ON A FIXPOINT SEMANTICS AND
THE DESIGN OF PROOF RULES FOR
FAIR PARALLEL PROGRAMS

Charanjit S. Jutla and Josyula R. Rao

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-92-23 April 1992

On a Fixpoint Semantics and the Design of Proof Rules for Fair Parallel

Programs
Charanjit S. Jutla Josyula R. Rao*
IBM T.J. Watson Research Center Department of Computer Sciences
Yorktown Heights, New York 10598 The University of Texas at Austin

Austin, Texas 78712-1188
April 17, 1992

Abstract

In this paper, we present a predicate transformer approach to the semantics of parallel programs. The meaning
of a program is given by two components — a predicate transformer wlt characterizing the progress properties of
the program and a predicate transformer wsafe concerned with safety properties.

We illustrate the utility of our semantics by developing a simple and powerful framework for the systematic
design of proof rules for progress for a range of fairness assumptions including pure nondeterminism, unconditional
fairness, minimal progress, weak fairness and strong fairness. Beginning with an intuitive branching time temporal
logic (CTL*) formula characterizing progress for the fairness notion being considered, we obtain a simple fixpoint
characterization of wlt. We use this fixpoint characterization to extract a simple UNITY-like proof rule for
proving progress under the aforementioned fairness constraint. A key feature of our framework is that by merely
checking a set of simple conditions, the soundness and completeness of the proof rule is easily gnaranteed. It is
to be noted that unlike previous work on proof rules for fairness, our meta—theoretic arguments are conducted
without resorting to any complicated machinery such as ordinals. Further, the UNITY-like formulation of the
proof rule enables one to use the UNITY theory of progress when designing programs based on different notions
of fairness.

The fixpoint characterizations of wlt for the fairness constraints share a common structure — they are all
expressed in terms of a simpler predicate transformer, called the generalized weakest precondition (gwp). We
motivate a notion of completeness for progress under fairness constraints and show that it is subject to the same
assumptions and constraints as Hoare triples. We define a simple notion of program composition and show that
for all notions of fairness considered (excepting strong fairness) gwp and wsafe are compositional. Finally, we
show that two programs have the same predicate transformer semantics (in terms of "wlt” and ”wsafe”) iff they
agree on all formulae of a fair version of the full branching time logic CTL* without stuttering. This means that
two semantically equivalent programs agree on a rich class of properties.

*Supported by the Texas Advanced Research Program under Grant No. 003658-065 and by the Office of Naval Research, Contract
N00014-90-J-1640.

Contents

0 Introduction 0
0.1 Background e 0
0.2 The Problem e e 1
0.3 Contributions e e e e e e 2
0.4 Planof paper e e e 3
1 Preliminaries 3
1.1 Notational Conventions i i i i e e e e e e e 3
1.2 On Extreme Solutionsof Equations e 4
1.3 Proof Format e e e 4
2 A Framework for Fairness Arguments 5
2.1 A Relational Approach e e e 5
2.2 A Predicate Transformer Approach L 5
2.3 Constraintson leads-toand wlt L 8
2.4 The predicate transformerled oo L 6
2.5 Relating leads-toand wlt L 7
2.6 SUMMATIY . . o o o o e e e e e e e e e e e e e e e e e 8
3 Methodology for the Design of Proof Rules 8
4 Applications 9
4.1 The Computational Model L e 9
4.2 Minimal Progress e e e e e 9
43 Weak Falrness i i it e e e e e e e e 11
4.4 Strong Fairness L e 12
5 On a notion of completeness of léads-to 12
5.1 Reviewing Completeness 13
5.2 Constructing a Proof of Progress L 14
6 The predicate transformer wsafe 15
7 Compositionality 15
8 “Strong” Equivalence 16
9 Acknowledgement 16
References 16

0 Introduction

0.1 Background

In 1967, in a pioneering paper, Floyd [Flo67] introduced the idea of inductive assertions for proving the correctness
of sequential programs. In his approach, programs were specified as flowcharts and the task of verifying them
was reduced to proving two kinds of properties about them — invariance (or partial correctness) assertions and
termination (or total correctness) assertions. In 1969, Hoare [Hoa69] and Manna [Man69] proposed proof systems
for proving partial correctness assertions of Algol-like programs. In a sense, these proof rules provided an aziomatic
semantics of the language.

While the axiomatic definition of the programming language was adequate for the design of sequential programs,
Park [Par70] suggested a simpler semantics for sequential programs : in his approach, the meaning of a program was

a straightforward “set-theoretic” (fixpoint) characterization of the partial functions computed by simple recursive
programs. In a similiar vein, Dijkstra [Dij75] proposed a simple and elegant semantics of while-loop programs
by postulating that the performance of a mechanism S is sufficiently well-known, provided we can derive for any
postcondition R the corresponding weakest precondition, wp .S.R. Both authors stressed the point that an approach
based on “predicate transformers” would avoid a detailed (and usually unnecessary) description of the intermediate
states of program execution.

In the seventies, the realization of the importance of nondeterminism and parallelism prompted researchers to try
to extend verification techniques to cover programs incorporating these features as well. Preliminary efforts [Kel76;
Lam77; OGT76a; OGT76b] concentrated on proving partial correctness or the so—called safety properties. While they
were successful in this respect, their achievements with regard to proving termination were modest. This was due
to two reasons. Firstly, unlike sequential programs, parallel programs are ongoing and non-terminating and for such
programs, general progress properties (like reachability), rather than the special case of termination, are of interest.
Secondly, it was recognized that an essential ingredient of proofs of progress for parallel programs is fairness. Simply
put, an assumption of fairness guarantees that every process is scheduled for execution sufficiently often, regardless
of the state of the other processes. Sufficiently often was variously defined giving rise to differing notions of fairness.
It soon came to be recognized that reasoning with fairness assumptions was akin to reasoning about unbounded
nondeterminism and this meant that the standard techniques of induction with integer—valued metrics would not
work in proving termination properties [AP86; LPS81].

In the early eighties, several papers proposing proof rules based on a variety of fairness notions — unconditional
fairness, weak fairness, strong fairness, extreme fairness etc — appeared in the literature [Par80; GPSJ80; GFMRS1;
LPS81; Par81b; OL82; Pnu83; QS83; APS84; SARG89] (see [Fra86] for a survey). The work closest in philosophy
and spirit to ours, is the work of Park [Par81b] where a fixpoint characterization for proving termination under weak
fairness was given.

In addition to work on proof rules for proving useful properties of parallel programs (under fairness assumptions),
attention has been focussed on formulating a semantics for parallel programs. Several researchers have characterized
a parallel program by a set of possible behaviors in an effort to capture its semantics. In [Par81a], Park characterized
such sets for finite state programs in terms of w-regular languages and showed that such sets are closed under fair
parallel composition. In [BKP84], the authors use temporal logic to give a characterization of the semantics of
parallel programs. Similarly, in [Mos89], Moschovakis gives the semantics in terms of winning strategies of players in
certain games. However, in all these approaches, the idea has been to capture the set of all fair execution sequences
of a program. Apart from carrying undue detail of the actual evaluating mechanism, such semantics suffer from
“stuttering” [Lam77]. Attempts at avoiding stuttering have either led to complicated machinery — like the temporal
logic of reals [BKP86] or improper handling of divergent processes.

0.2 The Problem

Our notion of a program is borrowed from UNITY [CM88]: a program is essentially a set of statements. Operationally
speaking, program ezecution starts in any state and proceeds by repeatedly selecting a statement from the set and
executing it with the selection being governed by some fairness constraint. This simple notion of a program has
proved to be sufficiently powerful to express a wide spectrum of both terminating and reactive programs as shown
in [CM88].

We are interested in two kinds of properties of our program, namely, safety and progress properties. We use the
weak-until operator to express safety properties. For state predicates X and Y, a program satisfies X weak-until Y,
if once X is true the program remains in a state satisfying X as long as Y is false. We use the leads-to operator
[Lam77] to express progress properties. For state predicates X and Y, a program satisfies the progress property
X leads—to Y, if along all fair execution sequences, if the program is in a state in which X is true, it is or will be

in a state satisfying Y. In developing proof systems for safety and progress, we will be interested in the following
questions.

o Proof Rule: Given that the execution of a program satisfies some fairness constraint, what is the proof rule for
proving progress properties of the program 7

o Methodology for Proof Rule Design: Given an arbitrary fairness constraint, is there a systematic way of deriving
a proof rule for it 7 One would expect a methodology for proof-rule design to have the following characteristics.

— Applicability: One should be able to design proof rules for a wide range of fairness notions.

— Meta—theory: The soundness and completeness of the proof rules should be easy to guarantee. In partic-
ular, one should not redo such meta-theoretic proofs for each notion of fairness. Further the arguments
for soundness and completeness should be simple and should avoid the use of complicated theoretical
machinery such as ordinals.

e Compositionality: Is the proof rule compositional 7 That is, given that a property has been proved for a
program F, is there a simple way to infer that the same property holds when program F' is composed with
another program G without having to reprove the property for F' 7

o Methodology for Program Design: In [CM88], Chandy and Misra introduce a small and powerful set of rules
to manipulate their progress operators (ensures and leads-to) during specification refinement. A careful
choice of operators and proof rules could simplify program design when using fairness notions other than the
unconditional fairness of UNITY.

0.3 Contributions

In the spirit of [Par70] and [Dij75] we give a predicate transformer semantics for parallel programs. Formally the
meaning of a program is given by two components — a predicate tranformer for safety and another for progress. The
first component — wsafe.X.Y — is a function from pairs of predicates to predicates. Intuitively, wsafe.X.Y is the
weakest predicate Z stronger than X VY such that Z weak-until Y holds. We give a simple fixpoint definition of
wsafe. The second component of our meaning function captures progress. It is given by a predicate transformer
that for a given predicate X and fairness constraint formalizes the notion of the weakest predicate that leads-to X,
also called wit.X.

Beginning with an intuitively understandable definition of progress under a fairness constraint, expressed as a
formula of the branching time temporal logic CT'L*, we develop simple fixpoint characterizations of wlt.X for a
range of fairness constraints, namely pure nondeterminism, unconditional fairness, minimal progress, weak fairness
and strong fairness. We show that the various definitions of wlt enjoy a common structure - they can all be uniformly
defined in terms of a simpler predicate transformer ~ gwp .5.X — the generalized weakest precondition of statement
s with respect to predicate X. Our definitions are new, simpler than those known in the literature [Par80; SARG89]
and constitute a contribution by themselves.

The fixpoint characterizations of the wlt predicate transformer serve as a basis for the extraction of simple
UNITY-style proof systems for proving progress under all the aforementioned fairness assumptions. While these
proof rules are simpler than those currently known in the literature, they are (as would be expected) logically
equivalent to the proof rules suggested in [MP84]. Further, they have the additional methodological advantage that
their UNITY-like formulation enables one to use the UNITY theory of the leads—to in the design and derivation of
programs based on different notions of fairness. Thus we show a systematic way of designing proof rules for programs
executing under assumptions of unbounded nondeterminism. The rules constitute a second contribution of our paper.

A third contribution of our work is a simple framework to conduct meta—theoretic arguments about proof rules
for progress. Specifically, we show that if the relations defined by the proof rules and the corresponding fixpoint
characterizations meet a simple and easily—checked set of conditions, then the soundness and completeness of the
proof rules are easily guaranteed. Further our proofs of soundness and completeness are conducted in a disciplined
and calculational manner without resorting to any complicated machinery (including transfinite ordinals).

Note that it is well-known that the ordinal constants cannot be eliminated in proofs of progress properties
of programs assuming unbounded nondeterminism. However, it was not known whether ordinals constants were
necessary in a meta—theoretic argument about such proof rules. In particular, all arguments about the soundness
and completeness of proof rules for fairness that we have seen have explicitly used ordinals. We believe that we are
the first to eliminate them.

We give two arguments for the soundness and completeness of our proof rules. A non-constructive argument (in
Sections 2 and 3) uses fixpoint operators but no ordinals and a constructive argument (in Section 5) that uses both
fixpoint operators and ordinals (as one would expect).

