
[58] L. Sha, J. P. Lehoczky, E. D. Jensen, Modular Concurrency Control and Failure Recovery,

IEEE Transactions on Computers, Vol. 37, No. 2, February 1988, pp. 146-159.

[59] A. Silberschatz, M. Stonebraker, and J. Ullman. Database systems: Achievements and oppor-

tunities. Communications of the ACM, October 1991.

[60] P. Scheurermann and H.-L. Tung. A Deadlock Checkpointing Scheme for Multidatabase Sys-

tems. Proceedings of the Second Workshop on RIDE/TQP Phoenix, AZ pp. 184-191, 1992.

[61] H.-J. Schek, G. Weikum, W. A. Schaad, A Multilevel Transaction Approach to Federated

DBMS Transaction Management, Proceedings of the International Workshop on Interoperabil-

ity in Multidatabase Systems, Kyoto, 1991.

[62] Francis Upton IV. OSI Distributed Transaction Processing, An Overview. Proceedings of the

International Workshop on High Performance Transaction Systems, Asilomar, CA, September

1991.

[63] J. Veijalainen and A. Wolski. Prepare and Commit Certi�cation for Decentralized Transaction

Management in Rigorous Heterogeneous Multidatabases. Proceedings of the 8th International

Conference on Data Engineering Phoenix, AZ 1992.

[64] G.Weikum, Principles and Realization Strategies of Multilevel TransactionManagement,ACM

Transactions on Database Systems, 16, 1, 1991

[65] H. Wachter, A. Reuter, The ConTract Model, A. K. Elmagarmid (Ed.), Database Transaction

Models for Advanced Applications, Morgan Kaufman, San Mateo, CA, 1992.

[66] G. Weikum, H.-J. Schek. Architectural Issues of Transaction Management in Layered Systems.

Proceedings of the 10th Conference on Very Large Data Bases. Morgan Kaufmann, Palo Alto,

Calif. pp. 454-465. 1984.

[67] A. Wolski and J. Veijalainen. 2PC Agent method: Achieving Serializability in presence of

Failures in a Heterogeneous Multidatabase. Proceedings of the International Conference on

Databases Parallel Architectures and their Applications. pp 321-330, 1990.

[68] K.-L. Wu, P. Yu, C. Pu. Divergence Control for Epsilon-Serializability Proceeding of the 8th

International Conference on Data Engineering. Phoenix, AZ, February, 1992.

41

[45] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. The Concurrency

Control Problem in Multidatabases: Characteristics and Solutions Proceedings of the 1992

ACM SIGMOD International Conference on Management of Data. San Diego, Calif., 1992.

[46] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. Ensuring Transac-

tion Atomicity in Multidatabase Systems. Proceedings of the 12th ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems. San Diego, Calif., 1992.

[47] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. Maintaining Database Consistency

in Heterogeneous Distributed Database Systems. Technical Report TR-91-04, Department of

Computer Science, University of Texas at Austin, 1991.

[48] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. Non-serializable executions in

heterogeneous distributed database systems. Proceedings of the First International Conference

on Parallel and Distributed Information Systems, Miami Beach, Florida, 1991.

[49] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. Relaxing serializability in multi-

database systems. Second International Workshop on Research Issues on Data Engineering:

Transaction and Query Processing, Mission Palms, Arizona, 1992.

[50] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. A transaction model for multi-

database systems. Twelfth International Conference on Distributed Computing Systems, Yoko-

hama, Japan, 1992.

[51] W. Perrizo, J. Rajkumar, and P. Ram. Hydro: A heterogeneous distributed database sys-

tem. Proceedings of ACM-SIGMOD 1991 International Conference on Management of Data,

Denver, Colorado, pp. 32{39, May 1991.

[52] C. Pu, A. Le�. Replica Control in Distributed Systems: An Asynchronous Approach. Proceed-

ings of ACM-SIGMOD International Conference on Management of Data, Denver, Colorado,

pp. 377-386, May 1991.

[53] C. Pu. Superdatabases for composition of heterogeneous databases. Proceedings of the Fourth

International Conference on Data Engineering, Los Angeles, 1988.

[54] Y. Raz. The Principle of Commit Ordering or Guaranteeing Serializability in a Heterogeneous

Environment of Multiple Autonomous Resource Managers. Technical Report, Digital Equip-

ment Corporation, 1991.

[55] A. Reuter, Contracts: A Means for Extending Control Beyond Transaction Boundaries, Pre-

sentation at Third International Workshop on High Performance Transaction Systems, Paci�c

Grove (Asilomar), California, September 1989.

[56] K. Salem, H. Garcia-Molina, and R. Alonso. Altruistic locking: A strategy for coping with

long lived transactions. In Lecture Notes in Computer Sciences, High performance Transaction

Systems, D. Gawlick, M. Haynie, and A. Reuter, editors, Volume 359, pp. 175{199. Springer-

Verlag, 1989.

[57] N. R. Soparkar, H. F. Korth, and A. Silberschatz. Failure-resilient transaction management in

multidatabases. IEEE Computer, December 1991.

40

[29] V. Gligor and R. Popescu-Zeletin. Transaction management in distributed heterogeneous

database management systems. Information Systems, pp. 287{297, 1986.

[30] J. N. Gray. Notes on database operating systems. Lecture Notes in Computer Science, Oper-

ating Systems: An Advanced Course, volume 60, pp. 393{481. Springer-Verlag, Berlin, 1978.

[31] J. N. Gray. An Approach to Decentralized Computer Systems, IEEE Transactions on Software

Engineering, vol 12, 6, 1986.

[32] D. Georgakopolous, M. Rusinkiewicz, and A. Sheth. On serializability of multidatabase trans-

actions through forced local con
icts. Proceedings of the Seventh International Conference on

Data Engineering, Kobe, Japan, 1991.

[33] M. Hsu and A. Silberschatz. Unilateral commit: a new paradigm for reliable distributed trans-

action management. Proceedings of the Seventh International Conference on Data Engineering,

Kobe, Japan, pp. 286{293, April 1991.

[34] D. Johnson, W. Zwaenepoel, Recovery in Distributed Systems Using Optimistic Message Log-

ging and Checkpointing, Journal of Algorithms, Vol. 11, No. 3, September 1990, pp. 462-491.

[35] H. F. Korth, W. Kim, and F. Bancilhon. On long duration CAD transactions. Information

Sciences, 46:73{107, October 1988.

[36] J. Klein, Advanced Rule Driven Transaction Management, IEEE COMPCON, San Francisco,

1991, pp. 562-567.

[37] H. F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by compensating

transactions. Proceedings of the Sixteenth International Conference on Very Large Databases,

Brisbane, pp. 95{106, August 1990.

[38] H. Kung and J. Robinson. On optimistic methods for concurrency control. ACM Transactions

on Database Systems, June 1981.

[39] H. F. Korth and G. Speegle. Formal model of correctness without serializability. Proceedings of

ACM-SIGMOD 1988 International Conference on Management of Data, Chicago, pp. 379{388,

June 1988.

[40] R. Koo and S. Tueg, Checkpointing and Rollback-Recovery for Distributed Systems, IEEE

Transactions on Software Engineering, Vol. SE-13, No. 1, January 1987, pp. 23-31.

[41] E. Levy, H. F. Korth, and A. Silberschatz. An optimistic commit protocol for distributed

transaction management. Proceedings of ACM-SIGMOD 1991 International Conference on

Management of Data, Denver, Colorado, pp. 88{97, May 1991.

[42] E. Levy, H. F. Korth, and A. Silberschatz. A theory of relaxed atomicity. Proceedings of the

ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August 1991.

[43] N. Lynch. Multi-level atomicity. ACM Transactions on Database Systems, 8(4):484{502, De-

cember 1983.

[44] P. Muth and T. C. Rakow. Atomic commitment for integrated database systems. Proceedings

of the Seventh International Conference on Data Engineering, Kobe, Japan, April 1991.

39

[14] M. Carey, M. Livny. Parallelism and Concurrency Control Performance in Distributed

Database Machines, Proceedings of ACM-SIGMOD 1989 International Conference on Man-

agement of Data, Portland, Oregon, pp. 122 - 133, 1989.

[15] Andrew Citron. LU 6.2 Directions. Proceedings of the International Workshop on High Per-

formance Transaction Systems, Asilomar, CA, September 1991.

[16] W. Du, A. K. Elmagarmid, W. Kim. Maintaining Quasi Serializability in Multidatabase Sys-

tems. Proceedings of the Seventh International Conference on Data Engineering, pp. 360-367,

1991.

[17] W. Du and A. K. Elmagarmid. Quasi serializability: a correctness criterion for global con-

currency control in InterBase. Proceedings of the Fifteenth International Conference on Very

Large Databases, Amsterdam, pp. 347{355, 1989.

[18] K. Eswaran, J. Gray, R. Lorie, I. Traiger. The Notion of Consistency and Predicate Locks in

a Database System. Communications of the ACM, 19:11, 1976.

[19] A. A. Farrag and M. T. Ozsu. Using semantic knowledge of transactions to increase concur-

rency. ACM Transactions on Database Systems, 14(4):503{525, December 1989.

[20] J. N. Gray, M. Anderton, Distributed Computer Systems: Four Case Studies, Proceedings of

the IEEE, vol. 75, 5, 1987.

[21] D. K. Gi�ord and J. E. Donahue, \Coordinating Independent Atomic Actions," Proceedings

IEEE COMPCON, San Francisco, February 1985.

[22] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, K. Salem Coordinating Multi-

Transaction Activities, Technical Report CS-TR-247-90, Department of Computer Science,

Princeton University, 1990

[23] H. Garcia-Molina and B. Kogan, Achieving High Availability in Distributed Databases, IEEE

Transactions on Software Engineering, Vol. 14, No. 7, July 1988, pp. 886-896.

[24] H. Garcia-Molina, K. Salem, D. Gawlick, J. Klein, K. Kleissner, Modeling Long-Running

Activities as Nested Sagas, Database Engineering, Vol. 14, No. 1, March, 1991.

[25] H. Garcia-Molina. Global Consistency Constraints Considered Harmful for Heterogeneous

Database Systems (Position Paper) Proceedings of the First International Workshop on Re-

search Issues on Data Engineering. Kyoto, 1991.

[26] H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed

database. ACM Transactions on Database Systems, 8(2):186{213, June 1983.

[27] H. Garcia-Molina and K. Salem. Sagas. Proceedings of ACM-SIGMOD 1987 International

Conference on Management of Data, San Francisco, pp. 249{259, 1987.

[28] V. Gligor, R. Popescu-Zeletin, \Concurrency Control Issues in Distributed Heterogeneous

Database Management Systems." Distributed Data Sharing Systems. Eds. F. Schreiber and

W. Litwin. North-Holland, 1985, 43-56.

38

ACKNOWLEDGMENTS

The authors are deeply grateful to Sharad Mehrotra for numerous inspiring discussions during the

preparation of this paper, and for his help in the actual writing of the paper. The authors are

also deeply grateful to Gerhard Weikum, and Hans-J. Schek for inspiring discussions that helped

to organize the ideas presented here.

References

[1] R. Agrawal, M. Carey, and L. McVoy. The performance alternative strategies for dealing with

deadlocks in database management systems. IEEE Transactions on Software Engineering, SE-

12, 1987.

[2] R. Alonso, H. Garcia-Molina, and K. Salem. Concurrency control and recovery for global

procedures in federated database systems. Data Engineering, 10(3):5{11, September 1987.

[3] C. Beeri, P. A. Bernstein, N. Goodman, A model for Concurrency in Nested Transaction

Systems, Journal of the ACM, 36, 2, 1989

[4] C. Beeri, H.-J. Schek, G. Weikum, Multilevel Transaction Management: Theoretical Art or

Practical Need, Proceedings 1st International Conference on Extending Database Technology,

Springer-Verlag Lecture Notes in Computer Science, 303, 1988.

[5] D. Barbara, H. Garcia-Molina, The Demarcation Protocol: A Technique for Maintaining Lin-

ear Arithmetic Constraints in Distributed Database Systems, Extending Database Technology

Conference, Vienna, 1992.

[6] Y. Breitbart, D. Georgakopolous, M. Rusinkiewicz, and A. Silberschatz. On rigorous transac-

tion scheduling. IEEE Transactions on Software Engineering 17:9, 1991.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, MA, 1987.

[8] Y. Breitbart, W. Litwin, A. Silberschatz. Deadlock Problems in a Multidatabase Environment.

Digest of Papers COMPCON, Spring 91. San Francisco, CA, pp. 145-151, February 1991.

[9] Y. Breitbart and A. Silberschatz. Multidatabase update issues. Proceedings of ACM-SIGMOD

1988 International Conference on Management of Data, Chicago, pp. 135{141, 1988.

[10] Y. Breitbart, A. Silberschatz, and G. R. Thompson. Reliable transaction management in a

multidatabase system. Proceedings of ACM-SIGMOD 1990 International Conference on Man-

agement of Data, Atlantic City, New Jersey, pp. 215{224, 1990.

[11] Y. Breitbart, A. Silberschatz, and G. R. Thompson. Transaction management in a failure-prone

multidatabase environment. VLDB Journal, 1(1), 1992. forthcoming.

[12] Y. Breitbart and A. Silberschatz. Complexity of Global Transaction Management in Multi-

database Systems Technical Report 198-91 University of Kentucky, November 1991,

[13] Y. Breitbart and A. Silberschatz. Strong Recoverability in Multidatabase Systems. Proceedings

of the Second International Workshop on RIDE/TQP. Phoenix, AZ, pp. 170-176, 1992

37

residing in heterogeneous computing environments, distributed over various DBMSs. Since user

organizations in a multidatabase system are autonomous and may have substantial capital invested

in the DBMS, it is unreasonable to assume that they will be willing to make modi�cations or lose

control over their DBMSs. Therefore, it is imperative to develop methods that do not require major

modi�cations to existing DBMS software but are able to support users data in a consistent and

reliable manner.

It would be much easier to develop future multidatabase systems if operating systems, com-

munication interfaces, and database systems were standardized. Although it is utopian to believe

that comprehensive standards will be developed and enforced, it is nevertheless important to strive

for good standards. For example, if TCP/IP, SQL, strict two-phase locking and two-phase commit

protocols would be accepted by all vendors, the multidatabase transaction management problem

would become much more manageable. We believe that research results in multidatabase systems

will provide meaningful input to the standardization e�ort currently under way.

Multidatabase transaction management research is still at a very early stage and considerably

more work needs to be done. In closing, we brie
y outline some of major needs we see.

There is a need to study the \low end" of our box spectrum (Section 1). There are many

applications where one must deal both with transaction processing boxes and with boxes that do

not have a notion of transaction. For example, in a cooperative work environment, some of the data

may be stored in a conventional database system, but other may be in �le systems, CAD systems,

information retrieval systems, etc. How does one work in this environment, without reverting to

the lowest common denominator, i.e., without losing transactional capabilities altogether?

