
FP + OOP = HaskellEmery Bergeremery@cs.utexas.eduDepartment of Computer ScienceThe University of Texas at AustinDecember 12, 1991
AbstractThe programming language Haskell adds object-oriented functionality (using a conceptknown as type classes) to a pure functional programming framework. This paper describesthese extensions and analyzes its accomplishments as well as some problems.



Contents1 Introduction 12 Haskell overview 13 Type classes 23.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23.2 Syntax and semantics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33.3 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53.4 Accomplishments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53.5 Problems : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63.5.1 Ambiguity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63.5.2 Restricting polymorphism : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73.5.3 Pattern Matching : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74 Conclusion 8

i



1 IntroductionHaskell is the result of an e�ort undertaken to design a freely-available non-strict, purely functionalprogramming language [3, page v]. The Haskell group decided to incorporate most of the featuresin wide use in other such languages, like Standard ML[1] and Miranda1[5].However, in the design process, it was discovered that a number of fundamental issues dealingwith the type system of these languages had been left unresolved. In trying to rectify these, a newabstraction known as type classes was created which solves these problems and adds much of theutility of object-orientation to the functional framework.This paper �rst presents an overview of the Haskell language and then discusses type classesin detail, including their motivation and implementation, concluding with a discussion of theiraccomplishments and problems which have appeared with their use.2 Haskell overviewHaskell is a purely-functional programming language. This means that there are no side e�ectsor imperative features of any kind. The result of evaluating any expression is therefore invariant,which greatly simpli�es reasoning about a program's properties.Haskell uses a lazy, or non-strict, evaluation strategy { no subexpression is evaluated until itsvalue is required. Functions can have de�ned values even when their arguments are unde�ned.Given a de�nition for a function cond as follows:cond b conseq altern | b = conseq|~b = alternThe value of cond True 1 (1/0) is 1, even though evaluating 1/0 would produce an error.Another important use of lazy evaluation is in�nite data structures. Some Haskell syntax �rst :� [] is nil, the empty list.� : is an in�x cons operator.� [a,b,c] is shorthand for the list (a:(b:(c:[]))).� [0..5] is shorthand for the list of elements [0,1,2,3,4,5].� [a | a <- xs; f a] is a list comprehension, modeled on Zermelo-Frankel set comprehen-sions. It can be read as \the list of all a where a is taken in sequence from the list xs and f(a)is true."Some in�nite lists:nats = [0..] -- all natural numbersodds = [1,3..] -- the dotdot syntax handles arithmetic sequencessquares = [n * n | n <- nats]1Miranda is a trademark of Research Software Limited.1



These structures are treated just like ordinary lists, and can be indexed (e.g., squares !! 5returns the �fth square).Haskell functions may be higher-order, i.e., they may take other functions as arguments. Thefunction map de�ned below takes a function and a list as input, and returns the list of results ofapplying the function to every item of the input list.map f [] = []map f (x:xs) = f x : (map f xs)Note the Prolog-like pattern-matching in the function's formal parameters.Currying (named after the logician Haskell Curry) is a Haskell feature which facilitates the useof higher-order functions. A curried function of n arguments can be called with only m arguments,m < n, resulting in a new function of n-m arguments, with the �rst m parameters bound. Forinstance, the function plus (plus x y = x+y) called as plus 1 becomes a new unary functionwhich adds one to its argument.map (plus 1) [1,2,3] = [2,3,4]Haskell's types are based on the Hindley-Milner type system[2]. This type system allows statictype checking and inference to be performed { the programmer does not need to declare the typesof functions or values, since the algorithm is capable of automatically deriving the most generalpossible type. For instance, the type of cond would be inferred as cond::bool->a->a->a, where acan represent any single type { map's type would be map::(a->b)->[a]->[b]. The Hindley-Milnertype system implements a kind of polymorphism known as parametric polymorphism. This meansthat functions can be de�ned over a range of types, performing the same operation for each type.New types can be added in Haskell via a powerful notion called algebraic datatypes. Thesehave the avor of Backus-Naur form productions. The name of a new type and its optional typevariable parameters are given on the left, and each of its possible expansions, separated by verticalbars, is given on the right. This is powerful enough to represent enumeration types (note - \tags"are in uppercase):data colors = Red | Orange | Yellow | Green | Blue | Violetunion types:data boolornum = Boolean bool | Number numand recursive, generic datatypes (which allow user-de�ned genericity):data tree a = Node a | Tree a (tree a) (tree a)These types can also be statically inferred by the Haskell type system.3 Type classes3.1 MotivationThe original impetus behind what became type classes was problems with equality and the de�nitionof arithmetic operators. These problems, which manifest themselves in Standard ML and Miranda,will be examined and their solutions described. 2



