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De�nition 8: Let RT = e

0

: reg exp be a regular term containing only elements with arity 2 and

let (G

0

; s

i

0

)(s

i

0

; G

1

) � � � (G

n

; s

i

n�1

)(s

i

n�1

; G

0

), n > 1, be a strong-cycle in a TSGD. The strong-cycle

(G

0

; s

i

0

) � � � (s

i

n�1

; G

0

) is said to be consistent with respect to RT i�

� e

0

= type(G

0

: G

0i

n�1

; G

0i

0

), and

� type(G

1

: G

1i

0

; G

1i

1

) � � � type(G

n�1

: G

(n�1)i

n�2

; G

(n�1)i

n�1

) is a string in L(reg exp).

A TSGD is said to be strongly-acyclic with respect to a regular speci�cation R i� for every RT 2 R,

it does not contain a strong-cycle consistent with respect to RT . 2

The problem of determining if the invariant holds can be shown to be NP-complete as a consequence

of the following NP-completeness result.

Theorem 8: The following problem is NP-complete: Given a TSGD (V;E;D;L), such that D

is consistent, a regular speci�cation R containing only elements with arity 2, does there exist a set of

dependencies � such that D [� is consistent, and the TSGD (V;E;D[�; L) is strongly-acyclic with

respect to R?

Proof: See Appendix E. 2

Note that, in an execution, at any instant, the invariant holds if and only if at that instant, in the

TSGD (V;E;D; L), there exists a set of dependencies � such that (V;E;D [�; L) is strongly acyclic

with respect to R (since every element in R has arity 2, the TSGD is strongly acyclic with respect to

R if and only if no instantiations of regular terms in R can result in S). Thus, from Theorem 8, it

follows that determining if the invariant holds is NP-complete.

9 Conclusion

In an MDBS environment, based on the semantics of transactions, certain non-serializable executions

are acceptable. In this paper, we proposed a simple and powerful mechanism for specifying, in an

MDBS environment, the set of non-serializable executions that are unacceptable. The undesirable

interleavings among global subtransactions are speci�ed using regular expressions over the types of

global subtransactions. We showed that using our mechanism, it is possible to characterize interleav-

ings that cannot be captured by existing mechanisms for specifying interleavings. Also, unlike existing

approaches, our approach scales well to the addition of new global applications in the system. We devel-

oped e�cient graph-based schemes (optimistic and conservative) in order to ensure that the concurrent

execution of transactions meet speci�cations. In MDBS environments in which certain non-serializable

executions are acceptable, we expect our schemes to outperform existing schemes for ensuring global

serializability. We showed that although none of the conservative schemes proposed by us permit op-

timal concurrency, the problem of optimally scheduling operations for execution is NP-complete. We

are currently investigating recovery algorithms that can be used with our schemes to deal with site

failures and transaction aborts, alternative mechanisms for specifying interleavings, and distributed

concurrency control schemes for preventing unacceptable interleavings. The results in this paper are

also applicable to homogeneous distributed database systems.
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De�nition 6: Consider a TSGD containing the sequence of edges (G

0

; s

i

0

)(s

i

0

; G

1

) � � �(G

n�1

; s

i

n�1

)

(s

i

n�1

; G

0

), n > 1. This sequence of edges form a strong-cycle if

� for all j = 0; 1; : : : ; n � 1, G

j

6= G

(j+1)modn

, s

i

j

6= s

i

(j+1)modn

and dependency (G

j

; s

i

j

)!

(s

i

j

; G

(j+1)modn

) 62 D.

� D [ f(G

(j+1)modn

; s

i

j

)!(s

i

j

; G

j

) : 0 � j � n � 1g is consistent.

A TSGD is said to be strongly-acyclic if it does not contain any strong-cycles. 2

Strong-minimality is de�ned in terms of strong-cycles as follows.

De�nition 7: A set of dependencies � is strongly-minimal with respect to the TSGD and a

transaction G

i

2 V i�

� (V;E;D [�; L) does not contain any strong-cycles involving G

i

, and

� for all d 2 �, (V;E;D [�� d; L) contains a strong-cycle involving G

i

. 2

The computation of a minimal � can be shown to be NP-hard as a consequence of the following

NP-hardness result.

Theorem 7: Given a TSGD (V;E;D;L) such that D is consistent, and a transaction node

G

i

2 V such that for all transactions G

j

2 V , for all sites s

k

, dependency (G

i

; s

k

)!(s

k

; G

j

) 62 D. Also,

TSGD (V

0

; E

0

; D

0

; L

0

) resulting due to the deletion of G

i

, its edges and dependencies from (V;E;D; L)

is strongly-acyclic. The problem of computing a set of dependencies, �, such that D[� is consistent,

and � is strongly-minimal with respect to the TSGD and transaction G

i

is NP-hard.

Proof: See Appendix E. 2

If the regular speci�cation were to contain the single regular term RT = (A : a; a) : (A : a; a)+,

every global transaction were to have type A, and one or more subtransactions of type a, then a minimal

� would also be strongly-minimal with respect to the TSGD and G

i

(since an instantiation of RT in

S involving G

i

could result if and only if there is a strong-cycle in the TSGD containing G

i

). Thus,

from Theorem 7, it follows that the computation of a minimal � is NP-hard.

Also, in the TSGD scheme presented in the previous section, the set of dependencies in order to

prevent instantiations of regular terms, are computed when an init

i

operation is processed. However,

this approach that involves restricting the execution of ser

k

(G

i

) operations a priori (when init

i

is

processed) is in
exible and could result in a low degree of concurrency. An alternative conservative

scheme would be one that does not impose restrictions on the processing of ser

k

(G

i

) operations when

an init

i

operation is processed, but instead, ensures that at any instant the following invariant holds:

there exists a total order on unexecuted ser

k

(G

i

) operations such that executing them in the order

consistent with the total order does not result in instantiations of regular terms in S. The invariant en-

sures that all the unexecuted ser

k

(G

i

) operations can be executed without jeopardizing the correctness

of S and without aborting any global transactions. Furthermore, a ser

k

(G

i

) operation is permitted to

execute if and only if its execution preserves the invariant (note that the processing of init

i

operations

trivially preserve the invariant). Thus, the alternative approach would provide the maximum degree

of concurrency that can be provided by a conservative scheme. However, it can be shown that, at any

instant, determining if the invariant holds is an NP-complete problem. We begin by showing a related

problem NP-complete for which we need the following de�nition.
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for every pair of nodes (w; u) such that (w; v

0

) and (u; v

0

) are both edges in the TSGD, (w; u) being

appended to anc(v

0

) when v

0

is visited in state st.

The dependencies added to the TSGD during the processing of an init

i

operation ensure that no

instantiations of regular terms involving global transaction G

i

are possible. Thus, it can be shown by a

simple induction argument on the number of init

i

operations processed that there are no instantiations

of any of the regular terms in global schedule S.

Theorem 5: Let R be a complete regular speci�cation. The TSGD scheme ensures that S is

correct with respect to R.

Proof: See Appendix D. 2

The complexity of the TSGD scheme is dominated by the number of steps it takes to process an init

i

operation. Detect Ins TSGD1 can be shown to terminate in O(n

S

n

2

G

m) steps and Detect Ins TSGD2

can be shown to terminate in O(n

S

n

3

G

m) steps. Since, in the worst case, Detect Ins TSGD? is invoked

for every regular term in R and for every subtransaction of G

i

, the complexity of the TSGD scheme is

as stated in the following theorem.

Theorem 6: The worst-case complexity of the TSGD scheme isO(n

S

n

2

G

mn

R

v

S

) if Detect Ins TSGD?

is Detect Ins TSGD1 and is O(n

S

n

3

G

mn

R

v

S

) if Detect Ins TSGD? is Detect Ins TSGD2. 2

Among the conservative schemes presented in the last two sections, the TSGD scheme with De-

tect Ins TSGD2 provides the highest degree of concurrency, but also has the highest complexity. The

TSG scheme with Detect Ins TSG1 has the lowest complexity among all the schemes, but also permits

the lowest degree of concurrency. The TSGD scheme with Detect Ins TSGD1 and the TSG scheme

with Detect Ins TSG2 have identical complexities, but the degree of concurrency provided by the two

schemes is incomparable.

8 Intractability Results

In the TSGD scheme in the previous section, the set of dependencies � computed during the processing

of an init

i

operation ensures that there will be no instantiations of regular terms in S involving global

transaction G

i

. However, a number of the restrictions imposed on the processing of ser

k

(G

i

) opera-

tions due to the dependencies in � may be unnecessary; that is, there may exist a set of dependencies

�

0

� � such that adding �

0

to the TSGD prevents instantiations of regular terms in S involving G

i

.