In many treatments of meta—~theoretic arguments about fairness, assumptions about the complexity of the asser-
tion language, expressibility of weakest preconditions and relative completeness are tacitly made and not explicated.
By drawing comparisons to Hoare triples we show that a notion of completeness of a proof rule for leads—to must
necessarily be restricted and subject to the same constraint of relative completeness in the sense of Cook. We then

construct a proof of completeness of leads~to under unconditional fairness paying special attention to the roles played
by the issues mentioned above.

In the second last section of the paper, we restrict our attention to unconditional and weak fairness and show
that that our semantics, in terms of wsafe and gwp .s are compositional.

In the last section of the paper, we restrict our attention to unconditional and weak fairness. We show that
our semantics allow us to state and prove in a relative sense the strong equivalence property (see [Par70]) between
programs (namely, they have the same operational meaning). To this end, we define operational semantics using a
version of branching time temporal logic (which is insensitive to stuttering), and show that two programs have the
same predicate transformers iff they have the same operational semantics. In particular, we show that the p-calculus
of wlt and wsafe is as expressive as a fair version of a substantial subset of branching time logic CTL* without
stuttering.

A restricted version of Section 2 (using ordinals and more conditions) appeared in [JKR89]. Since then we have
greatly simplified and generalized our framework to deal with more general notions of fairness and have obtained a
compositional semantics.

0.4 Plan of paper

The rest of the paper is organized as follows. After introducing our notational conventions and proof format in
section 1, we develop a general framework for fairness arguments in section 2. In section 3, we outline a methodology
for the design of proof rules. In the following section, we introduce our computational model and show how the
framework of section 3 can be applied to develop sound and relatively complete proof rules for pure nondeterminism,
unconditional fairness, minimal progress, weak fairness and strong fairness. In section 5, we show that a notion of
completeness for leads-to must be subject to the same assumptions and constraints as a system for proving Hoare
triples. We present a completeness proof for unconditional fairness with special attention to these details. After
introducing the predicate transformer wsafe in section 6, we present results on compositionality in section 7. In the
last section the paper, we define an operational semantics for our programs using a fair version of branching time
temporal logic (which is insensitive to stuttering), and show that two programs have the same predicate transformers
iff they have the same operational semantics. Detailed proofs of all theorems appear in the appendix.

1 Preliminaries

1.1 Notational Conventions

We will use the following convention : the expression

(Qz :r.z:t.x)

where Q denotes either universal (V) or existential (3) quantification, z is called the dummy, r.z the range and t.x
the term of the quantification. The expression denotes quantification over all terms for which the dummy satisfies
the range.

Universal quantification over all the program variables is denoted by the square brackets ([}, read everywhere).
This operator takes a predicate as an argument and returns a boolean value. It enjoys all the properties of universal
quantification over a non-empty domain. The operator was introduced in [DS90] and the interested reader is referred
to it for a detailed discussion.

We assume familiarity with the usual boolean and arithmetic operators. The operators we use are summarized
below, ordered by increasing binding power.

= #
&, =
=, >, ~, etc.
ANV
= #) <2 >
+,—
“.” (function application)

For binary relations R and S on predicates, we say that R is sironger than S (or S is weaker than R) if and only
if (VX,Y :: XRY = XSY) For unary predicate transformers f and g, we say that f is stronger than g (or g is
weaker than f) if and only if (VX :: [f. X = ¢.X])

1.2 On Extreme Solutions of Equations

For a set of equations E in the unknown &, we write z : E to explicate the dependence on the unknown z. Given an
ordering = on the solutions of E, y is the strongest solution (or the least fizpoint of E) if and only if

1. y solves F
2. (Vz : zsolvesE : y = z)

The weakest solution (or the greatest fizpoint) of E can be defined in a similiar manner.
We extend the notation for quantification, introduced earlier, to cover extremal solutions as follows. We allow
expressions of the form
(Qz :: E)

where) can be one of u and v to denote the strongest and weakest solution of z : E respectively.
Finally, we will use the following form of the Theorem of Knaster—Tarski {DSQO} to prove properties of extremal
solutions.

Theorem 0 (Knaster—Tarski) For monotonic f, the equation
Y:[fY=Y]

has a strongest and a weakest solution. Furthermore, it has the same strongest solution as
Y:[fY=Y]

and the same weakest solution as
Y:[fY<«=Y]

Theorem 1 For monotonic f, let g. X be the strongest solution and h.X the weakest solution of
Y:[fXY=Y]

Then both g and h are monotonic.

1.3 Proof Format

We render our proofs in a format introduced in [DS90]. In this format, each step of the proof consists of a syntactic
transfomation and is recorded in detail with a hint justifying the transformation. Thus the structure of the proof
encourages a calculational style of reasoning.

For example, a proof of [4 = D] would be presented as

A
= {hint why [4 = B]}
B
= {hint why [B = C]}
C
{hint why [C = D]}
D

il

it

We also allow other transitive operators in the leftmost column. Among these are the more traditional implies (=)
but also for reasons of symmetry, follows-from (<). For a more treatment of this subject the reader is referred to
[DS90].

2 A Framework for Fairness Arguments

2.1 A Relational Approach

Let € be a given binary relation on state predicates; £ describes the basic progress properties of the program. Assume
that £ satisfies the following basic requirement.

(E0) X=2Y] = (X£Y)
Consider now the set I of equations L0-L2 in the unknown relation p:

(LO) (X £Y) = (XbY)
(L1) XpYVANY pZ) = (XbZ)
(L2) (vX:XeW:XbpY)=(EX:XeW:X)pY)

1.0 states that the & relation is a subset of the relation . Transitivity of b is expressed by L1. L2 means that b
is disjunctively closed over W, where W is an arbitrary set of predicates.

With “=>” as a partial order on relations we show that the set L of equations in the unknown relation P> has a
strongest solution. The proof of the Lemma is due to Edsger W. Dijkstra.

Lemma 0 There is a unique strongest solution of b: L.

Proof (of Lemma 0): We show that the conjunction of all solutions of L is a solution of L. Obviously this is the
strongest solution of L, since it implies all solutions. (End of Proof)

Definition 0 The unique strongest solution of L is called leads-to (~).

Remark : Notice that the ~» only depends on £. Since this is the only parameter, giving an interpretation for &
completely determines ~. (End of Remark)

Using EQ and L0 we now observe:
Lemmal [X=Y] = X~Y
As a Corollary of Lemma 1 we get the reflexivity of ~».

Corollary 0 X~ X

2.2 A Predicate Transformer Approach

Assume that we are given a unary predicate transformer gwp.s.X for each statement s of a parallel program.
Intuitively, the predicate transformer captures the generalized weakest precondition that establishes predicate X, by
a single helpful transition of the program, in the presence of other (possibly conflicting) transitions.

Given this interpretation, it is natural to expect the predicate transformer gwp .s to be monotonic. That is,

(P0) [X = Y] = [gwp.s.X = gwp.s.Y]

Now consider the equation :
Z:[Z = YV (3s:gwp.s.Z)]

Note that from the monotonicity of gwp.s, 3 and V, the right-hand side of the equivalence is monotonic. Thus by
the Knaster-Tarski Theorem, the equation has a strongest solution. Let this solution be called wlt Y. Since wlt.Y
is the strongest solution, it satisfies the following conditions :

(W0) [wlit.Y = Y V (3s::gwp.s(wlt.Y))]
(W) [YV{@s:ugwp.sZ) = Z] = [witY = Z]

(w7

Furthermore, since the equation defining wlt .Y is monotonic, by Theorem 1, wlt is monotonic as well.

Remark : Notice that the wlt only depends on gwp .s. Since this is the only parameter, giving an interpretation for
gwp .s completely determines wlt. (End of Remark)

We now enumerate, without proof, some useful properties of wit.

(W2) [Y = wlt.Y]

(W3) [(3s :: gwp.s.(wlt.Y)) = wlt.Y]
(W4) [X = Y] = [wit.X = wlit.Y]
(W5) [wit (wlt.Y) = wlt.Y]

Having finished our investigation into the properties of wlt, we are now in a position to relate it to gwp .s.
Lemma 2 (VX :: [(3s:: gwp.s.X) = wlt . X])
Proof (of 2):

[(3s :: gwp .5.X) = wlt . X]

{property W3}

[(3s : gwp.s.X) = (Is :: gwp .s.(wlt . X))]
< {predicate calculus}

(Vs :: [gwp.s.X = gwp .s.(wlt . X)])

{monotonicity of gwp .s}

(Vs : [X = wlt . X])
= {property W2}

true

(End of Proof)

2.3 Constraints on leads-to and wlt

Our goal is to relate the relation ~+ to the predicate transformer wlt. To attain this end, we require that ~» and
wlt respect certain consistency constraints. With £ and ~» as defined in Section 2.1 and gwp .s and wlt as defined
in Section 2.2, these constraints can be stated as

(C0) (X EY) = [X = witY]
(C1) (3s = gwp.s.X) ~ X

2.4 The predicate transformer led

In order to illustrate the connection between the relation ~» and the predicate transformer wlt we need one more
concept from [Kna88]. We introduce this using the following lemma.

Lemma 3 The equation X: X ~ Y has a weakest solution.

Proof (of Lemma 3): Abbreviate X: X ~ Y by C. We show that the disjunction of all solutions of C' solves C'.
Clearly this is the weakest solution, as it is implied by all the solutions of C'.

(3X : X solves C': X) ~Y

< {L2}
(VX : X solves C: X ~Y)

= {definition C and predicate calculus}
true

(End of Proof)

The weakest solution of X: X ~+ Y is called the led.Y (read, led-from Y). The predicate transformer led enjoys the
following properties.

(LF0) ledY ~ Y

(LF1) (X~Y) = [X = ledY]

2.5 Relating leads-to and wlt

We now present the main Theorem of this section, which shows the close relationship between the relation ~ and
the predicate transformer wlt.

Theorem 2 [X = wht. Y] if (X ~Y)

Proof (of Theorem 2): The proof of the theorem is by mutual implication.

(<) Since leads-to (~+) is the strongest solution of the equations L0, L1 and L2, it is sufficient to show that the
relation R defined as (X R Y) = [X = wlt.Y]solves the same equations. The result follows.

Equation L0 :

(XEY)
= {C0}
(X = wlt.Y]
= {definition of R}
(X R Y)

Equation L1 (transitivity):

(X RY)A(Y R 2)
= {definition of R}

[X = WH.Y]A[Y = wit.Z]
= {monotonicity of wlt}

[X = wit. Y] A [witY = wit.(wlt.Z)]
= {transitivity of = }

(X = wlt.(wlt.Z)]
= {W5 with Y := Z}

(X = wlit.Z]
= {definition of R}

(X R 2)

Equation L2 (disjunction):

VX =X RY)
= {definition of R}
(VX = [X = wltY])
= {interchange quantifications}
(VX = X = wit.Y)]
= {predicate calculus}
[(E@X = X) = wlt.Y]
= {definition of R}
AX «X)RY

0. (3s:gwp.s.(ledY)) ~ ledY
,Constraint C1
1. ledY ~Y
,Property LF0 of the led
2. (3s:gwp.s.(ledY)) ~Y
,JFrom 0, 1 and the transitivity of ~»
3. Y~Y
,Corollary 0
4. ((As:gwp.s.(ledY)) VY)~Y
,JFrom 2, 3 and the disjunctivity of ~»
5. [(3s :gwp.s.(ledY)) VY = ledY]
,JFrom 4 and Property LF1 of led
6. [wlt.Y = led.Y]
JFrom 5 and Property W1 with Z := led.Y
7. wlit\Y ~ ledY
,6 and Lemma 1
8. X~ witY
,From hypothesis [X = wlt.¥] and Lemma 1
9. X~Y
,JFrom 8, 7, 1 and transitivity of ~»

(End of Proof)

2.6 Summary

We recapitulate our main result and summarize the results of this section. We are given a binary relation £ on
predicates that satisfies EQ i.e.,

X=Y] = (X£Y).
This fixes the interpretation of ~». We are also given a unary predicate transformer gwp .s that satisfies PO i.e.,
[X=Y] = [gwp.s.X = gwp.s.Y]
This fixes the interpretation of wlt. If the definitions of £ and gwp .s satisfy the consistency conditions C0 and C1

le.,
(XEY) = [X=wlt.Y]
(s gwp.s.Y)~Y
then our theorem states that,
(X ~Y) iff [X=wlkt.Y]

3 Methodology for the Design of Proof Rules

We propose the following methodology for the design of proof rules for progress using fairness assumptions.

e For each fairness assumption, propose a CTL* formula that expresses progress under the prescribed fairness
notion.

e Find a p—calculus formula that is logically equivalent to this CTL* formula.

o Using the p—calculus formula as a guide, propose a definition for the predicate transformer gwp .s. Show that
the predicate transformer wlt, based on this definition of gwp .s, is equivalent to the p-—calculus formula and
therefore completely captures progress under the fairness notion assumed.

o As a final step, use the definition of the gwp .s predicate transformer and the conditions of the framework of
Section 2, to propose a definition for the relation £. This guarantees that the proof rules for ~+ based on this
definition of £ are sound and relatively complete.

