
Sorting-Based Selection Algorithmsfor Hypercubic NetworksBruce M. MaggsNEC Research Institute4 Independence WayPrinceton, NJ 08540 C. Greg Plaxton�Department of Computer ScienceUniversity of Texas at AustinAustin, TX 78759AbstractThis paper presents several deterministic algorithms for selecting the kth largestrecord from a set of n records on any n-node hypercubic network. All of the algorithmsare based on the selection algorithm of Cole and Yap, as well as various sorting algo-rithms for hypercubic networks. Our fastest algorithm runs in O(lgn lg� n) time, verynearly matching the trivial
(lgn) lower bound.Keywords: Parallel algorithms, hypercube, selection.
�This research was supported by NSF Research Initiation Award CCR{9111591, Texas Advanced ResearchProgram (TARP) Award #003658480, and the NEC Research Institute.

1 IntroductionSuccessive sampling techniques have previously been used to obtain e�cient selection algo-rithms on certain idealized models of parallel computation. In this paper, we apply thismethodology to obtain asymptotically fast selection algorithms for more practical models ofparallel computation. In particular, the time bounds that we derive are applicable to anyparallel machine in the class of hypercubic networks, which includes the hypercube, buttery,cube-connected cycles, and shu�e-exchange.1.1 Hypercubic networksThe selection algorithms described in this paper can be implemented on any hypercubicnetwork. Let n = 2d, where d is a nonnegative integer. In an n-node hypercube, each nodehas a distinct d-bit label. A node labeled b0 � � � bd�1 has edges to those nodes whose labelsdi�er from b0 � � � bd�1 in exactly one bit position. An edge connecting two nodes whose labelsdi�er in bit i is called a dimension-i edge. Each node has d neighbors, one for each dimension.A subcube of the hypercube is formed by �xing the bit values of the labels in some subsetof the d dimensions of the hypercube, and allowing the bit values in the other dimensionsto vary. In particular, for each subset j0; : : : ; jk�1 of the set of dimensions f0; : : : ; d � 1g,and each set of bit values v0; : : : ; vk�1, there is a dimension-k subcube of the hypercubeconsisting of the n=2k nodes whose labels have value vi in dimension ji, 0 � i < k, and theedges connecting those nodes.The nodes in a hypercube represent processors, and the edges represent wires. Eachprocessor has some local memory organized in O(d)-bit words. At each time step, a processorcan send a word of data to one of its neighbors, receive a word of data from one of itsneighbors, and perform a local operation on word-sized operands. In sorting and selectionproblems, the input consists of a number of O(1)-word records. Each record has an associatedkey that determines its rank in the entire set of records. We will assume throughout that allkeys are unique. This may be done without loss of generality, since ties can always be brokenin a consistent manner by appending the initial address (processor and memory location) ofeach record to its key.All of the algorithms described in this paper use the edges of the hypercube in a veryrestricted way. At each time step, only the edges associated with a single dimension areused, and consecutive dimensions are used on consecutive steps. Such algorithms are callednormal [6, Section 3.1.4]. The bounded-degree variants of the hypercube, including thebuttery, cube-connected cycles, and shu�e-exchange graph, can all simulate any normalhypercube algorithm with constant slowdown. For simplicity, we will describe all of thealgorithms in terms of the hypercube.1.2 Previous workIn [9], Valiant proved an
(lg lg n) lower bound on the time to �nd the largest record ina set of n records using n processors in the parallel comparison model. The lower boundimplies a lower bound on the time to select the kth largest record as well. Valiant also1

