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10 Conclusions

We have classi�ed possible SAS models and examined the tradeo�s among di�erent models. We

have concentrated on methods that can use memory management hardware to provide protection

among processes rather than special hardware support to provide �ne-grained protection within a

process. Our conclusion is that the SAS models used in existing systems su�er from the management

of the address space or the protection domain. Existing systems based on these models either

limit the computation domains, or yield poor performance. This discussion also indicates that

paged segmentation for memory management, dynamic address binding, and load time access

authorization are the most adequate methods in their dimensions to be used with interprocess

protection in the SAS paradigm.

We believe that the shared address space paradigm will replace the private address space

paradigm for designing operating systems for 64-bit and larger address space architectures. The

private address space paradigm will become obsolete for the following reason. The sum of the

virtual address spaces cannot be larger than the available physical storage. The switch from 32-bit

to 64-bit processors is the �rst turning point in the history at which the virtual address space

exceeds the available physical storage with several orders of magnitude. This gap will remain since

processor densities are increasing at a rate which is at least as fast as storage densities. Hence,

there will never be a need again for the use of the private address space paradigm.
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problems since objects maintain their virtual addresses only temporarily. Note that although

reclamation of the virtual addresses of the shared address space is trivial, the problem still exist

in the second level storage, where the objects are maintained with unique names. For example,

if that naming context is a hierarchical directory structure, the deletion of a shared object may

leave dangling symbolic references. There are several solutions to the problem, which can be

implemented e�ectively. For example, consider the solution where a symbolic name is not reused

until all references to the symbolic name is deleted. The number of possible symbolic names that

system allows is typically more than the number of possible virtual addresses (at least for current

systems), so that users can call their �les with a meaningful name. To illustrate, consider UNIX

Version 7 that allows only fourteen characters per name (in contrast to 4.2BSD that allows 255

characters). Suppose there are 2

5

= 32 di�erent characters. Even in a at directory structure in

which �le names are fourteen characters long, there will be 32

14

= 2

70

possible symbolic names

compared to 2

52

possible virtual addresses in a 64-bit address space with 4 K pages. Thus, the

consequences of reclamation is less severe than the ones in a single-level store. Note that in a tree

structured directory, the same symbolic name can still be reused in other subdirectories.

Although the dynamic address binding scheme has many advantages over the static binding

scheme, there is still a question as to whether the indirection to access an object, the cost of

dynamic linking, and that the restriction that objects cannot contain pointers, are not to be severe.

We believe that this is not the case for the following reasons:

� Any shared address space introduces indirections to access the private data. Hardware support

is necessary to access the private data e�ciently. The same support can be used to dereference

the objects which are assigned to virtual addresses dynamically as explained in [14].

� If segmentation is used, the overhead of dynamic linking becomes almost equal to the overhead

of dynamic loading.

� One can argue that it is not always desirable that objects contain virtual address pointers.

Such a feature, for instance, complicates copying of an object to another object. Therefore,

either language or system support needs to be available for pointer translations [24, 25].

Besides, since each process uses the same active copy of the object, the translation needs to

be done only once in the case of dynamic binding.
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Reclamation or revocation cannot prevent a user from simply �lling up the entire address space

intentionally or accidentally. This problem is much more severe than the problem of �lling up

the entire disk spaces. If the system administration decides that a user has occupied too much

disk space, his �les can simply be deleted. The disk space is immediately available for reuse.

(Note that possible problems due to dangling symbolic references are much easier to solve; this will

be discussed in detail in Section 9.2.) However, once the disk space and the corresponding virtual

addresses are taken away from the user, the addresses have to be reclaimed from all other users that

can potentially access the deleted �les. A malicious user can easily degrade the system performance

if reclamation is done by garbage collection and decrease lifetime of the system if reclamation is

done by a lock-key mechanism.

9.1.4 Static Data

A compiled program is typically composed of a number of objects, (e.g., a code region, a private

static data region, and a stack region). Each object needs to be assigned to an address, when it

is �rst created. However, private data region cannot be assigned to a virtual address, since each

process which shares the program concurrently has to have a copy of the private data at a di�erent

address. This will generate ambiguity in managing objects: some objects with only symbolic names

and some objects with both symbolic names and virtual addresses.

9.2 Dynamic Address Binding

An object is loaded into a container when a process accesses it and the container is released when all

processes accessing the container terminate. An object can be loaded into di�erent containers in its

lifetime, and therefore it can have di�erent virtual addresses. This model is based on the assumption

that there is another level of storage, in which persistent objects are maintained permanently and a

naming scheme, in which persistent objects are identi�ed uniquely. Since objects have no absolute

virtual addresses, the processes need to access the object through a register or another memory

location indirectly. A shared address space system with dynamic binding does not rule out static

address binding of virtual addresses to some system resources. The choice is left as a policy.

For example, system administration may choose to statically bound some system wide services to

absolute virtual addresses.

Dynamic binding eliminates the problems we have discussed in the Section 9.1. Reclamation,

fragmentation, potential misuse, or presence of multiple versions of objects will not cause severe
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9.1.2 Fragmentation

External fragmentation of the global virtual address space will cause severe problems. The problem

is much more severe if the shared address space is based on a paging scheme as in [30]. For all logical

segments that are larger than a page, contiguous address spaces have to be found. If the shared

address space is implemented with segmentation, the occurrence of the problem is less probable.

The problem only occurs if a linear data structure is larger than the maximum segment size, in

which case segments with contiguous virtual addresses have to be found. Compaction methods

cannot be used to alleviate external fragmentation, since virtual addresses are statically bound to

objects.

