
can be computed recursively using the de�nitions of wp(o

j

; C) where o

j

is an operation belonging to

the set object, and C is either false or C is of the form (inset; outset). Thus, for a history h

b

of the

set object, the computation of wp str for com(h

b

) has time complexity that is linear in the number of

operations in com(h

b

). Thus, since Theorem 2 requires wp str to be computed for every uncommitted

operation o

k

in h, the time complexity of a scheme based on weakest precondition to ensure that history

h

b

of the set object is strict would be the product of the number of operations in com(h

b

) and the

number of uncommitted operations in h

b

.

27

ins(e

2

); e

2

= e

1

ins(e

2

); e

2

6= e

1

del(e

2

); e

2

= e

1

del(e

2

); e

2

6= e

1

skip()

([ins(e

1

); ok]; del(e

1

)) yes yes yes

([ins(e

1

); ok]; skip()) yes yes yes yes

([del(e

1

); ok]; ins(e

1

)) yes yes yes

([del(e

1

); ok]; skip()) yes yes yes yes

([mem(e

1

); ok]; skip()) yes yes yes yes

([mem(e

1

); fail]; skip()) yes yes yes yes

In the commutativity table, if, for an operation recovery pair (o

k

; inv

k

) and a procedure invocation

inv

j

, there is no entry in the commutativity table, then (o

k

; inv

k

) does not commute with inv

j

. An

entry yes in the commutativity table implies that (o

k

; inv

k

) commutes with inv

j

.

In the following table, we specify wp str(�; (o

k

; inv

k

); inv

i

) for operation recovery pairs (o

k

; inv

k

)

and procedure invocations inv

i

associated with the set object.

ins(e

2

); e

2

= e

1

ins(e

2

); e

2

6= e

1

del(e

2

); e

2

= e

1

del(e

2

); e

2

6= e

1

skip()

([ins(e

1

); ok]; del(e

1

)) false (fg; fe

1

g) false (fg; fe

1

g) (fg; fe

1

g)

([ins(e

1

); ok]; skip()) (fe

1

g; fg) (fe

1

g; fg) false (fe

1

g; fg) (fe

1

g; fg)

([del(e

1

); ok]; ins(e

1

)) false (fe

1

g; fg) false (fe

1

g; fg) (fe

1

g; fg)

([del(e

1

); ok]; skip()) false (fg; fe

1

g) (fg; fe

1

g) (fg; fe

1

g) (fg; fe

1

g)

([mem(e

1

); ok]; skip()) (fe

1

g; fg) (fe

1

g; fg) false (fe

1

g; fg) (fe

1

g; fg)

([mem(e

1

); fail]; skip()) false (fg; fe

1

g) (fg; fe

1

g) (fg; fe

1

g) (fg; fe

1

g)

The weakest precondition wp(o

j

; C) where each o

j

is an operation belonging to the set object, and

C is a condition of the form (inset; outset) is as follows.

wp([ins(e); ok]; (inset; outset)) =

8

>

<

>

:

(inset � feg; outset) if e 2 inset

false if e 2 outset

(inset; outset) otherwise

wp([del(e); ok]; (inset; outset)) =

8

>

<

>

:

(inset; outset � feg) if e 2 outset

false if e 2 inset

(inset; outset) otherwise

wp([mem(e); ok]; (inset; outset)) ==

(

false if e 2 outset

(inset [feg; outset) otherwise

wp([mem(e); fail]; (inset; outset)) =

(

false if e 2 inset

(inset; outset [feg) otherwise

Also, for all operations o

j

, wp(o

j

; false) = false.

In the computation of wp str for an annotated sequence of set operations, the object manager

can replace conditions of the form C

1

^C

2

by a single equivalent condition using the equivalence rules

described earlier. As a result, wp str for an annotated sequence of operations belonging to the set object

26

Appendix D

In this appendix we present a set example to illustrate our concepts. Consider a set that supports

the following procedures: ins(e), del(e) and mem(e). Procedure ins(e) always returns ok and inserts

element e into the set. Procedure del(e) always returns ok and deletes element e from the set. Procedure

mem(e), returns fail if e does not belong to the set, else, if e belongs to the set, it returns ok.

For the set object, the syntax and semantics of conditions are de�ned as follows. The conditions

on the states of a set object are either primitive conditions or are recursively constructed from other

conditions using the logical connective \^". Primitive conditions on the states of a set object are

false and (inset; outset), where inset and outset are disjoint sets of elements. No state of a set object

satis�es false. A state s of the set object satis�es the condition (inset; outset) if and only if the set in

state s contains all the elements in inset and none of the elements in outset. Thus, for a state s of the

set object, s satis�es (fe

1

g; fe

2

g) if and only if the set, in state s, contains e

1

and does not contain e

2

.

Every state s of a set object satis�es (fg; fg).

Furthermore, if C

1

and C

2

are conditions on the set object, then so is C

1

^ C

2

. A state s of a set

object satis�es condition C

1

^ C

2

if and only if it satis�es C

1

and it satis�es C

2

. A condition C

1

is

equivalent to another condition C

2

if and only if for all states s, s satis�es C

1

if and only if s satis�es

C

2

. Thus, if C

1

is equivalent to C

2

, then C

1

can replace C

2

in a condition, and vice versa. For the set

object, the following equivalences hold:

� (inset

1

; outset

1

) ^ (inset

2

; outset

2

) is equivalent to false, where inset

1

\ outset

2

6= fg or

inset

2

\ outset

1

6= fg.

� (inset

1

; outset

1

) ^ (inset

2

; outset

2

) is equivalent to (inset

1

[inset

2

; outset

1

[outset

2

), where

inset

1

\ outset

2

= fg and inset

2

\ outset

1

= fg.

� C ^ false is equivalent to false

Below, we specify inverses for procedure invocations associated with the set object.

inverse(ins(e); s) =

(

del(e) if s satis�es (fg; feg)

skip() if s satis�es (feg; fg)

inverse(del(e); s) =

(

ins(e) if s satis�es (feg; fg)

skip() if s satis�es (fg; feg)

inverse(mem(e); s) = skip()

The commutativity table for operation recovery pairs and procedure invocations belonging to the

set object are as follows.

25

to be 2

n

). Using a similar argument, it can be shown that wp str for the sequence o

u

1

�o

u

2

� � �o

u

n

speci�es

intervals [1][3][5] � � � [2

n

�1][2

n

+1;1]. Finally, wp str for the sequence o

u

0

�o

u

1

�o

u

2

� � �o

u

n

speci�es intervals

[1][3][5] � � � [2

n

�1][2

n

+1; 2

n+1

�1]. Thus, since wp str for h speci�es 2

n�1

+1 intervals, the complexity

of the computation of wp str for annotated sequences of operations belonging to the account object is

exponential in n.

Let us demonstrate the construction for n = 4. Uncommitted operations o

0

, o

1

, o

2

, o

3

and o

4

are

[c db(32; 32); fail], [credit(2); ok], [credit(4); ok], [credit(8); ok], and [c db ok(16; 16); ok]. As shown ear-

lier, wp str for � speci�es interval [1;1]. wp str for o

u

4

speci�es intervals [1; 15][15;1]. wp str for o

u

3

�o

u

4

speci�es intervals [1; 7][9; 15][15;1]. wp str for o

u

2

�o

u

3

�o

u

4

speci�es intervals [1; 3][5; 7][9; 11][13; 15][15;1].

wp str for o

u

1

� o

u

2

� o

u

3

� o

u

4

speci�es intervals [1][3][5][7][9][11][13][15][15;1]. Finally, wp str for o

u

0

� o

u

1

�

o

u

2

� o

u

3

� o

u

4

speci�es intervals [1][3][5][7][9][11][13][15][15; 31].

24

wp([c db(cond; amt); ok]; C) = bal � cond ^ C

bal

bal�amt

wp([c db(cond; amt); fail]; C) = bal < cond^

wp([c db ok(cond; amt); ok]; C) = (bal < cond) C) ^ (bal � cond) C

bal

bal�amt

)

wp([credit(amt); ok]; C) = C

bal

bal+amt

wp([audit; val]; C) = (bal = val) ^ C

wp str for an annotated sequence of operations belonging to the account object can be computed

recursively using the de�nitions of wp(o

j

; C), where o

j

is an operation belonging to the account object,

and C is an arbitrary condition on the state of the account object. It can be shown that in the worst

case the time complexity of computing wp str for an annotated sequence of operations belonging to

the account object is exponential in the number of operations in the sequence.

Conditions on the states of account objects specify disjoint intervals of positive integers, and a

state of the account object satis�es a condition if and only if the account balance in the state lies in

one of the intervals. For instance, the condition bal � 200) bal � 500 speci�es two intervals [0; 199]

and [500;1], while a condition of the form bal � 200 ^ bal < 500 speci�es a single interval [200; 499].

In general, it can be shown that the size of a condition is at least a linear function of the number of

disjoint intervals speci�ed by the condition. Thus, if we show that for any n, there exists an annotated

sequence of operations belonging to the account object such that the number of intervals speci�ed by

wp str for the sequence is an exponential function of n, then it follows that in the worst case, the

computation of wp str for an account object has exponential complexity (in n).

For any n, n � 1, the annotated sequence of operations h = o

u

0

� o

u

1

� o

u

2

� � �o

u

n

� o

u

n

that we construct

has the following properties:

1. Every operation in h is uncommitted in h.

2. Operation o

0

is [c db(2

n+1

; 2

n+1

); fail] with recovery procedure skip().

3. For all i, 1 � i � n � 1, each operation o

i

is [credit(2

i

); ok].