showed how to �nd the largest record in O(lg lg n) time. Cole and Yap [4] then describedan O((lg lg n)2) selection algorithm for this model. The running time was later improved toO(lg lgn) by Ajtai, Koml�os, Steiger, and Szemer�edi [1]. The comparisons performed by thelatter algorithm are speci�ed by an expander graph, however, making it unlikely that thisalgorithm can be e�ciently implemented on a hypercubic network.A di�erent set of upper and lower bounds hold in the PRAM models. Beame andHastad [2] proved an
(lg n= lg lgn) lower bound on the time for selection in the CRCWcomparison PRAM using a polynomial number of processors. Vishkin [10] discovered anO(lg n lg lg n) time PRAM algorithm that uses O(n= lg n lg lg n) processors. The algorithmis work-e�cient (i.e., exhibits optimal speedup) because the processor time product is equalto the time, O(n), of the fastest sequential algorithm for this problem. Cole [3] later foundan O(lg n lg� n) time work-e�cient PRAM algorithm.For any p-processor hypercubic network, Plaxton [8] showed that selection from a set ofn records requires
((n=p) lg lg p + lg p) time in the worst case. The bound implies that awork-e�cient algorithm is not possible.2 Selection by successive approximationThis section presents several algorithms for selecting the kth largest record from a set of nunordered records on an n-node hypercubic network. In Section 2.1 we describe an approx-imate selection algorithm. This algorithm is used as a subroutine in selection algorithmsdescribed in later sections. In Section 2.2 we describe an O(lg n lg lg n) time algorithm. Therunning time is improved to O(lg n lg(3) n) and then to O(lg n lg(4) n) in Sections 2.3 and 2.4,respectively. Finally, an O(lg n lg� n) algorithm is presented is Section 2.5. This last improve-ment is made at the expense of using a non-uniform variant of the Sharesort algorithm [5]that requires a certain amount of preprocessing.2.1 Approximate selectionIn this section, we develop an e�cient subroutine for approximate selection based on theparallel comparison model algorithm of Cole and Yap [4]. There are two major di�erences.First, we use Nassimi and Sahni's sparse enumeration sort [7] instead of a constant timesort (as is possible in the parallel comparison model), and second we obtain a total runningtime that is proportional to the running time of the largest call to sparse enumeration sort,whereas in the Cole and Yap algorithm, the running time is proportional to the number ofsorts (O(lg lgn)), each of which costs constant time.As in the Cole-Yap algorithm, the approximate selection algorithm proceeds by succes-sively sampling the given set of records. We de�ne \sample 0" as the entire set of records. Atthe ith stage of the approximate selection algorithm, i � 0, a \sub-sample" is extracted fromsample i. This sub-sample represents sample i + 1, and will be a proper subset of samplei. Hence the sequence of sample sizes is monotonically decreasing. The sampling processterminates at a value of i for which the ith sample is su�ciently small that it can be sortedin logarithmic time (using sparse enumeration sort). From this �nal sample, we will extract2

lower and upper approximations to the desired record. A lower approximation to the recordof rank k is a record with rank less than or equal to k. An upper approximation to the recordof rank k is a record with rank greater than or equal to k. Our goal will be to obtain \good"upper and lower approximations in the sense that the ranks of our approximations will beclose to k.The following approach is used to extract sample i+ 1 from sample i. First, the recordsof sample i are partitioned into a number of equal-sized groups, and each group is assignedan equal fraction of the processors. Second, each group of records is sorted using sparseenumeration sort. The number of groups is determined in such a way that the running timeof sparse enumeration sort is logarithmic in the group size. This is the case, for