On the Performance of the
CREL System

Chin-Ming Kuo
Daniel P. Miranker
James C . Browne

Department of Computer Sciences
The University of Texas at Austin

TR-92-41 November 1992



On the Performance of the CREL System™

Chin-Ming Kuo
Daniel P. Miranker
James C. Browne
Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

July 13, 1991

Abstract

This paper presents the performance results of a comprehensive approach to the parallel execution

of rule systems. It describes the semantics of a Concurrent Rule Execution Language, CREL,

and the architecture of the system that compiles and executes CREL programs. The system has
been designed to avoid runtime overhead by performing extensive compile time analysis and by
parallelizing compilation. Static dependency analysis, based on serializability, coupled with a set

of optimizing transforms, partitions the program into subsets, called clusters. Clusters eXCehGumme
independently of each other and communicate though asynchronous message passing. Atruntime

two additional sources of parallelism are exploited — run-time consistency checking allowing
multiple rules to fire, and match-level parallelism.

The CREL system is implemented on a Sequent Symmetry shared-memory computer. This
paper presents the results of a factorial experiment that isolates and evaluates each source of paral-
lelism in the CREL system and each possible combination of those methods. The results suggest
that multiple-rule-firing is the single most important source of parallelism in CREL programs and
that the use of static dependency analysis based on serializability is instrumental to effectively

exploit parallelism.

*This research is partially funded by a grant from the Office of Naval Research and a grant from Texas Instruments.



1 Introduction

The production system, or rule-based system paradigm, is a widely used method of building expert
systems and artificial intelligence applications involving knowledge representation and knowledge
base search. As the complexity and scope of expert system applications expand, performance
requirements can impede the application of the technology. Parallel execution is an attractive
approach in attempting to accelerate the execution of production system programs.

In this paper, a rule-based program is a set of rules of the form “if P then A” where P is a
predicate on the current state of a database of facts called the working memory (WM) and A is
an update transaction on the database. A predicate P is composed of a conjunction of condition
elements (CEs). Sequential execution of the program proceeds by evaluating the predicates. A
conflict set of rule instantiations is formed. An instantiation is a pair containing a rule name and
an ordered set of facts satisfying, or matching, the rule. A single rule instantiation is selected, a
process called conflict resolution, and the rule’s actions executed. The match, select, act cycle is
repeated until a fixed point is reached.

Most early efforts toward the parallel execution of rule based programs focused primarily on the
parallel execution of these incremental match algorithms which had been reported to require over
90% of the execution. The early efforts could also be characterized as parallelizing the execution
of the underlying interpretive mechanism.

In the mean-time other research into accelerating the execution of production-system programs
has concentrated on the development of improved incremental matching algorithms, such as RETE
and TREAT,[2, 16, 17, 24] and by using sophisticated compiling techniques. It has been demon-
strated, in at least one system, OPS5.c, that better match algorithms and improved compilation
can reduce the sequential execution time of rule-based programs by two orders of magnitude over
traditional interpreted RETE match implementations.[15] We also note that the OPS5.c compiler
often reduces the proportion of time spent in match to less than 50%. By Amadhl’s law, the
introduction of parallelism exclusively to the match phase of such optimized implementations will
yield a maximum of two fold parallelism. Hence, it no longer beneficial to apply parallelism to a
single aspect of the execution of a production-rule program.

Other researchers working on the parallel execution of production system programs have
focused on firing multiple rules per production system cycle. Ishida and Stolfo described a
system that fired commutative rules concurrently.[19, 8] This early work is one of the base for

the work described in this paper. More recently, other researchers have applied serializability or
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other specializations of the Bernstein conditions to determine when rules may be fired in parallel.
[7,12,9, 23, 25]

1.1 Approach

This paper describes the results of a comprehensive approach to the parallelization of rule-based
programs. The CREL system exploits parallelism in and among all phases of the production
system execution. CREL is built on the OPS5.c compiler. As a result of the high performance
of the sequential component of this system, the theme of the CREL system has been to remove
run-time overhead by performing extensive compile time analysis.

This work represents a fundamental change in the operational semantics of the OPS5 production-
rule language. We define a new language, syntactically identical to OPS5, called CREL.[3]
CREL is the acronym for the Concurrent Rule Execution Language. CREL and OPSS5 differ only
in their conflict resolution strategy. OPS5 associates a timestamp with each working memory
element (WME) and selects a single instantiation from the conflict set based on the recency of the
instantiation’s timestamps. Each instantiation is fired only once. Conceptually, CREL also only
fires a single rule instantiation per cycle and fires an instantiation only once per cycle, but the
instantiation is selected nondeterministically. We note that in the original presentation of recency
as a conflict resolution heuristic that the intent was to introduce a method that guided the system
to the shortest path to a solution.[13] Recency was not intended as a correctness criteria. From our
experience translating OPS5 programs to CREL, we conclude that the relaxed resolution strategy
does not complicate rule-based programming.

A correct parallel execution of a CREL program as any serializable execution.[14] Serializ-
ability has its origins in database systems where it is applied to database transaction systems and
serializability is enforced on ad-hoc, short-lived, transactions by using locking protocols. CREL
programs represent a static collection of continually executing transactions. Thus, through com-
pile time analysis, a CREL program can be partitioned into subsets, called clusters, such that any
two rules in different clusters can fire concurrently without any runtime checking or locking, and
without violating serializability. Clusters execute independently from each other and communicate
through asynchronous message passing. CREL and its parallel execution semantics are defined in
section 2.

Simple compile time analysis is insufficient to partition the system into an small uniform

clusters. A set of optimizing transforms that increase the number of clusters and reduces their



size is also introduced. The sequentiality introduced by context (or goal) element patterns, called
control variables, prevents sequentially written production rule programs from displaying much
parallelism among the rule clusters. The copy and constrain technique (C&C) ! is introduced to
further create additional clusters.[26] Clusters created by this technique substantially increase the
available parallelism. The parallelizing compilation technique and optimizations are described in
section 3.

Within a cluster, the free pattern variables make it impossible to predetermine precisely which
rule instantiations can fire concurrently. At runtime, the CREL conflict resolution phase determines
a collection of instantiations that can fire in parallel without violating serializability. Since conflict
sets can be very large[17] and every element of the conflict set must be compared with every other
element of the conflict set this is an expensive operation. The cost of this operation is reduced by
determining a set of serializability predicates at compile time. The cost of this operation is further
reduced by the static decomposition of the program into clusters. Low-level match parallelism
through spawning separate tasks for each “join” is also implemented. See section 4 and 5.

All these forms of parallelism have been brought together in a single system. A factorial
collection of experiments are performed on all possible combinations of each source of parallelism.
These systems were run against 4 different CREL programs, translated from OPSS5, and on a
number of different size data sets.[11] The performance results are presented in section 7. These
experiments incidate that multiple-rule firing is the single most important source of parallelism.
Low-level match parallelism is not very beneficial. Multiplying the number of clusters using the
C&C technique, when applicable, is very effective and introduces little runtime overhead. C&C
improves performance by introducing additional parallelism at the match level and improves the
constants when dynamically computing multiple rule firing. These experiments also make clean
that the nondeterministic semantics of CREL is insufficient to overcome the intrinsic sequentiality

of programs naively translated from OPS5.

