

Figure 25: Dependencies in case $l_{i j}=x_{k}$
Similarly, it can be shown that $(V, E, D \cup \Delta, L)$ cannot contain any strong-cycles consistent $R T_{1}$ and $R T_{2}$ if x_{k} is assigned false. Thus, $(V, E, D \cup \Delta, L)$ cannot contain any strong-cycles consis with either $R T_{1}$ or $R T_{2}$, and is strongly-acyclic with respect to R.
only if: Suppose there exists an assignment of truth values to literals such that C is satisfia We show that there exists a set of dependencies Δ such that $D \cup \Delta$ is consistent and ($V, E, D \cup \Delta$ is strongly-acyclic with respect to R. We specify the dependencies in the set Δ. For every literal dependency $\left(U_{k}, V_{k}\right) \rightarrow\left(V_{k}, W_{k}\right)$ is added to Δ if x_{k} is assigned true, else if $\overline{x_{k}}$ is assigned true, $\left(W_{k}, V_{k}\right) \rightarrow\left(V_{k}, U_{k}\right)$ is added to Δ (since only one of x_{k} or $\overline{x_{k}}$ is true in the assignment, addition of dependencies to Δ does not make $D \cup \Delta$ inconsistent). Also, for all $l_{i j}$, if $l_{i j}$ is true in the assignm then dependency $\left(N_{i j}, O_{i j}\right) \rightarrow\left(O_{i j}, P_{i j}\right)$ is added to Δ, else dependency $\left(P_{i j}, O_{i j}\right) \rightarrow\left(O_{i j}, N_{i j}\right)$ is ad to Δ. From the construction of Δ, it trivially follows that $D \cup \Delta$ is consistent. We show that impossible for ($V, E, D \cup \Delta, L$) to contain any strong-cycles that are consistent with either $R T_{1}$ or I

We first show that $(V, E, D \cup \Delta, L)$ cannot contain any strong-cycles consistent with $R T_{1}$. strong-cycle consistent with $R T_{1}$ cannot contain nodes $R_{i j k}, S_{i j k}, T_{i j k}, F_{i j k}, G_{i j k}$ or $H_{i j k}$ due to deI dencies $\left(R_{i j k}, S_{i j k}\right) \rightarrow\left(S_{i j k}, T_{i j k}\right)$ and $\left(H_{i j k}, G_{i j k}\right) \rightarrow\left(G_{i j k}, F_{i j k}\right)$. Furthermore, since for every clause there exists a literal $l_{i j}$ that is assigned true, dependency $\left(N_{i j}, O_{i j}\right) \rightarrow\left(O_{i j}, P_{i j}\right)$ is added to Δ. T there cannot be any strong-cycle consistent with $R T_{1}$ in ($V, E, D \cup \Delta, L$) involving nodes $N_{i j}, O_{i j}$ $P_{i j}, j=1,2,3$. Thus, there are no strong-cycles consistent with $R T_{1}$ in $(V, E, D \cup \Delta, L)$.
we now show that ($V, E, D \cup \Delta, L$) does not contain any strong-cycles consistent with $R T_{2}$. strong-cycle consistent with $R T_{2}$ cannot involve any of the nodes $N_{i j}^{\prime}, O_{i j}^{\prime}$ or $P_{i j}^{\prime}$ due to the depende $\left(P_{i j}^{\prime}, O_{i j}^{\prime}\right) \rightarrow\left(O_{i j}^{\prime}, N_{i j}^{\prime}\right)$, and must involve nodes $M_{i j}, P_{i j}, O_{i j}, N_{i j}, L_{i j}, F_{i j k}, G_{i j k}, H_{i j k}, X_{k}, U_{k}, V_{k}$, $W_{k}, Y_{k}, T_{i j k}, S_{i j k}, R_{i j k}$, for some literal $l_{i j}=x_{k}$ or $\overline{x_{k}}$. Let us assume that x_{k} is true in the assignm We consider the following two cases:
$l_{i j}=\overline{x_{k}}$: In this case (as shown in Figure 24), since $l_{i j}$ is false in the assignment, depende $\left(P_{i j}, O_{i j}\right) \rightarrow\left(O_{i j}, N_{i j}\right)$ is added to Δ and thus, it is impossible for there to be any strong-cycle consis with $R T_{2}$ involving nodes $P_{i j}, O_{i j}, N_{i j}$.

Figure 24: Dependencies in case $l_{i j}=\overline{x_{k}}$

Figure 22: Dependencies in case $l_{i j}=x_{k}$
$l_{i j}=\overline{x_{k}}$: In this case (as shown in Figure 23), dependency $\left(W_{k}, V_{k}\right) \rightarrow\left(V_{k}, U_{k}\right)$ must belong to Δ, there would be a strong-cycle in the TSGD $(V, E, D \cup \Delta, L)$ consistent with $R T_{2}$. Since Δ is consist only one of $\left(W_{k}, V_{k}\right) \rightarrow\left(V_{k}, U_{k}\right)$ or $\left(U_{k}, V_{k}\right) \rightarrow\left(V_{k}, W_{k}\right)$ can belong to Δ. Thus, $\left(U_{k}, V_{k}\right) \rightarrow\left(V_{k}, W_{k}\right)$ not belong to Δ, and x_{k} is assigned false ($\overline{x_{k}}$ is assigned true).

Figure 23: Dependencies in case $l_{i j}=\overline{x_{k}}$

Figure 21: Nodes and edges if $l_{i j}=\overline{x_{k}}$
$R_{i j k}, T_{i j k}, F_{i j k}$ and $H_{i j k}$ are transaction nodes, while $G_{i j k}$ and $S_{i j k}$ are site nodes. Subtr actions of $R_{i j k}, T_{i j k}, F_{i j k}$ and $H_{i j k}$ at sites $S_{i j k}, Y_{k}, L_{i j}$ and $G_{i j k}$ respectively are of type b, w subtransactions of $R_{i j k}, T_{i j k}, F_{i j k}$ and $H_{i j k}$ at sites $M_{i j}, S_{i j k}, G_{i j k}$ and X_{k} are of type a. that there are at most three edges incident on $L_{i j}$ and $M_{i j}$. Also, there are two edges incident each of $P_{i j}, O_{i j}, N_{i j}, R_{i j k}, S_{i j k}, T_{i j k}, F_{i j k}, G_{i j k}, H_{i j k}, U_{k}, V_{k}, W_{k}, P_{i j}^{\prime}, O_{i j}^{\prime}, N_{i j}^{\prime}$. Note that the TSGD be constructed in $O(p+q)$ steps.

