MOTION CONTROL USING
EXTENDED GENERALIZED
COORDINATE TRANSFORMATIONS

Jihun Park, Donald Fussell, and James C. Browne

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-92-25 April 1992

Motion Control using Extended Generalized Coordinate
Transformations

Jihun Park, Donnald Fussell, and James C. Browne
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712

’ Abstract

This paper presents a new methodology for specification and control of the motion of an
articulated rigid body for the purposes of animation by inverse dynamics. The approach is to
formulate the problem as a coordinate transformation from the joint space of the body to a
user-defined space which is chosen for convenience in constraining the motion. Constraints are
applied to the resulting coordinate transformation equations. It is sufficiently general so that it
can be applied to all common types of control problems, including closed loop as well as open loop
mechanisms. In order to prove this, we provided a set of simple examples of extended coordinate
transformations. Then we also provided a new approach to simulate a closed loop mechanism,
which is using extended coordinate transformation technique. The method is formulated in
detail and is demonstrated by animating the motion of an inchworm.

1 Introduction

It is by now well known that producing realistic animated motion of natural objects requires
modeling the dynamics which determine key aspects of that motion [6, 28, 29]. Controlling very
complex motions such as walking animals is a particularly challenging task. Ideally, an animation
system allows the animator to directly specify the macroscopic features of the motion such as
the intermediate goal configurations of a moving animal. The direct specification of the kinematic
features of the walking motion itself, however, is not at all desirable, since it is essentially impossible
to achieve realism this way. Instead, a dynamic model of the animal is built which determines these
details. It is desirable that such models be specified in terms of parameters which allow effective
and intuitive control by the animator of the relevant features of the motion.

Dynamic models of articulated bodies typically have linear or tree-structured topologies. In
either case, they are open loop mechanisms. That is, they can be modeled as links connected
by joints, where the links at the ends of the structure have a free, unconstrained end. However,
creatures moving on the ground cannot always be modeled as open loop mechanisms since the free
ends of the links are often constrained by the forces involved when they touch the ground. In this
case, a closed-loop model of the moving creature is needed. Closed-loop models occur in many
other situations besides locomotion. A human holding a cup or lifting a barbell also requires a
closed-loop model.

Given a model, we still need to determine values for the dynamic parameters such as the
appropriate torques on the joints of the body for a forward dynamic simulation which will give
proper motion for a particular specified animation. There are two basic approaches to determining
these parameters. One is to use heuristic algorithms which generate torque values for each motion

increment and then verify that they cause the proper effects. Another is to use inverse dynamics
to specify constraints on the dynamic parameters which will cause the specified motion to occur.

Either type of model can be specified in terms of the generalized coordinate system or joint space
of the model itself. This space has a dimension for each degree of freedom (DOF) of each of the
joints in the model. The forces exerted at each joint determine the motion of the mechanism in its
working space, which is normally Cartesian space with six degrees of freedom in the case of a single
open kinematic loop. We can think of the working space as the space of kinematic parameters
input to the system, for which we must compute the forces in joint space needed to achieve the
specified result using inverse dynamics. These dynamic parameters can be applied using a forward
dynamic simulator to generate the resulting motion.

We can specify the relationship between joint space and working space as a coordinate transfor-
mation from n-dimensional joint space to 6 dimensional Cartesian space. Since for most articulated
creatures 1 is much larger than 6, a number of unconstrained degrees of freedom are left in the
transformation. If in such cases a particular spatial configuration of the articulated body has been
specified, there will be a large number of solutions to the transformation equations which produce
this result. This redundancy makes motion control very difficult.[21]

The usual approach to this problem is to add constraint functions, and if the system remains
underdetermined, to use optimization techniques to find the required joint angle velocities for given
end-effector positions and orientations. From this information the joint angle values are obtained
by integrating. This approach does not lead to an easy interface for animator specified parameters
to be input to the system.

Any minimal set of coordinates to specify a motion is called a set of generalized coordinates[3];
generalized refers to the fact that they need not be only positional or only angular coordinates. By
extended generalized coordinates we mean that we allow any function, not only position or angle,
meaningful for our motion control to be modeled as a coordinate dimension. Our approach to the
problem is to replace working space with an arbitrary user-designed animation space with up to
n dimensions. Typically, this user-designed space will contain working space as a subspace, with
additional dimensions defined to represent features of the system which are to be constrained by
input from the animation specification. We refer to techniques based on transformations between
generalized coordinate systems as extended generalized coordinate transformation methods. Based
on this generalized coordinate transformation and differential relationships between joint space
and animation space, we introduce a dynamic formulation which is based on the General Principle
of D’Alembert and virtual work. This approach gives a well-structured matrix (closed) form for
the control equations. This formulation is particularly useful in the analysis of dynamic system
models. We have used this dynamic formulation for several physical simulations including an open
loop serial chain (figure 5), an inchworm (figure 6) and a pin-pointed dropping chain.

The remainder of the paper is organized as follows. In section 2 we review related work and
in section 3 we introduce our approach. In section 4 we provide motion equations for animation
of linear chain topologies. Section 4.1 contains a new formulation of the geometry of the serial
structure of an articulated body. In section 4.2 we describe the extended generalized coordinate
transformation technique and in section 4.3 we provide an example of extended coordinate trans-
formation technique and shows that the control works, and in section 4.4 we introduce a dynamic
formulation which is easy to use for analysis purposes. In section 4.5 we show three ways to simulate
closed loop systems, and in section 5 we describe specific dynamic simulation results.

2 Related Work

Much work has been done on the dynamic simulation of moving creatures or articulated bodies in
the past several years. The most common approaches model a real creature as an articulated body
consisting of joints connected by links, possibly also including springs and dampers [29, 28]. In
[20], a specialized spring-and-damper body for modeling the sliding motions of snakes and worms
was developed.