example, ifsparse enumeration sort is used to sort m2 records in a subcube with m3 processors. Lettingk denote the group size, the third step is to extract approximately pk uniformly-spacedrecords (i.e., every pkth record) from each group. The union of these extracted sets of sizepk forms sample i+ 1. Note that the ratio of the size of sample i to that of sample i+ 1 ispk.Before proceeding, we introduce a couple of de�nitions.De�nition 2.1 The rank of a record � in a set S, rank(�; S), is equal to the numbers ofrecords in S that are strictly smaller than �. (Note that the record � may or may not belongto the set S.)De�nition 2.2 An r-sample of a set of records S is the subset R � S consisting of thoserecords whose ranks in S are multiples of r, i.e.,R = f� 2 S j rank(�; S) = ir; 0 � i < jSj=rg.The input to the algorithm is a set S0 of 2� elements concentrated in a subcube A of size2�+x. (A set of records is concentrated in a subcube if each record is located in a distinctprocessor in that subcube.) The factor by which the size of the subcube exceeds the size of S0,2x, is called the excess processor ratio. In the �rst iteration, the records in S0 are partitionedinto 2��2x groups of size 22x and 23x processors are assigned to each group. Each group isthen sorted in O(x) time using sparse enumeration sort, and a 2x-sample is taken from eachgroup. The samples from all the groups are combined to form a new set S1 containing 2��xelements. In general, after i � 1 iterations, a set Si�1 of 2��x(2i�1�1) records remain. In theith iteration, set Si is formed by partitioning the records of Si�1 into gi�1 def= 2��x(3�2i�1�1)groups of size 2x2i and then extracting a 2x2i�1 -sample from each group. Since the ratio ofthe number of processors in A to jSi�1j is 2x2i�1, we can assign 23x2i�1 processors to eachgroup of size 2x2i, and each group can be sorted in O(x2i) time using sparse enumerationsort.Lemma 2.1 The time to execute i iterations of the approximate selection algorithm isO(x2i).Proof: The time is P1�j�iO(x2j) = O(x2i).3

Lemma 2.2 Let �, �0, and �00 denote integers satisfying 0 � �0 � � and 0 � �00 � �0. Let Xdenote a set of 2� records, and assume that X is partitioned into 2���0 sets Xk, 0 � k < 2���0,of size 2�0 . Let X 0 denote the union of the 2�00 -samples of each of the Xk's. If record � hasrank j in set X 0, then the rank of � in set X lies in the interval(j2�00 � 2���0+�00 ; j2�00]:Proof: Let rk denote the rank of � in the 2�00-sample extracted from set Xk, 0 � k < 2���0.Then the rank of � in set Xk lies in the interval ((rk � 1)2�00 ; rk2�00], and so the rank of � inX belongs to (X0�k<2���0(rk � 1)2�00 ; X0�k<2���0 rk2�00] = (j2�00 � 2���0+�00; j2�00];since j = P0�k<2���0 rk.Corollary 2.2.1 Let record � have rank j in set Si, for some i � 1. Then the rank of � inset Si�1 lies in the interval (j2x2i�1 � 2��x(2i�1); j2x2i�1]:Proof: A straightforward application of Lemma 2.2, with the variables �, �0, and �00 of thelemma replaced by the expressions �� x(2i�1� 1), x(3 � 2i�1 � 1), and x2i�1, respectively.Lemma 2.3 Let record � belong to Si and let j denote the rank of � in Si, for some i � 1.Then the rank of � in S0 lies in the range(j2x(2i�1) � X0�k<i 2��x2k ; j2x(2i�1)]:Proof: The proof is by induction on i. The base case, i = 1, is a special case of Corol-lary 2.2.1.Now let us assume that the claim holds inductively. Suppose that record � has rank j inSi. Then by Corollary 2.2.1, the rank of � in the set Si�1 lies in the interval(j2x2i�1 � 2��x(2i�1); j2x2i�1]:Applying the induction hypothesis, the rank of record � in the set S0 must be strictly greaterthan (j2x2i�1 � 2��x(2i�1))2x(2i�1�1) � X0�k<i�1 2��x2k = j2x(2i�1) � X0�k<i 2��x2k ;and at most j2x2i�12x(2i�1�1) = j2x(2i�1);as required. 4

