
UNICON { A UNIversal CONsensusfor Responsive Computer Systems�Michael Barborak and Miroslaw MalekDepartment of Electrical and Computer EngineeringThe University of Texas at AustinAustin, Texas 78712December 22, 1992AbstractThe consensus problem is omnipresent and fundamental in multicomputer systems. Synchronization, com-munication, diagnosis, scheduling, recon�guration and termination of a computation can all be solved byconsensus. We propose a single, universal consensus protocol that is capable of solving all of these consensusproblems in a single pass through a set of computers. The protocol's capabilities may be tailored to faultmodels ranging from those used in system diagnosis to the Byzantine Generals Problem. We believe that theUNIversal CONsensus protocol (UNICON) will become a foundation for responsive (fault-tolerant, real-time)multicomputer systems.1 IntroductionConsensus is a condition of agreement. In particular, for fault-tolerant, distributed systems, the ability to reachconsensus is the ability to share information among the population of fault-free processors despite the actionsof the faulty processors. The information to be shared is irrelevant to a protocol that guarantees consensusas any data is ultimately a vector of binary digits. Therefore, protocols that result in a speci�c agreement,such as on a current time, should be suspected as being special cases of a general consensus algorithm. In otherwords, procedures to reach synchronization, reliable communications, diagnosis, membership, sensor stabilization,resource management, scheduling, replication management, recon�guration, detection of a global state such astermination or any agreement on some aspect of the system status are restricted forms of a general consensusprotocol. Thus we are motivated to identify a single algorithm with the combined functionality of each of thesespeci�c instances of consensus.�This work was supported in part by ONR Contract N00014-88-K-0543, ONR Grant N00014-91-J-1858, IBM Agreement 203 andTexas Advanced Technology Program Grant 386. 1

In this paper we propose a UNIversal CONsensus (UNICON) protocol that possesses the exibility to solve allof these speci�c instances of consensus. UNICON is a general mechanism for agreeing on data in a distributedenvironment. The data used in the agreement process is a function of what purpose a particular instance ofUNICON is to serve. In other words, if UNICON is being used to synchronize clocks, then it is being used toagree on the values of local clocks. Therefore, the data are local clock values. Similarly, for recon�guration, thedata are the identi�cations numbers (ids) of fault-free processors. Alternately, the data could be a combinationof values allowing synchronization, diagnosis, recon�guration and more all in a single pass.The use of UNICON in fault-tolerant computer systems is fundamental as UNICON eliminates any dependencyon a single resource in a multicomputer environment.For UNICON to perform consensus at every level of the operating system and user applications, it must workfor a variety of fault models. At very low levels it might be necessary to assume Byzantine faults while at veryhigh levels it might be su�cient to assume fail-stop faults [Schneider 1984]. Therefore, UNICON allows for thefault models of the processors involved in a particular instance of consensus to be speci�ed. It can also handle thecase of mixed fault models in a single consensus. This ability to adapt to the fault models in the system allowsUNICON to remain e�cient despite its wide application.Using UNICON for support of a responsive (fault-tolerant, real-time) computer systems [Malek 1991] addsmore requirements to the consensus task, namely, bounds on the execution time. It is necessary to know howlong an instance of UNICON will need to complete, as well as the nature of the incomplete consensus resultscaused by a preemption of the UNICON task. Not only is this necessary for timely operation, but also for certaininstances of consensus. For example, when synchronizing, a local clock value is highly dependent on how long agoit was sampled, and when diagnosing, there is a time dependent probability that the result is no longer correct,i.e., that some processor has since failed. Therefore, time has an integral role in UNICON.In the remainder of this paper we shall explore the motivation, speci�cation, implementation and applicationof UNICON. In Section 2 we look at the role of UNICON in distributed computations. In Section 3 we presentthe format for specifying an instance of consensus. In Section 4 we present an implementation of UNICON alongwith a consensus protocol designed to work in an environment of heterogeneous fault models. In Section 5 we lookat the time analysis of UNICON as well as its application to clock synchronization and reliable communication.Finally, in Section 6 we give our conclusions.2 A Model for Distributed ComputationConsider a distributed system comprising a number of processing elements (PEs) with an ability to send messagesbetween themselves. A distributed computation is simply a group of these PEs working towards a commongoal. We model a distributed computation as a series of two alternating operations, namely local execution andconsensus. Much as Valiant's Bulk Synchronous Parallel model (BSP) considers a parallel computation to be a2

