Sorting-Based Selection Algorithms
for Hypercubic Networks

Bruce M. Maggs C. Greg Plaxton*

NEC Research Institute Department of Computer Science
4 Independence Way University of Texas at Austin
Princeton, NJ 08540 Austin, TX 78759

Abstract

This paper presents several deterministic algorithms for selecting the kth largest
record from a set of n records on any n-node hypercubic network. All of the algorithms
are based on the selection algorithm of Cole and Yap, as well as various sorting algo-
rithms for hypercubic networks. Our fastest algorithm runs in O(lgnlg™ n) time, very
nearly matching the trivial Q(lgn) lower bound.

Keywords: Parallel algorithms, hypercube, selection.

*This research was supported by NSF Research Initiation Award CCR-9111591, Texas Advanced Research
Program (TARP) Award #003658480, and the NEC Research Institute.

1 Introduction

Successive sampling techniques have previously been used to obtain efficient selection algo-
rithms on certain idealized models of parallel computation. In this paper, we apply this
methodology to obtain asymptotically fast selection algorithms for more practical models of
parallel computation. In particular, the time bounds that we derive are applicable to any
parallel machine in the class of hypercubic networks, which includes the hypercube, butterfly,
cube-connected cycles, and shuffle-exchange.

1.1 Hypercubic networks

The selection algorithms described in this paper can be implemented on any hypercubic
network. Let n = 2%, where d is a nonnegative integer. In an n-node hypercube, each node
has a distinct d-bit label. A node labeled by - - - b;_1 has edges to those nodes whose labels
differ from by - - - by_1 in exactly one bit position. An edge connecting two nodes whose labels
differ in bit 7 is called a dimension-1 edge. Fach node has d neighbors, one for each dimension.
A subcube of the hypercube is formed by fixing the bit values of the labels in some subset
of the d dimensions of the hypercube, and allowing the bit values in the other dimensions
to vary. In particular, for each subset jo,...,jr_1 of the set of dimensions {0,...,d — 1},
and each set of bit values vg,...,vp_1, there is a dimension-£ subcube of the hypercube
consisting of the n/2* nodes whose labels have value v; in dimension j;, 0 <7 < k, and the
edges connecting those nodes.

The nodes in a hypercube represent processors, and the edges represent wires. Each
processor has some local memory organized in O(d)-bit words. At each time step, a processor
can send a word of data to one of its neighbors, receive a word of data from one of its
neighbors, and perform a local operation on word-sized operands. In sorting and selection
problems, the input consists of a number of O(1)-word records. Each record has an associated
key that determines its rank in the entire set of records. We will assume throughout that all
keys are unique. This may be done without loss of generality, since ties can always be broken
in a consistent manner by appending the initial address (processor and memory location) of
each record to its key.

All of the algorithms described in this paper use the edges of the hypercube in a very
restricted way. At each time step, only the edges associated with a single dimension are
used, and consecutive dimensions are used on consecutive steps. Such algorithms are called
normal [6, Section 3.1.4]. The bounded-degree variants of the hypercube, including the
butterfly, cube-connected cycles, and shuffle-exchange graph, can all simulate any normal
hypercube algorithm with constant slowdown. For simplicity, we will describe all of the
algorithms in terms of the hypercube.

1.2 Previous work

In [9], Valiant proved an Q(lglgn) lower bound on the time to find the largest record in
a set of n records using n processors in the parallel comparison model. The lower bound
implies a lower bound on the time to select the kth largest record as well. Valiant also

showed how to find the largest record in O(lglgn) time. Cole and Yap [4] then described
an O((Iglgn)?) selection algorithm for this model. The running time was later improved to
O(lglgn) by Ajtai, Komlds, Steiger, and Szemerédi [1]. The comparisons performed by the
latter algorithm are specified by an expander graph, however, making it unlikely that this
algorithm can be efficiently implemented on a hypercubic network.

