
[12] D. Redell, Y. Dalal, T. Horsley, H. Lauer, W. Lynch, P. McJones, H. Murray, and S. Purcell,

\Pilot: an operating system for a personal computer," Communications of the ACM, February

1980, pp. 81-92.

[13] D. Swinehart, P. Zellweger, R. Beach, and R. Hagmann, \A structural view of the Cedar pro-

gramming environment," ACM Transactions on Programming Languages and Systems, Octo-

ber 1986, pp. 419- 444.

[14] A. Silberschatz, J. L. Peterson, and P. B. Galvin, Operating System Concepts, Addison-Wesley

Publishing Company, 1990.

18



References

[1] R. C. Daley, and J. B. Dennis \Virtual memory, processes, and sharing in Multics," Commu-

nication of the ACM, May 1968, pp. 306-312.

[2] D. M. Ritchie, and K. Thompson, \The UNIX time-sharing system," Communication of the

ACM, July 1974, pp. 365-375.

[3] A. Tevanian, Jr., \Architecture-independent virtual memory management for parallel and

distributed environments: the Mach approach," Department of Computer Science Technical

Report, Carnegie Mellon University, Pittsburgh, PA, CMU-CS-88-106, December 1987.

[4] R. B. Lee, \Precision Architecture," IEEE Computer, January 1989, pp. 78-91,

[5] MIPS Computer Systems, Inc., Sunnyvale, CA. MIPS R400 Microprocessor User's Manual,

1991.

[6] Digital Equipment Corporation, Maynard, MA, Alpha Architecture Handbook, 1992.

[7] B. Ozden, and A. Silberschatz, \A taxonomy of shared address space systems," Department

of Computer Sciences, The University of Texas at Austin, TR-92-33, July 1992.

[8] J. S. Chase, H. M. Levy, M. B-Harvey, and E. D. Lazowska, \How to use a 64-bit virtual

address space," Department of Computer Science and Engineering, University of Washington,

Seattle, TR 92-03-02.

[9] E. J. Koldinger, J. S. Chase, and S. J. Eggers, \Architectural support for single address space

operating systems." Fifth International Conference on Architectural Support for Programming

Languages and Operating Systems, 1992, pp. 175-186.

[10] A. Chang, and M. F. Mergen, \801 storage: architecture and programming," ACM Transac-

tions on Computer Systems, February 1988, pp. 28-50.

[11] A. Chang, M. F. Mergen, R. K. Rader, J. A. Roberts, and S. L. Porter, \Evolution of storage

facilities in AIX Version 3 for RISC System/6000 processors," IBM Journal of Research and

Development, January 1990, pp. 105-109.

17



SAS paradigm can be classi�ed into various models, which di�er in the way the address space and

protection domain are managed.

Existing shared address space systems [12, 13, 8] are based on models that su�er from one or

more of the following drawbacks. They require reclamation of virtual addresses, cause fragmentation

of the address space, yield high space overhead or provide inadequate interprocess protection. These

drawbacks can potentially decrease the performance or restrict the computation domains of the

existing systems. In this paper, we proposed an alternative SAS model|the SVAS model, which

eliminates these problems. We compared our model to the other SAS models and identi�ed the

hardware support for the SVAS model. We also compared our proposed architecture to the existing

architectures with similar features.

16



from the calling procedure. This is because the content of the segment registers are changed by

the called procedure, and the calling procedure cannot reach its private data sections to restore its

state. The solution is to associate a stub segment wirh each shared procedure in a process. It is the

responsibility of the stub segment to save the segment registers of the calling procedure, transfer

to the called procedure during a procedure call, restore the segment registers and transfer back to

the calling procedure during a return. The parameters can be passed between the procedures by

sharing segments. The stub segment contains both data and code. Note that this scheme does not

eliminate the conventional procedure calls.

When the operating system loads a shared procedure into a protection domain, it also adds

the stub segment into the domain, and returns the address of the segment to the caller. In order

to provide the same interface for both procedure calls and RPC's, the operating system loads the

stub segment with the appropriate access rights. If the calling process has the right to access the

procedure in its own domain, the stub segment is loaded into the protection domain of the calling

process with an execute access right. Otherwise, the operating system loads the stub segment

with a permission, which causes a trap to the operating system, so that the operating system can

invoke a new process for the called procedure. In order to generate a trap to the operating system,

either the stub segment is loaded with no execution access right into the protection domain of the

calling process and the fault handler for the memory violation is altered, or the stub segment is

made invalid in the address space and the page fault handler is altered, or a new permission bit is

introduced which causes a trap to a separate RPC handler.