2 The CREL Language and Execution Model

The execution of production systems can be viewed as a state-space searches, where the contents
of the working memory represent the current state and the actions of a rule firing move the system
from one state to another. Conflict resolution determines a particular search alternative. Conflict-

resolution strategies, such as the OPS5 LEX and MEA strategies, uniquely determine the execution

Independently named, the data reduction technique.[5]
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path for a given production system program in a depth-first fashion based on the the recency of
working memory time tags and the specificity of the rules.[3, 13]

Since one of our goals is to partition the rule system into clusters that execute independently
from each other, with as little synchronization as possible, it becomes necessary to relax the recency
constraints on the conflict resolution. Removing recency as a criteria introduces nondeterminism
in the program executions. The CREL resolution strategy retains specificity. To ensure a correct
execution we use the database serializability theory as the basis of the CREL execution model.
A parallel execution of a set of database transactions is serializable if there exists a sequential
execution of those transactions such that both the parallel and serial execution result the same final
database state.[27] We will define a parallel execution of a CREL program as correct if and only if
the concurrent execution of the actions of a set of rules are serializable. From this basic definition
we are able to define and implement a parallelizing compiler and to precompile aspects of the

run-time system, reducing their dynamic overhead.

2.1 CREL Execution Model

In CREL, serializability is defined within a single cycle. A complete execution path is the
concatenation of the firing sequences of all cycles involved. Given a production system program
P with N rules, P= {P;,P,,...Px}, a parallel firing E; of P in cycle j is defined as the set of

instantiations selected for firing in cycle j:

E={L || L | .. Il L.} (1)

where m is the total number of instantiations in E;, V1, j, I = kth instantiations in cycle J, and I, is
an instantiation of rule P;,. For each j.k, C;, is defined as the set of instantiations from rule P;, in

cycle j. The conflict set in cycle j is (UviC;,).

Definition 1 Cycle Serializability

E; is cycle serializable if and only if there exists a serial execution path of E;, EJ’ such that Ej

produces the exact same result as E;. o

Definition 2 Execution Serializability
It follows from definition 1 that an execution path E of N cycles where E = {E; — E;... — Ex}
is serializable if and only if Vj € [1..N], E; is cycle serializable. O



Definition 3 Correctness of CREL programs
A CREL program is correct if and only if all eligible serial execution paths reach correct terminal

states. 0

Note that, other than the conflict resolution strategy, the execution behavior of a CREL program
does not change from OPS5. In other words, the CREL system still executes the match select
act cycles. From the programmer’s point of view restrictions such as global execution cycles and
single rule firing per cycle still exist. To construct a correct CREL program an OPS5 programmer
need only restrict himself to rules such that any rule instantiation can be fired at random and still

ensure a correct terminal state.

2.2 Dependency Analysis

To determine which rules can fire in parallel it is necessary to determine which rules interfere with
each other. That is, which rules may remove WMESs that satisfy another rule, or due to negation,
may add objects that invalidate some or all of a rule’s instantiations. The CREL static dependency
analysis is based on the bipartite dependency graph representation first proposed by Ishida and
Stolfo.

A dependency graph Gy, is defined as G = (V, E) where the vertices represent either rules or
sets of pattern- equivalent WMEs, illustrated by “circles”(()) and “squares” (O) respectively. In
[8] pattern- equivalent sets were determined by class name. In CREL, pattern- equivalent sets are
determined by class name and the constant appearing in each condition element. The optimizing
transforms further specialize the pattern-equivalent memory sets. Edges E in Gy, represent the
types of data dependency relations between WMEs and rules. An edge is drawn from a pattern-
equivalent set of WMEs, W; to rule P; if W; appears in the the LHS of rule P;. An edge is labeled
with a positive(negative) sign if W; appears in P;’s positive(negative) condition elements. An edge
is drawn from rule P; to WMEs, W; if W; appears in the the RHS of rule P;. An edge is labeled
with a positive sign if W; is in P;’s make action elements. An edge is labeled with a negative sign
if W; is in P;’s modify or remove action elements.

Based on the dependency graph we identify two types of conflicts where firing one rule

invalidates instantiations from the other rules:

(A) Pi & Wy & P,
Rule P; is deleting or modifying an WME-node (Wy,), which is also positively referenced by



Figure 1: Dependency graph and mutual exclusions

rule P;. In other words, the firing of P; may deletes some entries of Wi, which may constitute

parts of the current conflict set of P;.

(B) P; & Wy, < P,
Rule P; is making an WME-node (Wy,), which is also negatively referenced by rule P;.
In other words, the firing of P; creates some entries of Wy,, which may invalidate some

instantiations of P; because of negative references.

Figure 1 presents an example of such a dependency graph and illustrates the case of interferences
between two rules P; and P,, where the curved arrows divide the dependency graph into two
"mutual exclusion” sets.

A mutual exclusion dependency relation occurs when there are conflicts between rules in
accessing the same data. The concept of a mutual exclusion set is developed where a mutual
exclusion set is a set of rules for which we cannot statically determine if their instantiations
can be fired concurrently. In other words, using the static analysis of the dependency graph, it
cannot be determined if concurrently firing all rules in the same mutual exclusion set will violate
serializability.

For example, the firing sequence of {P4, Ps} in Figure 1is not a valid serial execution of parallel
execution {P4 || Ps}. Because of the duality of the problem, only the cases of rule P; interferes

with rule P; will be analyzed.

Definition 4 Interference

Cases (A) and (B) described above are defined as two types of interference between two rules,

where the firing of one rule, interferes the match conditions of the other. a



Given a pair of rules, a single interference relationship will note violate serializability. The two
interference relations impose a total ordering on the serial execution sequence of the rules involved.
If interference, such as (P; ¢~ Wy, — P;), exists between tworules, P; and P;, a valid serial execution

must execute P; before P;. The ordering imposed by interference relations are transitive.

2.2.1 Mutual Exclusion

Definition 5 Mutual Exclusion Set

A mutual exclusion set is set of rules connected by a cycle of interference relations.

Figure 1 illustrates examples of cycles in a dependency graph. Two of the cycles form mutual

exclusion sets, while a third, Py, P,, Ps, and P4 does not.

Theorem 1 Parallel firing of all rules in a mutual exclusion set is not serializable without run-time

checking.

Proof:  The proof is by induction. Given that there is a mutual exclusion set {Py,...,Px}, we
first prove the base case of N is 2, N being the size of the mutual exclusion set. Assuming the two
conflicting instantiations of interferences are (P, — W, & P, ) and (P, — W, & P1), we prove
that for all possible instantiations from the conflict set, without run-time checking, there exists no
valid serial execution of {Py,P,} such that P, proceeds P, and P, proceeds Py, simultaneously.

Assume at time t=0 the conflict set is CSo = CS} U CS3, where CS} and CS} are the subsets of
conflict set originated from rule P; and P,, respectively. To ensure serializability without run-time
checking, a parallel firing of any pair of instantiations, {I;,1>}, where I; € CS},1, € CS3, should
be serializable.