4 Applications

In this section, we introduce our computational model and apply the methodology proposed above to the design
of proof rules for progress under a variety of fairness assumptions including pure nondeterminism (no fairness),
unconditional fairness, minimal progress, weak fairness and strong fairness.

4.1 The Computational Model

Our notion of a program is based on ideas drawn from Dijkstra’s guarded command language [Dij75] and Chandy
and Misra’s UNITY [CM88]. A program consists of two parts : a collection of variable declarations and a finite and
non-empty set of guarded statements. We call these sections, declare and assign respectively. Intuitively, a guarded
statement, s, is of the form B — S. The guard, B, is a boolean predicate on the state space of the program. We
shall also refer to it as grd.s.

The semantics of a guarded statement B — S is given as follows :

[wp.“B—S"Y = (B=>wp.SY)A(-B=Y)]
We assume that our statements are deterministic and terminating. That is, for all statements s,

(S0) [wp .s.(~X) = ~(wlp.s.X)]
(S1) [wp.s.X = wlp.s. X]

We also restrict our attention to statements, s, whose weakest precondition semantics, wp .s is monotonic. That is,
(52) [X=>Y]=[wp.s.X = wp.sY]

Indeed, these conditions constitute a specification of the statements that we permit in our programs.

A state of the program is an assignment of values to the variables of the program. A statement s is said to be
enabled in a state if grd.s is true in that state.

The operational interpretation of our programs is as follows. Program execution is allowed to begin in any state:
there are no specific initial conditions. We have chosen to do this to keep our treatment simple [Mis90]. Intuitively
speaking, an execution of a program begins in any state and proceeds by repeatedly selecting a (guarded) statement
from the assign section of the program and executing it with the selection being subject to a fairness constraint.
For example, a simple fairness constraint may require the eventual execution of each statement whose guard is
continuously enabled. Thus, in our model, parallelism is captured by a fair, interleaved execution of the statements
of the program with each statement being executed atomically.

More formally, the intended model of a program is a forest of infinite computation trees with the nodes of the
trees labelled with program states and the edges with program statements. The root node of the tree is labelled with
the state in which program execution is initiated. For each statement s of our program, there is an edge labelled s
from node v to node w if and only if execution of s transforms the state of the node v to the state of node w. An
ezecution sequence of the program is any path in a tree that originates at the root node: an execution sequence is said
to be fair if it satisfies some fairness constraint. Apart from the usual predicates, we also have auxiliary propositions
5, for each statement s; 5 holds at a node if and only if the edge directed into that node is labelled s.

To get a handle on the properties of the computation trees, we employ the syntax of a branching time temporal
logic, commonly known as CTL* [EH83]. In addition to the usual first-order connectives and quantifiers, the syntax
of CTL* allows two path quantifiers — A (“for all paths”) and E (“exists a path”) — and the usual linear time
operators — G (“always”), F (“eventually”), X (“next time”), W (“weak until”) and U (“strong until”). We use
CTL* to formally express properties of computation trees and manipulate them. The interested reader is referred to

[EH83] for more details.
4.2 Minimal Progress

The constraint of minimal progress is defined as follows : in an ezecution sequence, if some statement is enabled then
some (possibly different) enabled statement is ezecuted.

We define an execution sequence to be mazimal if it satisfies the minimal progress condition. A program executed
under the assumption of minimal progress reaches a state satisfying Y if and only if along all mazimal execution
sequences a state satisfying Y is reached. This notion of fairness is captured by the CTL”* formula

A(G((Ts :: grd.s) = (Is 1 grd.s AXF)) = FY).
We prove the following lemma.
Lemma 4
A(G((3s::grd.s) = (Fs i grds A XF) =>FY) =
(uX (s i grd.s A (¥t grd.t: wp .t.X))) VY)

To relate this notion of progress to wlt.Y, we need to define the predicate transformer gwp.s. The proof of the
equivalence of the two definitions suggests the following definition of gwp .s.

[gwp.s. X = grd.s. A(¥Vt:grdt:wp.t.X)]

This definition allows us to prove the following theorem which will be crucial in guaranteeing that our proof system
for minimal progress is sound and relatively complete.

Theorem 3
[A(G({(Ts :: grd.s) = (Fs 1 grd.sAXF)) = FY) = wlt.Y]

To be able to define a proof system we need to define the relation £. Such a definition, motivated by the definition
of the predicate transformer gwp .s and the proofs of constraints E0, PO, CO and C1 is,

(XEY) = (Vsu[XA=Y Agrds = wp.s.Y))

AFt:[XAY = grdt])
We show in the appendix that these definitions satisfy the conditions EO, P0, C0 and C1.
Remark on Pure Nondeterminism: The case of pure nondeterminism (that is, no fairness constraint at all) is a special
case of minimal progress where the guard of every statement grd.s is true. By doing this uniformly for the CTL*
formula, Lemma 4, definition of gwp .s, Theorem 3 and definition of £ we obtain the following.

A program executed with no fairness constraint reaches a state satisfying predicate Y if and only if along all
execution sequences a state satisfying Y is eventually reached.

o CTL* formula:
AFY.

o Equivalent y—calculus formula:
[AFY = (pX : AXXVY)]

o Definition of gwp .s:
[gwp.s.Y = (Vi:wp.tY)]

e Definition of &:
(XEY) = (Vs [XAY = wp.sY))

(End of Remark)

10

4.3 Weak Fairness

Weak fairness is defined as follows : an erecution sequence is weakly—fair if and only if each statement that is
eventually enabled continuously is infinitely often executed.

A program which is executed under the constraint of weak fairness reaches a state satisfying Y if and only if
along all weakly—fair execution sequences a state satisfying Y is reached. This notion is accurately captured by the
CTL* formula

A((Vs :FGygrd.s => GF(grd.s AN X3)) = FY).
We prove the following lemmata.
Lemma 5

[A((Vs :FGygrd.s = GF(grdsAX3)) = FY) =
(uZ YV (3s s A((wp .s.Z A grd.s) W Z)))]

Lemma 6
[A(YWZ) = (Wa=ZV(YAAXV))]

To relate this notion of progress to wlt.Y, we need to define the predicate transformer gwp .s. The proof of the
equivalence of the two definitions suggests the following definition of gwp .s.

[gwp.s.X = (WY ((Vt:wptY)Awp.s.XAgrds)VX)]
This definition allows us to prove the following theorem which will be crucial in guaranteeing that our proof system

for weak fairness is sound and relatively complete.
Theorem 4 (Completeness of wlt)

[A((Vs :: FGygrd.s=> GF(grdsAX3) = FY) = wlt.Y]

To be able to define a proof system, we need to define the predicate transformer £. Such a definition, motivated by
the definition of the predicate transformer gwp.s and the proofs of the constraints EO, PO, C0O and C1. is,

(XEY) = (Vsu[XAY = wps(XVY)])
A{Es:[XA-Y = wp.s.Y Agrds))

We show in the appendix that these definitions satisfy the conditions EQ, P0, C0 and CI.

Remark on Unconditional Fairness: The case of unconditional fairness is a special case of weak fairness where the
guard of every statement grd.s is true. By doing this uniformly for the CTL* formula, Lemma 5, definition of gwp .s,
Theorem 4 and definition of £ we obtain the following.

Unconditional fairness is defined as follows : an erecution sequence is unconditionally fair if and only if each
statement is executed infinitely often. This notion of fairness has received considerable publicity since the advent of
UNITY [CMS88]: using a simple notion of programs (similiar to ours) based on unconditional fairness, Chandy and
Misra show that it is possible to encode a wide spectrum of parallel programs.

A program which is executed under the constraint of unconditional fairness reaches a state satisfying Y if and
only if along all unconditionally fair execution sequences a state satisfying Y is reached.

o CTL* formula:
A((Vvs : GF3 = FY)

o Equivalent p—calculus formula:
[A((Vs :GF3) = FY) = (uZ:YV({3s: A(wp.s.Z W 2)))]
e Definition of gwp .s:
[gwp.s.X = (Y = ((Vtuwp.tY)Awp.s.X)VX)]

o Definition of &:
(XEY)

il

(Vs :[XA-Y = wp.s.(XVY)])
A{3s: [XADY = wp.sY))

(End of Remark)

11

4.4 Strong Fairness

Strong fairness is defined as follows : an ezecution sequence is strongly-fair if and only if each statement that is
enabled infinitely often is executed infinitely often.

We have investigated the applicability of our framework to strong fairness. It turns out that the proof obligations
for strong fairness are more complicated than all the cases previously considered. To prove a property of a program
F, one has to prove properties of programs which are related to F' : specifically, one has to consider programs that
have one statement less than F. We shall denote this by F — {s} where s is the omitted statement. Towards this
end, we introduce a new notational convention: properties of programs will be parameterized by the name of the
program. Till now, the name of the program was implicit in our properties.

A program which is executed under the constraint of strong fairness reaches a state satisfying Y if and only if
along all strongly-fair execution sequences a state satisfying Y is reached. This notion is accurately captured by the
CTL”* formula

A((Vs : GFgrd.s= GF(grds AX35) =>FY).

In the following the program being considered is named F' and quantifiers over statements will be assumed to range
over the statements of F'.

Definition 1 For a program F', define Op as follows.
[OF = (Vs : GFygrd.s = GF(grd.s AX53))].
We prove the following lemma.

Lemma 7 Abbreviate by ®.5s.F.Z,
[®5.F.Z = A(grds=X(-5V Z)) N A(Op_s} = F(grd.s vV Z))].

Then,
[A(Op = FY) = (pZ YV {Es: A(®s.F.Z W Z)))]

To relate this notion of progress to wlt.Y, we need to define the predicate transformer gwp .s. The proof of the
equivalence of the two definitions suggests the following definition of gwp .s.

[gwp.s.F.X = (WY :((Vt:wp.tY)A(grd.s= wp.s. X) Awlt.(F — {s}).(grd.sV X))V X)].

This definition allows us to prove the following theorem which will be crucial in guaranteeing that our proof
system for strong fairness is sound and relatively complete.

Theorem 5 (Completeness of wlt)
[A((Vs :: GFgrd.s= GF(grdsA3))=FY) = wlt.Y]

To be able to define a proof system, we need to define the predicate transformer £. Such a definition, motivated by
the definition of the predicate transformer gwp .s and the proofs of the constraints EQ, PO, C0O and C1 is,

(XEYInF) = (Vs [XAY=wps(XVY)HA
(3s:: (XAY ~(grdsVY)inF — {s})HA
[X A=Y Agrd.s= wp.s.Y))

We show in the appendix that these definitions satisfy the conditions EQ, PO, C0 and C1.

5 On a notion of completeness of leads—to

In most of the rules for proving progress under assumptions of fairness, the expressiveness of the assertion language
and the nature of the completeness proven is not very clear. The assertion language is usually assumed to be a
first—order language augmented with fixpoint operators, a sort denoting the ordinals, constants for all the recursive
ordinals and an ordering relation on the ordinals. With respect to completeness, most authors ({GP88], [San90],

12

[Kna90]) prove completeness relative to the completeness of some existing temporal logic: often the temporal logic
chosen is too powerful and once again the assumptions underlying the completeness result are not clear.

In this section, we briefly review the literature pertaining to the completeness of Hoare triples and show that the
same problems apply to the completeness of the ~+. Thus the best that one can hope for is completeness in the sense
of Cook. We then illustrate, how our completeness result for unconditional fairness can be used to construct a proof
of the progress property that holds in the model. Our careful treatment clearly illustrates the roles played by the
complexity of the assertion language, relative completeness, expressibility of weakest preconditions and the nature
of the sets used in the disjunction axiom L2.