The motions of these models are determined in two basic ways. Forward dynamics based
systems provide realistic simulations of the motion of figures but are difficult for an animator to
control since the specification of unknown joint torques is required. Lagrangian [6], Gibbs-Appell
[27], Armstrong’s Newton-Euler [2] and Featherstone’s [19] formulations of the dynamics have
been used in such systems. Iterative approaches, particularly the latter two, provide the greatest
computational efficiency among extant simulation methods.

The basic problem in forward dynamics systems is finding a set of torque functions to control the
body. This requires either a heuristic approach or an inverse dynamic (constraint-based) approach.
In [16], a system allowing geometric constraints on the joints and specification of either accelerations
or torques on the joints for open-loop systems is described. Witkin and Kass [30] give a method
which solves geometric constraint equations on the joints along with constraints on the control
forces for the entire span of the simulation at once. [31] presents an iterative method to solve
inverse kinematics with a given set of constraints, and [18] discusses an iterative method to find a
path satisfying kinematic and dynamic constraints.

In [17], a method based on D’Alembert’s principle and virtual work which allows inverse dynamic
solutions for both open and closed loop systems was developed. An articulated body is defined
in terms of a generalized coordinate system with a dimension for each DOF of each joint in the
figure. Constraint equations involving one or more of these DOFs can be specified. Lagrangian
multipliers for each kinematic constraint equation are used to represent the unknown forces required
to satisfy the constraints. Other techniques for handling closed-loop systems have been developed
for robotics. Freeman[10, 12] has worked on two dimensional serial chains and Stewart platiorms.
His approach is to add selected joint positions and angles to the working space to form a new
space with the same dimensionality as joint space. A constrained coordinate transformation from
generalized coordinates (joint space) to this target space provides the solution to torques required.

3 Our Approach

Our approach is an extension of the generalized coordinate technique [11]. We relax restrictions on
generalized working space to define an animation space which is allowed to have any number of DOF
less than or equal to that of joint space and to allow any function of the kinematic parameters to form
a dimension in animation space. These newly added dimensions represent kinematic constraints
imposed on the dynamic model by the animation system in which it is embedded. Their values
are specified as inputs to the dynamic model, which then solves for the torques required to satisfy
them. This provides a very natural mechanism for designing the control of a dynamic body model
to fit into an animation environment. Our methodology is general enough to handle open and
closed loop mechanisms and most other common types of control problems.

We will deal with highly redundant systems. In a redundant system whose degree of freedom is
slightly greater than that of animation space, we can usually control motion by adding constraints
using Lagrangian multipliers. But because the articulated body is highly redundant, we can not
control the shape of the body by Lagrangian multipliers alone. We use Lagrangian multipliers in
calculating pseudo inverse matrices, but we also extended animation space to actively control the

3

shape of the body. To better understand our approach, consider an example of animation space,
U.letieU,

z

Y
i = z (1)
(¢2 —a)®
(¢4 —b)?
where a and b are constants, ¢; is i-th joint angle and we want to restrict joints 2 and 4 fixed to
fixed angles a and b respectively.

4 Motion Control Equations

In this section, we derive motion control equations for our animation and introduce our new formu-
lation. First we formulate the geometry equations for an open-loop serial kinematic chain. Then we
present differential equations for the functions used in an animation. We show a specific example
of the derivation of geometry equations in sub-section 4.1. The other differential derivations are
based on the functions we use in a particular animation. Next we introduce a general dynamic
formulation based on the gradient and Hessian tensor in sub-section 4.2. Then in sub-section 4.5,
we extend the dynamic equations by transforming the coordinates.

4.1 Geometry of an Open-loop Kinematic Chain

In controlling an articulated body, we frequently need open-loop geometry. We use a formulation
for an open-loop chain based on screw theory [4] for simplicity. The notation follows [10, 13, 26].
Define

Screwlazis,s,¢] = Rotlazis, $]Translazis, s
Trans[azis, s|Rotlazis, ¢] (2)

i

where Rot[azis,¢] means rotation by ¢ degrees along azis and Trans[azis, s) means translation
by s along azis. Here the sequence of translation and rotation does not matter. The homogeneous
transformation matrix between two adjacent link coordinates is given by

Ti,, = Serew[zi, aiis1, @iy)Serewlzi, siit1, diva] (3)

A homogeneous transformation matrix T for the geometry of the entire mechanism can be defined

as [23]
(7§ ap
T= (0 0 01) (4)

where @ is an approach vector, & is an orientation vector, 7= &x d and Jis a position vector, all

in three dimensional space.
We assign joint indices in ascending order from the base of the chain, with the local reference

coordinate for each link assigned to its lower indexed joint. Then

g = [I%)
§ = [T Screw[zi-1,0,i-1,llz (6)
%= [o
¢ = [TPTranslaie,|aislllz (®)

4

X
Figure 1: Coordinates of a Chain

where z; is the z axis of ith local coordinate, a;—1, is the twist angle between §;—; and 5;, and
|ai| is the distance from the origin of the ith local coordinate at link i to the mass center of link
i. @;;41 is the offset along x; from the origin of the i-th coordinate to the origin of the (i+1)-th
coordinate, ¢; is joint angle along 2, $ii+1 is offset along z; from the i-th coordinate to the (i+1)-th
coordinate. Note that a; ; is a scalar, ; is a vector, $; ;41 is a scalar, §; is a vector.

The meaning of this equation is straightforward. @; represent the z axis of the ith local coor-
dinate in terms of the base coordinates, 3; is the z axis of the ith local coordinate in terms of the
base coordinates, and 7; is a distance vector from the base coordinate system origin to the origin
of the ith local coordinate system. In order to find &, which is a distance vector from the base
coordinate system origin to the mass center of the ith link, translating by |@;c:| along d@;ci. These

relationships are illustrated in Figure 1.