Let A; and A, be the RHSs of rule P; and P, respectively, and let conflict set CS; represent the

conflict set at cycle 1. The effects of individual firings of I;,I; on the conflict set are
Acs? = Ai(1h) and Acs' = Ay (L)

where A cs! and A cs? are the updates to the conflict set from the firings of other rules. Since
interferences exist between P; and P, in both directions, without run-time checking, interference
(P, & W, & P,) implies Acs' # 0 and (P, & W, & Py) implies A cs® # . The new conflict
set, after parallel firing of {I;,I,}, is

CS; = (CS) — Acs') U (CS] — Acs?)



For serial firing of {I;, I}, on the other hand, the changes to the conflict set are 2
CSp —1s [CSy = CSp — Acs?] -2+ [CS, = CS; — Acs™]

Without run-time checking, it can be shown that A cs? # 0 because of the interferences from
P, to P,, thus a particular instantiation I, may be removed from CS; before I, even being selected
for firing. The same analogy can be applied to the cases of {I, I, }, thus concludes the proof of
N=2.

For the induction step, the mutual exclusion set is size N, {P1,...,Px}, and the dependency

cycle is
P, =W, &Py & W,... &Py

the same analogy can be made such that any serialized execution of instantiations from all rules in
{P1,...,Px} will invalidate some of these instantiations along the serial execution because of the
cycle of interferences. |

Theorem 1 establishes the basis for parallel rule firings of production system programs. To
correctly execute multiple rule firing, first compute the mutual exclusion sets and then repeat the
execution cycle where selections from the conflict set satisfy the mutual exclusion constraints (
i.e., selection of multiple rules from the same mutual exclusion set should not form a cycle with

conflicting interferences).

Theorem 2 A correct CREL program is guaranteed to reach a correct terminal state under the

execution scheme described above.

Proof: Theorem 1 states that all parallel rule firings of instantiations from the same mutual
exclusion set (confirming to the mutual exclusion constraints) are serializable. Since there exists no
cycle of interferences between rules from different mutual exclusion sets, for the cases of parallel
firings of rules across multiple mutual exclusion sets, any arbitrary interleaving of these rules is
a valid serial execution. Thus, any parallel execution confirming the above execution scheme is
serializable.

From Definition 3, any serial path in a correct CREL program is guaranteed to reach a correct
terminal state, thus the serial execution corresponding to the parallel execution is also assured to

reach a correct terminal state. I

2Notice the cycle count index.



Figure 2: An example for asynchronous execution. (See the proof of Theorem 3 for definition of
symbols.)

2.2.2 Clustering

Close examination of the proof of Theorem 1 and 2 reveals that there exists no sequencing
constraint on rules that do not interfere with one another. Specifically, there is no requirement for
synchronization between the execution cycles of two mutual exclusion sets, provided no cycle of

interference exists. The following theorem formally states such an observation.

Theorem 3 A parallel execution which observes mutual exclusion constraints as defined in The-
orem 2, and has asynchronous execution cycles among mutual exclusion sets, always reaches a

correct terminal state if the given CREL program is correct.

Proof: The correctness part can be derived from Definition 3, so we only need to prove that
such parallel execution is always serializable. Without loss of generality, we assume the system
contains two mutual exclusion sets, M; and M,, as illustrated in Figure 2. The mutual exclusion
constraints exists between the (P;, P;) and (Py, Py) pairs. Any parallel execution without the global

synchronization requirement between M; and M; can be expressed as a regular expression
E= (P [P)" || (P |P1)”

where the execution path, E, can contain arbitrary occurrences of one single instantiation from each
set of My and M,. It can be shown that E is serializable since there is no constraint between rules
from different mutual exclusion sets, therefore the firing frequencies between M; and M, have no

effect on the serializability condition. 0

Definition 6 Cluster

A cluster is a set of rules where synchronization is needed for each execution cycle to ensure the
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correctness of the execution. It follows from Theorem 3 that a cluster is the transitive closure of

the mutual exclusion sets.

The transitivity of the cluster relation guarantees that the partitions of rules resulted from
clustering are disjoint. Consequently clusters of rules may execute independent match select act

cycles without global synchronization.

3 Optimizing Transformations

Static clustering for a number of OPS3 programs did not achieve satisfactory results. Because
of the lack of both control and data structure constructs in production system languages, static
clustering generally partitioned the programs into a single large cluster together with a number of
clusters containing only 1 or 2 rules. See the column labeled “no optimization” in Table 1. Results
are presented as the number of clusters and the maximum number of rules per cluster.

To improve the effectiveness of static clustering 4 optimizing transforms are introduced. The
idea behind three of these transforms is to break interference relations between the rules by
increasing the granularity of the pattern-equivalent sets of working memory in the dependency
graph (i.e. by dividing the boxes into smaller boxes).

There are many results on the static dependency analysis of computation graphs in conventional
languages for various parallel environments.[7, 4, 10] The fundamental idea behind these results can
be used in optimizing the CREL dependency relations. Specifically, increasing the granularity of
the data nodes in the dependency graphs can remove certain redundant dependencies. Recognizing
the use of “control variables” in PS programming is another way of reducing the connectivity of
the dependency graphs. By recognizing the equivalence between the LHS testings and the query
forms in relational algebra, techniques used in database query decomposition can also act as types
of optimizing transformations for the CREL static analysis.[18, 1] The goals of these optimizing
transformations are two fold. The first is to increase the numbers of clusters in the system so that
the concurrency of the system increases. The other goal is to reduce the complexities of run-time
tasks in each cluster by reducing the sizes of clusters. We discuss in details each of the optimizing

transformation in the sections follow.

3.1 Control Dependency

Because of the lack of procedural control structures in the PS languages, a common strategy called

“secret-messages”’[21] is used in PS programming to emulate the procedural controls. Such a
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Rules: (PP1
(A Mal<x> "a2=constl)
(B *bl <y> "b2<z>) -->
(modify 2 *b2 (F(<z>, <y>))))
P2

(A Ma2=const2)
(B "b3=<u>) -->
(modify 1 *a2 const3))

Figure 3: Examples of refinements on WME nodes.

strategy uses a designated WME (usually called goal elements) as the control variable. At any
given time during the execution, by assigning a different value to the control variable, the active
rules are constrained to a group of specific rules. The rules responsible for transitions between
different stages make use of the “specificity” resolution strategy to impose priorities on rules.
Such programming practice can be used to remove the interference relations between rules.
Specifically, by identifying the control variables, rules can be partitioned into disjoint rule sets,
with each set containing rules that test the same value of the control variable. All the interferences
between between rules that belong to different rule sets are removed. We call this transformation
“control variable smart”. Results of analysis performed on the benchmark programs proves the

technique of “control variable smart” significantly improves the quality of the CREL static analysis.

3.2 Propagating Constants and Disjoint Attribute Tests

One of the improvements that can be made to the dependency graph is to provide better classification
of the data units used in the bipartite dependency graph. Increasing granularity of the objects implies
reducing the density of the graph. Since all “squares”(0) in the graph represent some forms of
selections from WM classes, certain assertions known at compile-time can be used to prevent
interference between two rules. One approach is to take into consideration all constants in the
LHSs. In other words, CEs with the same class name but with different constant bindings should

be treated as different “0”” nodes. Another improvement one can make is to identify cases, where
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CEs refer to the same class but contain disjoint attribute references. These too, can be treated as
different nodes in the dependency graph. Figure 3 illustrates the gradual refinements on the WME
nodes by first propagating constants on attribute a2 of class A, and by identifying disjoint attribute
sets. In this figure, the upper graph is partitioned into subgraphs by recognizing disjoint references

to different portions of working memory elements A and B.