5.1 Reviewing Completeness

As the first step of our investigation, we trace the problems that were encountered in defining the notion of com-
pleteness for Hoare triples [Apt81] and draw parallels to the ~ relation.

Let AL denote a suitable language for assertions and PL denote a language for programming constructs. Let H
denote a proof system for Hoare logic, T denote a proof system for assertions of AL and L denote a proof system for
the ~» relation.

e The systems H and L, by themselves, cannot guarantee completeness for Hoare triples and the ~» relation.
Specifically, {true}z := t{true} and true ~» true are true of all models but are unprovable in H and L
respectively. One needs an axiomatic theory for the language of assertions to prove true = true. The solution
lies in augmenting H and L with a proof system for assertions, namely T.

e While adding an axiomatic system for AL allows one to prove some additional assertions, it does not solve
the problem of incompleteness. If AL can express statements of arithmetic, then by Godel’s incompleteness
theorem the set of validities of AL is not recursively enumerable. That is there exist true assertions of the AL
that are unprovable. Such an assertion, say P, can be expressed by the Hoare triple {true} skip {P} or as the
property true ~ P for the program containing only the skip statement. Clearly, the Hoare triple and the
progress property hold in the model but cannot be proved in H and L, even when the latter are augmented
with T. This source of incompleteness stems from the complexity of the assertion language AL. One possible
solution is to restrict it, so that Godel assertions cannot be expressed.

o Consider a very simple assertion language consisting of the two assertions true and false. The set of programs
for which the Hoare triple {true} S {false} holds are precisely those programs that diverge on all possible
inputs. It is known that this set is not recursively enumerable {HU79]. Thus there must be a valid Hoare triple
that cannot be derived in H. One can construct a similiar example for the ~» operator as well. In a recent paper
[Pac90], Jan Pachl has shown that a non-recursively enumerable set, namely, the set of instances of the Post’s
Correspondence Problem that don’t have a solution can be encoded as a set of ~+ properties of a program.

This example shows that curtailing the expressive power of the assertion language alone is not a solution to
the incompleteness of Hoare logic. To factor out the incompleteness that is due to the assertion language, one
introduces the notion of relative completeness. This can be informally stated as follows: For all models M and
Hoare triples @, if =pr @ then T'ras By @ where T'ryy are all the assertions that are true in the model M and
we are permitted to use these assertions in the proof of ®.

¢ Introducing relative completeness does not eliminate the problem of incompleteness. An additional source of
incompleteness is the inability to express (or name) sets of states which occur during program execution by
predicates. One such example is given by Wand [Wan78]. Wand exhibits a simple while program and a partial
correctness Hoare triple corresponding to it. While the Hoare triple is valid in the model described, it cannot
be derived in a proof system for Hoare triples even by assuming relative completeness. This is because it is
impossible to express the invariant of the while program using the assertion language described.

While Wand’s example was a Hoare triple for a while program, the exact same argument can be readily extended
to a ~+ property of the same while program recast as a program admissible in our formalism. This shows that
relative completeness alone is not enough to remedy the incompleteness of the ~+ operator of UNITY.

¢ As a means of incorporating expressibility of assertions that occur during program execution, Cook [Coo78]
introduced the notion of expressibility of the weakest precondition®. This was used to define a new notion of

0 Actually Cook introduced expressibility of the strongest postcondition but showed that the concepts were equivalent

13

completeness — completeness in the sense of Cook. A proof system H for PL is complete in the sense of Cook,
if for every model M in which the weakest pre-condition is expressible and for every Hoare triple @, if =y @,
then Try e ®. Notice that this notion of completeness uses relative completeness as well.

To overcome the problems associated with the completeness of ~ it is necessary to define a notion of complete-
ness akin to that of Cook. In the following derivation, for the case of unconditional fairness, we show exactly
where it is necessary to appeal to expressibility of weakest preconditions.

5.2 Constructing a Proof of Progress

In this section we give a constructive proof of completeness of the proof system for unconditional fairness. Since the
proof is constructive, we have to use ordinals unlike the proof of Section 2.

Assume that a property X ~» Y holds in the intended model of execution for a program F executed on the
assumption of unconditional fairness. On the basis of our framework, we may assert that

[A((Vs :GF35 = FY) = wlt.Y]

where wlt.Y is given by,
[wlit.Y = (uZ YV (3s:gwp.s.2))]

and gwp .s.Z is given by,
[gwp.s.Z = WV u((Vt:wp.t.V)Awp.s.Z)V Z)].

Furthermore, if X ~ Y holds in the intended model of computation trees, then using the above, we may assert
that [X = wlt.Y]. We now show how to construct a derivation of X ~+ Y explicating all our assumptions as we go
along.

1. To express the predicate transformer gwp .s.Y, the assertion language should contain fixpoint operators and
propositional variables which can be bound by these fixpoint operators. Furthermore, it requires the express-
ibility of the weakest preconditions (wp .s) of all the statements. This is where completeness in the sense of
Cook comes in.

2. The first step of our derivation shows that
Tgwp.sY £Y.

While this proof has been omitted in the interest of brevity, it can be found in [JKR89].

3. From 2, using L0, we can infer that
gwp.s.Y ~ Y.

4. From 3, using the disjunction axiom of ~» L2, over a finite set of program statements, we can infer that,

(Is i gwp .s.Y) ~ Y.

5. Since wlt.Y is expressed as the strongest solution of a monotonic predicate transformer, we know by the
Theorem of Knaster-Tarski, that it can be expressed as

wit.Y = (Bo: f2Y)
where the predicate transformer f is defined as,

‘ [f°.Y = false] ‘
[fitty = (Y V(3s:gwp.s.(f.Y)))]
oy = (38:B<a:fPY]
The expression of each of the iterates of f upto the closure ordinal, requires the assertion language to contain

a sort corresponding to the ordinals and an ordering relation < on the ordinals. Using these we can show that
each of the f*.Y is expressible in the assertion language. Using this definition of wit and 4 we show that,

(Va :: &Y ~Y).

14

The proof of this fact requires us to use the disjunction axiom L2 over a set of ordinals less than a fixed ordinal
a. Application of the disjunction axiom once again over the set of ordinals less than the closure ordinal yields,

wlt.Y ~ Y.

Notice that all applications of the disjunction axiom were confined to well-ordered sets.

6. We have not yet made use of the fact that in the model [X = wlt.Y] holds. Since wlt.Y is expressible in
the assertion language (see 5) [X = wlt Y] is a truth of the assertion language in the model of computation
trees. It is at this point that relative completeness enters the picture. If we could assume the existence of a
derivation for such an assertion, then by Lemma 1, we have X ~ wlt.Y. This along with the conclusion of 5,
permits us to deduce,

X~Y

6 The predicate transformer wsafe
Consider the following predicate transformer introduced in [JKR&9].
[wsafe F.XY = (vZ:({(Vs:sinF:wp.s.Z) AX)VY)]

The importance of wsafe lies in the fact that it is the basis for defining both the safety and progress properties of
programs. It has been shown in [JKR89] that

(X unless YinF) iff [X = wsafe F.X.Y]
where unless is the safety operator of UNITY {CM88] is defined as

XunlessYinF = (¥s:sinF:[XA-Y = wp.s.(XVY)]).

7 Compositionality

We illustrate the compositionality of our semantics for the case of unconditional fairness. The result can be easily
extended to the case of weak fairness as well. Similiar results hold for minimal progress and pure nondeterminism.
One of the desirable characteristics of a semantics for parallel programs is compositionality. Suppose that we are
given two programs F' and G and an operator ® to compose them. Then the semantics is said to be compositional
if the semantic function of ¥ ® G can be inferred from the semantic functions of F' and G.
We define a simple notion of composition (®) of two programs F and G and show how wsafe.(FF ©® G) and
gwp .s.(F ® G) can be inferred from the corresponding properties of F' and G.

Definition 2 (Composition : ®) Let F' and G be two programs. Then we denote by F ® G, the program obtained
taking the union of the assign sections of the two programs.

We are now ready to present our theorems on composition.

Theorem 6 (Compositionality of £) Given predicates X and Y,

(XEYinFOGE) = (XEYInF A X unlessY inG)
V(X unlessYinF A X £YinG)

The proof of Theorem 6 follows directly from the definition of £ for unconditional fairness.

Theorem 7 (Compositionality of wsafe) Given predicates X and Y,

[wsafe (F © G).X.Y = (vZ :: wsafe .G.(wsafe . F.(X A Z).Y).Y)]

15

Theorem 8 (Compositionality of gwp.s) Let the predicate transformer we .s. F.X.Y be defined by
[we.s. F.XY = (vZu({Vs: sinF :wp.s.Z) AX Awp.sY)VY)]

where
[we.s.F.trueY = gwp .s.F.Y].

Then,
[wes.(FOG)XY = (vW :: we.s.G(X Awe s FWY).Y)]

The proof of Theorem 7 appears in the appendix. The proof of Theorem 8 is very similiar to that Theorem 7 and 1s
being omitted.

8 “Strong” Equivalence

Let £ be a set of state predicates of programs F and G. We say that F =, G iff

o VX € £ : [wlt.F.X = wlt .G.X] and,
e VX, Y € L : [wsafe F.X.Y = wsafe .G.X.Y].

This is the notion of “strong”equivalence, and is second order expressible as in [Par70]. However, unlike [Par70]
where only termination was of concern, the above equivalence is provable only in special cases: in particular when £
is finite. Note that £ can be finite even though the state space of the programs may be infinite. It may represent a
finite set of observable predicates.

We next show that strong equivalence of two programs proves that they agree on a rich class of properties. We say,
F ~¢ G iff they agree on all formulae of the following Branching time Temporal Logic FwCTL", which is insensitive
to stuttering. The branching modality is: along all fair paths (A4, where ¢ is the fairness constraint of interest), and
the path modality is reflexive strong until (U) with the following restriction. For any path formula G p inside an Eg,
p should. not contain U unless it is nested inside another branching modality A or E4. However, untils which are
of the form true U p (i.e. Fp) are allowed. A similar restriction holds for the dual case, i.e. for formula F p inside
an Ag. In many cases, it is easy to remove untils, e.g. [G(pU q) = G(pV ¢)]. Thus, Eg G(pU ¢) has an equivalent
formula in FwCTL*. However, E4 G(pU(¢U r)) is in general not reducible to FwCTL™.

Given L a set of state predicates, let L£* D LU {true, false}, be the set closed under conjunctions, disjunctions,
negation and predicate transformers wlt and wsafe.

Theorem 12
Fer Gt F G

Remark : The above theorem holds when wlt is replaced by we in the definition of =, provided L contains all the
propositions § introduced in Section 3.0. (End of Remark)

When fairness just means pure non-determinism, the above result follows from the translation of CTL* to p-

calculus (see [EL86]). Although FwCTL* is a subset of CTL*, translating FwCTL* to the p-calculus of wsafe and
wlt requires a new and direct approach as opposed to [EL86] and [Niw88].

9 Acknowledgement
We would like to thank Jayadev Misra for his continuing encouragement and support. We also thank Tony Hoare,

Edsger Dijkstra and the Austin Tuesday Afternoon Club for their insightful comments. The second author would
like to thank T. K. Prasad for many stimulating discussions.

16

References

[APS6]

[APS84]

[Apt81]

[BKP84]

[BKP86]

[CM88]

[CooT8]

[Dij75)

[DS90]

[EH83]

[EL86]

[Flo67]

[Fra86]

[GFMRS1]

[GP88]

[GPSJ80]

[Hoat9)]

[HU79]

[JKR89]

Krzysztof Apt and Gordon Plotkin. Countable nondeterminism and random assignment. Journal of the
ACM, 33(4):724-767, 1986.

Krzysztof Apt, Amir Pnueli, and J. Stavi. Fair termination revisited with delay. Theoretical Computer
Science, 33:65-84, 1984.

Krzysztof Apt. Ten years of Hoare logic — part 1. ACM Transactions on Programming Languages and
Systems, 3(4):431-483, 1981.

Howard Barringer, Ruuard Kuiper, and Amir Pnueli. Now you may compose temporal logic specifications.
In Proceedings of the 16th Annual ACM Symposium on the Theory of Computing, pages 51-64, 1984.