A different set of upper and lower bounds hold in the PRAM models. Beame and
Hastad [2] proved an Q(lgn/lglgn) lower bound on the time for selection in the CRCW
comparison PRAM using a polynomial number of processors. Vishkin [10] discovered an
O(lgnlglgn) time PRAM algorithm that uses O(n/lgnlglgn) processors. The algorithm
is work-efficient (i.e., exhibits optimal speedup) because the processor time product is equal
to the time, O(n), of the fastest sequential algorithm for this problem. Cole [3] later found
an O(lgnlg™n) time work-efficient PRAM algorithm.

For any p-processor hypercubic network, Plaxton [8] showed that selection from a set of
n records requires Q((n/p)lglgp + lgp) time in the worst case. The bound implies that a
work-efficient algorithm is not possible.

2 Selection by successive approximation

This section presents several algorithms for selecting the kth largest record from a set of n
unordered records on an n-node hypercubic network. In Section 2.1 we describe an approx-
imate selection algorithm. This algorithm is used as a subroutine in selection algorithms
described in later sections. In Section 2.2 we describe an O(lgnlglgn) time algorithm. The
running time is improved to O(lgn1g® n) and then to O(lg n1g!" n) in Sections 2.3 and 2.4,
respectively. Finally, an O(lg nlg™ n) algorithm is presented is Section 2.5. This last improve-
ment is made at the expense of using a non-uniform variant of the Sharesort algorithm [5]
that requires a certain amount of preprocessing.

2.1 Approximate selection

In this section, we develop an efficient subroutine for approximate selection based on the
parallel comparison model algorithm of Cole and Yap [4]. There are two major differences.
First, we use Nassimi and Sahni’s sparse enumeration sort [7] instead of a constant time
sort (as is possible in the parallel comparison model), and second we obtain a total running
time that is proportional to the running time of the largest call to sparse enumeration sort,
whereas in the Cole and Yap algorithm, the running time is proportional to the number of
sorts (O(lglgn)), each of which costs constant time.

As in the Cole-Yap algorithm, the approximate selection algorithm proceeds by succes-
sively sampling the given set of records. We define “sample (07 as the entire set of records. At
the ¢th stage of the approximate selection algorithm, ¢ > 0, a “sub-sample” is extracted from
sample 7. This sub-sample represents sample 7 + 1, and will be a proper subset of sample
1. Hence the sequence of sample sizes is monotonically decreasing. The sampling process
terminates at a value of ¢ for which the ith sample is sufficiently small that it can be sorted
in logarithmic time (using sparse enumeration sort). From this final sample, we will extract

lower and upper approximations to the desired record. A lower approximation to the record
of rank k is a record with rank less than or equal to k. An upper approxzimation to the record
of rank k is a record with rank greater than or equal to k. Our goal will be to obtain “good”
upper and lower approximations in the sense that the ranks of our approximations will be
close to k.

The following approach is used to extract sample ¢ + 1 from sample . First, the records
of sample ¢ are partitioned into a number of equal-sized groups, and each group is assigned
an equal fraction of the processors. Second, each group of records is sorted using sparse
enumeration sort. The number of groups is determined in such a way that the running time
of sparse enumeration sort is logarithmic in the group size. This is the case, for example, if
sparse enumeration sort is used to sort m? records in a subcube with m?® processors. Letting
k denote the group size, the third step is to extract approximately vk uniformly-spaced
records (i.e., every Vkth record) from each group. The union of these extracted sets of size
Vk forms sample i + 1. Note that the ratio of the size of sample i to that of sample i 4 1 is

Vk.

Before proceeding, we introduce a couple of definitions.

Definition 2.1 The rank of a record « in a set S, rank(e, 5), is equal to the numbers of

records in S that are strictly smaller than a. (Note that the record a may or may not belong
to the set S.)

Definition 2.2 An r-sample of a set of records S is the subset R C S consisting of those
records whose ranks in S are multiplesof r, i.e., R = {a € S | rank(«, S) = 1,0 <0 < |S]|/r}.