Let us refer to a set of dependencies � as minimal if � ensures that there will be no instantiations

of regular terms in S involving G

i

, while for any �

0

� �, adding �

0

to the TSGD does not prevent

such instantiations. Thus, ideally, in order to impose minimal restrictions on the execution of ser

k

(G

i

)

operations, the set of dependencies � computed when an init

i

operation is processed must be minimal.

However, the computation of such a minimal � is NP-hard. In order to show this, we need to �rst

de�ne strong-minimality for which we need the following additional de�nitions.

De�nition 5: A set of dependencies D is consistent, if there do not exist nodes v

0

; v

1

; : : : ; v

n�1

,

n > 2, in the TSGD such that (v

1

; v

0

)!(v

0

; v

2

) 2 D, (v

2

; v

0

)!(v

0

; v

3

) 2 D, : : :, (v

n�1

; v

0

)!(v

0

; v

1

) 2 D.

2

In addition, we need to de�ne the notion of a strong-cycle.
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G

i

and its edges are inserted into the TSGD. For every operation ser

k

(G

i

) 2 G

i

, for all transactions

G

j

2 V such that ser

k

(G

j

) 2 G

j

and act(ser

k

(G

j

)) has executed, dependencies (G

j

; s

k

)!(s

k

; G

i

)

are added to D.

� := ;;

for every regular term RT = e

0

: reg exp in R such that type(G

i

) = hdr(e

0

) do

for every subtransaction G

ik

such that type(G

ik

) = last(e

0

) do

begin

if arity(e

0

) = 1 then set

1

:= fs

k

g

else set

1

:= fs

l

: (s

l

6= s

k

) ^ (type(G

il

) = first(e

0

))g;

� := �[ Detect Ins TSGD?((V;E;D [�; L);G

i

; s

k

; set

1

; RT )

end;

D := D [�

Figure 9: Pseudocode for act(init

i

)

� act(ser

k

(G

i

)): For every transaction G

j

2 V such that ser

k

(G

j

) 2 G

j

and act(ser

k

(G

j

)) has

not yet been executed, dependencies (G

i

; s

k

)!(s

k

; G

j

) are added to D. Operation ser

k

(G

i

) is

submitted to the local DBMSs (through the servers) for execution.

� cond(ack(ser

k

(G

i

))): true.

� act(ack(ser

k

(G

i

))): Operation ack(ser

k

(G

i

)) is sent to GTM

1

.

� cond(fin

i

): true.

� act(fin

i

): For every transaction G

j

2 V such that val

j

has been processed, if for every transac-

tion G

k

2 V serialized before G

j

, val

k

has been processed, then G

j

along with all its edges and

dependencies is deleted from the TSGD.

Procedures Detect Ins TSGD1 and Detect Ins TSGD2 traverse edges in the TSGD in order to de-

tect potential instantiations, and are very similar to procedures Detect Ins TSG1 and Detect Ins TSG2

respectively. Detect Ins TSGD1 and Detect Ins TSGD2 are similar to Detect Ins TSG1 and De-

tect Ins TSG2, in that they may detect false instantiations (Detect Ins TSGD1 detects more false

instantiations than Detect Ins TSGD2). However, instead of returning a set of site nodes, they return

a set of dependencies that if added to the TSGD, restricts the execution of the appropriate ser

k

(G

i

)

operations so that there are no instantiations involving G

i

.

The updates to anc(v

0

) and V set(v

0

) when a node v

0

is visited are the same in both Detect Ins TSG1

and Detect Ins TSGD1. One of the main di�erences between the two schemes is that for the sequence

of edges (v

0

; u

0

); (v

1

; u

1

); : : : ; (v

p

; u

p

) traversed as mentioned earlier, Detect Ins TSGD1 ensures that

for all i = 1; 2; : : : ; p, (v

i

; u

i

) is distinct from (v

0

; u

0

) (unlike Detect Ins TSG1, which only ensures that

(v

0

; u

0

) and (v

p

; u

p

) are distinct). Furthermore, due to the presence of dependencies in the TSGD, and

due to conditions in steps 3(a) and 3(b), for any state st of F , every node v

0

in the TSGD may need to

be visited in state st once for each node w such that (v

0

; w) is an edge in the TSGD, w being appended

to anc(v

0

) when v

0

is visited in state st.

Detect Ins TSGD2, too, updates anc(v

0

) and V set(v

0

), when a node v

0

is visited, in a man-

ner identical to Detect Ins TSG2, and like Detect Ins TSG2, ensures that for the sequence of edges

(v

0

; u

0

); (v

1

; u

1

); : : : ; (v

p

; u

p

), for all i = 1; 2; : : : ; p, (v

i

; u

i

) is distinct from both (v

i�1

; u

i�1

) and (v

0

; u

0

).

Also, due to the presence of dependencies in the TSGD, and due to conditions in steps 3(a), 3(b), 3(c)

and 3(d), for any state st of F , every node v

0

in the TSGD may need to be visited in state st once
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in the same state st multiple times, each time the same node u being appended to anc(v

0

), (st; u) is

added to V set(v

0

) when v

0

is visited in state st and u is appended to anc(v

0

).

Similarly, in Detect Ins TSG2, since the TSG does not contain any dependencies, and due to the

�rst two conditions in Step 3, in order to detect instantiations, for any state st of F , every node v

0

in

the TSG may need to be visited in state st twice for each node w such that (v

0

; w) is an edge in the

TSG, the pairs (w; u

1

) and (w; u

2

) appended to anc(v

0

) the two times v

0

is visited in state st being

distinct. Also, in order to prevent a node v

0

from being visited in the same state st multiple times,

each time the same pair (w; u) being appended to anc(v

0

), (st; (w; u)) is added to V set(v

0

) when v

0

is

visited in state st and (w; u) is appended to anc(v

0

).

When an init

i

operation is processed, in order to prevent instantiations involving transaction G

i

,

the TSG scheme restricts the execution of certain ser

k

(G

i

) operations by marking them (processing of

marked operations is delayed until all the operations ahead of it in the queue have been processed).

Thus, by a simple induction argument on the number of init

i

operations processed, it can be shown

that there are no instantiations of any of the regular terms in global schedule S involving any of the

global transactions.

Theorem 3: Let R be a complete regular speci�cation. The TSG scheme ensures that S is correct

with respect to R.

Proof: See Appendix C. 2

The complexity of the TSG scheme is dominated by the number of steps it takes to process an init

i

operation. Procedures Detect Ins TSG1 and Detect Ins TSG2 can be shown to terminate inO(n

S

n

G

m)

and O(n

S

n

2

G

m) steps respectively. Since, in the worst case, when init

i

is processed, Detect Ins TSG?

is invoked for every regular term in R and for every subtransaction of G

i

, the complexity of the TSG

scheme is as stated in the following theorem.

Theorem 4: The worst-case complexity of the TSG scheme isO(n

S

n

G

mn

R

v

S

) if Detect Ins TSG?

is Detect Ins TSG1 and is O(n

S

n

2

G

mn

R

v

S

) if Detect Ins TSG? is Detect Ins TSG2. 2

7 Conservative Schemes with Dependencies

The conservative schemes described in the previous section do not exploit the knowledge of the serial-

ization order of global subtransactions since they utilize the TSG as a data structure. In this section,

we present conservative schemes that employ the TSGD as a data structure to store the execution order

of ser

k

(G

i

) operations and thus, provide a higher degree of concurrency than the schemes described

in the previous section. In the schemes, if potential instantiations of regular terms involving G

i

are

detected when the edges of the TSGD are traversed during the processing of an init

i

operation, then

appropriate dependencies are added to the TSGD in order to restrict the processing of certain ser

k

(G

i

)

operations. We now specify, for every operation o

j

in QUEUE, cond(o

j

) and act(o

j

) (no actions are

performed when a val

i

operation is processed, and cond(val

i

) = true). Initially, for the TSGD, V = ;,

E = ;, D = ;.

� cond(init

i

): true.

� act(init

i

): The pseudocode in Figure 9 is executed. Procedure Detect Ins TSGD? can be ei-

ther Detect Ins TSGD1 (see Figure 13 in Appendix A) or Detect Ins TSGD2 (see Figure 14 in

Appendix A).