6 Conclusions

The availability of 64-bit processors [4, 5, 6], indicates a trend towards processors in which the

size of the virtual address space exceeds the possible physical storage (main memory and secondary

storage) by several orders of magnitude. Current technology also indicates that this gap will remain

since processor densities are increasing at a rate at least as fast as memory and storage densities.

64-bit processors can safely support the SAS paradigm where all processes execute in the same

address space. This is in contrast to most existing operating systems that use the PAS paradigm

where each process views the entire space as dedicated to itself. The SAS paradigm simpli�es the

use of virtually addressed caches, and provides methods for e�cient implementations of sharing

code and data, interprocess communication primitives and memory management algorithms. The

15



type of access list approach, in which a unique access identi�er is associated with each object. A

limited version of this scheme is implemented in the Precision Architecture, in which only four

registers are provided to maintain the access identi�ers. In order to allow simultaneous reads and

writes to a shared object, the access identi�ers given to processes are extended with a write disable

bit.

5 Code Sharing

The simplest form of code sharing is to allow several processes to execute the same program. In

order to facilitate this abstraction in the SAS paradigm, the private data sections of a shared

program cannot be referenced with direct virtual addresses or with o�sets relative to a base pointer

that points to the beginning of the program (e.g., program counter). Private data must be accessed

indirectly (e.g., segment register indirect, or base register with index or displacement addressing

modes, depending on the memory management). Hence, our proposed dynamic address binding

mechanism can support this type of code sharing.

The SVAS model can also support sharing of procedures between programs (e.g., libraries).

Shared libraries can be implemented either by static linking or dynamic linking. Furthermore, the

SVAS model can e�ectively support a more general type of code sharing; namely, any program

can call any other program with a procedure call without recompilation or relocation in the same

protection domain or with a remote procedure call (RPC) in a separate protection domain. A

procedure call can be used when both the caller and the called programs trust each other. Otherwise

an RPC is used. A procedure call has less overhead than an RPC, since it does not involve a context

switch. In most PAS systems, the �rst case is not possible due to possible address conicts in the

calling program and the called program. A shared address space model automatically removes the

problem of address conict.

Furthermore, the system can provide a transparent interface for procedure calls and RPC's, so

that a program can be invoked both with a procedure calls and RPC. This permits the system

to change the access rights of the clients to the server program dynamically without recompiling

the client programs. Below, we elaborate how the SVAS model can implement these abstractions

with our proposed hardware. Since separately compiled procedures may use the same segment

registers, segment registers have to be saved and restored at each procedure call. If the state of

the caller is saved in its private data section (e.g., stack), its state cannot be restored at the return

14



d

ps

Frame #

Page #

Segment #

Physical address

Virtual address

enable

O�set

TLB

SLB

O�set

Figure 4: Address translation.

4.3 Comparison to Existing Architectures

The IBM RISC System/6000 processor [11] is a 52-bit address architecture. A short address (32-

bit) is expanded to a global virtual addresses (to 52 bits) via a segment register. Although the

segment register indirect addressing scheme we proposed is similar to the virtual address generation

in the RISC System/6000, there are two major di�erences between the two architectures. First,

applications in the RISC System/6000 can only specify short addresses but not virtual addresses.

Second, the segment registers cannot be loaded and stored in the user (unprivileged) mode, since

the contents of segment registers determines part of the protection domain of a process. These

di�erences rule out passing virtual address pointers among processes as well as static linking.

The HP Precision Architecture is a 64-bit address architecture. The e�ective address calculation

is similar to the proposed hardware, The user can specify both short addresses that are extended

to 64-bit addresses through the segment registers (space registers) or long global virtual addresses.

Hence, processes can pass virtual address pointers in user mode. However, the generation of long

addresses takes four instruction cycles due to the 32-bit data path. The Precision Architecture

di�ers from our proposed hardware in its interprocess protection scheme. Protection is based on

13



Virtual Segment # Virtual Page # Physical Frame # Reference

Figure 2: An entry of the TLB.