Howard Barringer, Ruuard Kuiper, and Amir Pnueli. A really abstract concurrent model and its temporal
logic. In Proceedings of the 12th Annual ACM Symposium on the Principles of Programming Languages,
pages 173-183, 1986.

K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.

Stephen Cook. Soundness and completeness of an axiom system for program verification. STAM Journal
of Computing, 7(1):70-90, 1978.

Edsger W. Dijkstra. Guarded commands, nondeterminacy and the formal derivation of programs. Com-
munications of the ACM, 18:453-457, August 1975.

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Semantics. Springer-Verlag,
1990.

Alan Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited: On branching versus
linear time. In Proceedings of the 10th Annual ACM Symposium on the Principles of Programming
Languages, Austin, Texas, January 1983.

Alan Emerson and D. L. Lei. Model-checking in the propositional p-calculus. In Proceedings of the Fist
Annual IEEE Symposium on Logic in Computer Science, 1986.

Robert W. Floyd. Assigning meanings to programs. In Proceedings of the American Mathematical
Sociely’s Symposia in Applied Mathematics, volume 19, pages 19-31, 1967.

Nissim Francez. Fairness. Springer-Verlag, New York, 1986.

O. Grumberg, N. Francez, J. A. Makowsky, and W-P. De Roever. A proof rule for the fair termina-
tion of guarded commands. In Proceedings of the International Symposium on Algorithmic Languages,
Amsterdam, The Netherlands, October 1981.

Robert Gerth and Amir Pnueli. Rooting unity. In Proceedings of the Fifth International Workshop on
Software Specification and Design, May 1988.

D. Gabbay, Amir Pnueli, S. Shelah, and J.Stavi. On the temporal analysis of fairness. In Proceedings of
the Seventh Annual ACM Symposium on the Principles of Programming Languages, Las Vegas, Nevada,
January 1980.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576-580,583, 1969.

John E. Hopcroft and Jeffrey D. Ullman. Intoduction to Automate Theory, Languages and Computation.
Addison-Wesley, 1979.

Charanjit S. Jutla, Edgar Knapp, and Josyula R. Rao. A predicate transformer approach to the seman-
tics of parallel programs. In Proceedings of the Eighth Annual ACM Symposium on the Principles of
Distributed Computing, pages 249-263, 1989.

17

[Kel76]
[Kna88]

[Kna90]
[LamT77]

[LPS81]

[Man69]
[Mis90]
[Mos89]
[MP84]
[Niw88]
[0G76a]
[0G76b]
[OL82]

[Pac90]
[Par70]

[Par80]

[Par8la]

[Par81b]

[Pnu83]

[QS83]

[San90]

R. M. Keller. Formal verification of parallel programs. Commaunications of the ACM, 19(7):371-384,
1976.

Edgar Knapp. A comparison of the led-from and leads-to. Technical Report TR-88-35, The University
of Texas at Austin, Department of Computer Sciences, 1988.

Edgar R. Knapp. Soundness and relative completeness of unity. Submitted to JACM, 1990.

Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software
Engineering, 3(2):125-143, 1977.

Daniel Lehmann, Amir Pnueli, and J. Stavi. Impartiality, justice and fairness : The ethics of concurrent
termination. In O. Kariv and S. Even, editors, Lecture Notes in Computer Science 115 : Proceedings of
the Eighth ICALP. Springer-Verlag, New York, 1981.

Zohar Manna. Properties of programs and first order predicate calculus. Journal of the ACM, 16:244-255,
1969.

Jayadev Misra. Soundness of the substitution axiom. Notes on UNITY 14-90, Department of Computer
Science, The University of Texas at Austin, Austin TX 78712, 1990.

Yiannis Moschovakkis. A game-theoretic modelling of concurrency. In Proceedings of the Fourth Anuual
IEEE Symposium on Logic in Computer Science, 1989.

Zohar Manna and Amir Pnueli. Adequate proof principles for invariance and liveness properties of
concurrent programs. Science of Computer Programmaing, 4:257-289, 1984.

Damien Niwinski. Fixed points versus infinite generation. In Proceedings of the Third Anuual IEEE
Symposium on Logic in Computer Science, pages 402-409, 1988.

Susan Owicki and David Gries. An axiomatic proof technique for parallel programs. Acta Informatica,
5:319-339, 1976.

Susan Owicki and David Gries. Verifying properties of parallel programs : An axiomatic approach.
Commaunications of the ACM, 19(5):279-286, 1976.

Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent programs. ACM Transac-
tions on Preogramming Languages and Systems, 4(3):455-495, July 1982.

Jan Pachl. Three definitions of leads-10 for unity. Notes on UNITY 23-90, 1990.

David Park. Fixpoint induction and proofs of program properties. In D. Mitchie, editor, Machine
Intelligence 5. Edinburgh University Press, 1970.

David Park. On the semantics of fair parallelism. In D. Biorner, editor, Lecture Notes in Computer
Science 86 : Proceedings of the Winter School on Formal Software Specification. Springer-Verlag, 1980.

David Park. Concurrency and automata on infinite sequences. In Proceedings of the GI Conference on
Theoretical Computer Science, Karlsruhe, West Germany, 1981.

David Park. A predicate transformer for weak fair iteration. In Proceedings of the Sizth IBM Symposium
on Mathematical Foundations of Computer Science (Hakone), IBM, New York, 1981.

Amir Pnueli. On the extremely fair treatment of probabilistic algorithms. In Proceedings of the 15th
Annual Symposium on the Theory of Computing, pages 278-290, 1983.

J. P. Queille and J. Sifakis. Fairness and related properties in transition systems — a temporal logic to
deal with fairness. Acta Informatica, 19:195-220, 1983.

Beverly Sanders. Eliminating the substitution axiom from unity. Technical Report 128, Departement
Informatik Institut fir Computersysteme, Eidgenossische Technische Hochschule, Ziirich, Switzerland,
1990.

18

[SARG89] F. A. Stomp, W-P. de Roever, and R. T. Gerth. The p-calculus as an assertion language for fairness
arguments. Information and Computation, 82(3):278-322, September 1989.

[Wan78] Mitchell Wand. A new incompleteness result for Hoare’s system. Journal of the ACM, 25(1):168-175,
1978.

19

Proofs of Theorems

Minimal Progress

Lemma 4
A(G((Fs:: grd.s) = (Fs i grd.s A X3)) = FY) =
(X :: (Fs i grd.s A (Vs i grd.s : wp.s.X)) VY)
Proof (of 4): We prove the contrapositive; specifically, we show that,

- A(G((3s :: grd.s) = (Is :: grd.s A X5)) = FY)
= {temporal logic and predicate calculus}

E(G((3s :: grd.s) = (Is = grd.s A X3)) AG~Y))
= {temporal logic}

E G(((3s :: grd.s) = (Is :: grd.s A X5)) AY)
= {Proof Obligation}

(vX (Vs i ~grd.sV (3t : grdt: wp 1.X)) A-Y)
= {property SO and S1}

(vX (Vs —grd.sV (3t : grd.t: = wp t.(=X))) A=Y)
= {[~pX:fX) = (vX =~ f.(~X))]}

—(uX :: (3s grd.s A(Vt:grdt: wp .t.X))VY)

Abbreviating E G(((3s :: grd.s) = (3s :: grd.s A X5)) A=Y) by Z, our proof obligation is two—fold. We first have
to show that Z is a solution of the equation X : [X = (Vs :: =grd.s vV (3t : grd.t : wp .t.X)) A =Y)] and secondly,
that it is the weakest solution.

Ad 0. To show that Z solves the equation, it is sufficient (by Theorem 0) to show that

[Z = (Vs :i=grd.sV (3t : grd.t : wp 1.Z)) AY)].
The following derivation proves this.

Z
= {definition of Z}

E G(((3s : grd.s) = (3s :: grd.s A XF)) A=Y)
= {[EGX=EXAXEGX)]}

E(((3s:: grd.s) = (3s u grd.s A X5))A-Y AXZ)
= {predicate calculus}

E(((Vs :: ~grd.s) V (3s : grd.s A X)) A-Y AXZ)
= {temporal logic and predicate calculus}

E(((Vs :: mgrd.s) V (3s . grd.s A XSAX Z)) A=Y)
= {temporal logic}

E(((Vs :: ~grd.s) V (Is = grd.s A wp .s.Z)) A=Y)
= {temporal logic}

(((Vs :: mgrd.s) V (3s :: grd.s A wp.5.Z)) A=Y)

Ad 1. To show that Z is the weakest solution, we have to show that any solution of equation X : [X = (Vs =
—~grd.sV (3t : grd.t: wp .t.X)) A—Y)] implies Z.

Assume that X is a solution of the equation and that X holds at a node u. Since X is a solution of the equation,
we can conclude that =Y holds at u. At this point two cases arise.

0. (Vs :: mgrd.s) holds at u. Since all the statements are disabled, effectively there is only one execution, namely
the one in which the state of u is repeated infinitely. Furthermore since the state along this execution does not
change, (Vs :: =grd.s) A =Y holds at each node of the path beginning at u, that is, Z holds at u.

1. (3s :: grd.s) holds at u. From the definition of X this means that (3¢ : grd.t : wp.t.X) holds at u. Thus
there exists a child (call it v) of u, such that the state of v is obtained by executing statement ¢ in the state of
u. Furthermore, from our convention, f A X will be true in v. Since X holds at v, the above argument can be
repeated with v in place of u. Thus, a simple induction establishes the existence of a path from u along which
E G(((3s :: grd.s) = (3s :: grd.s A X5)) A=Y holds, that is, Z holds. This concludes our proof. (End of Proof)

20

Theorem 3
[A(G((3s : grd.s) = (s 1 grd s AX5) = FY) = wlt.Y]
Proof (of 3):

A(G((3s:: grd.s) = (Is :: grd s AX5)) = FY)
= {Lemma 4}

(uX :: (3s i grd.s A (Vs : grd.s : wp .5.X)) VY)
= {definition of gwp .s}

(uX = (s :: gwp.s.X) VY)
= {definition of wlt}

wlt .Y

(End of Proof)

We now show that the definitions of the predicate transformer gwp.s and the relation £ satisfy conditions EO, PQ,
C0 and C1.

Proof (of E0):

X =VY]
= {[X A=Y = false]}
(Vs : [X A=Y Agrd.s = wp s.Y]) A
(3t = [X A=Y = grd.t])
= {definition of £}
(XEY)

(End of Proof)

Proof (of PO):

X =Y]

= {property S2; monotonicity of V}
[grd.s. A(Vt: grd.t : wp t.X) =
grd.s. A (¥t : grd.t : wp .t.Y)]

= {definition of gwp .s}
[gwp .. X = gwp .s.Y]

(End of Proof)

Proof (of CO):

[X = wlt Y]
< {Lemma 2, definition of wlt}
[X =YV {({3s:gwp.sY)]
= {predicate calculus}
[X A=Y = (s :: gwp .5.Y)]
= {definition of gwp .5}
[X A=Y = (s grd.s A (Yt : grd.t: wp .1.Y))]
= {predicate calculus}
[X A=Y = (3s : grd.s) AVt : grd.t : wp .L.Y)]
= {predicate calculus}
[X A=Y = (Ts:: grd.s)]A
[X A=Y = (Vt:grdt:wp.t.Y)]
< {predicate calculus}
(Vs i [X A=Y Agrd.s = wp.s.Y])A
(3t [XAY = grd.t])
= {definition of £}
(XEY)

21

(End of Proof)

Proof (of C1):

(Is s gwp .s.X) ~ X
= {definition of gwp .s}

(s i grds A (Vt:grdt:wp .t X))~ X
< {property L2 of ~+}

(Vs i grd.s A(Vt: grd.t: wp .t.X) ~ X)

{property L0 of ~+}

(Vs grd.s AVt : grd.t : wp .£.X) € X)
< {definition of £}

true

(End of Proof)

‘Weak Fairness
Lemma 5

[A((Vs : FGgrd.s = GF(grd.s AX3) = FY) =
(uZ =YV (3s : A((wp .s.Z A grd.s) W Z)))]
Proof (of 5). We prove the contrapositive, i.e,

“A({(Vs :FGgrd.s = GF(grdsANX3) = FY)
= {temporal logic and predicate calculus}

E{(Vs : (GF ~grd.sV GF(grd.s AX5)) A G-Y)
= {Proof Obligation}

WX Y A(Vs :: BE(X U(X A (grd.s = wlp .s.X)))))
= {~(XWY) = ~-YURXA-Y)}

(vX Y A(Vs : E=((-wlp .s. X A grd.s) W —X)))
= {property S0}

(X ==Y A (Vs = E-((wp.s.(0X) Agrd.s) W =X)))
= (X 5 fX) = WX 5of (X))

—~(pZ YV {3s:: A((wp.5.Z A grd.s) W Z)))

Abbreviating the expression E(Vs : (GF —grd.s V GF(grd.s A X5)) A GY) by Z, our proof obligation is to
show that Z is the weakest solution of X : [X = ~Y A (Vs :: E(X U(X A{grd.s = wlp .5.X))))]. We first show that
Z is a solution and then show that it is the weakest solution.

