can be computed recursively using the definitions of wp(o;,C') where o; is an operation belongin,
the set object, and C' is either false or C' is of the form (inset,outset). Thus, for a history hy of
set object, the computation of wp_str for com(hy) has time complexity that is linear in the numbe
operations in com(hy). Thus, since Theorem 2 requires wp_str to be computed for every uncommi
operation o in h, the time complexity of a scheme based on weakest precondition to ensure that his

hy of the set object is strict would be the product of the number of operations in com(hy) and
number of uncommitted operations in hy.

’ ins(eg), e = €1 | ins(ey), e2 # €1 | del(ez), e = €1 | del(ey), e2 # €1 | sh
([ins(er), ok],del(e1)) yes yes 1
([ins(er), ok], skip()) yes yes yes 1
([del(er), ok],ins(eq)) yes yes 1
([del(er), ok], skip()) yes yes yes 1
([mem(eq), ok], skip()) yes yes yes 1
([mem(er), fail], skip()) yes yes yes 1

In the commutativity table, if, for an operation recovery pair (o, invg) and a procedure invoca
inv;, there is no entry in the commutativity table, then (o, inv;) does not commute with inv;.
entry yes in the commutativity table implies that (o, invy) commutes with inv;.

In the following table, we specify wp_str(e, (ox,invy), inv;) for operation recovery pairs (o, 2
and procedure invocations inv; associated with the set object.

ins(eg),ea = €1 | ins(ey), ez # eq | del(ez), e2 = €1 | del(ez),ex # €1 ‘
([tns(e1), ok], del(ey)) false {}:{ed) false {3 Aed) | (
([ins(e1), ok], skip()) e, {D) e, {D) false {eid {1 (
([del(er), ok], ins(ey)) false {erd: D) false {ed:. 1) |(
([del(eq), ok], skip()) false {}:{ed) {}:{erd) {3 {erd) (4
([mem(e1), ok], skip()) e, {D) e, {D) false Herd {H) | (
([mem(er), fail], skip()) false {}:A{ed) {}:{erd) {3 {erd) (4

The weakest precondition wp(o;,C') where each o; is an operation belonging to the set object,
C' is a condition of the form (inset, outset) is as follows.

(inset — {e},outset) if e € inset
wp([ins(e), ok], (inset, outset)) = < false if e € outset
(inset, outset) otherwise

(inset,outset — {e}) if e € outset
wp([del(e),ok], (inset, outset)) = < false if e € inset
(inset, outset) otherwise

false if e € outset

wp([mem(e), ok], (inset, outset)) == { (inset U {e}, outset) otherwise

false if e € inset

wp([mem(e), fail], (inset, outset)) = { (inset,outset U{e}) otherwise

Also, for all operations o;, wp(o;, false) = false.
In the computation of wp_str for an annotated sequence of set operations, the object man:
can replace conditions of the form (7 A C; by a single equivalent condition using the equivalence r

described earlier. As a result, wp_str for an annotated sequence of operations belonging to the set ob

Appendix D

In this appendix we present a set example to illustrate our concepts. Consider a set that supp
the following procedures: ins(e), del(e) and mem(e). Procedure ins(e) always returns ok and ins
element e into the set. Procedure del(e) always returns ok and deletes element e from the set. Procec
mem(e), returns fail if e does not belong to the set, else, if e belongs to the set, it returns ok.

For the set object, the syntax and semantics of conditions are defined as follows. The condit
on the states of a set object are either primitive conditions or are recursively constructed from o
conditions using the logical connective “A”. Primitive conditions on the states of a set object
false and (inset, outset), where inset and outset are disjoint sets of elements. No state of a set ob
satisfies false. A state s of the set object satisfies the condition (inset, outset) if and only if the se
state s contains all the elements in ¢nset and none of the elements in outset. Thus, for a state s of
set object, s satisfies ({e1}, {e2}) if and only if the set, in state s, contains e; and does not contair
Every state s of a set object satisfies ({},{}).

Furthermore, if 1 and (5 are conditions on the set object, then sois C7 A Cy. A state s of a
object satisfies condition Cy A Cy if and only if it satisfies C7 and it satisfies C3. A condition C
equivalent to another condition Cy if and only if for all states s, s satisfies C if and only if s sati
C'y. Thus, if C is equivalent to C'5, then C can replace (5 in a condition, and vice versa. For the
object, the following equivalences hold:

o (insety,outsety) A (insety,outsety) is equivalent to false, where inset; N outsety # {
insety Noutsety # {}.

o (insety,outsety) A (insety,outsety) is equivalent to (insety U insety, outsety; U outsety), w!

insety Noutsety = {} and insety Noutset; = {}.

o (' A false is equivalent to false

Below, we specify inverses for procedure invocations associated with the set object.

inverse(ins(e),s) = { del(e) if s satisfies ({},{e})
’ skip() if s satisfies ({e}, {})

inverse(del(e),s) =

{ ins(e) if s satisfies ({e},{})
skip() if s satisfies ({},{e})

inverse(mem(e),s) = skip()

The commutativity table for operation recovery pairs and procedure invocations belonging to

set object are as follows.

to be 2™). Using a similar argument, it can be shown that wp_str for the sequence o} -0} - - - o spec
intervals [1][3][5] - - - [2" —1][2" + 1, o¢]. Finally, wp_str for the sequence of -0%-0Y - - - 0¥ specifies inter
[1][3][5] - - - [2" = 1][2" + 1, 27Tt — 1]. Thus, since wp_str for h specifies 2771 4 1 intervals, the comple
of the computation of wp_str for annotated sequences of operations belonging to the account obje
exponential in n.

Let us demonstrate the construction for n = 4. Uncommitted operations og, 01, 02, 03 and o4
[c-db(32,32), fail], [credit(2),ok], [credit(4), ok], [credit(8), ok], and [c_db_ok(16,16), 0k]. As shown
lier, wp_str for € specifies interval [1, co]. wp_str for o} specifies intervals [1, 15][15, 0c]. wp_str for o}
specifies intervals [1, 7][9, 15][15, 0o]. wp_str for 0} -04-0} specifies intervals [1, 3][5, 7][9, 11][13, 15][15,
wp_str for o} - o} - o - 0y specifies intervals [1][3][5][7][9][11][13][15][15, o0]. Finally, wp_str for of -
0y - oY - o} specifies intervals [1][3][5][7][9][11][13][15][15, 31].

wp([c_db(cond, amt), ok],C') = bal > cond A C}%

bal—amt

wp([c-db(cond,amt), fail],C) = bal < condA

wp([c_db_ok(cond, amt),ok],C) = (bal < cond = C) A (bal > cond = CP¥_)

bal—amt
wp([credit(amt),ok],C) = ngll-l—amt

wp([audit, val],C') = (bal = val) N C

wp_str for an annotated sequence of operations belonging to the account object can be compt
recursively using the definitions of wp(o;, C'), where o; is an operation belonging to the account ob
and (' is an arbitrary condition on the state of the account object. It can be shown that in the w
case the time complexity of computing wp_str for an annotated sequence of operations belongin,
the account object is exponential in the number of operations in the sequence.

Conditions on the states of account objects specify disjoint intervals of positive integers, an
state of the account object satisfies a condition if and only if the account balance in the state lie
one of the intervals. For instance, the condition bal > 200 = bal > 500 specifies two intervals [0,
and [500, oo], while a condition of the form bal > 200 A bal < 500 specifies a single interval [200, 4
In general, it can be shown that the size of a condition is at least a linear function of the numbe
disjoint intervals specified by the condition. Thus, if we show that for any n, there exists an annot:
sequence of operations belonging to the account object such that the number of intervals specifiec
wp_str for the sequence is an exponential function of n, then it follows that in the worst case,
computation of wp_str for an account object has exponential complexity (in n).

For any n, n > 1, the annotated sequence of operations h = of - 0} - 0§ - - -0} - o} that we const.
has the following properties:

1. Every operation in A is uncommitted in h.

2. Operation og is [c-db(2"H1, 27+ fail] with recovery procedure skip().
3. For all i, 1 <i < n — 1, each operation o; is [credit(2°), ok].