Virtual Segment # Access Rights

Figure 3: An entry of the SLB.

entries of the page table for the virtual address space. In the SVAS model, the TLB stores only the

shared information (see Figure 2). A TLB entry contains the virtual address (segment and page

number) as the tag and the physical address (frame number) and dirty bit as data. The SVAS

model requires another associative cache to store the most recently used entries of the segment

table. We refer to this cache as a segment-lookaside bu�er (SLB). An SLB entry holds the virtual

segment number as the tag and the protection bits (access rights) as data (see Figure 4).

Figure 3 illustrates the necessary address translation and access rights veri�cation hardware for

the proposed scheme. At address translation time, the segment number of the virtual address is

searched in the SLB. The virtual segment and the virtual page number are searched in the TLB.

These searches can be done in parallel. If the address is found in both the SLB and TLB, the frame

number is available in one memory cycle. If the segment number is not in the SLB, at least one

additional memory access is necessary to locate the segment number in the segment table. When

the segment number is obtained, it is placed into the SLB. Similarly, if a TLB miss occurs, the page

table for the shared address space is searched. The TLB and SLB misses can be handled either

by hardware or with a software interrupt. When a context-switch takes place, the SLB is ushed

out, but the content of the TLB remains unchanged. If the SLB entries can be tagged with process

identi�ers, ushing out the SLB can be eliminated.

An SLB can be smaller than a TLB, since the number of segments that a process accesses

will be typically less than the number of pages accessed. The increase in the processor densities

makes the addition of another associative cache as an SLB feasible. The hit rate of the SLB will

be potentially higher than the TLB since the locality of references in a segment is expected to be

higher than the locality in a page.

12



2

a

� 1

Virtual address

Short address

s

d

p

a

dps

0

Segment registers

s

s

d

pa

Figure 1: Virtual address generation in segment register indirect mode.

4.2 Hardware Support for Protection Domain Management

In this section, we present the hardware support for address translation and access right veri�cation.

For simplicity of presentation, we consider one privilege level. This hardware can be easily extended

to provide di�erent access rights to di�erent privilege levels (see Section 3.3).

The operating system maintains a table for the shared address space and a table per protection

domain (the capability list). The table for the shared address space contains the virtual and physical

addresses of the active objects. The table for a protection domain contains an entry for each object

that the process is allowed to access. Each entry contains both the segment number of the object

and the access rights to the object. We refer to this structure as the segment table. At access time,

both tables need to be searched to determine the address translation and the access rights.

The standard solution to speed up memory accesses is to include a translation-lookaside bu�er

(TLB) to the processor. The TLB is an associative cache which stores the most recently used

11



address register or memory indirect and base register with index or displacement, are not covered

here.

The processor contains 2

a

segment registers. There are two sizes of address|long and short.

A long address is n bits long with the �elds as de�ned above. A short address consists of m bits,

where m < n. The high order a bits correspond to a segment register number, the next p bits

correspond to a page number within a segment, and the remaining d bits correspond to the o�set

within a page. The short addresses provide a contiguous local address space for the application. If

a short address is speci�ed, a bits of the address index a segment register. The segment number in

the register is added as the pre�x to the lower bits of the address. This concatenated address is the

virtual address which is sent to the address translation logic. We refer to this mode of addressing

as the segment register indirect.

The instruction speci�es the addressing mode. The instruction set allows only the generation

of short addresses in segment register indirect addressing mode. Figure 1 outlines the address

generation in this mode. If segment register indirect addressing is disabled, the long address (virtual

address) is directly sent to the address translation logic. This mode can be used when objects are

bound to virtual addresses statically. The address translation and access right veri�cation scheme

is explained in Section 4.2.

With this scheme, code references can be linked to short addresses at compile time and then

dynamically linked to virtual addresses at run time. Segment registers can be loaded and stored

in unprivileged (user) mode. This ability enables pointer passing between processes. The sender

process stores the content of a segment register into a shared memory location and the receiver

process either loads a segment register from that location or references the object indirectly.

Although the number of available registers is limited, the programmer or the compiler can store

the content of the registers and reassigns the registers in order to increase the number of segments

that can be linked dynamically. When the operating system loads an object into the protection

domain of a process, the virtual address of the object is returned to the process. The process stores

the virtual address in either a segment register or a memory location for a later use in segment

register indirect addressing mode (or in memory indirect addressing mode). The contents of the

segment registers do not de�ne the protection domain of a process. The addresses generated by

the application are checked for the access veri�cation as will be explained in the next section.