The regular specification R contains two regular terms, $R T_{1}$ and $R T_{2}, R T_{1}=(A: a, b):(A: a$, $R T_{2}=(A: c, c):((A: b, a)+(A: c, c))+$. We show that C is satisfiable iff there exist a se dependencies Δ such that $D \cup \Delta$ is consistent and $(V, E, D \cup \Delta, L)$ is strongly-acyclic with respec R.
if: Let us assume there exists a set of dependencies Δ such that $(V, E, D \cup \Delta, L)$ is strongly-acy with respect to R and $D \cup \Delta$ is consistent. We need to show that there exists an assignment of ti values to literals such that C is satisfiable. We assign truth values to literals as follows. If depende $\left(U_{k}, V_{k}\right) \rightarrow\left(V_{k}, W_{k}\right) \in \Delta$, then literal x_{k} is assigned true, else x_{k} is assigned false $\left(\overline{x_{k}}\right.$ is assigned $t r$ Thus, only one of x_{k} or $\overline{x_{k}}$ is assigned true.

We further need to show that in every clause C_{i}, there is at least one literal that is true. S $(V, E, D \cup \Delta, L)$ is strongly-acyclic with respect to R, for every clause C_{i}, for some $l_{i j}, j=1$, there must be a dependency $\left(N_{i j}, O i j\right) \rightarrow\left(O_{i j}, P_{i j}\right)$ (else there would be a strong-cycle in the TS $(V, E, D \cup \Delta, L)$ consistent with $R T_{1}$). We show that $l_{i j}$ must be assigned true, for which we nee consider the following two cases:
$l_{i j}=x_{k}$: In this case (as shown in Figure 22), dependency $\left(U_{k}, V_{k}\right) \rightarrow\left(V_{k}, W_{k}\right)$ must belong to else there would be a strong-cycle in the TSGD $(V, E, D \cup \Delta, L)$ consistent with $R T_{2}$. Thus, x
more understandable). For all $j=1,2,3$, nodes $P_{i j}, N_{i j}, P_{i j}^{\prime}$ and $N_{i j}$ are transaction nodes while ne $M_{i j}, O_{i j}, L_{i j}$ and $O_{i j}^{\prime}$ are site nodes. Subtransactions of $P_{i j}, N_{i j}, P_{i j}^{\prime}$ and $N_{i j}^{\prime}$ at sites $O_{i j}, L_{i j}$, and $M_{i j}$ respectively are of type a; while subtransactions of $P_{i j}, N_{i j}, P_{i j}^{\prime}$ and $N_{i j}^{\prime}$ at sites $M_{i j}$, $L_{i(j \bmod 3)+1}$ and $O_{i j}^{\prime}$ respectively are of type b. Furthermore, for every literal x_{k}, we include the no and edges shown in Figure 19 in the TSGD.

X_{k}
Figure 19: Nodes and edges for literal x_{k}
U_{k} and W_{k} are transaction nodes, while Y_{k}, V_{k} and X_{k} are site nodes. Subtransactions of U_{k} W_{k} at sites Y_{k}, V_{k} and X_{k} are of type c. Also, we introduce additional edges and dependencies in TSGD depending on whether $l_{i j}=x_{k}$ or $l_{i j}=\overline{x_{k}}$. If $l_{i j}=x_{k}$, then the nodes, edges and dependen illustrated in Figure 20 are added to the TSGD.

Figure 20: Nodes and edges if $l_{i j}=x_{k}$
On the other hand, if $l_{i j}=\overline{x_{k}}$, then we include nodes, edges and dependencies in the TSGD sh

Figure 18: Structure for clause C_{i}

Proof of Theorem 8: The above problem is in NP since a non-deterministic algorithm only ne to guess a set Δ such that there are dependencies between any two edges in the TSGD. Δ can con at most $|E|^{2}$ dependencies since there can be at most $|E|^{2}$ dependencies in the TSGD (V, E, D The algorithm then needs to check if (1) $D \cup \Delta$ is consistent, and (2) for every regular term $R T$ i and every node v in the TSGD, if there is a strong-cycle consistent with $R T$ involving v in the TS Step 1 can be performed in polynomial time and involves detecting cycles in a directed graph. Ste , too, can be performed in polynomial time using an algorithm similar to Detect_Ins_Opt that gi arguments a TSGD such that between any two edges there is a dependency, a node v in the TSGD a regular term $R T$, precisely detects if the TSGD contains a strong-cycle involving v that is consis with $R T$.

We show a polynomial transformation from 3-SAT to the above problem. Consider a 3 -SAT form $C=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{p}$ that is defined over literals $x_{1}, x_{2}, \ldots, x_{q}$. Let $l_{i j}$ denote the literal in cla $C_{i}, i=1,2, \ldots, p$, in position $j, j=1,2,3$ ($l_{i j}$ could be either x_{k} or $\overline{x_{k}}$, for some $k=1,2, \ldots$ We construct a TSGD (V, E, D, L) and a regular expression R such that C is satisfiable if and if there exists a set of dependencies Δ such that $D \cup \Delta$ is consistent, and the TSGD ($V, E, D \cup \Delta$ is strongly-acyclic with respect to R. Every global transaction in the MDBS has type A, tha $g \tau=\{A\}$. Local DBMSs export procedures whose types are one of a, b or c, that is, $l \tau=\{a, b, c\}$