4. Operation oy, is c_db_ok(2",2").

The operation o; to be scheduled is [c.db(1,1), 0k] and its recovery procedure is credit(1). T
wp_str(e, ([c.db(1,1),0k], credit(1)), skip()) is bal > 1 and specifies the interval [1,00] (skip() is
recovery procedure for og). wp_str for o specifies the following intervals [1, 2" —1][2" + 1, o] (since
account balance after the execution of o, is to be in [1, 0c], the account balance before the execu
of 0, must not be 27, since this would cause the account balance to become 0 after the executio
specifies the following intervals [1,277! — 1][277t +1,2" — 1][2" + 1
(intuitively, since 0,—1 could either commit or abort and the account balance before o, executes n

0,,). Also, wp_str for o _; - ol

be in [1,2" — 1][2" + 1, oc], the account balance before the execution of 0,_; must not be 2™ and it

must not be 2771 since 0,,_1 adds 277! to the account balance which would cause the account bal:

inverse(c_db(condy,amty), s) = { skip()

inverse(c_db_ok(condy,amty),s) = {

inverse(credit(amty), s) = debit(amty)

skip()

credit(amty) if s satisfies bal > cond,

if s satisfies bal < cond;

credit(amty) if s satisfies bal > cond;
if s satisfies bal < cond;

inverse(audit(),s) = skip()

The commutativity table for operation recovery pairs and procedure invocations belonging to

account object are as follows.

credit(amtsy) | debit(amty) | skip()
([c-db(condy, amty), ok], credit(amty)) yes yes
([c-db(condy, amty), fail], skip()) yes yes
([c-db_ok(condy,amty), ok], credit(amty)) yes yes
([c-db_ok(condy,amty), ok], skip()) yes yes
([credit(amty), ok], debit(amity)) yes yes yes
([audit(), amty], skip()) yes

In the commutativity table, if, for an operation recovery pair (o, invy) and a procedure i1

cation inv;, there is no entry in the commutativity table, then (og,invy) does not commute x

inv;. An entry yes in the commutativity table implies that (og,inv;) commutes with inv;. T

([c-db(condy, amty), ok], credit(amty)) does not commute with debit(amtsy), while ([c_db(condy, amty

credit(amty)) commutes with credit(amtz).

In the following table, we specify wp_str(e, (ox,invy), inv;) for operation recovery pairs (o, 2

and procedure invocations tnv; associated with the account object.

credit(amtsy) debit(amtsy) skip()
([c-db(condy, amty), ok], credit(amty)) bal > cond, bal — amty > condy | bal > con
([c-db(condy, amty), fail], skip()) bal + amty < cond, bal < cond, bal < con
([c-db_ok(condy,amty), ok], credit(amty)) bal > cond, bal — amty > condy | bal > con
([c-db_ok(condy,amty), ok], skip()) bal + amty < cond, bal < cond, bal < con
([credit(amty), ok], debit(amty)) bal > 0 bal > 0 bal > 0
([audit(), amty], skip()) false false bal = ams

We now define wp(o;,C'), where o; is an operation belonging to the account object and (

a condition consisting of false, bal > wal, balance < wal and balance = val connected by log

connectives = and A. Further, 'y denotes the condition that results if y is substituted for z in C

Appendix C

In this appendix we present a bank example to illustrate our concepts. Consider an account
ject with the following procedures: cond_debit(cond,amt), cond_debit_ok(cond, amt), credit(amt)
audit() (in all the procedures, cond > 0, amt > 0 and amt < cond). Procedures cond_debit(cond,a
and cond_debit_ok(cond,amt) are defined as follows (balance is the account balance).

procedure cond_debit(cond,amt) :

if (balance > cond) then begin
balance := balance — amt;
return(ok)
end

else return(fail)

procedure cond_debit_ok(cond,amt) :
if (balance > cond) then balance := balance — amt;

return(ok)

Procedures credit(amt) and audit() always return ok. Procedure credit(amt) increments balance
amt. Procedure audit() returns the current value of balance. We shall refer to procedures cond_d
and cond_debit_ok as c_db and c_db_ok respectively.

For the account object, the syntax and semantics of conditions are defined as follows. The co
tions are either primitive conditions or recursively constructed from other conditions using the log
connectives “A” and “=". Primitive conditions on the account object are false, bal = val, bal >
and bal < wal, where val is a positive integer. No state of an account object satisfies false. A sta
of the account object satisfies the condition bal > val/bal < val/bal = val if and only if the accc
balance in state s is greater than or equal to/ less than / equal to val. Every state s of an accc
object satisfies bal > 0.

Furthermore, if C'; and 5 are conditions on the account object, then so is €7 A C5. A state
an account object satisfies condition C7 A Cy if and only if it satisfies €7 and it satisfies C5. Als
(1 and Cy are conditions on the account object, then so is €| = (5. A state s of an account ob
satisfies condition Cy = (5 if and only if it does not satisfy C or it satisfies Cj.

Before we specify inverses for procedure invocations associated with the account object, we de
the procedure debit(amt) as follows (note that procedure debit(amt) does not belong to the accc
object).

procedure debit(amt) :

balance := balance — amt

Inverses for procedure invocations associated with the account object are as follows.

2.

there exists an uncommitted operation oy in h (let com(h) = hy - o} - hy) such that s does
satisfy wp_str(hy - of - ha,(0;,7ec(0,h - 05,5)),rec(og, b, s)),

then % - 0; is not strict with respect to s.

1.

. By Lemma 2, if there exists an uncommitted operation oy in h (let com(h) = hy - of -

If com(h) - o; is not legal with respect to s, then hy = com(h)- o} is a committed subsequenc
com(h - o0;) that is not legal with respect to state s and thus, h - o; is not strict with respect t

U

such that s does not satisfy wp_str(hy - of - ha,(0;,rec(oj, h - 0;,5)),rec(ox, h,s)), then t
exists a committed subsequence, say hq, of com(h) containing o} such that state(s, hy) does
satisfy wp_str(e, (0;,rec(oj, h-0;,5)),rec(og, h,s)), or (0;,rec(o;, h-0;,5)) does not commute
rec(og, h, s)) with respect to state(s, hy) (since h is strict with respect to state s, any commi
subsequence of com(h) is legal with respect to s and thus, hy is legal with respect to s). !
result, one of the following is true:

a) (o;,rec(o;, h-0;,8))1s not legal with respect to state(s, hg), that is, either o; is not legal

() (70 (70 70 g P 9 9 9 7 g
respect to state(s, hy), in which case hy = hy - o,

does not satisfy property a and thus, i - 0; is not strict with respect to s, or

a committed subsequence of com(h

state(state(s, hy),0; -rec(o;,h-0;,s)) # state(s, hy).
As a result, it follows that

state(s, hy - off -rec(oj,h-0;,5)) # state(s, hy).

Since hy - o}

I - 0; is not strict with respect to s.

is a committed subsequence of com(h - 0;) that does not satisfy propert;

(b) (0j,rec(oj, h-0;,s)) is not legal with respect to state(s, hy - rec(og, h,s)). If hs is the su
quence obtained as a result of deleting o} from hy, then h3 is a committed subsequenc
com(h) and since h is strict with respect to s, state(s, hy-rec(oy, h,s)) = state(s, hs). T
(0j,rec(o;,h-0;,5)) is not legal with respect to state(s, hs). As a result, h - o0; is not sf
with respect to s (using an argument similar to that given above in (a)).

(c) state(state(s,ha), o0} - rec(og, h,s)) # state(state(s, hy),rec(og, h,s)-o}). If hy is the su
quence obtained as a result of deleting o} from ho, then since hy is a committed subseque
of com(h) and since h is strict with respect to s, state(s, hg - rec(og, h,s)) = state(s, h3).
a result, it follows that

state(s, hy - off - rec(og, h,s)) # state(s, hs - o¥).

Since hy - o}

I - 0; is not strict with respect to s. O

is a committed subsequence of com(h - 0;) that does not satisfy propert;

(0;,rec(o;, h-0;,s)) is legal with respect to state(s, hs-rec(og, h,s)). Since h is strict with res
to s and hs is a committed subsequence of com(h),

state(s, hs - rec(og, h,s)) = state(s, hy).

Thus, (0;,rec(0;,h-0;,5)) is legal with respect to state(s, hy).