ArithmeticStandard ML overloads mathematical operators for oating-point numbers and integers, but user-de�ned functions cannot be overloaded. So, although 3 * 3 and 3.14 * 3.14 are acceptable terms,a function likesquare x = x * xcannot be used to express square 3 and square 3.14.An apparent easy �x for this would be to allow two overloaded versions of square to be de�nedwith the types Int->Int and Float->Float. But this is not viable; if the functionsquares (x,y,z) = (square x, square y, square z)were de�ned, it would require the creation of eight overloaded versions of squares { an expo-nential growth in code.Miranda's approach to this problem is to avoid it entirely. Miranda has only one all-inclusive nu-meric type, called num. This type encompasses both oating-point numbers and arbitrary-precisionintegers, and coerces integers to oating-point \when required" 2 [6, section 11]. One drawback tothis approach is that static typing of integer-only operations is not possible.EqualityIn Miranda, equality is fully polymorphic { its type is a -> a -> Bool. Equality is automaticallyde�ned for new algebraic datatypes as full structural equality. This may be seen to violate thenotion of abstraction: for instance, the user might want equality of trees to be de�ned as equalityof lists of leaves. The most serious failing of Miranda's de�nition of equality, however, is that it isnot statically typesafe. If a test for equality is applied to two functions, a runtime error results.Standard ML's equality, on the other hand, is typesafe, because its application is restricted totypes which \admit equality" (so-called \eqtype variables"). Functions and abstract data types arenot comparable for equality under this scheme, while built-in types are (like Int and Float).3.2 Syntax and semanticsThe Haskell designers decided that they wanted the safety of Standard ML's equality, but wantedthe user to be able to de�ne equality functions for abstract data types. They also sought to solvethe problem of mixing numeric types, rather than sidestepping it as Miranda does. Extending thetype system to include type classes was their solution.A type class is de�ned by a collection of functions (their names and types) which must besupported by any type within that class. An instance type within this class gives implementationdetails for these functions (although implementation functions can also be provided within a classdeclaration { these will be the default implementations unless they are replaced by those of theinstance). We can use this framework to solve the problems described with square and squaresabove; we will make a type class (called Num) which both Int and Float can belong to (the a inclass Num a is a type variable):2\The two kinds of number, integer and fractional, are both of type `num', as far as the type-checker is concerned,and can be freely mixed in calculations. There is automatic conversion from integer to fractional when required, butnot in the opposite direction." 3



class Num a where(+), (*), (-) :: a -> a -> anegate :: a -> aand then declare that types Int and Float are instances of class Num:instance Num Int where -- "Int is an instance of Num"(+) = addInt -- these functions are defined elsewhere(*) = mulInt(-) = subIntnegate = negIntinstance Num Float where(+) = addFloat(*) = mulFloat(-) = subFloatnegate = negFloatNow the type of square becomessquare :: Num a => a -> a(read, \for all a in class Num, square has type a -> a"), and squares will have one type (ratherthan eight):squares :: (Num a, Num b, Num c) => (a,b,c) -> (a,b,c)Type classes handle the issue of equality nicely, too { types which accept equality can beinstances of a class called Eq:class Eq a where(==) :: a -> a -> BoolA class can be declared so any instance of that class automatically belongs to speci�ed otherclasses, thus capturing the notion of a class hierarchy. For instance, equality should be de�ned forany number; the class declaration for Num can be modi�ed so that this is the case (in e�ect, thatNum is a subclass of Eq):class (Eq a) => Num a where(+), (*), (-) :: a -> a -> anegate :: a -> a
4



