CLOSURE AND CONVERGENCE:
A FOUNDATION OF
FAULT-TOLERANT COMPUTING

Anish Arora and Mohamed Gouda
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712-1188

TR-92-31 July 1992

Closure and Convergence:

A Foundation of Fault-Tolerant Computing
Anish ARORA Mohamed GOUDA

Department of Computer Sciences, The University of Texas at Austin!

Microelectronics and Computer Technology Corporation, Austin

Abstract

We give a formal definition of what it means for a system to “tolerate” a class
of “faults”. The definition consists of two conditions: First, if a fault occurs when
the system state is within a set of “legal” states, the resulting state is within some
larger set and, if faults continue occurring, the system state remains within that
larger set (Closure). Second, if faults stop occurring, the system eventually reaches
a state within the legal set (Convergence). We demonstrate the applicability of
our definition for specifying and verifying the fault-tolerance properties of a variety
of digital and computer systems. Further, using the definition, we obtain a simple
classification of fault-tolerant systems, and discuss methods for the systematic design

of fault-tolerant systems.

Keywords: Fault-tolerance, Reliability, Algorithms, Verification, Design.

Additional Keywords: Masking, Stabilizing, Closure, Convergence.

1Email Address: anish@cs.utexas.edu, gouda@cs.utexas.edu

1 Introduction

Fault-tolerant computing has traditionally been studied in the context of specific tech-
nologies, architectures, and applications. One consequence of this tradition is that several
subdisciplines of fault-tolerant computing have emerged that are apparently unrelated to
each other: these subdisciplines deal with specific classes of faults, employ distinct mod-
els and design methods, and have their own terminology and classification [10, 27, 39].

As a result, the discipline itself appears to be fragmented.

Another consequence of this tradition is that verification of fault-tolerant systems is often
based on implementation-specific artifacts—such as stable storage, timeouts, and shadow
registers—without explicitly specifying what properties of these artifacts are necessary.

Such verification is imprecise and hence unsuitable, especially for safety-critical systems.

Efforts have been made in the last decade to redress the problems described above.
Most of these efforts have focussed on uniformly classifying fault-tolerant systems, and
two noteworthy classifications have emerged. One is based on a distinction between the
notions of faults, errors, and failures: faults in a physical domain can cause errors in
an information domain, whereas errors in an information domain can cause failures in
an external domain [1, 6, 28]. (Unfortunately, these notions are subjective: “what one
person call a failure, a second person calls a fault, and a third person might call an error”
[14].) The other is based on what type of fault is tolerated, for example, stuck-at, crash,
fail-stop, omission, timing, or byzantine faults [20, 31, 33, 36).

A few efforts have also been made to formally define and verify system fault-tolerance
[15, 30, 31, 33], but these efforts have been limited in scope. Specifically, they have
considered systems that recover from the occurrence of faults, and terminate properly.
In other words, they have considered systems whose input-output relation masks faults.
Alternative forms of fault-tolerance that do not always mask faults have rarely been
considered. Such forms of fault-tolerance ensure the continued availability of systems
by repairing faulty system parts or by correctly restoring the system state whenever the

system exhibits incorrect behavior due to the occurrence of faults.

An extreme form of fault-tolerance that does not always mask faults is self-stabilization.
While self-stabilization was first studied in computing science in 1973 [16], and its ap-
plication to fault-tolerance was strongly endorsed in 1983 [26], it is only in the last few

years that concerted efforts have been made to relate self-stabilization to fault-tolerance
(7, 9, 12]. Even so, self-stabilizing systems are mainly being designed to tolerate arbi-
trary transient faults, whereas they can be designed to tolerate a variety of fault types
(4, 25, 40].

In summary, a survey of the literature reveals that there is a well-defined need for
(i) a uniform definition of fault-tolerance, and (ii) methods for designing and verifying

system fault-tolerance independent of technology, architecture, and application.

1.1 Overview

In this paper, we first give a uniform definition of what it means for a system to tolerate
a class of faults. Our definition consists of two conditions: one of closure and another of

convergence.

To motivate the closure condition, let us observe that a well-established method for
verifying fault-free systems is to exhibit a predicate that is true throughout system
execution [17, 23]. Such an “invariant” predicate identifies the “legal” system states,
and asserts that the set of legal states is closed under system execution. Following this
method, we require that for each fault-tolerant system there exists a predicate S that is

invariant throughout fault-free system execution.

Next, we observe that faults—be they stuck-at, crash, fail-stop, omission, timing, or
byzantine—can be systematically represented as actions that upon execution perturb
the system state [15]. Consider, for example, a wire that can potentially be stuck-at-
low-voltage. Such a wire can be represented by the following program. Let in and out be
two variables that range over {0,1}, and let broken be a boolean variable. The correct
behavior of the wire can be described by a program action that sets out to in provided
that out#in holds and the state of the wire is ~broken. That is,

out#in A —broken — out:=in
If a fault occurs, the incorrect behavior of the wire can be described by the program
action that sets out to 0 provided that the state of the wire is broken. That is,

broken - out: =0

For this two-action program, the predicate S is ~broken and the stuck-at fault can be

represented by the fault action
2

—broken — broken 1= true

Notice that if the wire can also be “unstuck” then, in addition to the fault action above,

we need to consider the fault action

broken -+ broken := false

Notice further that if the wire exhibits byzantine behavior (that is, it repeatedly and
nondeterministically sets out to 0 or 1) after being stuck then, in addition to the program

actions above, we need to consider the program action

broken — out:=1

Based on the view that faults can be represented by actions, it remains to characterize
what happens when a system is perturbed into an illegal state due to the execution of
a fault action. We require that for each fault-tolerant system there exists a predicate T
that is weaker than S and is invariant under the execution of system and fault actions.
In other words, we require that once fault actions start executing, the system state
necessarily satisfies T. Thus, T' defines the extent to which fault actions can perturb the

legal states during system execution.

The requirement that predicates S and T exist constitutes the closure condition. We are
now ready to motivate the convergence condition. Once fault actions stop executing, the
system can achieve progress only if it is restored to a state where § holds. Therefore,
we require that every fault-free system execution, upon starting from any state where
T holds, eventually reaches a state where S holds. This requirement constitutes the

convergence condition.

We define fault-tolerance formally in the next section. We then go on to show how the
fault-tolerance properties of digital and computing systems can be specified, verified,
and designed independent of technology, architecture, or application. In particular, the

issues we consider include how to use our definition to:

o classify the fault-tolerance of a system,

o verify that a system is fault-tolerant,

o verify that a system is fault-intolerant,

e prove there is no system that both meets a specification and is fault-tolerant,

e design a system that both meets a specification and is fault-tolerant.

3

We emphasize that reported here are only a few of the applications that we have de-

veloped over the last three years. A detailed report of these applications appears in

2.

We proceed as follows. In Section 2, we give a formal definition of what it means
for a program to be fault-tolerant, and present a formal classification of fault-tolerant
programs. Using the definition, we illustrate: in Section 3, how to verify that a program
is fault-tolerant; in Section 4, how to verify that a program is fault-tolerant; in Section
5, how to prove that there is no fault-tolerant program that meets a given specification;
and in Section 6, how to design programs to be fault-tolerant. Finally, we discuss some

questions raised by our approach in Section 7 and make concluding remarks in Section
8.

2 Defining Fault-Tolerance

Towards giving a formal definition of what it means for a program to tolerate a set
of faults, we first discuss the notion of a program and define two program properties:

closure and convergence.