� cond(ser

k

(G

i

)): For all transactions G

j

2 V , if dependency (G

j

; s

k

)! (s

k

; G

i

) 2 D, then

act(ack(ser

k

(G

j

))) has completed execution.
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G

i

and its edges are inserted into the TSG. Also, for every operation ser

k

(G

i

) 2 G

i

, ser

k

(G

i

) is

inserted at the end of the queue for site s

k

.

set

2

:= ;;

for every regular term RT = e

0

: reg exp in R such that type(G

i

) = hdr(e

0

) do

for every subtransaction G

ik

such that type(G

ik

) = last(e

0

) do

begin

if arity(e

0

) = 1 then set

1

:= fs

k

g

else set

1

:= fs

l

: (s

l

6= s

k

) ^ (type(G

il

) = first(e

0

))g;

set

2

:= set

2

[ Detect Ins TSG?((V;E;L); G

i

; s

k

; set

1

; set

2

; RT )

end

For every site s

l

in set

2

, ser

l

(G

i

) is marked in the queue for site s

l

.

Figure 8: Pseudocode for act(init

i

)

� act(fin

i

): For every transaction G

j

2 V such that val

j

has been processed, if for every transac-

tion G

k

2 V such that there is a path from G

j

to G

k

in the TSG, val

k

has been processed, then

G

j

, along with all its edges, is deleted from the TSG.

Procedures Detect Ins TSG1 and Detect Ins TSG2 traverse edges in the TSG in order to detect

potential instantiations in a similar fashion as Detect Ins Opt. However, unlike Detect Ins Opt which

returns commit/abort, they return a set of site nodes that identify ser

k

(G

i

) operations whose exe-

cution, if restricted, would prevent instantiations of regular terms. Both Detect Ins TSG1 and De-

tect Ins TSG2 may detect false instantiations and thus require the execution of more operations to be

restricted than are actually required to prevent instantiations (Detect Ins TSG1 detects a larger num-

ber of false instantiations than Detect Ins TSG2, but has a lower complexity than Detect Ins TSG2).

Also, in Detect Ins TSG1 and Detect Ins TSG2, since the TSG contains no dependencies, when a node

v

0

is visited, the nodes appended to anc(v

0

) are di�erent from those appended in Detect Ins Opt.

As mentioned earlier, for an instantiation t

0

: t

1

� � � t

n�1

, if for some j; k, j = 0; 1; 2; : : : ; n � 1,

j < k < j+n, it is the case that for all l, j < l < k, arity(t

lmodn

) = 1, then hdr(t

j

) 6= hdr(t

(j+1)modn

) 6=

� � � 6= hdr(t

kmodn

). Thus, ideally, an algorithm for precisely detecting instantiations must ensure that

if it does a 2-arity traversal of an edge (v

0

; u

0

) followed by a sequence of 1-arity traversals of edges

(v

1

; u

1

); : : : ; (v

p�1

; u

p�1

) and �nally a 2-arity traversal of edge (v

p

; u

p

), then all the edges traversed,

(v

0

; u

0

); (v

1

; u

1

); : : : ; (v

p

; u

p

), are distinct. Detect Ins Opt ensures that the edges (v

0

; u

0

); : : : ; (v

p

; u

p

)

are distinct since there are dependencies between any two edges of the TSGD that is passed as an

argument to Detect Ins Opt. However, in case there are no dependencies between certain edges of

the TSGD, the computational complexity of such an ideal algorithm that ensures (v

0

; u

0

); : : : ; (v

p

; u

p

)

are distinct would be prohibitive (the problem of precisely detecting instantiations by traversing edges

in the TSG is intractable). Thus, procedure Detect Ins TSG1 only ensures that edges (v

0

; u

0

) and

(v

p

; u

p

) are distinct, while procedure Detect Ins TSG2 goes one step further and ensures that for all

i = 1; : : : ; p, (v

i

; u

i

) is distinct from both (v

0

; u

0

) and (v

i�1

; u

i�1

). For this purpose, Detect Ins TSG1

appends to anc(v

0

), when v

0

is visited, the node u such that (u; v

0

) is the most recent 2-arity traversed

edge by Detect Ins TSG1; while Detect Ins TSG2 appends to anc(v

0

), when v

0

is visited, the ordered

pair of nodes (u; w) such that (u; v

0

) is the most recent 2-arity traversed edge and (w; v

0

) is the most

recently traversed edge.

In Detect Ins TSG1, since the TSG does not contain any dependencies, and due to the condition in

Step 3(a), in order to detect instantiations, for any state st of F , every node v

0

in the TSG may need

to be visited in state st twice during the execution of Detect Ins TSG1, the nodes appended to anc(v

0

)

the two times v

0

is visited in state st being distinct. In order to prevent a node v

0

from being visited
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Theorem 1: Let R be a complete regular speci�cation. The optimistic scheme ensures that S is

correct with respect to R.

Proof: See Appendix B. 2

The complexity of the optimistic scheme is dominated by the number of steps it takes to process

a val

i

operation. Procedure Detect Ins Opt can be shown to terminate in O(n

S

n

2

G

m) steps. Since, in

the worst case, Detect Ins Opt is invoked for every regular term in R and for every subtransaction of

global transaction G

i

, the complexity of the optimistic scheme is as stated in the following theorem.

Theorem 2: The worst-case complexity of the optimistic scheme is O(n

S

n

2

G

mn

R

v

S

). 2

Note that n

R

, n

S

and v

S

can be expected to be small in comparison to the number of global

transactions n

G

and the number of sites m in the MDBS environment. Also, in our complexity analysis

of the optimistic scheme, we assume that Detect Ins Opt can be implemented such that each of the

three conditions in Step 2 can be checked in constant time.

6 Conservative Schemes

In this section, we present conservative schemes for ensuring that global schedule S is correct. The

schemes utilize a data structure referred to as the transaction-site graph (TSG). A TSG is similar to the

TSGD, except that it contains no dependencies. Thus, a TSG is a 3-tuple (V;E;L). Also, associated

with every site s

k

, is a queue. Initially, all queues are empty, and for the TSG, both V = ; and E = ;.

When init

i

is processed, edges in the TSG are traversed in order to detect potential instantiations

of regular terms involving G

i

. In case potential instantiations are detected, the processing of certain

ser

k

(G

i

) operations in the queues is constrained by \marking" them. For an operation o

j

in QUEUE,

cond(o

j

) and act(o

j

) are de�ned as follows (no actions are performed when a val

i

operation is processed,

and cond(val

i

) is true):

� cond(init

i

): true.

� act(init

i

): The pseudocode in Figure 8 is executed. Procedure Detect Ins TSG? in the pseu-

docode can be either Detect Ins TSG1 (see Figure 11 in Appendix A) or Detect Ins TSG2 (see

Figure 12 in Appendix A) (the two procedures di�er in the degree of concurrency they permit

and their complexities).

� cond(ser

k

(G

i

)): For every transaction G

j

2 V such that ser

k

(G

j

) 2 G

j

, if act(ser

k

(G

j

))

has executed, then act(ack(ser

k

(G

j

))) has also completed execution. In addition, if ser

k

(G

i

) is

marked, then it is the �rst element in the queue for site s

k

.

� act(ser

k

(G

i

)): Operation ser

k

(G

i

) is submitted to the local DBMSs (through the servers) for

execution.

� cond(ack(ser

k

(G

i

))): true.

� act(ack(ser

k

(G

i

))): Operation ser

k

(G

i

) is deleted from the queue for site s

k

(note that ser

k

(G

i

)

may not be at the front of the queue for site s

k

). Operation ack(ser

k

(G

i

)) is sent to GTM

1

.

� cond(fin

i

): true.
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Let (V

0

; E

0

; D

0

; L

0

) be the TSGD obtained as a result of deleting from (V;E;D;L), the edges and

dependencies incident on transactions G

k

2 V , G

k

6= G

i

, such that val

k

has not yet been processed.

for every regular term RT = e

0

: reg exp in R such that type(G

i

) = hdr(e

0

) do

for every subtransaction G

ik

such that type(G

ik

) = last(e

0

) do

begin

if arity(e

0

) = 1 then set

1

:= fs

k

g

else set

1

:= fs

l

: (s

l

6= s

k

) ^ (type(G

il

) = first(e

0

))g;

if Detect Ins Opt((V

0

; E

0

; D

0

; L

0

); G

i

; s

k

; set

1

; RT ) = abort then

begin

Delete G

i

along with all its edges and dependencies from the TSGD;

Inform GTM

1

to abort G

i

;

exit()

end

end

Inform GTM

1

to commit G

i

Figure 7: Pseudocode for act(val

i

)

and element l

0

, head(l) returns l

1

, tail(l) returns [l

2

; : : : ; l

p

] and l

0

� l returns [l

0

; l

1

; l

2

; : : : ; l

p

]. Also, for

an ordered pair o = (o

1

; o

2

), o[1] = o

1

, while o[2] = o

2

.