3.3 ImplementationImplementation of type classes can be accomplished at compile-time by translating a programcontaining classes and instances to an equivalent program which does not. As an example, we willdetail the translation of the classes and functions used in the square example above.Each class declaration de�nes a \method dictionary" for that class, which wraps all the methods(class functions) for the class into an algebraic data structure, and de�nes extractor functions toselect the appropriate method. For class Num, then, we get the following translation:data NumD a = NumDict (a -> a -> a) (a -> a -> a) (a -> a -> a) (a -> a)add (NumDict a s m n) = a -- the first dictionary function is additionsub (NumDict a s m n) = s -- and so onmul (NumDict a s m n) = mneg (NumDict a s m n) = nFor each instance of Num, we must return a di�erent version of the dictionary with the appro-priate functions for each type.numDInt :: NumD IntnumDInt = NumDict addInt subInt mulInt negIntnumDFloat :: NumD FloatnumDFloat = NumDict addFloat subFloat mulFloat negFloatNow we translate square and squares so that they pass around the dictionaries and access theinstance functions via the dictionary extractor functions:square' :: NumD a -> a -> asquare' numDa x = mul numDa x xsquares' :: (NumD a, NumD b, NumD c) -> (a, b, c) -> (a, b, c)squares' (numDa, numDb, numDc) (x, y, z)= (square' numDa x, square' numDb y, square numDc z)Each application of square or squares in the original program must be translated to passin the appropriate dictionary. For instance, square 3 would become square' numDInt 3 andsquare 3.14 would become square' numDFloat 3.14. The overhead of looking up functions inthe dictionary can be optimized away by the compiler (so mul numDInt 3 4 becomes mulInt 34).3.4 AccomplishmentsIn addition to solving the problems encountered in Standard ML and Miranda, type classes success-fully integrate object-oriented programming with functional programming. In fact, the functionalframework actually can be seen to enhance object-oriented programming in these ways:5



� The notion of classes is a higher-level abstraction than objects, since it separates the interfacefrom the representation.� Since there is no concept of internal state, and therefore no slots, multiple inheritance cannotcause slot-name clashes, a serious problem with most object-oriented programming languages.(Note that types can be instances of more than one type class { Haskell prevents functionname clashes by enforcing the restriction that two classes in scope at the same time may notshare function names.)� Type checking can be done statically, making message sends typesafe and providing theopportunity for compiling away the overhead of method dispatching.� Type classes provide a structured means of obtaining ad hoc polymorphism, i.e., functionoverloading (same function name, di�erent code for di�erent types of arguments). Overloadedfunctions must �t into the class hierarchy rather than being truly ad hoc as in C++[4] (thesecan be declared at any time and are independent of subtyping relationships).3.5 ProblemsThe introduction of type classes into the Miranda-like framework has caused some unexpected,and occasionally quite problematic, interactions with other aspects of the language. Some of theseproblems have been solved by adding restrictions to the language, and others by requiring userannotations. Still others remain unsolved.3.5.1 AmbiguityAdding classes to Haskell adds a greater potential for ambiguity to the type system; we may knowthe class of an object, but not its type. An ambiguous typing is a static error, and can only beresolved by the user explicitly adding type information. For example, in the expression below wereturn the textual representation of the user input:let x = read "..." in show x -- this is illegalThis would be typed as Text a => String because of the types of show and read3. Sincea occurs in the class restrictions but not in the type, the expression is said to be ambiguouslyoverloaded; if Int and Bool are instances of Text, then the type checker cannot decide if x issupposed to be a Bool or an Int. By explicitly giving the type of x, though, it can be processed:let x = read "..." in show (x::Bool) -- this is OKThe expression type now becomes String.The most frequent ambiguities occur in the class Num, especially because numeric constants(e.g., 1, 2, 3) are overloaded (of type Num a => a). Because such ambiguities are so common,Haskell provides a special mechanism to resolve them, called the default declaration. This defaultdeclaration simply states which numeric types may be considered default types for items in classNum. The \default" default declaration is default (Int, Double), so that the type of let x = 1would be Int; we try each item in the default declaration in turn, and the �rst one which does notcause a type error is accepted.3show :: Text a => a -> String; read :: Text a => String -> a6