Ad 0. To show that Z solves the equation, it is sufficient to show (by Theorem 0) that

[Z =Y A{Vs s E(ZU(Z A(grd.s = wlp.s.2))))].

We show the two conjuncts separately.

Z
= {definition of Z}
E(Vs : (GF ~grd.sV GF(grd.s ANX3)) A GY)
{temporal logic and predicate calculus}
EG~Y
= {temporal logic}
-Y

22

VA

= {definition of Z}
E(Vt:: (GF ~grditV GF(grd.t A X)) AG=Y)

= {G idempotent}
E(Vt:: G(GF ~grd.tV GF(grd.t AX{)) A G=Y)

= {interchange quantification}
EG(Vt : (GF—grdtVv GF(grd.t AXT)) AG=Y)

= {temporal logic and predicate calculus}
E(G(Vt : (GF ~grdtV GF(grd t AXT)) AG=Y)A
(Vs : GF ~grd.s V GF(grd.s A X5)))

= {temporal logic}
E(G(Vt :: (GF —grdtV GF(grd t AXE)) AG=Y)A
(Vs :: GF(—grd.sV (grd.s AX5))))

= {temporal logic}
E(G(Vt : (GF ~grd.tV GF(grd t AXT) AG=Y)A
(Vs :: F(grd.s = (grd.s A X73))))

= {predicate calculus}
E(G(Vt :: (GF ~grdtV GF(grd t AXT) AG=Y) A
(Vs :: F(grd.s = X73)))

= { A over V; non-empty programs}
E(Vs :: G{Vt : (GF ~grd.tV GF(grd.t AX{)) A G=Y)
AF(grd.s = X73))

= {interchange quantification}
(Vs = E(G{Vt : (GF —grd.tV GF(grd.t A X)) A G=Y)
AF(grd.s = X73)))

= {temporal logic}
(Vs :: E(GE(Vt :: (GF ~grd.t vV GF(grd.t A X))
AGAY) AF(grd.s = X73)))

= {definition of Z}
(Vs = E(G Z ANF(grd.s = X73)))

= {temporal logic}
(Vs :: E(G Z AF(grd.s = wlp .s.2)))

= {(GXAFY = XU(XAY))}
(Vs : B(Z U(Z A(grd.s = wlp .5.2))))

Ad 1. To show that Z is the weakest solution, we have to show that any solution of the equation X : [X =
=Y A(Vs : E(X U(X A (grd.s = wlp.s.X)))}] implies Z.

Assume that X is a solution of the equation and that X holds at a node u. We will show that there exists a
path beginning at u such that each statement s whose guard is eventually continuously enabled is executed infinitely
often along the path and that at each state along the path -Y holds. This would imply that for all statements s,
(FGgrd.s=> GF(grd.s AX5)) AG~Y, that is, Z holds at u.

So assume that X holds at u. Since X is a solution of the equation, =Y A(Vs :: E(X U (X A(grd.s = wlp .s.X))))
holds at u. Then —Y holds at u and there exists a path from u for which (Vs :: X U(X A (grd.s = wlp .5.X)))
holds. Now assume that F G grd.t holds along the same path from u, in particular, G grd.t holds, say from node
v. Now, from X U(X A (grd.t = wlp .t.X)), X holds at every node on the u,...,v path and further, the path
can be extended to a node w, at which X A (grd.t = wlp .t.X) is true. Since X holds at all the nodes on the
u,...,v,...w path =Y holds at all the nodes on the path as well. Since G grd.t holds at v, grd.t holds at w. Since
X A(grd.t = wlp .t.X) holds at w, there is a child of node w (call it), such that the state of node z is reached by
executing statement ¢ in the state of of node w. Since wlp .2.X holds at w, X holds at z. So the same argument
can be repeated to extend the path from z so that some statement whose guard is eventually continuously enabled
is eventually selected for execution. That is to say, we can construct a path from u such that for all statements s,
(F Ggrd.s => GF(grd.s A X5)) A G—Y holds for the path. In other words, Z holds at u. (End of Proof)

23

Lemma 6
AYWZ) = wVauZVYAAXV))

Proof (of 6): We abbreviate A(Y W Z) by X. We prove the lemma in two steps. We first show that X solves the
equation V : [V = Z V(Y A AX V)] and we then show that it is the weakest solution.
Ad 0. To show that X is a solution, it is enough to show (by Theorem 0) that

[X=ZV(Y AAXX)]

Suppose X holds at a node u. Then, A(Y W Z) holds at u. This means that along any path beginning at u, either
Y holds indefinitely or at every node of the path Y holds till a node at which Z holds is reached. That is, either Z
holds at u or Y holds at u and X holds at all the children of u. That is ZV (Y A A X X) holds at u.

Ad 1. Suppose V is a solution of the equation V : [V = ZV(Y AA X V)]. To show that X is the weakest solution,
we have to show that [V = X]. We demonstrate this by proving the contrapositive.

Suppose —X holds at a node u. Then there exists a path originating at « such that, =(Y W Z) holds. That is,
there is a sequence of nodes u,v,...,w,z such that Y A =Z holds at all the nodes on the segment u,v,..., w and
=Y A —=Z holds at ¢. Since [~V = -2 A (Y VE X =V)], we may assert that =V holds at . From the definition of
=V, this means that =V holds at w and by a simple induction -V holds at u. That is [-X = =V]. (End of Proof)

Theorem 4 (Completeness of wlt)

[A{Vs : (FGygrds = GF(grdsAX3)) = FY) = wh.Y]

Proof (of 4):
A((Vs : (FGygrds = GF(grd.s AX3))) = FY)
= {Lemma 5}
(pZ =YV (Ts:: A((wp .s.Z Agrd.s) W Z)))
= {Lemma 6}

(uZ =Y v{3s: WV 2 ZV((wp.s.Z Agrd.s) ANAXV))))
= {[AXV = (Vt:wp.t.V)]}

(BZ Y v {3s o WV 2 ZV(wp.s.Z Agrd.s AVt wp .tV
= {definition of gwp .s}

(uZ =Y VvV {(ds :: gwp .5.2))
= {definition of wlt}

wlt.Y

(End of Proof)

We now show that the definitions of the predicate transformer gwp.s and the relation £ satisfy conditions E0, PO,
C0 and C1.

Proof (of EO):

[X = Y]
= {[X A=Y = false]}
(Vs 2 [XA-Y = wp.s.(XVY)HA
(3s = [XAY = grdsAwp.sY])
= {definition of £}
(XEY)

(End of Proof)

Proof (of PO):

24

X =Y]
= {property S2; predicate calculus}

[((Vt :wpt.Z)Awp.s X Agrds)V X

= (Yt:wptZ)Awp.s.Y Agrds)VY]
= {Theorem 1}

(vZ :: ((Vt:wp.t.Z) Awp.s.X Agrd.s)V X)

= WwZu((VtuwptZ)Awp.s.Y Agrds)VY)]
= {definition of gwp .5}

[gwp .5.X = gwp .5.Y]

(End of Proof)

Proof (of CO0):

(XEY)
= {definition of &£}
(Vs n [XA-Y = wps(XVY)HA
(3s = [XAY = grdsAwp.s.Y))
= {interchange quantification}
(Vs : X A=Y = wp.s(XVY)IA
(3 [XA-Y = grdsAwp.s.Y))
= {= over V}
[XA-Y = (Vs uwp.s(XVY)N]A
(Fs [XA-Y = grdsAwp.sY])
= {A over d}
(s = [XA-Y = (Vs:wp.s(XVY))A
[XA-Y = grdsAwp.s.Y))
= {predicate calculus} \
Bs = [XA-Y = (Vsuwp.s(XVY))AgrdisAwp.s.Y])
= {predicate calculus}
(Fs = [XVY = ((Vsuwp.s.(XVY))AgrdsAwp.s.Y)VY])
{p—calculus}
(Fs 2 [XVY = @Z:((Vs:wp.s.Z)AgrdsAwp.s.Y)VY)])
= {interchange quantification}
[(Fs 2 XVY = (vZ:((Vs:wp.sZ)AgrdsAwp.s.Y)VY))]
= {= over 3; non—empty programs}
[(XVY = (3s:(wZ (Vs :wp.s.Z)AgrdsAwp.s.Y)VY))]
= {definition of gwp .s}
(XVY = (3s:gwp.sY)]
{Lemma 2}
(XVY = witY]
= {predicate calculus}
X = wlitY]

(End of Proof)

Proof (of C1): The proof will be in two steps. In the first step, we show that gwp .s.X £ X holds. In the second
step, we use this to show that (Is :: gwp .s. X} ~ X.

gwp.s. X X
= {definition of £}
(Vt :: [gwp .s. X A~X = wp.t.(gwp.s. XV X0
A3t [gwp.s. X A=X = grdtAwp.t.X])
= {definition of gwp}
(vt :: [(Vu : wp .u.(gwp.s. X)) Agrds Awp.s. X A=X
= wp.t.(gwp.s. X VX))A
(3t = [(Yu : wp .u(gwp.s. X)) A\wp .s. X Agrd.s A= X
= grditAwp.t.X])
= {predicate calculus}
true

(Fs 1 gwp .s.X) ~ X

{property L2}

(Vs :: gwp .. X ~ X)

{property L0}

(Vs :: gwp .s.X € X)
= {First step of proof}

true

(End of Proof)

Strong Fairness

Definition 1 For a program F, define Of as follows.

[OF = (Vs = GFgrd.s = GF(grd.s AX3))].

Lemma 7 For all programs F,

[@ F = GO F]
and
[@F = F @F]
Proof (of 7): We demonstrate each of the equivalences by a derivation.
GOp
= {definition of Of}

G(Vs :: GF grd.s = GF(grd.s AX53))
= {interchange quantification}

(Vs :: G(GF grd.s = GF(grd.s A X5)))
= {predicate calculus}

(Vs :: G(F G ~grd.s V G F(grd.s A X3)))
= {[FGX=GFGX]}

(Vs :: G(GF G=grd.s V GF(grd.s A X73)))
- {[GFXVGFY=GFXVY)]}

(Vs :: GG F(G-grd.sV (grd.s A X3)))
= {G idempotent}

(Vs :: GF(G~grd.sV (grd.s AX5)))
— {[GFXVGFY=GFXVY)]}

(Vs : GF G ~grd.sV GF(grd.s A X))
= {[FGX=GFGX]}

(Vs :: FG—grd.sV GF(grd.s A X73))
= {predicate calculus}

(Vs :: GF grd.s = GF(grd.s AX5))
= {definition of O}

Or

26

The proof of [@p = FOp] is by mutual implication. One direction, [@p = F Op] follows trivially from temporal
logic ([X = F X]). The other direction is given by the following.

FOr
= {definition of Op}

F(Vs :: GFgrd.s = GF(grd.s A X3))
= {interchange quantification}

(Vs :: F(GF grd.s = GF(grd.s AX53)))
= {predicate calculus}

(Vs :: F(F G —grd.sV G F(grd.s A X5)))
- {[[FGX=GFGX]}

(Vs : F(GF G—grd.sV GF(grd.s A X3)))
= {[GFXVGFY=GF(XVY)]}

(Vs : F GF(G—grd.sV (grd.s A X5)))
- {[FGFX=GFX]}

(Vs :: GF(G—grd.s V (grd.s A X3)))
= [[GFXVGFY=GFXVY)]}

(Vs :: GF G ~grd.s V GF(grd.s A X3))
= {[FGX=GFGJX]}

(Vs : F G—grd.s V GF(grd.s A X3))
= {predicate calculus}

(Vs :: GF grd.s = GF(grd.s A X))
= {definition of Of}

OF

(End of Proof)

Corollary 1
[@F = FG@F].
Lemma 7 Abbreviate by ®.5.F.X,

[@.5.F.X = A(grd.s= X(-5V X)) A A(Op-(s} = F(grd.s v X))].

