the 2PC protocol. The decision as to when exactly that should

take place is an application-dependent. Note that an abort can always be e�ected unilaterally

during the �rst phase of the 2PC protocol. In the event that the global coordinator decides to

abort the entire transaction, compensating subtransactions may be executed at each site where the

subtransactions in question were locally committed. This ensures semantic atomicity as de�ned in

Section 4.

Our adaptive strategy provides a method to deal with the question of a fast approaching deadline

6

Requisite changes need to be made if the indication of the last operation having been executed is combined with

the indication of preparedness. These changes e�ectively render the protocol to be similar to the one described in

the main text.

7

As noted in the footnote in Section 6, the role of the coordinator may be eliminated in this regard.
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the message overhead for synchronization in this mode is negligible since except for the exchange

of data as necessitated by the execution of the global transaction, there is no overhead exchange

of messages necessary. Moreover, for the baseline mode of operation, the desirable properties of

traditional atomicity and serializability are maintained.

When a local site decides to abort a transaction T

i

for any reason, it e�ectively adapts to a

di�erent mode of operation autonomously. The site sends a message to the coordinator informing

it that it has aborted the corresponding local subtransaction under its control. Upon receiving such

a message, the coordinator initiates the semantic abort of the entire transaction T

i

.

4

This can be

achieved by informing all the other participating sites to do so. Each site that receives a message

indicating that the global transaction T

i

is to be aborted, performs the one of the following actions.

If the subtransaction in question is still active, then it is forcibly aborted. On the other hand, if the

subtransaction has been committed, then a compensating subtransaction is invoked at that site.

As discussed in Section 4, this approach cannot improve matters any further if the compensations

do not occur within their time constraints.

7 Adaptive Atomicity with Sporadic Global Transactions

In systems where sporadic global transactions are possible, the simple approach described in Section

6 will not su�ce since the serializability of the transaction executions will not be maintained. For

such situations, note that the use of a commit protocol also provides the necessary synchronization

as discussed in Section 3. Thus, simply by using commit protocols appropriately, serializable

executions can be automatically provided if care is taken to synchronize the serialization events

correctly.

For the baseline operation of the system, the 2PC protocol can be used to ensure the traditional

notions of correctness. We illustrate its use in conjunction with the use of the strict two-phase

locking scheme. The protocol works in the following manner. When the coordinator for a global

transaction receives information from each participant that it has executed its last operation, it

knows that the participating subtransactions have all acquired the necessary locks | and therefore,

it e�ectively synchronizes all the subtransactions according to a distributed 2PL policy (e.g., see

[BHG87, SKS91]). At this point, it sends a message to each participant requesting the state of

preparedness to commit the corresponding subtransaction.

5

The receipt of this message concludes

the �rst phase of the 2PC, wherein the synchronization of the subtransactions is e�ected.

The second phase of the protocol begins when a participant responds to the coordinator's request

by indicating its preparedness to commit or its unilateral decision to abort the subtransaction in

question. The coordinator decides to commit the transaction only if all the participating sites

have indicated their willingness to commit. Otherwise, it decides to abort the transaction. This

decision is conveyed to the participants when the coordinator sends its �nal decision message to each

participant which indicated its preparedness, and the message is acted upon accordingly. Following

this action, each subtransaction may release the locks it holds.

The above protocol guarantees the desirable ACID properties of correctness. It does, however,

4

A coordinator need not be involved at all | instead, the site that aborts a subtransaction can itself broadcast

the necessary information to all the participating sites.

5

If the participants know a priori which operation is the last one, it is possible to have them send their state of

preparedness along with the indication of having executed that last operation. However, such a message must be sent

after the log records have been saved on stable storage.
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aborted, T

22

would have been prevented from positioning the gun in exactly the same manner. We

do not speculate on what T

22

does in such a situation for this example.

Finally, we de�ne an appropriate relation R as follows:

S

1

R S

2

� the last value in the sequence that is used as input to compute the value

of x by extrapolation (in S

1

) = the value of y (in S

2

)

Observe that S

1

6� S

2

which is a consequence of guaranteeing only semantic atomicity rather

than traditional atomicity. Also, notice that the above description holds regardless of whether T

12

is committed locally, or it is committed following the completion of a 2PC protocol. Thus, the

availability of a compensating transaction allows for the exibility of making local decisions | and

the importance of this feature becomes apparent below.