The input to the algorithm is a set Sy of 29 elements concentrated in a subcube A of size
2°7¢. (A set of records is concentrated in a subcube if each record is located in a distinct
processor in that subcube.) The factor by which the size of the subcube exceeds the size of Sy,
2% is called the excess processor ratio. In the first iteration, the records in Sy are partitioned
into 29727 groups of size 22 and 2% processors are assigned to each group. Each group is
then sorted in O(x) time using sparse enumeration sort, and a 2*-sample is taken from each
group. The samples from all the groups are combined to form a new set S containing 2°~*

26-2(2'"'=1) records remain. In the

def 98—e(3-271-1)

elements. In general, after ¢ — 1 iterations, a set 5;_; of
ith iteration, set S; is formed by partitioning the records of S;_; into g;_;
groups of size 2 and then extracting a 21’21_1‘—sample from each group. Since the ratio of
the number of processors in A to [S;_] is 272" we can assign 2327 processors to each
group of size 22", and each group can be sorted in O(z2') time using sparse enumeration
sort.

Lemma 2.1 The time to execute ¢ iterations of the approximate selection algorithm is

O(x2").

Proof: The timeis Y <<, O(227) = O(22"). [

Lemma 2.2 Let ¢, ¢’, and 6" denote integers satisfying 0 < ¢’ < d and 0 < §”" < ¢’ Let X
denote a set of 29 records, and assume that X is partitioned into 2°=% sets Xz, 0 < k < 20-%",
of size 2%, Let X’ denote the union of the 25”-samples of each of the X}’s. If record o has
rank 7 in set X', then the rank of « in set X lies in the interval

(j25// _ 25_5/+5//7j25//]‘

Proof: Let r; denote the rank of o in the 25”—sample extracted from set X, 0 < k < 26-9"

Then the rank of « in set Xy, lies in the interval ((r — 1)25”, rk25”], and so the rank of a in
X belongs to

(S (o127, S n2) = (25— 28 s,

0<k<28—¢ 0<k<28—¢
since j =3 gcpegi—s The [

Corollary 2.2.1 Let record a have rank j in set S, for some ¢ > 1. Then the rank of « in

set 5;_; lies in the interval
cnpi—] (2 cnpi—]
(j27T =20l gor T

Proof: A straightforward application of Lemma 2.2, with the variables §, §’, and §” of the
lemma replaced by the expressions § — x(271 — 1), z(3- 2" — 1), and 227!, respectively. []

Lemma 2.3 Let record o belong to S; and let j denote the rank of « in 5;, for some ¢ > 1.
Then the rank of o in Sy lies in the range

(]Qx(zi—n . Z 25—1’2’“7]'21’(2"—1)]‘

0<k<i

Proof: The proof is by induction on 2. The base case, 1 = 1, is a special case of Corol-
lary 2.2.1.

Now let us assume that the claim holds inductively. Suppose that record a has rank j in
S;. Then by Corollary 2.2.1, the rank of « in the set S;_; lies in the interval

(j2902i_1 . 25—w(2i—1)7j2902i_1]‘

Applying the induction hypothesis, the rank of record « in the set Sy must be strictly greater
than

(]-szi—l . 25—x(2i—1))2x(2i—1—1) . Z 25—x2k _ j2x(2i—1) . Z 25—x2k7
0<k<i—1 0<k<i
and at most
j2x2i_12w(2i_1—1) j2x(2i—1)

Y

as required. []

Theorem 1 Let S denote a set of 2° records concentrated in a subcube ® of size 2+% (z
integer, 4 < x < §/2), and let k be an integer, 0 < k < 2°. Then in O(J) time it is possible
to compute a subset S’ of S and an integer &’ such that the following conditions are satisfied:
(i) | S| = 25—=+3_ (ii) 0 < K’ < |97, (iii) the record of rank &’ in 5" has rank k in S, and (iv)

S’ is concentrated in ®.