2.1 Closure and Convergence in Programs

A program consists of a set of variables and a finite set of processes. Each variable has
a predefined nonempty domain. Each process consists of a finite set of actions; each

actions is of the form:
(guard) — (statement)

where the guard is a boolean expression over program variables, and the statement

updates zero or more program variables and always terminates.

Let p be a program. A state of p is defined by a value for each variable of p (chosen
from the domain of the variable). A state predicate of p is a boolean expression over
the variables of p. If a state predicate evaluates to true at some state, we say the state
predicate holds at that state. An action is enabled at a state iff its guard holds at that
state. A process is enabled at a state iff some action in the process is enabled at that

state.

Definition 1:
Let S be a state predicate of p.
S is closed in p iff for each action B — st in each process of p, executing st

starting from a state where B A § holds results in a state where S holds.

We assume nondeterministic interleaving semantics. A computation of p is a sequence
of states that satisfies the following three conditions: (i) for each consecutive pair of
states ¢ followed by d in the sequence, there exists an action B — st in some process of
p such that B holds at ¢ and executing st starting from ¢ results in d; (ii) the sequence is
maximal, i.e., the sequence is either infinite or (it is finite and) no action is enabled in the
last state; and (iii) the sequence is process-fair, i.e., if any process j of p is continuously

enabled along the sequence, then eventually some action of j is chosen for execution.

Definition 2:
Let S and T be state predicates of p.
T converges to S in p iff
o S is closed in p,
e T is closed in p, and
e in each computation of p starting at any state where T holds, there exists
a state where S holds.

2.2 Fault-Tolerance

Recall from Section 1 that in defining fault-tolerance we can always represent the faults

that affect a program p by a set of actions F over the variables of p.

Definition 3:

Let S be a closed state predicate of p, and F be a set of actions over variables
of p.

p is F-tolerant for § iff there exists a state predicate T of p such that

e T holds at every state where S holds; i.e., § = T,
e for each action B — st in F, executing st starting from a state where

B AT holds results in a state where T holds, and

e T converges to S in p.

Consider a program p that is F-tolerant for S, and let ¢ be any state where S holds.
Since S is closed, executing any enabled action in p starting from c yields a state where
S holds. However, executing any enabled action in F starting from ¢ may yield a state
where =S holds. In this case, Definition 3 guarantees three facts about the resulting
state: (i) some state predicate T' holds, (ii) subsequent execution of actions in p and F
yields states where T holds, and (iii) subsequent execution of actions in p alone eventually
yields a state where S holds.

Thus, Definition 3 states that if the intended domain of execution of p is all states where
S holds then p tolerates the fault actions in F' as follows. Once fault actions in F' stop
executing, execution of actions in p alone yields a state where § holds, and from this

point the program resumes its intended execution.

2.3 Extremal Solutions

Observe that there may exist several state predicates T of a program p that satisfy the
three conditions of Definition 3. We now show that if there exists at least one such state

predicate, then there exists a strongest one T's and a weakest one Tw.

Ezistence of Ts : Let Ts be the conjunction of all state predicates T’ of p that satisfy
the three conditions in Definition 3. We show that T's also satisfies the three conditions.

S=1Ts

= { definition of T's }
S=(VT:T)

= { predicate calculus }
(VT : §=T)

= {S=T,forall T}

true

(VB — stin F : executing st in a state where B A T's holds preserves T's)
= { definition of weakest preconditions [19] }

(VB — stin F : Ts = wp.(B — st).T's)
= { definition of T's }

(VB—stin F: (VT :T) = wp.(B — st).(VT : T))

= { wp.(B — st) is universally conjunctive if s¢ always terminates }

(VB - stin F : (VT :T) = (VT : wp.(B — st).T))
<« { Leibniz [19] }

(VB —stin F : (VT : T = wp.(B — st).T))
= {Tisclosedin F,forall T }

irue

T's converges to S in p since: (i) S is closed in p, (ii) T's is closed in p (replace F with p
in the proof above), and (iii) at each state where T's holds some T holds (in fact, every
T holds), and that T converges to S.

Ezistence of Tw : Let Tw be the disjunction of all state predicates T' of p that satisfy
the three conditions in Definition 3. We show that T'w also satisfies the three conditions.

S = Tw

= { definition of Tw }
S = (3T:7)

= { there is at least one such 7', predicate calculus}
(AT : 5 =T)

= {S=T,forall T}

irue

(VB — stin F : executing st in a state where B A Tw holds preserves Tw)
= { definition of weakest preconditions [19] }
(VB — stin F : Tw = wp.(B — st).Tw)
< {T = Twfor all T, wp.(B — st) is monotonic [19], predicate calculus }
(VB - stin F: Tw = (3T : wp.(B — st).T))
= { definition of Tw }
(VB—stin F: (3T :T) = (3T : wp.(B — st).T))
= { predicate calculus }
(VB —stin F: (3T : T = wp.(B — st).T))
= { T is closed in p, for all T }

true

Tw converges to S in p since: (i) S is closed in p, (ii) Tw is closed in p (replace F with
p in the proof above), and (iii) at each state where Tw holds some T holds, and that T

converges to 5.

Observe that T's characterizes the largest set of states that are reachable by executing
actions in p and F upon starting from states where S holds. In other words, T's charac-
terizes the extent to which the program state can be perturbed due to occurrence of fault
actions. In contrast, Tw characterizes the largest set of states from which convergence

to S is guaranteed.

Two situations where the extremal solutions are easily computed deserve mention here.

e When S is closed in F, S satisfies the three conditions in Definition 3 and, hence,
Ts=S.

e When true converges to S in p, true satisfies the three conditions in Definition 3

and, hence, Tw = true.

2.4 A Classification

Based on Ts and Tw, we introduce the following terminology for describing the fault-

tolerance of p relative to S:

ITs=>5
then p has Masking fault-tolerance

else p has Nonmasking fault-tolerance.

If Tw = true
then p has Global Stabilizing fault-tolerance
else p has Local Stabilizing fault-tolerance.

The following four classes of fault-tolerant programs are immediately suggested:

o Masking and Global Stabilizing
¢ Masking and Local Stabilizing
¢ Nonmasking and Global Stabilizing

e Nonmasking and Local Stabilizing.

We present in the following sections examples of programs that belong to each class.

3 Verifying Fault-Tolerance

In this section, we present three examples that illustrate how our definition can be used
to verify whether a program is tolerant of a set of faults. We have presented several

other examples in [2] and [3].

3.1 Example: Atomic Commitment Protocol

Specification [8]

Each process casts one of two votes, Yes or No, then reaches one of two decisions, Commit
or Abort, such that:

1. If no faults occur and all processes vote Yes, all processes reach a Commit decision.

2. A process reaches a Commit decision only when all processes voted Yes.

3. All processes that reach a decision reach the same decision.

Faults may stop or restart processes.

Two-Phase Commit Protocol

As its name suggests, this protocol consists of two phases. In the first phase, each process
casts its vote and sends the vote to a distinguished “coordinator” process c. In the second
phase, based on the votes received, the coordinator reaches a decision and broadcasts

this decision to all processes.

Process ¢ has three actions. In the first action, ¢ casts its vote, enters the second phase,
and starts waiting for the votes of other processes. In the second action, ¢ detects that all
processes have voted Yes, and reaches a Commit decision. In the third action, ¢ detects

that some process has voted No or has stopped, and reaches an Abort decision.

Each process j other than the coordinator has three actions. In the first action, j detects
that ¢ has voted, and casts its vote. In the second action, j detects that c has stopped,
and reaches an Abort decision. In the third action, j detects that some process has

completed its second phase, and reaches the same decision as that process has.