There is also a need to understand the performance implications of multidatabase transaction

management. Most research to date has focused on how to run transactions in a heterogeneous

environment, but we also need to evaluate the cost of transaction processing. For instance, how

much more expensive will it be to run transactions when each box runs a di�erent concurrency

control protocol? In this paper we assumed that the GTM cannot take an advantage of knowledge

about mixed types of local DBMSs. For example, if one of the DBMSs is rigorous and another

one is strongly serializable, then the GTM assumes that each local DBMS is strongly serializable;

the knowledge that one of the DBMS is more restrictive (and, therefore, the GTM could be more

permissive) is not used. Availability of such knowledge could possibly increase the concurrency

level of global transactions and improve transaction throughput.

Full data consistency and serializability can only be achieved in a multidatabase system by

imposing restrictions that many consider severe. Thus, there is a need to identify alternative forms

of consistency and ways of restricting \standard" notions of consistency so that positive results

can be stated rather than impossibility results. The notions discussed in Section 5 are a start, but

other options for correctness include:

1. partitioned notions of consistency | ranging from consistency of a single entity up to database

consistency.

2. temporal consistency | for example, the database is consistent each morning at 8am; no

promises (or weaker promises) made at other times.

3. degrees of semantic (in)consistency, de�ned by application-speci�c predicates.

4. update-based consistency | assume the database is consistent (even if it is not) and apply

restrictions to the types of updates that are allowed

36

global transactions. The 2PC sites can be sent the prepare message in the �rst round along with

all other servers. Further, a commit decision can be communicated to the 2PC servers along with

the commit message to the rd-servers and the rt-servers, after the successful commitment of the

pivot subtransaction. Note that it is possible that transactions may not contain subtransactions of

one (or more) classes. For example, a given transaction may not have any pivot. It is interesting

to note, that if the global subtransaction only consists of compensatable subtransactions, then the

above protocol reduces to the O2PC protocol discussed in the compensation section. Similarly, if

there are only redo (retriable) subtransactions, then the protocol reduces to the one developed in

the redo (retriable) section. Also, if for example each local DBMS supports a prepare-to-commit

operation, then the above protocol degenerates to the 2PC protocol.

7 Global Deadlocks

It has been argued [1] that the timeout strategy for dealing with deadlocks performs poorly in a

centralized database, as compared to other mechanisms for deadlock detection. However, in a dis-

tributed, heterogeneous system it may be attractive because of its simplicity and the independence

it gives.

Deadlock detection may also be an option. If sites export wait-for-graph information (see Section

1), then the GTM could run conventional tests to detect cycles in the wait-for-graph. However,

autonomous sites may not export this information.

In these cases, it is necessary to devise a strategy for approximating the union of the local

wait-for-graphs. The basic idea is that if the GTM has submitted an action of global transaction T

i

to a local site s

k

, and the GTM has not received a reply, then T

i

could be involved in a wait at s

k

.

If another global transaction T

j

has executed actions at s

k

and has not yet committed everywhere,

then T

i

could be waiting, directly or indirectly, for T

j

. In this fashion the GTM can construct an

approximate wait-for-graph: if T

i

! T

j

then T

i

could be waiting for T

j

. If a deadlock exists, then

there will be a cycle in the approximate wait-for-graph. Clearly, the converse is not true; a cycle

in the approximate wait-for-graph that is not a real deadlock is called a false deadlock. To reduce

the likelihood of false deadlocks, the arc T

i

! T

j

may be added to the approximate wait-for graph

only after T

i

has been blocked for some threshold amount of time. These ideas are used by the

deadlock detection schemes of [8] and [60].

Very little work has been done to determine the performance of deadlock detection or prevention

schemes. In particular, it will be important to evaluate the number of false deadlocks that are bro-

ken, and to compare detection schemes to simple timeout ones. It is also important to keep in mind

that some of the options we have reviewed are deadlock free, mainly the optimistic global controls

and strategies where there is no global concurrency control. If timeouts or deadlock detection are

not e�ective, then the deadlock free approaches may be more attractive for a heterogeneous system.

8 Conclusions

Multidatabases are one of the very active database research areas. The 1990 National Science

Foundation (USA) Workshop on Future Directions in DBMS Research [59] named the area of

multidatabase as one of the two most important research areas for the 90's. In addition, the NSF

has sponsored a series of Workshops on Heterogeneous Databases (1989, 1990, 1992). We believe

that multidatabase transaction management is of crucial importance if one is to design an e�ective

multidatabase system.

Our work is motivated by a major problem that exists in the contemporary industrial data

processing environment|how to manage and guarantee consistency of semantically related data

35

2. Retriable. Each subtransaction in this class is retriable; that is, if executed from any

database state (as long as the database state is consistent) it is guaranteed to commit.

3. Redoable. All the other subtransactions that are neither compensatable, nor retriable.

We assume that the GTM has a priori knowledge of which class a particular subtransaction belongs

to. For example, this information may be provided by the user. Further, we assume that for

each compensatable subtransaction, the user provides a compensating transaction that can be

used to undo the e�ects of the subtransaction. If the user does not specify the type of a certain

subtransaction, it is assumed to be a redoable subtransaction by default.

If the global transactions are as speci�ed above, then the GTM can use each of the redo,

retry and compensate approach in conjunction. For example, to do so it may follow the global

commit protocol below. For the description of the protocol, we refer to a a server on which

a compensatable subtransaction executes as a c-server. Similarly, a server on which a redoable

(retriable) subtransaction executes is referred to as a rd-server (rt-server). Further, we distinguish

one of the subtransactions and refer to it as a pivot (the pivot subtransaction may be either

compensatable, or redoable, or retriable, or neither). The server on which the pivot executes is

referred to as the p-server.

Consider the following commit protocol that the GTM may use. On the completion of the

execution of all the operations of a transaction, the GTM sends a prepare message to each of

the servers on the sites at which the transaction executed. On receipt of a prepare message each

rt-server and each rd-server forces the log record it needs to maintain onto stable storage. On

the other hand, a c-server on receipt of a prepare message, submits the commit operation for the

subtransaction to the local DBMS. On receipt of a commit acknowledgment from each of the c-

servers and an acknowledgment for the prepare message from other cohorts, the GTM submits

a commit to the p-server. If the pivot is successfully committed, then the transaction will be

committed. Note that aborting a transaction may imply that a compensating transaction needs

to be scheduled at the sites on which compensatable subtransactions have successfully committed.

On receipt of the commit acknowledgment from the p-server, the GTM submits a commit to the

remaining servers. If in case a subtransaction is aborted after the pivot has committed (note that

the subtransaction must be either a retriable subtransaction or a redoable one), it is either retried

or a redo transaction is executed for it depending upon its type.

The above protocol combines each of the scheme that we have discussed for ensuring atomicity

of global transactions. Obviously, we assume that each redo subtransaction (except for the pivot)

is appropriately restricted and m-serializability of the local schedules is ensured. Similarly, we

assume that no other subtransaction of the global transaction depends upon the values of data

items read by each retriable subtransaction. The only problem is with regard to the compensat-

able subtransactions. Recall that for the compensation approach to work, we required that either

there be no data dependencies between subtransactions of all (not only the transaction in ques-

tion) global transactions that execute at a site on which a subtransaction is to be compensated,

or we must prevent any other global transaction from seeing the intermediate state before the

compensating transaction is committed. Note that requiring that there be no data dependencies

between subtransactions of a global transaction may be unnecessarily restrictive. We, therefore,

advocate taking the other approach and ensuring that no global transaction is serialized between

a subtransaction and its compensating transaction.

It must be noted that it is also possible to further generalize the above protocol and exploit

the availability of prepare-to-commit state (if certain sites support such a state) for committing

34

In the multilevel transaction model each global transaction can be considered as a two level

transaction where each local subtransaction is a high level operation that the global transaction

applies at a local site. Each local subtransaction consists, in turn, of local read/write operations

that the global subtransaction is using to perform a high level global subtransaction operation.

Consider, for example, a global transaction that transfers money from account a located at site s

1

to account b located at site s

2

. In this case withdrawal money from account a can be considered

as one operation that, in turn, consist of reading and writing operation at site s

1

.

Local transactions, on the other hand, are considered as one level transactions (i.e. transactions

as it is de�ned in our model here). A concurrent execution of local and global subtransactions at

local sites de�ned as correct if it satis�es a notion of correct execution of multilevel transactions

as it is de�ned in [64]. In such context the reasoning about global serializability and atomicity can

be recast into a multilevel transaction model. Such model lets one exploit the semantics of global

subtransactions and consequently to relax requirements of global serializability without sacri�cing

global consistency. Initial work in this direction has been done in [61] but the research in this

direction is in its initial stage.

In the multilevel transaction model, a compensation is used to semantically undo results of

global subtransactions. Compensation achieves semantic atomicity in the following sense. Assume

that f

�1

is the compensating operation of the global subtransaction f . Now consider the execution

sequence f followed by f

�1

such that no other operation (neither another global subtransaction

nor any read/write operation of any global and/or local transaction) is executed between f and

f

�1

. Then we require that no subsequent invocation of a subtransaction g could ever detect that

both f and f

�1

were actually executed. That is, g has the same return values, regardless of

whether f was actually compensated or neither f nor f

�1

ever occurred. This condition is stronger

than the one we imposed earlier. On the other hand, it permits to use a powerful apparatus of

multilevel transaction model for reasoning about global transactions consistency and atomicity.

In conclusion of this subsection we conjecture that the compensation conditions of the multilevel

transaction model can be replaced by the isolation of recovery condition as we have discussed in

our transaction model.

6.5 Combination of the Di�erent Approaches

We have so far described the various approaches that have been studied in the literature for ensuring

atomicity of global transactions in a multidatabase system. Each of the approaches has its own

merits and demerits. For example, while the redo technique seems attractive since it does not

depend upon the semantics of the transactions, its applicability is limited due to the restrictions

that need to be imposed upon the data items accessed by global transactions. On the other hand,

though the retry and the compensate approaches do not introduce access restrictions, they rely on

the semantics of the applications. Further, since not every transaction is retriable or compensatable,

their applicability is also limited.

One interesting characteristic that the discussed techniques have is that they are complementary

and can thus be supported together in a single system. This enables us to develop a single general

solution for ensuring global transaction atomicity such that the system can exploit the good features

of each of the developed schemes. To see how the various schemes can be combined and used

together we will �rst need to enhance our global transaction model. A global transaction consists

of a set of subtransactions, each of which each is associated with one of the following types:

1. Compensatable. A subtransaction is compensatable, if it is possible to undo the e�ects of

the subtransaction by executing a compensating transaction.

33

transaction CT

1

1

will reestablish the consistency constraint violated due to the partial commitment

of a global transaction, it will not prevent other global transactions that execute at sites s

1

and

s

2

before CT

1

1

executes from seeing inconsistent data. Since we require that each transaction sees

consistent data, such executions must be prevented. There are two ways in which this can be done.

1. Disallow global inter-site integrity constraints. Note that if no such constraints are allowed

in the system, then the above problem will not arise.

2. Prevent any transaction from seeing the e�ects of both the failed (or compensated-for) and

successful subtransactions of the same global transaction. Actually, to prevent such execu-

tions, a property of schedules, referred to as isolation of recovery (IR) developed in [42], needs

to be ensured. Note that if we disallowed global transactions from being serialized in between

a subtransaction and its compensating transaction, then the IR property is trivially ensured.

In either of the above cases, ensuring the semantic atomicity of transactions ensures that the

e�ects of the partially committed global transactions have been semantically undone. However,

as with the redo and retry approaches, in order to preserve database consistency, besides ensuring

semantic atomicity and isolation of recovery (in case there are global inter-site constraints) there

is further a need to ensure one of the correctness criteria developed in Section 4 and 5. In [41], a

scheme based upon marking sites that ensures isolation of recovery as well as global serializability

is developed under an assumption that each local DBMS follows a strict 2PL protocol.

In [50], another protocol that ensures global serializability and isolation of recovery based upon

the site graph approach is developed. In order to ensure that the global schedules satisfy the IR

property, compensating transactions for the committed subtransactions of the same global trans-

actions are considered as a single global transaction.

Compensation as a technique of recovery was initially introduced in [30]. Schemes based upon

compensation were developed in [26, 27, 37] among others. In [27], it is suggested that semantic

atomicity can also be useful for dealing with long lived transactions, even in a centralized database

system. The long transaction is broken up into subtransactions that commit and release their

resources when completed. Long duration transactions are used for many scienti�c and engineering

applications [35]. It is also shown that the log and state information needed for compensation can

be stored within the same application database. The notion of sagas is extended in [24] to nested

sagas, where a subtransaction may be further decomposed into steps that are compensatable. Other

ideas for using semantic atomicity for coping with long lived activities are discussed in [21], [55].

One issue that we have not addressed in this section is that of the design of compensating

transaction. Note that some subtransaction may not have simple compensations. For example,

say a subtransaction deposits funds in an account. By the time we wish to compensate, the funds

may have been withdrawn by another transaction. So a compensation may involve charging the

customer a penalty or sending a message to the legal department. Further certain transactions may

not be compensatable, e.g., �ring of a missile. The design of compensating transactions has been

discussed in the literature, e.g., [26, 30, 37].

Compensation mechanisms are closely related to ones that provide multilevel serializability

for multilevel transactions [3, 4, 66, 64]. That is, we can view each local database as a complex

\object." High level operations can be issued on these objects; they correspond to what we have

called subtransactions at a site. High level operations consist of low level \actions" on the internals

of the object. A concurrency control mechanism internal to the object ensures that high level

operations are atomic. A higher level concurrency control mechanism ensures that operations are

interleaved properly.

32

to execute at other sites (besides s

1

) to change back the value of full to false. This is, however,

not very practical since, in general, the compensating transaction for a subtransaction that has

committed at one site needs to execute at all the sites. Therefore, we would like to restrict the

compensating activity to only the site at which the subtransaction committed. There are at least

two ways of achieving this:

1. Prevent any other global transaction from seeing a state written by the subtransaction before

its compensating transaction has executed; that is, in our example, we need to ensure that

no other global transaction is serialized between T

1

i

and CT

1

i

.

2. Restrict global transactions to have no data dependencies between their subtransactions.

If a global transaction does not have data dependencies, then its execution at one site is

independent of its execution at the other site. In this case, the e�ects of the committed

subtransaction that is to be compensated will not be externalized to other sites and thus

compensation can be restricted to the sites at which the transaction committed.

In the remainder of the section, we will assume that either of the above conditions hold and thus

compensating transaction for a global subtransaction is restricted to only the site at which the

subtransaction executed. As stated above, executing compensating transactions do not result in

the standard atomicity of transactions. The resulting notion of atomicity is referred to as semantic

atomicity.

De�nition 6.2 [26]: Let T

i

be a global transaction. Let CT

i

be a collection of local com-

pensating subtransactions CT

1

i

, : : :, CT

k

i

, one for each site where T

i

executes. We say that T

i

is

semantically atomic if and only if either T

i

is committed at all sites where it executes, or CT

j

i

's are

committed at all sites where T

i

has committed. 2

Since for many the term \transaction" implies full atomicity, the term saga [27] has been used to

refer to a collection of semantically atomic subtransactions. To ensure semantic atomicity, the GTM

must keep a log or record of T

i

subtransactions that have been committed. In [41] an optimistic

two phase commit (O2PC) protocol is introduced to guarantee semantic atomicity. The protocol

works as follows.