- $\left(x_{i}, b_{i}^{\prime}\right),\left(b_{i}^{\prime}, N_{i 1}\right),\left(N_{i 1}, Z_{i 1}\right),\left(Z_{i 1}, Y_{i 1}\right),\left(Y_{i 1}, n e g_{i}(1)\right),\left(n e g_{i}(1), N_{i 2}\right),\left(N_{i 2}, Z_{i 2}\right), \ldots$, $\left(Y_{i\left|n e g_{i}\right|}, n e g_{i}\left(\left|n e g_{i}\right|\right)\right),\left(\operatorname{neg}_{i}\left(\left|n e g_{i}\right|\right), N_{i\left(\mid n e g_{i}+1\right)}\right),\left(N_{i\left(\mid n e g_{i}+1\right)}, e_{i}^{\prime}\right),\left(\epsilon_{i}^{\prime}, x_{i+1}\right)$, if $\left|n e g_{i}\right|>0$,
- $\left(x_{i}, b_{i}^{\prime}\right),\left(b_{i}^{\prime}, N_{i 1}\right),\left(N_{i 1}, \epsilon_{i}^{\prime}\right),\left(\epsilon_{i}^{\prime}, x_{i+1}\right)$, if $\left|n e g_{i}\right|=0$,

This is mainly due to

- the dependency $\left(x_{1}, s_{0}\right) \rightarrow\left(s_{0}, C_{p+1}\right)$, and for all $i=1,2, \ldots, p$, dependencies $\left(x_{i+1}, e_{i}\right.$ $\left(\epsilon_{i}, P_{i\left(\left|p_{i}\right|+1\right)}\right),\left(x_{i+1}, \epsilon_{i}^{\prime}\right) \rightarrow\left(\epsilon_{i}^{\prime}, N_{i\left(\mid \text { neg }_{i} \mid+1\right)}\right)$ in D, and
- for all $l_{i j}=\operatorname{pos}_{r}(k)$, only two edges are incident on each of $P_{r k}, X_{r k}$ and $W_{r k}$, and dependen $\left(W_{r k}, l_{i j}\right) \rightarrow\left(l_{i j}, R_{i j}\right) \in D$ and $\left(B_{i j}, A_{i j}\right) \rightarrow\left(A_{i j}, C_{i}\right) \in D$ (a similar argument can be use $\left.l_{i j}=n e g_{T}(k)\right)$.

Finally the strong-cycle contains the edges $\left(x_{q+1}, s_{2}\right)$ and $\left(s_{2}, G_{i}\right)$. Note that no node in the strong-c is visited more than once. Trivially, all the nodes other than $l_{i j}$ appear only once in the strong-cy Furthermore, if $l_{i j}=\operatorname{pos}_{r}(k)$ (the argument if $l_{i j}=n e g_{T}(k)$ is similar), then $l_{i j}$ cannot be in the seque of edges between both C_{i} and C_{i+1} as well as x_{r} and x_{r+1} since $D \cup\left\{\left(R_{i j}, l_{i j}\right) \rightarrow\left(l_{i j}, B_{i j}\right),\left(P_{r(k+1)}, l_{i}\right.\right.$. $\left.\left(l_{i j}, W_{r k}\right)\right\}$ is inconsistent, and the sequence of edges are in a strong-cycle.

We now show that there exists an assignment of truth values to x_{k} for all $k=1,2, \ldots, q$, that for all $i=1,2, \ldots, p$, for some $j=1,2,3, l_{i j}$ is assigned true, and thus C is satisfiable. Fol $i=1,2, \ldots, p$, for all $j=1,2,3, l_{i j}$ is assigned true iff the edges $\left(B_{i j}, l_{i j}\right),\left(l_{i j}, R_{i j}\right)$ are in the stre cycle. This assignment causes C to be true since as shown earlier, for all $i=1,2, \ldots, p$, for s. $j=1,2,3$, edges $\left(B_{i j}, l_{i j}\right),\left(l_{i j}, R_{i j}\right)$ are in the strong-cycle.

Further, it is not possible that for some $k=1,2, \ldots, q, x_{k}$ and $\overline{x_{k}}$ are both assigned true. If x_{k} $\overline{x_{k}}$ are both assigned true, then there must exist symbols $l_{i j}$ and $l_{r s}$ such that edges $\left(B_{i j}, l_{i j}\right),\left(l_{i j}, l\right.$ $\left(B_{r s}, l_{r s}\right),\left(l_{r s}, R_{r s}\right)$ are in the strong-cycle, and $l_{i j}=x_{k}, l_{r s}=\overline{x_{k}}$. Thus, $\left|n e g_{k}\right|>0,\left|p_{k}\right|>$ $l_{i j}=\operatorname{pos}_{k}(u)$, for some $u, u=1,2, \ldots,\left|\operatorname{pos}_{k}\right|$, and $l_{r s}=n e g_{k}(v)$, for some $v, v=1,2, \ldots, \mid n \epsilon$ However, this is not possible, since as we showed earlier, one of $l_{i j}$ and $l_{r s}$ is also in the sequenc edges between x_{k} and x_{k+1} in the strong-cycle, and the strong-cycle does not visit a node more t once.

We now show that the problem of computing a set of dependencies, Δ, that is strongly-mini with respect to (V, E, D, L) and G_{i}, is NP-hard.

Proof of Theorem 7: We show that the NP-complete problem of determining if $\Delta^{\prime}=$ not strongly-minimal with respect to G_{i} and (V, E, D, L) can be Turing-reduced to the problen computing a Δ such that $D \cup \Delta$ is consistent and Δ is strongly-minimal with respect to G_{i} (V, E, D, L).