If hy does not contain o}, then Ay is a committed subsequence of com(h) and since is strict
respect to state s, hy trivially satisfies properties a and b. We now show that if h; contains o
satisfies properties a and b. Let hy = hy-0}. Note that h; is a committed subsequence of com
Since h is strict with respect to s, ho is legal with respect to s. Thus, in order to show tha
is legal with respect to s, we need to show that o; is legal with respect to state(s,hy). Th
trivial since we have shown earlier that (o;,rec(o;, h - 0;,5s)) is legal with respect to state(s,

Thus, hy - 0} = hy is legal with respect to s.

We now show that for every uncommitted operation o} in hy (let hy = ho - 0} - h3), state(s,
rec(og, h - 0j,8)) = state(s,hy - hz). If of = o} (hy = hy - 0¥, hy is a committed subseque
of com(h) and hs = ¢), then as shown earlier (o;,rec(o;,h - 0;,s)) is legal with respec
state state(s, hy). Thus, state(s, hy - rec(o;, h-0;,5)) = state(s, hy) (since state(state(s,hy).
rec(o;, h.o;,s)) = state(s, hs)).

If o} # of, let hy = hy - o) - hy -0} (hs = hy - 0}‘). We need to show that
state(s, hy - rec(og, h - 0;,5)) = state(s, hy - hy - 0}).

From the statement of the theorem, (0;,rec(o;, h-0;,5)) commutes with rec(o, h, s) with res
to state(s, ha -0} -hy) since for any committed subsequence hj of com(h) containing of, state(s.

satisfies wp_str(e, (0;,rec(o;,h - 0;,5)),rec(og, h,s)). Thus,
state(s, hy - of - hy - 0 - rec(oy, b, s)) = state(s, hy - o} - hy - rec(og, h, s) - o¥).
However, since hg -0} - hy is a committed subsequence of com(h) and h is strict with respect t
state(s, hy - 0} - hy - rec(og, h, s)) = state(s, hy - hy).
Thus, it follows that
state(s, hy - of - hy - rec(og, h,s)- o) = state(s, hy - hy - 0}).
Thus,

state(s, hy - rec(og, h - 0;,5)) = state(s, hy - hy - 0}).

only if: We need to show that if o; is not a terminal operation and either of the following is true

1. com(h)- o; is not legal with respect to s, or

ha, 05 - ha is legal with respect to s and state(s,o} - ha) satisfies wp_str(e, (og,invy),inv;). S
state(s,0;) = s1, for every committed subsequence hs of hy, hs is legal with respect to s;
state(sy, hs) satisfies wp_str(e, (o, invy),inv;). As a result, by the induction hypothesis, s; s
fies wp_str(hg, (og, tnvy), tnv;). By the definition of wp, since o; is legal with respect to s, s sati
wp(o;, wp_str(hy, (0, invg), inv;)).

On the other hand, if # = u, then every committed subsequence hy of i is of the form hy = o} -/
hi1 = hs, where hs is a committed subsequence of hy. Thus, since for every committed subsequence
h, hi is legal with respect to s and state(s, hy) satisfies wp_str(e, (o, tnvy), inv;), it follows that for
ery committed subsequence hs of hz, of - hs and hj are both legal with respect to s, and state(s, o}
and state(s, hs) both satisfy wp_str(e, (ox,invy),inv;). Since state(s,o;) = sy, for every commi
subsequence hs of hg, hs is legal with respect to s; and state(sy, hs) satisfies wp_str(e, (og, invg), ir
As a result, by the induction hypothesis, s; and s both satisfy wp_str(hg, (ok,invg),inv;). By
definition of wp, since o; is legal with respect to s, s also satisfies wp(o;, wp_str(hq, (o, invy), in

Thus s satisfies wp_str(h, (o, tnvg),inv;). O

Proof of Theorem 2:
if: In order to prove that & - o; is strict with respect to state s, we need to show that for all commi

subsequences hy of com(h - 0;),
a: hy is legal with respect to state s, and

b: for every uncommitted operation o} in hy (let hy = hg - 0} - h3), state(s,hy - rec(og, h - 0;,s
state(s, hy - hs).

1. If 0; is an abort operation, then com(h - 0;) is a committed subsequence of com(h). As a res
hy is a committed subsequence of com(h), and since h is strict with respect to state s, hy sati
properties a and b. If on the other hand, o; is a commit operation, there must exist a commi
subsequence hy of com(h) that has the same sequence of operations as hy, except that cer
operations in hy are annotated by a u while they are annotated by a ¢ in hy. Thus, since
strict with respect to state s, ho and as a result, hy is legal with respect to state s. Also, s
every uncommitted operation in Ay is also uncommitted in ho, the property b holds.

2. If oj is a non-terminal operation, then com(h-o;) = com(h)-o%. We first show that (o;,rec(o
0;,s)) is legal with respect to state(s,hy) for any committed subsequence hy of com(h).
case when hy = com(h) follows from the definition of rec(o;,h - 0;,5) since rec(o;, h - 0;,
inverse(inv(o;), state(s,com(h))) and com(h) - o; is legal with respect to s. Thus, we
need to consider cases in which hy contains fewer operations than com(h). If hy contains
uncommitted operation of, then by statement of theorem and from Lemma 2, state(s, hy) sati;
wp_str(c,(o0j,rec(o;, h-0;,5)),rec(og, h, s)). Thus, by the definition of wp_str, (0;, rec(o;, h-o;
is legal with respect to state(s,hz). If hy contains no committed operations, since hy cont
fewer operations than com(h), there must exist a committed subsequence of com(h), hs, such -
o is obtained from A3 as a result of deleting a single uncommitted operation, say of. By Lemn
and the statement of the theorem, state(s, h3) satisfies wp_str(e, (0;, rec(o;, h-0;,5)), rec(oy, h,
Thus, (0;,rec(0;,h-0;,5)) commutes with rec(og, h, s)) with respect to state state(s, hg). T

Appendix B

In this appendix we present the proof of Theorem 2. In order to do so, we need to first estal
the following lemma.

Lemma 2: Consider an annotated sequence of operations h, an operation recovery pair (o, ¢
and a procedure invocation inv;. A state s satisfies wp_str(h, (o, tnvy), inv;) if and only if for e

committed subsequence hy of h, hy islegal with respect to s and state(s, hy) satisfies wp_str(e, (og, in

Proof: We use induction on the number of operations in k to prove the above lemma.
Basis (h = ¢): Since state(s, ¢) = s, the lemma is true if o = ¢.
Induction: Let us assume the lemma is true for annotated sequences containing m operations.
need to show that the lemma is true for annotated sequences containing m + 1 operations. Le
be an annotated sequence containing m + 1 operations such that i = o} - hy, where hy contain
operations. By the induction hypothesis, a state s satisfies wp_str(hq, (o, invy),inv;) if and
if for every committed subsequence hs of hg, hs is legal with respect to s and state(s, hs) sati;
wp_str(e, (ok, invy), inv;).

We show that a state s satisfies wp_str(h, (o, tnvy), inv;) if and only if for every committed su
quence hy of b, hy is legal with respect to s and state(s, hy) satisfies wp_str(e, (og, invy), inv;). Note

wp(of, wp-str(hy, (o, invg), inv;)), ifz =c
wp-str(h, (og, invg), inv;) = ¢ wp(of, wp_str(hy, (o, invg), inv;))
ANwp_str(hg, (o, invg), inv;), if 2 =u
Let s1 = state(s,inv(o;)).

only if: Let us assume that s satisfies wp_str(h, (ox, invy), inv;). Let hy be any committed subseque
of h. We show that h; is legal with respect to s and state(s, hy) satisfies wp_str(e, (og,invg), ir
Suppose hi contains of (let hy = of - h3). Since s satisfies wp_str(h, (ox, invg),inv;), s sati
wp(o;, wp_str(hy, (0g, invy), tnv;)). From the definition of wp, it follows that o; is legal with res
to s and sy satisfies wp_str(hg, (o, invy),inv;). Since hy is a committed subsequence of h, hs
committed subsequence of hy. By the induction hypothesis, it follows that hs is legal with respec
s1 and state(sy, hs) satisfies wp_str(e, (o, invy), tnv;). Since state(s,0;) = s1, state(s,o; - hs) sati
wp_str(e, (o, invy), inv;) or state(s, hy) satisfies wp_str(e, (ox, tnvy), inv;). Also, since o; is legal
respect to s, hg is legal with respect to s; and state(s, 0;) = s1, 0;.hg or hy is legal with respect tc
On the other hand, if h; does not contain o7, then is a committed subsequence of h and
As aresult, s satisfies wp_str(hz, (0, invg), inv;). Further, since hy is a committed subsequence of
the induction hypothesis, by is legal with respect to s and state(s, hy) satisfies wp_str(e, (og, invg), 07

if: In order to show the if direction, let us assume that for every committed subsequence hy ¢
hy is legal with respect to s and state(s, hy) satisfies wp_str(e, (o, invy),inv;). If @ = ¢, then
ery committed subsequence fy of h is of the the form hy = of - h3, where h3 is a subseque
of hy. Thus, since for every committed subsequence hy of h, hy is legal with respect to s
state(s, hy) satisfies wp_str(e, (o, invy),inv;), it follows that for every committed subsequence h