Detect Ins Opt utilizes the �nite automaton F = FA(RT ) to ensure that the sequence of edges

traversed by it corresponds to a string in L(reg exp). Every time Detect Ins Opt traverses an edge,

the current state of F is updated and a node is visited (the node is said to be visited in a state equal to

the current state of F . A node may be visited multiple times during the execution of Detect Ins Opt).

The current node being visited is stored in variable v, while the current state of F is stored in variable

cur st. Since instantiations may contain elements with arity 1, edge traversals do not always result

in a new node being visited. If, for an edge (v; u), st

0

= st

F

(cur st; L(v; u)) is de�ned, and if on

traversal of edge (v; u), cur st is set to st

0

, then the node visited is v itself (since the traversed edge

(u; v) corresponds to an element with arity 1 in the instantiation). We refer to the edge traversal as a

1-arity traversal. However, if for edge (v; u), st = st

F

(cur st; L(v; u)) is de�ned, and if on traversal of

edge (v; u), cur st is set to st, then the node visited is u (thus, edge (v; u) is traversed normally). We

refer to the edge traversal as a 2-arity traversal.

Since for any two consecutive elements t

i

and t

(i+1)modn

in an instantiation t

0

: t

1

� � � t

n�1

, hdr(t

i

) 6=

hdr(t

(i+1)modn

), and for an element t

j

with arity 2, first(t

j

) 6= last(t

j

), consecutive edges traversed by

Detect Ins Opt must be distinct. This is ensured by appending to the list anc(v

0

), when v

0

is visited,

the node u such that (u; v

0

) is the most recently traversed edge. Furthermore, an edge is traversed

only if it satis�es the condition in Step 3(a). Since the TSGD contains dependencies, and due to the

conditions in steps 3(a) and 3(b), in order to detect instantiations, for any state st of F , every node

v

0

in the TSGD is visited in state st at least once for every edge (v

0

; u) whose traversal could result

in v

0

being visited in state st. However, in order to prevent a node v

0

from being visited in the same

state st due to the traversal of the same edge (v

0

; u) multiple times, the ordered pair (st; u) is added

to V set(v

0

) when v

0

is visited in state st due to edge (v

0

; u) being traversed. Also, an edge must

satisfy the condition in Step 3(c) before it can be traversed. Finally, every time a node v

0

is visited,

the current node and the current state of F just before v

0

is visited is appended to F list(v

0

) to enable

backtracking from v

0

to take place (Step 4 of procedure Detect Ins Opt).

When a val

i

operation is processed, G

i

is aborted if there is an instantiation of a regular term involv-

ing G

i

and other transactions G

j

that have already been committed in S. Thus, by a simple induction

argument on the number of val

j

operations processed, it can be shown that global schedule S is correct.
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sites (site nodes) and global transactions in S (transaction nodes), E is a set of edges, D is a set of

dependencies (denoted by !) between edges incident on a common site node, and L is a function that

maps every edge to an ordered pair (�

1

; �

2

) where �

1

2 g� and �

2

2 l� . Site and transaction nodes

are labeled by the corresponding sites and transactions, respectively. Edges in the TSGD may be

present only between transaction nodes and site nodes. An edge between a transaction node G

i

and

a site node s

k

is present only if operation ser

k

(G

i

) 2 G

i

, and is denoted by either (s

k

; G

i

) or (G

i

; s

k

).

The set of edges f(G

i

; s

k

) : ser

k

(G

i

) 2 G

i

g are referred to as G

i

's edges. Dependencies specify the

relative order in which operations are processed and are sometimes also used to restrict the processing

of ser

k

(G

i

) operations. If (G

i

; s

k

) and (s

k

; G

j

) are edges in the TSGD, then a dependency of the form

(G

i

; s

k

)!(s

k

; G

j

) denotes that ser

k

(G

i

) is processed before ser

k

(G

j

). In addition, L maps the edge

(G

i

; s

k

) to the pair (type(G

i

); type(G

ik

)).

The optimistic scheme uses the TSGD to store information relating to the serialization order of

global subtransactions. Edges and dependencies are added to the TSGD when ser

k

(G

i

) operations are

submitted for execution to the local DBMSs, and the TSGD is traversed in order to detect instantiations

of regular terms when a val

i

operation is processed. We now specify, for every operation o

j

in QUEUE,

cond(o

j

) and act(o

j

) (no actions are performed when an init

i

operation is processed, and cond(init

i

)

is true). Initially, for the TSGD, V = ;, E = ;, D = ;.

� cond(ser

k

(G

i

)): For every transaction G

j

such that ser

k

(G

j

) 2 G

j

, if act(ser

k

(G

j

)) has exe-

cuted, then act(ack(ser

k

(G

j

))) has also completed execution.

� act(ser

k

(G

i

)): Edge (G

i

; s

k

) is inserted into the TSGD. For every transaction G

j

2 V such that

edge (G

j

; s

k

) 2 E and act(ser

k

(G

j

)) has executed, dependency (G

j

; s

k

)!(s

k

; G

i

) is added to

D. For every transaction G

j

2 V such that (G

j

; s

k

) 2 E and act(ser

k

(G

j

)) has not yet been

executed, dependency (G

i

; s

k

)!(s

k

; G

j

) is added to D. Operation ser

k

(G

i

) is submitted to the

local DBMSs (through the servers) for execution.

� cond(ack(ser

k

(G

i

))): true.

� act(ack(ser

k

(G

i

))): Operation ack(ser

k

(G

i

)) is sent to GTM

1

.

� cond(val

i

): true.

� act(val

i

): The pseudocode in Figure 7 is executed. Procedure Detect Ins Opt in the pseudocode

traverses the TSGD in order to detect instantiations of regular terms, and is as shown in Figure 10

in Appendix A

� cond(fin

i

): true.

� act(fin

i

): For every transaction G

j

2 V such that val

j

has been processed, if for every transac-

tion G

k

2 V serialized before G

j

, val

k

has been processed, then G

j

, along with all its edges and

dependencies, is deleted from the TSGD.

When a val

i

operation is processed, for certain regular terms in R, Detect Ins Opt is invoked in

order to determine if there is an instantiation of the regular term in R involving transaction G

i

(note

that there is a dependency between every pair of edges in (V

0

; E

0

; D

0

; L

0

)). Procedure Detect Ins Opt

traverses edges in the TSGD, beginning with node G

i

in a direction against that of dependencies in the

TSGD in order to detect instantiations of RT . If it detects an instantiation of RT involving transaction

G

i

, Detect Ins Opt returns abort. Since regular speci�cations are complete, any instantiation of a

regular term RT involving transaction G

i

can be detected by traversing the TSGD beginning at node

G

i

. Functions head, tail and � in Detect Ins Opt are as de�ned for lists. For a list l = [l

1

; l

2

; : : : ; l

p

]
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(transfer, delete)

(transfer, insert)

(transfer, delete)

(transfer, insert)

s

2

s

3

s

1

s

0

Figure 6: Finite Automaton for (approx listing : list, list): (transfer : insert, delete)

Thus, reg exp

0

is a regular expression over the alphabet �

F

= f(�

1

; �

2

) : (�

1

2 g�) ^ (�

2

2

l�)g [ f(�

1

; �

2

) : (�

1

2 g�) ^ (�

2

2 l�)g. FA(RT ) is a deterministic �nite automaton that accepts

exactly the strings in L(reg exp

0

). 2

Note that transitions between states in FA(RT ) are due to elements in �

F

. For a �nite automaton

F , we denote the initial state by init st

F

and the state transition function by st

F

. We distinguish

between elements with arity 1 and those with arity 2 in the construction of FA(RT ) since the graphs

need to be traversed di�erently in the two cases. For the regular term RT = (approx listing : list, list)

: (transfer : insert, delete)+, the �nite automaton FA(RT ) is as shown in Figure 6 (note that s

2

is an

accept state).

We de�ne the complexity of a concurrency control scheme to be the average number of steps it takes

the scheme to schedule all the operations associated with global transaction G

i

. For the purpose of

analyzing the complexity of the various schemes, we assume the following.

� The average number of sites at which a global transaction executes is v

S

.

� At no point during the execution of a scheme does the di�erence between the number of init

i

and fin

i

operations processed by the scheme exceed n

G

(we assume that v

S

� n

G

).