4. Operation o

n

is c db ok(2

n

; 2

n

).

The operation o

j

to be scheduled is [c db(1; 1); ok] and its recovery procedure is credit(1). Thus,

wp str(�; ([c db(1; 1); ok]; credit(1)); skip()) is bal � 1 and speci�es the interval [1;1] (skip() is the

recovery procedure for o

0

). wp str for o

u

n

speci�es the following intervals [1; 2

n

�1][2

n

+1;1] (since the

account balance after the execution of o

n

is to be in [1;1], the account balance before the execution

of o

n

must not be 2

n

, since this would cause the account balance to become 0 after the execution of

o

n

). Also, wp str for o

u

n�1

� o

u

n

speci�es the following intervals [1; 2

n�1

� 1][2

n�1

+ 1; 2

n

� 1][2

n

+ 1;1]

(intuitively, since o

n�1

could either commit or abort and the account balance before o

n

executes must

be in [1; 2

n

� 1][2

n

+1;1], the account balance before the execution of o

n�1

must not be 2

n

and it also

must not be 2

n�1

since o

n�1

adds 2

n�1

to the account balance which would cause the account balance

23

inverse(c db(cond

1

; amt

1

); s) =

(

credit(amt

1

) if s satis�es bal � cond

1

skip() if s satis�es bal < cond

1

inverse(c db ok(cond

1

; amt

1

); s) =

(

credit(amt

1

) if s satis�es bal � cond

1

skip() if s satis�es bal < cond

1

inverse(credit(amt

1

); s) = debit(amt

1

)

inverse(audit(); s) = skip()

The commutativity table for operation recovery pairs and procedure invocations belonging to the

account object are as follows.

credit(amt

2

) debit(amt

2

) skip()

([c db(cond

1

; amt

1

); ok]; credit(amt

1

)) yes yes

([c db(cond

1

; amt

1

); fail]; skip()) yes yes

([c db ok(cond

1

; amt

1

); ok]; credit(amt

1

)) yes yes

([c db ok(cond

1

; amt

1

); ok]; skip()) yes yes

([credit(amt

1

); ok]; debit(amt

1

)) yes yes yes

([audit(); amt

1

]; skip()) yes

In the commutativity table, if, for an operation recovery pair (o

k

; inv

k

) and a procedure invo-

cation inv

j

, there is no entry in the commutativity table, then (o

k

; inv

k

) does not commute with

inv

j

. An entry yes in the commutativity table implies that (o

k

; inv

k

) commutes with inv

j

. Thus,

([c db(cond

1

; amt

1

); ok]; credit(amt

1

)) does not commute with debit(amt

2

), while ([c db(cond

1

; amt

1

); ok];

credit(amt

1

)) commutes with credit(amt

2

).

In the following table, we specify wp str(�; (o

k

; inv

k

); inv

i

) for operation recovery pairs (o

k

; inv

k

)

and procedure invocations inv

i

associated with the account object.

credit(amt

2

) debit(amt

2

) skip()

([c db(cond

1

; amt

1

); ok]; credit(amt

1

)) bal � cond

1

bal� amt

2

� cond

1

bal � cond

1

([c db(cond

1

; amt

1

); fail]; skip()) bal+ amt

2

< cond

1

bal < cond

1

bal < cond

1

([c db ok(cond

1

; amt

1

); ok]; credit(amt

1

)) bal � cond

1

bal� amt

2

� cond

1

bal � cond

1

([c db ok(cond

1

; amt

1

); ok]; skip()) bal+ amt

2

< cond

1

bal < cond

1

bal < cond

1

([credit(amt

1

); ok]; debit(amt

1

)) bal � 0 bal � 0 bal � 0

([audit(); amt

1

]; skip()) false false bal = amt

1

We now de�ne wp(o

j

; C), where o

j

is an operation belonging to the account object and C is

a condition consisting of false, bal � val, balance < val and balance = val connected by logical

connectives) and ^. Further, C

x

y

denotes the condition that results if y is substituted for x in C.

22

Appendix C

In this appendix we present a bank example to illustrate our concepts. Consider an account ob-

ject with the following procedures: cond debit(cond; amt), cond debit ok(cond; amt), credit(amt) and

audit() (in all the procedures, cond > 0, amt > 0 and amt � cond). Procedures cond debit(cond; amt)

and cond debit ok(cond; amt) are de�ned as follows (balance is the account balance).

procedure cond debit(cond; amt) :

if (balance � cond) then begin

balance := balance� amt;

return(ok)

end

else return(fail)

procedure cond debit ok(cond; amt) :

if (balance � cond) then balance := balance� amt;

return(ok)

Procedures credit(amt) and audit() always return ok. Procedure credit(amt) increments balance by

amt. Procedure audit() returns the current value of balance. We shall refer to procedures cond debit

and cond debit ok as c db and c db ok respectively.

For the account object, the syntax and semantics of conditions are de�ned as follows. The condi-

tions are either primitive conditions or recursively constructed from other conditions using the logical

connectives \^" and \)". Primitive conditions on the account object are false, bal = val, bal � val

and bal < val, where val is a positive integer. No state of an account object satis�es false. A state s

of the account object satis�es the condition bal � val/bal < val/bal = val if and only if the account

balance in state s is greater than or equal to/ less than / equal to val. Every state s of an account

object satis�es bal � 0.

Furthermore, if C

1

and C

2

are conditions on the account object, then so is C

1

^ C

2

. A state s of

an account object satis�es condition C

1

^ C

2

if and only if it satis�es C

1

and it satis�es C

2

. Also, if

C

1

and C

2

are conditions on the account object, then so is C

1

) C

2

. A state s of an account object

satis�es condition C

1

) C

2

if and only if it does not satisfy C

1

or it satis�es C

2

.

Before we specify inverses for procedure invocations associated with the account object, we de�ne

the procedure debit(amt) as follows (note that procedure debit(amt) does not belong to the account

object).

procedure debit(amt) :

balance := balance� amt

Inverses for procedure invocations associated with the account object are as follows.

21

2. there exists an uncommitted operation o

k

in h (let com(h) = h

1

� o

u

k

� h

2

) such that s does not

satisfy wp str(h

1

� o

c

k

� h

2

; (o

j

; rec(o

j

; h � o

j

; s)); rec(o

k

; h; s)),

then h � o

j

is not strict with respect to s.

1. If com(h) � o

j

is not legal with respect to s, then h

1

= com(h) � o

u

j

is a committed subsequence of

com(h � o

j

) that is not legal with respect to state s and thus, h � o

j

is not strict with respect to s.

2. By Lemma 2, if there exists an uncommitted operation o

k

in h (let com(h) = h

1

� o

u

k

� h

2

)

such that s does not satisfy wp str(h

1

� o

c

k

� h

2

; (o

j

; rec(o

j

; h � o

j

; s)); rec(o

k

; h; s)), then there

exists a committed subsequence, say h

2

, of com(h) containing o

u

k

such that state(s; h

2

) does not

satisfy wp str(�; (o

j

; rec(o

j

; h �o

j

; s)); rec(o

k

; h; s)), or (o

j

; rec(o

j

; h �o

j

; s)) does not commute with

rec(o

k

; h; s)) with respect to state(s; h

2

) (since h is strict with respect to state s, any committed

subsequence of com(h) is legal with respect to s and thus, h

2

is legal with respect to s). As a

result, one of the following is true:

(a) (o

j

; rec(o

j

; h �o

j

; s)) is not legal with respect to state(s; h

2

), that is, either o

j

is not legal with

respect to state(s; h

2

), in which case h

1

= h

2

� o

u

j

, a committed subsequence of com(h � o

j

)

does not satisfy property a and thus, h � o

j

is not strict with respect to s, or

state(state(s; h

2

); o

j

� rec(o

j

; h � o

j

; s)) 6= state(s; h

2

).

As a result, it follows that

state(s; h

2

� o

u

j

� rec(o

j

; h � o

j

; s)) 6= state(s; h

2

).

Since h

2

� o

u

j

is a committed subsequence of com(h � o

j

) that does not satisfy property b,

h � o

j

is not strict with respect to s.

(b) (o

j

; rec(o

j

; h � o

j

; s)) is not legal with respect to state(s; h

2

� rec(o

k

; h; s)). If h

3

is the subse-

quence obtained as a result of deleting o

u

k

from h

2

, then h

3

is a committed subsequence of

com(h) and since h is strict with respect to s, state(s; h

2

�rec(o

k

; h; s)) = state(s; h

3

). Thus,

(o

j

; rec(o

j

; h � o

j

; s)) is not legal with respect to state(s; h

3

). As a result, h � o

j

is not strict

with respect to s (using an argument similar to that given above in (a)).

(c) state(state(s; h

2

); o

u

j

� rec(o

k

; h; s)) 6= state(state(s; h

2

); rec(o

k

; h; s) � o

u

j

). If h

3

is the subse-

quence obtained as a result of deleting o

u

k

from h

2

, then since h

2

is a committed subsequence

of com(h) and since h is strict with respect to s, state(s; h

2

� rec(o

k

; h; s)) = state(s; h

3

). As

a result, it follows that

state(s; h

2

� o

u

j

� rec(o

k

; h; s)) 6= state(s; h

3

� o

u

j

).

Since h

2

� o

u

j

is a committed subsequence of com(h � o

j

) that does not satisfy property b,

h � o

j

is not strict with respect to s. 2

20

(o

j

; rec(o

j

; h �o

j

; s)) is legal with respect to state(s; h

3

�rec(o

k

; h; s)). Since h is strict with respect

to s and h

3

is a committed subsequence of com(h),

state(s; h

3

� rec(o

k

; h; s)) = state(s; h

2

).