Theorem 1 Let S denote a set of 2� records concentrated in a subcube � of size 2�+x (xinteger, 4 � x � �=2), and let k be an integer, 0 � k < 2�. Then in O(�) time it is possibleto compute a subset S0 of S and an integer k0 such that the following conditions are satis�ed:(i) jS0j = 2��x+3, (ii) 0 � k0 < jS0j, (iii) the record of rank k0 in S0 has rank k in S, and (iv)S0 is concentrated in �.Proof: We begin by executing i iterations of the approximate selection algorithm where,as we shall see, (� + x)=3 � x2i � � + 1. The approximate selection algorithm produces aset Si of 2��x(2i�1) records. By Lemma 2.1 the time is O(x2i) = O(�).Next, the records in Si are sorted using sparse enumeration sort. There are 2��x(2i�1)records, 2�+x processors, and an excess processor ratio of 2x2i. We choose i to be the smallestvalue such that the excess processor ratio is at least the square root of the number of records,x2i � 12(� � x(2i � 1)). Solving for i yields 2i � (� + x)=3x and i = llg �+x3x m. The time forsparse enumeration sort is O(� + x) = O(�).We would now like to �nd two records, Rl and Ru in Si, with ranks rl and ru in S0, suchthat k belongs to the interval (rl; ru] and ru � rl is small. In the following, let A = 2x(2i�1)and let B = 2��x+1. By Lemma 2.3, the key with rank j in Si must lie in the interval(jA � B; jA] in S0. Let jl = bk=Ac, let ju = d(k +B)=Ae, and let Rl and Ru be therecords in Si with ranks jl and ju in Si, respectively. Then jlA � B < rl � jlA � k, andk � juA�B < ru � juA. Note that B = bA, with b integer, and there exist integers � and�, 0 � � < A, such that k = �A+ �. Hence ju = � + b+ d�=Ae � �+ b+ 1, jl = �, andru � rl � (ju � jl)A+B� (�+ 1 + b� �)A+B= A+ 2B:We will set S 0 to be the set of at most A+2B records in S0 with ranks in (rl; ru]. Note that,given records Rl and Ru, it is straightforward to identify and concentrate the set S0 in O(�)time. For A � B, we have jS0j � 3B < 2��x+3. For i = llg �+x3x m, the inequality A � B issatis�ed since x(2i � 1) � x "2 � � + x3x !� 1#= (� � x)� (� � 2x)=3� � � x;where the last inequality follows from the assumption that x � �=2. The value of k0 isdetermined by �nding the rank of k in S 0, which can easily be done in O(�) time.2.2 An O(lg n lg lg n) algorithmLet us de�ne T (�; x) as the time required to select the kth element from a given set of 2�elements concentrated in a subcube of 2�+x processors (for worst case k). Note that for�0 � � and x0 � x, we have T (�0; x0) � T (�; x); in what follows, we will occasionally makeimplicit use of this trivial inequality. 5

The subroutine corresponding to Theorem 1 givesT (�; x) � T (� � x+ 3; 2x� 3) +O(�) (1)for 4 � x � �=2. For x > ��, where � denotes an arbitrarily small positive constant, sparseenumeration sort implies that T (�; x) = O(�). We are interested in obtaining an upper boundfor T (�; 0). Note that T (�; 0) = �(T (�; 4)), since we can simulate a 2�+4-processor hypercubeon a 2�-processor hypercube with only constant factor slowdown. By iterating the recurrenceof Equation (1), we can obtain an upper bound for T (�; 4). For � � 8, one application of therecurrence gives T (�; 4) � T (�� 1; 5) + c� for some constant c > 0. For � � 11 we can applythe recurrence again to obtain T (�; 4) � T (� � 3; 7) + 2c�. In general, for � � 2i + 2i�1 + 5,we can apply the recurrence i times to obtain T (�; 4) � T (�� 2i+1; 2i+3)+ ic� (this claimis easily veri�ed by induction on i). For � � 20, we can set i = blg �c� 1 to obtain T (�; 4) �T (b3�=4c + 1; d�=4e+ 3) +O(� lg �) = O(� lg �). Hence T (d; 0) = O(d lg d) = O(lg n lg lg n).This algorithm is essentially equivalent to that descibed by Plaxton in [8]. Prior to thisalgorithm, the best bounds known for selection on the hypercube were given by sortingalgorithms.2.3 An O(lg n lg(3) n) algorithmThroughout this subsection, we will refer to the O(lg n lg lg n) selection algorithm of Sec-tion 2.2 as the \basic" algorithm. Our present goal is to improve the running time of thebasic algorithm to O(d lg lg d) = O(lg n lg(3) n) by a simple modi�cation. The basic algo-rithm consists of O(lg d) applications of the