Static address binding will also su�er from internal fragmentation. The problem is much more

severe if the shared address space is managed with segmentation. In order to make segmentation

e�ective, a large segment size has to be selected. For example, in the Hewlett-Packard PA-RISC, the

segment size is 2

32

: The number of possible segments in this architecture is 2

32

( four billion). If the

addresses are bound statically, the system can have only 4 billion segments during its entire lifetime.

The granularity of objects changes widely between applications. For example, some object-oriented

software systems typically deal with very small objects. In the Smalltalk-80 system, the average

object size is 16.38 words [31]. Although it is expected that either the compiler or the programmer

will gather the related objects into one segment, internal fragmentation of the address space may

signi�cantly reduce the capacity and lifetime of the system even in 64-bit architectures. The internal

fragmentation is less severe if the shared address space is managed with paging. However, such

an implementation su�ers from external fragmentation, high overhead for managing the protection

domains and for memory allocation, and from the inexibility that a logical segment cannot grow

beyond the allocated range when the segment is �rst created as explained in Section 8.

9.1.3 Revocation and Maintenance

A subtle selective revocation problem arises in the case of maintaining di�erent versions of an

object. If a new version of a object is installed, and if only a selected set of ex-users are allowed to

access the new version, whereas the other users need to continue to use the old version, the virtual

addresses of the two versions will conict. Hence, it is not possible to support multiple versions of

the object in an absolute virtual address space, unless all ex-users are only allowed to access the

version installed before their own compilation time.
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users are not allowed to create and delete objects freely, this argument is indeed valid. However,

in a general purpose computing environment, if the addresses cannot be reclaimed, scalability and

misuse will result in severe problems. There are several ways to implement reclamation, but these

incur high space or time overhead or require additional hardware:

� Garbage collection. When an object is deleted, or at regular intervals, the operating system

performs garbage collection to reclaim the virtual addresses. The entire �le system has to

be traversed to detect the dangling references. Since the addresses are statically bound, it

is not su�cient to search the directories. The contents of �les have to be searched for the

addresses. This is extremely time-consuming. In order to reduce the garbage collection time,

the operating system may keep track of the objects that a program references. This incurs

O(n

2

) overhead in space where n is the number of objects in the system.

� Reference count. The operating system does not reuse the virtual address until all refer-

ences to the object are deleted. The system keeps a count of the number of programs refencing

an object. This count is incremented each time a program links the object and decremented

when a program deletes the reference. It is possible to securely increment this count, if the

operating system is involved in linking. However, the count is decremented when the client

itself is deleted, or it is assumed that the client will release the object at some point of time

and decrement the count. The trouble with this approach occurs if the client never releases

the object, or the client itself is never deleted. In this case, the address can never be reused.

� Lock-key scheme. Each object maintains a unique bit pattern, called a lock, along with

its absolute virtual address. A process needs to have that unique pattern (key) to access the

object. When the object is deleted and the virtual address is given to another object, the

lock is changed. An object that uses an out-of-date key is destroyed. Keys should not be

directly accessed by the application. One way to preserve the integrity of keys is to use tagged

architectures. Another way is that the operating system maintains the keys for each program.

This incurs equivalent overhead as the �rst method for reclamation. It is also possible to build

the lock-key scheme in hardware. This is equivalent to expanding the virtual address space.

The IBM System/38 uses this method. The System/38 supports a 64-bit virtual address

space. The segment size is 2

16

= 64 K bytes. The system hardware only supports a 48-

bit physical address. Hence at any one time, there can be 2

32

segments in existence. The

remaining 16 bits of the segment number is used to reuse the 48-bit addresses.
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to maintain the entire protection domain table in the main memory, if it is small. Otherwise,

several disk accesses may be necessary to locate an entry in the protection domain table.

Segmentation also simpli�es dynamic linking and loading, and sharing. Dynamic linking only

requires binding an object to a virtual segment number. The overhead of dynamic linking becomes

almost equal to the overhead of dynamic loading. However, paging requires relocating all pages

in a logical segment. Similarly for dynamic loading, only access rights of a segment need to be

considered as opposed to access rights of all pages constituting a logical segment. With the same

reasoning, segmentation simpli�es passing data structures between processes.

9 Address Binding

We have categorized methods for managing a shared address space into two groups { static and

dynamic. In this section, we compare static address binding with dynamic address binding. We use

the following criteria for the evaluation: ease of reclamation of virtual addresses, fragmentation,

ease of maintenance of shared objects and managing private data of programs.

9.1 Static Address Binding

An object is loaded into a container when it is �rst created and is stored in the same container

during its lifetime. This scheme is called as a single-level store, since there is no need for another

level of storage and naming context for objects, other than the shared address space. There is a

one-to-one mapping from objects to containers, ( virtual addresses). Since objects have absolute

addresses, this scheme eliminates the need for indirect addressing to access an object, and thus

there is no need to dereference the object through a register or memory location. Although there

is no need for symbolic names, the symbolic name is a convenient way for users to reference an

object. However, compilers can bind segments statically to a program.

Static address binding, however, su�ers from a number of drawbacks which will limit the com-

putation domains that it can be used for. Below, we discuss these drawbacks.

9.1.1 Reclamation

The virtual address should be reclaimed once an object is deleted. One can argue that a 64-bit

address space is su�ciently large, so that there is no need to reuse a virtual address even after an

object is deleted. In certain computation domains, for instance in a dedicated database system, if
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allocation scheme is open to misuse and will rapidly increase the size of the tables for memory

management.

� By the same token, in order to expand the size of a logical segment, it may be necessary

to move logical segments to di�erent addresses. For this reason, the Opal operating system

restricts a logical segment not to grow beyond the address range allocated to it initially [12].

� Since there is no support for address translation for logical segments, paging will slow down

the memory references. For example, if the logical segment boundaries needs to be checked,

it has to be done in software.