series of alternating executions and synchronizations [Valiant 1990], a distributed computation involves each PEperforming its portion of the computation (including recovery procedures) until it must send or receive informationfrom the other PEs involved. Whatever is the nature of this information, an agreement is needed, i.e., consensusis executed. In other words, any communication is or is some part of an instance of consensus. UNICON is arecognition of this, as any non-local requirements of a PE are met by a particular instance of it. Therefore, wemay model a distributed computation as a series of alternating local executions and calls to the UNICON process.
(computation)

(computation)

computation termination

data agreement

data agreement

clock synchronization

consensus typeDCBAtime

Figure 1: A computation/consensus view of a distributed program.As an illustration, consider Fig. 1 which shows the execution pro�les of four processors A;B;C and D. Thecolumn below a processor label represents when consensus is being performed (marked in white) and when alocal computation is being performed (marked in gray). A horizontal bar is used to collect related executionsof consensus. For example, the �rst consensus resulting in clock synchronization involves all four processors asmarked by the horizontal bar connecting all four columns. As Valiant argues that the BSP model eases theprogrammer's task in writing parallel computations, we feel this computation/consensus paradigm will ease thedevelopment of responsive operating systems and applications.A consensus-based approach towards the development of responsive operating systems was presented in [Malek1992]. A primary rational is that we can never rely on a single resource thus it is necessary to progress viaconsensus. Therefore, the kernel of a responsive operating system consists of a number of consensus tasks asillustrated in Fig. 2 [Malek 1992].By implementing this system with UNICON, we can obtain some de�nite advantages. First, we can encompassmany di�ering fault models in the system model, and second, the operating system is based on a single algorithm.The result is a simplicity and functionality in the kernel that allows for more reliable coding, low installationoverhead, and an ease of software maintenance. Moreover, we foresee an ease in estimating the timeliness of the3

operating system tasks.
Reconfiguration

Fault Diagnosis or Masking

Reliable Communications

Synchronization

Medium
Communication

UnreliableFigure 2: The consensus-based kernel of a responsive operating system.3 UNICON Speci�cationWe assume that all of the processors in the system are logically completely connected by an underlying commu-nication medium. Moreover, there exists a distribution of message delays such that a processor may estimate thetime that a message was sent from the time it was received and from which processor it was sent [Cristian 1989].We assume that there exist mechanisms for scheduling and preempting tasks on a processor and that all processorclocks have been synchronized with UNICON as described in Section 5.2. We also assume that the number offaults are bounded according to the fault model employed.For consensus to take place, at least �ve questions must be answered. First, who is to be involved in theconsensus? The answer to this would be a list of processors. Second, what are the characteristics of thoseinvolved? That is, the fault models of the processors are needed. Third, what is to be agreed upon? Theconsensus task must know what information is to be collected. Fourth, what is the desired timeliness of the task?Fifth, what structure should the consensus take? In other words, do all the processors involved need all of theconsensus results or will a subset of them be su�cient.The structure of the consensus follows the taxonomy given in Fig. 3. Either it is a application-speci�c consensusor it is a global consensus, and for each of these possibilities, either it is a partitioned consensus or it is a single-levelconsensus.An application-speci�c consensus targets only those processors involved in the consensus that are executing aparticular application or some portion of an application. For example, consider a replicated �le server implemented4

via quorum reads and writes. For a read or write, a consensus of all processors involved in the replicated �leserver would be initiated, but based on the replicated �le server's decision process only a quorum of those wouldactually perform the consensus. On the other hand, a global consensus is performed by all of the processorsspeci�ed.
PartitionedSingle-LevelPartitionedSingle-Level