6 Simple Optimistic Synchronization

Now that the notions of correctness have been formally established, the adaptive commitment

strategy can be described in a simple manner. This section describes a strategy that is limited

in its applicability to sets of periodic global transactions.

3

Section 7 describes a more general

approach.

Consider a set of global transactions that execute periodically in an RTDB. That is, one period

consists of a �xed set of transactions, and the next one consists of another invocation of these

transactions, and so forth. Assume that a global transaction T

i

has local subtransactions T

ip

; T

iq

; : : :,

at the sites C

p

; C

q

; : : :, respectively. At each site C

p

, assume that the local concurrency control

mechanisms order the various subtransactions of the global transactions according to their priority

or deadline. Clearly, if these orders are compatible over all the sites, then the global transactions are

serialized. This holds despite the possibility of arbitrary local transactions that may not be periodic

(e.g., see [SKS91]). The present description assumes that each site ensures that the subtransactions

executing under its control are serialized according to the order prescribed by the priorities or the

deadlines (e.g., see [Son88, AGM90, HCL90b]) imposed on the various transactions. In such cases,

it is not di�cult to see that serializability holds in the absence of any irregularities in the order of

the executions, and with no failures.

The optimistic situation described above may fail from time-to-time due to a system overload or

delays due to any reason. In particular, a site may prefer to unilaterally abort a subtransaction for

the purposes of scheduling a more urgent transaction, or because the deadline for the subtransaction

may have passed. Notice that the atomicity of the global transactions is compromised (assuming

that the other subtransactions for the global transaction are committed) | although serializability

is still maintained. Our approach is to ensure semantic atomicity in such situations through the

use of compensating transactions. That is, if a global transaction T

i

needs to be aborted due to

the failure of some of its subtransactions, compensating subtransactions are initiated at each site

where a subtransaction of T

i

committed. Thus, in cases where a subtransaction is compensatable,

local commitment may be used.

The above ideas can be implemented in the simple case of periodic transactions by a coordinator

of a global transaction T

i

that optimistically assumes that all the subtransactions commit. This

may be regarded as the normal baseline mode of operation for periodic transactions. Note that

3

Local transactions may occur sporadically.
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GT

2

: A sequence of data elements at site C

2

, each of which is global track data. This sequence

records all global track data in chronological order with the most current one forming the head

of the sequence. Each element in the sequence is associated with a time-stamp to specify how

current that information is. Such a sequence is assumed to be stored at each site | possibly

in the form of log records (which are used for standard recovery purposes [BHG87]).

Manipulation and access of GT

2

is done through the following:

� tail(sequence): Returns the tail of the sequence (i.e., all elements but the head).

� head(sequence): Returns the head element of the sequence.

� extrapolate(sequence): Computes and returns global track data which is the extrapolation

of the sequence of global track data provided to it.

Next, we provide the pseudo-code for the compensating subtransaction CT

12

:

GT

2

 tail(GT

2

)

if GT

2

was read by T

2

since it was updated by T

12

then

begin

x extrapolate(GT

2

)

set the weapon system according to the global track data x

end

The �rst step of CT

12

is simply to undo T

12

by removing the head of GT

2

. Observe that once this

head element is removed, the time-stamp of the new head indicates that the value is outdated. Only

if there are transactions that used the (erroneous) value of GT

2

, is compensation actually needed.

Checking this condition (i.e., \if GT

2

was read since...") can be done as part of the execution of

CT

12

by accessing the log records that contain GT

2

. Actual compensation is performed by the

routine that sets the weapon system based on the extrapolated value stored in the variable x. The

aim is to try to set the weapon system based on its past trajectory since the local site does not

know the precisely correct current position for it. Notice that the compensation only re-positions

the system, and is not involved with �ring the weapons | which may not be compensatable in this

manner (see Section 7).