� The number of regular terms in the regular speci�cation R is n

R

.

� Let RT be the regular term in R such that FA(RT ) has the maximum number of states. We

denote by n

S

, the number of states in FA(RT ).

In the following sections, we present an optimistic scheme based on the certi�er approach, and

conservative schemes for ensuring that S is correct. The optimistic scheme we present provides a

higher degree of concurrency than the conservative schemes but could result in global transaction

aborts that could hurt performance. (A concurrency control scheme, say CC

1

, is said to provide a

higher degree of concurrency than another concurrency control scheme CC

2

if, for any given order of

insertion of operations into QUEUE by GTM

1

, CC

2

does not cause a fewer number of operations to

be added to WAIT than CC

1

). We specify the concurrency control schemes by specifying the data

structures maintained by the scheme, and cond(o

j

), act(o

j

) for the various operations. We also state

the complexity of each of the schemes, and compare the degree of concurrency provided by the various

schemes. An analysis of the complexity of the schemes and proofs of their correctness can be found in

the appendices.

5 An Optimistic Scheme

The optimistic scheme presented in this section utilizes a data structure, referred to as the transaction-

site graph with dependencies (TSGD), introduced in [MRB

+

92]. A TSGD is an undirected bi-partite

graph that can be expressed as a 4-tuple (V;E;D; L), where V is a set of nodes corresponding to

13



procedure Basic Scheme():

Initialize data structures;

while (true)

begin

Select operation o

j

from the front of QUEUE;

if cond(o

j

) then begin

act(o

j

);

while (there exists an operation o

l

2 WAIT such that cond(o

l

) is true)

begin

act(o

l

);

WAIT := WAIT �fo

l

g

end

end

else WAIT := WAIT [ fo

j

g

end

Figure 5: Basic Structure of Concurrency Control Schemes

The regular speci�cation for the car rental example presented in Section 3 is not complete. However,

the regular speci�cation containing the following additional regular terms (in addition to those listed

in Section 3) is complete. In the following regular terms, R

1

is the regular expression ((accurate listing

: list, list) + (approx listing : list, list) + (transfer : delete, insert) + (transfer : insert, delete) +

(booking : reserve, reserve)).

� (transfer : insert, delete) : (transfer : insert, delete)* (approx listing : list, list) (transfer : insert,

delete)*

� (transfer : insert, delete) : R

1

* ((accurate listing : list, list) + (accurate listing : list)) R

1

*

� (transfer : delete, insert) : R

1

* ((accurate listing : list, list) + (accurate listing : list)) R

1

*

� (booking : reserve, reserve) : R

1

* ((accurate listing : list, list) + (accurate listing : list)) R

1

*

� (approx listing : list, list) : R

1

* ((accurate listing : list, list) + (accurate listing : list)) R

1

*

Given a regular speci�cation, it is possible to automate the process of determining the regular terms

that need to be added to it such that it becomes complete. Note that the addition of regular terms

to a regular speci�cation so that it is complete needs to be performed only once (when the system is

con�gured) and can be handled o�-line.

Also, in order to detect instantiations of a regular term RT = e

0

: reg exp, the algorithms for

traversing graphs need to determine if there exist global transactions and subtransactions such that

the sequence of their types is a string in L(reg exp). For this purpose, the schemes employ a �nite

automaton [HU79], denoted by FA(RT ), which is de�ned as follows.

De�nition 4: Let RT = e

0

: reg exp be a regular term. Let reg exp

0

be the regular expression

obtained from reg exp by performing the following two steps (in the order mentioned).

1. Replace each occurrence of (�

1

: �

2

) in reg exp by (�

1

; �

2

).

2. Replace each occurrence of (�

1

: �

2

; �

3

) in reg exp by (�

1

; �

2

)(�

1

; �

3

).
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val

i

val

i

GTM

2

fin

i

init

i

GTM

1

fin

i

init

i

ser

k

(G

i

)

ack(ser

k

(G

i

))

ack(ser

k

(G

i

))

ser

k

(G

i

)

Servers

CC

QUEUE

ack(ser

k

(G

i

))

ser

k

(G

i

)

DS

WAIT

Figure 4: Basic Structure of GTM

2

� ack(ser

k

(G

i

)) : Operation ack(ser

k

(G

i

)) is forwarded to GTM

1

.

� val

i

: GTM

2

determines if global transaction G

i

can be committed without causing S to contain

instantiations of regular terms. If it can, GTM

2

informs GTM

1

to commit G

i

, else it informs

GTM

1

to abort G

i

.

� fin

i

: Information relating to G

i

is deleted from DS.

We denote by act(o

j

), the actions performed by CC when it processes an operation o

j

in QUEUE.

Also, associated with every operation o

j

in QUEUE is a condition, cond(o

j

), that is de�ned over DS

and that must hold if o

j

is to be processed by CC. If cond(o

j

) does not hold when operation o

j

is

selected from QUEUE by CC, then o

j

is added to a set of waiting operations, WAIT, to be processed

at a later time when cond(o

j

) becomes true. Thus, every scheme for ensuring the correctness of S

has the same basic structure as shown in Figure 5. However, di�erent schemes di�er in the values for

act(o

j

) and cond(o

j

) for the various operations, and the data structures associated with the scheme. For

instance, since conservative schemes do not abort transactions [BHG87], the set of sites a transaction

G

i

executes at must be known a priori, and is added to DS when init

i

is processed; however, no

actions are performed by conservative schemes when a val

i

operation is processed. On the other hand,

in optimistic schemes based on the certi�er approach [BHG87], no actions are performed when an init

i

operation is processed (the set of sites a transaction G

i

executes at are not required to be known a

priori when init

i

is processed). A concurrency control scheme can be speci�ed by specifying cond(o

j

),

act(o

j

) for the various operations, and the data structures maintained by the scheme.

Concurrency control schemes for GTM

2

presented in this paper are graph-based schemes. The

schemes involve traversal of graphs in order to detect instantiations of regular terms in the global

schedule S. In order to enable instantiations to be detected e�ciently, our schemes require regular

speci�cations to be complete, de�ned below.

De�nition 3: A regular speci�cation R is said to be complete if for every regular term RT

1

=

e

0

: reg exp

1

in R, the following is true: let e

1

e

2

� � �e

n�1

, n > 1, be any string in L(reg exp

1

) such

that for all i = 1; 2; : : : ; n � 1, e

i

2 �. For every i, i = 1; 2; : : : ; n � 1, there exists a regular term

RT

2

= e

i

: reg exp

2

in R, such that the string e

(i+1)modn

� � �e

(i+n�1)modn

is an element of L(reg exp

2

).

2

11



Servers and Local DBMSs

G

i

; G

j

- Global Transactions

o

j

= ser

k

(G

i

)

GTM

o

j

= ser

k

(G

i

)

o

j

6= ser

k

(G

i

)

GTM

2

GTM

1

Figure 3: The GTM Components

utility is discussed below). We now brie
y describe the operations in QUEUE for an arbitrary global

transaction G

i

and site s

k

.

� init

i

: This operation is inserted into QUEUE by GTM

1

before any other operation belonging

to G

i

is inserted into QUEUE.

� ser

k

(G

i

) : This operation is inserted into QUEUE by GTM

1

in order to request the execution

of operation ser

k

(G

i

).

� ack(ser

k

(G

i

)) : This operation is inserted into QUEUE by the servers when the local DBMSs

complete executing operation ser

k

(G

i

).

� val

i

: This operation is inserted into QUEUE by GTM

1

before the global transaction G

i

is

committed (global subtransactions may have been committed, however) and after ack(ser

k

(G

i

)),

for all ser

k

(G

i

) operations belonging to G

i

have been received by GTM

1

.

� fin

i

: This operation is inserted into QUEUE by GTM

1

after val

i

is inserted into QUEUE.

Note that the init

i

, val

i

and fin

i

operations do not belong to global transaction G

i

.

Figure 4 illustrates the basic structure of GTM

2

. CC is any concurrency control scheme for ensuring

the correctness of S. CC selects operations from the front of QUEUE, in order to process them.

Associated with CC are certain data structures (DS) that are manipulated every time an operation

selected from QUEUE is processed by it. In addition, the following actions are performed by CC when

it processes an operation o

j

in QUEUE.

� init

i

: Operation init

i

contains information relating to global transaction G

i

(e.g., the type

of G

i

and its subtransactions, the set of sites, if known a priori, at which G

i

executes). This

information is added to DS and is utilized by CC to detect instantiations of regular terms in S.