O(d) approximation subroutine correspondingto Theorem 1. We will view each application of the approximation subroutine as a \phase"of the basic algorithm. In order to improve the performance of the basic algorithm, we willaugment each phase in the following manner: before applying the approximation subrou-tine, we will partition the remaining data into subcubes of dimension �0, sort these subcubescompletely, and extract a 2�00 -sample from each subcube, where �00 = d�0=2e. These samplesare then passed on to the approximation subroutine for successive sampling.The parameter �0 will be chosen in such a way that, given the excess processor ratioavailable at that particular phase, the sort can be completed in O(d) time. The motivationfor de�ning �0 in this manner is to balance the time spent on the initial sort with the O(d)running time of the approximation subroutine. Sparse enumeration sort will be used toperform the intial sort in each phase.We will now analyze the performance of each phase in greater detail. Before the phase,let S denote the set of remaining records, assume that jSj = 2�, and assume that the excessprocessor ratio is 2x, x � 0. At the beginning of the phase, we partition S into 2���0 sets ofsize 2�0 , and sort each set in a subcube of dimension �0 + x. We then extract a 2�00-samplefrom each sorted set, where �00 = d�0=2e. Let S0 denote the set of 2���00 records in the unionof all of these samples. By Lemma 2.2, the key of rank j in S 0 has rank in the interval(j2�00 � 2a; j2�00]in S, where a = � � �0 + �00. Accordingly, we will obtain a lower approximation for the kthrecord in S by computing a lower approximation (via Theorem 1) for the jk2��00kth record in6

S0. Similarly, we will obtain an upper approximation for the kth record in S by computingan upper approximation for the (lk2��00m+ 2���0)th record in S0.By Theorem 1, in O(�) time we can determine a set of at most 2b records with contiguousranks in S0 that contains any desired rank, where b = � � x � 2�00 + 3. [To see this, applyTheorem 1 with the variables � and x of the theorem replaced by the expressions � � �00and x+ �00, respectively.] In particular, we can obtain a lower approximation for the recordof rank k0 in S0 that has rank strictly greater than k0 � 2b, and we can obtain an upperapproximation with rank strictly less than k0 + 2b. Thus, in O(�) time, we can determine:(i) a lower approximation to the record of rank jk2��00k in S0 with rank strictly greaterthan jk2��00k� 2b in S0, and(ii) an upper approximation to the record of rank lk2��00m + 2���0 in S 0 with rank strictlyless than lk2��00m+ 2���0 + 2b in S0.By the with the bounds of the preceding paragraph, the aforementioned lower and upperapproximations represent, respectively:(i) a lower approximation to the record of rank k in S with rank strictly greater thank � 2�00 � 2a � 2b+�00 in S, and(ii) an upper approximation to the record of rank k in S with rank strictly less thank + 2�00 + 2a + 2b+�00 in S.Hence, within the same time bound we can identify a set of at mostz def= 2 � �2�00 + 2a + 2b+�00�records with contiguous ranks in S and which contains the record of rank k in S. Observethat a � �00 and a + 3 � b + �00 (recall that a = � � �0 + �00). Hence, we can conclude thatz � 2a+5.Note that the initial application of sparse enumeration sort will run in O(�) time if �0 =O(p�x), since the running time of sparse enumeration sort is O(�0(�0 + x)=x) = O((�0)2=x).Accordingly, let us set �0 = lcp�m for some positive constant c. Note that for x � 1, c > 1,and � su�ciently large, 2���0+�00+5 � 2��dp�xe, and hence z � 2��dp�xe. As in Section 2.2(where in fact we assumed that x � 4), we may assume that x � 1 without loss of generality.Hence, the foregoing discussion has established the recurrenceT (�; x) � T �� � lp�xm ; x+ lp�xm�+ c0�� T ��; lp�xm�+ c0�for 1 � x � �=2 and some constant c0 > 0. For x � 1 and lp�xm � �=2 we can iterate thisrecurrence to obtain T (�; x) � T �;&r� lp�xm'!+ 2c0�� T ��; l�3=4x1=4m�+ 2c0�:7