Thus, (o

j

; rec(o

j

; h � o

j

; s)) is legal with respect to state(s; h

2

).

If h

1

does not contain o

u

j

, then h

1

is a committed subsequence of com(h) and since h is strict with

respect to state s, h

1

trivially satis�es properties a and b. We now show that if h

1

contains o

u

j

, it

satis�es properties a and b. Let h

1

= h

2

�o

u

j

. Note that h

2

is a committed subsequence of com(h).

Since h is strict with respect to s, h

2

is legal with respect to s. Thus, in order to show that h

1

is legal with respect to s, we need to show that o

j

is legal with respect to state(s; h

2

). This is

trivial since we have shown earlier that (o

j

; rec(o

j

; h � o

j

; s)) is legal with respect to state(s; h

2

).

Thus, h

2

� o

u

j

= h

1

is legal with respect to s.

We now show that for every uncommitted operation o

u

k

in h

1

(let h

1

= h

2

� o

u

k

� h

3

), state(s; h

1

�

rec(o

k

; h � o

j

; s)) = state(s; h

2

� h

3

). If o

u

k

= o

u

j

(h

1

= h

2

� o

u

j

, h

2

is a committed subsequence

of com(h) and h

3

= �), then as shown earlier (o

j

; rec(o

j

; h � o

j

; s)) is legal with respect to

state state(s; h

2

). Thus, state(s; h

1

� rec(o

j

; h � o

j

; s)) = state(s; h

2

) (since state(state(s; h

2

); o

j

�

rec(o

j

; h:o

j

; s)) = state(s; h

2

)).

If o

u

k

6= o

u

j

, let h

1

= h

2

� o

u

k

� h

4

� o

u

j

(h

3

= h

4

� o

u

j

). We need to show that

state(s; h

1

� rec(o

k

; h � o

j

; s)) = state(s; h

2

� h

4

� o

u

j

).

From the statement of the theorem, (o

j

; rec(o

j

; h �o

j

; s)) commutes with rec(o

k

; h; s) with respect

to state(s; h

2

�o

u

k

�h

4

) since for any committed subsequence h

0

1

of com(h) containing o

u

k

, state(s; h

0

1

)

satis�es wp str(�; (o

j

; rec(o

j

; h � o

j

; s)); rec(o

k

; h; s)). Thus,

state(s; h

2

� o

u

k

� h

4

� o

u

j

� rec(o

k

; h; s)) = state(s; h

2

� o

u

k

� h

4

� rec(o

k

; h; s) � o

u

j

).

However, since h

2

� o

u

k

�h

4

is a committed subsequence of com(h) and h is strict with respect to s,

state(s; h

2

� o

u

k

� h

4

� rec(o

k

; h; s)) = state(s; h

2

� h

4

).

Thus, it follows that

state(s; h

2

� o

u

k

� h

4

� rec(o

k

; h; s) � o

u

j

) = state(s; h

2

� h

4

� o

u

j

).

Thus,

state(s; h

1

� rec(o

k

; h � o

j

; s)) = state(s; h

2

� h

4

� o

u

j

).

only if: We need to show that if o

j

is not a terminal operation and either of the following is true,

1. com(h) � o

j

is not legal with respect to s, or

19

h

2

, o

c

j

� h

3

is legal with respect to s and state(s; o

c

j

� h

3

) satis�es wp str(�; (o

k

; inv

k

); inv

i

). Since

state(s; o

j

) = s

1

, for every committed subsequence h

3

of h

2

, h

3

is legal with respect to s

1

and

state(s

1

; h

3

) satis�es wp str(�; (o

k

; inv

k

); inv

i

). As a result, by the induction hypothesis, s

1

satis-

�es wp str(h

2

; (o

k

; inv

k

); inv

i

). By the de�nition of wp, since o

j

is legal with respect to s, s satis�es

wp(o

j

; wp str(h

2

; (o

k

; inv

k

); inv

i

)).

On the other hand, if x = u, then every committed subsequence h

1

of h is of the form h

1

= o

u

j

�h

3

or

h

1

= h

3

, where h

3

is a committed subsequence of h

2

. Thus, since for every committed subsequence h

1

of

h, h

1

is legal with respect to s and state(s; h

1

) satis�es wp str(�; (o

k

; inv

k

); inv

i

), it follows that for ev-

ery committed subsequence h

3

of h

2

, o

u

j

�h

3

and h

3

are both legal with respect to s, and state(s; o

u

j

�h

3

)

and state(s; h

3

) both satisfy wp str(�; (o

k

; inv

k

); inv

i

). Since state(s; o

j

) = s

1

, for every committed

subsequence h

3

of h

2

, h

3

is legal with respect to s

1

and state(s

1

; h

3

) satis�es wp str(�; (o

k

; inv

k

); inv

i

).

As a result, by the induction hypothesis, s

1

and s both satisfy wp str(h

2

; (o

k

; inv

k

); inv

i

). By the

de�nition of wp, since o

j

is legal with respect to s, s also satis�es wp(o

j

; wp str(h

2

; (o

k

; inv

k

); inv

i

)).

Thus s satis�es wp str(h; (o

k

; inv

k

); inv

i

). 2

Proof of Theorem 2:

if: In order to prove that h � o

j

is strict with respect to state s, we need to show that for all committed

subsequences h

1

of com(h � o

j

),

a: h

1

is legal with respect to state s, and

b: for every uncommitted operation o

u

k

in h

1

(let h

1

= h

2

� o

u

k

� h

3

), state(s; h

1

� rec(o

k

; h � o

j

; s)) =

state(s; h

2

� h

3

).

1. If o

j

is an abort operation, then com(h � o

j

) is a committed subsequence of com(h). As a result,

h

1

is a committed subsequence of com(h), and since h is strict with respect to state s, h

1

satis�es

properties a and b. If on the other hand, o

j

is a commit operation, there must exist a committed

subsequence h

2

of com(h) that has the same sequence of operations as h

1

, except that certain

operations in h

2

are annotated by a u while they are annotated by a c in h

1

. Thus, since h is

strict with respect to state s, h

2

and as a result, h

1

is legal with respect to state s. Also, since

every uncommitted operation in h

1

is also uncommitted in h

2

, the property b holds.

2. If o

j

is a non-terminal operation, then com(h �o

j

) = com(h) �o

u

j

. We �rst show that (o

j

; rec(o

j

; h �

o

j

; s)) is legal with respect to state(s; h

2

) for any committed subsequence h

2

of com(h). The

case when h

2

= com(h) follows from the de�nition of rec(o

j

; h � o

j

; s) since rec(o

j

; h � o

j

; s) =

inverse(inv(o

j

); state(s; com(h))) and com(h) � o

j

is legal with respect to s. Thus, we only

need to consider cases in which h

2

contains fewer operations than com(h). If h

2

contains an

uncommitted operation o

u

k

, then by statement of theorem and from Lemma 2, state(s; h

2

) satis�es

wp str(�; (o

j

; rec(o

j

; h�o

j

; s)); rec(o

k

; h; s)). Thus, by the de�nition of wp str, (o

j

; rec(o

j

; h�o

j

; s))

is legal with respect to state(s; h

2

). If h

2

contains no committed operations, since h

2

contains

fewer operations than com(h), there must exist a committed subsequence of com(h), h

3

, such that

h

2

is obtained from h

3

as a result of deleting a single uncommitted operation, say o

u

k

. By Lemma 2

and the statement of the theorem, state(s; h

3

) satis�es wp str(�; (o

j

; rec(o

j

; h�o

j

; s)); rec(o

k

; h; s)).

Thus, (o

j

; rec(o

j

; h � o

j

; s)) commutes with rec(o

k

; h; s)) with respect to state state(s; h

3

). Thus,

18

Appendix B

In this appendix we present the proof of Theorem 2. In order to do so, we need to �rst establish

the following lemma.

Lemma 2: Consider an annotated sequence of operations h, an operation recovery pair (o

k

; inv

k

)

and a procedure invocation inv

i

. A state s satis�es wp str(h; (o

k

; inv

k

); inv

i

) if and only if for every

committed subsequence h

1

of h, h

1

is legal with respect to s and state(s; h

1

) satis�eswp str(�; (o

k

; inv

k

); inv

i

).

Proof: We use induction on the number of operations in h to prove the above lemma.

Basis (h = �): Since state(s; �) = s, the lemma is true if h = �.

Induction: Let us assume the lemma is true for annotated sequences containing m operations. We

need to show that the lemma is true for annotated sequences containing m + 1 operations. Let h

be an annotated sequence containing m + 1 operations such that h = o

x

j

� h

2

, where h

2

contains m

operations. By the induction hypothesis, a state s satis�es wp str(h

2

; (o

k

; inv

k

); inv

i

) if and only

if for every committed subsequence h

3

of h

2

, h

3

is legal with respect to s and state(s; h

3

) satis�es

wp str(�; (o

k

; inv

k

); inv

i

).

We show that a state s satis�es wp str(h; (o

k

; inv

k

); inv

i

) if and only if for every committed subse-

quence h

1

of h, h

1

is legal with respect to s and state(s; h

1

) satis�es wp str(�; (o

k

; inv

k

); inv

i

). Note that

wp str(h; (o

k

; inv

k

); inv

i

) =

8

>

<

>

:

wp(o

x

j

; wp str(h

2

; (o

k

; inv

k

); inv

i

)); if x = c

wp(o

x

j

; wp str(h

2

; (o

k

; inv

k

); inv

i

))

^wp str(h

2

; (o

k

; inv

k

); inv

i

); if x = u

Let s

1

= state(s; inv(o

j

)).

only if: Let us assume that s satis�es wp str(h; (o

k

; inv

k

); inv

i

). Let h

1

be any committed subsequence

of h. We show that h

1

is legal with respect to s and state(s; h

1

) satis�es wp str(�; (o

k

; inv

k

); inv

i

).