When a transaction completes, the GTM sends \prepare" messages to the servers at each

site, as it is done in the 2PC protocol. However, unlike the 2PC protocol, upon receiving the

\prepare" message, the servers optimistically try to commit their subtransactions at that point.

The result is reported to the GTM. If all subtransactions committed, then the transaction is declared

committed. If not, the transaction is declared aborted, and compensating transactions are run for

all the subtransactions that did commit. In the common case where subtransactions are successful,

the O2PC lets sites commit sooner than in the 2PC protocol, leading to improved performance.

The O2PC protocol was also developed independently in [44]. Processing distributed transactions

without an atomic global commit protocol is also studied in [33]. It must be noted that these

commit protocols do not require each local DBMS to support a prepared state for commitment of

multi-site transactions and are thus attractive for MDBS environments.

We have so far ignored the fact that a transaction that is committed at some sites and aborted at

others may violate database consistency. Consider a global transaction T

1

consisting of subtransac-

tions T

1

1

and T

2

1

executing at sites s

1

and s

2

respectively, where T

1

1

is committed and T

2

1

is aborted.

It is possible that such a partially committed global transaction may violate inter-site integrity

constraints between sites s

1

and s

2

. Thus, a compensating transaction CT

1

1

besides performing an

inverse of the function performed by T

1

1

, must also ensure that after it commits the global con-

straints between sites s

1

and s

2

hold. Note that even though the execution of the compensating

31

the transaction executed to retry the aborted subtransactions as one of the subtransactions of the

original global transactions. We conjecture that ensuring 2LSR is going to be relatively simple.

If we were to use the retry technique and ensure global serializability, then as in the case of redo

approach, due to the presence of failures, there may be indirect con
icts between global transac-

tions through the local transactions. Thus, we will need to use one of the techniques discussed

in Section 4 (that is, the site graph approach, site locking technique etc.) to prevent cycles from

forming through such con
icts.

Thus, in general, the retry technique can be used for ensuring atomicity of transactions under

the restrictions that subtransactions do not have data dependencies and that each subtransaction

is retriable. The above scheme for ensuring atomicity was �rst mentioned in [44]. It is clear

that due to restrictions that need to be imposed upon the transactions, the retry approach by

itself is of limited applicability. However, as we will see later since it is possible to use each of

the approaches discussed in conjunction, it may provide us with a powerful model. In any case,

whenever transactions satisfy the required restrictions, the system should be capable o� exploiting

the retry approach.

6.4 Compensate Approach

Consider again the situation in the previous subsection in which a transaction T

i

is committed at

site s

1

and aborted at s

2

. In contrast to the retry approach, another alternative is to compensate

for the committed subtransaction T

2

i

. This may be done by executing a compensating transaction

CT

1

1

at site s

1

, that undoes, from a semantic point of view, what T

1

1

did. For instance, if T

1

1

had reserved a seat for a given
ight, CT

1

1

would cancel that reservation. Since the e�ects of the

transaction have been externalized to other local transactions, the resulting state may not be the

same as if T

1

1

had never executed but will be semantically equivalent to it.

To see this, consider for example, that transaction T

1

1

had reserved the last available seat for

the
ight. In that case, another transaction, say T

2

, that tries to reserve a seat will be refused a

reservation since the
ight is already full. Had T

1

1

not executed T

2

would have been able to procure

the reservation. Thus, the state that results after the execution of CT

1

1

di�ers from the state that

would have resulted had T

1

1

not executed at all. This, as in the current
ight reservation systems,

is nevertheless quite acceptable.

We stress that compensating transaction for a committed global subtransaction is by itself a

regular transaction and, thus, it must preserve database consistency. For this purpose, it may not

only consist of an inverse function of the original subtransaction but may also consist of certain

other actions. In our example, for instance, transaction T

1

1

that reserved the last available seat,

could have triggered another transaction T

3

, that changed the value of a variable full to true

(re
ecting that the
ight is fully reserved). If there is an integrity constraint in the system that

states that if the value of the variable full is true, then there are no available seats in the
ight. If

the compensating transaction for the reservation transaction T

1

1

were to only cancel the reservation,

then the consistency of the database will be violated. Therefore, the compensating transaction C

1

1

must also revert the value of full back to false.

Note that in the above example to compensate for the reservation subtransaction T

1

1

, the com-

pensating transaction only executed at the site where T

1

1

had executed; that is, at s

1

. The reason

for this was that the e�ects of the subtransaction T

1

1

were restricted to only the site s

1

. If, however,

the e�ects of T

1

1

had also spread to other sites, then we may need to compensate for T

1

1

at those

sites as well. To see this, consider that the variable full in our example is replicated over numerous

sites. In that case, the compensating transaction CT

1

1

for the subtransaction T

1

1

will also need

30

prevent cycles through indirect con
icts that may be caused due to the presence of failures. Thus, to

make the scheme failure-resilient we only need to ensure that the local schedules are m-serializable.

On the other hand, making schemes that detect such cycles failure-resilient may turn out to be

more di�cult since simply augmenting the scheme with mechanisms to ensure m-serializability may

not guarantee global serializability.

The results we discussed so far indicate some weaknesses of the redo approach, namely, some

restrictions needs to be imposed on data access by local and global transactions, which may not

be suitable for certain applications. It appears that these restrictions are unavoidable, if execution

autonomy of the local DBMSs is to be preserved. One way, however, of removing these restrictions

is to exploit the semantics of the transactions for the purpose of recovery. We discuss this issue in

the following subsections.

6.3 Retry Approach

Consider global transaction T

i

that executes at two sites s

1

and s

2

. On the completion of the

transaction's operations, the GTM sends a \prepare" message to each server at sites where the

transaction was executing. The server, on receipt of the prepare message sends the commit opera-

tion for T

i

to the local DBMS. It is possible that T

i

commits at s

1

and aborts at s

2

.

Thus, the atomicity of T

i

has been violated and because global transactions may read and write

local data, the redo approach of Section 6.2 cannot be used. There are two options in this case:

retry and compensate. In this section we consider the retry option and in the next section we

consider the compensate one.

To ensure atomicity of T

i

, one option that the GTM has is to resubmit the failed subtransaction,

T

2

i

, at s

2

as a new subtransaction T

3

i

. This is not a matter of simply reproducing the writes of T

2

i

;

T

3

i

needs to be run, reading and writing possibly di�erent values. This can only be done if the GTM

saved the execution state of T

i

(e.g., local variables in the program that executes T

i

) that were used

by T

2

i

. It is also important that the original values read by T

2

i

were not communicated to other T

i

subtransaction, since those reads are now invalid. In other words, there are no data dependencies

between T

2

i

and any other subtransaction of T

i

. Techniques such as [40, 34] can be used for

checkpointing transaction programs and tracking data dependencies among subtransactions.

Further, it must be the case that subtransaction T

2

i

is retriable [50]; that is, if T

2

i

is retried a

su�cient number of times (from any database state) it will eventually commit. This is important

since before the subtransaction is retried the state of the local DBMS may be changed due to the

execution of other local transactions. This should not result in the situation that the subtransaction

cannot be committed. It must be noted that not every transaction satis�es this property. Consider,

for example, a subtransaction that is to debit money from a bank account. Such a transaction, if

retried, depending upon the balance in the account, may not successfully complete. On the other

hand, if a subtransaction is to credit money into a bank account, then we can safely assume that

if it is retried a su�cient number of times it will eventually successfully complete.

The technique discussed above describes how the retry approach can be used to ensure the

atomicity of global transactions. In presence of multiple global transactions, in order to ensure

database consistency, we will need to augment the retry technique with concurrency control mech-

anisms as discussed in Section 4 and 5. If the correctness criteria being ensured is LSR, then since

after the transaction being retried has successfully committed, each local schedule is serializable,

no concurrency mechanism is required by the GTM. On the other hand if we were to ensure 2LSR,

then we will need to use one of the protocols to ensure that the projection of the schedules over

the operations belonging to global transactions is serializable. Note that the GTM must consider

29

not ensure global serializability in the presence of failures as it is demonstrated by the following

example.

Example 6.1: Consider a multidatabase system located at two sites: s

1

with global data items

x and y, and s

2

with global data items u and v. Let T

1

and T

2

be global transactions and T

3

and

T

4

be local transactions that execute at sites s

1

and s

2

.

T

1

: w

1

(x) w

1

(u)

T

2

: w

2

(y) w

2

(v)

T

3

: r

3

(x) r

3

(y)

T

4

: r

4

(u) r

4

(v)

Suppose that the GTM decides to commit both T

1

and T

2

, but the local DBMS at s

1

aborts T

1

.

Thus, the following redo transaction T

5

is executed to redo the updates of T

1

:

T

5

: w

5

(x)

The above execution results in the following local schedules S

1

and S

2

at sites s

1

and s

2

respectively.

S

1

: w

1

(x) a

1

w

2

(y) c

2

r

3

(x) r

3

(y) c

3

w

5

(x) c

5

S

2

: w

1

(u) c

1

r

4

(u) r

4

(v) c

4

w

2

(v) c

2

Note that the above schedule is not globally serializable even though local schedules are m-

serializable. 2

The problem with the above situation is that it is possible that two global transactions that were

not con
icting may indirectly con
ict through local transactions due to the presence of failures.

So one option of ensuring global serializability is to disallow reads of global data items by local

transactions and writes of local data items by global transactions (while still disallowing reads

of local data items by global transactions); as mentioned in section 5.2, this guarantees globally

serializable schedules.

Another option of ensuring global serializability is to use some mechanism for preventing cycles

in the global serialization graph through indirect con
icts between global transactions. Note that

as discussed in Section 4, executing global transactions serially, or using one of the site locking,

altruistic locking or the commit graph approach can be used for this purpose. The scheme developed

in [10, 11] uses the commit graph approach to prevent cycles through indirect con
icts. Further,

it is assumed there that local DBMSs follow the strict 2PL protocol (and thus produce rigorous

schedules) and rigorousness of GS is ensured (by maintaining global locks and following the strict

2PL locking scheme on global locks) to ensure m-serializability of the local schedules.

Wolski and Veilainen also propose a related solution [67]. It is called the 2PC agent method,

and it assumes that the participating local DBMSs produce only strict schedules. Their method,

however, requires that global transactions cannot have indirect con
icts at local sites, which is

equivalent to saying local transactions do not read global data. In subsequent work [63], the

authors extend their method to multidatabase systems with only rigorous local DBMSs.

Note that if the local DBMSs do not ensure rigorousness of schedules, then since global trans-

actions may con
ict indirectly through local transactions, the mechanism for ensuring global se-

rializability in the absence of failures will itself either prevent cycles through indirect con
icts or

will detect such cycles. In case the scheme prevents such cycles (as is the case for the site graph

approach, altruistic locking and the site lock approach) we conjecture that making the scheme

failure-resilient will be relatively simple. The reason for our conjecture is that the scheme that

prevents cycles through indirect con
icts in the absence of failures can be easily modi�ed to also

28

Global transactions that read local data items at site s

k

do not write any local data items

at s

k

that can be accessed by local transactions at s

k

.

If the global transactions are restricted as above, then the non m-serializable schedule S

1

of Example

3.2 will not occur. To see this, note that in Example 3.2, since the local transaction T

2

wrote data

item a, it must be the case that a is a local data item. Since the global transaction both read

and wrote data item a, it violated the above restriction, thus resulting in a non m-serializable

execution. Unfortunately, even if the global transactions are restricted as above, m-serializability

may not be ensured. In [46], it is shown that to ensure m-serializability, the local schedules besides

being cascadeless must further be strongly recoverable, and that the GTM must ensure that the

projection of the schedule over the global transactions' operations is rigorous.

In [46], it is further shown that the requirement of local schedules to be strongly recoverable

and cascadeless, and of the projection of the schedule to global transactions to be rigorous can be

relaxed, if we further restrict the data items accessed by global transactions as follows:

Global transactions that read local data items at site s

k

do not update any data item at

s

k

.

We have discussed so far how, in the presence of failures, to ensure m-serializability if we were

to use the redo technique to ensure the atomicity of global transactions. To ensure consistency,

however, there is a need to further guarantee that one of the correctness criteria discussed in

Section 4 and 5 is met. We would expect that if we were to augment our mechanism for ensuring

the correctness criteria (that is, global serializability, LSR, 2LSR, etc.) in the absence of failures

with techniques for ensuring m-serializability of local schedules, then it would su�ce to achieve

a solution for ensuring that global schedules satisfy the correctness criterion even in presence of

failures.

This is in fact true if we were to choose either of LSR or 2LSR as our correctness criterion.

Note that a global schedule is LSR if each of the local schedules are serializable. Thus, ensuring

m-serializability of the local schedules su�ces to ensure LSR of the global schedule in the face

of failures. If we were to ensure the 2LSR correctness criterion of global schedules, then besides

ensuring m-serializability, we must further ensure that the projection of the global schedule onto

operations belonging to global transactions (which we refer to as GS) is also serializable. Note

that to ensure m-serializability itself, the GTM needs to ensure rigorousness of GS (in the case of

the �rst more weaker restriction on the interactions between global and local transactions). Since

every rigorous schedule is also serializable, 2LSR is trivially ensured. On the other hand, if we

were to adopt the more restrictive second restriction on global transactions, then to ensure that

the global schedules are 2LSR, besides ensuring m-serializability, we will further need to ensure

that the schedule GS is also serializable. We can do so by ensuring rigorousness of GS. However,

depending upon the concurrency control protocol used to ensure serializability of GS, it may be

possible to ensure both m-serializability of the local schedules and serializability of GS without

ensuring rigorousness of GS. This problem still remains open.

If we were to choose global serializability as our correctness criterion, then simply augmenting

the GTM concurrency control protocols developed in Section 4 with techniques of ensuring m-

serializability may not su�ce to ensure global serializability in the presence of failures. To see this

consider the case when each local DBMS produces rigorous schedules. In that case, as discussed in

Section 4.2.4, if the GTM does not issue any commits for a transaction until all of its actions have

been completed, then global serializability is ensured in the absence of failures. Further, to ensure

m-serializability we only need to ensure that the schedule GS is rigorous. This, however, may

27

6.2 Redo Approach

Consider the situation in which the local DBMSs do not support a prepare-to-commit operation.

In this case, to ensure global transaction atomicity, the GTM may still use the 2PC protocol, where

the servers (see model de�nition in Section 2) rather than the local DBMSs act as the participants.

Since local DBMS do not support a prepare-to-commit state, the global transaction may be aborted

at the local DBMS at any time, even after the server has voted to commit the transaction. If a

global subtransaction is aborted by the local DBMS after the GTM has decided to commit the

transaction, the server at the site at which the subtransaction aborted submits a redo transaction

consisting of all the writes performed by the subtransaction to the local DBMS for execution. Note

that to be able to construct such a redo transaction, the server must maintain a server log in which

it logs the updates of the global subtransactions. In case of failure of the redo transaction, it is

repeatedly resubmitted by the server until it commits. Since the redo transaction consists of only

the write operations, it cannot logically fail.