Consider a subroutine $S\left((V, E, D, L), G_{i}\right)$ that returns a set of dependencies Δ such that $D \cup$ consistent and Δ is strongly-minimal with respect to G_{i} and (V, E, D, L) (note that such a Δ alv exists if (V, E, D, L) satisfies the conditions mentioned in the theorem). An algorithm for solving problem of determining if $\Delta^{\prime}=\emptyset$ is not strongly-minimal with respect to G_{i} and (V, E, D, L) calls $S\left((V, E, D, L), G_{i}\right)$. If the set of dependencies Δ returned by S is non-empty, then the algori responds "yes" (since if $\Delta^{\prime}=\emptyset$ is strongly-minimal with respect to G_{i} and (V, E, D, L), then a r empty Δ cannot be strongly-minimal with respect to G_{i} and (V, E, D, L), and S would return \emptyset) on the other hand, the set of dependencies Δ returned by S is \emptyset, then the algorithm responds (since $\Delta^{\prime}=\emptyset$ is strongly-minimal with respect to (V, E, D, L) and G_{i}).
cycle. Since C is satisfiable, there exists an assignment of truth values to x_{k}, for all $k=1,2, \ldots$ such that for all $i=1,2, \ldots, p$, for some $j=1,2,3, l_{i j}$ is assigned true. We now specify the ed in the strong-cycle. Edge sequence $\left(G_{i}, s_{1}\right)\left(s_{1}, C_{1}\right)$ is in the strong-cycle. For all $i=1,2, \ldots, p$, edge sequence $\left(C_{i}, A_{i j}\right)\left(A_{i j}, B_{i j}\right)\left(B_{i j}, l_{i j}\right)\left(l_{i j}, R_{i j}\right)\left(R_{i j}, Q_{i j}\right)\left(Q_{i j}, C_{i+1}\right)$ is in the strong-cycle, for s $j=1,2,3$ such that $l_{i j}$ is true in the assignment. Edges $\left(C_{p+1}, s_{0}\right),\left(s_{0}, x_{1}\right)$ are also in the strong-cy For all $i=1,2, \ldots, q$, if x_{i} is false in the assignment, then the following edges are in the strong-cy

- $\left(x_{i}, b_{i}\right),\left(b_{i}, P_{i 1}\right),\left(P_{i 1}, X_{i 1}\right),\left(X_{i 1}, W_{i 1}\right),\left(W_{i 1}, \operatorname{pos}_{i}(1)\right),\left(\operatorname{pos}_{i}(1), P_{i 2}\right),\left(P_{i 2}, X_{i 2}\right), \ldots$, $\left(W_{i\left|p o s_{i}\right|}, \operatorname{pos}_{i}\left(\left|\operatorname{pos}_{i}\right|\right)\right),\left(\operatorname{pos}_{i}\left(\left|\operatorname{pos}_{i}\right|\right), P_{i\left(\mid p o s_{i}+1\right)}\right),\left(P_{i\left(\mid p o s_{i}+1\right)}, e_{i}\right),\left(\epsilon_{i}, x_{i+1}\right)$, if $\left|\operatorname{pos}_{i}\right|>0$,
- $\left(x_{i}, b_{i}\right),\left(b_{i}, P_{i 1}\right),\left(P_{i 1}, e_{i}\right),\left(e_{i}, x_{i+1}\right)$, if $\left|\operatorname{pos}_{i}\right|=0$,
else if x_{i} is true in the assignment, the strong-cycle contains the edges:
- $\left(x_{i}, b_{i}^{\prime}\right),\left(b_{i}^{\prime}, N_{i 1}\right),\left(N_{i 1}, Z_{i 1}\right),\left(Z_{i 1}, Y_{i 1}\right),\left(Y_{i 1}, n e g_{i}(1)\right),\left(n e g_{i}(1), N_{i 2}\right),\left(N_{i 2}, Z_{i 2}\right), \ldots$, $\left(Y_{i\left|n e g_{i}\right|}, n e g_{i}\left(\left|n e g_{i}\right|\right)\right),\left(\right.$ neg $\left._{i}\left(\left|n e g_{i}\right|\right), N_{i\left(\mid n e g_{i}+1\right)}\right),\left(N_{i\left(\mid n e g_{i}+1\right)}, \epsilon_{i}^{\prime}\right),\left(\epsilon_{i}^{\prime}, x_{i+1}\right)$, if $\left|n e g_{i}\right|>0$,
- $\left(x_{i}, b_{i}^{\prime}\right),\left(b_{i}^{\prime}, N_{i 1}\right),\left(N_{i 1}, e_{i}^{\prime}\right),\left(e_{i}^{\prime}, x_{i+1}\right)$, if $\left|n e g_{i}\right|=0$,

Finally, the sequence of edges $\left(x_{p+1}, s_{2}\right)\left(s_{2}, G_{i}\right)$ are in the strong-cycle.
In the above choice of edges, we show that no node appears more than once in the strong-cy Nodes other than $l_{i j}$, trivially, appear only once. For any node $l_{i j}$, it is in the sequence of edges betw nodes C_{i} and C_{i+1} only if $l_{i j}$ is true in the assignment. If $l_{i j}=\operatorname{pos}_{r}(k)$, then $l_{i j}=x_{r}$, and since is true in the assignment, $l_{i j}$ is not among the nodes in the sequence of edges between x_{r} and x Similarly, if $l_{i j}=n e g_{r}(k)$, then $l_{i j}=\overline{x_{r}}$, and since x_{r} is false in the assignment, $l_{i j}$ is not among nodes in the sequence of edges between x_{T} and x_{T+1}. Thus, since