Therefore, the application can load and store the segment registers freely without violating access

rights.

10



correspond to a segment number, the next p bits correspond to a page number within a segment

and the remaining d bits correspond to the o�set within a page.

4.1 Hardware Support for Dynamic Address Binding

Our goal is to outline an architecture that can support the following properties| e�cient dynamic

address binding, context-independent addressing and a contiguous local address space. The �rst

two are necessary to support the SVAS model, while the last one is a desirable property from the

perspective of compilers and programmers.

Under the dynamic address binding scheme, persistent objects do no contain and are not as-

signed virtual addresses. This implies that an object code of a program cannot contain any virtual

address. Thus, a program should be able to execute with data and code mapped into arbitrary

virtual addresses during di�erent executions of the program.

A contiguous address space gives programmers freedom to choose addresses. The private address

space paradigm gives this view to the application level. On the other hand, the PAS paradigm

prohibits passing virtual addresses (pointers) between processes and causes possible address conicts

when a shared object is loaded into a domain. The Multics operating system, which is a based

on the PAS paradigm, solves the second problem by using dynamic address binding via linkage

segments [1]. With this method, each reference from a code segment to another segment is done

indirectly through a linkage segment. This method requires two memory accesses when a segment

references another segment. Multics, however, does not solve the �rst problem. To solve this, the

linkage segment scheme in Multics can be used by choosing globally unique virtual addresses for

objects. Such a scheme, however, does not provide a contiguous space for the application level.

The key to meet all these properties is to provide a contiguous local address space for programs

which is separate than the virtual address space and the protection domain. In this case, the

virtual addresses are still accessible by the application programs without violating the protection.

Hardware support for this approach requires either segment registers or a cache. In this paper, we

only consider the segment register scheme, since we have not as yet worked out the details and the

cost of the latter scheme.

We consider a processor architecture, in which dynamically linked objects can be accessed

through segment registers, so that a reference from one segment to another takes only one memory

access. We only outline the aspects of the hardware related to the dynamic address binding. Other

details, such as data and address registers, and addressing modes such as register, direct (absolute),

9



rights to any object, and permits the access rights of any domain to be changed without a�ecting

the access rights of any other domain.

In a SAS model which is based on paging for the memory management, page numbers can be

used as the access identi�ers. This approach is referred as the domain-page method [8]. It results

in long capability lists for protection domains, which will potentially increase memory access time.

To reduce the size of the capability list, a unique number for each object can be used as the

access identi�er instead of page numbers. Under this scheme, the access identi�er must also be

maintained with the object in addition to the virtual address. Hence, this method increases the

size of the data structures maintained for the shared address space. The SVAS model is based

on paged segmentation for memory management. A segment number naturally establishes the

access identi�er. In this case, the size of the list per protection domain can be kept short without

increasing the size of the data structures for the shared address space, since there is no need to

maintain additional access identi�er (segment number is part of the virtual address).

The combination of access list and capability list approaches can be used to manage multiple

privilege levels. In this case, the capability list approach is used for the user mode. The access list

approach can be used for the privileged modes that have the same access rights to objects in all

processes that execute in these modes. The SVAS model relies on this scheme for handling di�erent

privilege levels.

The complexity of loading and removing a segment into and from a protection domain is com-

parable in access and capability list approaches with the exception of the domain-page method.

Loading and removing a segment involve addition or deletion of one entry for each page of a seg-

ment under the domain-page method. Under the other methods, loading and removing require

addition and deletion of only one entry. In any of the methods, if a segment is to be removed from

all domains, the segment can be simply invalidated in the shared address space.

4 Architectural Support for the SVAS Model

In this section, we outline the necessary hardware support for the SVAS model that is based on

dynamic address binding, paged segmentation, and capability list approach for protection, and is

also capable to support static binding and access list approach. We consider an architecture with

a virtual address consists of n bits (e.g., n = 64) with the following �elds. The high order s bits

8



objects are larger than the segment size will not create a major problem under dynamic address

binding scheme, since objects are assigned to virtual addresses only temporarily. Paged segmen-

tation reduces the cost of protection domain management signi�cantly as compared to paging.