For each process j, let

e ph.j be the current phase of j,

e d.j be (depending upon the current phase) the vote or the decision of j; d.j is true if
the vote is Yes or the decision is Commit and false if the vote is No or the decision

is Abort,

e up.j be the current status of j; up.j is true if j is executing and false if j is stopped.

Remark on programming notation: We use “?” to denote nondeterministic choice. Thus,

“g :=?" means that z is assigned a nondeterministically chosen value from its domain.

Also, we use parameters to abbreviate a set of actions as one parameterized action. For
example, let m be a parameter whose value is 0, 1 or 2; then the parameterized action
act.m abbreviates the following set of three actions.

act.(m:=0) | act.(m:=1) | act.(m:=2)
The domain of each parameter is finite. (End of Remark)

The Two-phase protocol is described formally in the following program, along with the
set of faults it tolerates.

10

program Two-phase
constant X : set of ID;
c: X;
var ph:array X of 0..2;
up : array X of boolean;
d : array X of boolean;
process j : X;
parameter k : X;
begin
j=cAup.jAph.j=0

o

j=cAupjAphj=1A(3leX

jFcAup.j Aph.j=0A-up.c

O == o= e

j=cAupjAphjij=1A(vle X:

jFecAup.j Aph.j=0A (up.c Aph.c=1)

j#eAup.j Aph.j<ph.k A (up.k Aphk=2)

— phj,dj:=1,7
upl Aphl=1Adl) — ph.j, d.j =2, true
:=upl V (phI>1IA-dD))— ph.j,d.j:=2, false

l

phj,dj:=1,7

|

ph.j, d.j:= 2, false
ph.j,dj:=2,dk

!

faults F
{true

— up.j:= —-up.j}

We show that program Two-phase is F-tolerant for §, where

S5 = ph.c=0 = (V5
A ph.c=1 = (Vj
A ph.e=2Adec = (Vj
A phie=2A-de = (Y

Informally, S states that the domain of execution of program Two-phase satisfies the
following four conditions. (i) If ¢ has not voted (ph.c=0), then each process has either
not voted or (detected that ¢ had stopped and) reached an Abort decision. (ii) If ¢ has
voted but not reached a decision (ph.c=1), then each process has either not reached a
decision or (detected that ¢ had stopped and) reached an Abort decision. (iii) If ¢ has

reached a Commit decision (ph.c=2 A d.c), then each process has either voted Yes (and

: ph.j=0V (ph.j=2 A ~d.j))
:ph.j#2V ~d.j)
:ph.j#0Ad.j)
:phj#2V~dj)

11

not reached a decision) or reached a Commit decision. (iv) If ¢ has reached an Abort

decision (ph.c=2 A —d.c), then each process has either not reached a decision or reached

an Abort decision.

It can be shown that each computation of program Two-phase that starts at a state
where S holds satisfies the atomic commitment specification. (We relegate the details to
Appendix A.)

Proof

To show that program Two-phase is F-tolerant for S, we are required to exhibit a state
predicate T that satisfies the three conditions in Definition 3. In this case, we let T to

be S itself. It remains to show that S is closed in Two-phase as well as in F.

S is closed in Two-phase :
For arbitrary j, we show that each conjunct of S is preserved under execution of program

actions starting from a state where S holds.

The first conjunct of S is preserved: by executing the first three actions, since they falsify
ph.c = 0; by executing the fourth action, since it is not enabled when ph.c =0; and by

executing the fifth and the sixth action, since they truthify ph.j=2A -d.j.

The second conjunct of S is preserved: by executing the first action, since it truthifies
(VY§ : ph.j#2 V —d.j); by executing the next two actions, since they falsify ph.c=1; by
executing the fourth action, since it truthifies ph.j # 2; and by executing the last two
actions, since they truthify —d.j.

The third conjunct of S is preserved: by executing the first action, since it is not enabled
when ph.c = 2 nor does it establish ph.c = 2; by executing the second action, since it
truthifies (V7 : ph.j # 0 A d.j); by executing the third action, since it truthifies ~d.c;
by executing the next two actions, since they are not enabled when ph.c = 2; and by

executing the sixth action, since it truthifies ph.j#0 A d.j.

The last conjunct of S is preserved: by executing the first action, since it is not enabled
when ph.c = 2 nor does it establish ph.c = 2; by executing the second action, since it
truthifies d.c; by executing the third action, since it preserves (Vj : ph.j#2V -d.j); by

executing the fourth action, since it is not enabled when ph.c=2; and by executing the

12

last two actions since they truthify —d.j. O

S is closed in F :

S does not name any up variables; hence S is closed in F. O

Since the predicate T is S, the strongest solution T's is S and, hence, Two-phase is
masking fault-tolerant. Also, it is straightforward to show that true does not converges

to § and, hence, that Two-phase is local stabilizing fault-tolerant. O

Remarks

Existing two-phase commit protocols require three modes of execution: a “normal” mode
is used when faults do not occur, a “termination” mode is used when the coordinator
stops, and a “recovery” mode is used when a process restarts. In contrast, our protocol

does not require different modes of operation.

Proofs of correctness of existing descriptions rely heavily on implementation details, such
as stable storage and timeouts. In contrast, our proof does not rely on implementation
details.

Not relying on implementation details does not mean that our description is not amenable
to studying implementation issues. For example, how would one implement that § is
closed in F? Clearly, one way is to ensure that the ph and d variables are not corrupted
when fault actions occur; this is readily achieved if the ph and d variables are kept in
stable storage. As another example, one way to detect that up.c holds is to receive a
message from c; likewise, one way to check that —up.c holds is to use a timer and to

timeout if no message from c is received.

Finally, the actions in our description can access variables that are updated by more than
one process. Furthermore, it is assumed that, for each action, the evaluation of its guard
and the execution of its assignment statement is instantaneous. This “high atomicity”
assumption is not necessary: the program remains fault-tolerant even if the evaluation

of the guards is done separately from the execution of the assignment statements.

13

3.2 Example: Data Transfer Protocol

Specification

An infinite input array is to be copied to an infinite output array. Items from the input
array are to be sent by a sender process to a receiver process via a bidirectional channel.

Faults may lose channel messages.

Sliding-window Protocol

In the sliding-window protocol, the sender process associates an identifier with each item
it sends. When an item is received by the receiver process, it is accepted provided the
identifier is correct, and an acknowledgement is sent to sender. There can be at most

W unacknowledged messages at any time, hence a log W-bit identifer suffices.

Process sender has three actions. In the first action, sender sends an item provided
it has sent less than W items that are yet to be acknowledged, and starts waiting for
an acknowledgement. In the second action, sender receives an acknowledgement and
prepares to send the next item. In the third action, sender detects the loss of messages

and resends the items that are currently unacknowledged.

Process receiver has two actions. In the first action, receiver sends an acknowledgement
for the item last received and starts waiting for the next item. In the second action,

receiver receives an item and accepts it provided the identifier of the item is correct.

Let
e c¢s be the channel from sender to receiver,
¢ cr be the channel from receiver to sender,
e ns be the number of items sent by sender,
e nr be the number of items received by receiver,
e na be the number of items whose acknowledgement has been received by sender,
e bs be the log W-bit identifier of the item to be sent next,
o br be the log W-bit identifier of the item to be received next,
e ba be the log W-bit identifier of the item acknowledged last,
e @ be addition modulo W and & be subtraction modulo W.

The sliding-window protocol is described formally in the following program, along with
the set of faults it tolerates.