Proof: We begin by executing i iterations of the approximate selection algorithm where,
as we shall see, (§ + 2)/3 < 22" < § + 1. The approximate selection algorithm produces a
set S; of 2°77(2'=1 records. By Lemma 2.1 the time is O(22') = O(J).

Next, the records in \S; are sorted using sparse enumeration sort. There are 25—
records, 297 processors, and an excess processor ratio of 272, We choose 7 to be the smallest

2¢—1)

value such that the excess processor ratio is at least the square root of the number of records,
22" > 2(6 — x(2' — 1)). Solving for i yields 2° > (6 + z)/3z and i = [lg 5;—;1 The time for
sparse enumeration sort is O(6 +) = O(9).

We would now like to find two records, F; and R, in S;, with ranks r; and r, in Sp, such
that k belongs to the interval (r;,r,] and r, — r; is small. In the following, let A = 9x(2'~1)
and let B = 2977t By Lemma 2.3, the key with rank j in S; must lie in the interval
(JA — B,jA] in So. Let 5y = |k/A], let j, = [(k+ B)/A], and let R; and R, be the
records in 5; with ranks j; and j, in 5;, respectively. Then ;A — B < r; < 5334 < k, and
kE<j,A—B <r, <j,A. Note that B = DA, with b integer, and there exist integers o and
f#,0< 3 < A, such that Kk = aA + 3. Hence j, =a+b+ [f/A] <a+b+ 1, 51 = «, and

Ty — T S (.]u_]l)A‘I’B
< (a+14+b—a)A+B
= A+2B.

We will set S” to be the set of at most A+ 2B records in Sy with ranks in (r;,r,]. Note that,
given records R; and R,, it is straightforward to identify and concentrate the set S” in O(4)

time. For A < B, we have |S/| < 3B < 25773, For i = [lg 5:;"—;1, the inequality A < B is

(20 -1) < le-((S;;w)—1]
— (§—2)—(6—22)/3
< J-z

satisfied since

Y

where the last inequality follows from the assumption that @ < §/2. The value of £ is
determined by finding the rank of &k in S’, which can easily be done in O(d) time. []

2.2 An O(lgnlglgn) algorithm

Let us define T'(d,x) as the time required to select the kth element from a given set of 2°
elements concentrated in a subcube of 2°*¥% processors (for worst case k). Note that for
§ < § and 2’ > x, we have T(¢',2') < T(4,2); in what follows, we will occasionally make
implicit use of this trivial inequality.

The subroutine corresponding to Theorem 1 gives
T(0,2) <T(6—a+3,2c—3)+ O(J) (1)

for 4 < a < §/2. For @ > €6, where ¢ denotes an arbitrarily small positive constant, sparse
enumeration sort implies that T'(4, 2) = O(d). We are interested in obtaining an upper bound
for T'(6,0). Note that T'(8,0) = O(T'(d,4)), since we can simulate a 2°T*-processor hypercube
on a 2%-processor hypercube with only constant factor slowdown. By iterating the recurrence
of Equation (1), we can obtain an upper bound for T'(4,4). For § > 8, one application of the
recurrence gives T'(8,4) < T(6—1,5) + ¢§ for some constant ¢ > 0. For § > 11 we can apply
the recurrence again to obtain 7'(8,4) < T(§ — 3,7) + 2¢§. In general, for § > 2/ 4 271 4 5,
we can apply the recurrence 7 times to obtain T'(8,4) < T(§ —2° +1,2° + 3) +1¢§ (this claim
is easily verified by induction on 7). For § > 20, we can set i = [lg] — 1 to obtain 7'(4,4) <
T([36/4] +1,16/4]+3) + O(d1géd) = O(1gd). Hence T(d,0) = O(dlgd) = O(lgnlglgn).

This algorithm is essentially equivalent to that descibed by Plaxton in [8]. Prior to this
algorithm, the best bounds known for selection on the hypercube were given by sorting
algorithms.