8.5 Fragmentation

Both paging and segmentation can cause internal fragmentation of physical memory, as well as

internal fragmentation of the virtual address space. Furthermore, paging can also result in external

fragmentation of the virtual address space due to variable sizes of the logical segments. The

magnitude of the problems due to fragmentation of the virtual address space depends on the

scheme used for address binding. We will discuss this issue further in Section 9.

8.6 Support for the Protection Domains

In the SAS paradigm, although an address space is shared among all processes, each process must

have its own protection domain. Segmentation inherently provides this abstraction:

� It is easy to observe that any implementation of protection domain with paging will result in

more space overhead than an implementation with segmentation. In paging, the system has

to maintain di�erent access rights for processes on each page, whereas in segmentation, access

rights need to be maintained only for segments. For example, consider a process consisting

of four segments: code, data, stack and a single �le. Suppose that these segments add up to

2

24

bytes, and that the page size in the system is 4K. With paging, the space overhead for

the protection domain of the process is 4K, whereas with segmentation, it is only four.

� In the case that access rights are authorized at load time and a table is maintained for each

protection domain, paging will yield poor performance. The protection domain for a process

consists of a nonlinear table. The search time in this table will be longer with paging compared

to segmentation, since the table will be much larger with paging. Furthermore, it is possible
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used to reduce the search time in a nonlinear page table. We will compare segmentation in which

a linear segment table is maintained for the allocated segments of the virtual address space, with

a paging scheme where dynamic hashing is being used. One can view segmentation as hashing, in

which the hash function is the virtual segment number and argue both will result in same number

of disk accesses to locate a data. However, the problem with paging is that the size of the hash

table can grow beyond the size of the segment table if a simple virtual memory allocation is used

in which always new pages are allocated to load an object rather than searching for a variable size

of container among the released pages. Furthermore, with segmentation, the bucket that contains

the page table entries can be indexed since page table for a segment is linear. On the other hand,

with paging, the bucket that contains the page table entries needs to be searched for the page table

entry. If binary search is used, additional O(logB) main memory accesses are required. In the

best case, a dynamic hash function increases the space overhead by a factor of three compared to

the number of allocated pages of the address space. Furthermore, deletion and insertion of pages

involves more with hashing schemes than with segmentation.

8.3 Hardware Cost

Only a small amount of additional hardware support is required for segmentation compared to

paging. The virtual address generated by the processor has to be checked at some point in time

to verify that the address is within the segment. This point in time where such a check is made

depends on the system. In any case, the processor needs to have a comparison logic to check

whether the o�set of an address is smaller than the segment size. In architectures such as the Intel

80386 and the IBM RISC System/6000, there are also segment registers. These registers add to

the hardware cost, but they are provided for the sole purpose of expanding the address space in a

processor with 32-bit internal data paths, rather than for segmentation.

8.4 Address Space Allocation

In a large address space system, objects of di�erent sizes will be mapped into and removed from

the address space. Forming logical segments on top of paging incurs very high overhead to impose

such a dynamic structure on the address space.

� Address space allocation is di�cult with paging, since contiguous pages need to be found a

logical segment that spans multiple pages. The counter argument can be that the address

space is large enough not to reuse the released virtual pages. However, such a memory
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Another possible method to reduce the space overhead is to maintain a linear page table that

grows and shrinks according to the system load. In order to maintain a table which is not much

larger than the number of allocated pages, memory allocation needs to be controlled, such that

the logical segments are built from the released pages, and the address space is reorganized from

time to time by compaction methods. However, this scheme will result in a time-consuming virtual

memory allocation due to the dynamic structure of the large address space. To avoid a time-

consuming memory allocation scheme, pages can be allocated from unused virtual addresses. In

this case, the page table size will grow very fast beyond the number of allocated pages.

With segmentation, each page table can be kept as large as necessary, but the page table can

be still linear. Even in this case, the size of the segment and page tables can grow to a size that

can no longer be kept in main memory. In a 64-bit virtual address computer, such as the HP

Precision Architecture, with a 2

32

segment size, the segment table requires 2

32

(4 billion ) entries.

One solution is to page the segment table as in MULTICS [4]. A number of bits of the virtual

address indexes a main memory resident table which in turn points to a segment table. The other

solution is to use an inverted page table. However, the copy on disk can still be implemented with

two levels and be linear. It is also possible to maintain a linear segment table only for allocated

segments to further save space. To be able to keep the table as small as possible, the allocation of

virtual addresses needs to be controlled. This is trivial, since any object can be loaded into any

segment and since segments have �xed virtual addresses. The size of the table can be changed

depending on the load of the system.

8.2 Performance

If the page table is linear, paging results in two memory accesses to reference a memory location

in the case of a TLB miss. One access is to index the page table with the virtual page number and

the other access is to reference the data. If the segment table is linear, then the TLB miss penalty

is three memory accesses: access to the segment table, access to the page table, and access to the

desired data. However, in a large address space, it is not possible to maintain a linear table in main

memory. If an inverted page table is used, then the TLB miss penalty is same for both paging and

segmentation.

The di�erence in performance shows up when the table in main memory does not contain the

needed page. Since it is impossible to maintain a linear full size page table on secondary storage,

it may take several disk accesses to locate a page table entry. Hash functions or B-trees can be
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[2, 3]. Segmentation has not been used widely for 32-bit architectures for the following reasons.

First, when the address space is small, paging results in better performance. Second, in a 32-

bit architecture there is not enough room to structure the address space, as small segments are

not e�ective. However, paging yields poor performance and high space overhead for large address

spaces, and does not provide adequate support for the SAS paradigm. In the following, we will

evaluate paging and segmentation with respect to space overhead for maintaining the address

space, time overhead to reference a memory location (number of main memory and secondary

storage accesses to reference data), hardware cost, ease of address space allocation, and support

for protection domains.