If the above global commit protocol is used to ensure the atomicity of global transactions, then

it must be the case that before the server sends to the GTM its vote to commit transaction T

i

, each

transaction from which T

i

read some data item should have previously committed. If this were not

the case, then it is possible that the GTM decides to commit a global transaction that reads data

items written by an aborted transaction. If T

i

only reads data item written by global transaction,

then the server can ensure this property by delaying its vote until all such transactions from which

T

i

read some data items are committed. However, since T

i

could have read a data item written by

local transactions, and since the servers have no control over the execution of local transactions,

this property, in general, can only be ensured if the schedules generated by the local DBMS are

cascadeless [7] (note that in the case of homogeneous distributed database system, it is su�cient

to ensure that each local DBMS is just recoverable!). Thus, for the above commit protocol to be

applicable, the schedules produced by the local DBMS are required to be cascadeless.

Another problem with the redo approach is that since the local DBMS considers the redo

transaction as a di�erent transaction than the global transaction, the resulting local schedule may

be non-serializable from the MDBS viewpoint. This was illustrated in Example 3.2 in which redo

transaction T

3

is executed to redo the write operations performed by the globally committed but

locally aborted transaction T

1

. In that example, since the local DBMS considered T

3

as a di�erent

transaction than T

1

, the resulting local schedule was not serializable from the GTM view point.

Note that each of our correctness criteria discussed in Section 4 and 5 (that is, global serializability,

LSR, or 2LSR) requires that the schedules at the local DBMSs be serializable from the MDBS

point of view. We refer to the local schedule as being m-serializable [46], if it is serializable from

the MDBS point of view. M-serializability can be de�ned as follows.

De�nition 6.1: Let S

j

be a local schedule consisting of local transactions, global subtrans-

actions and redo transactions. Let m(S

j

) be a projection of S

j

over committed transactions and

also over the read operations performed by the global transactions that are aborted by the local

DBMS but are committed by the GTM. Let T

i

be such a transaction. In m(S

j

), reads performed

by T

i

and the write operations belonging to the redo transaction that executed to redo the updates

of T

i

is considered as a single transaction. We say that S

j

is m-serializable, if and only if m(S

j

) is

serializable. 2

For example, schedule S

1

of Example 3.2 is not m-serializable. In order to ensure database

consistency, the redo technique must be combined with techniques of ensuring m-serializability of

the local schedules. To do so, let us consider the global/local data model described in Section 5.2.

Let us assume that the following condition holds:

26

each site the transaction executed. On receipt of the prepare-to-commit operation, a site votes to

commit or to abort the transaction. If the site votes to commit the transaction, it enters a prepared

state for the transaction. On entering the prepared state, the site cedes its right to unilaterally

abort the transaction to the GTM. The GTM, on receipt of the votes from each site the transaction

executed at, depending upon the votes, either decides to commit or to abort the transaction. Each

site in the prepared state complies with the decision of the GTM.

For the 2PC scheme to work, we require that before a site enters a prepared state, it must be

in a position to commit or abort the transaction as instructed by the GTM (even in the presence

of failures). Since it is possible that a system crash may occur while the site is in a prepared state

for a transaction, the site must store the updates made by the transaction onto stable storage

before entering the prepared state. Further, since other transactions may abort while the site is in

a prepared state, it must also ensure that such aborts do not jeopardize its ability to comply with

the GTM's decision.

To achieve this, before entering a prepared state for transaction T

i

, the site s

k

must ensure that

each transaction T

j

from which T

i

has read some data item at s

k

, is committed. Else, it is possible

that the GTM decides to commit T

i

, but since T

i

read a data item at site s

k

written by T

j

that

is aborted, T

i

can no longer be committed by the local DBMS at s

k

. If the local DBMS produces

serializable and recoverable schedules [7], then the above property is ensured. Note, that a class

of serializable and recoverable schedules is a proper superclass of the class of strongly recoverable

schedules (Section 4.2.3). If, in addition, the local DBMS produces cascadeless schedules [7], then

the GTM can submit a transaction commit as soon as the transaction has completed its read/write

operations at each local site. In the latter case, the above property will be trivially ensured.

Another practical issue that must be addressed is that of heterogeneous commit protocols. To

illustrate the problem, suppose that the interface of one local DBMS supports operations that

are compatible for the execution of a two phase commit protocol, whereas another local DBMS's

interface supports operations compatible for the execution of a three phase commit (3PC) [7]. The

semantics of these operations and the actions taken by the local DBMS on their execution may be

completely di�erent. Thus, combining such local DBMSs to support a global commit protocol is

a non-trivial task. In addition to di�erences in the operations supported by the local DBMSs for

committing global transactions, there may be many other implementation level di�erences among

sites, regarding issues such as error handling and who controls the global commit. If there were

a single standard 2PC protocol, these problems would be avoided, but it is unlikely that this will

occur. Already there are several competing \standards" (e.g., LU6.2 [15], OSI TP [62]). Thus, the

problem of coordinating heterogeneous commit protocols will persist. Some initial work on such

coordination is reported in [36].

As we argued in Section 3, there may be cases where the prepare-to-commit operation is not

provided by all sites. This may be due to the following:

1. Sites only o�er a Service Request interface, giving remote clients a set of services but not

control over service commitment;

2. Sites wish to retain their execution or communication autonomy; or

3. Performance of 2PC in a distributed system may be inadequate. In particular, sites may have

to remain in the prepared state for too long, blocking local resources; transaction response

time and throughput may su�er because of this [5].

In the rest of this section we consider systems where no global atomic commit protocol (2PC) is

being used.

25

whereas the transfer transaction T

1

is a non RS-transactions. Thus, even though the schedule S

1

is strongly correct, it is not permitted since the serialization graph of S

1

contains a cycle involving

transaction T

2

which is an RS-transaction.

6 Atomicity and Durability

In this section, we discuss how transaction atomicity and database consistency can be preserved in

presence of global transactions aborts and failures. In a multidatabase system, as in a homogeneous

systems, failures may range from transaction aborts, systems failures, failure of the GTM, to link

and communication failures. In addition, in a multidatabase system, a global transaction at a local

site can be aborted by a local DBMS as a result of normal DBMS operations (such as aborts caused

by a local deadlock detection procedure) and the same transaction can be committed at some other

local sites. In this paper we consider such situations as global transaction failures. Multidatabase

recovery procedures should ensure that the GTM can recover from both these unilateral aborts and

from failures. Since the recovery procedures at each local DBMS ensure atomicity and durability

of local transactions and global subtransactions, the task of ensuring atomicity and durability of

transactions in a distributed system reduces to ensuring that each global transaction either commits

at all the sites, or it aborts at all the sites.

The key factor that e�ects the design of the GTM recovery procedures is the interface provided

by the local DBMSs. As we mentioned in Section 1, there is an ongoing debate among researchers

whether or not local DBMSs will provide a prepare-to-commit operation for the transactions. If

each local DBMS provides such an operation, then the task of ensuring atomicity is relatively simple

since an atomic commit protocol (e.g., 2PC protocol) can be used. This is discussed in Section

6.1. On the other hand, if local DBMSs' do not support a prepare-to-commit operation, then it is

possible that a global transaction commits at some sites and aborts at others. In this case, three

di�erent mechanisms for ensuring global transaction atomicity have been studied in the literature.

1. Redo. The writes of the failed subtransaction are installed by executing a redo transaction

consisting of all the write operations executed by the subtransaction.

2. Retry. The entire aborted subtransaction, and not only its write operations, is run again.

3. Compensate. At each site where a subtransaction of a global transaction did commit,

a compensating subtransaction is run to semantically undo the e�ects of the committed

subtransaction.

We discuss these approaches in Sections 6.2 through 6.4. While redo and retry techniques ensure

the standard atomicity of transactions, in the case of compensation a weaker notion of atomicity is

used, since it is possible that the e�ects of the aborted global transaction are externalized to other

transactions. This impacts the preservation of consistency in the systems. We will also discuss this

issue in Section 6.4. Finally, each of the above techniques are complementary; that is, it is possible

to combine them into a single uniform solution. We discuss how this can be done in Section 6.5.

6.1 Two Phase Commit

If the local DBMSs support a prepare-to-commit operation, then transaction atomicity and database

consistency in a failure prone environment can be ensured by augmenting the various concurrency

control mechanisms of Section 4 (or Section 5), with the use of the two phase commit (2PC) pro-

tocol [7] (or one of its variations). The 2PC protocol works as follows. At the termination of

the execution of the transaction's operations, the GTM submits a prepare-to-commit operation to

24

5.5 Non-Constraint Based Criteria

Pu and Le� [52] introduced a notion of Epsilon-Serializability as an alternative correctness notion.

Transactions are divided into read-only and update transactions. The execution of the update

transactions is assumed to be serializable, so that database consistency is preserved. However,

the full schedule of all transactions is allowed to be non-serializable, as long as \the number of

non-serializable con
icts is limited." To illustrate how con
icts are counted, consider the schedule:

w

2

(x) r

3

(x) r

3

(y) w

1

(y) r

1

(z) w

2

(z)

The schedule of update transactions is equivalent to the serial schedule < T

1

, T

2

>. However,

T

3

breaks this order by reading from T

2

but not from T

1

. (That is, T

3

is involved in the cycle

T

2

! T

3

! T

1

! T

2

.) This is counted as T

2

exporting one con
ict and T

3

importing one con
ict.

(T

1

does not export any con
icts.) The limits on con
icts are given by import and export limits:

each read-only query has an import limit specifying how many con
icts it can be involved in; each

update transaction is given an export limit giving the maximum number of con
icts. This idea is

formally captured in the de�nition below.

De�nition 5.4: A schedule S is �-serial is its projection on the update transactions is serial,

and the number of con
icts imported by each read-only transaction does not exceed its import

limit, and the number of con
icts exported by an update transaction does not exceed its export

limit. A schedule is �-serializable if it is equivalent to a �-serial schedule. 2

Note that if the limits of all transactions are set to zero, then �-serializable schedules are

serializable. Several methods to control consistency divergence are proposed in [68]. One of these

methods uses an extension of two phase locking. Read-only transactions are allowed to read data

locked by updates, but each such access counts as a con
ict. If the limits are reached, then such

accesses are disallowed. Under these conditions the protocol ensures that schedules are �-serializable

[68].

One weakness of the original �-serializability approach is that it does not tell us how corrupted

read data may be. For instance, suppose that we have the constraint a + b = c on three bank

accounts. A single con
ict violation may cause a transaction to read values such that a + b is a

trillion dollars larger than c. The approach was extended in [68] so that con
icts are measured in

a way that is more meaningful to the application.

A di�erent notion of correctness is used in [26]. Here transactions are grouped into disjoint

types. An application administrator then determines that transactions of certain types can be

interleaved arbitrarily without causing constraints to be violated. For example, in a bank it may

be safe for deposit transaction to interleave with other deposits and with transfer transactions.

The concurrency control mechanism proposed in [26] uses local locks to ensure LSR schedules, and

global locks to avoid undesirable interleavings.

The concept of compatibility is re�ned in [43] and several levels of compatibility among trans-

actions are de�ned. These levels are structured hierarchically so that interleavings at higher levels

include those at lower levels. Furthermore, [43] introduces the concept of breakpoints within trans-

actions which represent points at which other transactions can interleave. This is an alternative to

the use of compatibility sets. A similar scheme that uses breakpoints to indicate the interleaving

points, but does not require that the interleavings are hierarchical is presented in [19].

In [49], the approach taken is to classify the global transactions into two classes: RS-transactions

and non RS-transactions. The GTM protocol proposed in [49] ensures that no cycle in the serializa-

tion graph of a global schedule contains any RS-transaction (in addition to ensuring that schedules

are strongly correct). Returning to Example 5.3, the audit transaction T

2

is an RS-transaction,

23

5.4 Limitations of Constraint Based Approaches

In the previous subsections we have described alternative correctness notions based upon preser-

vation of the database consistency constraints. Each of the correctness notions (LSR,or 2LSRR)

can be shown to preserve strong correctness of schedules under appropriate restrictions. We have,

however, avoided the question of whether the preservation of strong correctness is a su�cient con-

sistency guarantee for transactions. The answer to this is application dependent. While a strongly

correct schedule preserves all the database consistency constraints, it may, however, not be su�cient

for preventing all undesirable executions in certain applications, as illustrated below.

Example 5.3 [49]: Consider a banking database located at two sites: s

1

with account a, and

s

2

with account b. Suppose that we have constraints specifying that no account have a negative

balance. Consider transaction T

1

that transfers 500 dollars from account a to account b, and

an audit transaction T

2

that reads the balance of both a and b. Transaction T

1

consists of two

subtransactions, a debit subtransaction and a credit subtransaction,

debit: if a > 500 then a := a� 500

else abort

credit: b := b + 500

Consider the following schedule:

S

1

: r

1

(a) w

1

(a) r

2

(a)

S

2

: r

2

(b) r

1

(b) w

1

(b)

Transactions see non-negative balances, and the �nal state is also consistent, so the schedule is

strongly correct. However, in this schedule, the audit transaction sees 500 dollars less than the

actual sum total of accounts a and b. This may be considered an \anomaly" and thus it may not

be su�cient for schedules to be strongly correct. 2

Note that in Example 5.3, the execution is neither 2LSR nor QSR (though it is strongly correct).

Examples in which undesirable executions occur (even though the execution is 2LSR and/or QSR)

can be similarly constructed.

In Example 5.3, we could say that there is a second type of correctness criteria, in addition

to strong correctness. In this case we do not want the transfer transaction to be involved in any

serialization cycle. One \arti�cial" way of dealing with this problem is to declare another data

item total and de�ne an integrity constraint total=a + b. If this constraint were de�ned, then the

schedule of Example 5.3 would not be strongly correct and would be avoided.

However, one could argue that de�ning additional constraints is not desirable. First, there may

be no real integrity constraint between accounts a and b; that is, if any other transaction sees the

value of a and b not equal to total, that may be quite acceptable. It is only audit transactions that

are special. If we declare the constraint, we will disallow many executions, not just those involving

audits. Second, if we were to declare such constraints, we would need to declare data integrity

constraints between every two (or in general n) accounts. This will result lost concurrency, and, in

general, will reduce strong correctness to serializability; that is, the only strongly correct schedules

will be serializable ones.

Thus, in addition or instead of ensuring strong correctness, it may be useful to develop mecha-

nisms that restrict schedules in some way, without requiring serializability. This is discussed in the

next section.

22

(Contrast this to the execution in Example 5.2. In the example, T

2

is serialized before T

1

in

the projection of the schedule onto global transactions. Thus, the state of global data items

in which the transaction T

1

executes is b = -1, d = -1, c = 1. Since T

1

reads the value of a to

be 1, it is inconsistent with the value of b = -1.)

Once we assume that there are no global/local constraints, the remaining LDP constraint can be

relaxed as follows:

1. If global transactions cannot access local data, it can be shown that the LDP requirement

can be replaced by one forcing all transactions to have �xed structure.

2. If local transactions cannot read global data, and global transactions cannot write local data,

then the LDP requirement can be dropped entirely. In this case, activity on the local data

is completely decoupled from the activity on the global data. Hence, the fact that local

schedules are consistent is su�cient to guarantee that local constraints are always true.

3. If local schedulers are 2PL and global transactions are �xed structure, then there is a GTM

locking strategy (called two-level two-phase locking) that can ensure constraints are satis-

�ed [47]. Note that since only global transactions are required to be �xed structure, local

autonomy is not violated.

