Parallel Execution of
Production Systems

Chin-Ming Kuo

Department of Computer Sciences
The University of Texas at Austin

TR-92-42 November 1992

PARALLEL EXECUTION OF PRODUCTION SYSTEMS

by

CHIN-MING KUO, M.S,, B.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
May, 1991

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Browne,
for the past 6 years of guidance. This thesis will not be complete without his
encouragement and confidence in me. Special thanks to my co-advisor, Dr. Miranker
for providing the critical comments during various stages of this research. I would
also like to thank the members of my committee, Dr. Mok, Dr. Kumar, Dr. Malek,
and Dr. Werth for their suggestions and comments. Last but not least, I would like to

thank my wife, Ing-Chin, for her patient, confidence, and supports in every aspects

of my study in UT.

CHIN-MING KUO
The University of Texas at Austin
May, 1991

PARALLEL EXECUTION OF PRODUCTION SYSTEMS

Publication No

Chin-Ming Kuo, Ph.D.

The University of Texas at Austin, 1991

Supervising Professor: James C. Browne and Daniel P. Miranker

The production system or rule-based system paradigm is a widely used form of
building expert systems or artificial intelligence applications involving knowledge
representation and knowledge base search. As the complexity and size of expert
system applications expand, parallelizing production systems becomes an attractive

approach in attempts to speedup the executions.

Previous attempts at parallel structuring of rule-based programs have failed
to achieve desired levels of parallelism. This research is a comprehensive approach
to the parallelization of rule-based programs. The structure of the productions
systems is examined and static analysis techniques are developed. Several sources
of run-time parallelism are developed to restructure the cases where the dynamic

behaviors of the systems can not be detected by the compile-time analysis.

We propose a new production system language (CREL), more suitable
for parallel implementation, to allow asynchronous execution. Static dependency
analysis and dependency graph transformations are developed to explore poten-

tial parallelism at compile-time. Through compile-time dependency analysis and

vi

transformations, rules that are not closely related are partitioned into clusters for
asynchronous executions. At run-time, each cluster acts essentially as an indepen-
dent rule system, with its own match-select-act cycles. Medium-grained parallelism
is explored inside each cluster at three different levels — match, run-time consistency
checking, and conflict resolution. A simple run-time management scheme is used to

balance the system load.

Currently the CREL system is implemented on a Sequent’s Symmetry
shared-memory system. Despite fair amounts of overhead in synchronization, mes-
sage passing, management of the complex run-time structures, and garbage collec-
tion, etc., the CREL system achieves an order of magnitude of speedups on a set
of OPS5 benchmarks when compared with a sequential implementation based on
the best known match algorithm. The performance gain increases significantly as
the sequential constraints embedded in the programs were removed. We anticipate
significant results for CREL application programs designed specifically for parallel

execution.

vii

Table of Contents

Acknowledgments

Abstract

Table of Contents

List of Tables

List of Figures

1. Introduction

1.1
1.2
1.3
1.4
1.5

Production Systems : OPS5 as an Example

Parallelism in Production Systems

Summary of the CREL Approaches
Summary of the CREL Results

Future DIreCtions . . . « « v v v v v v e e e e e e e e e

2. Related Works

2.1
22

2.3
2.4

Previous Works

...........................

..........

Related Research Categorized by the Key Issues
221 Low-LevelMatch
2.2.2 Partitioning and Distribution
2.2.3 Parallel Firing and Synchronization
224 DISCUSSIONS .+ « « v v v o v e e e e

OtherRelated Works o« o o v v i i it o

Organization of the Thesis

......................

vi

viii

ix

3. The CREL and its Execution Models 19

3.1 Unified ComputationModel 19
32 CREL . . o i e e e e e e e 21
3.3 The CREL ExecutionModels 25
3.3.1 Bipartite Data Dependency Graph 26