8.1 Space Overhead

In order to reduce the number of memory accesses required to reference a memory location, it is

desirable to maintain linear tables for memory management. In this case, the address translation

takes only the additional step of indexing into the linear table. A simple method to maintain a

linear table is to have a full size table that contains an entry for both allocated and unallocated

virtual addresses. For example, in a 32-bit virtual address computer with paging, and a 4K page

size, a full size page table requires 2

20

entries. Although such a table requires 1 million words of

physical memory, the availability of large main memory implies that full size page tables can be

used. However, in order to conserve main memory, we can use an inverted page table scheme. The

inverted page table has one entry for each physical memory frame. The entry contains the virtual

address in addition to the physical address. An inverted page table trades o� the search time

to access a page with main memory overhead. Although an inverted page table conserves main

memory, a conventional page table still needs to be stored on secondary storage. In a 64-bit virtual

address computer with a 4K page size, the page table needs 2

52

( 4 quadrillion) entries, which is

too large to be stored even on secondary storage.

To alleviate this problem, nonlinear page tables can be maintained on secondary storage. Such

a page table will have only entries for the allocated pages of the virtual address space. A nonlinear

page table will increase the necessary memory for the page table at least by a factor of two, since

each entry has to include also the virtual page number. Hash functions or B-trees can be used to

reduce the search time in a nonlinear page table. These structures increase the space overhead by

a factor of three compared to the number of allocated pages of the address space.
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access an object. In this scheme, although general revocation is trivial, selective revocation becomes

complicated. Reacquisition or back-pointers [29] needs to be used for this purpose.

7.2 Load Time Authorization

The access rights are not kept with the containers of the shared address space; rather, they are given

to the process. The operating system maintains separate tables for the protection domains and for

the address space. The access rights are given to a process, either when the process is created, or

when it accesses a container �rst time. The operating system maintains these access rights in the

protection domain table per process. The shared page or segment tables for the address space only

store the information shared between processes such as address translation, segment size, etc. This

scheme results in tables with �xed-size entries and enables e�ective hardware support for address

translation. It allows multiple processes with di�erent access rights to reference an object without

traps to the operating system (note that we assume that concurrency control is implemented with

other mechanisms). This scheme is used in the Opal operating system with paging. However,

combining this scheme with paging for memory management, as it is applied in [12] results in poor

performance due to the cost of the paging maintenance. We will elaborate on the cost of paging in

the next section. We note, however, that the load time authorization can be combined with paged

segmentation for memory management to obtain better performance and less space overhead.

General revocation is trivial. In order to revoke the access right to an object, the corresponding

container can be invalidated in the shared address space. Reacquisition or back-pointers [29] needs

to be used for selective revocation.

8 Memory Management

We have identi�ed three methods for memory management: pure segmentation, paging and segmen-

tation. Pure segmentation complicates both physical memory and virtual address space allocation,

since contiguous pieces of physical and virtual memory need to be found to load variable size

segments. It also su�ers from external fragmentation of physical and virtual memory. For these

reasons, we will rule out this method, and only compare paged segmentation with paging. For the

remainder of this paper, we shall refer to paged segmentation simply as segmentation.

Most of the 32-bit computers have chosen paging over segmentation. This widespread agreement

on 32-bit architectures has inuenced most of the new 64-bit processors to support only paging
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this method any further here. Thus, we compare load time access authorization to access time

authorization of access rights.

7.1 Access Time Authorization

The access rights for the protection domains are maintained with the containers of the shared

address space. The operating system maintains a table to manage the address space. If there is an

entry for each container, then each entry also contains a list of process identi�ers and the access

rights. When a process issues an operation on the container (e.g., read, write, execute), the list is

checked for that process identi�er. If the process identi�er is in the list, the corresponding access

rights are checked against the type of the operation that process has issued. This scheme results

in a table with variable size entries, which is di�cult to maintain. The more severe problem with

this scheme is that it complicates the hardware support for memory management. In order to

decrease the number of memory accesses to reference an object, a processor must contain a TLB

with variable size entries. It is impractical to implement a hardware table with variable size entries.

However, with the access time authorization scheme, revocation can be e�ectively and e�ciently

done. The access right to an object can be revoked from a process by simply deleting its process

identi�er from the list of process identi�ers for the corresponding container.

Some recent SAS systems use variants of this scheme by trading the run time e�ciency with

the ease of maintenance and hardware support [10, 11]. The AIX operating system maintains only

one process identi�er and one set of access rights in the inverted page table. If the process identi�er

does not match with the identi�er in the table, a trap occurs to the operating system. If the process

has the right to access the object, then the operating system updates the address translation tables.

In a uniprocessor system or in a single protection domain system, such as Pilot [8] and Cedar [9],

this scheme can be e�ectively used. However, in a multiprocessor system, where more than one

process may access an object at the same time, this scheme will result in excessive operating system

traps and serialize the accesses to objects.

Another variant of this scheme is to associate a protection identi�er with each set of access rights

to the object, and distribute them to the processes. Only one set of access rights and protection

identi�er are maintained in the page or segment table. The operating system updates the table

if a mismatch occurs. A similar scheme is used in the HP Precision architecture [1], in which a

processor has four registers to maintain four di�erent protection identi�ers. This scheme is not

adequate for multiprocessor systems, since processes with di�erent access rights may concurrently
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the protection policies they can enforce, and some of them [4] even cannot guarantee the basic

need-to-know principle.

Recently, the intraprocess protection is emphasized with the popularity of the object-oriented

paradigm. The main goal is to prevent the programming errors rather than misuse. This goal

can e�ciently achieved with language-based protection in systems with interprocess protection.