As a historical note, we point out that a precursor to the notion of 2LSR schedules was the

notion of quasi-serializablity [17, 16]. A global schedule is said to be quasi serial if and only if is

LSR and there is a total order of global transactions such that for any two global transactions T

i

and T

j

if T

i

precedes T

j

in the total order, then all T

i

operations precede all T

j

operations in all

local schedules in which both appear. A global schedule is quasi serializable (QSR) if it is equivalent

to a quasi serial schedule. The QSR class is a proper subset of 2LSR. (Example 5.2 shows a 2LSR

schedule that is not QSR.) It appears that there are no advantages to restricting schedules from

2LSR to QSR [48], so QSR schedules seem to be only of historical interest.

5.3 Other Constraint Based Criteria

With 2LSR schedules, the GTM ensures that any global constraint is satis�ed by executing the

global transactions is such a way that the resulting schedule (of actions of global transactions) is

serializable. A di�erent idea for enforcing global constraints is presented in [5]. The claim is that

global constraints tend to be very simple in practice and that the GTM can enforce them directly,

without concerning itself with serializability. A second claim is that global constraints tend to be

\approximate," giving the GTM even more
exibility in enforcing them.

To illustrate, consider a copy constraint between item g

1

at site s

1

and g

2

at s

2

. Many appli-

cations, especially if they run on independent sites, can tolerate some divergence, e.g., the copy

constraint may be jg

1

� g

2

j � �, where � is some application dependent value. In this case, not

every update to g

1

needs to be reproduced at s

2

and vice versa. The server at s

1

(see Figure 1)

can keep track of a window of allowable values for g

1

, and while g

1

remains in this window, copies

of the new values are not propagated to s

2

. The advantages of this added
exibility will be more

apparent when failures are considered in Section 6.

In summary, in [5] global schedules are assumed to be LSR, so all local (and global/local) are

satis�ed. Even though global schedules are not 2LSR, global constraints are enforced \manually"

by the GTM and its servers. It is assumed, of course, that applications declare a priori their global

constraints. If the constraints fall outside of the repertoire of the GTM, then it reverts to enforcing

2LSR schedules.

21

Consider the following two global and one local transactions:

T

1

: if (a <= 0) then c := 1 else c := �1

d := 1

T

2

: if (a <= 0) then b := �1 else b := 1

d := �1

L

3

: a := �1

Starting from a state where all items have a value of \1", consider the following executions:

S

1

: r

1

(a; 1) w

1

(c; �1) w

3

(a; �1) r

2

(a; �1) w

2

(b; �1)

S

2

: w

2

(d; �1) w

1

(d; 1)

The resulting state is a = -1, b = -1, c = -1, d = 1, which is inconsistent. Note that the global

schedule is 2LSR but is not globally serializable (at s

1

we have dependency T

1

! L

3

! T

2

, and at

s

2

we have T

2

! T

1

). 2

The problem in this case is with the transactions. From the point of view of each site, transac-

tions are LDP, so all local and global/local constraints are satis�ed. However, the global constraint

is being violated because from the point of view of the global data, T

1

is not a proper transaction.

Transaction T

1

only produces a consistent state when an condition external to the global data

(a > 0 ! b > 0) is satis�ed. (In particular, say we start with the state a = 1, b = c = d =

-1. As far as the global constraints are concerned, it is consistent. Yet T

1

will transform it into an

inconsistent global state.) If T

1

were rewritten more sensibly as T

1

: c := 1; d := 1, then consistency

would be preserved (T

1

now enforces global constraints regardless of the state of other constraints).

We de�ne a transaction to be Global Database Preserving (GDP) if it preserves global con-

straints regardless of the state of local data items. This notion is analogous to LDP. If we think of

the global items as constituting a single database at an imaginary site � then saying a transaction

is GDP is equivalent to saying it is LDP at �. It is not hard to see that if all transactions are LDP

and GDP, then a 2LSR schedule guarantees all executions are strongly correct.

If we make certain additional assumptions about the access patterns of transactions, then it is

possible to relax the LDP, GDP requirement [48]:

1. If global transactions are not allowed to access local data, then we can drop the GDP require-

ment. (Actually, if global transactions cannot read local data, then they are necessarily GDP.

So the requirement is not dropped; it is replaced by a more restrictive one). If we further

assume that local transactions cannot read global data, and that the global transactions do

not write local data, then the local and global data is totally decoupled; 2LSR schedules will

always be serializable, without any requirements on the transactions.

2. If there are no global/local constraints, then the GDP requirement can be dropped. The

proof of this is lengthy [47], but the intuition is as follows. Since transactions are LDP, if

the local schedules at each site are serializable, then the local constraints will be preserved

(regardless of whether transactions are GDP or not). Also, the state of local data seen

by global transactions will be consistent. Furthermore, since the projection of the schedule

onto global transactions is serializable, the state of global data items in which a transaction

executes is consistent. Thus, since there are no global/local constraints, the state in which

a global transaction executes along with the values of local data item it sees is consistent.

20

in any constraints). Making transactions NVD ensures executions are strongly correct (because

transactions are LDP), but as noted in [17] this is more restrictive than necessary.

5.2 Two Level Serializability

The notion of local serializability can be extended as follows. There are two types of data at each

site: local data and global data. Three types of constraints are allowed:

1. Local. Constraints involving local items; each local constraint can involve only items at a

single site.

2. Global. Global constraints may span more than one site, but can only involve global items.

3. Global/Local. These constraints can only span a single site, but may involve both local and

global items.

The main restriction on transactions in this model is that local transactions may not modify global

data. (Global data is usually involved in inter-site constraints; a local transaction would be unable

to maintain these since it can only run at a single site.) For now, no other access restrictions are

made: local transactions can read both local and global data, and global transactions can read and

write any data.

This extension is applicable to an MDBS environment that started as a collection of independent

databases. These original databases constitute the local data, and original transactions only access

local data. A new data layer was then added, the global data. It is stored in the same DBMSs at

each site, except that it is managed by newer transactions that are run through the GTM (global

transaction manager). Since the new transactions run under the control of the GTM, it is now

feasible to enforce global constraints that span the new data. The new transactions are allowed to

read and write the original local data. Finally, for e�ciency, we might want to add a third class of

transactions, new local ones. These are run by the local DBMS but are allowed to read the new

global data.

It is important to note that local and global/local constraints should not involve remote data,

even indirectly. For instance, say a

1

is a local item, and b

1

and b

2

are global ones. Item b

2

is at

site s

2

; a

1

and b

1

are at s

1

. Also assume we have constraints a

1

= b

1

and b

1

= b

2

. The global/local

constraint a

1

= b

1

is not allowed because it induces constraint a

1

= b

2

which relates a local item

to a remote item. Not all global/local constraints cause this problem. For example, consider the

constraints a

1

> b

1

and b

2

> b

1

.

Since the GTM controls global transactions, it can ensure that the global schedule, as far as

access by these transactions is concerned, is serializable. Similarly, the local concurrency control

mechanisms will ensure that the local schedules are serializable. This motivates the notion of

two-level serializability.

De�nition 5.3 [48]: A global schedule S is two level serializable (2LSR) if it is LSR and its

projection to a set of global transactions is serializable.

Globally serializable schedules are always 2LSR, but the converse is not true. This is illustrated

by the following example, which also shows that 2LSR schedules may violate constraints if they

contain \unusual" transactions:

Example 5.2 [48]: Consider an MDBS where there is a single local item a at site s

1

and three

global items, b and c at s

1

and d at s

2

. There is one global/local and one global constraint:

a > 0 ! b > 0

d > 0 ! (b > 0 or c > 0)

19

1. Force transactions to be Local Database Preserving. If we look at T

1

(in example 5.1) from

site s

1

's point of view, the local actions of T

1

do not constitute a valid local transaction.

That is, there is an initial state (a > 0, b < 0) that is locally consistent, and when T

1

runs,

it transforms it into a locally inconsistent state (a = -1). Thus, from s

i

's point of view,

T

1

is breaking the rules: The correct operation of T

1

depends on the correctness of some

data (b) over which s

1

has no control. The problem can be avoided if we require that any

transaction that runs at site s

i

preserves consistency regardless of the state of other sites.

Such transactions are called Local Database Preserving (LDP) [47]. If transactions are LDP

and all constraints are local, it is easy to show that LSR schedules guarantee strongly correct

executions.

2. Require local sites to run a two-phase locking (2PL) protocol. In Example 5.1, if sites s

1

and

s

2

were following the 2PL protocol, then transaction T

1

would not release the lock on a until

after it has read the value of b (since it may require to write on data item a, if in case the

value of b > 0) and T

2

would not release the lock on b until after it has read the value of a.

As a result, T

1

will wait for T

1

to release the lock on b, and T

2

will wait for T

1

to release the

lock on a thus resulting in a deadlock. Hence, the execution as in Example 5.1 will not be

permitted.

3. Force transactions to have a �xed structure. A transaction that always has the same read/write

pattern is termed a �xed-structure transaction [48]. That is, regardless of what it reads, it

will read and write the same items, in the same order. Transaction T

1

in Example 5.1 is not

�xed-structure: it may or may not write a. To make it a �xed-structure transaction, we could

rewrite it as, say:

T

1

: a := �1

if (b > 0) then a := 1 else a := �1

In this case, the scenario shown in Example 5.1 could not arise. The schedule at site s

1

would

be S

1

: w

1

(a) r

2

(a) w

1

(a) and would be non-serializable. In general, it can be shown that if all

transactions are �xed-structure (and constraints are local), then a LSR schedule guarantees

that all executions are strongly correct.

The requirement that all transactions be LDP is not unreasonable. Local transactions are always

LDP, so the requirement does not a�ect the autonomy of sites. Most practical global transactions

will be LDP anyway; if not, they can be made LDP with little e�ort, provided that the local

constraints are known. The constraint that the local schedulers follow the 2PL protocol is also

reasonable since in any case most practical concurrency mechanisms follow the such a protocol.

The requirement for all transactions to be �xed structure may, however, be less reasonable since

it requires even local transactions to be �xed-structure which violates local autonomy. Note that

transactions that only contains assignment and alternation statements can always be converted into

�xed structure transaction. For example, as we illustrated earlier, the transactions in Example 5.1

could be made �xed-structure. However, if transactions contains loops, there may not be an easy

way to make them �xed structure.

As a historical note, a fourth strategy has been suggested for making LSR schedules preserve

constraints. A transaction T

i

is NVD if it has no value dependencies [17]; that is, if its actions at

a site never depend in any way on the values read at another site. Both T

1

and T

2

in Example

5.1 have value dependencies. If a transaction is NVD, then it is clearly LDP. The converse is not

true (example: a transaction that writes into item b a value read elsewhere, but b is not involved

18

5.1 Local Serializability

Global serializability guarantees that all consistency constraints are satis�ed. If global serializability

is to be dropped, then it is important to guarantee consistency in some other way. Consistency is

usually de�ned in terms of integrity constraints that must hold among various data items. Thus,

it is important to study constraints and look for alternative ways of satisfying them.

In a MDBS, there are two types of constraints: local ones that involve data items located at

a single site, and global ones that involve date items located at more than a single site. It can be

argued that in some multidatabase applications there are no global constraints, since each site was

developed independently, and sites may wish to remain independent [25]. For example, airlines run

independent reservations systems with no global constraints among them. The systems do interact

(e.g., at the reservation system of airline Y one can reserve a seat on airline X 's
ight), but each

system only cares about the consistency of its own data.

Fortunately, local constraints are easy to maintain. Essentially, each site can run a local concur-

rency control mechanism that ensures that the local schedule is serializable. This, in turn, ensures

(with one catch explained below) that all local constraints are satis�ed, with no need for any global

synchronization among sites. The resulting global schedule is not globally serializable, but is locally

serializable as de�ned below [23, 39].

De�nition 5.1: A global schedule S is locally serializable (LSR) if for every site s

i

, the local

schedule is serializable. 2

Given an initial database state, an execution of a set of transactionsT results in a �nal database

state. An execution also produces a schedule which represents the sequence of read, write, abort,

commit operations. For each transaction T

i

2 T, an execution also de�nes a database state read

by each T

i

.

De�nition 5.2: We say that an execution is strongly correct if the �nal state produced is

consistent and the state read by each transaction T

i

2 T is consistent (i.e., any values read by T

i

satisfy constraints that span them). 2

To show that LSR schedules guarantee strongly correct executions, we need to rule out certain

types of \unusual" transactions [48], as illustrated by the following example.

Example 5.1: Consider an MDBS where data item a is stored at site s

1

and data item b is

stored at s

2

. Suppose that we have two constraints: a > 0 and b > 0. Consider the following two

transactions:

T

1

: a := �1

if (b > 0) then a := 1

T

2

: b := �1

if (a > 0) then b := 1

Note that both T

1

and T

2

are valid transactions: given any initial state that is consistent, they

transform the database into a consistent state. Consider the following executions at the two sites.

We use the notation r

i

(a; x) (w

i

(a; x)) for a read (write) action of transaction T

i

on item a, where

x is the value read (written).

S

1

: w

1

(a; �1) r

2

(a; �1)

S

2

: w

2

(b; �1) r

1

(b; �1)

Each local schedule is serializable. Nevertheless, the �nal state a = -1, b = -1 is inconsistent. 2

There are at least three ways to avoid the type of problems shown in Example 5.1 above:

17

r

1

(y) at s

2

is acknowledged. In turn, T

3

would block until T

1

commits, and the above schedule

could not take place. (It may lead to a global deadlock, though.) It can be shown that delaying the

commits until a transaction completes all of its read/write actions is enough to guarantee global

serializability. No additional synchronization between global transactions is required in this case.

The following de�nition captures what it is about strict 2PL that ensures global serializability.

De�nition 4.3 [6]: We say that schedule S

k

is rigorous if, for all pairs of transactions T

i

and

T

j

, if T

i

is in direct con
ict with T

j

in S

k

and T

j

commits in S

k

, then T

j

does not execute its

con
icting operation before T

i

commits. 2

In [6] it is shown that if local DBMS schedulers are rigorous and the GTM does not schedule

the commits of a transaction until all previous operations of the same transaction have completed

their execution, then the global schedule is serializable. As we have stated, the strict 2PL protocol

generates rigorous schedules. Other protocols can be easily modi�ed to generate rigorous schedules.

For example, basic timestamp ordering can be made rigorous by blocking transactions that either

try to read or write data which were previously written by uncommitted transaction or try to write

data which were previously read by uncommitted transaction [6].

It is important to note that if local sites only provide a service request interface (Section 2),

then the GTM cannot delay the commits as required in [6]. In Example 4.1, if the GTM sends a

service request to s

1

on behalf of T

1

, it is actually sending the entire subtransaction w

1

(a) c

1

, so c

1

cannot be delayed and this global schedule could occur. In this case, the GTM would have to use

additional global transaction synchronization, as is done for strongly recoverable local schedules.

It is not hard to see that any rigorous schedule must be strongly recoverable. Say S is a rigorous

schedule with a con
ict between operations op

i

and op

j

where op

i

occurs �rst in S. Because S is

rigorous, c

i

must precede op

j

. And clearly op

j

precedes c

j

(see Section 2). Thus, c

i

precedes c

j

and S is strongly recoverable. Note that not all strongly recoverable schedules are rigorous. For

example, the schedule S: r

1

(x) w

2

(x) c

1

c

2

is strongly recoverable but not rigorous.