Suppose h

1

contains o

x

j

(let h

1

= o

x

j

� h

3

). Since s satis�es wp str(h; (o

k

; inv

k

); inv

i

), s satis�es

wp(o

j

; wp str(h

2

; (o

k

; inv

k

); inv

i

)). From the de�nition of wp, it follows that o

j

is legal with respect

to s and s

1

satis�es wp str(h

2

; (o

k

; inv

k

); inv

i

). Since h

1

is a committed subsequence of h, h

3

is a

committed subsequence of h

2

. By the induction hypothesis, it follows that h

3

is legal with respect to

s

1

and state(s

1

; h

3

) satis�es wp str(�; (o

k

; inv

k

); inv

i

). Since state(s; o

j

) = s

1

, state(s; o

j

� h

3

) satis�es

wp str(�; (o

k

; inv

k

); inv

i

) or state(s; h

1

) satis�es wp str(�; (o

k

; inv

k

); inv

i

). Also, since o

j

is legal with

respect to s, h

3

is legal with respect to s

1

and state(s; o

j

) = s

1

, o

j

:h

3

or h

1

is legal with respect to s.

On the other hand, if h

1

does not contain o

x

j

, then h

1

is a committed subsequence of h

2

and x = u.

As a result, s satis�eswp str(h

2

; (o

k

; inv

k

); inv

i

). Further, since h

1

is a committed subsequence of h

2

, by

the induction hypothesis, h

1

is legal with respect to s and state(s; h

1

) satis�es wp str(�; (o

k

; inv

k

); inv

i

).

if: In order to show the if direction, let us assume that for every committed subsequence h

1

of h,

h

1

is legal with respect to s and state(s; h

1

) satis�es wp str(�; (o

k

; inv

k

); inv

i

). If x = c, then ev-

ery committed subsequence h

1

of h is of the the form h

1

= o

c

j

� h

3

, where h

3

is a subsequence

of h

2

. Thus, since for every committed subsequence h

1

of h, h

1

is legal with respect to s and

state(s; h

1

) satis�es wp str(�; (o

k

; inv

k

); inv

i

), it follows that for every committed subsequence h

3

of

17

We now show that if h

1

contains o

u

j

, then it satis�es properties a and b. Let h

1

= h

2

� o

u

j

. We

begin by showing that h

1

is legal with respect to state s. Note that h

2

is a committed subsequence

of com(h). Since h is strict with respect to s, h

2

is legal with respect to s. Thus, in order to show

that h

1

is legal with respect to s, we need to show that o

j

is legal with respect to state(s; h

2

). By

Lemma 1, since (o

j

; rec(o

j

; h �o

j

; s)) commutes with rec(o

k

; h; s) for every uncommitted operation

o

u

k

in h, (o

j

; rec(o

j

; h � o

j

; s)) and thus, o

j

is legal with respect to state(s; h

2

). Thus, h

2

� o

j

= h

1

is legal with respect to s.

We now show that for every uncommitted operations o

u

k

in h

1

(let h

1

= h

2

� o

u

k

� h

3

), state(s; h

1

�

rec(o

k

; h � o

j

; s)) = state(s; h

2

� h

3

). If o

u

k

= o

u

j

(h

1

= h

2

� o

u

j

, h

2

is a committed subsequence of

com(h) and h

3

= �), then by Lemma 1, since (o

j

; rec(o

j

; h � o

j

; s)) commutes with rec(o

k

; h; s) for

every uncommitted operation o

u

k

in h, (o

j

; rec(o

j

; h�o

j

; s)) is legal with respect to state state(s; h

2

).

Thus, state(s; h

1

� rec(o

j

; h � o

j

; s)) = state(s; h

2

) (since state(state(s; h

2

); o

j

� rec(o

j

; h:o

j

; s)) =

state(s; h

2

)).

If o

u

k

6= o

u

j

, let h

1

= h

2

� o

u

k

� h

4

� o

u

j

(h

3

= h

4

� o

u

j

). We need to show that

state(s; h

1

� rec(o

k

; h � o

j

; s)) = state(s; h

2

� h

4

� o

u

j

).

By Lemma 1, (o

j

; rec(o

j

; h � o

j

; s)) is legal with respect to state state(s; h

2

� o

u

k

� h

4

). Thus, since

(o

j

; rec(o

j

; h � o

j

; s)) commutes with rec(o

k

; h; s) for every uncommitted operation o

u

k

in h,

state(s; h

2

� o

u

k

� h

4

� o

u

j

� rec(o

k

; h; s)) = state(s; h

2

� o

u

k

� h

4

� rec(o

k

; h; s) � o

u

j

).

However, since h

2

� o

u

k

�h

4

is a committed subsequence of com(h) and h is strict with respect to s,

state(s; h

2

� o

u

k

� h

4

� rec(o

k

; h; s)) = state(s; h

2

� h

4

).

Thus, it follows that

state(s; h

2

� o

u

k

� h

4

� rec(o

k

; h; s) � o

u

j

) = state(s; h

2

� h

4

� o

u

j

).

Thus,

state(s; h

1

� rec(o

k

; h � o

j

; s)) = state(s; h

2

� h

4

� o

u

j

). 2

16

Appendix A

In this appendix we present the proof of Theorem 1. In order to do so, we need to �rst establish

the following lemma.

Lemma 1: Let h be a sequence of operations belonging to an object b that is strict with respect

to a state s of b and o

j

be a non-terminal operation belonging to b such that com(h) � o

j

is legal

with respect to s. If, for every uncommitted operation o

k

in h, (o

j

; rec(o

j

; h � o

j

; s)) commutes with

rec(o

k

; h; s), then for every committed subsequence h

2

of com(h), (o

j

; rec(o

j

; h � o

j

; s)) is legal with

respect to state(s; h

2

).

Proof: We prove the lemma by induction on the number of operations n in which the committed

subsequence h

2

di�ers from com(h).

Basis (n = 0): Thus h

2

= com(h). Since com(h) �o

j

is legal with respect to s, o

j

is legal with respect to

state(s; com(h)). Further, since rec(o

j

; h�o

j

; s) = inverse(inv(o

j

); state(s; com(h))), (o

j

; rec(o

j

; h�o

j

; s)

is legal with respect to state(s; com(h)).

Induction: Let the lemma be true for n = m. We show that if h

2

is a committed subsequence of

com(h) that di�ers from com(h) in m + 1 operations, then (o

j

; rec(o

j

; h � o

j

; s); s) is legal with re-

spect to state(s; h

2

). Let h

2

be obtained from h

1

as a result of deleting the uncommitted operation

o

u

k

from h

1

where h

1

is a committed subsequence of com(h) that di�ers from com(h) in m opera-

tions. By the induction hypothesis, (o

j

; rec(o

j

; h � o

j

; s)) is legal with respect to state(s; h

1

). Thus,

since (o

j

; rec(o

j

; h � o

j

; s)) commutes with rec(o

k

; h; s), (o

j

; rec(o

j

; h � o

j

; s)) is legal with respect to

state(s; h

1

� rec(o

k

; h; s)). Since h is strict with respect to s, and h

1

is a committed subsequence of

com(h), state(s; h

1

� rec(o

k

; h; s)) = state(s; h

2

) and thus, (o

j

; rec(o

j

; h � o

j

; s)) is legal with respect to

state(s; h

2

). 2

Proof of Theorem 1: In order to prove that h � o

j

is strict with respect to state s, we need to

show that for all committed subsequences h

1

of com(h � o

j

), the following holds:

a: h

1

is legal with respect to state s, and

b: for every uncommitted operation o

u

k

in h

1

(let h

1

= h

2

� o

u

k

� h

3

), state(s; h

1

� rec(o

k

; h � o

j

; s)) =

state(s; h

2

� h

3

).

1. If o

j

is an abort operation, then com(h � o

j

) is a committed subsequence of com(h). As a result,

h

1

is a committed subsequence of com(h), and since h is strict with respect to state s, h

1

satis�es

properties a and b. If on the other hand, o

j

is a commit operation, there must exist a committed

subsequence h

2

of com(h) that has the same sequence of operations as h

1

, except that certain

operations in h

2

are annotated by a u while they are annotated by a c in h

1

. Thus, since h is

strict with respect to state s, h

2

and as a result, h

1

are legal with respect to state s. Also, since

every uncommitted operation in h

1

is also uncommitted in h

2

, the property b holds.

2. If o

j

is a non-terminal operation, then com(h � o

j

) = com(h) � o

u

j

. If h

1

does not contain o

u

j

, then

h

1

is a committed subsequence of com(h) and since h is strict with respect to state s, h

1

trivially

satis�es properties a and b.

15

[FO89] A. A. Farrag and M. T. Ozsu. Using semantic knowledge of transactions to increase

concurrency. ACM Transactions on Database Systems, 14(4):503{525, December 1989.

[GLPT75] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Granularity of locks and degrees

of consistency in a shared data base. In IFIP Working Conference on Modeling of Data

Base Management Systems, pages 1{29, 1975.

[GM83] H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed

database. ACM Transactions on Database Systems, 8(2):186{213, June 1983.