- for any consecutive edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right)$ in the sequence, $v_{1} \neq v_{3}$ and dependency $\left(v_{1}, v_{2}\right.$ $\left(v_{2}, v_{3}\right) \notin D$, and
- for all $l_{i j}=\operatorname{pos}_{r}(k), D \cup\left\{\left(R_{i j}, l_{i j}\right) \rightarrow\left(l_{i j}, B_{i j}\right)\right.$ is consistent and $D \cup\left\{\left(P_{r(k+1)}, l_{i j}\right) \rightarrow\left(l_{i j}, W_{r k}\right)\right.$ consistent, and
- for all $l_{i j}=n \epsilon g_{r}(k), D \cup\left\{\left(R_{i j}, l_{i j}\right) \rightarrow\left(l_{i j}, B_{i j}\right)\right.$ is consistent and $D \cup\left\{\left(N_{r(k+1)}, l_{i j}\right) \rightarrow\left(l_{i j}, Y_{r k}\right)\right.$ consistent,
the above sequence of edges constitute a strong-cycle involving G_{i} in the TSGD.
We now show that if there is a strong-cycle involving G_{i} in the TSGD, then there exists an ass ment of truth values to literals such that C is satisfiable. Any strong-cycle involving G_{i} in the TS must contain the sequence of edges $\left(G_{i}, s_{1}\right)\left(s_{1}, C_{1}\right)$. Further, we claim that for all $i=1,2, \ldots, p$, sequence of edges $\left(C_{i}, A_{i j}\right)\left(A_{i j}, B_{i j}\right)\left(B_{i j}, l_{i j}\right)\left(l_{i j}, R_{i j}\right),\left(R_{i j}, Q_{i j}\right)\left(Q_{i j}, C_{i+1}\right)$ are in the strong-cycle, some $j=1,2,3$. This follows from the fact that there are dependencies $\left(C_{r+1}, Q_{r s}\right) \rightarrow\left(Q_{r s}, R_{r s}\right)$, all $r=1,2, \ldots, p$, for all $s=1,2,3$ and also if $l_{i j}=\operatorname{pos}_{r}(k)$, then the dependencies $\left(W_{r k}, X_{r k}\right.$ $\left(X_{r k}, P_{r k}\right) \in D$ and $\left(B_{i j}, l_{i j}\right) \rightarrow\left(l_{i j}, P_{r(k+1)}\right) \in D$ (a similar set of dependencies can be identified in $\left.l_{i j}=n e g_{T}(k)\right)$. Thus, the strong-cycle also contains edges $\left(C_{p+1}, s_{0}\right),\left(s_{0}, x_{1}\right)$.

Also, for all $i=1,2, \ldots, q$, the strong-cycle contains either edges

- $\left(x_{i}, b_{i}\right),\left(b_{i}, P_{i 1}\right),\left(P_{i 1}, X_{i 1}\right),\left(X_{i 1}, W_{i 1}\right),\left(W_{i 1}, \operatorname{pos}_{i}(1)\right),\left(\operatorname{pos}_{i}(1), P_{i 2}\right),\left(P_{i 2}, X_{i 2}\right), \ldots$, $\left(W_{i\left|p o s_{i}\right|}, \operatorname{pos}_{i}\left(\left|\operatorname{pos}_{i}\right|\right)\right),\left(\operatorname{pos}_{i}\left(\left|\operatorname{pos}_{i}\right|\right), P_{i\left(\mid p o s_{i}+1\right)}\right),\left(P_{i\left(\mid p o s_{i}+1\right)}, e_{i}\right),\left(e_{i}, x_{i+1}\right)$, if $\left|\operatorname{pos}_{i}\right|>0$,
- $\left(x_{i}, b_{i}\right),\left(b_{i}, P_{i 1}\right),\left(P_{i 1}, e_{i}\right),\left(e_{i}, x_{i+1}\right)$, if $\left|\operatorname{pos}_{i}\right|=0$,

Figure 17: TSGD
only if $r<s$). In addition, there is no strong-cycle in ($V^{\prime}, E^{\prime}, D^{\prime}, L^{\prime}$) consisting of transaction nodes f both S_{1} and S_{2} since such a strong-cycle must contain the sequence of edges $\left(v_{1}, l_{i j}\right)\left(l_{i j}, v_{2}\right)$, for some node $l_{i j}, v_{1} \in S_{2}$ and $v_{2} \in S_{1}\left(s_{0}\right.$ and $l_{i j}$ are the only site nodes that have edges to transaction node both S_{1} and S_{2}, and due to the dependency $\left(x_{1}, s_{0}\right) \rightarrow\left(s_{0}, C_{p+1}\right)$, the sequence of edges $\left(x_{1}, s_{0}\right)\left(s_{0}, C_{2}\right.$ cannot be in a strong-cycle). Let $l_{i j}=\operatorname{pos}_{r}(k)$ (the argument if $l_{i j}=n e g_{r}(k)$ is similar). Node v_{1} car be $P_{r(k+1)}$ since if $k<\left|\operatorname{pos}_{r}\right|$, then only two edges are incident on each of $P_{r(k+1)}$ and $X_{r(k+1)}$, and edges preceding $\left(v_{1}, l_{i j}\right)$ in the strong-cycle must be the sequence $\left(W_{r(k+1)}, X_{r(k+1)}\right)\left(X_{r(k+1)}, P_{r(k+t}\right.$ However, due to the dependency $\left(W_{r(k+1)}, X_{r(k+1)}\right) \rightarrow\left(X_{r(k+1)}, P_{r(k+1)}\right)$, this is not possible. On other hand, if $k=\left|\operatorname{pos}_{r}\right|$, then since only two edges are incident on each of $P_{r\left(\left|p o s_{r}\right|+1\right)}$ and e_{r}, edges preceding $\left(v_{1}, l_{i j}\right)$ in the strong-cycle must be the sequence $\left(x_{r+1}, e_{T}\right)\left(e_{r}, P_{\left.r| | p_{r} \mid+1\right)}\right)$. Howe due to the dependency $\left(x_{r+1}, e_{r}\right) \rightarrow\left(\epsilon_{r}, P_{r(k+1)}\right)$, this is not possible. Thus, $v_{1}=W_{r k}$. However, to the dependency $\left(W_{r k}, l_{i j}\right) \rightarrow\left(l_{i j}, R_{i j}\right), v_{2} \neq R_{i j}$. Thus, it must be the case that $v_{2}=B_{i j}$. Howe since only two edges are incident on $A_{i j}$ and $B_{i j}$, the sequence of edges immediately following B_{i} the cycle must be $\left(B_{i j}, A_{i j}\right)\left(A_{i j}, C_{i}\right)$ which is not possible due to the dependency $\left(B_{i j}, A_{i j}\right) \rightarrow\left(A_{i j}\right.$, Thus, there can be no strong-cycle in ($V^{\prime}, E^{\prime}, D^{\prime}, L^{\prime}$) consisting of transaction nodes from both S_{1} S_{2}, and ($V^{\prime}, E^{\prime}, D^{\prime}, L^{\prime}$) is strongly-acyclic.