Furthermore, in the case that objects need to be protected due to potential misuse, objects can be

mapped into separate processes.

Although intraprocess protection can protect objects mapped into a process from each other,

while in the interprocess protection the system can only protect the objects mapped into separate

processes from each other, we can use language-based protection mechanisms to enforce intraprocess

protection in a system which only provides interprocess protection. Language-based protection is

e�ective for programming errors, however it fails to prevent the misuse by untrustworthy users

and the programming errors if the assembly language is allowed to use along with the high-level

language which imposes the protection. However, there are still approaches to circumvent both.

In order to prevent potential misuse and errors due to assembly language in a system with only

interprocess protection, only those objects that are allowed to access each other can be mapped into

a process. The other processes can send messages to the process that contain objects to access the

objects. Another method to prevent the programming errors due to the use of assembly language

is that the system requires the use of only high-level languages [7].

In the remainder of the paper, we concentrate on methods that can used with interprocess

protection, since we believe that intraprocess protection should be implemented outside the oper-

ating system by language-based or application level protection for e�ciency reasons. Therefore,

we consider only the methods that use basic access rights control of the memory management to

provide interprocess protection.

7 Access Rights Authorization

We have categorized methods for managing a protection domain into three groups according to the

time when an access right is authorized to a process. Since compile time authorization requires a

tagged architecture in addition to the hardware for supporting memory management, we do not

consider this method as a viable option for managing a protection domain, and will not consider
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Access Time
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Paged x x
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Table 1: Taxonomy of shared address space systems.
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store (e.g., unique symbolic name), but can obtain more than one virtual address during its

lifetime.

5.3 Existing SAS Systems

Although any combination of the above four methods methods can be used to implement an SAS

system, some combinations are more adequate than others. Some of the combinations are in

fact already implemented in existing SAS systems. The SAS model with intraprocess protection

has been explored in capability-based architectures such as the IBM System/38 [7]. The IBM

System/38 uses static address binding and both compile and load time access right authorization.

The SAS model with static address binding is used in Pilot [8] and Cedar [9]. However, they have

only one protection domain. The IBM CPR [10] and AIX Version 3 [11] operating systems favor

dynamic address binding. The Opal operating system [12] uses static address binding and memory

management with paging. The classi�cation of the SAS operating systems is shown in Table 1.

6 Protection Granularity

The main goal of protection is to support the need-to-know principle { a process should be able to

access only those objects it requires to complete its task and that it has been authorized to access.

This principle is useful in limiting the amount of damage that a faulty or untrustworthy process

can cause.

There are two complimentary approaches for the protection of objects (to control access to ob-

jects) { intraprocess protection and interprocess protection. In the �rst case, the system (hardware

or the operating system) can protect objects mapped into a process from each other, whereas in

the latter case, the system can only protect the objects mapped into separate processes from each

other.

System-provided intraprocess protection has been used in systems with sophisticated protection

mechanisms such as the capability-based systems [20] and hierarchical ring structured protection

systems [4]. These systems aim to prevent intentional violation of access control by untrustworthy

users as well as the programming errors. On the other hand, they require extra hardware and yield

poor performance to enforce sophisticated protection policies. Furthermore, they are restricted in
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contiguous pages. The size of a container can be larger or equal to the size of the object.

These containers are called logical segments. The virtual address of the �rst page determines

the globally unique name of the logical segment in the shared address space. Since there is

no hardware support for logical segments, the boundary or other checks for logical segments

have to be done in software by the operating system. Paging simpli�es physical memory

allocation, since a page can be mapped into any of the available frames. However, paging

complicates address space allocation, since logical segments have to be built from contiguous

pages.

� Paged Segmentation. Paged segmentation is a combination of paging and pure segmen-

tation. The virtual address space is divided into �xed-size segments, and each segment is in

turn broken into �xed-size pages. The size of a segment can be selected depending on the size

of the object. The size of the segment can be a multiple of the page size; hence, the size of

the segment can be equal or larger than the size of the object. Paged segmentation simpli�es

the address space allocation, since any of the segments can be picked for an object. It also

simpli�es the physical memory allocation, since a page of a segment can be mapped into any

of the available frames.

5.2.2 Address Binding

Address binding has severe implications in the SAS paradigm, since once an object is loaded into

a container, that space cannot be used until the object releases the container. There are two

complimentary ways of dealing with address binding.

� Static. A virtual address is assigned to an object when it is �rst created. The object

maintains the same virtual address during its lifetime. In other words, an object is loaded

into a container when it is �rst created and stays in the same container during its lifetime.

Note that an object can be created at compile or run time

� Dynamic. A virtual address is assigned to an object, when the object becomes active,

namely when at least one process accesses the object. In other words, an object is loaded into

a container when the object becomes active. The container is released when all the processes

that access the object terminate. A persistent object has a unique name in the permanent
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� Load Time. The access rights are authorized either when the process is created, or during

execution time when the process �rst accesses and loads the container into its protection

domain. Once the process has the access rights, the subsequent references to the object are

not validated. In MULTICS, access rights to a segment is authorized when the segment

is loaded into the protection domain of a process. Similarly in Unix, the access rights are

assigned to a process at load time.

� Access Time. The access rights are never given to a process and they are veri�ed at each

access. This scheme is also called as the access-control list approach. The identi�ers of those

processes that are allowed to access a container are maintained in a list along the container.

The list is checked at each access. The inverted page tables in the IBM AIX [11] and Mach

[6] operating systems are examples of this scheme. The access rights and identi�ers are

maintained in the inverted page table.

5.2 Methods for Managing the Address Space

There are two issues to consider for the address space management. The �rst one is memory

management, which determines the implementation of containers and the mapping from the virtual

addresses to physical addresses. The second one is the binding time of a virtual address to a

persistent object, which determines when a persistent object is loaded into a container from the

name space in which objects are stored permanently.