332 Mutual ExclusionSet 28

3.3.3 DISCUSSION + « v v v v o e e e e e 32

3.3.4 Global vs. Local Synchronization 33

34 Exampleso 36
34.1 Examplel:Tourney 37
342 Example2: Life o 38

4. Dependency Graph Analysis and Transformations 41
4.1 Dependency Analysis 42
41.1 ControlDependency 42

4.12 Mutual Exclusion Revisited 44

413 DataDependency 46

4.2 Dependency Graph Transformations 46
421 Representing CREL LHS by Relational Algebra 47

4272 PropagatingConstants 49

423 Horizontal Partitioning With Constrained Copies 50

424 Multiple Rule Firing-Loop Unfolding 53

43 StaticAnalysisResults o 54
431 StaticResults« . ..o 55

432 DynamicResultso 58

44 ConclusionS . . . v v v v v e e e e e e e e 59

5. CREL Run-Time Parallelism

5.1 Characteristics of The CREL Run-Time System

52

53

5.4

5.1.1 Data Structures
5.1.2 Main Loop
5.1.3 Criteria for Exploring Run-Time Parallelism
Token Parallelism
5.2.1 Intra-Token Parallelism and Join Decomposition
Conflict Resolution and Run-Time Checking
5.3.1 The Problem
5.3.2 Previous Work and Related Issues
5.3.3 Problem RTC1
5.34 Problem RTC2

Conclusions

......

.........................

..............

........................

6. CREL Run-Time Management

6.1
6.2
6.3
6.4

6.5
6.6

7.1

7.2 Benchmark Programs

Background

Problem Statement
CREL Target System Architecture
CREL Process Management
6.4.1 Process Management and Synchronization

Cluster Communications and Memory Management

Conclusions

Performance Matrices

.............................

..........................

.....................

.........

.............................

Performance Evaluation and Analysis

........................

........................

61
61
62
64
65
66
76
80
81
82
83
90
92

94
94
96
98
99
103
107
109

73 Overall Speedups - v o v o 115
7.4 Token-Level Match Parallelism 119
7.5 Match Time Reduction 122
7.6 Clustering o oo 127
7.7 Run-Time Checking and Multiple Rule Firing(MRF) 129
7.7.1 Orthogonality Study on MRF and Match Parallelism 134

7.8 Constrained Copying« . oo 139
7.9 Conclusions . . . v v v v o b e e e e e e 141

8. Concluding Remarks 142
8.1 Future Directions« « « o ot it o e 144
BIBLIOGRAPHY 146

Vita

X1

List of Tables

4.1 Preliminary Static Dependency Analysis [Rlesults 56
5.1 CREL Run-Time Profiles e e e e e e e 66
7.1 CREL Performance Matrix. « « « o o o o o oot 113
7.2 Execution Time(ms) of CREL Benchmarlsiss. 116
7.3 Execution times of CREL systems with p.ziicallel match. 119
7.4 Match time and its percentage. e e e e e e 121
7.5 Execution time(ms) with parallel match atud clustering. 127
7.6 Message passing overhead(ms) of clusteriitng. 129
77 Execution times(ms) of CREL systems wiith MRF but no clustering. 130
7.8 Speedupsof MRFbyasinglePE. 131
7.9 Cyclereductionby MRF. e e e e e e 131
7.10 Run-Time Checking overhead(ms) of CRI: 1L systems. 134

xii

2.1

3.1
32
33
34

35

4.1

4.2

4.3
4.4
4.5
4.6
4.7

4.8

5.1

52

List of Figures

Examples of the RETE and the TREAT networks

...........

Execution paths of a production system.

A bipartite data dependency graph example

..............

Example of Mutual Exclusions.

...................

The example used in Theorem 2.3..

Unity-like code for the Tourney program.

Control variable and the precedence relations

.............

Examples of refinement by constant (a) and detecting disjoint at-

tribute sets (b)

.............................

Examples of the importance of attribute selections.

CCP algorithm and its example

Concurrency profileof Life.

Concurrency profile of Life with optimizations

............

Concurrency profile of Toruwaltz

...................

Concurrency profile of ToruWaltz with CCP of Size 4.

CREL key datastructures.

CREL Main_Loop

..........................