Application-SpecificGlobal

ConsensusFigure 3: A taxonomy of consensus structures.A consensus may be partitioned if there is an idea of importance attached to a processor's need for some partof the consensus. For example, consider the case of the system diagnosing itself. For a large system, it is verylikely that some processors have very few dealings with many of the processors in the system, so it would besuperuous for it to know the diagnosis of those other processors. Therefore, the diagnosis consensus shouldbe partitioned such that each set of processors that has an immediate need for each others diagnosis reachesconsensus. These independent partitions then may be organized such that when a processor needs consensusinformation from outside of its partition it may receive it in short order. Such a technique called the HierarchicalPartitioning Method (HPM) was introduced in [Barborak and Malek 1992] and is assumed to be available to theUNICON process. In contrast, a single-level consensus completes with all the processors involved knowing all ofthe consensus results, i.e., the consensus is globally executed among the speci�ed processors.From the de�ning requirements for consensus, we envision the declaration of UNICON asunicon(con id *id,PE set members,con top topology,con type type,con time priority)where id is set to the identi�cation number of this instance of consensus and members is the set of processorsinvolved in the consensus. We assume that the set members refers to a speci�c set of physical processors, but itcould refer to a logical set maintained by the operating system. topology is a structure of two �elds, namely,structure, which is evaluated from the set fsingle-level, partitioned, unspecifiedg, and restriction,which is evaluated from the set fglobal, application-specificg. type is an enumerated variable of a setincluding fsynchronization, configuration, diagnosis, communicationg. This set may be extended, butfor the purposes of this paper, we use only four members. We may also consider the case in which type is aunion of the various members of this set such as when multiple purposes may be served by a single instance ofUNICON. For this paper we assume that each consensus has a distinct goal, but in practice, various informationitems could be combined in the consensus messages in order to perform multiple functions at once. prioritydetermines the timeliness requirements of the responsive consensus.5

From this simple system call, it is possible to invoke any number of the consensus protocols. By examining thefault models of the processors in members the system can choose a suitable consensus algorithm; by examining thenumber of processors in members the system can decide whether a partitioning method is useful or the structuremay be speci�ed with topology. The consensus algorithm is abstracted across synchronization, con�guration,diagnosis, communication and consensus information requirements with the type variable.priority de�nes the timeliness requirements of a particular instance of UNICON. It is a structure withmembers time, which is an absolute, real-time value as set by the synchronization process in Section 5.2, periodic,which is a boolean stating whether or not the consensus should be scheduled periodically, duration, which inthe case that the consensus should be scheduled periodically is the length of that period, and sched, which is ofthe set furgent, deadline, asap, lazyg. Note that specifying that the consensus should be completed in 10seconds implies that time should be set to the current time plus 10 seconds. Also, if a consensus is periodic thenafter each deadline the time variable should be increased by duration and the task rescheduled. The meaningof these elements are as follows:urgent: The consensus is to be completed by time even if this implies that all other scheduled tasksmust be preempted. If time has passed, then the consensus task should be the sole purpose ofthe processor until its completion.deadline: The consensus should be scheduled during the spare capacity of the system to completeby time. If time passes before completion, then the incomplete results should be provided.asap: The consensus should be begun and completed as soon after time as the processor's scheduleallows. By analogy to an interrupt hierarchy, it could be called a polite consensus.lazy: The consensus should be scheduled during the processor's spare capacity, but if it is not com-pleted by time then it should be abandoned with the incomplete results reported.As we assume that all processor clocks are synchronized to within some bound called synch error, time hasmeaning, although somewhat inconsistent, throughout the consensus. When we initiate UNICON, therefore, itis necessary to let other processes know that a result is needed by time - synch error in order that the resultwill be available at the initiating process by time.4 UNICON ImplementationThe unicon task is responsible for initiating UNICON. The processor that it runs on may or may not be anelement of members. unicon represents the interface between a user, i.e., application software, or the operatingsystem and the actual consensus mechanism. As such, it accepts a very broad description of what is expectedand produces enough detail to actually achieve a correct result. A detailed description of unicon follows.6