Then,
[A(OF = FY) = (uX =Y V({3s: A(®s.F.X W X)))]

Proof (of 7). First, we derive an expression for =®.s. F.mX.

-®.5. F.mX
= {definition of ¥}
—(A(grd.s = X(-5V-X))A
A(Op-_is3 = F(grd.s vV —X)))
= {predicate calculus and temporal logic}
E(grd.s AX(FA X)) VE(Op_{;3 AG(—grd.s A X))

We discharge our proof obligation by showing the contrapositive, that is,

~A(OF = FY)
= {temporal logic}
E(Or AG-Y)
= {proof obligation}
(vX ==Y A{Vs = E(X U(X A—®.5.F-X))))
= {[~(XWY)=-YU(=XA-Y)]}
(X Y A(Vs t Ex(P.s. F.mX W - X))
= {[~(uX: fX)= (X o =f.(CX)]}
—(uX =YV (3s: A(®s. FXW X))

27

We abbreviate E(©@p A G~Y) by Z. We discharge our proof obligation in two steps. We first show that Z solves
the equation X : [X = =Y A (Vs = E(X U(X A (=®.5.F.~X))))] and we then show that it is the weakest solution.
Ad 0. To show that Z is a solution, it is enough to show (by Theorem 0) that

[Z = -Y A (Ys : E(Z U(Z A=D.5.F.~Z)))].
We prove each conjunct separately.

Z

= {definition of Z}
E(Or AG-Y)

= {temporal logic}
EG-Y

= {predicate calculus}
=Y

28

A
= {definition of Z}
E(OF A G-Y)
= {predicate calculus}
E(@F AOp A G"\Y)
= {Lemma 7}
E(GOrAOFAG-Y)
= {temporal logic and predicate calculus}
E(G(Or AG-Y)AOF)
= {temporal logic}
E(G E(@F A G‘ﬂY) A @F)
= {definition of Z}
E(G Z A @F)
= {definition of O}
E(GZ A (Vs : GFgrd.s = GF(grd.s AX3)) AOF)
= {temporal logic; Corollary 1}
E(GZ A (Vs : GF grd.s = GF(grd.s A X3))A
FGOrAFGZAGZ)
= {A over V; non—empty programs}
E(GZ A (Vs : (GFgrd.s = GF(grd.s AX3))A
FGOrAFGZAGZ))
= {predicate calculus}
E(GZA{(Vs :(FG-grdsA\FGZAFGOF)
V(G F(grd.s ANX35)AG 2)))
= {definition of O}
E(GZA (Vs : (FG-grds N\FGZAFGOp_(5))V
(GF(grd.s N\X3) AGZ)))
= {temporal logic}
E(GZA{Vs :FG(ngrdsANZ ANOQp_{;})V
GF(grds ANX(5A 2))))
= {temporal logic}
E(GZ A (Vs : F(G(—grd.s A Z) AOp_(s3)V
F(grd. s A\X(EFA D))
= {temporal logic}
E(GZ A (Vs = FE(G(~grd.s NZ) AOp_(s)V
FE(grd.s AX(5A 2))))
= {temporal logic}
E(GZ A (Vs = F(E(G(—grd.s AN Z) ANOp_(s)V
E(grd.s AX(FAZ))))
= {predicate calculus}
E((Vs :: GZ AF(E(G(—grd.sANZ) ANOp_i5))V
E(grd.s AX(ZA Z)))))
=> {predicate calculus}
(Vs n E(GZ AF(E(G(~grd.sAZ) ANOp_{s})V
E(grd.s AX(3A Z)))))
= {[GXAFY = XU(XAY)]}
(Vs = E(Z U(Z ANE(G(~grd. s ANZ)ANOp_{s})V
E(grd.s AX(FA 2))))))

Ad 1. To show that Z is the weakest solution, we have to show that any solution of the equation X : [X =
~Y A (Vs = E(X U(X A =®.5.F.~X)))] implies Z. i

Assume that X is a solution of the equation and that X holds at a node u. From the equation, —Y holds
at u. Choose t to be any statement of the program. Corresponding to ¢, there exists a path from u on which
X U(X A =®.t.F.~X) holds. From the definition of U, there is a path u,...,v, such that at all the nodes on the

29

path X holds and X A—®.{.F.—~X holds at v. Since X holds at all the nodes of the u,...,v path, =Y holds at every
node of the path as well. From the definition of ~®.{.F.~X, two cases can arise.

0. If the first disjunct is true at v, then there exists a path from v, such that grd.t is true in v and fA X is true
in the second node (call it z) of the path. Thus t can be executed at node v and since X is true at z, the above
argument can be repeated with each of the remaining statements of the program, thereby constructing a path from
u on which each statement is infinitely often executed. Further, since each X holds at every node, =Y holds at every
node. That is Z holds at u.

1. If the second disjunct is true at v, then there exists a path from v along which ¢ is only finitely often enabled
and ©p_yy holds. That is, the path is strongly—fair with respect to F'. Further since G X holds along the path,
G —Y holds as well. Thus we have demonstrated the existence of a strongly-fair path from u along which =Y holds.
That is, Z holds at u. This concludes our proof obligation. (End of Proof)

Theorem 5 (Completeness of wlt)
[A((Vs :: GF grd.s = GF(grd.sA5)) = F Y) = wlitY]

Proof (of 5):

A({(Vs :: (F G grd.s = GF(grd.s ANX73))) = FY)
= {Lemma 7}
(pX =Y V(3s = A(®.s.F.X W X))
= {[AYWZ)= @@V :=ZV(Y NAXV))]}
(pX =YV (3s : (vZ = ((Vt 2 wp £.2) A ®.5s.F.X)VX))
= {temporal logic and definition of gwp}
(uX =Y V(s :: gwp .s.F.X})
= {definition of wlt}
wlt .F.Y

(End of Proof)

We now have to show that the definitions of the predicate transformer gwp .s and the relation £ satisfy conditions
EO0, PO, C0 and C1. Unlike the cases that we have considered thusfar, the recursive nature of the definitions of gwp .s
and & require the use of induction on the size of the programs to prove properties CO and C1.

Proof (of E0):

X = Y]
= {[X A=Y = false]}
(Vs : [X A=Y = wp.s.(XVY))A
(3s : (X A=Y ~ (grd.sVY)inF — {s}) A
[X A-Y Agrd.s = wp.s.Y])
= {definition of £}
(X&Y)

(End of Proof)

Proof (of P0):

30

X = Y]
= {predicate calculus and monotonicity of wlt}
[(((Vt :: wp .t.Z) A(grd.s = WP 5. XA
wlt .(F — {s}).(grd.s VvV X)) V X) =
(((¥t = wp .t.Z) A(grd.s = WP 8. YA
wlt (F — {s}).(grd.sVY)) VY)]
= {Theorem 1}
[(wZ :: ((Vt: wp.t.Z) A(grd.s = wp 8. XN
wlt (F — {s}).(grd.s vV X)) V X) =
(wZ :: ((Vt = wp 1.Z) A(grd.s = wp 8.Y)A
wlt .(F — {s}).(grd.s VY)) VY)]
= {Monotonicity of 3, definition of gwp .s}
[gwp .s.X = gwp .8.Y]

(End of Proof)

As mentioned before we shall prove the remaining properties by induction on the size of the program.

Proof (of C0): Base case : Assume that program F has one statement. This is consistent with our assumption that
our programs are non—empty.

(X £YinF)
= {definition of £, one~point rule}
[X A-Y = wp.s.(X VY)]A
[X A=Y Agrd.s = wp.s.Y]A
(X A=Y ~ grd.sVYin{})
= {predicate calculus}
[X A=Y = wp.s(XVY)A(grd.s = wp .8.Y)]
= {predicate calculus}
[XVY = (wp.s.(XVY)A(grds = wp s.Y)) VY]
= {definition of v}
[XVY = (vZ = (wp.s.Z A(grd.s = wp.s.Y))VY)]
= {definition of gwp .s for a single statement program}
[XVY = gwp.s.F.Y]
= {Lemma 2}
[XVY = wlt.F.Y]
= {predicate calculus}
(X = wlt.F.Y]

Induction step : We assume that the theorem holds for all programs with less than k statements. This means that
if program G contained less than k statements then from the proof of Theorem 2,

(*) (X~YinG) = [X=wlt.GY].

Consider a program F' having k statements. We have the following derivation.

31

(X £YinF)
= {definition of £}
(Vs : [X A=Y = wp.s.(XVY))A
(35 (X A=Y ~ (grd.sVY)inF — {sh A
[X A=Y Agrd.s = wp.s.Y])
= {induction hypothesis and ()}
(Vs : [X A=Y = wp s (X VY))A
(3s : [X A=Y = wit (F — {s}).(grd.s V A
[X A=Y Agrd.s = wp.s.Y])
= {interchange quantification, = over v}
[X A=Y = (Vs wp.s.(X VY))]A
(3s = [X A=Y = wit (F — {s}).(grd.s V A
[X A-Y Agrd.s = wp.s.Y])
= {A over 3}
(s = [X A=Y = (Vs wp.s.(X VY))]A
[X A=Y = wit .(F — {s}).(9rd.s VY)]A
[X A=Y Agrd.s = wp.s.Y])
= {predicate calculus}
(Fs = [X A=Y = ((Vs = wp.s.(XV YA
(grd.s = wp .s.Y) Awlt (F — {s}).(¢9rd.s V b8))))
= {predicate calculus}
(Fs = [XVY = (Vs s wp.s(X VYY) A
(grd.s = wp .s.Y) Awlt (F — {s}).(¢grd.s V Y)) VY]
= {definition of v}
(@su[XVY = @wZ:((Vs wp.s.Z) A
(grd.s = wp .s.Y) Awlt (F — {s}).(grd.s V Y))vY)])
= {interchange quantification}
[XVY = (3s = (vZ = ((Vs wp .s.2) A
(grd.s = wp .s.Y) Awlt .(F — {sD.(grd.sVY))VY))]
= {definition of gwp .s}
[XVY = (35 :: gwp .5.F.Y)]
{Lemma 2}
[X VY = wit .F.Y]
= {predicate calculus}
(X = wit .F.Y]

(End of Proof)

Proof (of 1): Base Case : Assume that program F has one statement.

((3s : gwp .5.F.X) ~ X)
= {definition of gwp .s for a single statement program, [wlt.{}.Y =Y}

(vZ :: (wp.s.Z A(grd.s = wp.5.X) A (grd.sV X)) VX)~ X
<« {property L0}

(wZ :: (wp.s.Z A(grd.s = wp.5.X) A(grd.sV XNHWVX)EX
= {definition of £, abbreviate gwp 5. F.X}

(vt [gwp.s. F X A—X = wp t(gwp.s.F.XVX))A

@t :: (gwp .s. F X A=X ~ (grdtV X)inF — {thA

[gwp .s.F.X A—=X A grd.t = wp.t.X])

< {definition of gwp .s.F. X}

true

Induction step : We assume that the theorem holds for all programs with less than k statements. This means that
if program G has less than k statements then we can assert from the proof of Theorem 2,

(%) [X = wit.G.Y]= (X ~YinG).

32

Consider program F' to have k statements.

(3s :: gwp .s.F.X) ~ X
<« {property L2}
(Vt :: gwp t.F.X ~ X)
{property L0}
(Vt :: gwp t.F.X £ X)
= {definition of £}
(Vt :: (Vs :: [gwp £ F. X A~ X = wp .s.(gwp L.F. XV XA
(3s :: (gwp L. F. X A=X ~ (grd.sV X)inF — {shA
[gwp £.F. X A=X A grd.s = wp .s. X]){
= {induction hypothesis and ()}
(Vt = (Vs = [gwp t.F. X A—~X = wp .s.(gwp .t.F.X V XA
(s :: [gwp L.F. X A=X = wlt .(F — {s}).(grd.s V XA
[gwp .t.F.X A=Xgrd.s = wp.s.X]))
= {definition of gwp .t.F.X}
true

(End of Proof)

Compositionality
Theorem 7 (Compositionality of wsafe) Given arbitrary predicates X and Y,

[wsafe (F O G).X.Y =
(vZ :: wsafe .G.(wsafe F.(X A Z).Y).Y)]

Proof (of 7): In the following the statement variables s, ¢ and u are assumed to range over programs F', G and
F ® G respectively.