The pseudo-code for T

22

is as follows:

y  head(GT

2

)

if the time-stamp of y shows the value is up-to-date then

set the weapon system according to the global track data y

Let X be the local execution before T

12

at site C

2

. Consider the following equations:

S

1

= (X � T

12

� T

22

� CT

12

)(S

0

) (1)

S

2

= (X � T

12

�CT

12

� T

22

)(S

0

) = (X � T

22

)(S

0

) (2)

Equation 1 represents an execution where T

12

was committed erroneously, and was later compensated-

for. Equation 2 represents an execution where T

12

was aborted on time and its e�ects were entirely

undone. In the execution represented by Equation 2, T

22

is unable to position the gun since it

follows CT

12

, which rendered outdated the new head value of GT

2

. Observe that had T

12

actually

10



4.3 Relaxed Temporal Correctness

Generally, compensations should be performed as early as possible to ameliorate the ill-e�ects

of the erroneously committed compensated-for subtransactions. Hence, compensations should be

constrained by the use of soft deadlines and value functions (e.g., see [AGM88]). For simplicity, in

this paper, we assume that compensations must be executed within a pre-speci�ed time interval

after the completion of the forward transaction with which they are associated. This time interval

may be application-dependent. Thus, a deadline is also placed on the completion of a compensating

subtransaction depending on the completion time of the forward transaction. Note that it is possible

that the application places no deadline on the compensating subtransaction | in which case, an

in�nite deadline may be assumed.

The above paradigm poses a problem. Even if it were the case that each site could guarantee the

timely execution of a compensating transaction after its invocation, the impossibility result for the

Two Generals' problem [Gra78] implies that the invocation itself may not occur in a timely manner.

This is because the invocation of the compensating subtransaction is e�ected by the reception of

a message sent from another site, and that message may be delayed. In such situations, a late

compensation corresponds to a temporally incorrect execution, and that cannot be avoided due

to the impossibility result.

1

Thus, we state that relaxed temporal correctness is maintained if all

committed transactions (including compensating transactions) meet their respective deadlines.

4.4 Relaxed RTDB Correctness

We are in position now to de�ne the notion of relaxed RTDB correctness in a manner similar

to the traditional RTDB correctness of Section 3. We say that distributed RTDB transaction

executions maintain relaxed correctness if they maintain the relaxed criteria for logical and temporal

correctness.

5 Using Compensation

We illustrate the notion of compensation and R-atomicity by referring back to the example in

Section 2. For the ease of presentation, we shall be concerned here only with the setting of the

weapon system. The following transactions

2

are de�ned:

T

1

: The global transaction that collects and correlates local track data, and disseminates the

resultant global track data to the various sites. Suppose that the erroneous reading occurs in

subtransaction T

11

at site C

1

. Thus, subtransaction T

12

at site C

2

contains the recording of

the erroneous correlated data into the local database.

T

22

: A local weapon positioning transaction at site C

2

.

CT

12

: The subtransaction for T

1

at site C

2

that performs compensatory actions at that site.

We now consider the compensating subtransactions and the concept of R-commutativity in this

context at site C

2

. We shall use the following data variable:

1

This is one reason why our approach is only a partial solution to the problems associated with atomic commitment.

2

We emphasize that the example is chosen more to illustrate the concepts rather than to suggest a speci�c domain

of use.
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The reader is referred to [Lev91] for more details regarding the design and implementation of

compensating transactions.

In a distributed RTDB, each global transaction is decomposed into a collection of local subtrans-

actions, each of which performs a semantically coherent task at a single site. The subtransactions

are selected from a well-de�ned library of routines at each site. For global transactions that can be

compensated-for, each forward subtransaction is associated with a pre-de�ned compensating sub-

transaction. With regard to concurrency control, there is no di�erence between the compensating

subtransactions and any other subtransactions.

We assume that compensating for a global transaction need not be coordinated as a global

activity (e.g., similar to [LYI87]). Consequently, there is no need to use a commit protocol for the

termination of the compensating subtransactions that correspond to a particular global transaction.

The compensating subtransactions are assumed to have no inter-dependencies, and share no global

information. This is important since we require that the local sites should be able to run the

compensations autonomously. Situations where this may not hold are described in Section 8.