14

program Sliding-window

var cs,cr: sequence of integer ;
rr:0..1;
ns, na,nr : integer ;
bs,ba,br: 0.W—1;

process sender

begin
ns<na+W ~— ns,bs,cs :=mns+1, bs®1, cs;bs
1 er# () — if head.cr €ba®1..bs
then na, ba := na+(head.cr&ba), head.cr fi ;
cr := tail.er
il es={() Aer={) A
rr=0 A ns>na — cs:= cs;{ba..bsgl)
end

process receiver

begin
rr=1 — rp,er:=0,cr;br
1 ces#£ () — if head.cs =br then nr,br := nr+1, br@1f;
rr,cs = 1,tail.cs
end
faults F
{ cs#() — c¢s:=tail.cs,
cr# () — cr:=tail.er }

We show that program Sliding-window is F-tolerant for §, where

5 = cs=br..bs01 A cr=ba®1l..brorr A
na<nr A nr<ns A ns<na+W A
bs=(nsmod W) A br=(nrmod W) A ba=(namodW)

Informally, S states that the domain of execution of program Sliding-window satisfies
the following four conditions. (i) Channel cs contains the in-order sequence of items
that have been sent but not yet received. (ii) Channel cr contains the in-order sequence

of acknowledgments that have been sent but not yet received. (iii) The number of

15

acknowledgements received is at most the number of items received, which in turn is at

most the number of items sent. (iv) The number of unacknowledged items is at most
w.

It is straightforward to show that each computation of program Sliding-window that
starts at a state where S holds satisfies the data transfer specification (observe that
starting from any state where § holds, the second action of the receiver is eventually

executed).

Proof

To show that program Sliding-window is F-tolerant for S, we are required to exhibit a
state predicate T that satisfies the three conditions in Definition 3. In this case, we let
T to be

T = cs is a subsequence of br..bs©1 A cr is a subsequence of ba@®1..brOrr
na<nr A nr<ns A ns<na+W A
bs=(ns mod W) A br=(nr mod W)A ba=(na mod W)

It remains to show that S is closed in Sliding-window, T is closed in Sliding-window as

well as in F, and T converges to S in Sliding-window.

S is closed in Sliding-window :

Executing the first action of sender preserves |cs|= br..bs©1, bs = (ns mod W), and
nr < ns A ns < na+ W; hence it preserves S. Executing the second action of sender
preserves ¢s =br..bsO1, ba=(na mod W), and na<nr A ns <na+Wj hence it preserves

S. The third action of sender is not enabled at any state where S holds.

Executing the first action of receiver preserves cr = ba@®1..br ©rr; hence it preserves S.
Executing the second action of receiver preserves cs = br..bs©1, br = (nr mod W), and

na<nr A nr <ns; hence it preserves 5.

T is closed in Sliding-window :

Similar to proof § is closed in Sliding-window.

T is closed in F :

Actions in F do not add new messages in cs or cr nor do they update any other variable.

16

T converges to S in Sliding-window :
If at a state where 7' holds there are no items missing in ¢s and cr, then § holds at that

state.

If at a state where T holds there is an item missing in ¢s, then due to fair execution
of actions of receiver, br will eventually be the identifier of the first item missing in cs.
Subsequently, as long there is an item is missing in ¢s: (i) br and nr will not be updated
and items received from c¢s will not be accepted. (ii) Since na < nr, eventually na will no
longer be updated and the first action of sender will no longer be enabled. (iii) Hence,
eventually cs will be empty and thereafter cr will be empty. (iv) Finally, the third action
of sender will be executed, thereby yielding a state where 5 holds.

If at a state where T holds there are no items missing in ¢s but there is an item missing in
cr, then due to fair execution of actions of sender either S will hold (if acknowledgements
for items sent subsequently are received) or both cs and cr will be empty. In the latter

case, the third action of sender will be executed, thereby yielding a state where S holds.

Since S is not closed in F, the strongest solution T's is weaker than S and, hence, Sliding-
window is nonmasking fault-tolerant. Also, it is straightforward to show that true does

not converges to S and, hence, that Sliding-window is local stabilizing fault-tolerant. O

Remarks

The guard of the third action of sender involves detecting the global state of the system.
One way to implement this detection is to use a timer and to timeout if no acknowledge-

ment is received within the maximum roundtrip delay of a message.

3.3 Example: Byzantine Agreement

Specification

Each process is either Reliable or Unreliable. Each Reliable process reaches one of two
decisions, false or true. One process g is distinguished, and has associated with it a

boolean value B. It is required that:

1. If g is Reliable, the decision value of each Reliable process is B.

2. All Reliable processes eventually reach the same decision.

17

Faults may make Reliable processes Unreliable.

Program [13, 37]

We assume authenticated communication: messages sent by Reliable processes are cor-
rectly received by Reliable processes, and Unreliable processes cannot forge messages on

behalf of Reliable processes.

Agreement is reached within N+1 rounds of communication, where IV is the maximum
number of processes that can be Unreliable. In each round r, where » <V, every Reliable
process j that has not yet reached a decision of true checks whether g and at least r—1
other processes have reached a decision of true. If the check is successful, j reaches a
decision of true. If j does not reach a decision of true in the first NV rounds, it reaches

a decision of false in round N +1.

Let d".k be a boolean value denoting process k’s tentative decision up to round r, ¢".k.l
be a boolean value that is true iff in round r process k knows that process [has reached
a decision of true, and b.k be a boolean value that is true iff k is Reliable. Note that
since we assume authenticated communication, an Unreliable k cannot for Reliable [set

c".k.l to true unless d™ 1.1 is true.
Let ¢".jox = (sumk:c".j.k:1).

The byzantine agreement algorithm is described formally in the following program, along
with the set of faults it tolerates.

18

program Byzantine
constant N : integer;
X :set of ID;
9:X;
parameter j,k,1:X;
q:0.N+1;
var r:0.N+1;
b.j : boolean,;
d?.j : boolean;

¢?.5.k : boolean;

begin
r<N — ri=r+l
(k-
true — " jki=d kv (3 tLE)
| -b.jAbE — ¢".j.k:= false
[=b.jA-bk — c"gk:=7
)
i (g
true — dji=d"r V(T jEx>r A CTLGg)
] -b.j — dr.ji="7
)
end
faults ¥

{(sumk:-bk:1)<N Abj — bj:= false}

We show that program Byzantine is F-tolerant for S, where

S = (sumj:=bj:1) <N
A (Vi k,q:
bj = (j=g=d°j=B) A (j£g=~d%j) A =5k
A bjAO<q<r = dij=(d¥ljV (ctj*x>gAchj.g))
A bjAO<g<r = clk.j=d%j
A bjAbEA-dLjAO<qg<r = cLjk= (drt.kv (31 cTrLE)))

19

It can be shown that each computation of program Byzantine that starts at a state
where § holds satisfies the byzantine agreement specification. (We relegate the details
to Appendix B.)

Proof

To show that program Byzantine is F-tolerant for §, we are required to exhibit a state
predicate T that satisfies the three conditions in Definition 3. In this case, we let T to

be § itself. It remains to show that § is closed in Byzantine as well as in F.

S is closed in Byzantine :

Upon execution of program actions,

o the first conjunct of S is trivially preserved since program actions do not update
any b value,

o the first clause of the second conjunct is preserved since program actions do not
update any d° or ¢? value,

e the second clause of the second conjunct is preserved since d".j is set to d™1.j V
(c"jox>r A c"j.9),

e the third clause of the second conjunct is preserved since if ¢".k.j is set to true,
then d™.j holds and thus d".j is set to true, and

e the last clause of the second conjunct is preserved, since ¢%.5.k is set to d#*.k Vv (31 :
cTLLE). O

S is closed in F :
Only the first conjunct in S names the b variables and the first conjunct is preserved

upon execution of an action in F; hence, § is closed in F. O

Since the predicate T is S, the strongest solution T's is § and, hence, Byzantine is
masking fault-tolerant. Also, it is straightforward to show that true does not converges

to S and, hence, that Byzantine is local stabilizing fault-tolerant.