� ser

k

(G

i

) : Operation ser

k

(G

i

) is submitted to the local DBMSs for execution (through the

servers).

10



Note that in contrast to existing approaches [GM83, FO89], our approach scales well to the addition

of new global applications and local DBMS procedures in the MDBS. For example, in [GM83], the

addition of a new application may require modi�cations to existing compatibility sets in order to

permit more interleavings and maximize the degree of concurrency. However, since regular speci�cations

specify unacceptable interleavings using regular expressions, in case new global applications are added

to the MDBS, no modi�cations are required to previously existing regular terms; only additional regular

terms that specify the unacceptable interleavings involving the newly added global applications need

to be added to the regular speci�cation. Any resulting redundancy among the regular terms can be

detected and eliminated using well known techniques for determining equivalence of regular expressions

[HU79].

3.3 Serialization Functions

In order to develop concurrency control schemes for ensuring correctness, we utilize the notion of

serialization functions introduced in [MRB

+

92], which is similar to the notion of serialization events

[ED90]. Let �

k

be the set of all global subtransactions in schedule S

k

. A serialization function for s

k

,

ser, is a function that maps every subtransaction in �

k

to one of its operations such that for any pair

of subtransactions G

ik

; G

jk

2 �

k

, if G

i

is serialized before G

j

in S

k

, then ser(G

ik

) �

S

k

ser(G

jk

).

For example, if the timestamp ordering (TO) concurrency control protocol is used at site s

k

, and

the local DBMS at site s

k

assigns timestamps to transactions when they begin execution, then the

function that maps every subtransaction G

ik

2 �

k

to G

ik

's begin operation is a serialization function

for s

k

. For a site s

k

, there may be multiple serialization functions. For example, if the local DBMS at

s

k

follows the two-phase locking (2PL) protocol, then a possible serialization function for s

k

maps every

subtransaction G

ik

2 �

k

to the operation that results in G

ik

obtaining its last lock. Alternatively, the

function that maps every subtransaction G

ik

2 �

k

to the operation that results in G

ik

releasing its �rst

lock is also a serialization function for s

k

2

. We denote by ser

k

, any one of the possible serialization

functions for site s

k

.

By controlling the execution of ser

k

(G

i

) operations, the GTM can control the serialization order

of global transactions at the various, and the correctness of global schedule S can be ensured. Thus,

we split the GTM into two components, GTM

1

and GTM

2

(see Figure 3). GTM

1

utilizes the infor-

mation on serialization functions for various sites in order to determine for every global transaction

G

i

, operations ser

k

(G

i

), and submits them to GTM

2

for processing. The remaining global transaction

operations (that are not ser

k

(G

i

)) are directly submitted to the local DBMSs (through the servers).

GTM

2

is responsible for ensuring that the operations submitted to it by GTM

1

execute at the

local DBMSs in such a manner that S contains no instantiations of regular terms. Our concern, for

the remainder of the paper, shall be the development of concurrency control schemes for GTM

2

that

ensure S is correct. Our schemes require only GTM

2

to be centrally located; GTM

1

can be distributed

across the various sites in order to reduce the overhead involved in global transaction processing.

4 Structure of Concurrency Control Schemes

In this section, we describe the structure and complexity of concurrency control schemes employed by

GTM

2

for ensuring the correctness of S (the concurrency control model we adopt is similar to that

presented in [MRB

+

92]). As mentioned earlier, GTM

1

submits the ser

k

(G

i

) operations belonging to

each global transactionG

i

to GTM

2

. GTM

1

inserts these operations into a queue, QUEUE. In addition,

for every global transaction G

i

, GTM

1

inserts into QUEUE, the operations init

i

, val

i

and fin

i

(whose

2

Actually, any function that maps every subtransaction G

ik

2 �

k

to one of its operations that executes between the

time G

ik

obtains its last lock and the time it releases its �rst lock is a serialization function for s

k

.
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In the execution in Figure 1(a),

(G

0

: G

00

; G

0(n�1)

) : (G

n�1

: G

(n�1)(n�1)

; G

(n�1)(n�2)

) � � �(G

1

: G

11

; G

10

)

is an instantiation of the regular term

(approx listing : list, list) : (transfer : insert, delete)+

since type(G

0

: G

00

; G

0(n�1)

) = (approx listing : list, list), and for n > 1,

type(G

n�1

: G

(n�1)(n�1)

; G

(n�1)(n�2)

) � � � type(G

1

: G

11

; G

10

) = (transfer : insert, delete) � � � (transfer :

insert, delete),

which is a string in L((transfer : insert, delete)+).

Note that, in an instantiation, there can be multiple occurrences of a global transaction. However,

since local schedules are serializable and global transactions have a single subtransaction at each site,

in the instantiation t

0

: t

1

� � � t

n�1

, any two adjacent global transactions hdr(t

j

) and hdr(t

(j+1)modn

),

j = 0; 1; : : : ; n� 1, are distinct. Actually, instantiations posess the following stronger property.

Property 1: In an instantiation t

0

: t

1

; : : : ; t

n�1

, if for some j; k, j = 0; 1; 2; : : : ; n�1, j < k < j+n,

it is the case that for all l, j < l < k, arity(t

lmodn

) = 1, then hdr(t

j

) 6= hdr(t

(j+1)modn

) 6= � � � 6=

hdr(t

kmodn

). Also, for all r; s, j � r < s � k, last(t

rmodn

) is serialized after first(t

smodn

) at the same

site. 2

The set of all cycles in the serialization orders of global transactions characterized by a regular

term in S is the set of all instantiations of the regular term in S. Since we use regular terms to specify

unacceptable interleavings among global subtransactions, none of the cycles characterized by regular

terms in S must be contained in S if it is to be correct.

De�nition 2: Let R be a regular speci�cation. Global schedule S is correct with respect to R if

for every regular term RT in R, there are no instantiations of RT in S. 2

Since regular speci�cations are based on regular expressions, they are a powerful, yet simple tool for

capturing the set of unacceptable interleavings. We expect that in most MDBS applications, regular

speci�cations will be adequate to specify the set of non-serializable executions that are unacceptable.

The regular speci�cation for the car rental example in Section 3 contains the following three regular

terms.

1. (approx listing : list, list) : (transfer : insert, delete)+

2. (accurate listing : list, list) : ((accurate listing : list, list) + (approx listing : list, list) + (transfer

: delete, insert) + (transfer : insert, delete) + (booking : reserve, reserve))+

3. (accurate listing : list) : ((accurate listing : list, list) + (approx listing : list, list) + (transfer :

delete, insert) + (transfer : insert, delete) + (booking : reserve, reserve))+

Term 1 characterizes the set containing only the unacceptable interleavings involving approx listing

and transfer transactions (the unacceptable interleaving in Figure 1(a) is in the set of interleavings

characterized by regular term 1, while the acceptable interleaving in Figure 1(b) is not). Note that

it is not possible to characterize the set containing only the unacceptable interleavings involving ap-

prox listing and transfer transactions using any of the mechanisms for specifying interleavings proposed

in [GM83, FO89]. The terms 2 and 3 characterize the set of unacceptable interleavings that involve an

accurate listing global transaction.

8



characterizes a set of cycles in the serialization order of global transactions. Every string in L(R)

speci�es the types and serialization orders of global transactions in cycles belonging to the set. For

example, a cycle in the serialization orders of global transactions G

0

; : : : ; G

n�1

such that for all k =

0; : : : ; n� 1, G

k

is serialized before G

(k+1)modn

is in the set of cycles characterized by R if there exists

a string �

0

� � � �

n�1

in L(R) (each �

i

is a global transaction type) such that for all k = 0; : : : ; n � 1,

type(G

k

) = �

k

. Global schedule S is correct if it does not contain any of the cycles in the serialization

order of global transactions characterized by regular terms in the regular speci�cation.

We now formally de�ne the syntax and semantics of regular speci�cations, and the correctness of

global schedules. Let � denote the set

f(�

1

: �

2

; �

3

) : (�

1

2 g�) ^ (�

2

; �

3

2 l�)g [ f(�

1

: �

2

) : (�

1

2 g�) ^ (�

2

2 l�)g:

In the car rental example, (approx listing : list, list) is an element of �; however, (approx listing :

transfer) does not belong to � since transfer 62 l� . A regular speci�cation R is a �nite set of terms,

referred to as regular terms, each having the following syntax:

e

0

: reg exp

where e

0

is an element of � and reg exp is a regular expression over the alphabet �.

In the car rental example, (approx listing : list, list) : (transfer : insert, delete)+ is a regular term.