From these geometric equations, we can obtain the differential kinematic equations needed
to control the articulated body. In order to clarify the above formulation, consider the following
example. Figure 2 shows a three degree of freedom kinematic chain and its link parameter table. In

$1 h@s
92\{ 8
3
P
852

Z

X
\491

indez i, i+1 | ¢ig1 | @iit1 | Giit1 | Sijit1
0,1 3] 0 0 lo
1,2 b9 90 0 0
2,3 @3 0 I 0
3.4 0 0 Iy 0

Figure 2: Example of a Serial Chain

the solution, ¢ and s in scalar form mean cosine and sine respectively. So c;jxr means cos(¢;+d;+¢k).
s;j means sin(@; + ¢;).

7 = Screw[mo,aovl,ao,l]Screw[zo,so,l,qil]

H

g —-s1 0 O
81 c1 0 0
1] 0 1 1o
0 0 0 1

T21 = Screw[:r1,a1’2,al,2]Screw[zl,sl,g,cﬁg]
cy 82 4] 2]
_ 0o 0o -1 0
- sy €2 1 0
0 0 0 1
T2 = Serew[rs,azs,a2,3]Screwlz, 52,3, 43]
ez =-s3 0 I
_ 83 c3 0 O
- 4] 0 1 0
0 0 0 1
Tf = Screw[xg,a3,4,a3,4]5crew[23,53,4,¢4]
1 0 0 I
_ 01 0 0
- o 0 1 0
0 0 0 1
T
i = [Tlo]ﬁ = (cc 8 O)
T
g = [Tg]ﬂ=(ci1cz 81C2 82)
T
i = [T:?]ﬁ=(c1¢23 S1C23 823)
T
1 = [TSScrew[xo,O,aovl]]a=(0 0 1)
- T
5 = [TfScrew[xl,O,al,g]]az(s =—ci O)
" T
5 o= [TgScrew[:vg,O,agia]]az(s3 —cl O)
T
§ = [TgScrew[xs,O,a3,4]]a=(sy —cl 0)
- T
mo= [Ms=(0 0 &)
. T
»o= [M=(0 0 L)

I T
3 = [Te?]ﬁ=(licieg lisicz lisa+1lo)
o lacices + licic2
o = [Tilg= | lasicos +l1s1c2

lasaa + sz + 1o

4.2 Coordinate Transformations and Differential Relationships

If we are trying to represent a coordinate in terms of another coordinate, we need to derive a set of
equations relating one coordinate to another. In robotics, this usually means transforming from the
generalized coordinate space of the joints, where each dimension represents one DOF of a joint, to
Cartesian space, which is the normal type of working space. Thus each object can be represented

6

by a set of positions and orientations. In special circumstances, the working space can be spherical
or cylindrical [3]. Freeman and Tesar[10, 13] allow the working space to be a generalized coordinate
system consisting of Cartesian space positions and orientations and joint angles. This generalized
system is required to have the same dimension as joint space.

Usually the coordinate transformation from joint space to Cartesian space is aimed to give
output in Cartesian space when the motion control is done in joint space. We may interpret this in
reverse, where if we want some output in Cartesian space, we calculate the corresponding effective
change in joint space. We extend the idea of generalized coordinate transformations by including
implicit output functions[11]. By implicit, we mean that the meaning of the function is usually not
as obvious as other position or orientation functions. For example if we want to fix joint 4, then the
function can be (¢; — a)* where a is joint angle(figure 5). Please note that there are many ways of
controlling the constraint. We can use any arbitrary function in terms of joint angles and positions
and orientations in the ordinary working space to control the motion of the articulated body. That
is to say, we create a new animation space whose dimensions are defined by these functions. So our
animation space can include motion constraint space as well as positions and orientations which
are for motion control.

Let @ denote a vector in the created m dimensional space and & a vector in joint space having
n degrees of freedom. Then

fi(@1, 62,5 Pn)

f2(¢13¢2’.,""¢n) (9)

=
il

fm(¢1,¢;y" ,¢n)

We can find some relationship between % and ég such that

-

i =[G41é (10)
where G is a gradient or Jacobian tensor. The tensor [G§] consists of
od ou o0t
GY = = [g¥g¥- - g¥]. 11
[qS] [8¢1 8(,‘152 6¢n] [gng g] ()

g* denotes the effect in @ space of a change in joint 1.

Up to now we we have discussed first order differential relationships. But we also frequently
need second order differential relationships. An acceleration vector of # space, ﬁ’, can be expressed
in terms of a gradient tensor and Hessian tensor such that

. . N o T o
i =[Gl + [GYle = [GElo + & [Hiylo. (12)
Let us assume @ space is defined by a set of m functions fi, fa fi. of the ¢;. Then the G and
H tensors are given by
ofi 2h ... 24
dp1 J¢2 O¢pn
[G3]= :1 :2 . :n (13)
Oim Um ... Unm
3¢ db2 Fén

and

82 [82 . 32 A
3¢123¢1 ¢>323<152 3¢123¢n
55 ar”‘i a"j‘a’ é" 34 afp
i o n
[qus‘qs] - ¢2. 1 2- 2 : 2 (14)

3 [nh)é
'_J'
¢

& 3,18 = {ffﬁ] ¢ (15)

T .
¢ [al5]9

Here f can be interpreted to be a very general function. The position and orientation functions
of an end-effector are well-known cases of f, which are commonly used in robotics. We can introduce
additional functions as long as the total does not exceed the number of degrees of freedom of the
articulated body.

The derivation of the differential relations between the joint space and animation space dimen-
sions is based on [10, 13]. These relations describe the effective change of every position (including
the base of local coordinates) of a serial kinematic chain as a result of a change in a joint.

Let 7 be an arbitrary position on the jth link of the kinematic chain. Then [G’Z]n is a differential
relation in terms of joint n which can be represented as

[Ggln = { 0 otherwise (16)

The Hessian tensor in terms of position 7 can be described as

G X (Epx[f-7]) fm<n<j
[Higlmn = { & X (8m X [F—7m]) fn<m<] (17)
0 otherwise

where m and n denote joint angle indices.
Similarly, orientational differential relations are derived as [10, 13]

7k — S, ifn<j
[Gyln = { 0 otherwise (18)

ik §ixg, ifi<n<y
[ngﬁ}g;n = { 0 otherwise ’ (19)
The gradient tensor [Gék] contains orientational differential relations between every pair of joints
in the articulated body. The gradient and Hessian tensors of the other functions, which we use in
our motion control, can be obtained in a similar way.