unicon(con id *id,PE set members,con top topology,con type type,con time priority)f con data table contents;*id = next con id();if(topology.structure == unspecified)if(single-level msgs(members) > partitioned msgs(members))topology.structure = partitioned;elsetopology.structure = single-level;priority.time = priority.time - synch error;multicast(members,``con start'',*id,members,type,topology,priority);g The variable id is set such that at any particular time, a consensus task, whether executing or completed,may be identi�ed by its unique consensus identi�cation number. This allows a single processor to execute manyconsensus jobs concurrently. Accessing the consensus information would be done via the identi�cation numberthrough a system call that would either return this information or report that the consensus is incomplete. Finally,the topology variable holds information on how the consensus members should coordinate, i.e., in a single-levelor partitioned style, in order to minimize message costs and execution time. After calculating the proper valuesfor these variables, unicon sends messages by way of a multicast to the members of the consensus with theinformation they need to proceed. The multicast is assumed to be unreliable, i.e., a failure of the initiator or thecommunication medium could result in none or only some of the addressed processors receiving the message.In order to schedule unicon, a processing element must have an intimate knowledge of the processors involvedin the consensus. We look more closely at this problem as well as scheduling the rest of the related tasks inSection 5.1.Upon receiving a message from unicon, a processor schedules con task to take the required actions accordingto the value of priority in the message. For example, if the message is part of an urgent consensus whosedeadline has already passed then con task will begin immediately. This resident consensus task must be able tostart a consensus, query other processors for consensus data, receive and process consensus data and if running onthe initiating processor, receive reports upon completion of the consensus. Below is a description of the con task,con report and con start routines.con task(msg contents msg)f 7

switch(head(msg))f ``con start'':con start(tail(msg));break;``con query'':con query(tail(msg));break;``con data'':con data(tail(msg));break;``con report'':con report(tail(msg));break;gg In con report, the function list keeps track of who has reported while the function sufficient returnsa true value if enough reports have been received to produce a valid consensus table. For an example of howsufficient might work, see [Kreutzer and Hakimi 1988]. whence report is the processor sending the report.con report(con id id,con data table)f if(: sufficient(id,list(id)))f list(id) = list(id) [whence report;table contents(id) = table contents(id) [table;gg In con start, initiator represents the processor on which the original uniconwas started. If it is determinedthat an application-speci�c consensus does not a�ect the processor running con start then the processor exitsthe consensus process.con start(con id id,PE set members,con type type,con top topology,con time priority)8

f if(topology.restriction == application-specific)if(me 62 application)return;allocate table(id,members);consensus(members,id,type,topology,priority);sendmsg(initiator,``con report'',id,table contents(id));g Processor MessagesA |B val(B) = 0; val(C) = 1; val(D) = 0C val(B) = 1; val(C) = 1; val(D) = 0D val(B) = 0; val(C) = 0; val(D) = 0Figure 4: A completed consensus table for a Byzantine agreement.The con start routine is responsible for creating and maintaining the consensus data table, identi�ed by id,that contains all the data received by other members of the consensus except for redundant information. Forexample, Fig. 4 shows the completed consensus table for processor A of a four-member, Byzantine agreement inwhich processor C is faulty. In this example, each processor sent its value to each other processor in the initialround, e.g., A sent val(A) to B;C and D. Then each processor sent the values received in the �rst round toevery other processor, e.g., B sent val(C) and val(D) to A. From this information depicted in Fig. 4 and usinga majority vote, A knows that all fault-free processors will agree that val(B) = 0, val(C) = 1 and val(D) = 0[Pease et al. 1980].By combining the information in Fig. 4 with information about the fault models of processors B;C and D,processor A can determine what information is needed to complete the consensus as well as when that completionoccurs. It is up to the algorithm consensus to determine when processors should be queried in order to reach thiscompletion. If all of members behave according to the same fault model, then any of the procedures mentionedin [Barborak et al. 1991] along with the HPM techniques should be su�cient for consensus. On the other hand,if the fault models are di�erent, then the table must be maintained somewhat uniquely.Fig. 5 shows one view of processor fault models and their relationships to each other. Each class is a subset ofthe class that is listed next, i.e., omission faults include crash faults and Byzantine faults include timing faults.Below are descriptions of these models. 9

crash fault: The fault that occurs when a processor loses its internal state or halts. For example, a PEthat has had the contents of its instruction pipeline corrupted, or has lost all power has su�ereda crash fault .omission fault: The fault that occurs when a processor fails to meet a deadline or begin a task.timing fault: The fault that occurs when a processor completes a task either before or after its speci�edtime frame. This is sometimes called a performance fault .Byzantine fault: An arbitrary fault such as when one processor sends di�ering messages during abroadcast to its neighbors. More generally, this is every fault considered in the system model.
Byzantine Faults