5.2.1 Memory Management

There are a number of di�erent methods for memory management. The underlying hardware

support determines the memory management algorithm.

� Pure Segmentation. The virtual address space is divided into containers of arbitrary sizes,

called segments. The segment is the same size as the object. Pure segmentation complicates

both address space and physical memory allocation, since contiguous pieces of address space

and physical memory need to be found to load variable size segments.

� Paging. The virtual address space is divided into �xed-size blocks called pages, and the

physical memory into blocks of the same size called frames. Containers have to be built from
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Figure 1: Classi�cation of shared address space implementations.

5.1.1 Granularity of Protection

The granularity of protection can be classi�ed into two categories.

� Intraprocess. The system can protect objects that are mapped into a process from each

other. In order to support �ne grain protection within a process, there has to be either addi-

tional hardware available, such as an elaborate tagged architecture [7, 15], or the operating

system has to intervene to enforce the protection [17].

� Interprocess. The system only guarantees to protect the processes from each other. The

system cannot protect objects mapped into the protection domain of a process from each

other.

5.1.2 Authorization of Access Rights

The authorization of access rights o the objects that a program needs to access, can be granted at

three di�erent points in time.

� Compile Time. The access rights are authorized when the program is compiled. Obviously,

an application program should not be allowed to modify the access rights. Therefore, compile-

time authorization requires an elaborate tagged architecture [7, 15] to preserve the integrity

of the access rights. The \authorized pointers" in the IBM System/38 is an example of the

access rights assigned at compile time.
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{ If there are no homonyms and synonyms, virtual addresses can be used to implement

coherency protocols in distributed systems in which a physical address is local to a

processor and has no global meaning.

{ Synonyms and homonyms also inuence memory management of the operating system.

In a PAS system, the operating system typically maintains several tables to manage the

memory. There is a page table for address translation and access rights speci�cation

per process. However, if there are no synonyms and homonyms, a single table is su�-

cient to maintain the shared information between processes such as address translation,

reference history or invalidation bit. One copy of such information eliminates the con-

sistency problem between multiple copies and localizes updates for page replacement

and allocation to a single table. Elimination of synonyms and homonyms also simpli�es

maintaining main memory resident tables, such as inverted page tables or frame tables.

Since there are no synonyms, the entries of these tables will be �xed-size. Since there

will be no homonyms, the search in these tables will be simpli�ed.

5 Classi�cation of SAS Models

There are di�erent methods for managing both the protection domain and the address space. The

combinations of these methods result in di�erent SAS models that yield di�erent performance

and overhead. In this section, we briey introduce the dimensions that classify the SAS models.

Figure 1 summarizes the classi�cation.

5.1 Methods for Managing a Protection Domain

There are two issues to consider for protection domain management. The �rst one is the granularity

of protection, which is the unit in which the system can protect objects from each other. The

second one is the authorization time of the access rights. The access right authorization determines

whether the access rights are maintained with the containers, or whether they are distributed to the

processes. Since both a�ect the system performance, we classify methods for managing protection

domains based on these two dimensions.
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adds extra overhead. Furthermore, if copying is not necessary and only one copy needs to be

maintained, the coherency problems can arise between multiple copies.

Similarly, sharing persistent objects that contain pointers to other objects becomes di�cult in

the PAS paradigm. One method is the use of surrogates instead of pointers [26]. Surrogates

are not virtual addresses but they are de�ned in some external naming context and interpreted

by the application level software. Examples are the unique object identi�ers in object-based

systems and symbolic �le names. Surrogates are interpreted at reference time. If only one

copy of the data structure has to be maintained, each reference to a surrogate needs to be

interpreted, since the translation to a virtual address will be di�erent in each process. Methods

such as swizzling [27] reduce the cost of interpreting the pointers by translating them once

and using the same translation for further references. However, such an optimization requires

multiple copies of the data structure, one for each sharing process.

� In the SAS paradigm, there exist no synonyms and homonyms. If more than one virtual

address is mapped into the same physical address, these virtual addresses are called as syn-

onyms. If the same virtual address is mapped into di�erent physical addresses in di�erent

address spaces, these addresses are called as homonyms. Below, we discuss the bene�ts of

eliminating synonyms and homonyms.

{ Virtually addressed caches can be used e�ectively. In a PAS system, homonyms generate

inconsistency in the cache. Inconsistencies can be resolved either by ushing out the

cache at the context-switch time or tagging its entries with process ID's. Tagging requires

extra hardware, which is expensive. Flushing during the context switch degrades the

performance due to cold-starts. In a PAS system, synonyms generate multiple copies of

the same data in a virtual cache. This results in coherency problems when one copy is

modi�ed.

{ In a PAS system, the translation-lookaside bu�er (TLB) becomes inconsistent at the

context switch due to homonyms and di�erent protection information for each process.

Similarly, TLB inconsistencies can be resolved either by ushing out the TLB during

the context switch or tagging its entries with process ID's, which degrade performance

or increase the cost. Note that TLB inconsistency due to the protection information is

also possible in an SAS system. However, e�ective solutions are possible as presented in

[14].
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pendently. Since virtual addresses are selected independently and it is not necessarily known at

programming or compilation time which programs will run concurrently, it is di�cult to coordinate

the interaction between independent processes.

The following are the advantages of the SAS paradigm over the PAS paradigm:

� The PAS paradigm does not directly support the shared memory programming paradigm

between independent programs.