More generally, for x � 1 and l�1�2�ix2�im � �=2, i � 0, we can apply the recurrence i timesto obtain T (�; x) � T ��; l�1�2�ix2�im�+ ic0�� T ��; l�1�2�im�+ ic0�:It is straightforward to verify that the recurrence can be applied lg lg � + O(1) times, atwhich point we have T (�; x) � T (�; y) +O(� lg lg �)for some y with �=2 < y < �. Sparse enumeration sort implies that T (�; y) = O(�) and henceT (d; 0) = O(d lg lg d) = O(lg n lg(3) n).2.4 An O(lg n lg(4) n) algorithmWe can improve the time bound achieved in Section 2.3 by making use of the Sharesortalgorithm of Cypher and Plaxton [5]. Several variants of that algorithm exist; in particular,detailed descriptions of two versions of Sharesort may be found in [5]. Both of these variantsare designed to sort n records on an n-processor hypercubic network. The �rst algorithm runsinO(lg n(lg lg n)3) time and the second algorithm, which is somewhat more complicated, runsin O(lg n(lg lg n)2) time. The selection algorithm of this section will make use of Sharesortas a subroutine. For this purpose, either of the aforementioned variants of Sharesort maybe used; this choice will not a�ect the overall running time by more than a constant factor.For the sake of concreteness, in the calculations that follow we will assume that the simplerO(lg n(lg lgn)3) algorithm is used.The only change to the algorithm of Section 2.3 is that in the initial phase, Sharesortwill be used instead of sparse enumeration sort to perform the initial O(d)-time sort. WithSharesort, we can a�ord to set �0 = �(d=(lg d)3), which is substantially larger than the �(pd)bound achievable with sparse enumeration sort. For all phases subsequent to the �rst phase,however, we will make use of sparse enumeration sort. The reason is that, in the absenceof a suitable processor-time tradeo� for the Sharesort algorithm, sparse enumeration sort isactually faster than Sharesort after the �rst phase (due to the large excess processor ratiocreated by the �rst phase). In Section 2.5, we will obtain an even faster selection algorithmby developing and applying an e�ective processor-time tradeo� for the Sharesort algorithm.We will now analyze the running time of the selection algorithm of Section 2.3 when �0is set to �(d=(lg d)3) in the �rst phase. The �rst phase establishes the inequalityT (d; 0) � T (d; ld=(lg d)3m) +O(d):Now d=(lg d)3 = d1�2�i with i = lg lg d� lg(3) d�O(1). Hence, the recurrence of Section 2.3implies that T (d; dd=(lg d)3e) = O(d lg(3) d). Thus T (d; 0) = O(d lg(3) d) = O(lg n lg(4) n).2.5 An O(lg n lg� n) algorithmThe improvement described in Section 2.4 resulted from applying Sharesort instead of sparseenumeration sort at the beginning of the �rst phase. Note, however, that all of the phases8

(including the �rst) continue to make extensive use of sparse enumeration sort. The calls tosparse enumeration sort made by each of the algorithms de�ned thus far may be partitionedinto two classes: (i) those calls made within applications of Theorem 1, and (ii) those callsused to perform an O(d)-time sort (actually, a set of parallelO(d)-time sorts) before applyingTheorem 1. The algorithm of Section 2.2 contains only calls of Type (i), since each phaseconsists solely of an application of Theorem 1. The algorithm of Section 2.3 contains bothType (i) and Type (ii) calls, since each phase consists of an O(d)-time sort followed byan application of Theorem 1. The algorithm of Section 2.4 is the same as the algorithmof Section 2.3, except that the Type (ii) call of the �rst phase is replaced with a call toSharesort (causing the number of phases to be substantially reduced).Could we obtain an even faster selection algorithm than that of Section 2.4 by replacingsome or all of the remaining calls to sparse enumeration sort with calls to Sharesort? Withregard to the Type (i) calls, the answer is no. Even if the