Timing Faults

Omission Faults

Crash Faults

Figure 5: A fault classi�cation.Using this classi�cation of fault models, consider the case of managing the following consensus table of processorA appended with the fault class of each processor in the consensus.Processor Fault Model MessagesA | |B crash failures val(B) = 0; val(C) = 1C Byzantine failures emptyD timing failures val(D) = 0Figure 6: A completed consensus table for processors of various fault models.10

The table in Fig. 6 is smaller than the table in Fig. 4 as a direct result of taking advantage of the fault modelsof processors B and D. As B su�ers only from crash failures, it follows that if a message is received from Bthen it is fault free. If no message is received, then B must have crashed. In other words, the status of B maybe determined directly from B and therefore C and D need not relay any information about B to processor A.Similarly, the status of D may be determined directly from D as long as the system is synchronized and messagearrival times may be checked with expected arrival times. Processor C on the other hand su�ers from Byzantinefailures and therefore cannot be relied upon to accurately portray its status. Yet B, for example, may be countedon to correctly convey to all other PEs whatever value C sent it. Therefore it is su�cient for C to send a messageto a fault-free, non-Byzantine-failing processor that in turn broadcasts the value to the other members in theconsensus. In Table 6, B has been chosen for this task. As in the previous example, A knows that all fault-freeprocessors will agree that val(B) = 0, val(C) = 1 and val(D) = 0.Assuming that each processor in members su�ers from one of the failure semantics in Fig. 5 and that a single-level topology for the consensus algorithm is employed, consensus may be as follows where Byzantine is thesubset of processors in members that are Byzantine failing. me is the processor running the particular instanceof consensus and val(me,type) returns data according to the type of consensus being performed. wait entry,which waits for an entry in the consensus table to be �lled, will timeout if the time needed for a fault-free processorto deliver the required message has been exceeded. If entry is called for a non-existent consensus table entry,e.g., when a processor has failed to send a message, then the value ? is returned. If ? is received as the valueof a processor, though, it is stored as default value to distinguish the case when a Byzantine processor fails tosend a message and a non-Byzantine processor fails to forward a message. The set of processors in members areordered by their identi�cation numbers which are returned by the function PE id, and once again, the multicastfunction is unreliable.consensus(PE set members,con id id,con type type,con top topology,con time priority)f PE q,q',r;q = qi j 8 qi,qj 62 Byzantine : i 6= j, PE id(qi) > PE id(qj);if(q == ;)f byzantine agreement(members,id,type,topology,priority);return;gif(me 62 Byzantine)multicast(members,``con data'',id,val(me,type),priority);else 11

sendmsg(q,``con data'',id,val(me,type),priority);if(me == q)8 r j r 2 Byzantinef wait entry(id,r);multicast(members,``con data'',id,entry(id,r),priority);gwhile(: table complete(id))f if(me 62 Byzantine)8 r | r 62 Byzantine, ? == entry(id,r)f sendmsg(r,``con query'',id,type,idata,priority);wait entry(id,r);gq' = qi j 8 qi,qj 62 Byzantine : i 6= j, PE id(q) > PE id(qi) > PE id(qj);q = q';if(q == ;)break;if(me == q)8 r, wait entry(id,r) j r 2 Byzantineif (? == entry(id,r))f sendmsg(r,``con query'',id,type,idata,priority);wait entry(id,r);multicast(members,``con data'',id,entry(id,r),priority);ggif(: table complete(id))byzantine agreement(members,id,type,topology,priority);g consensus is based on the notion that a testably fault-free processor such as a crash-, omission- or timing-failingprocessor can relay a message from a Byzantine-failing processor to avoid the discrepancies caused by allowing afaulty Byzantine processor to broadcast its data. Therefore, in consensus, the �rst step is to determine which12