4.2 Relaxed Logical Correctness

Our correctness criterion is stated in terms of serialization graphs (SGs) that are a slightly extended

version of the standard SGs. To make the presentation uniform, we model an aborted subtrans-

action as a committed subtransaction followed immediately by the corresponding compensating

transaction that simply undoes the committed subtransaction. This use of a compensating sub-

transaction is simply a syntactic device to model an aborted subtransaction, and it does not imply

that every subtransaction has a compensating subtransaction de�ned (aside from the one used to

model an abort).

Let T be a set of global transactions. Let C

p

be a site with the set of subtransactions, T

p

corresponding to T , and the set CT

p

corresponding to the set of compensating subtransactions.

As mentioned above, aside from the compensating subtransactions used to model an aborted sub-

transaction, not all elements of T

p

need necessarily have a corresponding element in CT

p

(also see

Section 7). The local serialization graph at site C

p

for a complete local history H

p

(see [BHG87] for

precise de�nitions of complete histories) is a directed graph SG

p

(H)=(V

p

; E

p

). The set of nodes

V

p

consists of a subset of transactions in T

p

[ CT

p

. An edge A ! B is in E

p

if and only if one of

A's operations precedes and conicts with one of B's operations in H

p

.

A global SG is the union of all the local serialization graphs. For a set of local SGs, represented

by SG

p

= (V

p

; E

p

), the corresponding global SG is de�ned as SG

global

= ([ V

p

; [ E

p

). Observe

that each compensating subtransaction is assigned a separate node in the global SG (in accord with

the localized execution of compensating subtransactions as described above).

A global history is logically correct if the following two conditions hold:

� Serializability. The global SG is acyclic.

� Semantic Atomicity. For each transaction T

i

, either all local subtransactions are commit-

ted | thereby committing T

i

, or for each committed subtransaction of T

i

, the corresponding

compensating transaction is executed at some point following the commitment of the sub-

transaction in question | thereby aborting T

i

.
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maintain logical correctness and all committed transactions complete before the expiration of their

deadlines.

4 Relaxed Correctness

We now elaborate on the issue of relaxation of the traditional correctness notions for distributed

RTDBs. First, we relax the logical correctness criteria by introducing compensating transactions

and semantic atomicity. This leads to the relaxation of the temporal correctness criteria as well.

4.1 Compensating Transactions

A compensating transaction is a recovery transaction that is associated with a speci�c forward

transaction that is committed, and whose e�ects must be undone without causing cascading aborts.

The purpose of compensation is to \undo" a forward transaction semantically without causing

cascading aborts. The intention of compensation is to leave, as far as possible, the e�ects of

transactions that follow the forward transaction intact, and yet preserve database consistency.

Compensation guarantees that a consistent state is established based on semantic information.

The state of the database after compensation takes place may only approximate the state that

would have been reached, had the forward transaction never been executed. In [KLS90, Lev91] we

have formally characterized the outcome of compensation based on the properties of the forward

transaction and the transactions that follow it in the execution, and the necessary details are

summarized as follows.

A database is a set of data objects whose values at any instant of time constitute a state S. A

transaction is a function from states to states. An execution imposes a serialization order among a

set of concurrently executing of transactions. An execution, thus, de�nes both a total order among

the transactions, as well as a function from states to states that is the functional composition

(denoted by `�') of the transactions. That is, X = T

1

� : : : � T

n

denotes the function from states to

states de�ned by applying the functions denoted by the transactions in the same order X . We use

X(S) to denote the state resulting from applying the function X to the state S.

To formalize the notion of compensation, we use a binary relation between the transactions as

follows. Two transactions, T

1

and T

2

, commute with respect to a relation R on states (in short,

R-commute), if for all states S, (T

1

� T

2

)(S) R (T

2

� T

1

)(S). If R is the equality relation, the

two transactions commute in the usual mathematical sense. For a forward transaction T and its

compensating transaction CT , the execution T � X � CT is atomic with respect to R (in short

R-atomic), if T �X �CT (S) R X(S). If a compensating transaction is serialized immediately after

its associated forward transaction, then compensation amounts to the traditional undoing of the

forward transaction; formally, (T � CT )(S) = S. If CT R-commutes with each of the transactions

mentioned in X , then the execution T �X � CT is R-atomic. The relation R serves to constrain

CT , thereby preventing it from violating consistency constraints and other desirable predicates

established by the transactions executing in the system. Thus, the relation should ensure that

some desirable properties, such as, \if a consistency constraint predicate holds on the �nal state of

X , then it should also hold on the �nal state of T �X � CT", are maintained in the system.