Access rights are maintained only for segments. This will result in less space overhead and, in turn,

shorter search time for address translation and access rights veri�cation, which implies shorter

memory access time.

3.3 Protection Domain Management

Although the address space is shared in the SAS paradigm, processes must execute in separate

protection domains. The SAS models can be categorized into two groups with respect to their

protection domain management| access list and capability list approaches [7]. The Pilot [12]

and Cedar [13] operating systems can be classi�ed as single protection domain systems. These

systems rely on language-based protection. The Opal [8] operating system is based on capability

list approach. The SVAS model is based on capability list approach for managing the user mode,

and is based on the access list approach for managing privileged modes.

In the access list approach, a list is maintained for each object in the shared address space.

The list contains the access rights and access identi�ers of the processes that are allowed to access

the object. If process-ID's are used as the access identi�ers the process ID is searched in the

corresponding list at access time. This scheme results in variable size access list when objects

are shared. It is di�cult to maintain and to provide hardware support for variable size lists to

accelerate memory references [7]. A solution to this problem is to assign a unique access identi�er

to each object. Each process that is allowed to access the object uses the same identi�er. A list of

access identi�ers are maintained for each process. At access time, the list of access identi�ers that

the process holds is searched. Under this scheme, the processes which share an object cannot have

di�erent access rights to the object. We refer to this scheme as the access group approach.

The capability list approach separates the maintenance of the shared address space and pro-

tection domains. A capability list is maintained for each protection domain. The capability list

contains both the access identi�er and the access rights of the objects that the process is allowed to

access. The access identi�er and access rights are stored in this list when an object is loaded into

the protection domain of the process. At access time, this list is searched to determine the access

rights. The capability list approach allows each protection domain to have its own set of access

7



even an impossible task in a fragmented space. Compaction methods cannot be used to alleviate

external fragmentation, since virtual addresses are statically bound to objects.

Under dynamic binding scheme, the impact of reclamation and fragmentation of the address

space is not severe, since objects are assigned to virtual addresses only temporarily. On the other

hand, it requires indirection to access an object and dynamic linking. With adequate hardware

support, indirection has no additional run-time overhead. We outline a possible hardware support

for dynamic address binding in Section 4. The overhead of dynamic linking in the SVAS model

is small compared to the overhead of dynamic loading. Since paged segmentation is used as the

memory management algorithm, references in programs can be o�sets from a segment number.

Hence, the only additional cost of dynamic linking as compared to dynamic loading is to allocate

a virtual segment number at load time.

3.2 Memory Management

In general, there are three methods for managing memory|paging, pure segmentation and paged

segmentation [14]. We do not consider here pure segmentation, because it causes external fragmen-

tation of the physical memory and as a result, yields high overhead for the memory management.

The Opal [8] operating system is based on paging, whereas the SVAS model is based on paged

segmentation.

In the case of paging, the operating system needs to maintain logical segments of di�erent

sizes which are built from contiguous pages. Paging complicates address space allocation, since for

all objects that are larger than a page contiguous virtual pages have to be found. On the other

hand, in the case of static binding, paging is more suitable than the paged segmentation. This

is because paged segmentation can cause internal fragmentation of the address space if it is used

with static address binding scheme and with current technology, there may not be enough segments

to bind all objects in a system statically. However, paging with static binding can cause external

fragmentation of the shared address space and therefore reduce the performance of address space

management. Paging also yields high overhead to manage protection domains since access rights

must be maintained for each page of a process.

In the case of paged segmentation, addresses of segments are prede�ned. Thus, paged seg-

mentation simpli�es both the address space and memory management. The operating system can

select any available segment to bind an object. Paged segmentation is more amenable to be used

with dynamic address binding. Internal fragmentation and possible external fragmentation when

6



address binding time and memory management algorithm. Although the address space is shared

in the SAS paradigm, processes execute in separate protection domains. The protection domain

management methods di�er in the way the access rights are maintained. Some of these models are

already used in the existing shared address space systems [12, 13, 8]. Instead of comparing the

SVAS model to each SAS model used in existing systems, we compare di�erent address space and

protection domains management methods and argue that the methods which form the SVAS model

are preferable to the other methods.