2.3 An O(lgnlg® n) algorithm

Throughout this subsection, we will refer to the O(lgnlglgn) selection algorithm of Sec-
tion 2.2 as the “basic” algorithm. Our present goal is to improve the running time of the
basic algorithm to O(dlglgd) = O(lgnlg® n) by a simple modification. The basic algo-
rithm consists of O(lg d) applications of the O(d) approximation subroutine corresponding
to Theorem 1. We will view each application of the approximation subroutine as a “phase”
of the basic algorithm. In order to improve the performance of the basic algorithm, we will
augment each phase in the following manner: before applying the approximation subrou-
tine, we will partition the remaining data into subcubes of dimension ', sort these subcubes
completely, and extract a 2°"-sample from each subcube, where §” = [§'/2]. These samples
are then passed on to the approximation subroutine for successive sampling.

The parameter ¢’ will be chosen in such a way that, given the excess processor ratio
available at that particular phase, the sort can be completed in O(d) time. The motivation
for defining ¢’ in this manner is to balance the time spent on the initial sort with the O(d)
running time of the approximation subroutine. Sparse enumeration sort will be used to
perform the intial sort in each phase.

We will now analyze the performance of each phase in greater detail. Before the phase,
let S denote the set of remaining records, assume that |.S| = 2°, and assume that the excess
processor ratio is 2%, & > 0. At the beginning of the phase, we partition S into 2°=% sets of
size 2°' | and sort each set in a subcube of dimension &’ 4+ . We then extract a 2%"-sample
from each sorted set, where §” = [§'/2]. Let S’ denote the set of 2°=°*" records in the union
of all of these samples. By Lemma 2.2, the key of rank j in S” has rank in the interval

(],25// . 2(17.],25//]

in S, where a« = § — ¢’ + §”. Accordingly, we will obtain a lower approximation for the kth
record in S by computing a lower approximation (via Theorem 1) for the {kQ“g”J th record in

S’. Similarly, we will obtain an upper approximation for the kth record in S by computing
an upper approximation for the (ka_‘g”T + 25_5/)th record in 5.

By Theorem 1, in O(§) time we can determine a set of at most 2° records with contiguous
ranks in 9" that contains any desired rank, where b = § — x — 26" 4+ 3. [To see this, apply
Theorem 1 with the variables 6 and x of the theorem replaced by the expressions § — §”
and x + ¢”, respectively.] In particular, we can obtain a lower approximation for the record
of rank k' in S’ that has rank strictly greater than &’ — 2°, and we can obtain an upper
approximation with rank strictly less than &'+ 2°. Thus, in O(4) time, we can determine:

(i) a lower approximation to the record of rank {kQ“g”J in 5" with rank strictly greater

than {kQ“g”J —2%in &, and

(ii) an upper approximation to the record of rank [kQ“g”W + 25-%" in 8’ with rank strictly
less than [kQ“g”W 4 925=8" L 9bip &7,

By the with the bounds of the preceding paragraph, the aforementioned lower and upper
approximations represent, respectively:

(i) a lower approximation to the record of rank k in S with rank strictly greater than
k— 20" —20 — 28" iy S and

(ii) an upper approximation to the record of rank k in S with rank strictly less than

k428" 420 4 204" in G
Hence, within the same time bound we can identify a set of at most
2o (2 4 20 4 2

records with contiguous ranks in S and which contains the record of rank &k in S. Observe
that @ > 6" and @ +3 > b+ ¢” (recall that « = § — ¢’ 4+ ¢”). Hence, we can conclude that
z < 2015,

Note that the initial application of sparse enumeration sort will run in O(§) time if §' =
O(v/dx), since the running time of sparse enumeration sort is O(8'(8' + z)/x) = O((§')*/x).
Accordingly, let us set ' = [C\/ﬂ for some positive constant ¢. Note that for @ > 1, ¢ > 1,

and ¢ sufficiently large, 20-9+8"+5 < 99=[V8] and hence = < 99 [V3=] As in Section 2.2
(where in fact we assumed that @ > 4), we may assume that @ > 1 without loss of generality.