The design of a compensating transaction is an application-dependent task. Thus, the forward

transaction must record enough information in the database for the compensating transaction to

execute properly. This information is similar to that saved for standard transaction recovery.
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Physical clocks are more important for the purposes of this paper since the applications that we

deal with interact closely with the external physical environment (e.g., see [KSS90]), and since

time-constraints should be measured by physical clocks.

In this paper we assume the existence of strongly synchronized physical clocks in the sense of

[Lam78]. That is, each clock should closely approximate the passage of physical time. Also, the

variance between the times measured by di�erent clocks should be very small. The former can be

assured by hardware, while the latter is managed by the frequent exchange of messages. We assume

that the message tra�c and the speed of the network are both su�ciently high so as to guarantee

a negligible variance.

The above description does not address the issue of unexpected failures or delays since it is as-

sumed that the underlying clock synchronizing mechanism ensures resilience to the various failures,

and hence after a failure, re-synchronization occurs rapidly (e.g., see [LL88]). These are research

issues beyond the scope of this paper.

Given our notion of time as described above, it is reasonable to assume that a global time

t corresponds, within acceptable tolerance bounds, to time t

p

as measured by the local clock at

site C

p

. Thus, we may ascribe a time-constraint to a global transaction T

i

that will correspond

to the same time-constraint for each of its subtransactions as measured at their local sites. That

is, each time-critical global transaction T

i

is assigned a deadline t by which it should commit.

This corresponds to requiring that each subtransaction T

ip

of T

i

that executes at a site C

p

, should

commit by time t as measured by t

p

at its local site. We de�ne the actual commit time of the global

transaction T

i

to correspond to the largest among the commit times of each of its subtransactions.

Similarly, we can consider time-critical local transactions to have deadlines as measured locally. As

explained below, we shall impose a hard deadline policy of requiring that these deadlines be met,

or the transaction in question should be aborted.

3.2 Logical Correctness

Database transactions executing correctly in the conventional sense are characterized by their atom-

icity, consistency, isolation, and durability properties [BHG87, CP87] | commonly referred to as

the ACID properties. Correctness for concurrent transaction management is de�ned by serializabil-

ity [EGLT76]. A serializable execution is guaranteed to preserve the consistency of the database,

regardless of the speci�cs of the consistency constraints.

In the case of distributed DBMSs, ensuring serializability requires the synchronization of the

executions at the di�erent sites. This is accomplished through the exchange of messages to synchro-

nize the serialization events (e.g., lock points in two-phase locking, or time-stamps in time-stamp

ordering [BHG87]). Since ensuring atomicity also requires such message exchanges (in the form

of the commit protocol), the same protocol usually also serves for this synchronization. Thus, in

the case of distributed DBMSs, the commit protocol achieves the two objectives of ensuring the

atomicity and the serializability of the transaction executions (e.g., see [SKS91]).

3.3 Traditional RTDB Correctness

Having described the traditional notions of temporal and logical correctness for our purposes, we

are now in a position to state a simple criterion for traditional correctness in an RTDB environ-

ment. Distributed RTDB transaction executions are said to maintain traditional correctness if they
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a standard transaction-processing system, the execution of a commit protocol (e.g., 2PC) ensures

that all the subtransactions of the aborted global transaction do indeed abort.

The price paid, however, for employing a standard commit protocol is severe if the system is

in a crisis situation, or if there is an overload. Blocking may cause a situation where none of the

sites have a recent global track data, which is undesirable at a time of crisis. Waiting for the

coordinator's �nal decision may unnecessarily cause missing the deadlines of urgent transactions

when the system is overloaded. The fast local commit of a subtransaction would be much more

suitable under these circumstances | optimistically assuming that the global transactions usually

commit. However, uncoordinated local commitment may cause some sites to commit the erroneous

global track data they receive, and subsequently to expose the data to other transactions. Thus,

for example, a transaction that positions the weapon system at a site may base its computation

on the prematurely committed, and hence inaccurate, global track data. Therefore, there is a need

to recover from the e�ects of the incorrectly committed data by compensatory actions. In our

example, the compensatory actions re-position the weapon system based on the past history of the

execution.