35

40

59

62

53

54

55

5.6

5.7

5.8

59

5.10

6.1

6.2

6.3

6.4

6.5

7.1

7.2

7.3

74

1.5

7.6

1.7

An example of token parallelism. 67
Algorithm PJOINL 70
The Problem due to the presence of -CEs. 72
Algorithm PJOIN2 73
Join estimation and decomposition. Lo 76
Anexample of RTC1. 84
A More Complex Example of [RTC1] &9
Grouping Algorithm for RTC2 91
The CREL run-time global picture. 101
CREL Run-Time Pseudo-Code 102
CREL Run-Time Code Partitions 104
PseudoCode ForPEloop« ... 106
Modifications to WME del list structure. 109
Life overall speedups.o 117
Toru overall speedups. o oL 117
Tourney overall speedups.o 117
Waltz overall speedups.o 118
Match speedupof Life. 119
Match speedupsof Toru. oo 120
Match speedups of Tourney. 120

X1v

7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
| 7.19
7.20
721
7.22
7.23
7.24
7.25
7.26
727

7.28

Match speedups of Waltz. 120
The effects of using control variables on token parallelism. 122
Match time reductions from token parallelism(a). 123
Match time reductions from token parallelism(b). 123
Overhead associated with parallel match(1). 124
Overhead associated with parallel match(2). 124
Overhead associated with parallel match(3). 125
Overhead associated with parallel match(4). 125
Overhead associated with parallel match(5). 125
Overhead associated with parallel match(6). 126
Overhead associated with parallel match(7). 126
Overhead-associated with parallel match(8). 126
Match and clustering speedups(a). - -o oL 128
Match and clustering speedups(b).o 128
Clustering effects of MSG overhead(a). 130
Clustering effects of MSG overhead(b). 130
Clustering effectson MRF(a). 132
Clustering effectson MRF(b). 133
Clustering effectson MRF(c). 133
Clustering effectson MRF(d). 133
Comparisons of clustering effects on MRF(a). 134

XV

7.29

7.30

7.31

7.32

7.33

7.34

7.35

7.36

7.37

7.38

7.39

7.40

7.41

742

7.43

Comparisons of clustering effectson MRF(b). 135
Comparisons of clustering effectson MRF(c). 135
Comparisons of clustering effectson MRF(d). 135
Orthogonality study of MRFand PM(1). 136
Orthogonality study of MRFand PM(2). 136
Orthogonality study of MRFand PM(3). 137
Orthogonality study of MRFand PM(4). 137
Orthogonality study of MRFand PM(5). 137
Orthogonality study of MRF and PM(6). 138
Orthogonality study of MRFand PM(7). 138
Orthogonality study of MRFand PM(8). 138

Speedups comparisons between the replicated Life and the original. . 140
Speedups comparisons between the replicated Toru and the original. 140
Speedup comparisons between the replicated Waltz and the original. 140

Comparisons of match time between the replicated and the original. 141

Xvi

Chapter 1

Introduction

Production Systems play an important role in building expert systems
and artificial intelligence applications involving knowledge representation and state
space search[41],[6],[56]. The current execution speed of production systems is
insufficient to support extensive developments of real applications. As the use of
rule-based system applications expands into new domains, there is also a growing

need for a faster execution model of production system programs.

The introductory chapter defines production systems, identifies the sources
of parallelism in such systems, and describes related issues. We then give a summary
of our approaches, which are detailed in the chapters that follow. We also give, in the
last two section, a preview of the results of this research, and the general directions

for future research.

1.1 Production Systems : OPS5 as an Example

Before proceeding to the discussions of the OPSS5 syntax, we would like to
mention a few words regarding terminology. Although the context of this research is
not specifically limited to the language of the OPSS5, we will to use special terms from
the OPS5 convention for consistency. In the following sections, special terminology
from the OPS5 language is presented in boldface and accompanied by its description.
After the introduction, we will assume it is clear that terms such as a WME represent

a Working Memory Element, or a memory cell as a general term.

OPS5[15] is chosen as our core language because of its popularity and
available applications. An OPS5 production system program is composed of a set
of production rules called rules, a set of data elements called Working Memory
Elements (WME) and an underlying execution mechanism (interpreter) governing

the execution of the program.

WDME:s are essentially the same as variables in conventional programming
languages. WMEs are grouped by class predicate types, the first attribute field in
a WME. Each class contains a fixed number of additional attributes to represent

various characteristics of a complex object in the system.

Each production rule consists of two parts: a left-hand-side (LHS) and a
right-hand-side (RHS). A LHS contains a list of condition elements (CEs), with
each CE term consisting of a list of test conditions. The RHS contains a set of actions
that perform updates to the working memory. The production rules represent long-
term knowledge of a system to control the state transitions, while the WMEs store
short-term “transient” knowledge of the system. From conventional programming
languages’ point of view, each production rule is an if-then statement where the

LLHS and RHS correspond to the if and then parts, respectively.