We now show that if 7y contains o}, then it satisfies properties a and b. Let hy = hy - of.
begin by showing that hq is legal with respect to state s. Note that hs is a committed subseque
of com(h). Since h is strict with respect to s, hy is legal with respect to s. Thus, in order to s
that by is legal with respect to s, we need to show that o; is legal with respect to state(s, hy).
Lemma 1, since (o;, rec(o;, h-0;,s)) commutes with rec(oy, h, s) for every uncommitted opera
o} in h, (0;,7ec(0j,h-0;,s)) and thus, o; is legal with respect to state(s, hy). Thus, hy - 0; -

is legal with respect to s.

We now show that for every uncommitted operations of in hy (let hy = hy - 0} - hs), state(s,
rec(og, h - 0j,5)) = state(s, hy - hs). If o} = 0¥ (h1 = hy - o}, hy is a committed subsequenc
com(h) and hs = €), then by Lemma 1, since (o0, 7ec(0;, h-0;,s)) commutes with rec(og, h, s
every uncommitted operation o} in h, (0;, rec(0;, h-0;,s)) is legal with respect to state state(s,
Thus, state(s,hy - rec(o;, h-0;,s)) = state(s, hy) (since state(state(s,hy),o0; - rec(o;, h.oj, s
state(s, hy)).

If of # o%, let hy = hy - o} - hy- 0% (hy = hy - 0}). We need to show that
state(s, hy - rec(og, h - 0;,5)) = state(s, hy - hy - 0}).

By Lemma 1, (0;,rec(o;, h - 0;,s)) is legal with respect to state state(s, hy - 0} - hy). Thus, s
(0j,rec(o;, h - 0;,5)) commutes with rec(og, h, s) for every uncommitted operation o} in h,

state(s, hy - of - hy - 0 - rec(oy, b, s)) = state(s, hy - o} - hy - rec(og, h, s) - o¥).
However, since hy -0 - hy is a committed subsequence of com(h) and h is strict with respect
state(s, hy - 0} - hy - rec(og, h, s)) = state(s, hy - hy).
Thus, it follows that
state(s, hy - of - hy - rec(og, h,s)- o) = state(s, hy - hyq - 0}).

Thus,

State(s, hl . T@C(Ok, h . 0j7 8)) = 8tat€(8, h2 . h4 . O:L;') Od

Appendix A

In this appendix we present the proof of Theorem 1. In order to do so, we need to first estal

the following lemma.

Lemma 1: Let h be a sequence of operations belonging to an object b that is strict with res;
to a state s of b and o; be a non-terminal operation belonging to b such that com(h) - o; is |
with respect to s. If, for every uncommitted operation oy in h, (0;,rec(o;,h - 0;,5)) commutes 1
rec(og, h, s), then for every committed subsequence hy of com(h), (o;,rec(o;,h - 0;,5)) is legal
respect to state(s, hy).

Proof: We prove the lemma by induction on the number of operations n in which the commi
subsequence hgy differs from com(h).

Basis (n = 0): Thus hy = com(h). Since com(h)-o; is legal with respect to s, o; is legal with respec
state(s,com(h)). Further, since rec(o;, h-0;,s) = inverse(inv(o;), state(s, com(h))), (0, rec(o;, h-o
is legal with respect to state(s,com(h)).

Induction: Let the lemma be true for n = m. We show that if hy is a committed subsequenc
com(h) that differs from com(h) in m + 1 operations, then (o;,rec(o;,h - 0;,5),s) is legal with
spect to state(s,hz). Let hy be obtained from hy as a result of deleting the uncommitted opera
o} from hy; where hy is a committed subsequence of com(h) that differs from com(h) in m op
tions. By the induction hypothesis, (0;,rec(o;,h - 0;,5)) is legal with respect to state(s,hy). T
since (oj,rec(oj,h - 0;,5)) commutes with rec(og, h,s), (0j,rec(oj,h - 0;,5)) is legal with respec
state(s, hy - rec(og, h,s)). Since h is strict with respect to s, and hy is a committed subsequenc
com(h), state(s,hy - rec(og, h, s)) = state(s, hy) and thus, (o;,rec(o;, h-0;,5)) is legal with respec
state(s, hy). O

Proof of Theorem 1: In order to prove that & - o; is strict with respect to state s, we nee

show that for all committed subsequences hy of com(h - 0;), the following holds:
a: hy is legal with respect to state s, and

b: for every uncommitted operation o} in hy (let hy = hg - 0} - h3), state(s,hy - rec(og, h - 0;,s
state(s, hy - hs).

1. If 0; is an abort operation, then com(h - 0;) is a committed subsequence of com(h). As a res
hy is a committed subsequence of com(h), and since h is strict with respect to state s, hy sati
properties a and b. If on the other hand, o; is a commit operation, there must exist a commi
subsequence hy of com(h) that has the same sequence of operations as hy, except that cer
operations in hy are annotated by a u while they are annotated by a ¢ in hy. Thus, since
strict with respect to state s, ho and as a result, hy are legal with respect to state s. Also, s

every uncommitted operation in Ay is also uncommitted in ho, the property b holds.

2. If o; is a non-terminal operation, then com(h - o0;) = com(h)-o}f. If hy does not contain o}, t
hy is a committed subsequence of com(h) and since h is strict with respect to state s, hy trivi

satisfies properties a and b.

[FO89]

[GLPTT75]

[GMS3]

[Her90]

[Kor83]

[Lom92]

[MHL*92]

[S584]

[Wei88]

[Wei89]

[WHBMO90]

A. A. Farrag and M. T. Ozsu. Using semantic knowledge of transactions to incr
concurrency. ACM Transactions on Database Systems, 14(4):503-525, December 198¢

J. N. Gray, R. A. Lorie, G. R. Putzolu, and 1. L. Traiger. Granularity of locks and deg
of consistency in a shared data base. In IFIP Working Conference on Modeling of 1
Base Management Systems, pages 1-29, 1975.

H. Garcia-Molina. Using semantic knowledge for transaction processing in a distrib
database. ACM Transactions on Database Systems, 8(2):186-213, June 1983.

M. Herlihy. Apologizing versus asking permission: optimistic concurrency control
abstract data types. ACM Transactions on Database Systems, 15(1):96-124, March 1

H. F. Korth. Locking primitives in a database system. Journal of the ACM, 30(1):55
January 1983.

D. Lomet. MLR: A recovery method for multi-level systems. In Proceedings of At
SIGMOD 1992 International Conference on Management of Data, San Diego, Califor
pages 185-194, 1992.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. ARIES: A transac
recovery method supporting fine-granularity locking and partial rollbacks using wi
ahead logging. ACM Transactions on Database Systems, 17(1):94-162, March 1992.

P.M. Schwarz and A.Z. Spector. Synchronizing shared data types. ACM Transaction
Computer Systems, 2:223-250, August 1984.

W. E. Weihl. Commutativity-based concurrency control for abstract data types. II
Transactions on Computers, C-37(12):1488-1505, December 1988.

W. E. Weihl. Local atomicity properties: Modular concurrency control for abstract
types. ACM Transactions on Programming Languages and Systems, 11(2):249-282, A
1989.