Y

Hence, the foregoing discussion has established the recurrence

T(6,2) < T(CS—[\/EW,SE—I-[\/ED—I-CQS
< T (6, [Var])+ s

for 1 <z < §/2 and some constant ¢ > 0. For 2 > 1 and [V(S:ﬂ < /2 we can iterate this
recurrence to obtain

T(5,z) < T(é,{ 5[@]})%55

< 7 (3, [6*211]) +2¢6.

7

More generally, for z > 1 and [51_2_ix2_ﬂ < §/2,1 >0, we can apply the recurrence 7 times
to obtain

T(6.x) < T(6 (87 2]) +ids
< T (6,[6F)) +ic.

It is straightforward to verify that the recurrence can be applied lglgd + O(1) times, at
which point we have

T(6,2) <T(S,y)+ O(dlglgd)

for some y with §/2 < y < §. Sparse enumeration sort implies that 7'(d,y) = O(¢) and hence
T(d,0) = O(dlglgd) = O(lgn1g® n).

2.4 An O(lgnlg™ n) algorithm

We can improve the time bound achieved in Section 2.3 by making use of the Sharesort
algorithm of Cypher and Plaxton [5]. Several variants of that algorithm exist; in particular,
detailed descriptions of two versions of Sharesort may be found in [5]. Both of these variants
are designed to sort n records on an n-processor hypercubic network. The first algorithm runs
in O(lg n(lglgn)?) time and the second algorithm, which is somewhat more complicated, runs
in O(Ign(lglgn)?) time. The selection algorithm of this section will make use of Sharesort
as a subroutine. For this purpose, either of the aforementioned variants of Sharesort may
be used; this choice will not affect the overall running time by more than a constant factor.
For the sake of concreteness, in the calculations that follow we will assume that the simpler
O(lgn(lglgn)?) algorithm is used.

The only change to the algorithm of Section 2.3 is that in the initial phase, Sharesort
will be used instead of sparse enumeration sort to perform the initial O(d)-time sort. With
Sharesort, we can afford to set §' = ©(d/(lg d)), which is substantially larger than the ©(v/d)
bound achievable with sparse enumeration sort. For all phases subsequent to the first phase,
however, we will make use of sparse enumeration sort. The reason is that, in the absence
of a suitable processor-time tradeoft for the Sharesort algorithm, sparse enumeration sort is
actually faster than Sharesort after the first phase (due to the large excess processor ratio
created by the first phase). In Section 2.5, we will obtain an even faster selection algorithm
by developing and applying an effective processor-time tradeoff for the Sharesort algorithm.

We will now analyze the running time of the selection algorithm of Section 2.3 when ¢’
is set to O(d/(lgd)?) in the first phase. The first phase establishes the inequality

T(d,0) < T(d, [d/(1g d)*]) + O(d).
Now d/(lgd)* = A= with i = 1glgd —1g® d — O(1). Hence, the recurrence of Section 2.3
implies that T(d, [d/(lgd)*]) = O(d1g® d). Thus T(d,0) = O(d1g'¥ d) = O(lgn1g¥ n).
2.5 An O(lgnlg"n) algorithm

The improvement described in Section 2.4 resulted from applying Sharesort instead of sparse
enumeration sort at the beginning of the first phase. Note, however, that all of the phases

8

(including the first) continue to make extensive use of sparse enumeration sort. The calls to
sparse enumeration sort made by each of the algorithms defined thus far may be partitioned
into two classes: (i) those calls made within applications of Theorem 1, and (ii) those calls
used to perform an O(d)-time sort (actually, a set of parallel O(d)-time sorts) before applying
Theorem 1. The algorithm of Section 2.2 contains only calls of Type (i), since each phase
consists solely of an application of Theorem 1. The algorithm of Section 2.3 contains both
Type (i) and Type (ii) calls, since each phase consists of an O(d)-time sort followed by
an application of Theorem 1. The algorithm of Section 2.4 is the same as the algorithm
of Section 2.3, except that the Type (ii) call of the first phase is replaced with a call to
Sharesort (causing the number of phases to be substantially reduced).