processor q will act as the consistent liaison with the Byzantine population. If there is no q then consensusdegenerates into Byzantine agreement. Second, a processor broadcasts its data if it is not Byzantine otherwiseit sends its data to a non-Byzantine q. Third, q broadcasts the values it received from the Byzantine processorsregardless of whether they are true or false as we are only concerned with agreement. If q remains fault free andthe non-Byzantine processors successfully transmit their data then consensus is done in two rounds of messagepassing, but if it fails then another non-Byzantine processor must take over. If all non-Byzantine processors failbefore completion, then the algorithm again degenerates into Byzantine agreement.In order to abstract the consensus process, consensus does not request speci�c data, but simply data quali�edwith the variable type set in the unicon initiation. This is a result of the observation that the consensus taskhas no use for the actual data in the consensus table, but only for the fact that data has been received fromprocessors behaving under various fault models. Therefore, all queries to other processors are for generic datawhich is only given meaning when con query illicits the exact values for the data from its host processor andwhen the �nal consensus information is used. Therefore, in the following description of con query, clock returnsthe processor's time for synchronization purposes, local config returns what processors and communicationchannels are directly connected to the processor, test accepts input data and returns some value for examinationby other processors during diagnosis, variable accepts some input data to return a portion of a local process'state and table entry uses a consensus id and some input data to return a subset of the information held in oneof the processor's consensus tables.con query(con id id,con type type,input data idata,con time priority)f switch(type)f synchronization :sendmsg(whence query,``con data'',id,clock(),priority);break;configuration :sendmsg(whence query,``con data'',id,local config(),priority);break;diagnosis :sendmsg(whence query,``con data'',id,test(idata),priority);break;communication :sendmsg(whence query,``con data'',id,variable(idata),priority);break;consensus : 13

sendmsg(whence query,``con data'',id,table entry(id,idata),priority);break;gg The �nal task is con data which simply receives data, checks that it is not redundant and if not, stores thedata in the consensus table. The function type returns the type of the consensus identi�ed by id.con data(con id id,input data idata)f if(: redundant entry(id,whence report,idata)f if(type(id) == synchronization)idata = idata [clock();entry(id,whence report) = entry(id,whence report) [idata;gg5 UNICON Applications5.1 A Time Analysis For SchedulingThe algorithm we have given is proposed as the basis of a responsive system. As such it must be timely. In thissection, we examine the proposed algorithm from the perspective of the scheduler that must decide when to startthe task and whether or not it can possibly complete before the given deadline.On the initiating processor, the problem of scheduling is primarily a problem of determining the latest time atwhich unicon may be started and still complete before time. Note that if priority of unicon is either asap orlazy then the scheduling policy is already determined as discussed in Section 4. The calculations in unicon areinsigni�cant compared to the time that will be spent waiting for members to actually reach a consensus, therefore,this analysis will focus on the messages required to complete.Assume that the period starting when unicon initiates its multicast of con start messages and ending whensufficient becomes true is called con duration. Then for the scheduler to meet the deadline time it mustbegin unicon by time - con duration. If the task is of the type urgent then it might be necessary to preempttasks to begin by this time. If time has already passed and unicon is of the type deadline or lazy then uniconneed not be scheduled at all. 14