Our proposed scheme supports the local commit of subtransactions sooner than is prescribed

by the 2PC protocol, thereby avoiding the blocking problems associated with the 2PC protocol.

If the early commit turns out to be premature and erroneous, compensatory actions are used to

obtain a relaxed degree of atomicity. Such trading of standard atomicity for earlier commitment,

however, is exercised only when required (i.e., during overload periods, or if the slack time available

is small). The concepts of compensation and relaxed atomicity are formally de�ned in Section 4.

Given the above scheme, a natural question to ask is why the 2PC protocol should be used

at all, and why not always use a protocol that uses compensatory actions. The answer is that

it is always desirable to preserve standard logical correctness criteria. For instance, in the above

example, it is preferable not to have any incorrect data recorded rather than to try and correct the

e�ects of erroneous actions. Second, for certain types of transactions (described in Section 8), it is

anyway necessary to use a standard protocol.

3 Traditional Correctness

In this section we explain the traditional correctness criteria for concurrent real-time transactions.

The concepts used in this paper regarding time and temporal correctness in a distributed envi-

ronment are �rst described, and then combined with the traditional logical correctness criteria for

concurrent transactions. Together, these criteria constitute the traditional correctness for real-time

database (RTDB) transaction executions. Traditional correctness serves as the notion of correct-

ness in the norm. In the next section we de�ne a concept for relaxed correctness that serves as a

contingency measure for periods of transient overload or unprecedented delays in the system.

3.1 Temporal Issues in a Distributed Environment

In order to discuss the time-constraints and temporal correctness, we �rst describe a simpli�ed

notion of time for a distributed real-time system environment. There exists a body of literature

| not all germane to real-time systems | that pertains to clock synchronization in distributed

systems (e.g., see [Lam78, LL88]). This literature mainly deals with logical clocks as opposed to

physical clocks. The latter count events in both the physical world as well as the computer system.
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designed, are very application-speci�c. Finally, we would like to emphasize that our scheme only

alleviates some of the problems discussed above, and cannot eliminate them.

The remainder of this paper is organized as follows. In Section 2, we motivate our ideas by

means of an example application scenario. Sections 3 and 4 describe the traditional and relaxed

correctness criteria for executions in normal baseline and overload modes, respectively. In Section 5,

we continue with our example to illustrate these de�ned criteria. Section 6 describes our technique

for the simple case of periodic transactions. Section 7 extends these ideas to the case of sporadic

transactions. A subtle problem that may arise when using our techniques is described in Section

8, and a solution for it is also provided. Section 9 discusses certain implementation suggestions.

Finally, Section 10 constitutes the conclusions.

2 Illustration of the Concepts

We provide a hypothetical example to illustrate our ideas | the speci�c details of the example are

less important as compared to the general principles that it is meant to convey. Consider a tracking

system for mobile targets (adapted from the examples in [Son88, Koo90]). Assume that there are

several processing sites that manage target-sensors, target-tracking guns, and store data pertaining

to the readings, positions, etc. in the local database management systems (DBMSs). Periodically,

the sensors update the data regarding the targets as sensed at each local site, and this data is also

sent to a speci�c coordinator site. The coordinator site receives track data from several sites and

correlates the information gathered to create the global tracking information. It is necessary to

do the correlation since the data obtained at each site is individually insu�cient to identify the

targets accurately [Son88]. The globally correlated data is also disseminated among the sites, and

this data a�ects local decisions at the sites. Finally, global decisions may be taken sporadically to

�re the guns located at the various distributed sites.

This application can be designed using a transaction processing paradigm. Henceforth, we use

the term global transaction to refer to multi-site transactions. Global transactions are decomposed

to a set of subtransactions executing at a di�erent site each. The term local transaction is reserved

for transactions (or subtransactions) that execute at any single, local site.