3.3 Horizontal Partitioning With Constrained Copies

The equivalence between a LHS match work and the query forms in relational algebra is given
in [11]. Techniques used in database query decomposition can also act as types of optimizing
transformations for the CREL static analysis. The C&C technique shares the same basic idea with
the “tuple Substitution” technique used in Ingres query optimization algorithms[28] by instantiating
potential variables into disjoint hash buckets, thus replicating the query into independent sub-

queries. An example of a rule P; with two CEs is given:

(P P1
(classA atrl <x> atr2 K1 )
(classB atr3 K2 atrd <x>)
-

(modify 1 &atrl= (compute <x> + <y> ) ))

Assume |x| = {X1,X2,...,Xm}, % N x; = 0 and K1, K2 are constants 3. Rule P; can be copied
into m rules, P11, P12, ..., Pin with variable x bound to x; in P;. The resulting set of rules will have
exactly equivalent effect with the original rule P.

In addition to the benefits of LHS match optimization, constrained copying can also increase
the number of clusters in a system by explicit partition the pattern-equivalent WME nodes into
disjoint copies. Figure 4 gives the resulting graph by performing constrained copying and propa-
gation(C&C) on a part of the Waltz program. The constrained copy algorithm may decompose a

fragment of the dependency graph into a number of independently executable entities.

3.4 Static Analysis Results

We have implemented the software to generate dependency graph representations of rule systems,
to perform mutual exclusion analysis and form rule clusters and to apply our optimizing transforms.

The transforms are enumerated as follows

3Notice that the partition of x can be comprised of hash values instead of constants, as long as the partitions are
disjoint.
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Two rules from OPS program "Waltz" are listed below:

(P one-one-out_P1 P two-two-minus_.PZ

(stage reduce-candidates) (§tag€.redu§&c§ndldates) )

(junction Ajunction-ID <X> Aline-ID-1 <l-ID>) (junetion Aunction-ID <X> Mine-1D-2 <-1D>)

(junction Ajunction-ID {<Y> <> <X>} Aline-ID-1 <t-ID>) Gunction Aunction-ID {<Y> <> <X>} Mine-ID-2 <I-1D>)
(labelling-candidate Ajunction-ID <X> Aline-1 out) (labellmg—candl(.iate AJ\‘JnCtl(.)n-ID <X> "11{15—2 )
-(labelling-candidate Ajunction-ID <Y> Aline-1 in) -(labelling-candidate Ajunction-ID <Y> Aline-2 -)

> ->

(remove 4)) (remove 4))

Part of the original dependency graph is: If hash buckets on <junction-ID> is N, we can

copy the cluster into N clusters:

labelling-Candidate

s e 0

+ _ + _ + +
junction-ID=1  junction-ID=2 junction-ID=N

Figure 4: C&C algorithm and its example.

1. Propagating LHS constants into RHS.

2. Find out disjoint attributes among CEs.

3. Control Variable Smart. (CVS)

4. Constrained Copying with Propagation. (C&C)
In the table, the first column lists the benchmark program. The three entries with C&C are cases
where C&C is applied to Life, and twice of Toruwaltz. The second column lists the total number of
rules. The third to sixth columns list clustering results with various combination of optimization.
To illustrate the concurrency as well as the density of the clusters, the results are expressed as
pairs, (x,y), where x, y are the number of clusters and the maximum number of rules per cluster,
respectively. For instance, Life-NR is partitioned from 10 rules to 3 clusters but one of these
clusters contains 8 rules.

One can observe from the table that the performance of a particular optimization depends
heavily on the nature of the program. For instance, Optimization (1) performs well in Tourney and
Rubik, but not in Life, Judge, etc. Another observation is that combinations of (1) and (2) improve
the connectivity of the systems slightly. This is because optimizations (1) and (2) can identify
disjoint rule sets when there are many unbounded variables. The table shows results of applying

C&C on Life with the hash size of 4(life.nr.4)* and on ToruWaltz with two different free variables
and hash sizes of 3 and 4 each.

4We hashed a LHS variable into 4 buckets.
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Program Rules # | No Opt. With Opt.

1 2 1+2 14243

Life.NR 10 (3.8) (3.8) (3,8) (3.8) (8.,2)
Life.NR.4 18 (3,16) | (3,16) | (3,16) | (3,16) | (14,2)
Tourney 16 2.9 4.8) 29 | (115 | 134
Waltz 32 (3,30) | (5.28) | (330) | (5.28) | (11,18)
ToruWaltz 27 (226) | (226) | (2,26) | (4,24) | (4,29)
Toru.Waltz.3 63 2,62) | 2,62) | (2,62) | 424) | 424)
Toru.Waltz.4 99 (3,85) | (385 | (385 | (7.24) | (1.,24)
Rubik 66 2,64) | 460) | 2,64) | (11,54) | (18,13)
Judge 245 (48,41) | (48,41) | (48,41) | (58,31) | (60,26)

Table 1: Results of Static Dependency Analysis

3.5 Dynamic Behaviors of Clusters

Static analysis does not reflect the number of clusters that will actually be active concurrently.
To determine the dynamic parallelism, we developed a simple CREL execution system on a
shared-memory Sequent Symmetry system. This system provides minimal support of run-time
management and each cluster is mapped to a single processor.

Within each cluster only a single rule is selected for firing each cycle (This rule may be
partitioned into mulﬁple executions as described under Section 5, "Join level Match Parallelism™).
Concurrency profiles were developed to illustrate the run-time behaviors. Figures 5 and 6 give the
snapshots of the number of clusters active at any instant for the Life program, without optimization
and with C&C applied. The X-coordinate is the run time of the system in milliseconds. The
Y-coordinate indicates the number of active clusters with rule firings.

The static clustering analysis provides no gain of parallelism if no optimization is applied.
This is due to the heavy usage of pattern matching variables in OPS5 programs as well as the PS
programming style of using control variables. Since static analysis can not instantiate these free
variables, the initial clustering result without optimization always contains a heavily connected
cluster.

Optimizations 1 and 2 produce minimal improvement on all three benchmark systems. How-
ever, optimizations 1 and 2 are essential to make the C&C technique effective.

The use of the control variable in a sequential form severely limit the concurrency of the systems,
as in Figure 5. C&C always provides good results, provided there are eligible free variables to
partition. This can be observed in both the static result table and the concurrency profile in Figure

6. As this study of the dynamic behaviors of these systems demonstrates, there is a need to further
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Figure 6: Concurrency Profile of Life with C&C

exploit run-time parallelism with clusters.

4 Run-Time Checking for MRF

Within a CREL cluster multiple rule instantiations can be fired. But to ensure serializability the
values bound to the free pattern variables of the rule instantiations must be tested for interference.
Hence, the distinction between static analysis for multiple rule firing and run-time checking is the
ability to test variable bindings.

In order to allow MRF within a cluster, one needs to first check whether each pair of instantiations
in the conflict set can fire simultaneously. This problem is named [RTC1]. Given the results of
the above checking, one then needs to compute a subset of instantiations from the conflict set, that
can be fired in the current cycle without violating the serializability requirement. This problem is
named [RTC2]. The complexity of problems RTC1 and RTC2 is O(N?), where N is the number of

instantiations in the conflict set. Since N can be very large, reducing the cost of these problems is
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a primary concern.