Could we obtain an even faster selection algorithm than that of Section 2.4 by replacing
some or all of the remaining calls to sparse enumeration sort with calls to Sharesort? With
regard to the Type (i) calls, the answer is no. Even if the Type (i) sorts were performed in
optimal logarithmic time, the reduction in data (i.e., relevant records) between successive
phases would not be improved significantly. The reason is that the amount of data that
“survives” to the next phase is predominantly determined by the size of the subcubes sorted
in the Type (ii) sorts. Thus, in all of the algorithms described in this paper, we will continue
to make use of sparse enumeration sort to perform all of the sorts within applications of
Theorem 1.

Now let us consider the Type (ii) calls. All of these calls to sparse enumeration sort will
in fact be replaced with calls to a more efficient sorting algorithm in order to obtain the
O(lgnlg™n) time bound claimed in the title of this section. As discussed in Section 2.4,
we cannot obtain such a bound by merely replacing all of the Type (ii) calls to sparse
enumeration sort with calls to one of the single-item-per-processor variants of Sharesort.
Instead, we will proceed by developing a time-processor tradeoff for Sharesort, and then
using the resulting algorithm to perform all of the Type (ii) sorts.

Theorem 2 Let n records be concentrated in a subcube of a p-processor hypercubic network
p*/? < n < p. There exists a deterministic algorithm for sorting these records in time

O(lgn(lglgn —1glg 2)). (2)

Proof: Asindicated in Section 2.4, there are a number of variants of the Sharesort algorithm
of Cypher and Plaxton [5]. These algorithms differ solely in the way that the so-called
shared key sorting subroutine is implemented. The shared key sorting problem represents
a restricted version of the sorting problem; a formal definition of the shared key sorting
problem will not be needed in this paper, and so will not be given. All variants of Sharesort
make use of precisely the same recursive framework to reduce the problem of sorting to that
of shared key sorting.

Perhaps the simplest variant of Sharesort runs in O(lgnlglgn) time and relies upon an
optimal logarithmic time shared key sorting subroutine. This particular result is mentioned
in the original Sharesort paper [5] and more fully described by Leighton [6, Section 3.5.3].
Although it is the fastest of the Sharesort variants, this sorting algorithm suffers from the
disadvantage that it is non-uniform. From the point of view of a user who would like to run

this sorting algorithm on a particular hypercube of dimension d, what this non-uniformity
implies is that a “setup” routine must be executed when the machine is first configured in
order to generate a version of the algorithm that is capable of efficiently sorting any subcube
of dimension less than or equal to d. Note that the setup routine need only be executed
once in the lifetime of the machine (and not once per sort) and so this deficiency may not be
considered overly severe. Unfortunately, the most efficient deterministic algorithms currently
known for performing the setup task run in time that is doubly-exponential in d.

We will establish the validity of Equation 2 by developing a time-processor tradeoft for
the O(lgnlglgn) time, non-uniform variant of Sharesort.

As mentioned above, all variants of Sharesort are based on a particular system of recur-
rences. At the highest-level, sorting is performed recursively via high-order merging (i.e.,
merging n° sorted lists of length n'~¢ for some constant €, 0 < ¢ < 1). The running time
of Sharesort is dominated by the time required for high-order merging, which is itself per-
formed recursively. Let M(x,y) denote the task of sorting x sorted lists of length y. One
possible recurrence for performing the merge is (minor technical details related to integrality
constraints are dealt with in [5] and will not be addressed here)