G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-level recovery. In Proceed
of the nineth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data
Systems, Nashuville, pages 109-123, 1990.

hy is strict with respect to init_s(b), for any committed subsequence hy of com(hy), hy is |
with respect to init_s(b) and thus state(init_s(b), hy) satisfies top_el = []). Thus, if during
computation of wp_str for com(hy), wp_str for some suffix of com(hy) is top_el = [|, then fur
computation of wp_str for the remainder of the operations in com(hy) need not be performe

2. If, for some subsequences hq, ho of hy such that hy, = hq-hg, every operation in hq is either coms
ted or aborted in hy and com(hy) is legal with respect to init_s(b), then it can be shown tha
is strict with respect init_s(b) if and only if hy is strict with respect to state(init_s(b), com(}
Thus, periodically, hy can be set to hy (that is, operations belonging to hy can be purged f
hy) and init_s(b) can be set to state(init_s(b),com(hq)).

However, even with the above optimizations, schemes based on weakest precondition, for cer
other objects, may be computationally intractable. In Appendix C, we show that in the worst c
the computation of wp_str for an annotated sequence of operations belonging to an account object
a banking environment) can have a worst case time complexity that is exponential in the numbe
operations in the sequence. Thus, schemes based on commutativity may be preferable for such obj
even though they provide a lower degree of concurrency than weakest precondition based schemes

7 Conclusion

We have defined the notion of strictness for histories containing operations semantically richer t
the simple read and write operations. We defined strict histories to be the histories in which reco
for aborted operations can be performed by simply executing their inverse operations. We develc
concurrency control schemes based on commutativity between operations and inverses of operat
for efficiently ensuring that histories are strict. We showed that in schemes based on commutati
the time complexity for scheduling an operation for execution is linear in the number of operat
that have neither committed nor aborted in the history. We also utilized the weakest preconditio
operations in order to state necessary and sufficient conditions for ensuring that scheduling an opera
for execution preserves the strictness of histories. The schemes based on weakest precondition exj
state information of objects and thus, provide a higher degree of concurrency than commutativity-b:
schemes. However, for certain objects, schemes based on weakest precondition may have a worst-
time complexity that is exponential in the number of operations that have not aborted in the hist
Our schemes for ensuring histories are strict can be used in conjunction with concurrency con
schemes that ensure serializability, such as 2PL and SGT, in object-based systems.

References

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recover
Database Systems. Addison-Wesley, Reading, MA, 1987.

[BR92] B. R. Badrinath and K. Ramamritham. Semantics-based concurrency control: Bey
commutativity. ACM Transactions on Database Systems, 17(1):163-199, March 1992.

It can be shown, from the definition of wp and wp_str above, that for an annotated sequenc
operations h, s satisfies wp_str(h, (o, tnvy), inv;) if and only if for every committed subsequence h
h, state(s, hy) satisfies wp_str(e, (ox, invy),inv;). We now state necessary and sufficient conditions
ensuring that a sequence of operations / - 0; is strict with respect to a state s, given that & is st
with respect to s.

Theorem 2: Let &k be a sequence of operations belonging to an object b that is strict with res;
to a state s of b, and let o; be an operation belonging to object b. The sequence of operations A -
strict with respect to s if and only if one of the following is true:

1. Operation o; is a terminal operation.
2. If 0; is a non-terminal operation, then

o com(h) - o; is legal, and
o for every uncommitted operation oy in h (let com(h) = hy - 0} - hy), s satisfies
wp_str(hy - of - ho, (0;,rec(o;, h - 0;,s)),rec(o, h,s)). O

Proof: See Appendix B. O

Theorem 2 can be used to show that the sequence of operations % - 0; in Example 2 is strict
respect to state s. History h contains only one uncommitted operation, and the condition wp_str
com(h) can be recursively computed as follows:

wp-str(c, ({[push(e), k] : T, b), pop()), pop()) = (top-el = [e])

wpstr({[push(e),ok] : T1,b)°, ({[push(e), ok] : T3,b),pop()), pop()) = (top-el =])

Since com(h) - o; is legal with respect to s, and state s satisfies top_el = [], it follows from Theore
that the sequence of operations % - 0; is strict with respect to s.

In the computation of wp_str for an annotated sequence of operations belonging to the stack ob]
conditions of the form C7 A C5 can be replaced by a single equivalent condition using the equivale
rules described in Section 2. As a result, wp_str for an annotated sequence of operations belongin
the stack object can be computed recursively using the definitions of wp(o;, C') where o; is an opera
belonging to the stack object, and C is either false or C'is of the form top_el = list. Thus, for a his
hy of the stack object, the computation of wp_str for com(hy) has time complexity that is linear in
number of operations in com(hy). Since Theorem 2 requires wp_str for com(hy) to be computed
every uncommitted operation o in hy, the time complexity of a scheme based on weakest precondi
to schedule an operation is the product of the number of operations in com(h;) and the numbe
uncommitted operations in hy.

Note that it may not always be required to compute wp_str for the entire sequence of operat
com(hy). The computation of wp_str for com(hy) can be optimized in the following two ways:

1. As mentioned earlier, every state of the stack object satisfies top_el = []. It can be shown tha

wp_str for some suffix of com(hy) is top_el =[], then init_s(b) satisfies wp_str for com(hs) (s

pop() push(eq),eq = €1 | push(ez), ez # €1 skip()
([pop(), 1], push(er)) | top-el = [e1, 1] top_el = [e4] false top_el = [eq]
([pop(), fail], skip()) top-el = [$] false false top-el = [$]
[pushiex), ok, pop)) | topel = ea] | fopel =] False fopel = [
([top(),e1], skip()) top_el = [e1, eq] top_el = [e4] false top_el = [e4]
([top(), fail], skip()) top_el = [$] false false top-el = [$]

Figure 2: wp_str(e, (o, invy), inv;)

to b and a condition C for b, we define wp(o;, ') to be the condition such that for all states sq, 59

such that state(sy,inv(o;)) = s, the following is true:
s1 satisfies wp(o;, C) if and only if s, satisfies C' and o; is legal with respect to sq

Let | = [e1,€2,...,€y] be a list and ey be an element. The function ey o [returns the
[€0, €1,€2,...,€p]. Also, if p > 1, then head(l) returns ey, and tail(l) returns [eg,...,e,]. If [=
then head(l) and tail(l), both return []. The weakest precondition wp(o;, ') where each o; is an
eration belonging to the stack object, and C' is a condition of the form top_el = list (list is a lis

elements) is as follows.

top_el =[] if list =]
wp([push(e), ok],top_el = list) = top_el = tail(list) if head(list) =
false otherwise

top_el = [8] if list =[] or list = [§]
false otherwise

wp([pop(), fail], top-el = list) = {

wp([pop(), €], top-el = list) = (top-el = e o list)

. . top_el = if list = list =
wp([top(), fail],top_el = list) = { fch)lsee %] ;thl(jrwisg or list = [$]

top_el = [e] if list =]
wp([top(), €], top_el = list) = ¢ top_el = list if head(list) =
false otherwise

Also, for all operations o;, wp(o;, false) = false.
Earlier, we specified for the empty sequence ¢, for operation pairs (o, invy) and procedure i
cations inv;, condition wp_str(e, (ok,invy),inv;). We further extend the definition of wp_str tc

annotated sequence of operations o' - 052 --- 0%, n > 1, recursively as follows.

wp(o1, wp_str(0y? - - - 0=, (ok, invg), inv;)), if 21 = ¢
wp_str(oj! - 052 - - -0En (og, invg),inv;) = § wplor, wp-str(oy? - - 0= (ok, invy), inv;))
Awp_str(03? - - or", (0, invyg),inv;), if 21 =u

with respect to object states.

Definition 3: An operation recovery pair (o, invy) commutes with a procedure invocation -
with respect to state s if and only if

1. (og,invg) is legal with respect to s,
2. (og,invy) is legal with respect to state(s,inv;), and
3. state(s, oy -inv;) = state(s,inv; - o). O

It can be shown that given a sequence of operations h that is strict with respect to state s,
sequence of operations h - 0; (0; is a non-terminal operation) is strict with respect to s if and on
com(h) -0} is legal and for every committed subsequence f; of com(h), for every uncommitted opera
of in hy, (0j,rec(oj, h - 0j,s)) commutes with rec(og, h,s) with respect to state(s,hy). Contrast
with the requirement in Theorem 1 that (o;,rec(o;,h-0;,s)) commute with rec(og, h, s) with res
to every state that is legal with respect to (o;,rec(o;,h-0;,5)). Thus, in order to ensure that h -
strict with respect to s, one can proceed in the forward direction by considering all possible commi
subsequences hy of com(h) and then verifying if, for every uncommitted operation oy in hq, (0;, rec(o
0;,5)) commutes with rec(og, h, s) with respect to state(s, hy). This, however, would be very ineffic
since the number of committed subsequences hy of com(h) is exponential in the number of uncommi
operations in h. Instead, we adopt a backward approach in which we first characterize, for e
uncommitted operation oy in h the set com_sty of states s’ such that (o;,rec(o;,h - 0;,s)) comm
with rec(og, b, s) with respect to s'. We then determine, using the notion of weakest precondition,
conditions that state s must satisfy if for every committed subsequence hy of com(h) containing
state(s, hy1) must be in com_st.