Now we have both direct and differential relationships between ¥ space and qg space. For
example, geometry (position and orientation) is a common direct relationship. For control, we can
assign some values to the vectors @ and 7 in the newly created space. By the constraints thus

8

imposed on i and @, the articulated body is constrained in motion. The simplest case is assigning
the value zero. If we assign zero to the velocity and acceleration functions of the end-effector
position, we convert an open loop chain mechanism to a closed loop.

Usually the dimension of @ will be smaller than that of joint space. In this case, we need to
apply optimization techniques, as is commonly done in robotics [3, 21]. In our simulation, we used
a joint velocity minimization technique.

4.3 Example and Basic Concept of Transformations and Differential Relation-
ships

In this section we work on a three equal segment(length was set to 1) planar linkage. This section
is related with the next sections that the readers may need to refer next sections while reading.
We set DOF of animation space equal to that of joint space in order to avoid non square matrices.
But Lagrangian multiplier method or Singular Value Decomposition method is necessary when we
have non square matrices. Our example animation space and joint space was set as follows.

Figure 3: Example of a Serial Chain

f T4
i = fol=1] va

f3 2
. 1
¢ = ¢2

®3

Let us work on a general function, f;, (¢ = 1,2,3), for animation space.

f' - _Ei‘.fi..(._iﬁ Q__f—i-i@ + %%
z 8¢y dt =~ B¢y dt ~ O¢s di

= g{iflgl + gziﬁ’bz + 93i§2§3 (20)
_ gt gf! gi
i = d? g+ | o |2+ gl | ¢s
i gt g%
= 91‘@51'4* 9'3@32 + ggég
=[Gyl (21)

From equation (20),
fiv fin iv L fin i fig
fi 9’1+ 95 b2+ 933+ 91 b1+ G2 b2+ 93 93

P P TN
J 0¢y dt Od9 dt Odg dt

il

o

1

242
i

hfi b1 + h5§¢2 + hf’3¢3

[ofigsg

ol gdigfi 10+

w T
G+ [Hy) S

LT : ‘
g+ | nly Ry Hls |4

Wy Bl b
Wiy by bl
a4)
) ¢
a5

Sy Y

.
-

If we solve inverse kinematics, from equation (21) and (22)

s

Oyt

=[Gyt = (Gl
= (og (-3 t9)

w T .
=[Gy i— ¢ (G317 ® [His)e

where ® is explained later. From Figure 3, we can easily check

T4

Ya

T4
9

T4

92

T4

g3

Y4
g1

va
93

va
93

¢2
91 :

¢2
g3°

hit
hat
hat
his
has
h33
hi3
ha3
h33
hii
h3i

i

i

I

il

i

I

i

fl

c1 + c12 + €123
81+ S12 + 8123
—81 — 812 — 8123
—812 — S123
—8123

c1 + c12 + €123
¢12 + €123

€123

=0

2¢3

—C1 — €12 — C123
—C12 — €123
—C€123

—C12 — €123
—C12 — €123
—C123

—C123

—C123

—€123

—81 — 812 — S123

—3812 — 8123

10

(22)

(23)

Ya o
h31 = 8123

hz{% = =—812 — 5123
hY, = =812 — S123
h§§ = 38123
hi’% = —8123
hys = —s123
hg@, = —38123
2 2 2 2
R = By =hE =hi3=0
g = w=nfi=nli=o
RS = 2
33

15T L T 1 5
G786 =4 (G © [Hs)) 6

T N
5 [ty + onlitfy) + anlB316]
e A f2 13
=| ¢ [021[H¢¢]+022[H¢¢]+a23[5¢¢]¢]
T R
¢ [031[33;3,5] + 032[5522] + asa[H£;]¢]
a11 @12 413

Where[Gg]'lz do1 G223 Q93
azy a3z 433

—81 — 812 — 8123 ~—812 — S123 3123
Ggl = ¢1+cip+ ez c12+c123 €123
0 0 2¢3
P -1 — €12 — €123 —C12 — €123 —C123
[H 1} = —c1z— €123 —C12 — €123 —C123
\ —€123 —C123 —cC123
; / —~81 — 812 — 8123 —S12 — S123 5123
[H 2} = —812 — 123 —S12 — S123 —S123
—8123 —8123 —8123
0 0 0
[Hfs} = |ooo
0 0 2
«]171 M
Gy = -
D
D = —2¢3c1281 — 2¢3¢12351
M
2¢a(c12 + c123) 2¢3(s12 + s123) 53
—23(c1 + c12 + c123) —23(s1 + s12 + s123) —s23 — 53
0 0 s2 + s23

11

Let

.

i=[11 O]T

then
¢ = [Gy'u
1 2¢3(c12 + €123 + 512 + S123)
= 5 —2¢3(c1 + c12 + €123 + 81+ S12 + $123)
0
¢3 = 0

If

N T

§=1[110 0]

. T

i =]110]

then by equation (23)
~121 — 121cos(¢3) — cos(%i)cos(qﬁz + Q%'Z

"o Deos(G)sin(ds + 5)

& = 243 + 242cos($3) + 244608(%1)c03(¢2 +22)
: T 2Dcos(%1)sin(¢2 + ?-21)

d3 = 0

As you can see, we can control @ and 4 to fix ¢3 instead of directly controlling joint space.

Now we have both direct and differential relationships between @ space and c,g space. For
example, geometry (position and orientation) is a common direct relationship. For control, we can
assign some values to the vectors @ and # in the newly created space. By the constraints thus
imposed on @ and @ , the articulated body is constrained in motion. If we assign zero to the velocity
and acceleration functions of the end-effector position, we convert an open loop chain mechanism
to a closed loop.