We now show that C is satisfiable iff (V, E, D, L) contains a strong-cycle involving G_{i}. If

$$
\begin{aligned}
& -\left(x_{i}, b_{i}^{\prime}\right),\left(b_{i}^{\prime}, N_{i 1}\right),\left(N_{i 1}, Z_{i 1}\right),\left(Z_{i 1}, Y_{i 1}\right),\left(Y_{i 1}, n e g_{i}(1)\right),\left(n e g_{i}(1), N_{i 2}\right),\left(N_{i 2}, Z_{i 2}\right), \ldots \\
& \quad\left(Y_{i\left|n e g_{i}\right|}, n e g_{i}\left(\left|n e g_{i}\right|\right)\right),\left(n e g_{i}\left(\left|n e g_{i}\right|\right), N_{i\left(\left|n e g_{i}\right|+1\right)}\right),\left(N_{i\left(\left|n e g_{i}\right|+1\right)}, \epsilon_{i}^{\prime}\right),\left(\epsilon_{i}^{\prime}, x_{i+1}\right), \text { if }\left|n e g_{i}\right|>0 \\
& - \\
& \left(x_{i}, b_{i}^{\prime}\right),\left(b_{i}^{\prime}, N_{i 1}\right),\left(N_{i 1}, \epsilon_{i}^{\prime}\right),\left(\epsilon_{i}^{\prime}, x_{i+1}\right), \text { if }\left|n e g_{i}\right|=0
\end{aligned}
$$

- $\left(x_{q+1}, s_{2}\right),\left(s_{2}, G_{i}\right),\left(G_{i}, s_{1}\right),\left(s_{1}, C_{1}\right)$.

Note that there are two edges incident on each of the symbols $e_{i}, \epsilon_{i}^{\prime}, b_{i}, b_{i}^{\prime}, A_{i j}, B_{i j}, Q_{i j}, R_{i j}, P_{i j}$, $X_{i j}, N_{i j} Y_{i j}$ and $Z_{i j}$. In addition, there are four edges incident on every symbol $l_{i j}$.

- If $l_{i j}=\operatorname{pos}_{r}(k)$, there are edges $\left(B_{i j}, l_{i j}\right),\left(l_{i j}, R_{i j}\right),\left(W_{r k}, l_{i j}\right)$ and $\left(l_{i j}, P_{r(k+1)}\right)$ in the TSGD.
- If $l_{i j}=n e g_{T}(k)$, there are edges $\left(B_{i j}, l_{i j}\right),\left(l_{i j}, R_{i j}\right),\left(Y_{r k}, l_{i j}\right)$ and $\left(l_{i j}, N_{r(k+1)}\right)$ in the TSGD.

The set of dependencies D consist of

- $\left(B_{i j}, A_{i j}\right) \rightarrow\left(A_{i j}, C_{i}\right),\left(C_{i+1}, Q_{i j}\right) \rightarrow\left(Q_{i j}, R_{i j}\right)$, for all $i=1,2, \ldots, p$, for all $j=1,2,3$,
- $\left(x_{1}, s_{0}\right) \rightarrow\left(s_{0}, C_{p+1}\right)$,
- for $i=1,2, \ldots, q$,

$$
\begin{aligned}
- & \left(P_{i 1}, b_{i}\right) \rightarrow\left(b_{i}, x_{i}\right),\left(W_{i 1}, X_{i 1}\right) \rightarrow\left(X_{i 1}, P_{i 1}\right),\left(W_{i 2}, X_{i 2}\right) \rightarrow\left(X_{i 2}, P_{i 2}\right), \ldots, \\
& \left(W_{i \mid \text { pos}_{i} \mid}, X_{i \mid \text { pos }_{i} \mid}\right) \rightarrow\left(X_{i \mid p o s_{i}} \mid, P_{i\left|p o s_{i}\right|}\right),\left(x_{i+1}, e_{i}\right) \rightarrow\left(e_{i}, P_{i\left(\left|p o s_{i}\right|+1\right)}\right), \text { if }\left|p o s_{i}\right|>0, \\
- & \left(P_{i 1}, b_{i}\right) \rightarrow\left(b_{i}, x_{i}\right),\left(x_{i+1}, \epsilon_{i}\right) \rightarrow\left(\epsilon_{i}, P_{i 1}\right), \text { if }\left|p o s_{i}\right|=0, \\
- & \left(N_{i 1}, b_{i}^{\prime}\right) \rightarrow\left(b_{i}^{\prime}, x_{i}\right),\left(Y_{i 1}, Z_{i 1}\right) \rightarrow\left(Z_{i 1}, N_{i 1}\right),\left(Y_{i 2}, Z_{i 2}\right) \rightarrow\left(Z_{i 2}, N_{i 2}\right), \ldots, \\
& \left(Y_{i \mid n e g_{i}} \mid, Z_{i\left|n e g_{i}\right|}\right) \rightarrow\left(Z_{i \mid n e g_{i}}, N_{i \mid n e g_{i}} \mid\right),\left(x_{i+1}, \epsilon_{i}^{\prime}\right) \rightarrow\left(\epsilon_{i}^{\prime}, N_{i\left(\left|n e g_{i}\right|+1\right)}\right), \text { if }\left|n e g_{i}\right|>0, \\
- & \left(N_{i 1}, b_{i}^{\prime}\right) \rightarrow\left(b_{i}^{\prime}, x_{i}\right),\left(x_{i+1}, \epsilon_{i}^{\prime}\right) \rightarrow\left(\epsilon_{i}^{\prime}, N_{i 1}\right), \text { if }\left|n e g_{i}\right|=0,
\end{aligned}
$$

- for each symbol $l_{i j}$,
- if $l_{i j}=\operatorname{pos}_{r}(k)$, then the following dependencies are in $D:\left(W_{r k}, l_{i j}\right) \rightarrow\left(l_{i j}, R_{i j}\right)$ $\left(B_{i j}, l_{i j}\right) \rightarrow\left(l_{i j}, P_{r(k+1)}\right)$.
- if $l_{i j}=n \epsilon g_{r}(k)$, then the following dependencies are in $D:\left(Y_{r k}, l_{i j}\right) \rightarrow\left(l_{i j}, R_{i j}\right)$ and $\left(B_{i j}, l_{i}\right.$, $\left(l_{i j}, N_{r(k+1)}\right)$.
- $\left(C_{1}, s_{1}\right) \rightarrow\left(s_{1}, G_{i}\right)$,

It is easy to see that the number of steps required to construct the TSGD (V, E, D, L) is $O(p+q)$ $C=\overline{x_{2}} \vee x_{1} \vee x_{3}$, then the constructed TSGD is as shown in Figure 17.