Determining con duration is di�cult as the value will depend on the fault models of the processors involved,whether or not any of the processors are faulty or become faulty during the consensus, which algorithm is beingused for the task consensus and the system characteristics such as the type of communication network beingused. The best that we can hope for is a worst case estimate or an estimate that will be true with a certainprobability. For the analysis, we assume that the longest time a message requires to traverse any communicationlink including processor transfer and setup times is �. So, for example, in a point-to-point network of diameterk, the longest time required to broadcast a message is k�. We denote the distance (in terms of the minimumnumber of links between them) between two processors as d(pi,pj).The �rst delay is the multicast of the con start messages in unicon. The time required to complete this stageis �max d where max d is de�ned asmax d = d(initiator,p) j 8 p,q 2 members, d(initiator,p) � d(initiator,q)In other words, �max d is the longest time required to send a message between initiator, i.e., the processorrunning the unicon process, and any of the processors in members.The next delay is to wait for members to perform the task consensus and report back to initiator. In thecase that the consensus is of the type urgent or deadline, its start may be delayed by each of the members p sothat it is completed by time - �d(initiator,p). That is, each processor may schedule consensus such that itcompletes just in time to transmit its report back to initiator such that initiator will receive the report justat the deadline of unicon. Let con min be the minimum time a processor must allot for consensus. Therefore,each of members must start consensus by time - con min - �d(initiator,p).con min is highly dependent on the consensus algorithm being employed. For the processor membershipprotocols based on processors that su�er from crash-, omission- and timing-failures, Cristian has given a detailedtime analysis in [Cristian 1991]. Basically, the problem reduces to determining the maximumnumber of messagesthat any processor must request and then receive in order to complete, that is, the number of serial rounds ofmessage passing required. Suppose that there are at most j rounds in a particular implementation despite failuresof processors. Then we can say thatcon min � 2j�diameter(members)The factor of two has been added to accommodate the case when replies in a round cannot be performed inparallel with requests in the next round.The algorithmwe gave, consensus, is somewhat worse than Byzantine agreement in the worst possible scenario.In this case, the non-Byzantine processors fail one after the other until there are only Byzantine processorsremaining, resulting in the default of a Byzantine agreement algorithm. Assuming that there were i non-Byzantineprocessors, the delay before initiating Byzantine agreement would be i�diameter(members) as each processortimed-out. (Note that �d(p,q) is the timeout period that q must wait before a message from p is consideredlost and that d(p,q) � diameter(members).) On the other hand, if at least one non-Byzantine processor15

survives, consensus will be completed in two rounds. Let a be the probability that a processor will fail duringconsensus. Then, the probability that at least one processor survives and that consensus will be completed in2�diameter(members) is (1� ai). If this probability is su�ciently high to meet the responsiveness of the systemthen con min can be set at this lower value.The �nal delay is simply the time needed for members to report back to unicon which is simply �max d.Finally, we can give an estimate for con duration where consensus is implemented as shown in Section 4 andthe probability that all non-Byzantine PEs will fail is negligible.con duration = 2�[max d + diameter(members)]Under these assumptions then, the scheduler on initiatormust begin the task unicon at time - con duration.5.2 Clock SynchronizationClock synchronization is simply a manifestation of the general consensus task, and as such, UNICON is su�cientto perform it. In this section, we shall show how unicon may be used to synchronize the system's clocks whichwe assume are reliable and run at equal rates. We shall assume that the processors are either crash-, omission-or timing-failing and that, as in Section 5.1, the time for a correct processor p to send a message to a correctprocessor q is less than or equal to �d(p,q). From here, the process is straightforward.Some processor initiator begins the task unicon(&id,members,topology,synchronization,priority)where priority is set according to the need of this synchronization. The elements of members receive the in-structions to begin a consensus and tables of values speci�ed by type, in this case equal to synchronization, areformed in which each entry is a clock value of a processor q, denoted M(q), timestamped with when the messagecarrying this data was received, denoted recd(M(q)). Let p be the processor building a particular table andC(p) be the current clock value of p. Then, p knows that C(q) = M(p) + (C(p) - recd(M(p))) � �d(p,q)=2.Putting a lower bound on transmission time or taking a probabilistic approach as in [Cristian 1989] can makethe estimation of C(q) more accurate. Now the processors of members have consistent consensus tables within�diameter(members)=2 of each other and synchronization may take a number of routes including choosing theaverage, median, maximum or minimum time for each processor.5.3 Reliable CommunicationA reliable multicast is a communication from one PE to many in which it is guaranteed that the outcome ispredictable in the presence of a bounded number of faults for a particular fault model and for bounded-timemessage passing. For a fail-stop model, the result is if at least one fault-free, addressed PE receives the messagethen all of the fault-free, addressed PEs will receive the message. One approach to this problem is to initiate aconsensus among the addressed PEs and the sender for them to decide on the value of the multicast.16