Note that a regular term contains only global transaction and global subtransaction types. The reason

we do not include local transaction information in regular terms is that the GTM has no control over

the execution order of local transactions since they execute outside the control of the GTM.

Each regular term characterizes a set of cycles in the serialization orders of global transactions

(and thus, a set of interleavings among global subtransactions). Every cycle in the set contains a

global transaction and global subtransactions with types mentioned in e

0

, and strings in L(reg exp)

capture the types and serialization orders of the remaining global transactions and subtransactions in

the cycles.

In order to describe the set of cycles characterized by a regular term, we need to introduce the

following additional notation. For the global schedule S, �

S

denotes the set

f(G

i

: G

ij

; G

ik

) : G

ij

and G

ik

are distinct subtransactions of a committed transaction G

i

in S g[

f(G

i

: G

ij

) : G

ij

is a subtransaction of a committed transaction G

i

in Sg.

For an element e 2 �

S

, if e = (e

1

: e

2

; e

3

), then type(e) = (type(e

1

) : type(e

2

); type(e

3

)), while if

e = (e

1

: e

2

), then type(e) = (type(e

1

) : type(e

2

)). Also, for an element e 2 � [ �

S

, if e = (e

1

: e

2

; e

3

),

then hdr(e) = e

1

, first(e) = e

2

, last(e) = e

3

and arity(e) is 2, while if e = (e

1

: e

2

), then hdr(e) = e

1

,

first(e) and last(e) are both e

2

, and arity(e) is 1.

In the following de�nition, we introduce the notion of an instantiation of a regular term in order

to identify the set of cycles in the serialization orders of global transactions characterized by a regular

term in the global schedule S.

De�nition 1: Let RT = e

0

: reg exp be a regular term and let S be a schedule. t

0

: t

1

t

2

� � � t

n�1

,

n > 1, is an instantiation of RT in S if

� for all j, j = 0; 1; : : : ; n� 1,

1. t

j

2 �

S

, and

2. last(t

j

) and first(t

(j+1)modn

) execute at the same site, and last(t

j

) is serialized after

first(t

(j+1)modn

) at the site, and

� type(t

0

) = e

0

and type(t

1

) � � � type(t

n�1

) is a string in L(reg exp). 2
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Figure 2: The MDBS Model

a totally ordered set of read, write, begin and commit operations. The local schedule at a site s

k

,

denoted by S

k

, is the set of all operations (belonging to local transactions and global subtransactions)

that execute at s

k

with a total order �

S

k

on them. The global schedule S is the set of all the local

schedules S

k

.

We assume that the GTM is centrally located, and controls the execution of global transactions

(our schemes require only one operation belonging to every global subtransaction to be submitted to

the centrally located GTM; the remaining global subtransaction operations can be submitted directly

to the local DBMSs at the sites outside the control of the centrally located GTM. As a result, a number

of problems with having a centrally located GTM are alleviated since most of the global transaction

processing can be done locally at the sites). It communicates with the various local DBMSs by means

of server processes (one per transaction per site) that execute at each site on top of the local DBMSs

(see Figure 2). We assume that the interface between the servers and the local DBMSs provides for

operations to be submitted by the servers to the local DBMSs, and the local DBMSs to acknowledge the

completion of operations to the servers. The local DBMSs do not distinguish between local transactions

and global subtransactions executing at its site. In addition, each of the local DBMSs ensures that

local schedules are serializable.

3.2 Regular Speci�cations

Before we develop schemes that permit certain acceptable interleavings in an MDBS environment, we

need to develop a mechanism for specifying the set of unacceptable interleavings among transactions.

Since local schedules are serializable and local transactions execute at a single site, any unacceptable

interleaving among transactions must be due to an unacceptable cycle in the serialization orders of

global transactions. The set of unacceptable cycles in the serialization orders of global transactions can

be characterized using regular speci�cations which are de�ned using regular expressions (we assume the

reader is familiar with the syntax and semantics of regular expressions as described in [HU79]). For a

regular expression R, L(R) is the set of all strings denoted by R.

We begin by giving the intuition that underlies our de�nition of regular speci�cations, following

which, we present a formal treatment. A regular speci�cation consists of regular terms, each of which

is basically a regular expression R over the types of global transactions (and subtransactions), and

6
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Figure 1: Unacceptable and Acceptable Executions

containing an accurate listing transaction G

0

and any other transaction G

1

such that G

1

is serialized

both before and after G

0

is unacceptable.

Note that an accurate listing transaction returns a precise listing of car records, but cannot inter-

leave with other transactions at all; on the other hand, although an approx listing transaction returns

an approximate listing of car records, its subtransactions can interleave freely with subtransactions

of booking transactions and most interleavings involving approx listing and transfer transactions are

acceptable. Thus, based on the semantics of transactions, certain interleavings are acceptable. In most

cases, since accurate listings may not be required, approx listing transactions can be employed instead

of accurate listing transactions, thus enhancing the degree of concurrency. In the next section, we

develop a mechanism for specifying the set of undesirable interleavings between global subtransactions.

3 Correctness of Schedules

In this section, we de�ne the correctness of schedules in terms of undesirable interleavings among global

transactions. However, before de�ning the correctness of schedules, we �rst describe the MDBS model

that we adopt.

3.1 The MDBS Model

An MDBS is a collection of pre-existing and autonomous local DBMSs located at sites s

0

; s

1

; : : : ; s

m�1

.

Each local DBMS exports an interface consisting of procedures that can be invoked by the global

transactions in order to access and manipulate data at the local DBMSs. We denote by l� , the set of

types of all the procedures exported by local DBMSs. Every global transaction G

i

has a type denoted

by type(G

i

) and consists of one or more subtransactions, at most one per site, each resulting from the

invocation of a single local DBMS procedure. The set of global transaction types is denoted by g�

and the subtransaction of G

i

at site s

k

is denoted by G

ik

. The type of subtransaction G

ik

is denoted

by type(G

ik

) and is the same as the type of the local DBMS procedure whose execution results in

G

ik

. In the car rental example in the previous section, l� = freserve, delete, insert, listg and g� =

fbooking, transfer, approx listing, accurate listingg. Local transactions and global subtransactions are

5



� list. This procedure lists the information contained in records for a subset of cars in the database.

Arguments to the list procedure include a predicate that identi�es the subset of cars whose records

are to be listed (e.g., all the cars classi�ed as compact, or all the cars not reserved on a particular

date).

Since a single car cannot be associated with more than one branch (site) at any given time, the

following simple global integrity constraint is introduced due to the integration of the local DBMSs:

For every car, at most one local DBMS contains the record for the car.

The above constraint ensures that a single car is not rented out to multiple clients on the same date. The

integration facilitates the execution of global transactions that reserve cars at multiple local DBMSs,

list car records at multiple local DBMSs, and transfer car records from one local DBMS to another (in

case the number of available cars at a site fall below a threshold value, cars are transferred to the site

from nearby sites). Global transactions invoke the exported local DBMS procedures mentioned above

(every invocation results in a global subtransaction), and are one of the following:

� booking. A transaction that reserves cars at multiple local DBMSs and consists of one or more

reserve subtransactions.

� transfer. A transaction that transfers car records from one local DBMS to another, and consists

of a delete subtransaction and an insert subtransaction.

� approx listing. A transaction that is used to provide an approximate, conservative listing of

car records at multiple local DBMSs and consists of one or more list subtransactions. Every

approx listing transaction is only required to see a consistent database state, that is, a state

which satis�es the global integrity constraint. As a result, it is unacceptable for an approx listing

transaction to list the same car record as contained in two or more distinct local DBMSs. However,

it is acceptable for an approx listing transaction to not list certain car records contained in the

local DBMSs.

� accurate listing. A transaction that is used to return a global snapshot of the state of the

MDBS, and consists of one or more list subtransactions. Thus, every accurate listing transac-

tion requires that every other transaction in the MDBS be either serialized before it or after it

(it is unacceptable for a transaction to be serialized both before and after an accurate listing

transaction).

Since each local DBMS ensures serializability, global subtransactions execute in isolation. Thus,

if every local transaction in the MDBS environment preserves the global integrity constraint, then

every non-serializable execution consisting of only local transactions, booking and transfer transactions

preserves the global integrity constraint, and is acceptable. However, certain non-serializable executions

containing approx listing or accurate listing transactions are unacceptable.