Remarks

Observe that in each round = each Reliable process updates its ¢” and d" variables based
only on the variables ¢™* and d™. Hence, in implementing Byzantine, it is not necessary
that each Reliable process store ¢” and d” for all r. Instead, if the state of each Reliable

process is broadcast after every round, then each Reliable process needs to store only

20

one ¢ and one d variable.

A further optimization is made possible by the observation that once a Reliable processes
j sets d.j to true and broadcasts its state, then in the subsequent rounds d.j and each

c.k.j remain true. Hence, j no longer needs to participate in the computation.

4 Verifying Fault-Intolerance

In this section, we illustrate how fault-intolerance can be formally verified using our
definition.

Let p be a program, S be the intended domain of execution of p, and F be a set of
actions. To verify that p is not F-tolerant for S, we are obliged to show that for each

state predicate T one or more of the following conditions hold.

1. T does not hold at every state where S holds,
2. T is not closed under execution of actions in F, or

3. T does not converge to § in p.

One way of meeting the above obligation is to exhibit three “witnesses”:

e a state b where S holds,
e a state ¢ reachable from b by executing actions in F, and

e a computation of p that starts at ¢ and has no state where § holds.

To see that this method of witnesses meets the above obligation, note that for each T if
(1) and (2) are false then (3) is true since T holds at the witness state ¢, and the witness

computation starts at c.

This method of witnesses can be simplified for special kinds of fault-tolerance such as
masking or global stabilizing fault-tolerance. Observe that for verifying that a program
is not masking fault-tolerant, it suffices to exhibit the witness states b and ¢, and to
show that S does not hold at c. Likewise, for verifying that a program is not stabilizing
fault-tolerant, it suffices to exhibit a witness computation that has no suffix where §
holds.

21

4.1 Example: A Delay-Insensitive Circuit

In this example, we consider circuit timing faults that are caused by delays in signal prop-
agation. We first verify that a delay-insensitive circuit, the Muller C-element, tolerates
timing faults in the arrival of its input signals [34]. We then exhibit an implementation
of the C-element that uses a 3-input majority function, and verify the well-known fact
that the implementation tolerates one type of timing fault but does not tolerate another
type.

Specification [33]

A C-element with boolean inputs # and ¥ and a boolean output z is specified as follows:
(i) Input z (respectively, y) can change only if ¢ = z (respectively, y = z) holds ; (ii)
Output z can become true only if ¢ A y holds, and can become false only if 2z A -y
holds ; (iii) Starting from a state where z =y holds, eventually a state is reached where

z is set to the same value that both 2z and y have.

Ideally, both z and y change simultaneously. Faults may delay changing either z or y.

Program
Changing both inputs simultaneously is represented by the program action
r=z N Y=z - &Y=,y

If a delay occurs in the arrival of an input, then one input is changed after the other is.
Changing z late is represented by the program action

2=z N y#Ez - zi=
Similarly, changing y late is represented by the program action
z2Fz N y=z — Y=y

Lastly, if both inputs have arrived, the output can be changed. Changing the output is
represented by the action

z#z N yZz - zi=-z

The C-element is described formally in the following program, along with the set of faults

it tolerates.

22

program C-element

var ,Y,z: boolean;

begin
z=2z2 N y=z — R, Yi=E, Y
| ==z A y#:z - zi= e
[2%z A y=z - y=-y
| =%z A y#z — z= -z
end
faults F
{z=2z A y= — ®i= o,
=z A Y=z — yi=-y o}

We show that program C-element is F-tolerant for §, where § is true. It is straightfor-
ward to show that program C-element satisfies its specification for §. (We observe: First,
program C-element satisfies the specification properties (i) and (ii) at every state. Sec-
ond, every .computation of C-element, upon starting from any state, eventually reaches

a state where z is set to the value that both z and y have; thus, C-element also satisfies

property (iii).)

Since every state is legal, the closure and convergence conditions are trivially met and,
hence, program C-element is F-tolerant for S. In particular, it is both global stabilizing

and masking fault-tolerant.

Implementation

Consider a majority circuit with three boolean inputs z, y, and u and one boolean output
v. To implement the C-element using this majority circuit, it suffices to connect v to
z and feedback v to u [34]. This corresponds to replacing the last action of program

C-element with the following two actions

vEmajority (u,z,y) — v:=majority (u,,y)

I z#v v u#v — Z, U=V,

thereby yielding the following program.

23

program C-maj-element

var u,v,&,¥,z: boolean ;

begin
=z N Y=z - B,Y == T, Y
| 2=z A y#:z - mi=
| =#z A y=z - Y=y
| v#majority(u,=,y) — v:=majority(u,z,y)
| zz#v vV u#v - Z,ui=v,0
end
Faults

Program C-maj-element can tolerate delays in the signal from v to z, but cannot tolerate
delays in the signal from v to u. To verify this fact, we consider two classes of fault
actions: in F'1, delays in the signal from v to z are allowed, thus the signal from v can
change u early; in F'2, delays in the signal from v to u are allowed, thus the signal from
v can change z early. That is,

Fl= {e=z AN y=z - zi= e,
z=z N Y=z - y::‘ﬁy,
UE — uw:i=v }

and

F2= {e=z AN y= — Ei= T,
z=z A y=z — Y iz= Y,
zFw - zi=v }

We show that C-maj-element is masking F1-tolerant for a specific set of states, but is

not masking F2-tolerant for any non-empty set of states.
Proof

Let § = (z#v=>(zZzAy£2)) A (ufv=> (2FzAy#zAu=z)). We observe:
First, specification properties (i) and (ii) are satisfied at every state in S. Second, every
computation of C-maj-element that starts at a state in S eventually reaches a state in

S where z is set to the value that both and y have; thus, C-maj-element also satisfies

24

property (iii). And third, § is closed under the execution of actions in C-maj-element

and F1. Hence, C-maj-element is masking F1-tolerant for S.

Let S’ be any non-empty set of state satisfying specification properties (i), (ii) and (iii).
We observe: Since (iii) is satisfled, there exists a state b in S’ where z=2z A y=z holds.
Let ¢ be the state resulting from executing the first action, then the fourth action, and
then the fifth action of C-maj-element starting from b. In ¢, the variables u, v, z,y, and
z all have the same value. Let d be the state resulting from executing the first action
and the fourth action of C-maj-element followed by the third action and the first action
of F2. Ind,u=z A = #v A v=y A y=z holds. Now, if the fourth action and then the
fifth action of C-maj-element are executed starting from d, requirement (ii) is violated.
Thus, S’ is not closed under the execution of actions in C-maj-element and F'2. Hence,

C-maj-element is not masking F2-tolerant for §'.

5 Proving Impossibility of Fault-Tolerance

In this section, we illustrate how our definition can be used to prove that for a given
specification and a given class of faults there is no program that both satisfies that

specification and tolerates that class of faults.

Led by the method of witnesses that we presented in the previous section, we observe
that to prove that there is no program that both satisfies some specification SP and
tolerates F, it suffices to exhibit three witnesses:

o a state b that is in the domain of execution of all programs satisfying SP,
e a state ¢ that is reachable from b by executing actions in F, and
e a computation of every program satisfying SP that starts at ¢ and has no suffix

satisfying SP.