Our goal is to show that C is satisfiable iff (V, E, D, L) contains a strong-cycle involving G_{i}. begin by showing that the TSGD (V, E, D, L) satisfies the conditions. In D, the only depende involving any of G_{i} 's edges is $\left(C_{1}, s_{1}\right) \rightarrow\left(s_{1}, G_{i}\right)$. Thus, in D, there are only dependencies into edges. Also, the set of dependencies, D, is consistent. Further, we show that the TSGD $\left(V^{\prime}, E^{\prime}, D^{\prime}\right.$ is strongly-acyclic, where $V^{\prime}=V-G_{i}, E^{\prime}=E-\left\{\left(G_{i}, s_{1}\right),\left(G_{i}, s_{2}\right)\right\}$, and $D^{\prime}=D-\left\{\left(C_{1}, s_{1}\right) \rightarrow\left(s_{1}, G\right.\right.$ Let $S_{1}=\left\{C_{1}, C_{2}, \ldots, C_{p+1}\right\} \cup\left\{B_{i j}, R_{i j}: i=1,2, \ldots, p, j=1,2,3\right\}$, and $S_{2}=\left\{x_{1}, x_{2}, \ldots, x_{q+1}\right.$ $\left\{N_{r k}, Y_{T k}: r=1,2, \ldots, q, k=1,2, \ldots,\left|n e g_{T}\right|\right\} \cup\left\{P_{r k}, W_{r k}: r=1,2, \ldots, q, k=1,2, \ldots, \mid \operatorname{pos}_{r}\right.$ $\left\{P_{r\left(\mid \text { pos }_{r} \mid+1\right)}, N_{r\left(\mid \text { neg }_{r} \mid+1\right)}: r=1,2, \ldots, q\right\}$. Note that there cannot exist a strong-cycle in $\left(V^{\prime}, E^{\prime}, D^{\prime}\right.$ such that all the transaction nodes in the cycle are in S_{1} (since there are dependencies $\left(B_{i j}, A_{i}\right.$, $\left(A_{i j}, C_{i}\right),\left(C_{i+1}, Q_{i j}\right) \rightarrow\left(Q_{i j}, R_{i j}\right)$, for all $i=1,2, \ldots, p$, for all $j=1,2,3$, a sequence of edges from C C_{s} can be part of a strong-cycle only if $\left.r<s\right)$. Similarly, there can be no strong-cycle in $\left(V^{\prime}, E^{\prime}, D^{\prime}\right.$

Figure 15: Edges and Dependencies if $l_{i j}=\operatorname{pos}_{\tau}(k)$
On the other hand, if $l_{i j}=n e g_{r}(k)$, then edges and dependencies shown in Figure 16 are introdu in the TSGD.

Figure 16: Edges and Dependencies if $l_{i j}=n e g_{T}(k)$
We now describe the nodes, edges and dependencies in the TSGD. The set of nodes V consis transaction and site nodes. The set of transaction nodes in the TSGD consists of $C_{1}, C_{2}, \ldots, C_{p}, C$ $x_{1}, x_{2}, \ldots, x_{q}, x_{q+1}, B_{i j}, R_{i j}, i=1,2, \ldots, p, j=1,2,3, G_{i}\left(C_{p+1}, x_{q+1}\right.$ and G_{i} are new symbols addition to $P_{r\left(\left|p o s_{r}\right|+1\right)}, P_{r k}, W_{r k}$, for all $r=1,2, \ldots, q, k=1,2, \ldots,\left|\operatorname{pos}_{r}\right|$, and for all $r=1,2, \ldots$ $N_{r\left(\left|n e g_{r}\right|+1\right)}, N_{r k}, Y_{r k} k=1,2, \ldots,\left|n e g_{r}\right|$. Site nodes consist of $l_{i j}, A_{i j}, Q_{i j}, i=1,2, \ldots, p, j=1$, for all $i, i=1,2, \ldots, q, e_{i}, \epsilon_{i}^{\prime}, b_{i}, b_{i}^{\prime}, X_{r k}$ for all $r=1,2, \ldots, q, k=1,2, \ldots,\left|p_{0}\right|$, and $Z_{T k}$ for $r=1,2, \ldots, q, k=1,2, \ldots,\left|n e g_{T}\right|$ in addition to new symbols s_{0}, s_{1}, s_{2}.

The set of edges E consist of

- $\left(C_{i}, A_{i j}\right),\left(A_{i j}, B_{i j}\right),\left(B_{i j}, l_{i j}\right),\left(l_{i j}, R_{i j}\right),\left(R_{i j}, Q_{i j}\right)$ and $\left(Q_{i j}, C_{i+1}\right)$, for all $i=1,2, \ldots, p$, for $j=1,2,3$,
- $\left(C_{p+1}, s_{0}\right),\left(s_{0}, x_{1}\right)$,
- for $i=1,2, \ldots, q$,

$$
-\left(x_{i}, b_{i}\right),\left(b_{i}, P_{i 1}\right),\left(P_{i 1}, X_{i 1}\right),\left(X_{i 1}, W_{i 1}\right),\left(W_{i 1}, \operatorname{pos}_{i}(1)\right),\left(\operatorname{pos}_{i}(1), P_{i 2}\right),\left(P_{i 2}, X_{i 2}\right), \ldots,
$$

Appendix -E- : Intractability results

Theorem 7 is a consequence of the following NP-completeness result.