We assume that at each site, local transactions update the local track data (e.g., see external-

input transactions of [KSS90]). Also, we assume that collection and correlation of the local track

data from the di�erent sites, and the dissemination of the global track data, together constitute

one type of global transaction. The reading of the local track data and subsequent writing of the

global track data at each site constitute the local subtransaction for the global transaction. There

may be other local and global transactions in the system which need not concern us. Notice that

it is necessary for each site to execute the subtransactions corresponding to a global transaction at

approximately the same time | that is, at times that are closely synchronized. This is important

to facilitate correct correlation since a temporally coherent view of the world must be used (e.g., see

[SL90]). The same holds true for the dissemination of the global track data since each site should

get the latest information so as to e�ect correct local decisions.

Suppose that an erroneous local track is recorded at one of the stations | perhaps due to a

malfunctioning sensor. This fault may be detected only after the local track data is collected and

correlated with (correct) track data from other sites (but before the corresponding global track

is committed). Consequently, erroneous global track data may be generated and disseminated to

several sites. Such a global transaction should be obviously be aborted as soon as possible. In
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awaiting, then the data held at that site for the concerned transaction may be blocked (i.e., become

inaccessible until the necessary message is received).

More pertinent to real-time applications is the question of dealing with the time constraints

on the subtransactions. For instance, a hard real-time deadline may exist on the execution of a

subtransaction T

i

, implying that T

i

must be either committed prior to its deadline, or be aborted.

If, however, it happens that the 2PC protocol blocks the subtransaction, then the deadline may pass

without a decision having been reached for T

i

. Hence, if the �nal outcome does arrive late, and it is

to commit, then the subtransaction T

i

has to be committed to preserve logical correctness | despite

the fact that the deadline has passed. A slightly di�erent problem is that the local concurrency

control may dictate that T should be aborted in favor of other transactions with higher priorities,

and that may be impossible to achieve for similar reasons. In fact, there is no way to overcome this

problem by any standard atomic commitment protocol [BHG87, SS90, SKS91].

While it is advisable to use the standard correctness criteria where possible so as to accrue their

many advantages [GR91, BHG87], it is fact that the problems noted above cannot be tolerated

in typical real-time applications. Hence, in order to e�ectively utilize the transaction paradigm

in a time-constrained environment, some of the stringent correctness requirements of transaction

management must be relaxed (e.g., see [Sin88, Sta88]). In this paper, we adapt the notion of

relaxed atomicity from [LKS91a, LKS91b, Lev91] and apply it to the realm of real-time transaction

processing, concentrating on the issue of atomicity of real-time transactions in a distributed system.

Our approach permits the system to choose a commitment strategy (other than 2PC) dynamically.

The key to our approach lies in the idea of compensation. If a transaction T commits \erro-

neously" (i.e., it is discovered ex post facto that T should actually have been aborted), a compen-

sating transaction CT for T is used to perform a \semantic undo" of T [KLS90]. This undo returns

the database to a consistent state that is equivalent, in an application-speci�c semantic sense, to

a state resulting from an execution in which T never executed. The key concept here is that the

compensation is accomplished without resorting to cascading aborts.

A feature of compensation that makes its use attractive for real-time systems is that compen-

satory actions may be deferred, while traditional undo operations need to be performed immedi-

ately. This allows the execution of the recovery process during periods of light system load despite

the expectation that transaction failures (and thus recovery) will occur disproportionately more

often during times of system overload. Moreover, it is not necessary for a transaction T to hold

data pending the execution of CT . Instead, it can release data that is later (re-)acquired by CT .

We allow standard 2PC to be used as the norm for transaction commitment, with compensation-

based techniques invoked only when time-constraints require it; this further reduces the overhead

associated with commitment.

There are several issues that are not discussed in this paper mainly due to reasons of simplicity,

space, and application-speci�city. First, the application-speci�c decision of the particular point at

which one commitment strategy is chosen over another, is one such issue. Second, failures that are

essentially catastrophic in a real-time environment | such as a system crash that results in the loss

of volatile memory (thereby necessitating the access of slow secondary storage), is another issue.

Instead, we are more concerned with the delay failures that are always possible since there is little

that can be done for catastrophic situations that is speci�c to real-time environments. Su�ce to say

that the techniques used for typical DBMSs are assumed to apply in the environments of concern

for this paper [BHG87]. Third, the issue of the performance analysis of our proposed scheme is

also not within the scope of this paper because the work loads, and compensations that can be
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1 Introduction

As the volume of data managed by real-time applications increases, there is incentive to ap-

ply database system concepts in the development of real-time systems [Son88, Koo90, AGM88,

KSS90]. The transaction paradigm, in particular, seems to be applicable to real-time systems

[GR91, DLW90, SZ88, Lis88, Koo90, SL90]. However, the timing requirements of real-time systems

appear to preclude the use of transaction management techniques | at least in their current form.