[Her90] M. Herlihy. Apologizing versus asking permission: optimistic concurrency control for

abstract data types. ACM Transactions on Database Systems, 15(1):96{124, March 1990.

[Kor83] H. F. Korth. Locking primitives in a database system. Journal of the ACM, 30(1):55{79,

January 1983.

[Lom92] D. Lomet. MLR: A recovery method for multi-level systems. In Proceedings of ACM-

SIGMOD 1992 International Conference on Management of Data, San Diego, California,

pages 185{194, 1992.

[MHL

+

92] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A transaction

recovery method supporting �ne-granularity locking and partial rollbacks using write-

ahead logging. ACM Transactions on Database Systems, 17(1):94{162, March 1992.

[SS84] P.M. Schwarz and A.Z. Spector. Synchronizing shared data types. ACM Transactions on

Computer Systems, 2:223{250, August 1984.

[Wei88] W. E. Weihl. Commutativity-based concurrency control for abstract data types. IEEE

Transactions on Computers, C-37(12):1488{1505, December 1988.

[Wei89] W. E. Weihl. Local atomicity properties: Modular concurrency control for abstract data

types. ACM Transactions on Programming Languages and Systems, 11(2):249{282, April

1989.

[WHBM90] G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-level recovery. In Proceedings

of the nineth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, Nashville, pages 109{123, 1990.

14

h

b

is strict with respect to init s(b), for any committed subsequence h

1

of com(h

b

), h

1

is legal

with respect to init s(b) and thus state(init s(b); h

1

) satis�es top el = []). Thus, if during the

computation of wp str for com(h

b

), wp str for some su�x of com(h

b

) is top el = [], then further

computation of wp str for the remainder of the operations in com(h

b

) need not be performed.

2. If, for some subsequences h

1

; h

2

of h

b

such that h

b

= h

1

�h

2

, every operation in h

1

is either commit-

ted or aborted in h

1

and com(h

1

) is legal with respect to init s(b), then it can be shown that h

b

is strict with respect init s(b) if and only if h

2

is strict with respect to state(init s(b); com(h

1

)).

Thus, periodically, h

b

can be set to h

2

(that is, operations belonging to h

1

can be purged from

h

b

) and init s(b) can be set to state(init s(b); com(h

1

)).

However, even with the above optimizations, schemes based on weakest precondition, for certain

other objects, may be computationally intractable. In Appendix C, we show that in the worst case,

the computation of wp str for an annotated sequence of operations belonging to an account object (in

a banking environment) can have a worst case time complexity that is exponential in the number of

operations in the sequence. Thus, schemes based on commutativity may be preferable for such objects

even though they provide a lower degree of concurrency than weakest precondition based schemes.

7 Conclusion

We have de�ned the notion of strictness for histories containing operations semantically richer than

the simple read and write operations. We de�ned strict histories to be the histories in which recovery

for aborted operations can be performed by simply executing their inverse operations. We developed

concurrency control schemes based on commutativity between operations and inverses of operations

for e�ciently ensuring that histories are strict. We showed that in schemes based on commutativity,

the time complexity for scheduling an operation for execution is linear in the number of operations

that have neither committed nor aborted in the history. We also utilized the weakest precondition of

operations in order to state necessary and su�cient conditions for ensuring that scheduling an operation

for execution preserves the strictness of histories. The schemes based on weakest precondition exploit

state information of objects and thus, provide a higher degree of concurrency than commutativity-based

schemes. However, for certain objects, schemes based on weakest precondition may have a worst-case

time complexity that is exponential in the number of operations that have not aborted in the history.

Our schemes for ensuring histories are strict can be used in conjunction with concurrency control

schemes that ensure serializability, such as 2PL and SGT, in object-based systems.

References

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley, Reading, MA, 1987.

[BR92] B. R. Badrinath and K. Ramamritham. Semantics-based concurrency control: Beyond

commutativity. ACM Transactions on Database Systems, 17(1):163{199, March 1992.

13

It can be shown, from the de�nition of wp and wp str above, that for an annotated sequence of

operations h, s satis�es wp str(h; (o

k

; inv

k

); inv

i

) if and only if for every committed subsequence h

1

of

h, state(s; h

1

) satis�es wp str(�; (o

k

; inv

k

); inv

i

). We now state necessary and su�cient conditions for

ensuring that a sequence of operations h � o

j

is strict with respect to a state s, given that h is strict

with respect to s.

Theorem 2: Let h be a sequence of operations belonging to an object b that is strict with respect

to a state s of b, and let o

j

be an operation belonging to object b. The sequence of operations h � o

j

is

strict with respect to s if and only if one of the following is true:

1. Operation o

j

is a terminal operation.

2. If o

j

is a non-terminal operation, then

� com(h) � o

j

is legal, and

� for every uncommitted operation o

k

in h (let com(h) = h

1

� o

u

k

� h

2

), s satis�es

wp str(h

1

� o

c

k

� h

2

; (o

j

; rec(o

j

; h � o

j

; s)); rec(o

k

; h; s)). 2

Proof: See Appendix B. 2

Theorem 2 can be used to show that the sequence of operations h � o

j

in Example 2 is strict with

respect to state s. History h contains only one uncommitted operation, and the condition wp str for

com(h) can be recursively computed as follows:

wp str(�; (h[push(e); ok] : T

2

; bi; pop()); pop()) = (top el = [e])

wp str(h[push(e); ok] : T

1

; bi

c

; (h[push(e); ok] : T

2

; bi; pop()); pop()) = (top el = [])

Since com(h) � o

j

is legal with respect to s, and state s satis�es top el = [], it follows from Theorem 2

that the sequence of operations h � o

j

is strict with respect to s.

In the computation of wp str for an annotated sequence of operations belonging to the stack object,

conditions of the form C

1

^ C

2

can be replaced by a single equivalent condition using the equivalence

rules described in Section 2. As a result, wp str for an annotated sequence of operations belonging to

the stack object can be computed recursively using the de�nitions of wp(o

j

; C) where o

j

is an operation

belonging to the stack object, and C is either false or C is of the form top el = list. Thus, for a history

h

b

of the stack object, the computation of wp str for com(h

b

) has time complexity that is linear in the

number of operations in com(h

b

). Since Theorem 2 requires wp str for com(h

b

) to be computed for

every uncommitted operation o

k

in h

b

, the time complexity of a scheme based on weakest precondition

to schedule an operation is the product of the number of operations in com(h

b

) and the number of

uncommitted operations in h

b

.

Note that it may not always be required to compute wp str for the entire sequence of operations

com(h

b

). The computation of wp str for com(h

b

) can be optimized in the following two ways:

1. As mentioned earlier, every state of the stack object satis�es top el = []. It can be shown that, if

wp str for some su�x of com(h

b

) is top el = [], then init s(b) satis�es wp str for com(h

b

) (since

12

pop() push(e

2

); e

2

= e

1

push(e

2

); e

2

6= e

1

skip()

([pop(); e

1

]; push(e

1

)) top el = [e

1

; e

1

] top el = [e

1

] false top el = [e

1

]

([pop(); fail]; skip()) top el = [$] false false top el = [$]

([push(e

1

); ok]; pop()) top el = [e

1

] top el = [] false top el = []

([top(); e

1

]; skip()) top el = [e

1

; e

1

] top el = [e

1

] false top el = [e

1

]

([top(); fail]; skip()) top el = [$] false false top el = [$]

Figure 2: wp str(�; (o

k

; inv

k

); inv

i

)

to b and a condition C for b, we de�ne wp(o

j

; C) to be the condition such that for all states s

1

; s

2

of b

such that state(s

1

; inv(o

j

)) = s

2

, the following is true:

s

1

satis�es wp(o

j

; C) if and only if s

2

satis�es C and o

j

is legal with respect to s

1

Let l = [e

1

; e

2

; : : : ; e

p

] be a list and e

0

be an element. The function e

0

� l returns the list

[e

0

; e

1

; e

2

; : : : ; e

p

]. Also, if p � 1, then head(l) returns e

1

, and tail(l) returns [e

2

; : : : ; e

p

]. If l = [],

then head(l) and tail(l), both return []. The weakest precondition wp(o

j

; C) where each o

j

is an op-

eration belonging to the stack object, and C is a condition of the form top el = list (list is a list of

elements) is as follows.

wp([push(e); ok]; top el = list) =

8

>

<

>

:

top el = [] if list = []

top el = tail(list) if head(list) = e

false otherwise

wp([pop(); fail]; top el = list) =

(

top el = [$] if list = [] or list = [$]

false otherwise

wp([pop(); e]; top el = list) = (top el = e � list)

wp([top(); fail]; top el = list) =

(

top el = [$] if list = [] or list = [$]

false otherwise

wp([top(); e]; top el = list) =

8

>

<

>

:

top el = [e] if list = []

top el = list if head(list) = e

false otherwise

Also, for all operations o

j

, wp(o

j

; false) = false.

Earlier, we speci�ed for the empty sequence �, for operation pairs (o

k

; inv

k

) and procedure invo-

cations inv

i

, condition wp str(�; (o

k

; inv

k

); inv

i

). We further extend the de�nition of wp str to an

annotated sequence of operations o

x

1

1

� o

x

2

2

� � �o

x

n

n

, n � 1, recursively as follows.

wp str(o

x

1

1

� o

x

2

2

� � �o

x

n

n

; (o

k

; inv

k

); inv

i

) =

8

>

<

>

:

wp(o

1

; wp str(o

x

2

2

� � �o

x

n

n

; (o

k

; inv

k

); inv

i

)); if x

1

= c

wp(o

1

; wp str(o

x

2

2

� � �o

x

n

n

; (o

k

; inv

k

); inv

i

))

^wp str(o

x

2

2

� � �o

x

n

n

; (o

k

; inv

k

); inv

i

); if x

1

= u

11

with respect to object states.