4.1 Problem RTC1

Given a conflict set we need to determine for each pair on instantiations, I, and I,, whether
simultaneous firing of I, and I, violates serializability. This can be done by verifying if there is
an interference relationship between the two instantiations despite the values bound to the pattern
variables. Potential interference relations are easily determined from the dependency graph. The
specific variables that must be compared are easily determined from the text of the interfering rules.

The worst-case size complexity of the conflict set is exponential in the number of CE in a rule.
Although the average size of the conflict set is small and worst-case is rarely, if ever achieved,
the effect of large polynomial terms do appear.[17] One concern is that the overhead of executing
a large number, O(N?), of run-time interference tests could easily overwhelm the performance
obtained by the optimized compilation of the match code.

To reduce the execution time of problem RTC1, The run-time interference check predicates are
precompiled into C code, similar to that produced for matching by the OPSS.c compiler itself. The

example in Figure 7 demonstrates the idea.

Assume there are two rules Py, Py and the conflict set are:

(literalize A al a2)

(literalize B b1 b2)
(literalize C c1 ¢3)
(PP1 ®P2
(A Tal <x>) (B bl <m>)
B 1bl <x> Tb2<y>) (C Tcl <n>)
—(C Tcl <y>) —_ >
— (make C {cl{<n>+1))
(make A |al <x+1>) )
(remove 2) 10
)
L=[A DB 12),(<x>=1,<y>=2),
I =[B 12)C 1,(<m>=1,<n>=1),
I =[B 13)(C 2),(<m>=1,<n>=2),and
L=[B13)C 1, (<m>=1,<n>=1)

Figure 7: An Example of RTC1, where precompiling generates low overhead run time checking.

Interference between instantiations I; and I, exists because firing I; removes WME (B 1 2)

and (B 12) is in I,. In addition, firing I, creates a new WME, (C 2), which invalidates LHS(I;).
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However, there exists no interference between I; and Is. Simultaneous firing of I; and I3 can not be
allowed by the static dependency analysis, since there exist cycles between rule P1 and P2 through
pattern-equivalent WME classes B and C and free variable <n >and <y >.

Therefore, a combination of the static analysis and the observation that at run-time, it is the
case that all the free variables are fully instantiated leads to the idea of precompiling run-time
checking predicates based on the static analysis approach. Specifically, the differences between
instantiation pairs (I1, I3) and (I;,Iz) reside in the binding of variable < n > and the second WME
of class B. The precompile and optimized run-time checking predicate for rule P; and P, then can

be expressed in the following pseudo code:

((y1 4+ 1#x2) A #31)) (2)

This example illustrates the basic idea of how CREL precompiles run-time checking predicates
to reduce run time overheads. To summarize, to allow MRF within a cluster, we precompile
and optimize the set of RTC checking predicates for all rule pairs in the cluster. At run time in
the conflict resolution phase, all pair of instantiations are checked for interference by using these

predicates.

4.2 Problem RTC2

Assume the size of the conflict set (CS) is N and we have run through the checking predicates on
all pairs of instantiations. The results of the checking are stored in a matrix called RTC[N][N].
Problem RTC? is to find a subset, CS’, from CS, such that firing all instantiations in CS’ guar-
antees serializability. In other words, there exists no interference relations between any pair of
instantiations in CS'.

For this type of problems, the best known sequential algorithm to compute a optimal subset has
complexity O(N?), N being the size of the conflict set.[20] To avoid excessive run-time overhead
for cases of large N, a sub-optimal grouping algorithm of O(N) complexity, illustrated in Figure
8, is used. The sorting step in the grouping algorithm, is performed in parallel, with one task

responsible for sorting all instantiations from the same rule.

4.3 The Effects of Clustering on Run-Time Checking

The purpose of the run-time checking is to allow firing of multiple instantiations for each cluster,

within every cycle. The final objective of doing this is to speed up the execution time by reducing
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Given IG = (V,E), where V= {Ii | ;in CS },
E = { Ejj | RTCLuma (L, J))= F}
I; is from rule Py, I; is from rule Py.

Let CS’ = empty set, /* the result variable */
neighbor(l;) = neighbor nodes of [;

Begin

V := Sort V into ascending order of the degree of nodes;

While V< > 0do { 10
Vhead = The head of V;
V=V — {Vhead};
CS’ =CS” + { Vhead };
V =V — neighbor(Vhead);

}

End; /* CS’ holds the set of instances for firing */

Figure 8: Grouping Algorithm for RTC2

the total number of cycles. Computing [RTC1] and [RTC2] introduces overheads that does not exist
in the sequential execution cycles of OPS5. Efficiency, therefore, is the most important criteria.
The complexities of solving both [RTC1] and [RTC2] depend on N, the size of the conflict
set(s) involved, which in turns depend on the total number of rules in a system. From the results
in Table 1, static clustering can reduce the rule number of a cluster by an order of magnitude.
Since the firing of two rules from two clusters has no effect on the correctness of the execution,
run-time checking needs not be performed on a pair of instantiations from different clusters. Static
clustering, therefore, can reduce the complexity of both [RTC1] and [RTC2] significantly. This

will be elaborated in Section 7.

5 Join-level Match Parallelism

In most production rule systems, testing and binding of variables is performed by accessing
working memory through an index structure called an alpha-memory.® There is one alpha-memory
per condition element.5 Alpha-memories provide fast access to the subset of data that matches
intracondition pattern constraints, such as constant tests. The process of testing and binding pattern

variables is analogous to a database join operation. The basic step of the TREAT incremental

50r AMem(] in our description of the algorithms.
1dentical condition elements can share a single alpha-memory.

19



Amem-tree

= 2o
“.& o,
@. ....................... .@ New WMEs

(shadowed_AMem)

Figure 9: Example of join-level parallelism

match is to initiate a multiway join for each working memory update. Let B and C represent the
alpha-memories of rule p2 in figure 7 and b is the new WME to be added to B. Then the conflict
set is determined by the join of these two alpha-memories. The derivation of the conflict set before

and after the updates(CS and CS’) is shown below:

CS=BXC
B'=B+b

CS' =B’ X C

= (B+b)XC

= (BXC)+(bXC)
=CS+(bXC)

The second aspect of run-time parallelism in the CREL system is to introduce join-level match
parallelism by performing concurrent multiway joins, one for each alpha-memory update. Despite
the previous statement on the reduction of match time percentage it was conjectured that it is
important to parallelize all aspects of production system execution to maximize overall speed-up.
Join-level parallelism was introduced by altering the OPS5.c compiler to produce new parallel join

code that does not require locking the alpha-memory structures.

5.1 Join Subtasks

To illustrate the organization of the join execution consider the example in Figure 9. In this figure,
A, and B represent the initial alpha-memory structures. a and b represent the newly created WMEs,
and the diagram indicates matching of a with B and A with b. The sequence of actions by the

sequential TREAT algorithm on this example is given in(3):

(aXB), (A"=A+a), (bXA'), (B'=B+Db) (3)
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In (3), multiple updates to the alpha-memory structures are processed by interleaving a update with
a join operation. One possible solution is to execute the sequence in (3) by pipeline parallelism
using locks on the alpha-memory structures — similar to the token-level parallelism exploited by
Gupta.[6] Locking will impose unnecessary sequential constraints and was a noted bottleneck in
Gupta’s work. Alternatively, with the help of a compile-time transformation, we were able to
design parallel joins without locking alpha-memory structures.