Among the obstacles to using transaction management technology in real-time systems are:

� High variance in access time for a data object that makes it di�cult to place a reasonable

bound on transaction response times (e.g., see [BMHD89, KSS90]).

� Concurrency control requirement of achieving high overall throughput do not permit the

incorporation of real-time constraints on the execution of individual transactions (e.g., see

[BMHD89, Son88]).

� Standard recovery techniques that guarantee the atomic execution of a transaction by re-

stricting other transactions (e.g., delaying access to uncommitted data) are not suited for the

characteristics of real-time applications (e.g., see [Sin88, LKS91b]).

The above problems are exacerbated in a distributed environment. The reasons are that the control

of the executions is distributed over several agents located at di�erent sites, and due to the fact

that unquali�ed communication guarantees are never available.

Initial studies addressing the concurrency control aspects of time-constrained transaction man-

agement in general (e.g., see [KSS90, AGM88, HCL90b]), and in a distributed environment in

particular (e.g., see [SRL88, SL90, Sta88, Sin88, Son88]), are reported in the literature. In this pa-

per, we are concerned mainly with problems of ensuring atomicity and meeting the time constraints

in a distributed real-time transaction management system where the correctness criterion is serial-

izability. Our approach represents a departure from the norm in that we do not directly address

the question of time-constrained scheduling at each local site. Instead, we consider issues pertinent

to the distributed environment where the local scheduling is handled through the use of methods

that have been previously explored [AGM88, AGM89, BMHD89, C

+

89, HCL90b, HCL90a, KSS90].

Thus, a transaction that accesses data at several sites, does so by the use of a subtransaction at each

concerned site, and each such subtransaction is subject to the local concurrency control mechanism

at its particular site. We adopt such an approach since the key feature that distinguishes distributed

(as compared to centralized) transaction management is the coordination of the distributed loci

of control, which is achieved through the use of an atomic commit protocol that assures that the

fate of a transaction T

i

(i.e., whether it is committed or aborted), must be agreed upon by all sites

where the subtransactions of T

i

access data.

The standard approach to distributed transaction management is to use the two-phase commit

(2PC) protocol (e.g., see [BHG87]), where a transaction is executed under the control of a central-

ized coordinator. Consensus is reached by sites agreeing to abide by the decision of the coordinator

either to commit the transaction or to abort it. Once a site indicates to the coordinator that it is

in a position to commit if necessary, it makes the promise to adhere to the decision of the coordina-

tor. That is, in the second phase of the protocol, a site can neither abort nor commit unilaterally.

Therefore, if for any reason a site does not obtain the �nal message of the 2PC protocol it was

2
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Abstract

Real-time distributed transaction management systems are useful for both real-time and high-

performance database applications. Guaranteeing response times in such environments is dif-

�cult to achieve mainly due to the inherent asynchrony present. The standard approach to

distributed transaction management is to employ the two-phase locking scheme in each of the

participating sites, and to coordinate the executions of the various subtransactions through the

use of the two-phase commit protocol. Such an approach ensures the atomicity and serial-

izability properties of the transactions. Unfortunately, the unpredictability, the cost and the

fault-tolerance properties of the two-phase commit protocol render it unsuitable for real-time

applications.

The approach taken in this paper is to identify ways in which a commit protocol can be made

adaptive in the sense that under situations that demand it, such as a transient local overload,

the system can dynamically change to a di�erent commitment strategy. The decision to do so

can be taken autonomously at any site. The di�erent commitment strategies exploit a trade-

o� between the cost of commitment and the obtained degree of atomicity. The inexpensive

protocols incur a reduced cost as they are based on the optimistic assumption that transactions

failures are the exception rather than the rule. When transactions do fail, these protocols rely

on local compensatory actions to recover from non-atomic executions. We provide the necessary

framework to ensure the logical and temporal correctness criteria, and describe examples to

illustrate the use of our strategies.
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