The test conditions in a LHS CE consist of a number of boolean operations
on variables. A variable is always free in its first occurrence in arule. All subsequent
occurrences of the same variable in the same rule are always bound. Each LHS CE
can be positively or negatively referenced in conjunctive normal forms. Negative
CEs means “there exists no WME satisfying the -CE conditions”. The example
given below illustrates the use -CEs. Variable bindings are achieved by specifying
the same variable in different CE terms. The entire LHS is also called a condition

list.

In the example rule given below, we have two CEs in the LHS, one positive

and one negative. The variable bindings are done explicitly in atr3 of ClassB WME,

and implicitly between atrl of classA and atr4 of ClassB.

An action in a RHS contains operators such as modify, make, and remove,
to perform updates to the working memory. All actions in a production rule’s RHS
are implicitly ANDed so that all actions must be executed when the instantiation is
selected for firing. Variable binding between different attributes is achieved through
specifying the same variable, as the < x > in the following example. Details
regarding the OPS5 syntax and semantics can be found in [15], [6]. An OPSS5 rule

and its interpretation is given below as an example:

(P Pi

(classA atrl <x> atrz2 <y>)
~(classB &tr3 (<z>=<y>) &atrd <x>)
-

(modify 1 atrl= <x> + <y> 33

Given two class A and B with attributes atrl to 4. Rule

Pi matches all WMEs of classA, M, and there exists no

Class B element N so that atrl of M equals atr4 of N

and atr?2 of M equals atr3 of N. If such M exists, modify it.

According to the history of the development of production systems[65],
the original execution semantics of a production system is as follows:
All rules are active at any time. Execution is carried out by repetitively looping
through the recognize-act cycle. During each execution cycle, each rule performs
tests on its LHS against the working memory. The “conflict set” is then formed
by collecting all the instantiations'. During the conflict resolution phase, the most
promising instantiation from the conflict set is selected as the instantiation to fire.

At the act phase, actions from the RHS of the selected instantiation are executed and

! An instantiation is the collection of WMESs that satisfy the LHS match conditions.

the updates are reflected back to the working memory. The execution cycle repeats

until the conflict set is empty or an explicit halt statement is encountered.

The type of computation performed in each execution cycle can be cate-

gorized as the following:

e Match
In the match phase, each rule evaluates its LHS test conditions on the working
memory. The match work in production systems resembles the query process-
ing in relational database systems (equivalence between the relational algebra

in Relational Database theory and the LHS condition list is given in Chapter

3).

The computational cost of the match operation can be high because the arbitrary
forms in variable bindings among CEs may result in cross products among a

large number of WMEs.

From the standpoint of state-space searches, since backtracking is not allowed
in production systems, match phase is important because it insures all the
possible search paths in the huge space will always satisfy the test conditions

and always lead to correct solutions.

¢ Conflict Resolution
In the conflict resolution phase, instantiations in the conflict set are selected for
firing. Since the resolution strategy has significant effects on the performances
of the system, various conflict resolution ? strategies were suggested(42]. In
OPS5 for example, strategies such as specificity and recency are designed as

heuristics for sequential execution.

2We shall use the terms “selection” and “conflict resolution” interchangeably.

In OPS35, a time-tag is associated with every WME to reflect the recency of
the WME, i.e., how recently the WME was updated. The time-tag of an
instantiation is defined as the maximum time-tag of all WMESs that constitute
the instantiation. The OPSS5 recency strategy uses such time-tags as the criteria

of conflict resolution.

Specificity, on the other hand, is an integer value associated with every instan-
tiation to measure the complexity of the test conditions of its LHS. Specificity
strategy means to select the instantiation from the conflict set with the highest
number of test conditions in its LHS. Both recency and specificity perform

well as search heuristics on sequential OPS5 implementations.

e Act
The RHS actions of the selected instantiation are executed and changes are
reflected to the global working memory. Typical actions in a RHS include

creation of a new WME, changing attribute values of WMEs, and removing

WMEs.

Up to now, we have only used OPSS5 as an example to describe the syntax
and semantics of a generic production system language. There are many strategies
one can use in the three phases above to make the execution model tailored to specific

environments.