To avoid locking alpha-memory structure the structure must remain constant for the entire
join execution. Therefore, an auxiliary data structure, called “shadowed-alpha-memory”, is used to
store all alpha-memory updates. The shadowed-alpha-memory structures establish a clear boundary
between the “old” alpha-memory structures and the new ones. The join phase execution (3) can

then be decomposed into the following parallel join tasks(4)
(@xB) | (bXA)[ (akb) )

The term, (a X b), in (4) is necessary to compute the same join results as in (3). The type of join
between a *new’ alpha-memory cell (a) and an old’ alpha-memory structure (B) is called a regular
join. All join tasks must complete before the alpha-memory structures A and B can be updated,
introducing a new source of barrier synchronization.

Although this appears simple and convenient the simple approach can lead to (2N — 1), where
N is the number of CE in the rule. In addition to spawning N primary subtasks, one for each
shadow-alpha-memory, a naive approach requires (2N — N — 1) subtasks to compute the missing
crossproducts; far to many to be effectively handled in the run-time environment.

Using algebraic manipulation, the (2N — 1) terms can be restructured into N parallel joins.
The structure of these parallel joins is as follows. the alpha-memory structures are represented as

Aj, Ay, ..., Ay and the shadowed-alpha-memory structures are represented as aj, az, ..., an.
(Aj M A; X A;3... May)
| (Ap XAy X A3 X Ay... May_y X (Ay +ax))
I
| (Al X Ay Mag X (Ag+aq)... X (Ax +an))
| (A Mag b (As +a3) ] (Ag +ag)... X (Ax +ax))
| (a5 ™ (Ag +a2) M (As +a3) X (Ag+a4)... X (Ax +ax))
)
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Given arule of N CEs, assuming the old AMem[] index is [1..N].
The old AMem[1..N], and the newly created WME trees, shadowed—AMem([],
are A[1..N] and a[1..N], respectively. Both A[1..N] and a[1..N] are already built.

Ploinl():
Begin
Foralli=[1.N]do {
For each cell x in afi] do {
add join work Join(i,x) to the Work Queue;

1 10
}
End
Join(i,x): /*i:idx, x: join seed */
Begin
integer k; /* join index */

Forallk=[1.i—1]{

joinon A[k];
} 20
For all k = [k+1..N] {

join on (A[k]+a[K]);

}
End

Figure 10: Algorithm PJOIN1

Further, each of the N joins can be seeded by the change to alpha-memory,(a; above), and
composed with a fixed join structure. This seeded structure is consistent with the organization
of the code generator in the OPS5.c compiler, which generates a distinct code segment for the
join seeded by each CE.[15] CREL modifies the OPS5.c join code generator using the PJOIN1
algorithm, making it possible to produce concurrent join code at compile time.[11]

Figure 10 lists the pseudo-code of the parallel join algorithm. Algorithm PJOINT first updates
the shadowed-alpha-memory structures. An index number is assigned to each CE according to its
absolute position in the rule body. Algorithm PJOINI then loops through each shadowed-alpha-
memory entry (defined as the join seed) and invokes one join subtask. Each join subtask is a
(N-1) depth nested loops, with the domain of each join loop set according to the relative position
of its index to the index of the join seed. Assuming the CE index of the join seed is i, the fixed
join pattern is such that the join seed only joins with all the old alpha-memory structures with
CE index smaller than i, and then joins with both the old alpha-memory structures as well as the

shadow-alpha-memory structures for the ones with CE index larger than 1.
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5.2 Effects of Negated CEs

Negated CEs, (~CEs), pose an additional problem for join-level parallelism. ’Making” a WME that
matches a —CE may invalidate some of the instantiations in the conflict set. This is not a problem
for the sequential implementation of TREAT algorithm, since any invalidated instantiations are
guaranteed to be present in the conflict set. This is not the case for the parallel join structure
represented by PJOINL. There is no sequencing constraint among the parallel join subtasks of
positive or negated CEs. A join seeded from —CE may compute an instantiation that is to be
invalidated that has not yet been calculated by a join seed from a positive CE.

An example is illustrated in Figure 11, where multiway joins requires a specific order of
evaluation and all negated condition elements must appear at the end of a rule. This can be done
through the compiler. The instantiation (a1, bs,cz), from the —CE join of (a3 M by M (¢1 + ¢2))
with b, as the join seed, may not exist in the conflict set when it is searched for deletion, since the
instantiation, (a;, bz, C2), is a result from the join work of (a; M by M ¢y), where c; is the join seed.

Based on the following observations:

1. At the beginning of the current match cycle, any instantiation containing WME entries

exclusively from the “old” alpha-memory structures is guaranteed to be in the conflict set

2. To avoid the use of temporary storage to hold the join results seeded from —CEs, one needs
to ensure that every instantiation that is to be deleted from the conflict set due to the presence

of -CEs is guaranteed to be present in the conflict set during the deletion phase.

3. Reordering CEs has no effect on the completeness of Algorithm PJOINL.
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Figure 13: Cluster flow chart.

It is sufficient to mechanically rearrange the join order such that all negated CEs appear at the

end of a rule. This was also performed by altering the OPS5.c compiler.

6 The CREL Run-Time Environment

Given a CREL program, there may exist multiple clusters in the system. Each cluster in the system
executes the same basic code block as in the sequential production system cycles, as illustrated in
Figure 12. Figure 13 gives the flow chart of the code structure within each cluster. Recall that
within each cluster only one rule will typically execute in parallel. The decomposition of this rule
by the join algorithms in Section 5 may lead to multiple executable parallel tasks.

Compile-time analysis clusters the systems and generates code for parallel join subtasks. The
CREL run-time manager’s responsibility is to effectively coordinate the execution of these tasks
under the resource constraints, such that the total execution time of the CREL program is optimized.

For shared-memory machines such as the Sequents, the resource constraint is captured by the task
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allocation to the processing elements. excessive overheads on the run-time management, the CREL
run-time manager should provide little intervention on the program execution. The CREL run time
manager should introduce as little overhead into program execution as is possible. Therefore, we
designed a simple, self-guided process management scheme as follows. A shared work queue is
allocated for each cluster in the system. Within each cluster, the individual subtask is responsible
for maintaining a proper sequence of execution for the cluster tasks. At the beginning of a execution
cycle, for example, a task called mgr! is responsibility to receive WME update messages from
other clusters, process the WME updates, and spawn the join subtasks. To maintain the proper
sequence of program execution, the mgrl also needs to append a task (mgr2) to the work queue.
The function of mgr2 is first to do a barrier wait on all join subtasks, and process alpha-memory
updates, etc.

Each PE can freely access all the work queues and execute the task on a work queue. Mutual
exclusive access to each work queue is ensured through locking. Each PE has a different access
pattern in scanning all the work queues to avoid contention. Other implementation issues in
CREL run-time management, such as modular code design to reduce run-time overhead, cluster

communication, and memory management are discussed in details in [11].