Consider an execution involving a global transaction G

0

of type approx listing that lists all the

car records at sites s

0

and s

n�1

, and a set of global transactions G

1

; : : : ; G

n�1

of type transfer, where

each G

i

transfers, among other records, a particular car record r

0

from site s

i�1

to s

i

. Suppose that

for all i = 0; 1; : : : ; n � 1, G

i

is serialized before G

(i+1)mod n

at site s

i

. This execution sequence is

depicted in Figure 1(a), where the arrows represent the serialized before relationship among global

subtransactions, and the text following \:" are global subtransaction types. In the above execution,

the approx listing transaction G

0

lists the car record r

0

as contained in databases at both sites s

0

and s

n�1

, and thus, sees an inconsistent database state. As a result, the execution in Figure 1(a) is

unacceptable. Note, however, that the execution in Figure 1(b) in which for all i = 1; 2; : : : ; n � 1,

G

i

transfers car records from site s

i

to s

i�1

is acceptable . Similarly, any non-serializable execution

4



on regular expressions over transaction types, and many of the interleavings that can be speci�ed using

our approach cannot be speci�ed using the approaches in [GM83, FO89]. The proposed mechanism

assumes that the global transactions access data at local DBMSs via well-de�ned interfaces (in order

to ensure that global transactions access their databases in a controlled and restricted fashion, local

DBMSs export a �xed set of procedures that can be invoked by global transactions). The mechanism is


exible, and can even be used to specify that global schedules resulting from the concurrent execution

of transactions must be serializable. Unlike existing mechanisms, it scales well to the addition of

new global applications and local DBMS procedures in the system. Furthermore, the mechanism also

facilitates the development of e�cient graph-based schemes (optimistic and conservative) for ensuring

that the concurrent execution of transactions in an MDBS environment meet the speci�cations. In

MDBS environments in which certain non-serializable executions are permissible, our schemes provide

a higher degree of concurrency than schemes to ensure global serializability. We examine the trade-

o� between the complexities and the degree of concurrency permitted by the various schemes. We

also show that although none of the conservative schemes proposed by us are optimal, the problem of

scheduling the operations of the various concurrently executing transactions in order to permit optimal

concurrency is NP-complete. The results in this paper are also applicable to homogeneous distributed

database systems. Recovery algorithms in case of site failures, transaction aborts, etc. are outside the

scope of this paper and are not discussed.

The remainder of the paper is organized as follows. In Section 2, we present an MDBS application

in which the semantics of transactions can be exploited in order to relax the serializability require-

ment. In Section 3, we present our mechanism for specifying unacceptable interleavings in an MDBS

environment and de�ne correctness of global schedules. The concurrency control model we adopt is

discussed in Section 4. In Section 5, we develop an optimistic scheme that ensures global schedules are

correct. Conservative schemes presented in sections 6 and 7 prevent unacceptable interleavings among

global subtransactions. In Section 8, we show that the problem of optimally scheduling operations for

execution is NP-complete. Concluding remarks are o�ered in Section 9.

2 A Motivating Example

Consider a car rental company with branches at n geographically distributed sites s

0

; s

1

; : : : ; s

n�1

. Each

branch has a database that contains information related to cars at the branch (one record per car).

The information stored in a record for a car comprises of a unique car identi�er for the car, the make

and model of the car, its classi�cation (compact, luxury, etc.), the dates the car has been reserved, the

name and credit card number of the client that made the reservations etc.

Consider an MDBS environment in which the databases belonging to the various branches are

integrated. We assume that every local DBMS ensures the serializability of schedules at its site, and

each local DBMS exports the following procedures:

� reserve. This procedure reserves a car. Arguments to the reserve procedure include the classi�-

cation of the car to be reserved, the name and credit card number of the person reserving the car

and the dates the car is to be reserved. The reserve procedure only utilizes information stored

in the car record in the local DBMS in order to ensure that the car is not reserved by multiple

clients on the same date.

� delete. This procedure deletes records corresponding to one or more cars from the database.

Arguments to the delete procedure include a list of car identi�ers of the cars whose records are

to be deleted.

� insert. This procedure inserts records corresponding to one or more cars into the database. The

records to be inserted into the database are passed to it as arguments.
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1 Introduction

A multidatabase system (MDBS) consists of a number of pre-existing and autonomous local database

management systems (DBMSs) that are integrated to enable users of a local DBMS to access data

residing at remote systems. The local DBMSs may follow di�erent concurrency control protocols. The

integration is transparent and must be accomplished without any modi�cations to the local DBMS

software and to the pre-existing local applications. This is achieved by building on top of the local

DBMSs, a software module, referred to as the global transaction manager (GTM), that is responsible

for co-ordinating the execution of global transactions { transactions whose execution span multiple local

DBMSs. Those transactions that execute at a single local DBMS are referred to as local transactions.

Since the GTM is built on top of local DBMSs, and no modi�cations are made to local DBMS software

and to pre-existing local applications, local transactions execute outside the control of the GTM.

As a result, the GTM has no knowledge of the indirect con
icts between global transactions due to

the execution of local transactions, and the only way the GTM can enforce a particular ordering of

global transactions at a local DBMS is by controlling the execution of certain operations belonging to

global subtransactions (referred to as serialization events [ED90]). In such an environment, adopting

serializability

1

as the notion of correctness, as is done in [Pu88, BS88, ED90, BST90, BGRS91, PRR91,

SKS91, GRS91, MRB

+

92, Raz92], could result in a low degree of concurrency and adversely a�ect the

performance of the system. Furthermore, in most MDBS environments, due to the autonomous nature

of of local DBMSs, integrity constraints between data items belonging to di�erent local DBMSs can

be expected to be weak and few in number. As a result, serializability may not be required in order

to preserve database consistency, and it would therefore be advantageous to come up with a weaker

notion of correctness for such systems.

For MDBS environments, two correctness criteria that are weaker than serializability have been

proposed { quasi-serializability (QSR) [DE89] and two-level serializability (2LSR) [MRKS91]. Both

criteria require each local DBMS to generate serializable schedules. In addition, 2LSR requires that

the restriction of global schedules to only global transactions to be serializable, while QSR imposes

the stronger condition that global schedules be equivalent to a schedule in which global transactions

execute serially. QSR and 2LSR schedules preserve database consistency if transactions and integrity

constraints are of a restricted nature.

The degree of concurrency permitted by the correctness criteria proposed in [DE89, MRKS91] is

limited since they restrict themselves to only read and write operations. In [GM83, GMS87, FO89],

the authors adopt a di�erent approach in which a transaction is assumed to consist of steps, each

of which could be semantically richer than read and write operations. In [GM83, FO89], types are

associated with transactions, and mechanisms that use the type information for specifying acceptable

interleavings between steps are developed. The authors also develop protocols to ensure that only

the speci�ed interleavings are permitted. In [GM83], transaction types are grouped into compatibility

sets which are used to specify interleavings. All the steps of transactions whose types belong to a

single compatibility set can interleave freely, while steps of transactions whose types belong to distinct

compatibility sets cannot interleave at all. In [FO89], acceptable interleavings are speci�ed by specifying

the set of types of transactions that can interleave between any two consecutive steps of a transaction.

A schedule is correct if it is equivalent to a schedule in which steps are executed serially, and between

any two consecutive steps of a transaction, only steps of those transactions that are permitted to

interleave appear in the schedule. In [PL91, KB91, WA92] the authors propose schemes that exploit

the semantics of applications in order to bound the inconsistency due to non-serializable executions.

The approach we adopt in this paper enables the semantics of transactions to be exploited, and is

similar to the one used in [GM83, FO89]. However, our mechanism for specifying interleavings is based

1

In this paper, we limit ourselves to con
ict serializability (CSR) [Pap86], which we shall refer to, in the remainder of

the paper, as serializability.
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Abstract

Serializability is the traditionally accepted notion of correctness in most database systems. How-

ever, in a multidatabase system (MDBS) environment consisting of pre-existing and autonomous

database systems, requiring schedules to be serializable could severely hurt performance. Besides,

in a number of instances, the semantics of transactions can be exploited in order to permit certain

non-serializable executions. In this paper, we propose a powerful, yet simple mechanism for speci-

fying, in an MDBS environment, the set of non-serializable executions that are unacceptable. The

undesirable interleavings among transactions are speci�ed using regular expressions over transaction

types. The mechanism facilitates the development of e�cient graph-based schemes for ensuring

that the concurrent execution of transactions in the MDBS environment meet the speci�cations.

We examine the trade-o� between the complexities and the degree of concurrency permitted by the

various schemes. Finally, we show that the problem of scheduling operations for execution so as to

permit optimal concurrency is NP-complete.
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