Type (i) sorts were performed inoptimal logarithmic time, the reduction in data (i.e., relevant records) between successivephases would not be improved signi�cantly. The reason is that the amount of data that\survives" to the next phase is predominantly determined by the size of the subcubes sortedin the Type (ii) sorts. Thus, in all of the algorithms described in this paper, we will continueto make use of sparse enumeration sort to perform all of the sorts within applications ofTheorem 1.Now let us consider the Type (ii) calls. All of these calls to sparse enumeration sort willin fact be replaced with calls to a more e�cient sorting algorithm in order to obtain theO(lg n lg� n) time bound claimed in the title of this section. As discussed in Section 2.4,we cannot obtain such a bound by merely replacing all of the Type (ii) calls to sparseenumeration sort with calls to one of the single-item-per-processor variants of Sharesort.Instead, we will proceed by developing a time-processor tradeo� for Sharesort, and thenusing the resulting algorithm to perform all of the Type (ii) sorts.Theorem 2 Let n records be concentrated in a subcube of a p-processor hypercubic networkp2=3 � n � p. There exists a deterministic algorithm for sorting these records in timeO(lg n(lg lg n� lg lg pn)): (2)Proof: As indicated in Section 2.4, there are a number of variants of the Sharesort algorithmof Cypher and Plaxton [5]. These algorithms di�er solely in the way that the so-calledshared key sorting subroutine is implemented. The shared key sorting problem representsa restricted version of the sorting problem; a formal de�nition of the shared key sortingproblem will not be needed in this paper, and so will not be given. All variants of Sharesortmake use of precisely the same recursive framework to reduce the problem of sorting to thatof shared key sorting.Perhaps the simplest variant of Sharesort runs in O(lg n lg lg n) time and relies upon anoptimal logarithmic time shared key sorting subroutine. This particular result is mentionedin the original Sharesort paper [5] and more fully described by Leighton [6, Section 3.5.3].Although it is the fastest of the Sharesort variants, this sorting algorithm su�ers from thedisadvantage that it is non-uniform. From the point of view of a user who would like to run9

this sorting algorithm on a particular hypercube of dimension d, what this non-uniformityimplies is that a \setup" routine must be executed when the machine is �rst con�gured inorder to generate a version of the algorithm that is capable of e�ciently sorting any subcubeof dimension less than or equal to d. Note that the setup routine need only be executedonce in the lifetime of the machine (and not once per sort) and so this de�ciency may not beconsidered overly severe. Unfortunately, the most e�cient deterministic algorithms currentlyknown for performing the setup task run in time that is doubly-exponential in d.We will establish the validity of Equation 2 by developing a time-processor tradeo� forthe O(lg n lg lg n) time, non-uniform variant of Sharesort.As mentioned above, all variants of Sharesort are based on a particular system of recur-rences. At the highest-level, sorting is performed recursively via high-order merging (i.e.,merging n� sorted lists of length n1�� for some constant �, 0 < � < 1). The running timeof Sharesort is dominated by the time required for high-order merging, which is itself per-formed recursively. Let M(x; y) denote the task of sorting x sorted lists of length y. Onepossible recurrence for performing the merge is (minor technical details related to integralityconstraints are dealt with in [5] and will not be addressed here)M(n1=5; n4=5) �M(n4=45; n16=45) +M(n1=9; n4=9) +O(lg n) + SKS (n); (3)where SKS (n) denotes the time required to solve the shared key sorting problem. Note thatall of the merge operations appearing in Equation (3) are of the form M(x; x4), so that