3.5.2 Restricting polymorphismThe addition of type classes causes some problems with polymorphism which have led the Haskellgroup to impose the so-called monomorphism restriction. This restriction de�nes when full poly-morphism is not allowed without explicit type signatures, and the type is restricted to one form.The rules are rather subtle and will not be explained in detail here, but the following examples givethe avor of why it was needed and show its advantages and disadvantages.The monomorphism restriction prevents computations from being unexpectedly repeated tosatisfy di�erent overloadings. For instance, given the standard function genericLength with thetype below:genericLength :: Num a => [b] -> aNow given the below expression:let { len = genericLength xs } in (len, len)One would think that len would only be computed once. However, without the monomorphismrestriction, it could be computed twice, each time to satisfy a di�erent overloading of Num. Themonomorphism restriction ensures that len will only have one type, and therefore will only becomputed once. If the programmer actually wishes to have len computed at di�erent overloadings,an explicit type signature can be added which overrides the monomorphism:let { len :: Num a => a; len = genericLength xs } in (len, len)The monomorphism restriction has the added bonus of limiting certain types of ambiguity, butit comes with the cost of some subtle di�erences in the way Haskell types an expression. For thefunctionf x y = x + ythe function f will be fully overloaded for class Num. However, for the \equivalent" functionde�nition (using Haskell's lambda expression syntax, as f = �x : (�y : x + y))f = \x -> \y -> x + ythe function f requires an explicit type declaration for it to be overloaded. These curioussubtleties are considered undesirable, and for this reason the monomorphism restriction is viewedas a provisional �x. A search for a more satisfying solution to these di�culties is in progress.3.5.3 Pattern MatchingThe pattern-matching feature of Haskell can cause some problems when dealing with type classes.Suppose we have the function fact as follows:fact :: Num a => a -> afact 0 = 1fact (n+1) = (n+1) * fact n 7



Haskell will internally translate away the pattern-matching to this function:fact :: Num a => a -> afact n = if (n == 0) then 1 else (n * fact (n-1))The addition in the (n+1) pattern in the original function is replaced with subtraction on theright-hand side of the translated function.Let's say that a careless user de�nes an instance of class Integral (n+k patterns, as in fact(n+1) above, can only be matched with members of this prede�ned Haskell class), called DumNum:instance Integral DumNum where(+) = addInt(-) = addInt -- instead of subInt(*) = mulIntnegate = negIntThe de�nition of subtraction in DumNum is not the inverse of addition, as Haskell assumes in itspattern translation. Evaluation of fact n, where n is a DumNum and n > 0, will diverge rather thanreturning n! as expected { a subtle bug. The semantics of Haskell's pattern transformation makean implicit assumption which is not guaranteed.This particular example could be �xed by restricting n+k patterns to the (pre-de�ned) typeInt rather than allowing its use for any member of the Integral class, or even eliminating n+kpatterns altogether. But problems are actually deeply-rooted in pattern-matching. If equality wererede�ned to be asymmetric, for instance, to know what the program does, the user must knowwhich of the following translations Haskell actually uses (the order of comparison in the equalitydi�ers):fact n = if (n == 0) then 1 else (n * fact (n-1))fact n = if (0 == n) then 1 else (n * fact (n-1))Preventing the user from de�ning a function inappropriately, like equality which does not actlike an equivalence relation, is undecidable in the general case, so Haskell is stuck with these nastypitfalls. The very subtle bugs which pattern matching can produce seem to imply that the entireconcept needs some rethinking.4 ConclusionThe addition of type classes to Haskell adds an elegant abstraction mechanism, giving the fea-tures of object-oriented programming and clearing up some ugly problems. Although di�cultiesremain which need to be addressed, Haskell has become a more powerful language than any of itspredecessors.
8



References[1] R. Harper, R. Milner, and M. Tofte, The de�nition of Standard ML, version 2. Report ECS-LFCS-88-62, Edinburgh University, Computer Science Dept., 1988.[2] R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of theAmerican Mathematical Society, 146:29-60, December 1969.[3] P. Hudak, S. Peyton-Jones, and P. Wadler, editors. Report on the Programming LanguageHaskell, A Non-strict Purely Functional Language (Version 1.1). Yale University, Departmentof Computer Science Technical Report YALEU/DCS/RR777, August 1991.[4] B. Stroustrop. The C++ Programming Language, Addison-Wesley, Reading, MA, 1986.[5] D. A. Turner. Miranda : a non-strict functional language with polymorphic types. In FunctionalProgramming Languages and Computer Architecture, volume 201 of Lecture Notes in ComputerScience, pages 1{16, Springer-Verlag, Nancy, France, September 1985.[6] D. A. Turner. Miranda system manual. Miranda version 2, August 1989.[7] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In Proceedings of the16th ACM Symposium on Principles of Programming Languages, pages 60{76, Austin, Texas,January 1989.

9