Usually the dimension of @ will be smaller than that of joint space. In this case, we need to
apply local optimization techniques, as is commonly done in robotics {3, 21]. In our simulation, we
used joint velocity minimization and joint torque minimization technique.

4.4 Basic Dynamic Equations

Using the gradient and Hessian tensors we have derived, we can formulate dynamics equations for
a dynamic animation. This section is heavily due to [10, 13, 26]. The dynamic equation is based
on the Generalized Principle of D’Alembert and virtual work, that is to say, the derivation of the
dynamic equation is based on the virtual work of inertial loads. We can use other techniques based
on inertial power or Lagrangian methods to derive exactly the same set of equations. Please be
ware that the dynamic equation is based on three dimensional space. In order to derive dynamic
equations we need to derive kinematic differential equations in terms of positions and orientations.
If we have external forces/torques, then we also have to compute differential relations for each
corresponding positions. All necessary terms are included in a giant dynamic equation (27).

12

In order to provide a better feel for our large system of dynamics equations, we provide a very
loose derivation of a simplified equation. Let 7] be the i-th joint torque, Fi be the force acting on
the 1-th link centroid, 7; the moments acting on the 1-th link, M; the mass of link 1, x the position
of the 1-th link centroid, I; the moments of inertia of the 1-th link and ¢ the angle of the 1-th link.
Then by the Generalized Principle of D’Alembert,

L
ST rlsgi+ > [Fibai+ né] = 0 (24)
7 I=1
F = —-Mi
n = —Ih

bor = 3 gfbwi
s = D gl
Bo=) lgfidi + hiidl]

)

b= Y lghdi+ hid)

?

Substituting these equations and eliminating é¢, we get an equation of the form
l=I;¢+ Pr ¢ (25)
Proceeding in this fashion, we obtain the following complete set of equations.

7"‘4{ = /[*inertial force*/
[13410
/*coriolis and centripetal force®/

e
+¢ [Pigsl0
/*external forces/moments*/

- (G 4 (G

i=1
/*gravitational forces*/
— Z[G;']T J?gc;
=1
/*damping*/
LCHHCl
/*spring load*/
= > {k[GFTTIGY]
g=1
+H(r)T @ [T} fo (26)

13

where

[I;QS] = i{mass,-[G;j]T[G:j]
=1

HEF PG} (27)
kgirgivale (28)

2]

[Pios] = é{massj(wm[ﬂ;;n
H(GLTUIT) @ [H}4)
(AT (AT (29)

and [I7] is an inertia tensor in local coordinates.
This is the inverse dynamic equation. We can easily obtain the forward dynamic equation from
it such that
P T n
§ = (L1775 — & [Figeld
+external force + gravitational force

+damping force + spring force). (30)

The multiplication a ® b of two tensors a and b of dimension n X m and n X n X m, respectively
results in tensor ¢ of dimension n X 7 X n and is performed as follows.
fori, j, k from 1 ton

m
Ciki = Z aitbjr
I=1

Basically ® has the power of normal matrix multiplication in a two dimensional array. It is
a bit different from the tensor multiplication operator in [10, 13] due to the indexing used in our
formulation, but has the same power. For more detail about the dynamics and a further explanation
of the notation used here, see [10, 13, 26] .

4.5 Closed Loop Mechanisms

There are three methods for simulating the closed loop mechanism : soft constraints , hard con-
straints and simulation by extended coordinate transformation technique.

4.5.1 Simulation by the Extended Generalized Coordinate Transformation Technique

By this method closed loop mechanisms are easily handled by including corresponding constraint
equations at animation space and by doing motion control appropriately as was shown at previous
section. Consider Figure 3. Please notice that this model is the same with a human sitting on
a chair. If we want to simulate the human, then we need to make an animation space. Because
this example is highly constrained we need to be careful. If there are lots of redundancy, it may be
easier to decide an animation space. Let us make animation space and its control as follows.

T3
Y3
#3

£y
il

14

i = 0 |{é=| 0 (31)

so that we can constrain #s = &3 = ys = gz = 0 to fix (z3,y3). By differential kinematic equations
derived so far, we can calculate corresponding joint velocity and acceleration values. Then with
this, we do inverse dynamic simulation. We still need the simulation if there are external forces
acting on a body except the forces caused by hip constraints. By this way, we can simulate human
sitting on a chair. Because this example is really simple, the animation becomes straight forward.

4.5.2 Soft Constraints Technique

Soft constraints method models external forces to constraint the motion by using stiff springs and
dampers. Consider Figure 3. In order to fix a hip of a human body which corresponds to (3, ¥3),
we need to use vertical and horizontal direction stiff spring and dampers. Dampers should work
opposite direction than that of springs to restrain wild action. We do forward dynamic simulation
in terms of time by including external forces caused by springs and dampers. During simulation, the
hip is moving a very small amount which causes springs and dampers reaction forces. Due to the
reaction forces, the hip moves to opposite direction. But by the small amount of displacement, the
hip get opposite direction forces due to springs and dampers. But this approach is only effective for
forward dynamic simulation (so can not be applied in this paper approach) and is very expensive in
terms of computation time because we need to make the integration time step very small especially
wild motion is involved. For some tip, even this simple simulation is not easy because we need to
carefully select spring and damper coefficients, and integration time step, and the most difficult
part is the control of the body. We used a weak variant of an optimal control method to get a best
set of controls for the human movement. Also a good model of human foot is very important if the
simulation(animation) includes human jumping or walking.

4.5.3 Hard Constraints Technique

In this method, we use kinematic constraints to derive the resulting constrained closed loop mech-
anism. In terms of this approach the motion equation usually becomes messy. Our dynamic model
carrys enough information that we can model hard constraints in a closed form equation and is
shown in this sub-section. Other dynamic formulation, for example recursive algorithms[9], usu-
ally do not compute enough differential kinematic relations and can not include hard constraints
straight forwardly because their equation is not in a closed form. We have to derive kinematic
constraints for a set of joint angles and then has to simplify corresponding dynamic equation.