� In the PAS paradigm, the message passing cannot be implemented e�ciently. The indepen-

dent processes cannot pass pointers between each other. In order to send a message, the data

has to be copied from the address space of the sender to the address space of the receiver. In

certain cases, copying may be desirable. However, if it is not necessary, the cost of copying

increases the overhead of message passing. The optimizations to reduce the cost of passing

long messages requires the involvement of the operating system, since a pointer does not have

a meaning in the receiving process. For example, the Mach operating system [6] inspects

the messages. If it detects a pointer, it �rst maps the message into its address space. When

the message is received, the operating system �nds an unallocated virtual address in the the

address space of the receiving task and changes the page table of the task to contain the

message. Finding an unallocated space in the address space of the receiving task may be

complicated.

In the SAS paradigm, the operating system needs to change only the access rights of the

receiving process to the segment that contains the message. Furthermore, if the sender and

receiver trust each other, the operating system needs not to be involved in the communication

process. The sender can simply write the address of the message into the mailbox of the

receiver. This will further reduce the cost of message passing.

� In the PAS paradigm, passing data structures that contain pointers becomes more di�cult.

In this case, it is not su�cient that the operating system changes the memory management

tables for the receiver. The data structures have to be copied since the pointers have di�erent

meanings in sending and receiving processes. Linearizing methods can be used for this purpose

[24, 25], in which the sender packs the data into the message with a di�erent representation

and the receiver unpacks the message. Besides the cost of packing and unpacking, copying
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become context-independent. In other words, two processes have a common virtual address in

their protection domains if and only if they share a container. This is in contrast to the PAS

paradigm where a virtual address di�erent meanings in each domain. Thus, the objects can be

named with di�erent virtual addresses in di�erent protection domains. Two processes can use the

same virtual address to refer to di�erent objects. When two processes share an object, the physical

address of the object is the same in both processes, but the virtual address of the object can be

di�erent in both processes.

We want to point out the di�erence between the SAS paradigm and a model based on lightweight

processes (or threads). Lightweight processes share a protection domain. In the PAS paradigm, if

processes share the protection domain they also automatically share the address space. It is also

possible that multiple processes in the SAS paradigm execute in the same protection domain. We

will also refer to these processes as lightweight processes (or threads). A process is represented in

the operating system by a process control block, (PCB). The protection domain of the process is

represented with a �eld in the PCB. If two processes share a protection domain, it means that they

share the operating system data structure which implements the protection domain, namely the

corresponding �eld of the PCB. In contrast, heavyweight processes in the SAS paradigm do not

share a protection domain and the address space is not an attribute of a process (not a �eld in the

PCB).

4 Advantages of the SAS Paradigm

In this section, we discuss some of the major advantages of the SAS paradigm in comparison to the

PAS paradigm. The main de�ciency of the PAS paradigm is the lack of appropriate mechanisms

for supporting e�cient communication and sharing. In addition, it also complicates the system

design.

The PAS paradigm can be e�ectively used to support communication and sharing in a parallel

programming environment, where multiple processes (lightweight or heavyweight) execute the same

program. The interaction between these parallel processes is coordinated by the programmer or

the compiler. In this model, sharing and communication can be implemented e�ciently, since the

addresses are the same in parallel processes. However, the PAS paradigm lacks e�ective support

for sharing and communication in a multiprogramming environment, where sharing is between

independent processes that may each execute code which has been programmed or compiled inde-
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or persistent. There is a storage hierarchy in which the persistent objects are stored permanently

and a naming context, which identi�es the persistent objects uniquely (e.g., a directory structure,

in which each object has a symbolic name). A container is a range of virtual addresses. The shared

address space is the collection of all containers. An object is loaded at some point in time into

the shared address space, and it is stored in a container in the shared address space. An object is

bound to a virtual address when it is loaded into a container. The memory management algorithm

of the operating system determines the implementation of containers. The size of the container can

be greater or equal to the size of the object depending on the memory management algorithm.

A process is an environment in which a program is executed. It is the basic unit of resource

allocation. The type of the operation that a process is allowed to execute on a container is called as

the access right. The access rights to a container are de�ned by the access rights to the correspond-

ing object. Each process executes within a protection domain (or execution domain). A protection

domain speci�es the containers that the process is allowed to access and the access rights on these

containers. Our de�nition of protection domain includes the containers that are accessed by the

instructions executed on behalf of the process. We want to emphasize that our de�nition is slightly

di�erent from the more general de�nition of a protection domain, which is de�ned as the objects

that a process can access. The following example clari�es the distinction. Suppose that �les are

not mapped into the virtual address space and a read system call copies parts of a �le into a bu�er

in the address space of a process. According to our de�nition, the copy of the �le in the bu�er is

within the protection domain of the process but not the �le itself, whereas according to the general

de�nition, the �le is in the protection domain.

The SAS paradigm consists of two components: the address space and the set of all protection

domains. The protection domain is an attribute of a process, but the virtual address space is not.

The virtual address space is a system-wide resource shared among processes. Containers can be

loaded into a protection domain at the time when the process is generated or when the process �rst

accesses the container.

The main di�erences between the PAS paradigm and the SAS paradigm are the concepts of

a virtual address space and protection domain. In the PAS paradigm, the address space and

protection domain are the same concept, so the PAS paradigm consists of the set of all virtual

address spaces. This is in contrast with the SAS paradigm where the address space and protection

domain represent di�erent concepts.

In the SAS paradigm, an address has the same meaning in all processes. Thus, addresses
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� Memory utilization is increased. Higher memory utilization increases the multiprogramming

level and hence, the system throughput. Main memory utilization is increased since there

will be no redundant copies in main memory and since the operating system does not need to

maintain another level of bu�ering to access �les. Secondary storage utilization is increased

since there will be only one copy of an object either in swapping disk or in the �le system.

� With adequate virtual memory management, application domains such as object-oriented

programming and transaction management can directly use the operating system mechanisms

instead of using custom-designed bu�ering. This increases performance.