1.2 Parallelism in Production Systems

Production Systems, in their generic form, appear to have a high degree
of parallelism since all rules in the system are active and perform the recognize-
act cycle simultaneously. Regardless of the conflict resolution strategies and the

execution models, the sources of parallelism in production systems can be categorized

by the different phases in the execution cycle as follows:

1. Match Parallelism
Given a LHS of arule, the test conditions can be represented as a discrimination
network where updates to WMESs are represented as dataflow tokens flowing
through the network. Regardless of the degree of the state-saving property of
the match algorithm, different granularity 3 will result in different degrees of
parallelism. One extreme is to treat, for instance, the entire match network as
a single computation unit. The other extreme is to distribute every test node
in the network across physical processors to achieve more match parallelism.

Chapter 4 discusses in details the issues related to parallel match.

2. Rule Parallelism
In the conflict resolution phase, if the semantics of the production system
allows parallel firing, multiple instantiations from either the same rule or
different rules in the conflict set satisfying certain constraints can be fired in
parallel, resulting in rule-level parallelism, or production parallelism. Since
different conflict resolution strategies may produce different execution paths
for a program, the design of the rule-level parallelism model require changes

of definitions of both the language and its execution model.

3. Action Parallelism
After instantiations are selected, their actions can be executed in parallel.
Again, certain restrictions must be enforced to insure the integrity of the

working memory state and correctness of the execution.

3By granularity, we mean a unit of the match work. See Chapter 2 for more details.

Other potential sources of parallelism in production system exections in-
clude pipelining between the execution stages [22] and sharing of the match network,
among others. Due to the complexity of the problem as a whole, we will concentrate
on improving the above items in our research. In addition, an important characteris-
tic of production systems is that the execution cycle time* is small compared to the
overhead of communications and synchronization among the parallel tasks, it is not

necessarily beneficial to exploit every source of parallelism.

1.3 Summary of the CREL Approaches

So far, we have presented backgrounds and definitions of production sys-
tems. We also listed various sources of parallelism and their corresponding issues.
In this summary, we briefly describe the new approaches and rationales with respect
to the language, the execution model, the static analysis, and the run-time aspects of

parallel execution of production systems.

The status of parallelizing production system research can best be described
by the following statements[22] in explaining the limited speedup obtained in the

PSM project, centered on the Rete based parallel match:

1. For each execution cycle, the number of WMEs changed per cycle is small in

terms of the percentage of the total number of WMEs.

2. Even for such a small number of WMEs being affected per firing, the number
of rules affected is again small. The multiple effects of points 1 and 2 do not

make parallelizing matching on sequential OPSS a promising approach.

“The match, conflict resolution, and act cycle.

3. There is a large variation in the processing requirement (mainly match phase)
among the active rules. Since there must be a global synchronization point
for each cycle, all active processors must wait for the match phase of the

*hottest’ rule to complete the current cycle, thus degrading the overall processor

utilization.

Although other projects, which will be described in the next chapter, tried
to reduce the effect of point (3) by using the intra-rule parallelism to speed up all
active rule matchings, the overall gain is limited by the fact of match time occupying
only on the average of 50% instead of 90% of the total execution time. There has

been no attempt to improve points (1) and (2).

To correct these three points, we propose the following approaches: we first
change the semantics of OPS5 to allow more parallelism and asynchronous execution.
Static dependency analysis is then applied to the rule systems. Dependency graph
transformations are applied to the dependency graphs in order to optimize the static
analysis. Sources of run-time parallelism are identified and various techniques of
function partitioning are applied to the clusters in the systems to exploit run-time

parallelism and balance the system loads.

With the new semantics of CREL defined, one would be able to design
parallel production systems with well-structured blocks of rules representing methods
to solve subgoals of a problem. This will relieve the effects of point (1) and (2).
Parallel rule firing can also reduce the effects of (1) and (2) by increasing the
number of WME changes per unit time. Effective rule decomposition in graph
transformations as well as load balancing techniques in run-time can reduce the

effect of match time variance for point (3).

It is our belief that to achieve further improvements in speeding up pro-

duction system execution, new methods must be designed together with existing

suitable algorithms for various stages in the execution. Only when the combination
of best algorithms/techniques in various stages of the execution is applied can the

overall benefits be multiplied by individual improvements.

1.4 Summary of the CREL Results

The technical innovations of the CREL systems can be divided into the cat-
egories of the language and execution model, the static analysis and transformations,

run-time management, and a parallel match based on the Treat algorithm.