Several results in the literature on impossibility of fault-tolerance [29] can be proven
using this method, including the well-known impossibility of distributed consensus with
one faulty process [21]. Some of these results involve special kinds of fault-tolerance such
as masking or global stabilizing fault-tolerance. Observe that for proving impossibility of
masking fault-tolerance, it suffices to exhibit the states b and ¢, and to show that ¢ does
not satisfy SP . Likewise, for proving impossibility of global stabilizing fault-tolerance,
it suffices to exhibit a witness computation that has no suffix satisfying SP .

25

5.1 Example: Mutual Exclusion

We prove a new impossibility result using the method outlined above. Our impossibility
result concerns programs for mutual exclusion which exhibit the following fault-tolerance
property: upon starting from an illegal state, their execution necessarily reaches a dead-

lock state (i.e., a state where no further execution is possible).

More formally, consider a program p whose intended domain of execution is §. We say

that p failstops iff the following two conditions hold.

e p has global stabilizing fault-tolerance with respect to SV D, and

o S converges to D,

where D is the state predicate denoting all deadlock states of p.

Consider, further, programs whose variables can be partitioned so that variables in each
partition are written by actions in one process only. We say: an action in process j is a
read action iff it reads a variable that is written in some action of a process other than
j; an action in process j is a write action iff it writes a variable of 7 that is read in some
action of a process other than j. Program p is read-write iff none of its process actions

is both a read and write action.

Theorem: No read—write program for mutual exclusion failstops.

Proof: Let p be an arbitrary read-write program for mutual exclusion, and let S be the
intended domain of execution of p. That is, S is a closed state predicate of p such that

all computations of p starting in § satisfy the following two properties [18].

o Safety: at most one process is “privileged” at each state in the computation, and
o Deadlock-Freedom : if the computation starts at a state where some process has
requested the privilege, then there exists a subsequent state in the computation

where some process that previously requested the privilege is privileged.

Our obligation is to show that p failstops for S is false. We meet this obligation by
exhibiting a state transition from a state ¢ where —S holds to a state d where S holds;

such a state transition violates the second condition in the definition of p failstops.

Since processes of p communicate only via variables, no process in p can yield the privilege
without executing some write action. (Else, deadlock freedom cannot be satisfied.) Also,

notice that guards of write actions in a process of a read-write program can only access

26

variables of that process. Hence, based on the guards of write actions that are involved
in yielding the privilege, there exists for each process j a state predicate LC.j over the

variables of j for which at each state in S, if LC.j holds then j is privileged.

Consider an infinite computation that starts at a state where some process k is privileged
and some process other than k has requested the privilege. By deadlock-freedom, there
exists a state transition from a state b to a state d in the computation by which k yields
its privilege. Consider, further, that k performs no actions after yielding the privilege
for the first time.

We claim that d results from executing a write action of k. For if d results from executing
a non-write action of k, then if that action is significantly delayed from executing, it
is possible for the other processes to execute the same sequence of actions that they

executed after state d in the given computation, and thereby violate safety.

State ¢ can now be constructed as follows. In ¢, let the values of k’s variables be the
same as in b, and the values of the variables of other processes be the same as in d.
Since LC.k holds at b and since LC.k depends only on k’s variables, our construction
ensures that LC.k holds at c. Also, our construction ensures that k is not privileged at
c. (Recall that at each state in S, if LC.k holds then k is privileged.) Hence, it follows
that S does hold at c. Finally, we observe that the write action that updated b to yield

d in the chosen computation can be executed in ¢ to yield d. |

Corollary: No message-passing program for mutual exclusion failstops. O

6 Designing Fault-Tolerance

In this section, we illustrate that our definition can be used to design programs to be
fault-tolerant.

Let us begin by observing that according to our definition fault-tolerant programs meet
the following two requirements: (a) their domain of execution § is closed under program
execution, and (b) whenever faults perturb program execution from a state where S

holds to a state where =S holds, subsequent program execution reaches a state where §
holds.

Requirements (a) and (b) suggest that fault-tolerant programs can be designed by sep-

27

arately designing two classes of program actions: “closure” actions that are executed
only in states where S holds, and upon execution yield states where § holds; and “con-
vergence” actions that are executed only in states where -5 holds, and upon execution

eventually yield states where S holds.

The above classification of actions is, however, based on the assumption that it is feasible
to design closure actions that are executed only in states where S holds. This assumption
is not necessarily valid: actions that check whether § holds at a state can have large
“atomicity”, and can thus be unsuitable for certain applications. Therefore, we relax
the restriction that closure actions are executed only in states where S holds as follows.
Closure actions may execute in states where =5 holds provided their execution does not

prevent the convergence actions from eventually yielding states where . holds.

We have illustrated elsewhere, [5], how to separately design closure and convergence
actions so that requirements (a) and (b) are met. Our approach is to first characterize
S in terms of a finite set of constraints. We then design convergence actions that satisfy
these constraints, and closure actions that do not prevent the convergence actions from

satisfying these constraints.

6.1 Example: Diffusing Computations

Consider a finite out-tree (i.e., a rooted tree with edges directed away from the root). We
derive a global stabilizing program in which, upon starting from a state where all tree
nodes are colored white, the root node initiates a diffusing computation. The diffusing
computation then propagates from the root to the leaves, coloring the tree nodes black.
Upon reaching the leaves, the diffusing computation is reflected back towards the root,

coloring the tree nodes white. And the cycle repeats.

Let st.j be the color of node j, and let sn.j be a boolean session number that is used to
distinguish “j has not started participating in the current diffusing computation” from “j
has completed participating in the current diffusing computation”. Also, let p.j denote
the parent node of j in the out-tree. (Hence, if j is the root then p.j = j; else there is

an edge from p.j to j in the out-tree.)

We postulate that when all j are colored white, all j have the same session number.

Hence, to distinguish “j has not started participating in the current diffusing compu-

28

tation” from “j has completed participating in the current diffusing computation”, it
suffices that j toggles the value of sn.j whenever j starts participating in a new dif-
fusing computation. We can now characterize the set § of legitimate states as follows:
in the current diffusing computation, each j satisfies one of the following four condi-
tions. (i) j and p.j have both started participating , (ii) j and p.j have both com-
pleted participating , (iii) j has not started participating whereas p.j has , or (iv) j
has completed participating whereas p.j has not. That is, § = (Vj :: R.j), where
R.j = (st.j=st(p.j) Asn.j=sn.(p.j)) V (st.j=white A st.(p.j) =black).

For ensuring that true converges to .S, we consider for each j the convergence action

-R.j — “establish R.j”

For initiating a diffusing computation at the root node, we consider the closure action

st.j=white Ap.j=3j — gt.j, sn.j := black , ~sn.j

For propagating a diffusing computation from p.j to j, we consider the closure action
st.j=white A st.(p.j)=black A sn.j # sn.(p.j) — st.j, sn.j:=st.(p.7), sn.(p.5)

For reflecting the diffusing computation from the children of j to j, we consider the

closure action

st.j="black A
(Vk 2 pk=j = (st.k=white A sn.j=sn.k)) — st.j := white

In [5], we have presented graph-theoretic results using which we can show that in this
program the dependence of each convergence action on other closure and convergence
actions is such that, even if the program starts at an arbitrary state, it is guaranteed to
eventually reach a state where S holds. In other words, the program is global-stabilizing
fault-tolerant for S.

Lastly, we observe that the propagation closure action of node j can be combined with

the convergence action that updates st.j and sn.j to yield the action
sn.jZsn.(p.j) VvV
(st.j=black A st.(p.j) =white) — st.j, sn.j = st.(p.5), sn.(p.j)
Hence, our design yields the following program [4].