De�nition 3: An operation recovery pair (o

k

; inv

k

) commutes with a procedure invocation inv

j

with respect to state s if and only if

1. (o

k

; inv

k

) is legal with respect to s,

2. (o

k

; inv

k

) is legal with respect to state(s; inv

j

), and

3. state(s; o

k

� inv

j

) = state(s; inv

j

� o

k

). 2

It can be shown that given a sequence of operations h that is strict with respect to state s, the

sequence of operations h � o

j

(o

j

is a non-terminal operation) is strict with respect to s if and only if

com(h)�o

u

j

is legal and for every committed subsequence h

1

of com(h), for every uncommitted operation

o

u

k

in h

1

, (o

j

; rec(o

j

; h � o

j

; s)) commutes with rec(o

k

; h; s) with respect to state(s; h

1

). Contrast this

with the requirement in Theorem 1 that (o

j

; rec(o

j

; h � o

j

; s)) commute with rec(o

k

; h; s) with respect

to every state that is legal with respect to (o

j

; rec(o

j

; h � o

j

; s)). Thus, in order to ensure that h � o

j

is

strict with respect to s, one can proceed in the forward direction by considering all possible committed

subsequences h

1

of com(h) and then verifying if, for every uncommitted operation o

k

in h

1

, (o

j

; rec(o

j

; h�

o

j

; s)) commutes with rec(o

k

; h; s) with respect to state(s; h

1

). This, however, would be very ine�cient

since the number of committed subsequences h

1

of com(h) is exponential in the number of uncommitted

operations in h. Instead, we adopt a backward approach in which we �rst characterize, for every

uncommitted operation o

k

in h the set com st

k

of states s

0

such that (o

j

; rec(o

j

; h � o

j

; s)) commutes

with rec(o

k

; h; s) with respect to s

0

. We then determine, using the notion of weakest precondition, the

conditions that state s must satisfy if for every committed subsequence h

1

of com(h) containing o

k

,

state(s; h

1

) must be in com st

k

.

We characterize the set of states with respect to which operation recovery pairs and procedure

invocations belonging to an object commute by stating conditions that the states of the object in the

set must satisfy. For an operation recovery pair (o

k

; inv

k

) and a procedure invocation inv

i

belonging

to an object b, we denote by wp str(�; (o

k

; inv

k

); inv

i

), a condition for b, such that for any state s of b,

the following is true:

s satis�es wp str(�; (o

k

; inv

k

); inv

i

) if and only if (o

k

; inv

k

) commutes with inv

i

with respect to s

For example, for the operation recovery pair ([pop(); e

1

]; push(e

1

)) and procedure invocation pop()

belonging to the stack object,

wp str(�; ([pop(); e

1

]; push(e

1

)); pop()) = (top el = [e

1

; e

1

])

that is, ([pop(); e

1

]; push(e

1

)) commutes with pop() with respect to state s if and only if s satis�es

top el = [e

1

; e

1

]. In Figure 2, we specify wp str(�; (o

k

; inv

k

); inv

i

) for operation recovery pairs (o

k

; inv

k

)

and procedure invocations inv

i

associated with the stack object.

The only remaining issue to be addressed is that of determining, for a given condition C for an

object, the condition that state s must satisfy if for every committed subsequence h

1

of com(h) con-

taining an uncommitted operation o

k

, state(s; h

1

) must satisfy C. This task is considerably simpli�ed

if we use the notion of weakest precondition of operations. For a non-terminal operation o

j

belonging

10

conclude that h � o

j

is strict. Based on this observation, in the following theorem, we state su�cient

conditions for ensuring that scheduling an operation for execution preserves the strictness of histories.

Theorem 1: Let h be a sequence of operations belonging to object b that is strict with respect

to state s of b and o

j

be an operation belonging to b. The sequence of operations h � o

j

is strict with

respect to s if one of the following conditions is true:

1. Operation o

j

is a terminal operation.

2. If o

j

is a non-terminal operation, then

� com(h) � o

u

j

is legal with respect to s, and

� for every uncommitted operation o

k

in h, (o

j

; rec(o

j

; h�o

j

; s)) commutes with rec(o

k

; h; s). 2

Proof: See Appendix A. 2

Thus, from Theorem 1, it follows that the strictness of object history h

b

with respect to init s(b) can

be ensured by permitting an operation o

j

to execute if either o

j

is a terminal operation or the operation

recovery pair (o

j

; rec(o

j

; h

b

� o

j

; init s(b))) commutes with the recovery procedure rec(o

k

; h; init s(b))

for every uncommitted operation o

k

in h

b

. The latter condition can be easily determined from the

commutativity table. Thus, the overhead involved in scheduling operations using the above scheme

based on commutativity is low, the time complexity to schedule an operation being linear in the number

of uncommitted operations in h

b

.

6 Weakest Precondition

Theorem 1 states only a su�cient condition for preserving the strictness of histories. Thus, for a se-

quence of operations h that is strict with respect to state s, and a non-terminal operation o

j

, it may be

possible that (o

j

; rec(o

j

; h �o

j

; s)) does not commute with rec(o

k

; h; s) for some uncommitted operation

o

k

in h, but the sequence of operations h � o

j

is still strict with respect to s.

Example 2: Consider a stack object b and a state s of b in which b is empty. Let h = h[push(e); ok] :

T

1

; bi and o

j

= h[push(e); ok] : T

2

; bi. FromTheorem 1, it does not follow that the sequence of operations

h � o

j

is strict with respect to s since the operation recovery pair (o

j

; rec(o

j

; h � o

j

; s)) = (h[push(e); ok] :

T

2

; bi; pop()) does not commute with the recovery procedure rec(h[push(e); ok] : T

1

; bi; h; s) = pop().

However, the sequence of operations h � o

j

is strict with respect to s (since state(s; h � o

j

� pop()) =

state(s; o

j

) = state(s; h)). 2

The di�culties stem from the requirement of Theorem 1 that (o

j

; rec(o

j

; h � o

j

; s)) commute with

rec(o

k

; h; s) for all uncommitted operations o

k

in h and the de�nition of commutativity (De�nition 2)

that requires conditions (a) and (b) to hold for all states s such that (o

k

; inv

k

) is legal with respect to

s. This requirement is too strong, and below, we weaken it by de�ning the notion of commutativity

9

pop() push(e

2

); e

2

= e

1

push(e

2

); e

2

6= e

1

skip()

([pop(); e

1

]; push(e

1

)) yes yes

([pop(); fail]; skip()) yes yes

([push(e

1

); ok]; pop()) yes yes

([top(); e

1

]; skip()) yes yes

([top(); fail]; skip()) yes yes

Figure 1: Commutativity Table for Stack Object

Consider an operation o

k

in a sequence of operations h and let its recovery procedure be inv

k

. We

refer to the pair (o

k

; inv

k

) as an operation recovery pair. An operation recovery pair (o

k

; inv

k

) is legal

with respect to state s if and only if

� o

k

is legal with respect to s, and

� state(s; o

k

� inv

k

) = s.

Thus, if inv

k

= inverse(inv(o

k

); s) and o

k

is legal with respect to s, then the operation recovery

pair (o

k

; inv

k

) is legal with respect to state s. We de�ne the notion of commutativity between operation

recovery pairs and procedure invocations as follows.

De�nition 2: An operation recovery pair (o

k

; inv

k

) commutes with a procedure invocation inv

j

if and only if

1. there exists a state s such that (o

k

; inv

k

) is legal with respect to s, and

2. for every state s such that (o

k

; inv

k

) is legal with respect to s,

(a) (o

k

; inv

k

) is legal with respect to state(s; inv

j

), and

(b) state(s; o

k

� inv

j

) = state(s; inv

j

� o

k

). 2

The commutativity table for operation recovery pairs and procedure invocations belonging to the

stack object are shown in Figure 1. If, for an operation recovery pair (o

k

; inv

k

) and a procedure

invocation inv

j

, there is no entry in the commutativity table, then (o

k

; inv

k

) does not commute with

inv

j

. An entry yes in the commutativity table implies that (o

k

; inv

k

) commutes with inv

j

. Thus,

([pop(); e

1

]; push(e

1

)) does not commute with pop(), while ([pop(); fail]; skip()) commutes with pop().

Commutativity between operation recovery pairs and operation invocations can be used to ensure

that a sequence of operations h � o

j

is strict with respect to s, given that h is strict with respect to s.

Suppose o

j

(along with its recovery procedure) commutes with the recovery procedure of every uncom-

mitted operation o

k

in h. Thus, if the recovery procedure for o

k

were executed after o

j

, the resulting

state s

1

would be the same as the resulting state if the recovery procedure for o

k

were executed just

before o

j

(due to commutativity). Since h is strict, the recovery procedure for o

k

undoes o

k

's e�ects if

it is executed before o

j

and thus, in state s

1

, the e�ects of o

k

are undone. As a result, since in h �o

j

it is

possible to undo the e�ects of any uncommitted operation by executing its recovery procedure, we can

8

De�nition 1: Let b be an object, and let h be a sequence of b's operations. Sequence h is strict

with respect to a state s of b if and only if for all committed subsequences h

1

of com(h)

� h

1

is legal with respect to state s, and

� for every uncommitted operation o

u

k

in h

1

(let h

1

= h

2

� o

u

k

� h

3

), state(s; h

1

� rec(o

k

; h; s)) =

state(s; h

2

� h

3

). 2

Thus, if an object history h

b

is strict with respect to init s(b), then in order to perform recovery

when an uncommitted transaction in h

b

invokes b's abort procedure, the abort procedure only needs

to execute rec(o

k

; h

b

; init s(b)) for every one of the transaction's operations o

k

(note that operations

resulting from the execution of recovery procedures are not part of the object history). In Example 1,

the sequence of operations h is strict with respect to state s since the e�ects of the only uncommitted

operation in h, h[pop(); e] : T

1

; bi, can be undone by executing its recovery procedure, push(e). The

recovery procedure for an uncommitted operation o

k

in h

b

can be computed and stored when inv(o

k

)

executes, and is inverse(inv(o

k

); s), where s is the state of b from which execution of inv(o

k

) results

in operation o

k

.