In summary, we have a hierarchy of local schedule classes, going from the most general to the

most restrictive: serializable, strongly serializable, sp-schedules, strongly recoverable, and rigorous.

Each class is a proper subset of the next most general one. We have also shown that as the lo-

cal scheduler becomes more restrictive, the global GTM can be more permissive in coordinating

global transactions operations. Indeed, we have seen that if every local DBMS generates a rigorous

schedule, then the GTM does not perform any operation coordination. For the case of strongly

recoverable local schedules, the GTM only needs to coordinate an execution of global transactions

commit operations. If each local DBMS generates a sp-schedule, then the GTM needs to coor-

dinate transaction serialization point operations for each local site. Finally, in the case of local

strongly serializable schedules, the GTM should coordinate an execution of all operations of global

transactions.

5 Alternative Consistency Notions

As we have seen, guaranteeing global serializability may result (in some environments) in poor

performance due either to a low degree of concurrency or the large number of aborted transactions.

Moreover, as we shall see later, when we discuss failures, it is very hard to obtain global serial-

izability in some cases. Thus, several researchers have suggested notions of correctness that are

weaker that global serializability. In this section we survey some of these notions, still assuming

that neither failures nor unilateral aborts of global transactions can take place.

16

S

2

: w

4

(c) r

1

(c) r

2

(d) c

1

c

2

[w

4

(d) c

4

]

The actions in brackets again represent future actions. Here the actions of T

1

and T

2

are interleaved

(i.e., T

2

reads at s

2

before T

1

commits). A site that generates strongly serializable or sp-schedules

would permit the remaining T

4

actions to take place, leading to a non-serializable global schedule.

However, a strongly recoverable site would not. At each site, the commits of T

1

and T

2

occur

in the same order, c

1

, c

2

. Because of strong recoverability, sites will not allow paths of the form

T

2

! � � � ! T

1

. In this particular example, the path T

2

! T

4

! T

1

is not allowed because it

would imply that c

2

precedes c

4

and c

4

precedes c

1

(impossible since c

1

precedes c

2

). Thus, when

T

4

attempts the future actions in the example, it will be aborted.

A strongly recoverable local scheduler in essence is giving the GTM control of the serialization

points. That is, when the GTM submits the commit for T

1

, it knows that it will be serialized before

any global transactions whose commits are submitted later.

This same idea can be applied to the other global concurrency control mechanisms of Section

4.2.1. For example, the site-graph algorithm [9] becomes the commit-graph algorithm [13]. In

the commit-graph approach, the GTM maintains a commit-graph that is similar to the site-graph.

Unlike the site-graph approach in which the edges corresponding to a transaction are inserted when

the transaction starts execution, in the commit graph the edges corresponding to a transaction are

inserted just before the commit process of the transaction is started. This permits all transactions

to be executed concurrently, except during their commit phase. The commit phases of transaction

that may be involved in a global cycle (as determined by the commit graph) are executed serially.

4.2.4 Rigorous DBMSs

Some local concurrency control mechanisms are even more restrictive than the ones we have re-

viewed so far, and can, in turn, lead to even more e�cient global scheduling schemes. For example,

consider an MDBS where all local sites use the strict two phase locking protocol [7], which is the

most popular type of mechanism used in practice. In this environment, the following undesirable

schedule of Example 3.1 cannot occur, even if no global concurrency control is present (the actions

in brackets again represent future action):

S

1

: r

1

(a) [c

1

w

3

(a) w

3

(b) c

3

r

2

(b) c

2

]

S

2

: w

4

(c) [r

1

(c) c

1

r

2

(d) c

2

w

4

(d) c

4

]

At site s

2

, T

4

keeps a lock on c until it commits. Hence, T

1

cannot read c, and is delayed. If T

1

runs

after T

4

at S

2

, then the undesirable dependency T

4

! T

1

does not happen. Unfortunately, the use

of the strict 2PL at each participating site does not automatically guarantee global serializability,

as the next example illustrates.

Example 4.1: Consider a multidatabase system located at two sites: s

1

with data items a and

b, and s

2

with data items c and d. Let T

1

and T

2

be two read-only global transactions, and let T

3

and T

4

be two local transactions. The schedules at sites s

1

and s

2

are, respectively:

S

1

: w

1

(a) c

1

r

3

(a) w

3

(b) c

3

r

2

(b) c

2

S

2

: w

2

(x) c

2

r

4

(x)w

4

(y) c

4

r

1

(y) c

1

At each site, the schedules can be produced by strict two phase locking (they are actually serial

at each site). However, the dependencies T

1

! T

3

! T

2

and T

2

! T

4

! T

1

exist and the global

schedule is not serializable.

This problem can be avoided if the GTM does not issue any commits for a transaction until all

of its actions have been completed. In Example 4.1, the operation c

1

at s

1

would be delayed until

15

cycles are executed in the same order at all sites. To enforce this, an analogy can be drawn to

centralized DBMS [45]: Each site s

k

is viewed as a single data object, o

k

. If a transaction issues

actions at s

k

, it is viewed as issuing actions on o

k

. Two serialization point actions, sp

i

(o

k

) and

sp

j

(o

k

), always con
ict. Other actions do not con
ict. If the GTM ensures that the schedule in

the analogous model is serializable, then it ensures that the global schedule in the real system is

globally serializable.

4.2.3 Strongly Recoverable DBMSs

If we restrict our notion of serialization points so that they must occur at the end of each transaction,

i.e., at its commit action, then we can obtain a GTM that is more e�cient that those for strongly

serializable schedules. The following de�nition captures this notion. (Here and in the next section

we consider general notion of schedule and their committed projections).

De�nition 4.2 [6, 54]: We say that schedule S

k

is strongly recoverable if, for all pairs of

transactions T

i

and T

j

, if T

i

is in direct con
ict with T

j

in S

k

and T

j

commits in S

k

, then T

j

does

not execute its commit before T

i

commits. (See de�nition of direct con
ict in Section 2.) 2

Every strongly recoverable schedule is also recoverable [7]. Indeed, let S

k

be a strongly recover-

able schedule. Let us assume that transaction T

j

reads-x-from transaction T

i

. Then, by de�nition

of strong recoverability, if transaction T

j

commits then it commits after transaction T

i

commits in

S

k

and, therefore, satis�es a condition of recoverability. Since every strongly recoverable schedule

is serializable and not every recoverable schedule is serializable, we obtain that a class of strongly

recoverable schedules is a proper subclass of recoverable schedules.

Strongly recoverable schedules are a proper subset of sp-schedules. To see this, consider a

strongly recoverable schedule S and let sp(T

i

) map to c

i

. Consider two transactions T

i

, T

j

such that

sp(T

i

) precedes sp(T

j

) in S, i.e., c

i

precedes c

j

. Suppose that there is no equivalent serial schedule

where T

i

precedes T

j

. For this to be true, there must be dependency graph arcs T

j

! � � � ! T

i

.

Because S is strongly recoverable, this means that c

j

precedes the commit points of the intermediate

transactions in the dependencies, which, in turn, precede c

i

. Since we know that c

i

precedes c

j

,

our supposition must be false. Thus, sp(T

i

) precedes sp(T

j

) in S implies there must be some serial

schedule where T

i

precedes T

j

, so S is an sp-schedule. To see that strongly recoverable schedules

are a proper subset of sp-schedules, consider the schedule:

S: r

1

(x) w

2

(x) c

2

c

1

.

Schedule S is an sp-schedule, but it is not strongly recoverable.

The various concurrency control mechanisms discussed in literature (i.e., 2PL, timestamp order-

ing [7], optimistic [38], etc.) can be easily modi�ed to ensure that they generate strongly recoverable

schedules [54, 12].

To see why the knowledge that local sites generate strongly recoverable schedules (as opposed

to strongly serializable or sp-schedules) leads to higher concurrency of the global concurrency

control mechanism, let us return to the strategy of executing global transactions serially. If local

sites generate strongly serializable or sp-schedules, the GTM avoids cycles by making sure global

transactions do not overlap (see Section 4.2.1). With strongly recoverable local schedules, however,

it is su�cient to ensure that transactions do their commit processing serially (i.e., between the

time a global transaction issues its �rst commit at a site and its last commit at another site, no

other global transaction issues any commits). To explain why this works, let us return to a slightly

modi�ed version of Example 3.1:

S

1

: r

1

(a) c

1

w

3

(a) w

3

(b) c

3

r

2

(b) c

2

14

4.2.2 Serialization-Point Based DBMSs

The notion of a strongly serializable schedule is closely related to that of a schedule that consists

of transactions each of which has a serialization point [53]. A serialization point of a transaction

is a distinguished action that determines the serialization order of the transaction in the schedule.

For instance, in a concurrency control scheme based on timestamps, the distinguished action cor-

responds to the assignment of a timestamp to the transaction. When the transaction arrives and

reads its timestamp, it will be serialized by the scheduler relative to other transactions according

to its timestamp. That is, if two transactions contain con
icting operations and the scheduler

serialized T

1

before T

2

, then the timestamp of T

1

is smaller than the timestamp of T

2

. Thus, a

schedule that is generated by a timestamp scheduler consists of transactions that each one has a

serialization point in the schedule.

In the 2PL scheme [18], the serialization point of a transaction corresponds to the operation of

the �rst lock release. Once again, if transaction T

i

contains a con
icting operation with T

j

, and T

i

is serialized before T

j

, then T

i

releases its �rst lock before T

j

does. This leads us to introduce the

following de�nition.

De�nition 4.2: Let S be a serializable schedule consisting of transactions T

1

, T

2

, : : :, T

n

. We

say that schedule S is an sp-schedule if and only if there exist a mapping sp from transactions to

actions such that:

1. sp(T

i

) = o

k

where o

k

2 T

i

; and

2. If sp(T

i

) occurs before sp(T

j

) in S, then there exists a serial schedule equivalent to S in which

T

i

precedes T

j

. 2

If the serialization point of T

i

precedes T

j

in S, then no dependencies of the form T

j

! � � � ! T

i

are allowed in local serialization graph for S.

The class of sp-schedules is a proper subset of the class of strongly serializable schedules. To see

that any sp-schedule is strongly serializable, consider an sp-schedule S. Say T

i

precedes and does

not overlap T

j

. Note that sp(T

i

) must map to a T

i

action, and hence sp(T

i

) must precede sp(T

j

).

Thus, there is an equivalent serial schedule where T

i

precedes T

j

. To see that not all strongly

serializable schedules are sp-schedules, consider the following example:

S : r

1

(a) w

2

(a) w

3

(b) c

2

c

3

r

1

(b) c

1

First, it is a serializable schedule, equivalent to T

3

, T

1

, T

2

. Since every transaction is overlapped

with the others, the schedule is strongly serializable. Unfortunately, there is no serialization point

assignment for T

1

. That is, sp(T

1

) should map to r

1

(a) to make sure that sp(T

1

) precedes sp(T

2

).

At the same time, sp(T

1

) needs to map to r

1

(b) or c

1

so that sp(T

3

) precedes sp(T

1

). Thus, S is

not an sp-schedule.

Since local sp-schedules are strongly serializable, it is possible to use the global concurrency

control schemes outlined in the previous section. However, if each local DBMS noti�es the GTM

in advance what action will constitute the serialization point, then one could obtain global serial-

izability more e�ciently. For example, a timestamp scheduler might indicate that the �rst action

submitted is the serialization point (i.e., when the transaction receives its timestamp). In this

general model, each site could de�ne a di�erent action to be the serialization point. For example,

one site could say �rst actions are serialization points (it runs a timestamp algorithm) and another

site could say last actions are (it runs a two phase locking protocol).

The global concurrency control mechanisms can then be extended for this more general model

[45]. As before, the key idea is that the serialization points for transactions that may lead to

13

are strongly serializable) by executing global transactions serially. There are, however, several ways

in which we can do better. For example, we note that if T

1

and T

2

execute at disjoint sites, there is

no need to execute them serially. This suggests an algorithm where the GTM keeps a lock per site

(the locks are kept at the GTM level, and not at the sites) [2]. Before a transaction can start, it

must acquire the locks for all the sites it will run on. When it completes, the transaction releases

its site locks. This ensures that transactions that could have generated a cycle like the one of

Example 3.1 are run serially with respect to each other, thus avoiding the cycle due to the strong

serializability of the local sites.

The lock-per-site approach is still overly restrictive. For example, consider two transactions:

T

1

is to run at sites s

1

and s

2

, and T

2

is to run at sites s

2

and s

3

. If they run concurrently, a

dependency may be generated at s

2

, either T

1

! � � � ! T

2

or T

2

! � � � ! T

1

. But since T

1

and T

2

do not interact at any other site, it does not matter: no global cycle can be generated in the global

serialization graph.

This idea leads to essentially the site-graph algorithm of [9]. The GTM maintains a bipartite

graph, with transactions and sites as the nodes. When a new transaction T

i

is to be run, an arc is

entered in the graph connecting the T

i

node to each site node that T

i

will run at. If there are no

cycles, T

i

runs. If a cycle involving T

i

exists, then T

i

is delayed until the cycle disappears.

To illustrate, say we try to run the schedule of Example 3.1. When T

1

starts, arcs (T

1

, s

1

) and

(T

1

, s

2

) are entered. When T

2

starts, arcs (T

2

, s

1

) and (T

2

, s

2

) are entered, creating a cycle. Thus,

T

2

is delayed until T

1

completes all of its actions. Since T

1

and T

2

are not overlapped, and since

all local sites are strongly serializable, T

1

is serialized before T

2

at all sites. So a global cycle is

avoided. If, on the other hand, T

2

runs only at sites s

2

and s

3

, then there would be no cycle in the

site graph and T

2

could run concurrently with T

1

.

In the site graph algorithm, a transaction (node) cannot be removed from the graph upon the

transaction's commit, if the transaction has a path in the graph that is connected to an uncommitted

transaction. An aborted transaction, however, can be removed from the site graph as soon as it is

aborted.

Another idea is to use altruistic locking to improve concurrency [2, 56]. To illustrate, say T

1

runs at sites s

1

, s

2

, and s

3

, in that order. That is, T

1

�rst executes all of its actions at s

1

(including

commit), then it executes at s

2

, and then at s

3

, with no overlapping of its actions at these sites.

Suppose we run a second transaction, T

2

, in the wake of T

1

, that is, T

2

executes at s

1

after T

1

�nished, and then runs at s

2

after T

1

�nished there. Even though both T

1

and T

2

are executing

concurrently, they are never overlapped at any one site, and T

2

always follows T

1

. Hence, no site

will generate a dependency T

2

! � � �T

1

and the global schedule will be serializable.

There are various ways to implement altruistic locking [2]. A simple way is to use site locks as

before, except that transactions can release locks early if they know they have �nished all processing

at a site. However, the lock is not fully released; it is left in a \marked" state. Other transactions

that request a site lock that is marked, can obtain the lock, but are then forced to be in the wake

of the original transaction. The GTM must ensure that the relationship \is in the wake of" has no

cycles. The latter can be done by keeping a wake-graph in which there is an edge between T

i

and

T

j

if T

j

is in the wake of T

i

.