Consider the closed loop mechanism(Figure 3) where the hip of an open loop mechanism is
fixed on the chair. Then the velocity and acceleration of the hip are both zero. If we want to derive
dynamic equation using the recursive algorithm[9] then we need to derive differential kinematic
equation for hip position. Then as a result, we know velocity and acceleration of joints 1 and 2
have some relation(zero). By applying these kinematic equations to recursive dynamic equation,
we get a new dynamic equation for closed loop mechanism. Joint torque 1 and 2 means reaction
forces acting at an ankle and knee in this case. But you can see that this process is pretty messy if
DOF of a mechanism becomes higher and higher. But the method presented in this paper is pretty
neat.

Let us make an animation space for the closed loop mechanism the same with subsection 4.5.1.
in order to include hip constraints. We then derive differential kinematic equations [G§] and [Hg,]

15

-

and derive the dynamic equation in terms of animation space. Then we get 71. The meaning of T_,ga
and 7'353 becomes hip reaction forces in horizontal and vertical direction, and Té , is the same with
TQ{S which is derived in joint space #. Then we discard TJ{S and 1';3, and use only Tq{S for forward
dynamic simulation. Please note that we are very flexible in selecting an animation space. We
can include any function if meaningful for our animation and use it to constrain the motion. The
constraint do not mean fixed constraint in geometry. It can be any thing.

Now we shall work in general case. Basically the open loop case and closed loop case can be
handled in the same way in terms of our extended generalized coordinate transformation technique.
The only difference is the constraints assigned as inputs to the system. If the dimensions of ¢ and %
are the same, the problem is easy. Usually the dimension of & is smaller than that of $, so we need
to use optimization techniques [3, 8, 21] and need to use different approaches to solve the closed loop
equation. We have tried several optimization techniques, including joint velocity optimization with
weights and weighted joint torque optimization. Among these weighted joint velocity optimization
gave the best results in our simulations. Also we can easily adjust joint weights to modify the
resulting motion.

Let f:®—Uand @€l ,$ed.

f
2 (32)

=3
i

fm
&

% (33)

-
il

¢n
Then [Gg] and [H ;‘(b] are derived from the differential relationships. If f; is a linear combination of
#; in ¢, then [H ;;:ﬁ] becomes zero.

In order to solve in terms of q?, we need to decide redundant and nonredundant joint sets. Then
we solve equations in terms of non-redundant joints by eliminating redundant joints. We then solve
for the unknown endeffector forces and eliminate the forces from the equation. Thus we can do
forward dynamic simulation in terms of nonredundant joints. The angular values of redundant
joints can be calculated from nonredundant joints. If we want to derive the equations in terms of
i, the relationship between ¢ and # becomes as follows. From

Kinetic.Energyy = Kinetic.Energy$
L8 = S
§ = (Gl
§ = [+ (AL
o= Gy,
o= (Gl

We get

16

() = (GG (34)

o=)i+ (P (G (35)
where
-1
6] = [c3] (36)
T
[me) = - [62] ot] o [ms]) o] (37
T T *
—(id® (B [64] (38)
and 77, includes load terms which are similar to that of equation (19). More specifically, the equation
rl = i+ (PLui (39)
is of the form
1-}1’1 Iiu‘l szfz If:1fm fl
A I PV A 2|
b oo Tosa o Titn) \ I
f:l ’ P;1f1f1 P;lfafz P;lflfm / le \
f2 Pl ity fitafa 0 FPhifolm fa
fa Pﬂ;mf, P g,(fmfg " Pl fatm \ fm (40)
&Py Ll
#py L

If f; is a position-related term, and that position is fixed in the closed loop case, then we need
to set fi = f; = 0. The corresponding 'rfi term is computed to be a reaction force (torque) at
that position. If f; is just ¢;, then the 7']{, can be the torques at the desired input. But if f is an
arbitrary function, it is not easy to get a physical meaning.

4.5.4 Mechanism used for Inchworm Animation

Now we will introduce the specific mechanism used in inchworm modeling. The mechanism is
very important because some redundant mechanisms produce many singular configurations. We
used two DOF joints at each links because these joints give fewer singular configurations than the
three degree of freedom ball joints which were used in [14]. The mechanism used for modeling an
inchworm is shown in Figure 4. The inchworm has a very flexible body with a great many degrees
of freedom. We map the inchworm body to a finite segmented articulated body. Before creating
a @ space, we need to check the degrees of freedom of the mechanism so that we may decide the
dimension for our space. The open loop case is pretty easy, and the closed loop case is determined
by Griibler’s equation [15]. Let us assume one DOF at each joint, which means we assume there
are two joints at each segment. Then the DOF for the closed loop is determined by the equation

closed Joopd.o.f = 6(n —1)— 5] (41)

where n is the number of links and j is the number of one DOF links[15]. From this, we can decide
the upper limit on the dimension of % space.

17

/
/ X
49 H Ry
FF F F
Z2 %4 Zg 28 210
Figure 4: Segmented Inchworm

5 Dynamic Simulation

Using the motion equations developed above, we have done a dynamic simulation of an open loop
serial chain, an inchworm and a pin-pointed dropping chain. The pin-pointed dropping chain
is a famous simple example which we used to check the correct operation of our system. For
inverse dynamic simulations, we used extended coordinate transformation method to get differential
kinematic equations for the control of the motion.

The inchworm example given in Section 4.2 illustrates the basic steps of our method of motion
control. These steps are:

1. Define a model of the object to be controlled for animation.

2. Formulate the equations for motion control in the extended general coordinate transformation
basis.

3. Solve the inverse dynamics problem to obtain torque functions.

4. Execute the forward dynamics simulation of motion, both open loop and closed loop steps,
using the information contained in the torque functions. Please note that we still need forward
dynamic simulation because we need to include external forces/torques during simulation.