The CREL language and its execution model eliminate the recency resolu-
tion strategy and allow asynchronous execution and multiple rule firings. The static
analysis and transformations identifies, at compile time, clusters of rules that can be
executed independently and asynchronously. The CREL parallel match algorithm
achieves match parallelism at the rule level while avoiding the need of fine-grained
locks on the WMEs and related structures. The CREL run-time checking algorithm
performs consistency checking among instantiations at run-time to allow multiple
firing of these instantiations at the same time while maintaining the correctness of
the execution. The CREL run-time management system insures the partitioning of
work and balances the overall system loads, while maintaining minimum amounts

of overhead.

We present a set of performance measurements on the actual CREL systems
and perform analysis on these statistics. The observations made in Chapter 7 can
be reiterated as follows. We first observe that because of the improvements in the
compilation techniques of the sequential match algorithm, the focus of one’s attempt
to parallelize production systems has been changed. Specifically, match no longer is

the primary target for parallelization.

We then observe that the CREL’s static analysis and clustering technique

10

produce limited results. This can be attributed primarily to the use of control variables
in the benchmark systems. Other factors include the declarative nature of production
systems, where rules are written to cover the entire system through free variables.
As a result, the information obtained at compile time has limited effectiveness. The
static clustering technique, however, establishes the basis of the CREL execution

model and leads to the elimination of the OPSS5 recency strategy.

The most significant improvement in the CREL system results from the
run-time checking to allow multiple rule firing (MRF) in one cycle. The effectiveness
of MRF is significant in the original benchmark programs, and is further enhanced in
the cases of replicated systems. We observe that through MRF, the cycles of a system
can be significant reduced. Since the execution cycles introduce synchronization
overhead in every parallel system, the focus of attention in parallelizing production
systems should be to reduce the total number of execution cycles, instead of reducing

the cycle time.

Last but not least, is the observation that hashing is very effective in every
aspect of the system. The results from the replicated systems described earlier, which

is a form of hashing, support such an observation.

1.5 Future Directions

In our view, further research on parallel production systems can be cate-
gorized as follows. Because of the shifts of focus in parallel production systems,
as observed in this research, efforts should be made toward the investigations of
developing new match algorithms and data structures that are more appropriate for
parallel or distributed processing. Because of significance of the effects from the use
of control variables, efforts should be made toward development of and experiments

a systematic method for CREL programming, both in terms of expressing parallelism

11

and the issue of correctness. Because of the proven benefits of MRF, efforts should be
made toward more efficient algorithms for the run-time checking process. Because
of the limited information available to the static analysis, efforts should be made to
provide a higher level descriptions to assist the static analysis process. Because of
the overhead in the current implementation, especially the join code sizes, efforts
should be made toward the development of compilation techniques that do not cause
near exponential growth of the executable image sizes. Last but not least, special
attention should be focused on techniques to fully utilize the hashing concept, both
in the area of reduction of match complexities, and in the area of providing more

concurrency for the CREL system.

Chapter 2

Related Works

This chapter discussed some previous work and the key issues in paral-
lelizing production systems. We also discuss the strengths and weakness of each
research project and conclude with a brief description of the organization of the

chapters that follow.

2.1 Previous Works

In this section, we described the history of the development of production
systems. Early work on production systems concentrated on refining conflict reso-
lution strategies [42]. Recency was suggested as a heuristic for efficient state space
search and proved to be a good strategy for sequential implementations. The OPS5
language was then designed to standardize the language used for production sys-
tems and the construction of rule-based expert systems. Efficient sequential maich
algorithms then became the primary research focus. Recently, parallel implemen-
tations became feasible because of the advances in VLSI technology and parallel
processing research. Examples are the DADO project at Columbia University [62]
and the PSM project at Carnegie-Mellon University [24]. The former concentrates
in parallelizing match work, specifically the RETE algorithm. The latter focuses on
effective implementations of various Al applications, including production systems,
on DADO’s special tree structured architecture. Although both projects are excellent

research efforts, the end results from both projects failed to achieve the anticipated

12

13

B cell

Conflict Set

Fig. 1.1(a) Fig.1.1(b)

Figure 2.1: Examples of the RETE and the TREAT networks.

speedups.

2.2 Related Research Categorized by the Key Issues

According to the sources of parallelism, the key issues and the correspond-
ing strategies in improving the performance of production system execution can be
categorized as the low-level match, production system partitioning and distribution,
and parallel firing and synchronization [47]. These topics are elaborated separately

as follows.