We characterize the set of states with respect to which operation recovery pairs and procec
invocations belonging to an object commute by stating conditions that the states of the object in
set must satisfy. For an operation recovery pair (o, invy) and a procedure invocation inwv; belon;
to an object b, we denote by wp_str(e, (o, tnvy),inv;), a condition for b, such that for any state s ¢

the following is true:
s satisfies wp_str(e, (og, invy), tnv;) if and only if (o, invy) commutes with inv; with respect to

For example, for the operation recovery pair ([pop(),e1], push(e1)) and procedure invocation p
belonging to the stack object,

wp_str(c, ([pop(). er), push(er)), pop()) = (top-el = [e1. 1))

that is, ([pop(), e1], push(e1)) commutes with pop() with respect to state s if and only if s sati;
top_el = [e1, e1]. In Figure 2, we specify wp_str(e, (o, invy), inv;) for operation recovery pairs (o, 12
and procedure invocations inv; associated with the stack object.

The only remaining issue to be addressed is that of determining, for a given condition C' for
object, the condition that state s must satisfy if for every committed subsequence hy of com(h)
taining an uncommitted operation oy, state(s, hy) must satisfy C. This task is considerably simpl;

if we use the notion of weakest precondition of operations. For a non-terminal operation o; belon;

conclude that % - o; is strict. Based on this observation, in the following theorem, we state suffic

conditions for ensuring that scheduling an operation for execution preserves the strictness of histo

Theorem 1: Let h be a sequence of operations belonging to object b that is strict with res;
to state s of b and o; be an operation belonging to b. The sequence of operations & - 0; is strict
respect to s if one of the following conditions is true:

1. Operation o; is a terminal operation.
2. If 0; is a non-terminal operation, then

o com(h)- o} is legal with respect to s, and

e for every uncommitted operation oy in h, (0;, rec(o;, h-o0;,s)) commutes with rec(og, h, s

Proof: See Appendix A. O

Thus, from Theorem 1, it follows that the strictness of object history hy, with respect to init_s(b)
be ensured by permitting an operation o; to execute if either o; is a terminal operation or the opera
recovery pair (o;,rec(o;, by - 0;,init_s(b))) commutes with the recovery procedure rec(oy, h, init_s
for every uncommitted operation o in hy. The latter condition can be easily determined from
commutativity table. Thus, the overhead involved in scheduling operations using the above sch
based on commutativity is low, the time complexity to schedule an operation being linear in the nun
of uncommitted operations in hy.

6 Weakest Precondition

Theorem 1 states only a sufficient condition for preserving the strictness of histories. Thus, for @
quence of operations /o that is strict with respect to state s, and a non-terminal operation o;, it ma;
possible that (o;,rec(0;, h-0;,5)) does not commute with rec(oy, h, s) for some uncommitted opera
oj in h, but the sequence of operations / - 0; is still strict with respect to s.

Example 2: Consider astack object b and a state s of bin which bis empty. Let h = ([push(e),
Ty,b) and o; = ([push(e), ok] : T, b). From Theorem 1, it does not follow that the sequence of operat
h-o; is strict with respect to s since the operation recovery pair (o;,rec(0;, h-0;,5)) = ({[push(e),
T3,b),pop()) does not commute with the recovery procedure rec({[push(e),ok] : T1,b),h,s) = pc
However, the sequence of operations h - o; is strict with respect to s (since state(s,h - o; - pop()
state(s,o0;) = state(s,h)). O

The difficulties stem from the requirement of Theorem 1 that (o;,rec(o;,h - 0;,s)) commute 1
rec(og, h,s) for all uncommitted operations o in h and the definition of commutativity (Definitio
that requires conditions (a) and (b) to hold for all states s such that (o, invy) is legal with respec

s. This requirement is too strong, and below, we weaken it by defining the notion of commutati

pop() | push(ez), es = €1 | push(ey), ez # €1 | skip()
([pop(), e1], push(ey)) yes yes
([pop(), fail, skip()) | yes yes
([push(er), ok], pop()) yes yes
([top(), e1], skip()) yes yes
([top(), fail], skip()) | yes yes

Figure 1: Commutativity Table for Stack Object

Consider an operation oy in a sequence of operations h and let its recovery procedure be inwvy.
refer to the pair (o, invy) as an operation recovery pair. An operation recovery pair (o, invg) is 1

with respect to state s if and only if
e o} is legal with respect to s, and
o state(s,op -invg) = s.

Thus, if invy = inverse(inv(og),s) and oy is legal with respect to s, then the operation reco
pair (o, invg) is legal with respect to state s. We define the notion of commutativity between opera

recovery pairs and procedure invocations as follows.

Definition 2:
if and only if

An operation recovery pair (o, tnv;) commutes with a procedure invocation -

1. there exists a state s such that (og,tnvy) is legal with respect to s, and
2. for every state s such that (o, invg) is legal with respect to s,

(a) (og,tnvg) is legal with respect to state(s,inv;), and

(b) state(s, o - inv;) = state(s,inv; - o). O

The commutativity table for operation recovery pairs and procedure invocations belonging to
stack object are shown in Figure 1. If, for an operation recovery pair (og,invy) and a procec
invocation inv;, there is no entry in the commutativity table, then (o, invy) does not commute x
inv;. An entry yes in the commutativity table implies that (og,inv;) commutes with inv;. T
([pop(),e1], push(er)) does not commute with pop(), while ([pop(), fail], skip()) commutes with po

Commutativity between operation recovery pairs and operation invocations can be used to ens
that a sequence of operations A - o; is strict with respect to s, given that % is strict with respect t
Suppose o; (along with its recovery procedure) commutes with the recovery procedure of every unc
mitted operation oy in h. Thus, if the recovery procedure for o, were executed after o;, the resul
state s; would be the same as the resulting state if the recovery procedure for op were executed
before 0; (due to commutativity). Since h is strict, the recovery procedure for o; undoes oy’s effec
it is executed before o; and thus, in state s;, the effects of 0, are undone. As a result, since in % - 0;

possible to undo the effects of any uncommitted operation by executing its recovery procedure, we

Definition 1: Let b be an object, and let h be a sequence of b’s operations. Sequence h is s
with respect to a state s of b if and only if for all committed subsequences hy of com(h)

e hy is legal with respect to state s, and

o for every uncommitted operation o} in hy (let hy = hy - o} - h3), state(s,hy - rec(og, h, s)
state(s, hg - hs). O

Thus, if an object history hy is strict with respect to init_s(b), then in order to perform reco
when an uncommitted transaction in hy invokes b’s abort procedure, the abort procedure only ne
to execute rec(og, hp, init_s(b)) for every one of the transaction’s operations oy (note that operat
resulting from the execution of recovery procedures are not part of the object history). In Exampl
the sequence of operations h is strict with respect to state s since the effects of the only uncommi
operation in h, ([pop(),e] : T1,b), can be undone by executing its recovery procedure, push(e).
recovery procedure for an uncommitted operation oy in hy can be computed and stored when tnov
executes, and is tnverse(inv(og),s), where s is the state of b from which execution of inv(oy) res
in operation og.

It is possible to employ brute force methods in order to ensure that object histories are strict.
instance, the strictness of object history h; with respect to init_s(b) can be ensured by ensuring 1
all possible committed subsequences of com(h;) satisfy the two conditions described in Definitio
However, since the number of committed subsequences of com(hy) is exponential in the numbe
uncommitted operations in com(hy), such brute force approaches may prove to be computation
formidable. In subsequent sections, we propose efficient schemes for ensuring the strictness of histo

Note that strictness is a local property of individual object histories. Also, our definition of strict
can be further refined by exploiting the fact that multiple operations in an object history may belon
a single transaction and thus abort together. However, we have deliberately chosen not to incorpo
transaction information in our definition of strictness, and have modeled aborts of operations belon;
to a single transaction as independent events in order to keep our treatment of strictness simple.