The core of dynamic simulation is as follows:

. Calculate kinematic information with current qg
. Determine @ and i.

Calculate q?, & using @, 4.

. Calculate torque set by inverse dynamics.

. Do forward dynamic simulation.

Obtain a new 5, and go to step a.

oo o

laciNe]

5.1 Dynamic Simulation of Open Loop Constrained Mechanism

A dynamic simulation on a simple open loop mechanism is shown in Figure 5.

The mechanism has ten DOF and the control is only position based. So we have seven redundant
DOF in this example. The redundancy is solved, as was discussed previously, with a joint velocity
optimization technique used in robotics.[3, 8, 21] This optimization technique uses a Lagrange
multipliers, which adds artificial constraints by reducing the null space. But we stress that this
technique alone cannot control the shape of the body. This is why we use extended generalized
coordinate transformations for our animation. The left simulation is normal movement, but the
right simulation is constrained such that the first segment is fixed. As can be seen from Figure 3,
the segment is completely disabled. But when a position is given which cannot be reached with the
constrained mechanism, the fixed segment eventually moves to reach it. This is a kind of inverse
kinematic problem which was given unreachable position as an input. This is a very simple control
example of our extended generalized coordinate transformation technique. We set fi = ¢% and
controlled by f; = fi = 0.

18

Figure 5: Normal and Constrained Motion

5.2 Dynamic Simulation of an Inchworm

The main purpose of using inverse dynamics is to get a set of torque functions which can be used
for forward dynamic simulation. An inchworm has legs only at front and rear. It lacks middle pairs
of legs, so it moves by extending the front part of the body while the rear grasps the ground, and
then pulling the rear forward while the front grasps the ground[l, 5]. When an inchworm extends
the front part, it can be modeled as an open loop mechanism. When it pulls the rear forward, it
can be modeled as a closed loop mechanism. In the case of the closed loop, there is only a single
direction sliding motion at the rear part of the worm.

The inchworm model controls its own motion, subject to the intermediate goal position con-
straints provided by the animator. Motion planning is done by the worm to find the best body
positions, favorable torques etc. For this we used a heuristic which checks a finite number of po-
tential directions to move at each moment and selects the best move among them. (The easiest
way to animate inchworm is let end of an inchworm to reach a point on a ground. If there are any
external forces, the shape may be affected. But because it can be simply asked to reach the goal
position, the movement continues. In this process, we can calculate slope(ﬁ) of displacement from
current position to the goal position. @ can be calculated by finite difference. In terms of pulling
rear part of the inchworm, we may constrain it to stay on the ground.) This step needs to be
done only once to get a set of torque functions. The forward simulation based on this set of torque
functions proceeds quite rapidly. In forward simulation we interpolate the torque values obtained
from the inverse dynamics.

Because we simulate an articulated body with high DOF, it is possible to fall into near singular
configurations. We tried several methods for handling this including singular value decomposition(SVD)[25]
and the damping technique [7]. Some optimization schemes cannot be used with the singular value
decomposition method, so we incorporated damping factors in calculating the pseudo-inverse Jaco-
bian matrix. The damping approach involves adding some values at places needed for calculating
the inverse. These adjustments can cause small errors; which we have not found to be significant.
The damping technique has proven quite effective in handling singular configurations.

To change steps, we need to change the base of the worm from one end to the other. We need
only two DOF at each segment for motion, but the position of a segment is specified with three
DOF. Since there is a segment length constraint between joints, we can change steps with only two
degrees of freedom. Figure 6 shows several frames from the dynamic simulation of an inchworm.
A videotape of an “inchworm race” has been produced to better illustrate this simulation. In the
simulation, we used two additional constraint functions to control the shape of the body. These

19

Figure 6: Dynamic Simulation of an Inchworm

functions are of the form f(@) = (¢:; — @)? where a is a function of time.

For numerical integration, we tried Runge-Kutta fourth order adaptive size control and the
Stoer-Bulrish method[25]. Both methods seem to have the same computing power. We used the
Stoer-Bulrish method for these results. For a normal inchworm we assumed 0.005m and 0.001Kg
for each segment.

The system is implemented in C. The core of the dynamic routines is about 4000 lines. The
computation time varies depending on the number of degrees of freedom. The inchworm simulation
takes about three seconds on IBM RS/6000 320 for one step of the inverse dynamic computation.
We store only key frame data and display after the whole computation.

6 Conclusion

In this paper, we have provided a new technique for inverse dynamic simulation of both closed and
open loop systems. The technique is based on an extension of generalized coordinate transforma-
tions, which allows the use of an animation space with arbitrary functions of kinematic parameters
defining its dimensions in place of the normal Cartesian workspace. This provides a flexible tech-
nique for designing the control interface for many types of articulated body models. Using this
technique, we have given three approaches for the analysis of a closed loop, and we have used the
constraint control technique on both closed and open loop mechanisms. We used a method based
on the generalized principle of D’Alembert and virtual work for our dynamic control.

The complexity of our algorithm is O(n?®) (with some optimization of the tensor multiplication),
which is expensive compared to the linear complexity of some iterative dynamic formulations [3].
But usually linear complexity formulations, including Newton-Euler, are not well-suited to the
design of control interfaces. Our dynamic formulation is good for the analysis of mechanisms, and
we can use linear complexity algorithms after the initial analysis for the forward dynamic simulation
of the models. A particularly attractive structural feature of this formulation is that the equations
for models with a given branching topology are quite similar. This makes it very easy to derive
equations for new models once some experience with the method is obtained.

Our initial experience with this technique indicates that it is a very promising method for the
development and analysis of open and closed loop dynamic models as well as for inverse dynamic

20

control. Further research experience will be required to understand how to determine good functions
for generating the desired motion and how well the approach adapts to more complex modeling
situations. The next step is to go from moving inchworms to walking humans, insects, octopi,
Martians, etc. Since our animation space dimensions are not simple geometric quantities, it can
be difficult to get a set of control functions by intuition. As the dimension of @ space grows, these
problems become more difficult.