14

2.2.1 Low-Level Match

In general, the percentage of the working memory affected by the firing
of one rule is small, so one should restrict to as small a set of rules as possible to
perform match work in the next execution cycle. The RETE match algorithm[16]
was invented first to restrict the set of rules necessary to perform match in each
cycle, and secondly to reduce the overhead of match work by storing intermediate
match states of previous cycles in a RETE network so the matching can be done

incrementally. Fig 1.1(a) gives an example of a RETE network.

The TREAT algorithm[46] is another incremental match technique that
takes advantages of the match networks. The key idea of TREAT comes from the
observation that the majority of the nodes have duplicate information stored in a
RETE network, thus redundant work is performed every time an update token flows

through the network.

Under sequential implementations, although the worst case time complex-
ity of TREAT is the same as RETE, TREAT outperforms RETE in both space and
average time complexities. We will later discuss in detail the tradeoff between these
two match algorithms in our parallel implementation. Fig. 1.1(b) gives an example

of a TREAT network for the purpose of comparison.

2.2.2 Partitioning and Distribution

Orthogonal to the match parallelism (also known as intra-rule level paral-
lelism) is the rule-level parallelism. Oflazer[50] first studied the aspect of production
system partitioning as a means of increasing parallelism. The basic idea is that since
the percentage of working memory affected by a rule firing is small, a production
system can be partitioned into disjoint sets so that rules from the same set can be dis-

tributed to different physical processors for efficient parallel match work. Although

15

multiple rule firings is not allowed in this approach, it is still classified as exploiting

the rule-level parallelism.

One of the drawbacks with Oflazer’s approach is that if the semantics of
the language remains the same, i.e., the system still support only single rule firing.
Therefore, at any instance, the set of “interesting” rules in an execution state is
small compared to the number of rules in the entire system. ! Another potential
problem with this approach is the conflicts of interests in distributing the partitions.
On one hand, rules in the same partition tend to become active at the same time;
thus, distributing them onto separate physical processor elements(PEs) will reduce
the overall match time. On the other hand, rules in the same partition tend to make
references/updates to the same classes of WMEs; consequently, allocating them in

the same PE will reduce the communication overhead.

2.2.3 Parallel Firing and Synchronization

Most of the existing work in parallelizing production systems concentrates
on the match phase[23],[24], [21], [61], [56]. Presumably this is attributable to the

assumption that the match work takes up to 90% of the entire computation[25].

However, recent results on the performance of a highly optimized TREAT
based OPS5 compiler invalidates this long standing assumption[40]. The ops5c
compiler improves the execution speed of production systems in an order of mag-
nitude compared to compiled RETE based implementation. Detail Analysis further

revealed that the average match time is reduced to less than or equal t0 50%.

An immediate implication of this observation is, regardless of parallel

or sequential implementations, the maximum speedup one can achieve is 2 if the

Laverage less than 30 rules vs. a full system of 300 to 3000 rules.

16

improvement is solely from the match work. Thus parallel firing, among other

sources, must be incorporated into the system to achieve substantial improvements.

Ishida first studied the potential of allowing multiple instantiations to fire
in each cycle [29]. He suggested a method similar to the standard compile-time
dependent analysis by first constructing interference graphs and traversing the graphs
to locate cycles of dependency. All instantiations in the cycles can not be fired at
the same times. Schlmoze presented a formal model to solve this problem with a
similar approach in [58], i.e., to build the interference graph and finding cycles. The
unique feature of this approach is that he developed a set of algorithms with different
run-time costs and degrees of optimality. Experiments were performed on a set of
benchmark programs against the set of the algorithms to study the combined aspects

of run-time checking and run-time overhead on overall system performance.

These related works on multiple rule firing failed to recognize the rela-
tionships between the language semantics, the execution model, and the run-time
overhead of multiple rule firing. For example, associated with the parallel firings,
issues of synchronization among simultaneously fired rules need to be addressed to

insure the correctness of the execution.

2.2.4 Discussions

We need to point out that the issues in the above categorization are not
independent subjects. Instead, they are closely related. The design and implementa-
tion of a match algorithm, for example, has profound effects on the granularity of the
match parallelism as well as on the design of the rule and action level parallelism.
To successfully build a parallel environment for production systems, in additional
to the match parallelism, we have to incorporate the rule-level parallelism to obtain

additional speedup, address the problem of global execution cycle synchronization,

17

and take into consideration the combined effects of these sources of parallelism on

the overall system performance.