7 Analysis of the Results

This section presents results from the performance measurements of the CREL system on a set
of benchmark programs. To observe individual effects of the sources of parallelism, the CREL

system is implemented so that factorial experiments can be performed.

Mea. || Parallel Match | Clustering | MRF
1 N N N
2 N N Y
3 N Y N
4 N Y Y
5 Y N N
6 Y N Y
7 Y Y N
8 Y Y Y

Table 2: CREL Performance Matrix.

The CREL performance matrices are organized by the key issues of the CREL system. The

measurement plan is illustrated in Table 2. Specifically, effects from individual or combined sources
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Figure 14: CREL overall speedups.

of parallelism can be measured by switching on or off these key features. The measurement # 6
in Table 2, for example, with N PE and multiple rule firing, without clustering, is to measure the
combined effects of the parallel match multiple rule firing, but with no static clustering.

In addition to the total execution time, additional efforts were made to collect measurement
data to facilitate further understanding of the system behavior. Measurements of such include the

message passing overheads, the costs of run-time checking, etc.

8 Benchmark Programs

A set of benchmark programs wer chosen for the performance analysis of the CREL systems: Life,
Waltz, and Tour-Waltz, and a revised version of the Tourney program. The Life is a data driven
type of program. The Waltz implements the Waltz labeling algorithm. Toru-Waliz is a different
implementation of the Waltz algorithm with more rule parallelism. Tourney is a search program
to solve the tournament scheduling problem. The four benchmark programs were examined to
ensure they are scalable in data sizes. The input data size and the number of PEs add additional

dimensions to the spectrum of the CREL performance matrices.

8.1 Overall Speedups

This section discusses the results of the performance benchmarks. “Overall speedup” means the
CREL system activate all the features given earlier. In other words, the comparison is made between
the sequential execution of OPS35 systems and the CREL implementation with parallel match, static
clustering/asynchronous execution, and multiple rule firing. Figure 14 plots the speedup ratios of

the full fledged CREL system with C&C technique. The speedups obtained on these system (with
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Figure 16: CREL speedups(b).
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2 fold replications of C&C) range from 6 to 12. However, for some systems, the combined effects
of CREL and C&C can result in arbitrary improvements.

Figures 15, 16 give the speedup rations of the CREL systems without using C&C, with multiple
data set overlayed. The CREL system achieves speedups ranging from 2.5 to 6 on the the set of
original benchmark programs. The number of PEs is limited to 12 due to the hardware limitation.
The following sections discuss individual contributions from various sources of parallelism.

Through careful study of the system behaviors of the benchmark programs, it was determined
that a majority of these benchmark programs are highly sequential by the control variable. The
sequentiality is embedded in the algorithm design, and most of our approaches can not substantially
increase the parallelism. We also show that by applying the C&C technique to replicate the rule sets
in these systems, we can achieve significant performance improvements by reducing the sequential
effects of the control variable. Such results further show that the traditional programming style
used in these benchmark systems is the bottleneck in the CREL parallel execution model.

Another explanation for the limited performance increase is that the TREAT based sequential
implementation of the OPS5.c compiler already achieved significant performance improvements
when compared with the original RETE based systems. Because of this, some of the fundamental
issues in parallelizing production systems have changed. Match, for example, no longer is the
primary candidate for parallelization. Even the incremental match network is emerging as a
bottleneck for the CREL systems because of its close-coupled data structures. These observations,
however, do not conflict with the fundamental design philosophy of the CREL system. In other
words, the CREL methods such as static clustering, parallel match, and run-time checking for

multiple rule firing, can still be applied to newer generations of parallel productions systems.

8.2 Join-Level Match Parallelism

This section discusses the performance improvements obtained from the join-level parallel match.
During the performance measurements, only join-level parallel match is activated and all other
sources of the CREL run-time parallelism are turned off. Figure 17 plots the speedups from
match parallelism, for each application with multiple data set overlayed. The results given in this
figure confirm the previous statement on the match time percentage and the limitations of match
parallelism. Table 3 lists the match time and the percentages of these benchmark programs.

To study to effectiveness of the CREL join-level parallelism, the actual match time is isolated

from the total execution time and compared between the systems with and without match paral-
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Life.20 | Life.30 | Toru.l1 | Toru.2 | Tour.16 | Tour.64 | Waltz.5 | Waltz.7
Time || 103954 | 363323 | 80333 | 183149 | 25370 | 978182 | 262542 | 460102
Percent. 21.63 27.75 3406 | 37.16 55.51 57.24 56.60 57.99

Table 3: Match time and its percentage.

lelism. Figure 18 and 19 illustrate the reductions in total match time in the systems as the number
of PEs increases.

The limited success of the join-level parallelism can be attributed to the management of the
alpha-memory structures. Specifically, the select codes in the CREL system — the part of the
code that loops through WME changes and updates the corresponding alpha-memory structures —
are executed sequentially to avoid locking overheads. From the statistics gathered, the sequential
select codes take up from 6.5% to 10% of the total execution time. During the updates of the
alpha-memory structures by these select codes, there is essentially no parallel join work available
for the idle PEs to execute. The sequential select code, coupled with the use of control variable in

the benchmark programs, severely reduces the overall system utilization in the match phase.

8.3 Clustering

This section discusses the effects of clustering on various aspects of the CREL run-time system,
especially the effects of clustering on parallel match. Other issues related to clustering will be
discussed later in the section of multiple rule firing.

The effects of clustering on the CREL system with parallel match but without run-time checking
can be observed by comparing the actual run times of the same system, both with and without

clustering. Figure 20 and 21 give the improvement ratios of the systems with clustering compared
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Figure 18: Match time reduction by join-level parallelism(a).
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Figure 21: Match and clustering speedups(b).

to the ones without clustering.

The results from Figures 20 and 21 show that there is essentially no effects of static clustering
on the overall system performance. This can be attributed to the sequential PS programming style,
i.e., the sequential use of control variable. Specifically, although static clustering produce multiple
clusters in a system, the actual concurrency of the clusters is limited by the sequential value of the
control variable.

Multiple clusters and asynchronous execution introduce communication overhead between
clusters. Communication overhead occur in both the sending and receiving ends. Specifically,
the sender should ensure that WME changes will not be sent to "unrelated" clusters. "Unrelated”
clusters mean those clusters that will not have alpha-memory cell changes due to the WME changes.
It is therefore necessary for a sender to record a separate set of WME changes for every other cluster
in the system. Once the messages are sent, the receiving end will copy the messages from the

message queues and process these messages accordingly. Figure 22 and 23 illustrates the ratios of
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message passing overheads compared with the ones with no clustering. Although one can observe
an increase of message overhead through the clustering technique, the small percentage (from 4%
to 9%) of the message overheads was offset by the reduction in the number of active rules through

clustering.