Also, in parts of the remainder of the paper, we do not include transaction and object informa
along with every operation if they are irrelevant, and operations are written to consist of just procec

invocations and responses.

5 Commutativity

Recovery for an aborted transaction, in a strict history, can be performed by simply executing
recovery procedures of the transaction’s operations. Thus, for an object b, if the object history Ay
strict with respect to init_s(b) at all times, the overhead associated with recovery actions for abo:
transactions would be low. Since the object history h, = € is trivially strict with respect to inet_:
strictness of hy with respect to init_s(b) can be ensured by permitting only operations that pres:
the strictness of h, with respect to init_s(b) to execute. In this section, we state a sufficient condit
based on commutativity, under which the sequence of operations % - 0; is strict with respect to a s
s, given that h is strict with respect to s.

o (top_el =listy N top_el = listy) is equivalent to (top-el = listy), where sublist(listy,listy).

o (top_el = listy A top_el = listy) is equivalent to false, where —sublist(listy,listy) and
asublist(listy, listl).

o (C A false) is equivalent to false.

In appendices C and D, we have defined, in a similar fashion, conditions for a set object anc

account object, respectively.

4 Strict Histories

The abort procedure for an object b undoes the effects of the transaction (that invokes it) on the s
of object b, thereby ensuring that on its completion, com(h;) is always legal with respect to init._
and that the state of object b is state(init_s(b),com(hs)). In this section, we define strict histories
a manner that will allow the recovery of an aborted transaction to be simplified.

With every uncommitted operation op in an object history hy, we associate a fixed recovery -
cedure that is used to undo the effects of o5 on the state of object b if op were to abort. Before
specify the recovery procedure for uncommitted operations, we first introduce the notion of inve
for an object’s procedure invocations that result in non-terminal operations. With every procedure
vocation inv; and state s belonging to object b, we associate an inverse procedure invocation, den

by inverse(inv;, s), that has the following property
state(s, inv; - inverse(inv;, s)) = s.

Note that inverse(inv;, s) may be a procedure invocation that does not belong to object b.
Below, we specify inverses for procedure invocations associated with the stack object. The procec

skip is a no-op procedure that does not perform any actions.

. |} push(e) if s satisfies top_el = [e],e # §
inverse(pop(), s) = { skip() if s satisfies top_el = [§]

inverse(push(e), s) = pop()

inverse(top(),s) = skip()

Consider an uncommitted operation oy in a sequence of operations h belonging to an object b
h = hy - o - hz). We use inverse procedure invocations in order to define the recovery procedure fo

with respect to a state s of b, denoted by rec(og, h, s), as follows:
rec(og, h, s) = inverse(inv(oy), state(s,com(hy)))

Intuitively, rec(og, h, s) is the inverse of inv(oy) with respect to the state resulting due to the ex
tion, from state s, of committed and uncommitted operations preceding o in h. We now define st
histories in which the recovery procedure for an uncommitted operation can be used to undo its eff
on the state of the object.

pops it from the stack. Procedure top, like pop, returns fail if the stack is empty, but unlike po
the stack is not empty, only returns the element at the top of the stack without popping it.

Let b be a stack object that contains a single element e in state s. Consider the following seque
of operations h resulting from the execution of procedure invocations pop(), push(e) and comm
from s by transactions T and T5.

{[pop(), €] : T1,b) - ([push(e), ok] : T5,b) - ([commit(),0k] : T2, b)

Transaction 7y is uncommitted in h, while 7% is committed in h. Operation ([pop(),e] : 11,1
uncommitted in h, while operation ([push(e),ok] : T3,b) is committed in h. Further, com(h) is 1
with respect to s and is as follows.

([pop(), e] : Ty, b)* - ([push(e), ok] : T2, b)°

Finally, in state(s,com(h)), b contains a single element e. O

The object’s states can be characterized using conditions defined for the object. The syntax
semantics of the conditions for an object are dependent on the semantics of the object and its operati
For the stack object of Example 1, the conditions are either primitive conditions or are recursi
constructed from other conditions using the logical connective “A”. Primitive conditions for a s
object are false and top-el = list, where list is a list of elements that may contain the special dist
symbol “$”. Furthermore, if § is an element in [ist, then it occurs only once and is the last elemer
list ($ is used to represent the bottom of the stack). No state of a stack object satisfies false. A s

s of a stack object satisfies the condition top_el = list if and only if the following are true:

o If § is an element in list, then the stack in state s, contains only all the elements in list (ex
$), the element at the top of the stack being the first element in list and so on (the elemen

the bottom of the stack is the last but one element in list).

o If $ is not an element in list, then the stack in state s, contains all the elements in list, the elen
at the top of the stack being the first element in /st and so on (note that the last element in
may not be the element at the bottom of the stack).

Thus, for a state s of the stack object, s satisfies top_el = [e1, €3, €3], e3 # §, if and only if the t
elements in the stack are ey, e5, and e3. Note that there may be more elements in the stack below
However, a state s of the stack object satisfies top_el = [eq, €3, €3,] if and only if the top 3 element
the stack are e1, €3, and e3 and e3 is the bottom element in the stack. Every state s of a stack ob
satisfies the condition top_el = [] (]] is the empty list).

Furthermore, if C'; and C5 are conditions for the stack object, then so is C; A (5. State s sati
condition Cy A Cy if and only if it satisfies C'y and it satisfies C5. A condition (' is equivalen
another condition C if and only if for all states s, s satisfies (' if and only if s satisfies C5. Thu
(' is equivalent to (5, then (; can replace (5 in a condition, and vice versa.

Let [be a list of elements. The function |/| returns the number of elements in the list {. For
l1, 2, sublist(ly,l3) is a predicate that is true if and only if the sublist consisting of the first |/;| elem:
of I3 is equal to ;. For example, sublist([e1], [e1, €2, €3]) and sublist([eq, €3], [€1, €2, €3]) are true, w

sublist([e1], [e2, €1, €3]) is false. For the stack object, the following equivalences hold:

together constitute an operation. A transaction is a sequence of operations belonging to the var
ob jects.
Let b be an object and let T; be a transaction that invokes one of object b’s procedures.

resulting operation o; is written as (the notation we adopt is similar to that in [Wei88, Wei89]):
([inv,res] : T}, b)

where inv is the procedure invocation and res is the response.

We shall refer to an operation o; that results due to the invocation of one of object b’s proced
as one of b’s operations. For an object b, the object history, denoted by hy, is a sequence of only
operations in the order in which they execute (b’s operations, when they execute, are appended to
history hy). For an object b and a transaction T}, operations ([commit(), ok] : T;,b) and ([abort(),
T;,b) are referred to as terminal operations. The remainder of b’s operations are referred to as 1
terminal operations. Operation ([abort(), ok] : T;,b) causes all the effects of T;’s operations on the s
of b and other operations in h; to be undone. The initial state of an object b is denoted by inet_:
We assume that every object history hy is well-formed, that is, for every transaction T}, hy contain
most one terminal operation belonging to 7T, and no operation in hj; following T;’s terminal opera
belongs to T;.

Let L be a sequence of operations belonging to an object b. Transaction T; is said to be committe
h if ([commit(),ok] : T;,b) belongs to h; it is said to be aborted in h if {[abort(),ok] : T;,b) belongs t
Transaction T is said to uncommitted in h if it is neither committed nor aborted in h. Consider an o
ation o; in h belonging to transaction 7;. Operation o; is said to be committed/aborted/uncommi
in h if T; is committed/aborted/uncommitted in h. Let hy; be a subsequence of h containing all
operations in h except the terminal and aborted operations in h. We denote by com(h), the seque

@,
C

of operations obtained as a result of annotating every operation in hy by either a if the opera
is committed in A, or by a “u” if the operation is uncommitted in h. We refer to such a sequence a
annotated sequence of operations. Further, a subsequence hy of an annotated sequence of operat
h is said to be a committed subsequence of h if hy contains all the operations in h that are annot:
by a “c” (note that hy may also contain certain operations in h that are annotated by a “u”).