All the mechanisms we have described for strongly serializable local schedules are pessimistic.

However, optimistic versions can easily be developed. For instance, in the site graph approach,

instead of delaying transaction involved in a cycle, we could abort them.

12

The performance of the ticket method has not been fully evaluated. It may lead to numerous

aborted transactions (optimistic) or low concurrency (pessimistic). This same problem exists with

most of the mechanisms we will survey later in this section, so it may be an inherent problem in

trying to achieve global serializability with autonomous sites.

As a historical note, we mention that the paper [9] has proposed the site-graph mechanism as

a way for ensuring global serializability in an environment where the local sites are assumed to be

unlabeled black boxes. The proposed scheme, however, causes some transactions to be postponed

inde�nitely, unless the local sites tell the GTM when transactions such as T

4

(in our example) have

completed. Unfortunately, this violates local autonomy. This site-graph mechanism is described

later in Section 4.2.1.

4.2 Integration with Labeled DBMSs

We may be able to �nd global mechanisms that allow more concurrency, if we assume certain prop-

erties about the local sites. For example, suppose that the local sites use a basic timestamp ordering

concurrency control algorithm. Returning to Example 3.1, say that execution has proceeded to the

point indicated below (where the actions that have not been executed are again shown in brackets):

S

1

: r

1

(a) c

1

w

3

(a) w

3

(b) c

3

r

2

(b) [c

2

]

S

2

: w

4

(c) r

1

(c) c

1

r

2

(d) [c

2

w

4

(d) c

4

]

Consider now site s

2

. Sometime during T

1

's execution, it received a timestamp, say t

1

. Sometime

after T

2

starts, it will also receive a timestamp, t

2

. Since T

1

and T

2

do not overlap in time, t

2

> t

1

.

The basic timestamp mechanism ensures that transactions are serialized in timestamp order, hence

there can be no dependency T

2

! � � � ! T

1

in the local serialization graph. If T

4

were allowed to

perform its second write action, it would create such a dependency; thus the local DBMS at s

2

will

abort T

4

.

This suggests a simple strategy for ensuring globally serializable schedules in an MDBS environ-

ment where each local DBMS is using a basic timestamp ordering concurrency control algorithm.

The idea is to run global transactions serially. If transactions are not overlapped, we know that

they will be assigned increasing timestamps, serialized in the proper order at each site, and the

global schedule will be serializable. This simple scheme, however, forces global transactions to run

serially. In the next three subsections we discuss MDBS systems that are able to concurrently

execute global transactions by exploiting knowledge about properties of local schedules.

4.2.1 Strongly Serializable DBMSs

The following de�nition captures the essential property of timestamp ordering that lets us achieve

global serializability. Actually, most concurrency control algorithms have this same property.

De�nition 4.1: Let S be a serializable schedule. We say that schedule S is strongly serializable

if and only if for every two transactions T

i

and T

j

in S, if the last operation of T

i

(commit or abort)

precedes the �rst operation of T

j

, then there is some serial schedule equivalent to S where T

i

precedes T

j

(i.e., T

i

precedes T

j

in the S's serialization order). 2

Assuming that a transaction receives a timestamp at the time of executing of its �rst operation,

the basic timestamp ordering concurrency control algorithm ensures that a local schedule is strongly

serializable.

3

Thus, as shown above, the GTM can ensure global serializability (when local schedules

3

Without this assumption the basic timestamp ordering algorithm may generate not strongly serializable schedule.

For example, w

2

(x) r

3

(x) c

3

w

1

(y) c

1

w

2

(y) c

2

can be generated by the basic timestamp ordering algorithm [7].

However, in this case the timestamp for T

1

was assigned before the �rst statement of T

1

was executed.

11

� Pessimistic. Global transactions are delayed to avoid serialization graph cycles.

� Optimistic. Cycles or potential cycles are detected and broken by aborting global transac-

tions.

There is a tradeo� between these two approaches: a pessimistic approach does not generate trans-

action aborts but may result in lower concurrency, while an optimistic approach may increase

concurrency but may result in a large number of transactions aborts [14].

4.1 Integration with Unlabeled DBMSs

Continuing with Example 3.1, consider a snapshot of schedules S

1

and S

2

depicting a situation

where the GTM has executed T

1

but has not started T

2

. (The actions that have not been executed

yet are within brackets.)

S

1

: r

1

(a) c

1

[w

3

(a) w

3

(b) c

3

r

2

(b) c

2

]

S

2

: w

4

(c) r

1

(c) c

1

[r

2

(d) c

2

w

4

(d) c

4

]

The GTM wishes to avoid the future execution shown in the brackets, as it will result in a non-

serializable schedule. One option would be to delay the execution of T

2

until the GTM is certain

that a serializability cycle cannot occur. Unfortunately, since the GTM has no control over site

s

2

, it has no way of knowing when T

4

will complete, and T

2

needs to run after T

4

to avoid the

dependency T

2

! T

4

. Hence, the pessimistic approach does not work. The optimistic one does not

work either: when T

2

completes it would always have to be aborted since it could have participated

in a cycle.

The only practical solution that is known to work in this scenario involves forcing con
icts

among the global transactions [32]. In the example, we can force T

1

to write some object at every

site it accesses data, and T

2

to read those objects. Thus, if the GTM executes T

2

after T

1

completes,

then it ensures that the arc T

1

! T

2

is placed in the global serialization graph. This guarantees

that the arc T

2

! T

4

! T

1

cannot be generated at s

2

, as it would create a local cycle. (Remember:

the local site generates locally serializable schedules.) In the example, when T

4

submits its w

4

(d)

action at s

2

, the local cycle would be detected at T

4

would be aborted.

In the above example, global serializability was assured since T

2

ran after T

1

completed. How-

ever, if these two transactions were to run concurrently, then an additional mechanism is required

to ensure that one site does not generate the edge T

1

! T

2

while another site generates T

2

! T

1

in their respective local serialization graphs. This is achieved by the use of a special data item-a

ticket that is maintained at each local site. Only a single ticket is required for each local site,

but tickets at di�erent local sites are di�erent data items. Only global transactions can access the

ticket. Moreover, each global transaction executing at a site is required to read the ticket value,

increment it and write an incremented value into the database. Thus, the ticket value read indicates

the serialization order of the global transactions at the site.

The algorithm of [32] is optimistic: the GTM keeps a serialization graph for all active transac-

tions (started but not committed). When a transaction T reads ticket value t at site s

i

, an arc is

entered from every transaction that read a ticket less than t at s

i

to T . If T completes all of its

actions and is not involved in a cycle, it is committed, else it is aborted. In [32] it is shown that

the ticket method guarantees global serializability.

The ticket idea can also be used in a pessimistic way. In this case, global transactions are

assigned a priori a global serialization order, and the tickets they should read are determined in

advance. If a transaction submits its operation outside of a local site ticket order, it waits.

10

3.3 Global Deadlock Problem

Consider a multidatabase system where each local DBMS uses a locking mechanism to ensure local

serializability. We assume that each local DBMS has a mechanism to detect and recover from local

deadlocks. However, in such systems there is a possibility of a global deadlock that cannot be

detected by the GTM.

Example 3.3: Consider a multidatabase system located at two sites: s

1

with data items a and

b, and s

2

with data items c and d. Local DBMSs at both sites use the two phase locking protocols

to guarantee local serializability. Let T

1

and T

2

be two global transactions de�ned as follows:

T

1

: r

1

(a) r

1

(d)

T

2

: r

2

(c) r

2

(b)

In addition, let T

3

and T

4

be two local transactions at sites s

1

and s

2

, respectively, de�ned as

follows:

T

3

: w

3

(b) w

3

(a)

T

4

: w

4

(d) w

4

(c)

Assume that T

1

has executed r

1

(a) and T

2

has executed r

2

(c). After that at site s

1

local transaction

executes w

3

(b), submits w

3

(a) and is forced to wait for a lock on a that is kept by T

1

. At site s

2

,

transaction T

4

executes w

4

(d), submits w

4

(c) and is forced to wait for a lock on c that is kept by

T

2

. Finally, transactions T

1

and T

2

submit their last operations and a global deadlock ensues. 2

Due to the design autonomy, local DBMSs may not wish to exchange their control information

and therefore will be unaware of the global deadlock. Similarly, the MDBS is not aware of local

transactions and, therefore, will be also unaware of the deadlock. In Section 7 we will discuss what

the GTM can do to ensure deadlock freedom.

4 Global Serializability Schemes

In this section, we describe techniques for ensuring global serializability in a failure and abort

free environment. That is, we assume that each transaction, whether local or global, will always

successfully complete once it has been submitted for execution. Under this assumption, no aborts

of global transactions by local DBMSs due to the local deadlocks are permitted. This is clearly not

a realistic assumption. However, studying this simpli�ed scenario yields a formal understanding of

the synchronization issues that arise in dealing with independent concurrency control mechanisms.

Failures and aborts will be considered in Section 6.

Example 3.1 demonstrates the key problem in guaranteeing globally serializable schedules. Local

transactions (such as T

3

) may generate indirect con
icts between global transactions that otherwise

are not in con
ict. In the example, T

3

creates a dependency T

1

! T

3

! T

2

and at the second site

T

4

creates dependencies T

2

! T

4

! T

1

. Thus, even though T

1

and T

2

do not con
ict, they are

involved in a cycle in the global serialization graph.

To avoid these cycles, the GTM will have to take some action. What action is taken depends

on the amount of knowledge the GTM has concerning the local concurrency control mechanisms.

In the subsections that follow we consider various scenarios, and for each one explain the types of

GTM actions that will ensure global serializability. The base scenario (Section 4.1) corresponds

to our base transaction model (Section 2): the GTM simply knows that each local site generates

local serializable and deadlock free schedules. Thus, the GTM considers each such DBMS as an

unlabeled black box. In subsequent scenarios, the GTM assumes additional properties (labels) of

the sites (black boxes).

In general terms, the actions taken by the GTM can be of two types:

9

T

1

: r

1

(a) w

1

(a) w

1

(c)

Suppose that T

1

has completed its read/write actions at both sites and the GTM sends commit

requests to both sites. Site s

2

receives the commit and commits its subtransaction. However, site

s

1

decides to abort its subtransaction before the commit arrives. Therefore, at site s

1

the local

DBMS undoes the T

1

actions. After this is accomplished a local transaction T

2

:

T

2

: r

2

(a) w

2

(a)

is executed and committed at the site.

At this point, the resulting global schedule is incorrect, as it only re
ects the s

2

half of T

1

. To

correct the situation, say the GTM attempts to redo the missing actions by resubmitting to s

1

the

missing write w

1

(a). The local DBMS, however, considers this operation as a new transaction T

3

that is not related to T

1

. Thus, from the local DBMS viewpoint, the committed projection of the

s

1

schedule is:

r

2

(a) w

2

(a) w

3

(a)

However, T

3

's write operation is the same as w

1

(a) as far as the MDBS is concerned. Thus, this

execution results in the following non-serializable schedule S

1

:

r

1

(a) r

2

(a)w

2

(a) w

1

(a) 2

We note that if the local DBMSs provide a prepare-to-commit operation, and they participate

in the execution of a global commit protocol, then the problems shown in Example 3.2 can be

avoided. In particular, in that example, the GTM does not issue the commit actions for T

1

until

both sites have acknowledged the prepare-to-commit. Because s

1

is prepared for T

1

, it cannot abort

it and the situation shown in Example 3.2 does not arise. However, as discussed above, this will

violate the execution autonomy requirement.

There is an ongoing debate as to whether sites in a MDBS will provide prepare-to-commit

operations and thereby give up their execution autonomy. One side argues that the two phase

commit protocol (with the prepared-to-commit operation) is becoming a standard, so that soon

all DBMS will provide this service. The other side argues that there will always be autonomous

sites that will want to preserve their execution autonomy, and therefore will not want to export

the prepare-to-commit operation, even if their local DBMSs provide it. This is because they do

not want their site to hold resources (e.g., locks) on behalf of a remote transaction, which may last

for an inde�nite amount of time. The �rst camp counter-argues that with modern networks and

computers, global transactions will be very fast, so the time that a site needs to block its resources

is minimal. So the site administrators will not mind allowing the prepare-to-commit. Furthermore,

they claim, the operator at a site can always manually release a transaction that hangs for too long

(e.g., break locks manually). So if a transaction ever waits too long in its prepare-to-commit state,

it can be aborted. The second camp then counter-argues that if the prepare-to-commit commitment

can be broken by the operator, then sites can unilaterally abort after all, so we are back at square

one.

Without taking sides in the argument, we believe it is important to study both scenarios, with

or without prepare-to-commit at the sites. In this paper, we will review both cases.

8

3.1 Global Serializability Problem

The various local DBMSs may use di�erent concurrency control protocols (e.g., Two Phase Locking

(2PL), Timestamp Ordering (TO), Serialization Graph Testing (SGT), etc.). Existing solutions for

ensuring global serializability in a homogeneous distributed database assume that each site uses

the same concurrency control scheme and shares its control information; hence existing solutions

cannot be used in a MDBS environment.

Since local transactions execute outside the control of the GTM, the GTM can guarantee global

serializability only through the control of the execution order of global transactions. However,

in such an environment, even a serial execution of global transactions does not guarantee global

serializability. The following example illustrates this fact.

Example 3.1: Consider a multidatabase system located at two sites: s

1

with data items a and

b, and s

2

with data items c and d. Let T

1

and T

2

be two read-only global transactions de�ned as

follows:

T

1

: r

1

(a) r

1

(c)

T

2

: r

2

(b) r

2

(d)

In addition, let T

3

and T

4

be two local transactions at sites s

1

and s

2

, respectively, de�ned as

follows:

T

3

: w

3

(a) w

3

(b)

T

4

: w

4

(c) w

4

(d)

Assume that transaction T

1

is executed and committed at both sites and after that transaction T

2

is executed and committed at both sites. Such execution may result in the following local schedules

S

1

and S

2

generated at sites s

1

and s

2

, respectively:

S

1

: r

1

(a) c

1

w

3

(a) w

3

(b) c

3

r

2

(b) c

2

S

2

: w

4

(c) r

1

(c) c

1

r

2

(d) c

2

w

4

(d) c

4

As a result, transaction T

1

is serialized before T

2

at s

1

and after T

2

at s

2

; hence global serializability

is not maintained. 2

In Example 3.1, the problem arises because the local transactions create indirect con
icts

between global transactions. Since the GTM is not aware of local transactions, it is also not aware

of these indirect con
icts. This phenomena is a cause of major di�culties in trying to ensure global

serializability in a multidatabase environment.

3.2 Global Atomicity and Recovery Problems

The global atomicity requirement dictates that either all the subtransactions of a transaction com-

mit, or they all abort. In a homogeneous distributed database systems, atomicity of transactions is

ensured by an atomic commit protocol [7]. This protocol requires that the participating local sites

provide aprepared state for each subtransaction. The subtransaction should remain in the prepared

state until the coordinator decides whether to commit or abort the transaction.

If we wish to preserve the execution autonomy of each of the participating local DBMSs, then

we must assume that local DBMSs do not export a transaction's prepared state. In such an

environment, a DBMS can unilaterally abort a subtransaction any time before its commit. This

not only leads to global transactions that are not atomic, but to incorrect global schedules, as

illustrated below.