8.4 Run-Time Checking and Multiple Rule Firing(MRF)

To observe the effect of MRF, see Table 4, which illustrates the performance gains from applying
only the MRF technique to the CREL systems running on a single PE. Specifically, the first row in
Table 4 shows the speedups of applying MRF to the benchmark systems with only one PE in the
systems. As one can observe from these statistics, MRF contributes a major portion of the overall
CREL speedups. To illustrate the effects of MRF from another viewpoint, Table 4 also lists the
statistics of these systems in terms of the numbers of total cycles per execution, and number of

firings per cycles. The second row in the table gives the total numbers of cycles for the single rule
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Desp. || Life.20 | Life.30 | Toru.1 | Toru.2 | Waltz.1 | Waliz.3 | Waliz.5 | Waliz.7
Cpu. 1.57 1.56 3.32 3.07 1.49 1.62 1.62 1.59
CylL(S) | 3279 6703 1033 | 1561 160 2436 1611 2145

CyL.(M) 856 878 11 11 85 1176 11 11
Fir.(M) || 2876 6702 1031 1559 160 2436 1629 2177

S. Cyl. 845 1865 0 0 60 2100 0 0
Fir/Cyl 184 372 93 141 5 5 148 198
SD. 176 380 163 243 0 0 170 226

Table 4: Effects of MRE
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Figure 24: Comparisons of clustering effects on MRF(a).

firing cases. Thus they also represent the total numbers of rule firings in the systems. The third and
fourth rows list the total numbers of cycles for the cases of MRF, and the number of rule firings,
respectively. The fifth row lists the parts of the systems that are intrinsically sequential, and the
sixth and seventh rows list the average numbers and the standard deviations of the rule firings per
cycles.

With only multiple rule firing , it is possible that there are parts of a program which are
intrinsically sequential and that no improvements can be made by MRF only. For the parts of the
systems that do allow MREF, the apparent advantages of MRF over the single rule firing systems
can be observed from these numbers.

As stated earlier, clustering significantly reduces the costs of run-time checking. Figure 24 to
25 plot the ratios of MRF costs of the ones without clustering, to the ones with clustering. The

positive effects of clustering on MRF can be easily observed.
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8.5 Orthogonality Study between MRF and Match Parallelism

This section investigates the orthogonality between match parallelism and multiple rule firing. Such
orthogonality implies the parallelism from multiple rule firings and parallel match are independent,
and the combined speedup of these two techniques is the product of the individual speedups from
each approach. One can observe, from the statistics gathered, that such orthogonality does not
exist.

Figures 26 through 29 plot, for each application, the speedups from parallel match, the speedups
from the combined effects of parallel match and MRF, and the ratios between them. One can
observe that the ratios are almost flat across the span of a number of PEs and conclude there exists
no orthogonality between parallel match and MRF. This is contradictory to Gupta’s results. The
reasons are the total amount of match work does not increase due to MRF, and part of the match

work for the next cycle is shifted to the conflict resolution in the current cycle.

—t Lif€.30.PM
...... grmeeee Lif.30.PM.MRF
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Figure 26: Orthogonality study of MRF and PM(1).

34



8.6 Constrained Copying

Results presented so far show that the control structures embedded in the benchmark programs are
the main cause of the limited success in CREL systems. The best method to cope with this is the
C&C technique. To demonstrate the effectiveness of the CREL approaches, this section discusses
the results of code replication to increase parallelism.

Three benchmark programs are expanded and the same performance measurement procedures
were performed on these replicated systems. Figures 30 and 31 illustrate the overall speedups of
the three replicated systems, compared to the original systems. One can observe the substantial
improvements on the replicated systems. Study of the execution traces show that the increased
concurrency among clusters is the main cause of the performance improvements. Since the
increased concurrency is a direct result of reducing the negative effects of the use of control
variables, this experiment demonstrates the effectiveness of the static clustering and run-time
checking methods.

To illustrate the effectiveness of the join-level match parallelism, the match times of the
replicated systems were compared to the sequential ones. Figure 32 plots the match time ratios
of the original systems to the replicated ones. These results once again illustrate that the limited
improvements in the original systems are caused by the lack of large numbers of active clusters.
In addition, the improvements in the match phase can also attributed to the reduction of the join
complexity, which is the original goal of Constrained Copying.[22].

From the viewpoint of CREL programming, the results in this section shows that one has to
program with parallelism in mind to take full advantages of the CREL environments. The first step
toward proper CREL programming is not to rely on using sequential “control variables™. In other
words, even if control variables are used in the program developments, one should not program
a system in such a way that the concurrency of the system is limited by the existence of a single
control variable. Instead, multiple occurrences (WMEs) of the control variables or a more complex
structure should be used to allow more parallelism that can be exploited by the CREL execution

scheme,

9 Conclusions

The technical innovations of the CREL systems can be divided into the following five categories;

the language and its execution model, static analysis and optimizing transformations, run-time

35



checking for multiple rule firing, a parallel match based on the TREAT algorithm, and issues in the
CREL run-time management.

The CREL language and its execution model eliminate the OPSS recency resolution strategy
and allow asynchronous execution of independent clusters, along with multiple rule firing within
each cluster. The static analysis and transformations identify, at compile time, clusters of rules
that can be executed independently and asynchronously. Through compile time generated run-
time checking functions, the CREL system detects dynamic interference relations among instances
from the same cluster and performs conflict resolution thus allowing multiple rule firing within
each cluster. The CREL parallel match algorithm achieves match parallelism at the rule level
while avoiding the need of fine-grained locks on the alpha-memory cells, and reduces run-time
management overheads by generating a number of parallel join tasks invoked by the new WMEs
through assistances from the CREL compiler. The CREL run-time management System ensures
the partitioning of works and balances of the overall system loads, while maintaining minimum
amounts of overheads.

A factorial measurement study on the CREL system was performed to determine the effects
of various features of the system. The observations made in the result section can be reiterated
as follows. We first observe that because of the improvements in the compilation techniques of
the sequential match algorithm, the focus of attempts to parallelize production systems has been
shifted. Specifically, match no longer is the primary target for parallelization. We then observe
that the CREL’s static analysis and clustering technique produce limited results on the set of OPS5
benchmarks. This can be attributed primarily to the use of control variables in these benchmark
systems. Other factors include the declarative nature of production systems, where rules are written
to cover the entire system through free variables. As a result, the information obtained at compile
time has limited effectiveness. The static clustering technique, however, establishes the basis of the
CREL execution model and eliminates the OPS5 recency strategy. The clustering technique also
reduces the overhead of run-time checking for MRF by generating optimized checking functions
at compile-time, and by reducing the complexity of the task of run-time checking by an order of
the size of clusters.

The most significant performance improvement in the CREL systems is derived from run-
time checking to allow MRF in one cycle. The effectiveness of MRF is significant in the original
benchmark programs, and is further enhanced for the cases of the systems with constrained copying.

We observe that through MRF, the cycles of a system can be significant reduced. Since the execution
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cycles introduce synchronization overheads in every parallel system, the focus of attention in
parallelizing production systems should be to reduce the total execution cycles, instead of reducing
the cycle time.

Last but not least, is the observation that the technique of constrained copying helps in every
aspect of the system. The results from the replicated systems support such an observation. The
results from the experiments of constrained copying further support our belief that the bottleneck in
the CREL system results from the use of control variable in a sequential form exhibited in the OPS5
benchmarks. Such an observation leads to the conclusion that to exploit parallelism in production
systems, always program with parallelism in mind. Specifically, do not use control variable(s) in a

pure sequential form.
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Figure 27: Orthogonality study of MRF and PM(2).
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Figure 28: Orthogonality study of MRF and PM(3).
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Figure 29: Orthogonality study of MRF and PM(4).
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Figure 32: Comparisons of match time between the replicated and the originals.
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