It is possible to employ brute force methods in order to ensure that object histories are strict. For

instance, the strictness of object history h

b

with respect to init s(b) can be ensured by ensuring that

all possible committed subsequences of com(h

b

) satisfy the two conditions described in De�nition 1.

However, since the number of committed subsequences of com(h

b

) is exponential in the number of

uncommitted operations in com(h

b

), such brute force approaches may prove to be computationally

formidable. In subsequent sections, we propose e�cient schemes for ensuring the strictness of histories.

Note that strictness is a local property of individual object histories. Also, our de�nition of strictness

can be further re�ned by exploiting the fact that multiple operations in an object history may belong to

a single transaction and thus abort together. However, we have deliberately chosen not to incorporate

transaction information in our de�nition of strictness, and have modeled aborts of operations belonging

to a single transaction as independent events in order to keep our treatment of strictness simple.

Also, in parts of the remainder of the paper, we do not include transaction and object information

along with every operation if they are irrelevant, and operations are written to consist of just procedure

invocations and responses.

5 Commutativity

Recovery for an aborted transaction, in a strict history, can be performed by simply executing the

recovery procedures of the transaction's operations. Thus, for an object b, if the object history h

b

were

strict with respect to init s(b) at all times, the overhead associated with recovery actions for aborted

transactions would be low. Since the object history h

b

= � is trivially strict with respect to init s(b),

strictness of h

b

with respect to init s(b) can be ensured by permitting only operations that preserve

the strictness of h

b

with respect to init s(b) to execute. In this section, we state a su�cient condition,

based on commutativity, under which the sequence of operations h � o

j

is strict with respect to a state

s, given that h is strict with respect to s.

7

� (top el = list

1

^ top el = list

2

) is equivalent to (top el = list

1

), where sublist(list

2

; list

1

).

� (top el = list

1

^ top el = list

2

) is equivalent to false, where :sublist(list

1

; list

2

) and

:sublist(list

2

; list1).

� (C ^ false) is equivalent to false.

In appendices C and D, we have de�ned, in a similar fashion, conditions for a set object and an

account object, respectively.

4 Strict Histories

The abort procedure for an object b undoes the e�ects of the transaction (that invokes it) on the state

of object b, thereby ensuring that on its completion, com(h

b

) is always legal with respect to init s(b)

and that the state of object b is state(init s(b); com(h

b

)). In this section, we de�ne strict histories, in

a manner that will allow the recovery of an aborted transaction to be simpli�ed.

With every uncommitted operation o

k

in an object history h

b

, we associate a �xed recovery pro-

cedure that is used to undo the e�ects of o

k

on the state of object b if o

k

were to abort. Before we

specify the recovery procedure for uncommitted operations, we �rst introduce the notion of inverses

for an object's procedure invocations that result in non-terminal operations. With every procedure in-

vocation inv

i

and state s belonging to object b, we associate an inverse procedure invocation, denoted

by inverse(inv

i

; s), that has the following property

state(s; inv

i

� inverse(inv

i

; s)) = s.

Note that inverse(inv

i

; s) may be a procedure invocation that does not belong to object b.

Below, we specify inverses for procedure invocations associated with the stack object. The procedure

skip is a no-op procedure that does not perform any actions.

inverse(pop(); s) =

(

push(e) if s satis�es top el = [e]; e 6= $

skip() if s satis�es top el = [$]

inverse(push(e); s) = pop()

inverse(top(); s) = skip()

Consider an uncommitted operation o

k

in a sequence of operations h belonging to an object b (let

h = h

1

� o

k

� h

2

). We use inverse procedure invocations in order to de�ne the recovery procedure for o

k

with respect to a state s of b, denoted by rec(o

k

; h; s), as follows:

rec(o

k

; h; s) = inverse(inv(o

k

); state(s; com(h

1

)))

Intuitively, rec(o

k

; h; s) is the inverse of inv(o

k

) with respect to the state resulting due to the execu-

tion, from state s, of committed and uncommitted operations preceding o

k

in h. We now de�ne strict

histories in which the recovery procedure for an uncommitted operation can be used to undo its e�ects

on the state of the object.

6

pops it from the stack. Procedure top, like pop, returns fail if the stack is empty, but unlike pop, if

the stack is not empty, only returns the element at the top of the stack without popping it.

Let b be a stack object that contains a single element e in state s. Consider the following sequence

of operations h resulting from the execution of procedure invocations pop(), push(e) and commit()

from s by transactions T

1

and T

2

.

h[pop(); e] : T

1

; bi � h[push(e); ok] : T

2

; bi � h[commit(); ok] : T

2

; bi

Transaction T

1

is uncommitted in h, while T

2

is committed in h. Operation h[pop(); e] : T

1

; bi is

uncommitted in h, while operation h[push(e); ok] : T

2

; bi is committed in h. Further, com(h) is legal

with respect to s and is as follows.

h[pop(); e] : T

1

; bi

u

� h[push(e); ok] : T

2

; bi

c

Finally, in state(s; com(h)), b contains a single element e. 2

The object's states can be characterized using conditions de�ned for the object. The syntax and

semantics of the conditions for an object are dependent on the semantics of the object and its operations.

For the stack object of Example 1, the conditions are either primitive conditions or are recursively

constructed from other conditions using the logical connective \^". Primitive conditions for a stack

object are false and top el = list, where list is a list of elements that may contain the special distinct

symbol \$". Furthermore, if $ is an element in list, then it occurs only once and is the last element in

list ($ is used to represent the bottom of the stack). No state of a stack object satis�es false. A state

s of a stack object satis�es the condition top el = list if and only if the following are true:

� If $ is an element in list, then the stack in state s, contains only all the elements in list (except

$), the element at the top of the stack being the �rst element in list and so on (the element at

the bottom of the stack is the last but one element in list).

� If $ is not an element in list, then the stack in state s, contains all the elements in list, the element

at the top of the stack being the �rst element in list and so on (note that the last element in list

may not be the element at the bottom of the stack).

Thus, for a state s of the stack object, s satis�es top el = [e

1

; e

2

; e

3

], e

3

6= $, if and only if the top 3

elements in the stack are e

1

, e

2

, and e

3

. Note that there may be more elements in the stack below e

3

.

However, a state s of the stack object satis�es top el = [e

1

; e

2

; e

3

; $] if and only if the top 3 elements in

the stack are e

1

, e

2

, and e

3

and e

3

is the bottom element in the stack. Every state s of a stack object

satis�es the condition top el = [] ([] is the empty list).

Furthermore, if C

1

and C

2

are conditions for the stack object, then so is C

1

^ C

2

. State s satis�es

condition C

1

^ C

2

if and only if it satis�es C

1

and it satis�es C

2

. A condition C

1

is equivalent to

another condition C

2

if and only if for all states s, s satis�es C

1

if and only if s satis�es C

2

. Thus, if

C

1

is equivalent to C

2

, then C

1

can replace C

2

in a condition, and vice versa.

Let l be a list of elements. The function jlj returns the number of elements in the list l. For lists

l

1

; l

2

, sublist(l

1

; l

2

) is a predicate that is true if and only if the sublist consisting of the �rst jl

1

j elements

of l

2

is equal to l

1

. For example, sublist([e

1

]; [e

1

; e

2

; e

3

]) and sublist([e

1

; e

2

]; [e

1

; e

2

; e

3

]) are true, while

sublist([e

1

]; [e

2

; e

1

; e

3

]) is false. For the stack object, the following equivalences hold:

5

together constitute an operation. A transaction is a sequence of operations belonging to the various

objects.

Let b be an object and let T

i

be a transaction that invokes one of object b's procedures. The

resulting operation o

j

is written as (the notation we adopt is similar to that in [Wei88, Wei89]):

h[inv; res] : T

i

; bi

where inv is the procedure invocation and res is the response.

We shall refer to an operation o

j

that results due to the invocation of one of object b's procedures

as one of b's operations. For an object b, the object history, denoted by h

b

, is a sequence of only b's

operations in the order in which they execute (b's operations, when they execute, are appended to the

history h

b

). For an object b and a transaction T

i

, operations h[commit(); ok] : T

i

; bi and h[abort(); ok] :

T

i

; bi are referred to as terminal operations. The remainder of b's operations are referred to as non-

terminal operations. Operation h[abort(); ok] : T

i

; bi causes all the e�ects of T

i

's operations on the state

of b and other operations in h

b

to be undone. The initial state of an object b is denoted by init s(b).

We assume that every object history h

b

is well-formed, that is, for every transaction T

i

, h

b

contains at

most one terminal operation belonging to T

i

, and no operation in h

b

following T

i

's terminal operation

belongs to T

i

.

Let h be a sequence of operations belonging to an object b. Transaction T

i

is said to be committed in

h if h[commit(); ok] : T

i

; bi belongs to h; it is said to be aborted in h if h[abort(); ok] : T

i

; bi belongs to h.