29

program Diffusing-Computation
process j: 1.K ;
var st.j: {white, black} ;

sn.j : boolean ;

begin
st.j=white Ap.j=j — s8t.j, sn.j := black, —sn.j
| st.j=white A st.(p.j)=black Asn.j # sn.(p.j) — st.j,sn.j:= st.(p.j), sn.(p.7)
| st.j=black A

(Vk = pk=j = (st.k=white A sn.j=sn.k)) — st.j := white
| snjZsn(pj)V
(st.j=black A st.(p.j) =white) — st.j, sn.j = st.(p.7), sn.(p.7)
end

7 Discussion

Any broad-based methodology such as ours is bound to raise several questions. Below, we
answer some of the questions that our methodology has raised, and discuss the rationale

for some of the design decisions that we made in the course of this work.

While our definition of fault-tolerance specifies that all ezecutions of a fault-tolerant
program eventually reach a legal state, it does not specify how quickly the erecutions

reach a legal state. Is our definition therefore too weak to be useful?

In defining fault-tolerance, we have deliberately chosen to separate the concerns of cor-
rectness and efficiency. To this end, our definition specifies correctness —viz, that con-
vergence to legal states occurs in finite time— but does not specify efficiency —viz, the

rate at which convergence to legal states occurs.

Nonetheless, the rate of convergence can be deduced from the proof of convergence. For
example, letting a round denote a minimal sequence of steps where each process executes
a step, and observing that the total number of items in cs and cr cannot exceed W, we
can deduce from our proof of T converges to S in Alternating-bit that, starting from a

state where T holds, a state where S holds is reached within 3xW rounds.

30

Is it necessary that ezecution of program actions be fair?

The programs presented in this paper are correct even if the execution of program actions
is not fair. More specifically, the programs are correct under the assumption of minimal

progress; i.e., if there exists an enabled action, then some enabled action is executed.

We have nonetheless assumed fairness for two reasons. First, some useful programs
require fairness to satisfy our definition of fault-tolerance. And second, proofs of con-
vergence are sometimes simplified by assuming fairness, as is the case for our proof of T

converges to S in Alternating-bit (see Section 3.2).

Since faults actions can only perturb program state, how can we capture permanent faults?

intermittent faults? faults some number of which can be tolerated, but more cannot?

Consider, for example, our discussion of the Byzantine Agreement problem in Section
3.3. In that discussion, executing a fault action causes a process to permanently change
its mode of operation from Reliable to Unreliable. Thus even though the fault actions by
themselves only cause state perturbations, the effect of those state perturbations on the

behavior of processes is permanent. (A similar argument holds for intermittent faults.)

Furthermore, in the same discussion, we show that program Byzantine can tolerate up
to IV faults —but no more— by restricting the guards of the fault actions so that the

fault actions can execute at most N times.

Is our definition of fault-tolerance applicable to probabilistic programs?

Yes, provided we replace the convergence requirement with a probabilistic convergence
requirement; i.e., a requirement which ensures that all program executions upon starting

from a perturbed state eventually reach a legal state with probability one.

How can we reason about the fault-tolerance of program interfaces?

A program interface specifies the program behavior that is observable by some environ-
ment. This specification consists of a set of program variables and a set of constraints

on how these variables may be updated [38].

In our approach, reasoning about interfaces is simple: Associated with each interface

of a program p is some state predicate R that is closed under program execution. An

31

interface is fault-tolerant with respect to some set of fault actions F iff p is F-tolerant
for R.

Since only some of the program variables may be observed by the environment, it is
often the case that the state predicate R (corresponding to the interface) is weaker than
the state predicate S (corresponding to the intended domain of the execution). Thus, it
is often the case that while p is not masking fault-tolerant with respect to S, p offers an

interface R that is masking fault-tolerant.

8 Conclusions

In this paper, we have given a formal definition of what it means for a system to be
fault-tolerant. The definition consists of a safety requirement, closure, and a progress
requirement, convergence. It is both general (it expresses the fault-tolerance properties
of digital and computing systems) and uniform (it does not depend on the type of fault

considered).

In addition, we have developed a formal framework for reasoning about fault-tolerant
systems. The framework comprises methods for specifying, classifying, verifying and
designing system fault-tolerance. Due to its formal nature, the framework enables rea-

soning that is independent of technology, architecture, and application considerations.

In future work, we plan to further develop the framework along the following lines: (i)
To illustrate how to augment a program to make it fault-tolerant; (ii) To illustrate how
to implement a program while preserving its fault-tolerance; (iii) To develop methods
for reasoning about the fault-tolerance of real-time programs; and (iv) To replace the
nondeterministic interleaving semantics considered here with more general program se-

mantics.

References

[1] T. Anderson and P. Lee, “Fault tolerance terminology proposals”, Proceedings of
FTCS-12 (1982), pp. 29-33.

[2] A. Arora, “A foundation of fault-tolerant computing”, Ph.D. Dissertation, The
University of Texas at Austin (1992).

32

[3] A. Arora and M. Gouda, “Closure and convergence: A formulation of fault-tolerant
computing”, preliminary version in Proceedings of the 22nd International Sympo-

stum on Fault-Tolerant Computing (1992).

[4] A. Arora and M. Gouda, “Distributed reset”, revised for IEEE Transactions on
Computers ; extended abstract in: Proceedings of the 10th Conference on Founda-
tions of Software Technology and Theoretical Computer Science, Lecture Notes in

Computer Science {72, Springer-Verlag (1990), pp. 316-331.

[5] A. Arora, M. Gouda, and G. Varghese, “Distributed constraint satisfaction”, sub-
mitted for publication.

[6] A. Avizienis, “The four-universe information system model for the study of fault tol-
erance”, Proceedings of 12th International Symposium on Fault- Tolerant Computing
(1982), pp. 6-13.

[7] F. Bastani, I. Yen, and I. Chen, “A class of inherently fault-tolerant distributed
programs”, IEEE Transactions on Software Engg. 14(10) (1988), pp. 1431-1442.

[8] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery
in Database Systems, Chapter 7, Addison-Wesley (1987).

[9] G. Brown, M. Gouda, and C.-L. Wu, “Token systems that self-stabilize”, IEEFE
Transactions on Computers 38(6) (1989), pp. 845-852.

[10] M. Breuer and A. Friedman, Diagnosis and Reliable Design of Digital Systems,
Computer Science Press (1976).

[11] J. Burns, M. Gouda, and R. Miller, “On relaxing interleaving assumptions”, Tech-

nical Report GIT-ICS-88/29, School of ICS, Georgia Institute of Technology.

[12] J. Burns and J. Pachl, “Uniform stabilizing rings,” ACM Transactions on Program-
ming Languages and Systems 11(2) (1989), pp. 330-344.

[13] K. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley
(1988).

[14] F. Cristian, “Understanding fault-tolerant distributed systems”, Communications
of the ACM 34(2) (1991), pp. 56-78.

[15] F. Cristian, “A rigorous approach to fault-tolerant programming”, IEEE Transac-
tions on Software Engg. 11(1) (1985).

[16] E. Dijkstra, “Self-stabilizing systems in spite of distributed control”, Communica-
tions of the ACM 17(11) (1974).

33

[17] E. Dijkstra, A Discipline of Programming, Prentice-Hall (1976).

[18] E. Dijkstra, “Solution of a problem in concurrent programming control”, Commu-
nications of the ACM 17(11) (1965), pp. 569.

[19] E. Dijkstra and C. Scholten, Predicate Calculus and Program Semantics, Springer-
Verlag (1990).