itindeed provides a well-de�ned recurrence. For the O(lg n lg lg n) time, non-uniform variantof Sharesort, SKS (n) = O(lg n), and so the SKS (n) term essentially disappears from therecurrence of Equation (3). In order to obtain the time bound of Equation (2), we will makeuse of additional processors in the following simple way: whenever a merging problem of theformM(x; x4) arises and x5 is less than the excess process ratio, we will apply x10 processorsto solve that merging subproblem in optimal O(lg x) time using sparse enumeration sort.A straightforward analysis shows that this modi�cation to the O(lg n lg lg n) algorithm ofSharesort yields the sorting time bound of Equation (2).As suggested earlier, we now de�ne the selection algorithm of the present section bymodifying the O(lg n lg(3) n) algorithm of Section 2.3: All of the Type (ii) calls to sparseenumeration sort will be replaced with calls to the sorting algorithm of Theorem 2. Inorder to analyze the performance of this algorithm, one may simply repeat the analysis ofSection 2.3 with �0 set to dc�=(lg � � lg x)e for some su�ciently large positive constant c.Doing this, we obtain the recurrenceT (�; x) � T �;& �lg � � lg x'!+ c0�for 1 � x � �=2 and some constant c0 > 0. For x � 1 and l�= lg(i)(lg � � lg x)m � �=2, i � 0,we can apply the recurrence i times to obtainT (�; x) � T �;& �lg(i) �'!+ ic0�:10

In general, the recurrence can be applied lg� d + O(1) times, and we �nd that T (d; 0) =O(d lg� d) = O(lg n lg� n).3 Concluding RemarksThis paper has developed a number of asymptotically fast selection algorithms for hypercubicnetworks. Our analysis of these algorithms has focused on determining their running timesto within a constant factor. In order to simplify the analysis, we have occasionally employedrather loose bounds, and so the multiplicative constants implicit in our O-bounds will becorrespondingly pessimistic.The time-processor tradeo� of Theorem 2, which led to our O(lg n lg� n) time selectionalgorithm, is likely to have other applications. Unfortunately, this tradeo� is only obtainedby making use of a non-uniform version of Sharesort. It would be highly desirable to establisha uniform O(lg n lg� n) bound for the selection problem, perhaps by developing a suitableprocessor-time tradeo� for one of the uniform variants of Sharesort.It is noteworthy that the algorithm devised by Cole and Yap for the powerful and abstractparallel comparison model has essentially pointed the way to the best known algorithms forrealistic models of parallel computation.References[1] M. Ajtai, J. Koml�os, W. L. Steiger, and E. Szemer�edi. Deterministic selection inO(log log n) parallel time. In Proceedings of the 18th Annual ACM Symposium on The-ory of Computing, pages 188{195, May 1986.[2] P. Beame and J. H�astad. Optimal bounds for decision problems on the CRCW PRAM.In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages83{93, May 1987.[3] R. Cole. An optimally e�cient parallel selection algorithm. IPL, 26:295{299, 1988.[4] R. Cole and C. K. Yap. A parallel median algorithm. IPL, 20:137{139, 1985.[5] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic timeon the hypercube and related computers. Journal of Computer and System Sciences,47:501{548, 1993.[6] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,and Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.[7] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and a new gen-eralized connection network. JACM, 29:642{667, 1982.[8] C. G. Plaxton. E�cient Computation on Sparse Interconnection Networks. PhD thesis,Department of Computer Science, Stanford University, September 1989.11

[9] L. G. Valiant. Parallelism in comparison problems. SIAM Journal on Computing,4:348{355, 1975.[10] U. Vishkin. An optimal parallel algorithm for selection. In Parallel and DistributedComputing, Volume 4 of Advances in Computing Research, pages 79{86. JAI Press,Greenwich, CT, 1987.

12