We have also experimented with the finite difference method of two point boundary value problem
of Witkin & Kass[30] and are now working on a human jumping animation using musculo-tendon-
skeletal dynamics and weak variant of an Optimal Control technique. finite difference method of two
point boundary value problem involves making a continuous time system completely discrete getting
a set of nonlinear equations. An index function is used to organize these nonlinear equations so
that they have some physical meaning. This approach achieves computational efficiency by giving
up accuracy in modeling the physical world. Optimal control finds the best motion which satisfies
all boundary conditions. This technique is very computation intensive because it does forward
dynamic simulation while finding the best motion trajectory. We have produced a WOrm-racing
movie generated using the [30]’s method to provide a comparison with the same animation using

our technique.

7 Acknowledgements

We would like to thank Jane Wilhelms for her papers on dynamic animation, Bob Freeman for
his discussions on robotics, Jesse Driver and A.T. Campbell for their support in taking images.
This work was also supported in part by a grant from IBM Research Initiation Grant Program to
support Interdisciplinary Computer Science Research.

References
[1] Americana. The Encylopedia Americana, chapter Measuring Worm. Grolier Inc., 1990.

[2] W. Armstrong, M. Green, and R. Lake. Near-real-time control of human figure models. IEEE
Computer Graphics and Applications, pages 52-61, June 1987.

[3] H. Asada and J. Slotin. Robot Analysis and Control. John Wiley and Sons, New York, NY,
1985.

[4] R. Ball. Theory of Screws. Cambridge University Press, Cambridge, England, 1990.

[5] Britannica. The New Encylopedia Britannica, chapter Measuring Worm. Encylopedia Britan-
nica Inc., 1990.

[6] A. Bruderlin and T. Calvert. Goal-directed, dynamic animation of human walking. Computer
Graphics, 23(3):233-242, July 1989.

[7] S. Chan and P. Lawrence. General Inverse Kinematics with the Error Damped Pseudoinverse.
In IEEE CH2555-1, 1988.

[8] K. Cleary. Decision Making Software for Redundant Manipulators. PhD thesis, University of
Texas at Austin, 1990.

21

[9] J. Craig. Introduction to Robotics Mechanics and Control. Addison-Wesley, Reading, MA,
1986. :

[10] R. Freeman. Kinematic and Dynamic Modeling, Analysis and Control of Robotic Mechanisms.
PhD thesis, University of Florida, 1985.

[11] R. Freeman. Discussions with Dr. Freeman. 1990.

[12] R. Freeman and D. Tesar. Dynamic Modeling of Serial and Parallel Mechanisms / Robotic
Systems : Part II - Applications. In Trends and Developments in Mechanisms, Machines and
Robotics, 20th Biennial Mechanisms Conference, 1988.

[13] R. Freeman and D. Tesar. Dynamic Modeling of Serial and Parallel Mechanisms / Robotic
Systems : Part I - Methodology. In Trends and Developments in Mechanisms, Machines and
Robotics, 20th Biennial Mechanisms Conference, 1988.

[14] A. Hayashi, J. Park, and B. Kuipers. Toward Planning and Control of Highly Redundant
Manipulators. In Fifth IEEE International Symposium on Intelligent Control, Sep. 1990.

[15] K. Hunt. Kinematic Geometry of Mechanisms. Cambridge University Press, Cambridge, 1978.

[16] P. Isaacs and M. Cohen. Controlling dynamic simulation with kinematic constraints, behavior
functions and inverse dynamics. Computer Graphics, 21(4):215-224, J uly 1987.

[17] P. Isaacs and M. Cohen. Mixed methods for complex kinematic constraints in dynamic figure
animation. Visual Computer, pages 296-305, April 1988.

[18] P. Lee, S. Wei, J. Zhao, and N. Badler. Strength guided motion. Computer Graphics, 24(4):253~
263, August 1990.

[19] M. McKenna and D. Zeltzer. Dynamic simulation of autonomous legged locomotion. Computer
Graphics, 24(4):29-38, August 1990.

[20] G. S. Miller. The motion dynamics of snakes and worms. Computer Graphics, 22(4):169-178,
August 1988.

[21] D. N. Nenchev. Redundancy resolution through local optimization : A review. Journal of
Robotic Systems, 6(6):769-799, 1989.

[22] M. Panne, E. Fiume, and Z. Vranesic. Reusable motion synthesis using state-space controllers.
Computer Graphics, 24(4):225-234, August 1990.

[23] R. P. Paul. Robot Manipulators : Mathematics, Programming and Control. MIT Press, Cam-
bridge, MA, 1982.

[24] C. Phillips, J. Zhao, and N. Badler. Interactive real-time articulated figure manipulation using
multiple kinematic constraints. Computer Graphics, 24(2):245-250, 1990.

[25] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes. Cambridge
University Press, Cambridge, England, 1986.

[26] M. Thomas and D. Tesar. Dynamic modeling of serial manipulator arms. Transactions of the
ASME, 104:218-228, Sep. 1982.

22

[27] J. Wilhelms. Using dynamic analysis for realistic animation of articulated bodies. IEEE
Computer Graphics and Applications, 7(6):12-27, June 1987.

[28] J. Wilhelms. Dynamic animation : Interaction and control. Visual Computer, Dec. 1988.

[29] J. Wilhelms. Making them Move, chapter Dynamic Experiences. Morgan Kaufmann Publish-
ers, 1991.

[30] A. Witkin and M. Kass. Spacetime constraints. Computer Graphics, 22(4):159-168, August
1988.

[31] J. Zhao and N. Badler. Real Time Inverse Kinematics with Joint Limits and Spatial Con-
straints. MS-CIS 89-09, University of Pennsylvania, January 1989.

23