For UNICON, members is the group of PEs that should receive the multicast as well as the sender of the multi-cast and type is set to communication. The sender of the message begins the task unicon(&id,members,topology,communication,priority). An unreliable multicast spreads the consensus to the set members. At this pointthe details of consensus dictate the exact process, i.e., the multicast may proceed based on masking or faultdiagnosis. Assuming that consensus is implemented as described in Section 4 and that the set Byzantine isempty, the consensus continues until each PE has completed its consensus table, that is, until each has heardfrom every fault-free processor in members. Because each processor is testable (Byzantine = ;), as would be thecase if consensus were based on the ideas of system diagnosis, it is possible for a piece of data to propagate tothe fault-free processors in members and not be masked out. Therefore, a consensus table is complete whenevera processor receives the communication data from a fault-free PE, and a fault-free PE will continue consensuswithout having heard the communication data until it decides that it has communicated with all of the fault-freeelements of members. Thus we may achieve the reliable multicast described above for fail-stop processors.6 ConclusionWe have proposed a universal consensus protocol called UNICON that implements consensus as a truly generaltask in the kernel of a distributed operating system. Rather than approaching synchronization, reliable communi-cation, diagnosis, con�guration and other distributed tasks as separate, unrelated jobs, UNICON treats them asthe same job only di�erentiating themselves at the point where actual data is read from the processors and storedin the consensus table. In terms of system design, the result is that only one algorithm needs to be designed andmaintained as opposed to four or more resulting in better reliability and e�ciency without a loss of functionality.UNICON allows a signi�cant amount of exibility as far as the scope of a particular instance of consensus isconcerned as well as in terms of the failure semantics of the processors involved.We presented a simple consensus algorithm showing how processor fault models may be exploited to reducemessage costs and therefore time to complete. The HPM allows for a heterogeneous system in that each partitionmay behave according to di�erent assumptions, but it must still be expected that the occasional, single-level con-sensus will have disparate members. Therefore our algorithm adapts its queries about other processors accordingto the fault models of those processors.Next we analyzed UNICON in terms of the time it requires and what limitations this places on schedulingthe task. We looked at this problem from the viewpoint of the scheduler that initiates UNICON as well as theschedulers on the various processors actually performing the consensus algorithm.Finally, we showed how UNICON can be used to perform a simple synchronization of the system's clocks andreliable communications.We anticipate that UNICON will become a foundation for responsive operating systems of the future in whichdemanding requirements for fault tolerance and timeliness are expected to be met.17

References[Barborak et al. 1991] M. Barborak, A. Dahbura, M. Malek, \The Consensus Problem in Fault-Tolerant Com-puting," Technical Report TR-91-40, Department of Computer Sciences, University of Texas at Austin,November 1991.[Barborak and Malek 1992] M. Barborak, M. Malek, \Partitioning for E�cient Consensus," to appear in theProceedings of the Hawaii International Conference on Systems Sciences 1993 .[Cristian 1989] F. Cristian, \Probabilistic Clock Synchronization," Distributed Computing Vol. 3, pp. 146-158,1989.[Cristian 1991] F. Cristian, \Reaching Agreement on Processor-Group Membership in Synchronous DistributedSystems," Distributed Computing Vol. 4, pp. 175-187, 1991.[Kreutzer and Hakimi 1988] S. Kreutzer, S. Hakimi, \Distributed Diagnosis and the System User," IEEE Trans-actions on Computers, Vol. 37, No. 1, pp. 71-78, January 1988.[Malek 1991] M. Malek, \Responsive Systems: A Marriage between Real Time and Fault Tolerance," Fifth In-ternational Symposium on Fault-Tolerant Computing Systems, N�urenberg, pp. 1-17, 1991.[Malek 1992] M. Malek, \A Consensus-Based Framework for Responsive Computer System Design," Proceedingsof the NATO Advanced Study Institute on Real-Time Systems, Springer-Verlag, St. Martin, West Indies,October 5-18, 1992.[Pease et al. 1980] M. Pease, R. Shostak, L. Lamport, \Reaching Agreement in the Presence of Faults," Journalof the ACM , Vol. 27, No. 2, pp. 228-234, April 1980.[Schneider 1984] F. Schneider, \Byzantine Generals in Action: Implementing Fail-Stop Processors," ACM Trans-actions on Computer Systems, Vol. 2, No. 2, pp. 145-154, May 1984.[Valiant 1990] L. Valiant, \A Bridging Model for Parallel Computation," Communications of the ACM , Vol. 33,No. 8, pp. 103-111, August 1990.
18