Let e; be an operation (which may or may not be annotated). We denote the procedure invoca
part of ¢; by inv(e;), and the response part by res(e;). A sequence ej-e3---¢€, (“” is the concatena

“€” is the empty sequence) of an object b’s operations (each of which -

operator for sequences, and
or may not be annotated) is said to be legal with respect to a state s of b if and only if invoking
procedures in the order inv(ey),inv(es),...,inv(e,) from state s results in the sequence of operat
€1-€2---€,. Let g =e1-ey---€, be a sequence each of whose elements is either an operation (w
may or may not be annotated) or a procedure invocation belonging to object b. We shall denote
state(s, g), the state that results due to the execution of p(e1),p(ez),...,p(e,) from state s, wl
p(e;) = e; if e; is a procedure invocation, and p(e;) = inv(e;), otherwise. The following example i
trates the above-developed notation.

Example 1: Consider a stack object that supports the procedures: push, pop and top. Procec
push always returns ok and pushes an element e (passed as an argument) onto the stack. Procec
pop returns fail if the stack is empty; otherwise it returns the element at the top of the stack

systems that exploit the semantics of operations (e.g., perform operation logging) and employ recor
algorithms proposed in [WHBM90, Lom92, MHL'92].

The remainder of the paper is organized as follows. In Section 2, we describe some of the prev
results in this area that are related to our work. In Section 3, we define our model for an ob]
based database system. Strict histories are defined in terms of inverses of operations in Section 4.
develop schemes based on commutativity for ensuring histories are strict in Section 5. In Sectio
we use the weakest precondition operations to state necessary and sufficient conditions for ensu
that scheduling an operation for execution preserves the strictness of histories. In Section 7, we m

concluding remarks.

2 Previous Work

A number of concurrency control schemes that exploit the semantics of operations have been propose
the literature [Kor83, SS84, Weil8, Wei89, Her90, BR92, GM83, FO89]. However, most of them do
ensure that resulting histories are strict. Concurrency control schemes proposed in [Kor83, SS84, We
Wei89] define the notion of conflict between arbitrary operations in terms of commutativity (operat
conflict if and only if they do not commute). Furthermore, an operation belonging to a transac
is permitted to execute if every other transaction that has executed a conflicting operation has ei
committed or aborted. However, the above schemes do not ensure the strictness of resulting histo
Consider two write operations that write the same value v; onto a data item & that initially h:
value vg. The two write operations obviously commute (since the final state is the same irrespec
of the order in which they are executed), and are thus permitted to execute concurrently by
above schemes. However, if the first write operation were to abort (before the second write opera
has either committed or aborted), and recovery were performed by executing its inverse opera
(the inverse for the first write operation sets the value of @ to vg), then the resulting state woulc
incorrect. Note that although our schemes for ensuring strictness are also based on commutati
our schemes rely on commutativity between operations and inverses of operations while scheme
[Kor83, SS84, Weil8, Weik9] are based on commutativity between operations. In [BR92], the no
of cascadeless histories (referred to as ACA) is defined for histories containing operations semantic
richer than read and write operations, and a property, recoverability, between operations, is introdt
in order to ensure that histories are cascadeless. However, recovery for aborted operations in cascade
histories is complicated and cannot be performed by simply executing operation inverses. The aut
do not address the issue of how recovery is to be performed in cascadeless histories.

3 The Model

The basic components of our model are objects and transactions. An object consists of a set of varia
whose values determine the state of the object, and a set of procedures that access and manipulate
object’s variables. An object’s procedures execute atomically, and are invoked by transactions in o
to manipulate the state of the object. Upon completion of its execution, a procedure returns to

invoking transaction, a response. A procedure invocation and the object’s response to the invoca

1 Introduction

Atomicity and durability are integral properties of transactions. Atomicity states that all the operat
associated with a transaction must be executed to completion, or none at all. Durability states |
the effects of a committed transaction are never undone (that is, effects of a committed transac
are persistent). If a history resulting from the concurrent execution of transactions is to pres:
the atomicity and durability properties, then it must be at least recoverable [BHG8T] (a history
sequence of read, write, commit, and abort operations belonging to all the transactions execute
the system). A history h is recoverable if for any two transactions T; and T} in h, if T reads the v
of a data item written by 7%, then T; commits or aborts before T; commits. In a recoverable hist
it is possible to undo the effects of aborted transactions without undoing the effects of commi
transactions. However, in a recoverable history, undoing the effects of an aborted transaction -
result in cascading aborts, which may incur a significant overhead [BHGR87]. To avoid this probl
histories can be further restricted to be cascadeless. A history is cascadeless if for any two transact
T; and T; in h, if T; reads the value of a data item written by T}, then 7T; commits or aborts befor
reads the data item. In cascadeless histories, undoing the effects of an aborted transaction does
require other transactions (committed or uncommitted) to be aborted.

Although cascadelessness eliminates the need to abort other transactions in case a transaction al
occurs, undoing the effects of an aborted transaction on the database state may be still complica
In order to simplify recovery, histories can be further restricted to be strict'. A history h is stri.
for any two transactions 7; and 7 in h, if T; writes a data item in h before T} reads/writes the «
item, then 7; commits or aborts before T} performs its read/write operation on the data item. T
recovery of an aborted transaction, can be performed by simply installing into the database, the be
images of all the writes done by the transaction. This is the reason why a number of current datal
systems follow concurrency control schemes that ensure strictness.

The notion of strictness has been defined only for histories containing read and write operati
However, with the recent advances in object-oriented database systems, where transaction operat
are no longer confined to the simple read/write operations, but to semantically richer operations,
need arises to extend the notion of strictness to histories containing operations semantically richer t
read and write operations.

In this paper, we extend the notion of strictness to histories containing semantically rich operati
thus providing a characterization for the set of histories in which recovery is simple. We define a his
to be strict if recovery for operations that abort in the history can be performed by simply execu
their inverse operations (the inverse of an operation is a function of the operation and the s
from which the operation executes). We develop concurrency control schemes based on commutats
between operations and inverses of operations for efficiently ensuring that histories are strict. We
utilize the weakest precondition of operations in order to state necessary and sufficient conditions
ensuring that scheduling an operation for execution preserves the strictness of histories. Our sche
for ensuring histories are strict can be used in conjunction with concurrency control schemes that en:
serializability, such as two-phase locking (2PL) and serialization graph testing (SGT), in object-b:
systems. Our results can also be utilized to provide concurrency control support in general datal

!Strict histories are the same as degree 2 consistent executions introduced in [GLPT75].

Strict Histories in Object-Based Database Systems

Rajeev Rastogil*
Henry F. Korth?
Avi Silberschatz!*

!Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712-1188 USA

?Matsushita Information Technology Laboratory
182 Nassau Street, third floor
Princeton, NJ 08542-7072

Abstract

In order to ensure the simplicity of recovery in an object-based database system environment,
the notion of a strict history containing operations that are semantically richer than read and write
operations is of vital importance. A strict history is one in which recovery for aborted operations can
be performed by simply executing their inverse operations. In this paper, we develop concurrency
control schemes based on commutativity between operations and inverses of operations for efficiently
ensuring that histories are strict. We show that in schemes based on commutativity, the time com-
plexity for scheduling an operation for execution is linear in the number of operations that have
neither committed nor aborted in the history. We also utilize the weakest precondition of operations
in order to state necessary and sufficient conditions for ensuring that scheduling an operation for exe-
cution preserves the strictness of histories. The schemes based on weakest precondition exploit state
information of objects and thus, provide a higher degree of concurrency than commutativity-based
schemes. Since strict histories ensure the simplicity of recovery, Our schemes for ensuring histories
are strict can be used in conjunction with concurrency control schemes that ensure serializability,
such as two-phase locking and sertalization graph testing, in object-based systems.

*Work partially supported by NSF grants TRI-9003341 and TRI-9106450, by the Texas Advanced Technology Prog
under Grant No. ATP-024, and by grants from the IBM corporation and the H-P corporation.

STRICT HISTORIES IN
OBJECT-BASED DATABASE SYSTEMS

Rajeev Rastogi
Henry F. Korth
Avi Silberschatz

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-92-43 December 1992

DEPARTMENT OF COMPUTER SCIENCES
THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712