Transaction T

i

is said to uncommitted in h if it is neither committed nor aborted in h. Consider an oper-

ation o

j

in h belonging to transaction T

i

. Operation o

j

is said to be committed/aborted/uncommitted

in h if T

i

is committed/aborted/uncommitted in h. Let h

1

be a subsequence of h containing all the

operations in h except the terminal and aborted operations in h. We denote by com(h), the sequence

of operations obtained as a result of annotating every operation in h

1

by either a \c" if the operation

is committed in h, or by a \u" if the operation is uncommitted in h. We refer to such a sequence as an

annotated sequence of operations. Further, a subsequence h

1

of an annotated sequence of operations

h is said to be a committed subsequence of h if h

1

contains all the operations in h that are annotated

by a \c" (note that h

1

may also contain certain operations in h that are annotated by a \u").

Let e

i

be an operation (which may or may not be annotated). We denote the procedure invocation

part of e

i

by inv(e

i

), and the response part by res(e

i

). A sequence e

1

�e

2

� � �e

n

(\�" is the concatenation

operator for sequences, and \�" is the empty sequence) of an object b's operations (each of which may

or may not be annotated) is said to be legal with respect to a state s of b if and only if invoking b's

procedures in the order inv(e

1

); inv(e

2

); : : : ; inv(e

n

) from state s results in the sequence of operations

e

1

� e

2

� � �e

n

. Let g = e

1

� e

2

� � �e

n

be a sequence each of whose elements is either an operation (which

may or may not be annotated) or a procedure invocation belonging to object b. We shall denote by

state(s; g), the state that results due to the execution of p(e

1

); p(e

2

); : : : ; p(e

n

) from state s, where

p(e

i

) = e

i

if e

i

is a procedure invocation, and p(e

i

) = inv(e

i

), otherwise. The following example illus-

trates the above-developed notation.

Example 1: Consider a stack object that supports the procedures: push, pop and top. Procedure

push always returns ok and pushes an element e (passed as an argument) onto the stack. Procedure

pop returns fail if the stack is empty; otherwise it returns the element at the top of the stack and

4

systems that exploit the semantics of operations (e.g., perform operation logging) and employ recovery

algorithms proposed in [WHBM90, Lom92, MHL

+

92].

The remainder of the paper is organized as follows. In Section 2, we describe some of the previous

results in this area that are related to our work. In Section 3, we de�ne our model for an object-

based database system. Strict histories are de�ned in terms of inverses of operations in Section 4. We

develop schemes based on commutativity for ensuring histories are strict in Section 5. In Section 6,

we use the weakest precondition operations to state necessary and su�cient conditions for ensuring

that scheduling an operation for execution preserves the strictness of histories. In Section 7, we make

concluding remarks.

2 Previous Work

A number of concurrency control schemes that exploit the semantics of operations have been proposed in

the literature [Kor83, SS84, Wei88, Wei89, Her90, BR92, GM83, FO89]. However, most of them do not

ensure that resulting histories are strict. Concurrency control schemes proposed in [Kor83, SS84, Wei88,

Wei89] de�ne the notion of conict between arbitrary operations in terms of commutativity (operations

conict if and only if they do not commute). Furthermore, an operation belonging to a transaction

is permitted to execute if every other transaction that has executed a conicting operation has either

committed or aborted. However, the above schemes do not ensure the strictness of resulting histories.

Consider two write operations that write the same value v

1

onto a data item x that initially has a

value v

0

. The two write operations obviously commute (since the �nal state is the same irrespective

of the order in which they are executed), and are thus permitted to execute concurrently by the

above schemes. However, if the �rst write operation were to abort (before the second write operation

has either committed or aborted), and recovery were performed by executing its inverse operation

(the inverse for the �rst write operation sets the value of x to v

0

), then the resulting state would be

incorrect. Note that although our schemes for ensuring strictness are also based on commutativity,

our schemes rely on commutativity between operations and inverses of operations while schemes in

[Kor83, SS84, Wei88, Wei89] are based on commutativity between operations. In [BR92], the notion

of cascadeless histories (referred to as ACA) is de�ned for histories containing operations semantically

richer than read and write operations, and a property, recoverability, between operations, is introduced

in order to ensure that histories are cascadeless. However, recovery for aborted operations in cascadeless

histories is complicated and cannot be performed by simply executing operation inverses. The authors

do not address the issue of how recovery is to be performed in cascadeless histories.

3 The Model

The basic components of our model are objects and transactions. An object consists of a set of variables

whose values determine the state of the object, and a set of procedures that access and manipulate the

object's variables. An object's procedures execute atomically, and are invoked by transactions in order

to manipulate the state of the object. Upon completion of its execution, a procedure returns to the

invoking transaction, a response. A procedure invocation and the object's response to the invocation

3

1 Introduction

Atomicity and durability are integral properties of transactions. Atomicity states that all the operations

associated with a transaction must be executed to completion, or none at all. Durability states that

the e�ects of a committed transaction are never undone (that is, e�ects of a committed transaction

are persistent). If a history resulting from the concurrent execution of transactions is to preserve

the atomicity and durability properties, then it must be at least recoverable [BHG87] (a history is a

sequence of read, write, commit, and abort operations belonging to all the transactions executed in

the system). A history h is recoverable if for any two transactions T

i

and T

j

in h, if T

j

reads the value

of a data item written by T

i

, then T

i

commits or aborts before T

j

commits. In a recoverable history,

it is possible to undo the e�ects of aborted transactions without undoing the e�ects of committed

transactions. However, in a recoverable history, undoing the e�ects of an aborted transaction may

result in cascading aborts, which may incur a signi�cant overhead [BHG87]. To avoid this problem,

histories can be further restricted to be cascadeless. A history is cascadeless if for any two transactions

T

i

and T

j

in h, if T

j

reads the value of a data item written by T

i

, then T

i

commits or aborts before T

j

reads the data item. In cascadeless histories, undoing the e�ects of an aborted transaction does not

require other transactions (committed or uncommitted) to be aborted.

Although cascadelessness eliminates the need to abort other transactions in case a transaction abort

occurs, undoing the e�ects of an aborted transaction on the database state may be still complicated.

In order to simplify recovery, histories can be further restricted to be strict

1

. A history h is strict if

for any two transactions T

i

and T

j

in h, if T

i

writes a data item in h before T

j

reads/writes the data

item, then T

i

commits or aborts before T

j

performs its read/write operation on the data item. Thus,

recovery of an aborted transaction, can be performed by simply installing into the database, the before

images of all the writes done by the transaction. This is the reason why a number of current database

systems follow concurrency control schemes that ensure strictness.

The notion of strictness has been de�ned only for histories containing read and write operations.

However, with the recent advances in object-oriented database systems, where transaction operations

are no longer con�ned to the simple read/write operations, but to semantically richer operations, the

need arises to extend the notion of strictness to histories containing operations semantically richer than

read and write operations.

In this paper, we extend the notion of strictness to histories containing semantically rich operations,

thus providing a characterization for the set of histories in which recovery is simple. We de�ne a history

to be strict if recovery for operations that abort in the history can be performed by simply executing

their inverse operations (the inverse of an operation is a function of the operation and the state

from which the operation executes). We develop concurrency control schemes based on commutativity

between operations and inverses of operations for e�ciently ensuring that histories are strict. We also

utilize the weakest precondition of operations in order to state necessary and su�cient conditions for

ensuring that scheduling an operation for execution preserves the strictness of histories. Our schemes

for ensuring histories are strict can be used in conjunction with concurrency control schemes that ensure

serializability, such as two-phase locking (2PL) and serialization graph testing (SGT), in object-based

systems. Our results can also be utilized to provide concurrency control support in general database

1

Strict histories are the same as degree 2 consistent executions introduced in [GLPT75].

2

Strict Histories in Object-Based Database Systems

Rajeev Rastogi

1�

Henry F. Korth

2

Avi Silberschatz

1�

1

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712-1188 USA

2

Matsushita Information Technology Laboratory

182 Nassau Street, third oor

Princeton, NJ 08542-7072

Abstract

In order to ensure the simplicity of recovery in an object-based database system environment,

the notion of a strict history containing operations that are semantically richer than read and write

operations is of vital importance. A strict history is one in which recovery for aborted operations can

be performed by simply executing their inverse operations. In this paper, we develop concurrency

control schemes based on commutativity between operations and inverses of operations for e�ciently

ensuring that histories are strict. We show that in schemes based on commutativity, the time com-

plexity for scheduling an operation for execution is linear in the number of operations that have

neither committed nor aborted in the history. We also utilize the weakest precondition of operations

in order to state necessary and su�cient conditions for ensuring that scheduling an operation for exe-

cution preserves the strictness of histories. The schemes based on weakest precondition exploit state

information of objects and thus, provide a higher degree of concurrency than commutativity-based

schemes. Since strict histories ensure the simplicity of recovery, Our schemes for ensuring histories

are strict can be used in conjunction with concurrency control schemes that ensure serializability,

such as two-phase locking and serialization graph testing, in object-based systems.

�

Work partially supported by NSF grants IRI-9003341 and IRI-9106450, by the Texas Advanced Technology Program

under Grant No. ATP-024, and by grants from the IBM corporation and the H-P corporation.

1

STRICT HISTORIES IN

OBJECT-BASED DATABASE SYSTEMS

Rajeev Rastogi

Henry F. Korth

Avi Silberschatz

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712-1188

TR-92-43 December 1992

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

austin, texas 78712