M(n1/5, n4/5) < M(n4/45, n16/45) + M(nl/g, n4/9) + O(lgn) + SKS(n), (3)

where SKS(n) denotes the time required to solve the shared key sorting problem. Note that
all of the merge operations appearing in Equation (3) are of the form M (z,z), so that it
indeed provides a well-defined recurrence. For the O(lgnlglgn) time, non-uniform variant
of Sharesort, SKS(n) = O(lgn), and so the SKS(n) term essentially disappears from the
recurrence of Equation (3). In order to obtain the time bound of Equation (2), we will make
use of additional processors in the following simple way: whenever a merging problem of the
form M(xz,x?) arises and z® is less than the excess process ratio, we will apply x!'° processors
to solve that merging subproblem in optimal O(lg) time using sparse enumeration sort.
A straightforward analysis shows that this modification to the O(lgnlglgn) algorithm of
Sharesort yields the sorting time bound of Equation (2). []

As suggested earlier, we now define the selection algorithm of the present section by
modifying the O(Ignlg!® n) algorithm of Section 2.3: All of the Type (ii) calls to sparse
enumeration sort will be replaced with calls to the sorting algorithm of Theorem 2. In
order to analyze the performance of this algorithm, one may simply repeat the analysis of
Section 2.3 with ¢’ set to [¢d/(lgd —lgx)] for some sufficiently large positive constant c.
Doing this, we obtain the recurrence

5
< - /
T6,2)<T (5, Lg(g—lg:l:-‘) +d6

for 1 <a <§/2 and some constant ¢ > 0. For > 1 and [5/lg(i)(lg5— lg:zj)w <§/2,1>0,
we can apply the recurrence ¢ times to obtain

5 .,
T6,2)<T (5, Lg(i) 5-‘) +1c'é.

10

In general, the recurrence can be applied lg”d 4+ O(1) times, and we find that 7'(d,0) =
O(dlg™d) = O(lgnlg™ n).

3 Concluding Remarks

This paper has developed a number of asymptotically fast selection algorithms for hypercubic
networks. Our analysis of these algorithms has focused on determining their running times
to within a constant factor. In order to simplify the analysis, we have occasionally employed
rather loose bounds, and so the multiplicative constants implicit in our O-bounds will be
correspondingly pessimistic.

The time-processor tradeoff of Theorem 2, which led to our O(lgnlg” n) time selection
algorithm, is likely to have other applications. Unfortunately, this tradeoff is only obtained
by making use of a non-uniform version of Sharesort. It would be highly desirable to establish
a uniform O(lgnlg™n) bound for the selection problem, perhaps by developing a suitable
processor-time tradeoff for one of the uniform variants of Sharesort.

It is noteworthy that the algorithm devised by Cole and Yap for the powerful and abstract
parallel comparison model has essentially pointed the way to the best known algorithms for
realistic models of parallel computation.

References

[1] M. Ajtai, J. Komlés, W. L. Steiger, and E. Szemerédi. Deterministic selection in
O(log logn) parallel time. In Proceedings of the 18th Annual ACM Symposium on The-
ory of Computing, pages 188-195, May 1986.

[2] P. Beame and J. Hastad. Optimal bounds for decision problems on the CRCW PRAM.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages
83-93, May 1987.

[3] R. Cole. An optimally efficient parallel selection algorithm. [PL, 26:295-299, 1988.
[4] R. Cole and C. K. Yap. A parallel median algorithm. /PL, 20:137-139, 1985.

[5] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time
on the hypercube and related computers. Journal of Computer and System Sciences,

47:501-548, 1993.

[6] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
and Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.

[7] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and a new gen-

eralized connection network. JACM, 29:642-667, 1982.

[8] C. G. Plaxton. Efficient Computation on Sparse Interconnection Networks. PhD thesis,
Department of Computer Science, Stanford University, September 1989.

11

[9] L. G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing,
4:348-355, 1975.

[10] U. Vishkin. An optimal parallel algorithm for selection. In Parallel and Distributed

Computing, Volume 4 of Advances in Computing Research, pages 79-86. JAI Press,
Greenwich, CT, 1987.

12