We also note that there are operating systems that can be classi�ed as a combination of the SAS

and PAS paradigms [10, 11]. In these systems, each process has an independent address space which

also de�nes its protection domain. At run time, private addresses are translated to globally unique

virtual addresses. These systems bene�t from some advantages of the SAS paradigm and the main

advantage of the PAS paradigm, which is providing a contiguous address space to the programmer

[7]. These systems, however, su�er from the following drawbacks. First, virtual addresses (pointers)

cannot be passed between processes. Second, (private) address conicts are possible when a shared

object is loaded into a domain.

3.1 Address Binding Time

The SAS models can be categorized into two groups with respect to their address binding time|

dynamic and static address binding. [7]. The Pilot [12], Cedar [13] and Opal [8] operating systems

are based on static address binding, whereas the SVAS model is primarily based on dynamic binding,

but it also supports static binding for system-wide resources.

The major drawback of static address binding scheme is that the virtual addresses need to be

reclaimed once an object is deleted. Since there can be other objects that reference the deleted

object with its virtual address, the address cannot be reused unless it is reclaimed. If addresses

are not reused the address space can be �lled up due to misuse. Garbage collection to reclaim

addresses incurs high overhead on the address space management [7]. Methods to decrease the

overhead of reclamation, such as reference count and lock-key schemes are prone to errors and

intentional misuse [7].

Static binding can cause severe fragmentation problems. Fragmentation complicates address

space allocation. For all objects that are larger than a page or segment (depending on the memory

management scheme), contiguous addresses have to be found which is a complicated and sometimes

5



the virtual address space into predetermined segments, and each segment is in turn broken into

�xed-size pages. The size of a segment can alter depending on the size of the object. The size of the

segment is a multiple of the page size; hence, the size of the segment is equal to or larger than the

size of the object. Any of the segments can be selected to bind an object, and any of the available

frames can be used to map a page of a segment.

A process is an environment in which a program is executed. The type of operation that a

process is allowed to execute on a segment is called the access right. The access rights to a segment

are de�ned by the access rights to the corresponding object. Although the address space is shared,

the SVAS model provides interprocess protection. Each process executes within a protection domain

(or execution domain). A protection domain consists of the set of the segments that the process

is allowed to access, and the access rights to these segments. Some architectures support process

execution in multiple privilege levels (e.g., kernel, operating system supervisor, user). For such

architectures, we will consider a protection domain per privilege level.

Segments are loaded into a protection domain when the process is generated or when the process

�rst accesses the segment. The protection domain management for the user mode is based on the

capability list approach. A list is maintained for each process, which contains both the segment

number and the access rights of the objects that the process is allowed to access. The protection

domain management for privileged modes, such as kernel, can be accomplished by the access list

approach. In this case, access rights for the privilege level are maintained in a list for each object

in the address space.

Processes that share a protection domain are called lightweight processes (or threads). A process

is represented in the operating system by a process control block, (PCB). The protection domain

of the process is represented with a �eld in the PCB. If two processes share a protection domain,

it means that they share the operating system data structure which implements the protection

domain, namely the corresponding �eld of the PCB. In contrast, heavyweight processes in the

SVAS model do not share a protection domain and the address space is not an attribute of a

process (not a �eld in the PCB).

3 Comparison of the SVAS Model to other SAS Models

The SAS paradigm can be classi�ed into various models, which di�er in the way the address space

and protection domains are managed [7]. The address space management methods di�er in virtual

4



Some of the models do not allow each protection domain to have its own set of access rights to any

object.

In this paper, we propose an alternative model which alleviates these problems. We refer to our

model as the shared virtual address space (SVAS) model. The focus of this paper is the comparison

of the SVAS model with the other SAS models and the identi�cation of the hardware support for

this model.

The remainder of the paper is organized as follows. In the next section, the SVAS model is

de�ned. Section 3 compares the SVAS model to other SAS models. Section 4 identi�es dynamic

address binding and interprocess protection hardware support for the SVAS model, and compares

the proposed hardware with the existing processor architectures, while Section 5 discusses how the

SVAS model can support code sharing. Finally, Section 6 presents our conclusions.

2 The SVAS Model

The SVAS model consists of two components: the shared address space and the set of all protection

domains. The shared address space is the collection of all segments, where a segment is a range

of virtual addresses. An object is a collection of logically related code or data, such as a �le or

a program. An object is assigned to a segment and loaded into the shared address space when

a process accesses it (when the object becomes active). At this point, the object is bound to a

virtual address, namely, to the address of the segment. We refer to this approach as dynamic

address binding. The segment is released when all the processes that access the object terminate.