[20] P. Ezhilchelvan and S. Shrivastava, “A characterization of faults in systems”, Pro-

ceedings of the 5th Symposium on Reliability in Distributed Software and Database
Systems (1986).

[21] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of distributed consensus with
one faulty process”, Journal of the ACM 32(2) (1985), pp. 374-382.

[22] M. Gouda, and N. Multari, “Stabilizing communication protocols,” IEEFE Transac-
tions on Computers 40(4) (1991), pp. 448-458.

[23] D. Gries, The Science of Programming, Springer-Verlag (1981).

[24] B. Johnson, The Design and Analysis of Fault-Tolerant Digital Systems, Addison-
Wesley (1989).

[25] S. Katz and K. Perry, “Self-stabilizing extensions for message-passing systems”,
Proceedings of the 9th ACM Symposium on Principles of Distributed Computing
(1990), pp. 91-101.

[26] L. Lamport, “Solved problems, unsolved problems and non-problems in concur-
rency”, invited talk, Proceedings of the 3rd Annual ACM Symposium on Principles
of Distributed Computing (1984), pp. 1-11.

[27] B. Lampson and H. Sturgis, “Crash recovery in a distributed storage system”, Xeroz
Park Tech. Report, Xerox Palo Alto Research Center (1979).

[28] J.-C. Laprie, “Dependable computing and fault tolerance: Concepts and terminol-
ogy”, Proceedings of the 15th International Symposium on Fault-Tolerant Comput-
ing (1985), pp. 2-11.

[29] N. Lynch, “A hundred impossibility proofs for distributed computing” invited talk,
Proceedings of the 8th Annual ACM Symposium on Principles of Distributed Com-
puting (1989), pp. 1-29.

[30] A. Mili, An Introduction to Program Fault-Tolerance, Prentice-Hall (1990).

[31] C. Mohan, R. Strong, and S. Finkelstein, “Methods for distributed transaction com-

mit and recovery using byzantine agreement within clusters of processes”, Proceed-

34

ings of the 2nd ACM Symposium on Principles of Distributed Computing (1983),
pp. 29-43.

[32] J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms from
unreliable components,” in Automata Studies, Princeton University Press (1956),
pp. 43-98.

[33] R. Schlichting and F. Schneider, “Fail-stop processors: An approach to designing
fault-tolerant computing systems”, ACM Transactions on Computers (1983), pp.
222-238.

[34] C. Seitz, “System timing”, in Introduction to VLSI Systems, Addison-Wesley (1980).

[35] D. Siewiorek, “Architecture of fault-tolerant computers”, in Fault-Tolerant Com-

puting: Volume II, Prentice-Hall (1986).

[36] D. Skeen and M. Stonebraker, “A formal model of crash recovery in a distributed
system”, IEEE Transactions on Software Engg. (1983), pp. 219-228.

[37] T. Srikanth and S. Toeug, “Simulating authenticated broadcast to derive simple
fault tolerant algorithms”, Distributed Computing 2(2) (1987), pp. 80-94.

[38] B. Randell, “System structure for software fault tolerance”, IEEE Transactions on
Software Engg. (1975), pp. 220-232.

[39] A. Tanenbaum, Computer Networks, Prentice-Hall (1981).

[40] Y. Zhao and F. Bastani, “A self-stabilizing algorithm for byzantine agreement”,
University of Houston Tech. Rep. UH-CS-87-6 (1987).

A Proof of Correctness of Program Two-Phase

We show that each computation of program Two-phase that starts at a state where S
holds satisfies the atomic commitment specification up to “blocking”. More specifically,

we show that § converges to R in Two-phase, where

R=S A(((Vi:upj = phj=2Adj=dc) A phc=2) v
((Vj:upj = phg=2A =d.j) A ph.c#2 A ~up.c) V
((V§: up.j = ph.j=1) A -up.c))

In other words, we show that every computation of Two-phase that starts at a state where

S holds eventually reaches a state that satisfies one of the following three conditions:

35

(i) the coordinator has completed its second phase, and each up process has reached
the same decision as that of the coordinator; (ii) the coordinator has stopped without
reaching a decision, and each up process has reached a decision to Abort; and (iii) the
coordinator has stopped without reaching a decision, and each up process has voted but
not reached a decision. Thus, program Two-phase meets its specification only when (i)
or (ii) apply; when (iii) applies, the program is “blocked” without any process having

reached a decision.

R is closed in Two-phase :

No action of Two-phase is enabled at any state in R; hence, R is closed in Two-phase.

S converges to R in Two-phase :

We consider two cases for each state in S: up.c holds or ~up.c holds.

In the first case: if ph.c = 0 holds, the first action of ¢ is eventually executed due to
process fairness thereby yielding a state where ph.c = 1 holds. If ph.c = 1 holds, the
fourth action of every other process that is up but has not voted is executed due to process
fairness; therefore, either the second or the third action of ¢ is eventually executed due
to process fairness thereby yielding a state where ph.c = 2 holds. If ph.c = 2 holds,
the sixth action of every other process that is up is eventually executed. Thus, a state

satisfying condition (i) is eventually reached.

In the second case: either the program state satisfies condition (iii) or (37 : up.jAph.j#1)
holds. In the latter case, either the fifth or the sixth action of every other process
that is up is eventually executed due to process fairness. Hence, a state satisfying
(Vj : up.j = ph.j =2) is reached. It follows from § that all up processes have reached
the same decision in this state. Thus, a state satisfying condition (i) or (ii) is eventually

reached. O

B Proof of Correctness of Program Byzantine

We show that each computation of program Byzantine that starts at a state where S

holds satisfies the byzantine agreement specification.

We first observe from S that for any Reliable process j, d".j = d™..j holds. Hence, j

does not reverse a decision of true. Since j can reach a decision of false only in round

36

N+1, j does not reverse a decision of false either. Thus, j does not reverse its decision

after it has reached one.

Regarding property 1 of the specification, we prove by induction on r that b.jAb.g = d".J=
d%.g.
Base case (r=1):
di.j
= {Sandbj}
d°.j Vv (ct.jx>1Actjg)
= { -~d%;j , arithmetic }
cl.j.g
= {Sandbyg}
d’.g

Induction case (r>1):
ar.j
— {Sandbj}
dt.gv (c".j.* >rAc.j.g)
= { predicate calculus }
d v (~d i AT x> AcTg.g)
= { induction hypothesis }
dogV (~dlLjACcTjx>r ACT.]g)
= { Sandbj}
dO.g Vv (~d™ A ja>r A(d kY (3 Lg))
= { predicate calculus}
d’.gv (3:ctlyg)
= { Sandbyg}
do.gv (3l:d1.g)
= { induction hypothesis , predicate calculus }
d’.g

and

d°.g
= {Sandbj}
dO.g A —d%.j
= {Sandbj}

37

ct.j.g
= {Sandbj}
dL.j
= {Sandbj}
d&r.j
It follows that b.jAb.g = dN¥t1.j=d°g. Thus, property 1 is satisfied. 0

Regarding property 2 of the specification, let ¢ be the smallest natural number such that
d?.j holds for some Reliable j. We show that d™ k and ¢ < N holds for all Reliable k.
di.j A—~detj
= {Sandbj}
di.j A-clkjAcdgx>qgNhclyyg
= {S,bkandc®.k.j}
M kx>q A ctigg
= {Sandbk}
de k
and
(VI: bl = —=d.7.I)
= {5}
-c4.5.k
= {(sumj:-bj:1)<N}
- j k<N
= {cdjx2q}
g<N
It follows that b.jAb.k = dN¥t.j=dNt k. Thus, property 2 is satisfied. O

38