2.3 Other Related Works

The logic programming paradigm[10], [11] resembles production systems
in many ways. Both systems use pattern matching/variable bindings to test a if

guarded condition, and apply changes to the global state by the then action state-

ments.

A fundamental difference between the two paradigms, however, is the
difference between forward chaining and backward chaining systems. Specifically,
Jogic programs perform resolutions on a set of facts. The state of the system remains
constant in the resolution process. In other words, logic programs describe only the
static states of the systems. Production systems, on the other hands, compute results
by matching and then updates to the global system state. The state of the system,

therefore, is changing during the execution.

Since the facts represented by a logic program are static and the actions
and the execution of the logic program are to infer additional facts from existing
ones by a resolution mechanism, the sequence of free variable bindings in logic
program executions does not change the global state of the system. Therefore,
the synchronization problem is kept minimum. On the other hand, for production
systems, it is the “update” actions such as make, and modify, that make parallel

execution difficult because one needs to be concerned with the sequencing problem.

There is also various work on Equational programming in the design
of parallel programs [8], conforming time constraints [44] or static prediction of
time bounds of real-time decision systems[5]. Production systems resemble these

systems in that the fundamental execution models are the same. The existence of

18

pattern matching variables in LHSs and potentially unbounded numbers of WMEs
in production systems, however, make the efficient evaluation of LHSs the focus
of attention. We shall concentrate on the design of parallel execution techniques

specific to production systems, without worrying about the real time aspects.

2.4 Organization of the Thesis

After the definitions of production systems and brief descriptions of the
related work, Chapter 3 discusses the language issue and the execution model.
Chapter 4, then presents the static analysis, transformations of the dependency
relations, and the clustering techniques. Chapter 5 deals with the issues in run-time
parallelism and management. Chapter 6 gives a global picture of the integrated CREL
system and presents some pseudo codes to give a better illustration of the actual CREL
implementation. Other related implementation issues are also discussed. Chapter 7
presents the results of the CREL performance measurements and observations based

on these results. Chapter 8 gives the concluding remarks and directions for future

research.

Chapter 3

The CREL and its Execution Models

There are three major aspects in parallelizing production systems: the
language, its execution model, and an effective run-time management strategy. In
order to explicitly or implicitly express parallelism, we need a suitable production
system language. To best express the behavior of the execution, an execution model
is needed. Lastly, effective run-time management strategies should be applied to
the system in order to maximize utilization of the available resources. The first two
aspects, the language and the execution model, are the primary topics of this chapter.

Run-time parallelism and process management issues will be discussed in Chapter

5 and 6.

3.1 Unified Computation Model

Taking the approach unique to those of the previous efforts to parallelize
production systems as described in Chapter 1, we consider the production system
model in terms of the unified computation model[4]. Given a rule-based program P,
with global state variable V representing the state of the system, we classify a rule,
P,, in P as a schedulable computation unit (SCU). The SCU consists of two basic
functions: a match module (the match condition list LHS;), and a action module (the
action list RHS;). The execution of the system is such that each SCU (or rule), P;,
synchronously evaluates its match function on the current working memory, as in

LHS;(V). A set of WMEs satisfies the LHS; constitutes an “instantiation” for rule

19

20

P,. After the match work for all rules complete, instantiations of all rules form the
conflict set. In the conflict resolution stage, the prominent one is selected from the
conflict set for execution. Assuming instantiation I of rule P; is selected, the updates
from executing the RHS actions of RHS;(I), are reflected to the working memory.
The execution cycle repeats until the conflict set becomes empty or the system is

explicitly halted.

There are many dependency relations between SCUs in a production sys-
tem. In the model described above, synchronization between all SCUs during
execution cycles is a type of control dependency. Actions from one rule resulting in
a change of the match conditions of another rule is a type of data dependency. The
conflict resolution process is yet another type of dependency relation, where simple

edges between rules are unable to model its behavior.

In the following sections, production systems can be modeled through
stepwise abstraction, from the-language, through the execution model, and to the run-
time management. The justification of the abstraction is “separation of concerns”,
meaning a production system language should follow the conventional definit