Hence, an object can obtain more than one virtual address during its lifetime. An object can be

either temporary or persistent. There is a storage hierarchy in which the persistent objects are

stored permanently and a naming context, which identi�es the persistent objects uniquely, such as

directory structure, in which each object has a symbolic name. The SVAS model does not rule out

static address binding. Static address binding refers to allocation of virtual addresses to objects

when they are �rst created. In this case, an object is bound to the same virtual addresses during

its lifetime, and these address cannot be used to name any other object during this period. The

choice is left as a policy. For example, system administration may choose to statically bind some

system wide services (e.g., shared libraries) to absolute virtual addresses.

The implementation of segments is determined by the memory management algorithm of the

operating system. The SVAS model is based on paged segmentation. Paged segmentation divides

3



1 Introduction

Most operating systems on computers with 32-bit or smaller address spaces are based on the private

address space (PAS) paradigm where each process has a separate address space [1, 2, 3]. This

paradigm has emerged as a result of the size of the address space in 32-bit or smaller architectures,

in which the number of possible virtual addresses is relatively small. In a small address space

system, there can be more objects that need to be accessed by processes than the number of

available virtual addresses. Thus, in the PAS paradigm, each process views the entire space as

dedicated to itself, so that each process is provided with su�cient number of addresses to name

the objects that it accesses. However, with the recent emergence of the 64-bit processors [4, 5, 6],

the private address space paradigm can be replaced with the shared address space (SAS) paradigm

in which all processes execute concurrently in a shared global address space. Since the number of

addresses is su�cient to name the objects that all processes access, the 64-bit processors can safely

support the SAS paradigm.

The unifying property of the SAS paradigm is context-independent addressing. We de�ne

context-independent addressing as follows. Two concurrent processes have a common virtual ad-

dress, if and only if they share an object. This property simpli�es the use of virtually addressed

caches, and provides methods for e�cient implementations of sharing code and data, interprocess

communication primitives and memory management algorithms [7, 8, 9].

There are two key issues in the design of a shared address space system| address space man-

agement and protection domain management. The SAS paradigm can be categorized into di�erent

models with respect to the address space management and protection domain management [7]. In

general, the address space management methods di�er in virtual address binding time and memory

management. Although the address space is shared in the SAS paradigm, processes execute in sep-

arate protection domains. The protection domain management methods di�er in the way the access

rights are maintained. The existing shared address space systems [12, 13, 8] are based on models

which su�er from one or more of the following drawbacks. Some of the models require reclamation

of virtual addresses. Garbage collection methods to reclaim addresses incur high performance over-

head on the address space management. Some of the models cause fragmentation of the address

space, which incurs overhead on the address space management, since the address allocation in a

fragmented space is complicated and sometimes impossible. Some of the models yield high space

overhead, and as a result, potentially high run time overhead for protection domain management.

2



The Shared Virtual Address Space Model

1

Banu

�

Ozden

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, Texas 78712

Avi Silberschatz

Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

Abstract

64-bit processors can safely support the shared address space (SAS) paradigm where all processes

execute in the same address space. This is in contrast to most existing operating systems that use

the private address space (PAS) paradigm where each process views the entire space as dedicated

to itself. The SAS paradigm simpli�es the use of virtually addressed caches, and provides methods

for e�cient implementations of sharing code and data, interprocess communication primitives and

memory management algorithms. The SAS paradigm can be classi�ed into various models, which

di�er in the way the address space and protection domain are managed. Existing shared address

space systems are based on SAS models that su�er from a number of drawbacks that can potentially

either decrease the performance or restrict the computation domains. In this paper, we de�ne a new

SAS model { the shared virtual address space (SVAS) model, argue that this model is preferable

over the other SAS models. We also identify the necessary hardware support for the SVAS model.

1

This material is based in part upon work supported by the Texas Advanced Technology Program under Grant

No. ATP-024, the National Science Foundation under Grant Nos. IRI-9003341 and IRI-9106450, and grants from

the IBM and Hewlett-Packard corporations.

1



THE SHARED VIRTUAL

ADDRESS SPACE MODEL

Banu

�

Ozden

Avi Silberschatz

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188

TR-92-37 November 1992

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712