Example 3.2: Consider a global database consisting of two sites s

1

with data item a, and s

2

with data item c. Consider the following global transaction T

1

:

7

T

j

T

i

T

j

T

i

T

j

T

i

Global Transactions

server

server

GTM

DBMSDBMS

Local Transactions

Figure 1: The MDBS Model

of the transaction (except the very �rst one) to be submitted for execution until the GTM receives

an acknowledgment from the previous operation of the same transaction (serial execution). The

overall multidatabase system model is depicted in Figure 1.

As mentioned earlier, we will also consider variations of base model we have presented. In

particular, we will consider two variations:

� Service Interface. Many real life examples of multidatabase applications are based on a

high-level service interface model [31, 20] (e.g. networks of travel agencies, the international

interbank clearing system, etc.). In the service interface model the GTM submits service

requests as opposed to individual read, write, abort, and commit actions. A service request

generates read, write, commit (or abort) at local sites, just like in the base model. However,

the GTM receives a single acknowledgment, after all actions have committed (or aborted).

In most cases, global concurrency control mechanisms are not signi�cantly a�ected if one

assumes a service interface model as opposed to the base model. Where there is some impact,

we will point it out.

� Extended Base Model. At various points, we will assume that sites provide additional

operations, such as a prepare-to-commit one. We will also assume several types of knowledge

about the concurrency control mechanisms used at local sites. For each extension, we will

study how global transaction management is a�ected.

3 Multidatabase Transaction Management Issues

The Global Transaction Manager (GTM) should guarantee the ACID properties of global trans-

actions, even in the presence of local transactions that the GTM is not aware of. In addition,

the GTM should guarantee deadlock free executions of global transactions and it should provide

means to recover from any type of system failures. In the next three subsections we illustrate the

di�culties that may arise.

6

� local transactions, those transactions that access data managed by only a single DBMS.

These transactions are executed by the local DBMS, outside of MDBS control

� global transactions, those transactions that are executed under MDBS control. A global

transaction consists of a number of subtransactions, each of which is an ordinary local trans-

action from the point of view of local DBMS where the subtransaction is executed.

The local schedule at site s

k

, denoted by S

k

, is a sequence of local and global transactions

operations resulting from their execution at site s

k

. Transaction T

i

is said to be committed (aborted)

in S

k

if S

k

contains c

i

(a

i

) operation. Transaction T

i

is active in S

k

if it is neither committed nor

aborted in S

k

. A projection of S

k

on a set of transactions T is a schedule that contains only

operations of transactions from T . A committed projection of schedule S

k

is a schedule that

contains only operations of committed transactions in S

k

.

We say that transactions T

i

and T

j

are in direct con
ict in schedule S

k

if and only if schedule

S

k

contains operation o

i

(x) followed by operation o

j

(x), where o

i

(x) or o

j

(x) are a write operation

and T

i

does not abort before o

j

(x) is executed. We say that transactions T

i

and T

j

are in indirect

conflict in schedule S

k

if and only if there is a sequence of transactions T

1

, T

2

, : : :, T

r

such that T

i

is in direct con
ict with T

1

, T

1

is in direct con
ict with T

2

, : : :, and, �nally, T

r

is in direct con
ict

with T

j

. Transactions T

i

and T

j

are in con
ict if and only if they are in direct or indirect con
ict.

Two local schedules are equivalent if they are de�ned on the same set of global and local trans-

actions, have the same operations and the same set of pairs of con
icting committed transactions.

Schedule S

k

is con
ict serializable if it is equivalent to a serial schedule. A local serialization graph

for schedule S

k

is a directed graph with nodes corresponding to global and local transactions that

are committed in S

k

and with a set of edges such that T

i

! T

j

if T

i

con
icts with T

j

in S

k

. Schedule

S

k

is serializable if and only if its local serialization graph is acyclic [7].

A global schedule S is a partial ordered set of all operations belonging to local and global

transactions such that, for any local site s

k

, a projection of S on a set of global and local transactions

executing at site s

k

is the local schedule S

k

at site s

k

. We say that a global schedule is globally

serializable if and only if there exists a total order de�ned over committed global transactions that is

consistent with the serialization order of committed global transactions at each of the local DBMSs

[9]. An union of local serialization graphs is called a global serialization graph. A global schedule

is globally serializable if and only if its global serialization graph is acyclic [9].

The MDBS software that executes on top of the existing local DBMSs consists of a global

transaction manager (GTM), and a set of servers, one associated with each local DBMS. Each

global transaction submits its operations to the GTM. For each submitted operation, the GTM

determines whether to submit the operation to local sites, or to delay it, or to abort the transaction.

If the operation is to be submitted, the GTM selects a local site (or a set of sites) where the operation

should be executed.

The GTM submits global transaction operations to the local DBMSs through the server which

acts as the liaison between the GTM and the local DBMS. Operations belonging to a global

subtransaction are submitted to the local DBMS by the server as a single transaction. We assume

that each local DBMS acknowledges to the server (and, in turn, to the GTM) the execution of

operations submitted to it. We do assume that the actions of a given transaction at a site always

end an execution with a commit (or abort) operation.

We do not impose any restrictions on how the various read and write operations of a global

transaction are executed by the GTM. It is possible in our model for several operations of the same

transaction to be executed by the GTM at the same time (parallel execution) or for no operation

5

{ Get-serialization-order. Retrieve information regarding the commit order of trans-

actions. (Such an order can be represented by a serialization graph, where the sets of

vertices correspond to transaction names, and the set of edges specify serialization order.

A cycle in the serialization graph indicates a non-serializable schedule.)

{ Inquire. Find out status (e.g., commit, abort) of a transaction.

{ Disable transaction class. Certain types of transactions (e.g., identi�ed by semantic

type, or by read or write access sets) are not allowed to commit at this box.

Thus, each local data source exports a well de�ned set of high-level operations that may be

invoked by users transactions. This notion of exported high-level operations roughly corresponds

to the transactions steps [22, 65]. In addition to the available operations, the global system may also

use knowledge of the internals of the local DBMS. For example, it may be known that a local DBMS

uses the two phase locking (2PL) protocol [18], or that it uses a strict, recoverable or cascadeless

concurrency control mechanism [7]. As we will see, this information may be of use to the MDBS

for coordinating global transactions.

The operations de�ne a spectrum of autonomy. At one end we have sites that simply provide

a service request interface (see choice (g) above); the MDBS is o�ered a �xed choice of services,

and once a request is submitted the MDBS has no control as to when it is executed, if at all. At

the other end of the spectrum the various transaction operations are submitted individually to the

local DBMS. Thus, the only mechanism that the MDBS can use to guarantee certain properties of

transaction executions is the mechanism of coordinating of a submission of transaction's operations.

A variety of points in the spectrum have been studied in the literature. In general, the more

autonomy the DBMSs retain, the harder it is to guarantee global data consistency [28, 29]. In this

paper we provide an overview of the di�erent points of the spectrum that have been studied and

the corresponding MDBS transaction mechanisms. Since our focus in this paper is on high level

autonomy, we will not consider here multidatabase systems where the participating local DBMSs

export wait-for or serialization-order information [53, 57, 51]. Such MDBSs are closely related to

homogeneous distributed database systems that have been extensively studied [7]. The results in

this paper are also applicable to homogeneous distributed database systems that allow local sites

to retain some level of execution autonomy.

We start by discussing our multidatabase transaction management model, and analyzing the

problems that arise in a multidatabase environment. We then classify di�erent notions of global

database consistency that have been introduced in literature so far. Finally, we discuss some open

problems that still need to be solved. This review is not intended to be comprehensive, but hopefully

covers major progress to date.

2 Multidatabase Transaction Model

In this section we de�ne the base transaction model to be used throughout the paper. This model

is chosen because it is the one that has received the most attention in the multidatabase literature.

However, we will consider extensions to the basic model at later points. We assume that each local

DBMS interface includes at least read, write, commit, and abort operations.

An MDBS consists of a number of pre-existing and autonomous local DBMSs located at sites

s

1

, s

2

, : : :, s

m

, where m � 2. A transaction T

i

is a sequence of read (r

i

) and write (w

i

) operations

terminated by either a commit (c

i

) or an abort (a

i

) operation. A multidatabase environment

supports two types of transactions:

4

may result in performance degradation, and, further, may render pre-existing applications

inoperative.

� Execution autonomy: Each local DBMS should retain complete control over the execution

of transactions at its site. An implication of this constraint is that a local DBMS may abort

a transaction executing at its site at any time during its execution, including the time when

a global transaction is in the process of being committed by the MDBS.

� Communication autonomy: Local DBMSs integrated by the MDBS are not able to co-

ordinate the actions of global transactions executing at several sites. This constraint implies

that local DBMSs do not share their control information with each other or with the MDBS

system.

Participating DBMSs may have di�erent autonomy levels. For example, some sites may be willing

to participate in the coordination of a global transaction (low communication autonomy) while

others may not (high communication autonomy).

One way to characterize the autonomy levels of sites is to de�ne the interface that each local data

source o�ers to user transactions. For example, no airline, or bank, or car agency would allow to

external users transactions to access their data using SQL statements. On the other hand, internal

users transactions will be allowed to do so. The interfaces can be categorized by the operations

they accept from the MDBS. Here, we illustrate some of the operations that may be available at a

site (black box). We partition these operations into two sets. The �rst one deals with transaction

operations, while the second one deals with status information.

� Transaction operations:

{ Begin transaction. The MDBS requests that a new local transaction be initiated.

DBMS typically returns a transaction identi�cation to be used in later commands.

{ End transaction. The identi�ed transaction has completed and may be committed.

{ Read or Write. Perform indicated action. The action may be low level (e.g., read a

record or write a record) or high level (e.g., withdraw money from an account). Begin

and end transaction operations may be implicit in action.

{ Abort. Terminate and abort a transaction. Undo all transactions e�ects in the database.

{ Commit. Make all changes that a transaction made permanent in the database and

purge the transaction from the system

{ Prepare to Commit. The identi�ed transaction has �nished its actions and is ready to

commit. DBMS guarantees that transaction will not be unilaterally aborted and waits

for commit or abort decision from the MDBS.

{ Service Request. The execution of a procedure is requested (e.g., \reserve a seat on

a given
ight"). A service request is equivalent to submitting all the actions of a local

transaction, from begin transaction to commit, at once.

� Status information operations:

{ Get-wait-for-graph. Retrieve the local-wait-for-graph (if one is used) to be used in

global deadlock detection. (A local-wait-for-graph consists of a set of vertices corre-

sponding to transaction names, and a set of edges specifying a waiting relation between

transactions. A cycle in the graph indicates a deadlock situation.)

3

1 Introduction

Recent progress in communication and database technologies has changed the user data process-

ing environment. The present data processing situation is characterized by a growing number of

applications that require access to various pre-existing local data sources located in heterogeneous

hardware and software environments distributed among the nodes of a network. Each local data

source is a collection of data and applications that are run under a particular database management

system (DBMS) and are administered/operated under a particular policy or local rules.

The data sources are pre-existing in the sense that they were created independently, in an

uncoordinated way and without considering that one day they may need to be integrated. The

DBMSs involved are heterogeneous in the sense that they operate in di�erent environments and may

use di�erent underlying data models, data de�nition and data manipulation facilities, transaction

management and concurrency control mechanisms, and physical data structures.

Amultidatabase is composed of local data sources. Systems that facilitate the logical integration

of local data sources are called multidatabase systems. Logical data integration creates an illusion

of a single database system and hides from users the intricacies of di�erent DBMSs and di�erent

access methods. It provides users with uniform access to data contained in various databases,

without migrating the data to a new database, and without requiring the users to know either the

location or the characteristics of di�erent databases and their corresponding DBMSs. Using the

multidatabase approach, pre-existing applications remain operational and new applications may

access data in various distributed data sources.

A multidatabase system (MDBS) is built on top of a number of local DBMSs that manage

di�erent local data sources. Access to data located in a local data source is accomplished through

transactions. A transaction results from the execution of a user program written in a high level

programming language (e.g., C, or PASCAL). In this paper, we assume that each local DBMS

ensures the following properties (called ACID properties) of transactions executed at its site

� Atomicity: Either all operations of the transaction are properly re
ected in the database or

none are.

� Consistency: Execution of a transaction in isolation preserves the consistency of the database.

� Isolation: Each transaction assumes that it is executed alone in the system and the local

DBMS guarantees that intermediate transaction results are hidden from other concurrently

executed transactions.

� Durability: The values changed by the transaction must persist after the transaction suc-

cessfully completes.

To ensure the consistency and isolation properties, each local DBMS generates a con
ict serializable

schedule consisting of operations of local and global transactions that were executed at its site. To

ensure the atomicity and durability properties, each local DBMS uses some form of recovery scheme

(e.g., write-ahead log scheme [7]).

The MDBS considers each local DBMS as a black box that operates autonomously, without the

knowledge of either other local DBMSs or the MDBS system. Local autonomy is the main fea-

ture that distinguishes the multidatabase systems from conventional distributed database systems.

There are three main types of autonomy:

� Design autonomy: No changes can be made to the local DBMS software to accommodate

the MDBS system. Making changes to the existing software of the DBMS is expensive,

2

Overview of Multidatabase Transaction Management

Yuri Breitbart

1

Department of Computer Science

University of Kentucky

Lexington, KY 40506

Hector Garcia-Molina

Department of Computer Science

Stanford University

Stanford, CA 94305

Avi Silberschatz

2

Department of Computer Sciences

University of Texas

Austin, TX 78712

Abstract

A multidatabase system (MDBS) is a facility that allows users access to data located in multiple autonomous

database management systems (DBMSs). In such a system, global transactions are executed under the control

of the MDBS. Independently, local transactions are executed under the control of the local DBMSs. Each

local DBMS integrated by the MDBS may employ a di�erent transaction management scheme. In addition,

each local DBMS has complete control over all transactions (global and local) executing at its site, including

the ability to abort at any point any of the transactions executing at its site. Typically, no design or internal

DBMS structure changes are allowed in order to accommodate the MDBS. Furthermore, the local DBMSs

may not be aware of each other, and, as a consequence, cannot coordinate their actions. Thus, traditional

techniques for ensuring transaction atomicity and consistency in homogeneous distributed database systems

may not be appropriate for an MDBS environment. The objective of this paper is to provide a brief review

of the most current work in the area of multidatabase transaction management. We �rst de�ne the problem

and argue that the multidatabase research will become increasingly important in the coming years. We then

outline basic research issues in multidatabase transaction management and review recent results in the area.

We conclude the paper with a discussion of open problems and practical implications of this research.

1

This material is based in part upon work supported by the Center for Manufacturing and Robotics of the

University of Kentucky and by NSF Grant IRI-8904932.

2

This material is based in part upon work supported by the Texas Advanced Technology Program under Grant

No. ATP-024, the National Science Foundation under Grant Nos. IRI-9003341 and IRI-9106450, and grants from

the IBM and Hewlett-Packard corporations.

1

OVERVIEW OF MULTIDATABASE

TRANSACTION MANAGEMENT

Yuri Breitbart

Hector Garcia-Molina

Avi Silberschatz

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712-1188

TR-92-21 May 1992

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712