We abbreviate wsafe .(F © G).X.Y by A. From the definition of wsafe, this means that A satisfies the following
conditions.

(0) [A= ((Vu:wp.uwA)AX) VY]
(D W = (Yu:: wp u.W)AX) VY] = [W = 4]

We abbreviate wsafe .F.(X A A).Y by B. From the definition of wsafe, this means that B satisfies the following
conditions.

(2) [B=((Vs:wp.uB)AXAA)VY]

(3) W= (Vs wpsW)AXAA) VY]
= [W = B]

We abbreviate wsafe.G.B.Y by C. From the definition of wsafe, this means that C satisfies the following
conditions.

(4) [C = ((vt:: wp.t.C)AB)VY]
(5) W= (vt = wp W) AB) VY] = [W = C]
Our proof obligation requires us to show that A is the weakest solution of the equation

7 : [Z = wsafe.G.(wsafe.F.(X A Z).Y).Y]. We show this in two steps. We first show that A solves the equation
and we then show that it is the weakest solution.

33

Ad 0. To show that A solves the equation, it is enough to show that
[A = wsafe .G.(wsafe . F.(X A A).Y).Y].

That is, we are required to show that [A = C]. We first show that [A = B] and use that to show [A = C1].

[A = B]

< {property (3)}
[A= (Vs = wp.s.A) A X NA) VY]
{predicate calculus}
[A= ((Yu: wpuwA)AX AA) VY]
{property (0)}

true

[A=C]
& {property (5)}
[A= ((Vt:: wp.t.A)AB) VY]
& {predicate calculus}
[A= ((Vu:wp.uA)AB)VY]
= {property (0) and above derivation}
true

Ad 1. To show that A is the weakest solution of the equation, we have to show that,
[D = wsafe.G.(wsafe . F.(X AD).Y).Y]=[D= Al.
Towards this end, abbreviate wsafe .F.(X A D).Y by E. From the definition of wsafe, this means that,
(6) [E=((Vs::wp.s.EyAXAD)VY]
(M [Z = (Vs :wp.s.Z) AXAD)VY] = [Z = E]
(8) [D=((Vt :wp £L.D)AE) VY]
9 [Z = ((Vt:wp t.Z)AE)VY]=[Z = D]
To show that A is the weakest solution, we have to show [D = A]. To do this, we first show that [E = D] and

use that in showing [D = A].

[E = D]
= {property (6)}

[(((Vs :: wp.s.EYAX AD)VY) = D]
= {predicate calculus}

(Vs wp.s.EYAX AD = DIA[Y = D]
= {predicate calculus, property (8)}

true

34

(D = A]
< {property (1)}
[D = ((Vu = wp.u.D) AX) VY]
= {property (8)}
[((vt :wp £.D)AE)VY
= ((Vu :: wp.u.Dy A X) VY]
= {property (6)}
[((vt :: wp 2.D) A(({Vs : wp .s.E) A X A DyvY)VvY
= ((Vu :: wp.u.D) A X) VY]
= {predicate calculus}
[((vt = wp .t.D) A (Vs = wp .s.E) A X A Dyvy
= ((Yu = wp.u.D) A X) VY]
< {monotonicity of wp, [E = DI}
[({vt :: wp 2.D) A (Vs = wp.s.D) AX A Dyvy
= ((Yu : wp.u.D) A X) VY]
= {predicate calculus}
true

This concludes the proof of compositionality of wsafe. (End of Proof)

35

“Strong” Equivalence
Theorem 12

Fepr Gt F=p G

Proof (of 12): We give a sketch of the proof of the difficult direction, that is we show that F =.. G implies
F o~z G.

Consider the following language: predicate transformers wlt and wsafe, propositions from L, propositional
variables, the usual boolean operators, and the least and greatest fixpoint operators. We will call this language the
p-calculus of wlt and wsafe, henceforth referred to as the p-calculus.

Recall that FwCTL* is composed of branching modalities: along all fair paths (Ay), and exists a fair path (Eg),
and path modality: reflexive strong until (U), with the aforementioned restrictions on path formulae.

Given a formula in FwCTL*, we will show that there is an equivalent formula in the above p-calculus. To convert
an FwCTL* formula to g-calculus it suffices to convert a formula of the following form: exists a fair path such that a
certain weak Propositional Linear Temporal Logic (wPLTL) formula holds. This follows because [Ayp = ~Ey —p)
and the p-calculus has all the boolean operators.

The wPLTL formulae, mentioned above, will have modalities G and U (i.e strong until), and negation will
only be allowed on propositions. Moreover, for any subformula of the form Gp, p should be devoid of U or
should be convertable to a formula which only has G and F modalities (note that [Fq = trueUg]). Such p
will be referred to as U-Free. The negations can be pushed in to be applied only to the propositions because
[(pUgq) = G(=g)V (~¢U-p)].

Our first step is to convert any wPLTL formula to a normal form. We first show that any wPLTL formulae
is equivalent to a disjunctive formula (d—formula) in which the conjunctions are applied only to propositions. The
following facts are used in the proof.

e (1) (pUQ) A (rUs) = ((pAT)U(sA(PUQ)) V((PAT)UgA(rUs))
e (INGpA(rUs) = (pAr)U(sAGp)

The above formula reduces the number of Us in every conjunct occuring on the RHS, and the claim follows by
induction.

Next we convert these simplified d-formulae to a normal form in which we have fixpoint operators. The normal
form will have the following characteristic.

e (2) In a formula of the form {(uz :: f(2)), if gAh or g Uh is a subformula of f(z), then z will not appear in g.

In the following P, P; will denote propositions (Prop), z will denote a propositional variable (PV) and p,q,7,pi, ¢i
will denote arbitrary formulae. We use the following facts:

e 3)(PAGp)Ur = GpA(PUr)
e (4) (PA(PUg)Ur = (pz s (rV((PAD)U((PAgAZ)V(PAQUZ)V(rA(pU))))
e 3) (V;Pin(piUg:))Ur = (u 2 e V(P Ap)U((PiAgiAz)V (PiAg) Uz) V (r A(pi U g)))))

Since we have introduced propositional variables, we must show how to reduce conjunctions of wPLTL formulae and
propositional variables. We use the following rule:

o (6) g A {px : f(z)) = (uz: fz) Ag), with z Agq replaced by z.
When applying these rules we ensure the following.

e (7) To maintain (2) as an invariant, we do not apply rules (4) or (5) to a formula if it is a subformula of the
left operand of another U (until).

Also, we do not apply these rules to any subformula inside a G, because some of these rules might introduce a U
inside a G, e.g. by rule (1): GpA (trueUs) = pU(s A G p). Formulae inside Gs will be dealt with later.

36

The above rules and observations can be used to convert any d-formula to a formula in the class F, whose syntax
is given by the rules:

F .~ Prop || PV || PropAF || PropUF || G(U —Free)F || F1V Fs || (pa :: F), where F has free

We prove this using the following metric p. If pis a subformula of the left operand of another until then p = p2,
otherwise p = pl. The rules for pl, and p2 are identical, except the last one (i.e. for until)

1. pl(Prop) = 0.

2. pL(PV) = 0.

3. pl(p) = max (pl(pl), p1(p2)), if p=plV p2 or p=pl A p2.
4. pl(p) = pl(pl), if p= (pz :: pl) or p= Gpl.

5. pl(p) = max(p2(pl) + 1, pL(p2)), if p = p1 U p2.

6. p2(p) = max(p2(pl) + 1, p2(p2) + 1), if p=pl U p2.

The metric p is designed to capture the maximum depth of nesting of untils, ignoring the depth along the rightmost
(modulo disjunction) chain of operands.
We show that the above rules when properly applied reduce the metric p until the formulae are in F (that is,
p < 1). It is an easy exercise to check that (1) and (1') maintain p, i.e, p(p A q) = max(p(p), p(¢))- 1t then follows
that rules (3) and (6) also maintain p. Also, if we make sure that when applying rules (4) or (5), we inductively first
reduce r into F (so that p(r) < 1), we can show that rule (4) and (5) reduce p. We show this for rule (4).
Abbreviating the left and right hand sides of (4) by LHS and RHS respectively, we have,

p(RHS)

{definition of p; LHS is not in the left operand of U}
maz{pl(r), p2(p) + 1, pLg A 2), p2(¢) + 1, p1(p U ¢))}
{pl(g A z) = pl(g A (px : f(z))) and}

{from (6), pl(g A (uz : f(2))) = maz(pl(q), p1(f())), because x A g is replaced by z}
max {p1(r), p2(p) + 1, p1(9), p2(9) + 1, p1(p U 0)}
{arithmetic}

max {p2(p) + 1,1, p2(q) + 1}

{arithmetic}

max {p2(p) + 2, p2(¢) + 1}

{definition of p}

p(LHS)

i

fl

INH

A

fl

Now, we switch our attention to the formulae of the kind G p, where p is U-Free. Since G distributes over A and F
distributes over V, every formula G p can be reduced to the form G(Vip;), where each p; is of the PGF form, Le.
AmPm A G p Ap F py, and each p, is inductively of the PGF form.

G((AmPm A G pAnen Fpn) Vipi) =
G(AnEN Fpn) A G((/\um A Gp) \/z pi)
V VnienN (((/\um A p) Vz pi) U(pn’ Am Pm AGpAnen-—n F pn)) U G(p A Vipi)
VG(Vi i)
A formula is of the PG form if it is Ay Pm A G p. Now, we show how to simplify formulae of the kind G(V;PG;).

G(AmPm AGP)V;pi) =
(V;pi) U(GPA G(AmPm Vi)V G(V;p)

Finally, we reduce G F p, where p is of the PGF form itself.

37

GF(AmPnAGpAFpu) =
F G p A GF(AmPr) AGF(Anpn)

Thus, in the original formula, starting with the outermost G we can push G inside using the above three rules, till
G occurs in only three forms: G(V; A;j Pij), and G F(V; Aj Pij). Since, we are only going to allow conjunctions with
propositions in our normal form, we will keep the G in the following form, G(CNFPROP N, F(CNF PROP)),
where ONFPROP is of the form V; A; Pyj.

With the normal form F being a chain of Us, and ps, and with the fact that the propositional variables are in
conjunction with only propositions, it can be proved by simple structural induction that:

Ef=f if fis Propor PV,

= Prop A E fl,if f = Prop A f1,

=E(P UEfl),if f=PUSl,

=EfIVEf2,if f=f1V 2,

= (pz = Ef), if f = (pz 2 f).

Finally, EG(CNFPROP Ag F(CNFPROPy)) = (vz = E G((CNFPROP A EF(CNFPROP; A z))).

Thus we have managed to push the modality E such that it is applied only to U and G with arguments as state
predicates only.

Finally, the above distribution of the modality E also holds if E is replaced by Ey, i.e. exists a fair path, where ¢
is the fairness condition (unconditional or weak, say G F p). This follows because, the only case in which an infinite
fair path has to be demonstrated is in the case of formulae G p, because only such subformulae give the possibility
of an infinite path. However, E G in the fixpoint characterization allows us to take E F(CNFPROPy) arbitrarily
later, i.e. after an occurence of p, so that if a path is constructed by infinite concatenations, it will have infinitely
many p’s and hence be fair, and still have the property G(CNFPROP Ay F(CNFPROP;)). This only holds for
weak PLTL, and hence the restriction on the language FwCTL".

Since, E4 G, and EgpUgq can be represented in terms of wlt and wsafe (wlt is “E4 G and wsafe.p.g is
- Eg —¢ U -p), we have converted FwCTL* to mu-calculus of wlt and wsafe. Then by Knaster-Tarski Theorem,
and since £* has true, false, and is closed under conjunction, disjunction, negation, and under predicate transformers
wlt and wsafe, F and G being “strongly” equivalent imply they are operationally equivalent, i.e. F ~¢ G.

Also, wlt can be given as a fixpoint of we, and hence this direction also holds for wlt replaced by we in the
definition of =¢. (End of Proof)

38