� Maintenance of shared objects is simpli�ed. The coherency problem due to the multiple

images of an object in di�erent processes is eliminated. There is no need to recompile or

relink the programs, when shared code is modi�ed, if the same copy of executables are shared,

instead of statically binding the relocatable binary code of subroutines to a program at compile

time.

� The applications do not need to manage their own bu�ers to access �les.

{ This potentially decreases the number of I/O operations, and hence, increases the per-

formance. If the �les are not mapped into the virtual address space, the application

program has to write a modi�ed bu�er back into the �le system, before it can replace

the bu�er. If the virtual page, on which the bu�er is located is not in main memory,

a page fault will occur to bring the page from swapping disk. This adds an extra I/O

operation to access a �le.

{ The same phenomenon also causes the double paging anomaly [18]. The anomaly refers

to the increase in the number of page faults when the number of bu�ers is increased

without an increase in the size of the physical memory. Mapping the �les into the

virtual address space avoids this anomaly and the system performance can be increased

by extending the physical memory.

3 The SAS Paradigm

In order to de�ne the SAS paradigm, we will �rst introduce our terminology. An object is a collection

of logically related code or data, such as a �le or a program. An object can be either temporary

4



models, which di�er in the way the address space and protection domain are managed. The focus

of this paper is to classify the possible SAS models and examine the tradeo�s among the di�erent

models. We concentrate on methods that can use memory management hardware to provide pro-

tection among processes rather than special hardware support to provide �ne-grained protection

within a process.

The remainder of the paper is organized as follows. In the next section, we examine the bene�ts

of a large address space system. Section 3 de�nes the shared address space paradigm. Section 5

provides a taxonomy of the shared address space models. Sections 6, 7, 8 and 9 discuss the tradeo�s

between di�erent models and identify the problems in existing approaches to the shared address

space model. Section 10 presents our conclusions.

2 Bene�ts of a Large Address Space

A large address space enables the mapping of �les along with temporary data and code into the

virtual address space. The processes share the same copy of the code and data directly from the

virtual address space. The idea was �rst suggested and used in MULTICS [4]; more recently, the

Pilot system [8], the IBM AS/400 [7], Mach [6], Chorus [21] and AIX [11] operating systems have

used similar approaches. However, this concept has not gained wide popularity due to the fact that

most current day systems support only a small address space.

In a 32-bit architecture, mapping large �les into the address space does not leave much room for

the programs. On the other hand, this problem disappears in a 64-bit address space. The following

are the bene�ts of a large address space and sharing directly from the virtual address space:

� The performance is increased due to the following reasons:

{ Sharing one copy of code or temporary data yields fewer page faults to backing store.

This decreases the I/O tra�c

{ The unnecessary copying of data between processes are eliminated. For example in most

operating systems, �les are mapped into the operating system's memory. Even to read

a �le, a process needs to issue a system call to copy the �le from the address space of

the operating system to its own address space.

{ The context-switches between processes are reduced.
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1 Introduction

Most operating systems on computers with 32-bit or smaller address spaces are based on the private

address space (PAS) paradigm where each process has a separate address space [4, 5, 6]. This

paradigm has emerged as a result of the size of the address space in 32-bit or smaller architectures,

in which the number of possible virtual addresses is relatively small. In a small address space

system, there can be more objects that need to be accessed by processes than the number of

available virtual addresses. Thus, in the PAS paradigm, each process views the entire space as

dedicated to itself, so that each process is provided with su�cient number of addresses to name

the objects that it accesses. However, with the recent emergence of the 64-bit processors [1, 2, 3],

the restricted private address space paradigm can be replaced with a more general one. Since the

number of addresses is su�cient to name the objects that all processes access, the 64-bit processors

enables the shared address space (SAS) paradigm in which all processes execute concurrently in a

shared global address space [7, 8, 9, 10, 11, 12].

The private address space paradigm yields high overhead for interprocess communication and

sharing, whereas the shared address space paradigm can reduce the cost of communication and

provide simple abstractions to the application level to build variety of communication schemes.

Furthermore, the shared address space paradigm results in reduced number of I/O operations,

increased memory and secondary storage utilization, and simpli�es the operating system and hard-

ware design in comparison to the PAS paradigm. It also facilitates direct operating system support

for application domains such as databases and object-oriented systems.

We believe that the shared address space paradigm will replace the private address space

paradigm for designing operating systems for 64-bit and larger address space architectures, and

that the private address space paradigm will become obsolete. The reason for this is the following.

The sum of the virtual address spaces cannot be larger than the available physical storage. The

switch from 32-bit to 64-bit processors is the �rst turning point in the history at which the virtual

address space exceeds the available physical storage with several orders of magnitude. This gap will

remain with the technological trend in which processor densities are increasing at a rate at least as

fast as the storage densities. Hence, there will be never a need again for the private address space

paradigm.

There are two key issues in the design of a shared address space system| address space man-

agement and protection domain management. The SAS paradigm can be classi�ed into various
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Abstract

The availability of 64-bit processors enables operating systems the use of the shared

address space (SAS) paradigm where all processes execute in the same address space.

This is in contrast to most existing operating systems that use the private address

space (PAS) paradigm where each process views the entire space as dedicated to itself.

The PAS paradigm yields high overhead for interprocess communication and sharing,

whereas the SAS paradigm can reduce the cost of communication and provide simple

abstractions to the application level to build variety of communication schemes. Fur-

thermore, the use of the SAS paradigm results in increased system performance. The

SAS paradigm can be classi�ed into various models, which di�er in the way the address

space and protection domain are managed. In this paper, we provide a taxonomy of

the SAS models and discuss the tradeo�s between these models.
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