Theorem 9: The following problem is NP-complete: Given a TSGD (V, E, D, L) and a transac node $G_{i} \in V$, such that D is consistent, and for all transactions $G_{j} \in V$, for all sites s_{k}, depende $\left(G_{i}, s_{k}\right) \rightarrow\left(s_{k}, G_{j}\right) \notin D$. Also, TSGD $\left(V^{\prime}, E^{\prime}, D^{\prime}, L^{\prime}\right)$ resulting due to the deletion of G_{i}, its edges dependencies from (V, E, D, L), is strongly-acyclic. Is $\Delta=\emptyset$ not strongly-minimal with respect to TSGD and transaction G_{i} ?

Proof: We begin by showing that $\Delta=\emptyset$ is not strongly-minimal with respect to G_{i} and (V, E, D iff (V, E, D, L) contains a strong-cycle involving transaction G_{i}. Since $\Delta=\emptyset$, and universal quanti tion over \emptyset is always true, by the definition of strong-minimality, Δ is strongly-minimal with rest to G_{i} and (V, E, D, L) iff (V, E, D, L) does not contain any strong-cycles involving G_{i}. As a resul suffices to show that the following problem is NP-complete: Does (V, E, D, L) contain a strong-c involving G_{i} ?

The above problem is in NP since a non-deterministic algorithm only needs to guess a seque containing at most $2|E|^{2}+1$ edges and then check in polynomial time if the sequence of edges resul a strong-cycle involving G_{i} in the $\operatorname{TSGD}(V, E, D, L)$. The algorithm only needs to guess a seque of $2|E|^{2}+1$ edges since in any strong-cycle with more than $2|E|^{2}+1$ edges, a consecutive pair of ed must be repeated (the total number of distinct pairs of edges is $|E|^{2}$). Thus, the strong-cycle n be of the form $\cdots\left(v_{1}^{\prime}, v_{1}\right)\left(v_{1}, v_{2}\right)\left(v_{2}, v_{3}\right) \cdots\left(v_{1}, v_{2}\right)\left(v_{2}, v_{3}\right)\left(v_{3}, v_{2}^{\prime}\right) \cdots$ for some nodes $v_{1}, v_{2}, v_{3}, v_{1}^{\prime}$, the TSGD. However, there exists a strong-cycle with fewer edges: $\cdots\left(v_{1}^{\prime}, v_{1}\right)\left(v_{1}, v_{2}\right)\left(v_{2}, v_{3}\right)\left(v_{3}, v_{2}^{\prime}\right)$ Thus, if (V, E, D, L) contains a strong-cycle involving G_{i}, then it contains a strong-cycle involving with no more than $2|E|^{2}+1$ edges.

We show a polynomial transformation from 3-SAT. Consider a formula in Conjunctive Normal F $(\mathrm{CNF}) C=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{p}$ that is defined over literals $x_{1}, x_{2}, \ldots, x_{q}$. Let $l_{i j}, i=1,2, \ldots, p, j=1$, be a new symbol for the $j^{\text {th }}$ literal in clause C_{i}. Each symbol $l_{i j}$ is either x_{k} or $\overline{x_{k}}, k=1,2, \ldots, q$ addition, for every literal x_{i}, we introduce new symbols $e_{i}, e_{i}^{\prime}, b_{i}$ and b_{i}^{\prime}, and for literal $l_{i j}$, we introd new symbols $A_{i j}, B_{i j}, Q_{i j}$ and $R_{i j}$. For $r=1,2, \ldots, q, p^{2} s_{r}$ denotes the sequence of symbols l_{i} the order of increasing i, such that $l_{i j}=x_{r}$. For $r=1,2, \ldots, q$, ne g_{r} denotes the sequence of sym $l_{i j}$ in the order of increasing i, such that $l_{i j}=\overline{x_{r}}$. Also $\left|\operatorname{pos}_{r}\right|$ denotes the number of elements in sequence pos_{r} and for $k=1,2, \ldots,\left|\operatorname{pos}_{r}\right|, \operatorname{pos}_{r}(k)$ denotes the $k^{t h}$ element in the sequence $\operatorname{pos}_{r}(\mid n$ and $n e g_{r}(k)$ are similarly defined). For all $r=1,2, \ldots, q$, we introduce new symbols $P_{r k}, W_{r k}$, for each $\operatorname{pos}_{r}(k), k=1,2, \ldots,\left|\operatorname{pos}_{r}\right|$, and $P_{r\left(\left|p o s_{r}\right|+1\right)}$; for $r=1,2, \ldots, q$, new symbols $N_{r k}, Y_{r k}, Z_{r k}$ each $n e g_{r}(k), k=1,2, \ldots,\left|n e g_{T}\right|$, and $N_{r\left(\left|n e g_{r}\right|+1\right)}$. We illustrate the notation by means of the follov example ("." is the concatenation operator for sequences and " ϵ " is the empty sequence).

Example: Let $C=\left(x_{1} \vee \overline{x_{3}} \vee x_{4}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{1}} \vee x_{3}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{4}} \vee x_{1}\right)$.
$l_{1,1}=x_{1}, l_{2,2}=\overline{x_{1}}, l_{3,2}=\overline{x_{4}}$.
$\operatorname{pos}_{1}=l_{1,1} \cdot l_{3,3}$, neg $g_{1}=l_{2,2}, \operatorname{pos}_{2}=\epsilon$.
Also, $\left|\operatorname{pos}_{1}\right|=2,\left|\operatorname{pos}_{2}\right|=0,\left|n e g_{2}\right|=2$.
$\operatorname{pos}_{1}(1)=l_{1,1}, \operatorname{pos}_{1}(2)=l_{3,3}, n e g_{1}(1)=l_{2,2}, n e g_{2}(2)=l_{3,1}$.
We now construct the TSGD as follows. The main components in the TSGD are the edges dependencies that we introduce for literals $l_{i j}$. If $l_{i j}=\operatorname{pos}_{r}(k)$, then edges and dependencies shor in Figure 15 are included in the TSGD.

We further use Lemma 3 to show that, for $F=F A\left(R T_{2}\right)$, state ${ }_{F}$ (init_st ${ }_{F}$, edge $\left(t_{1}\right) \cdots e d g e\left(t_{n}\right.$ $\left.\left(s f i r s t\left(t_{0}\right), G_{0}\right)\right)$ is an accept state. Let edge $\left(t_{1}\right) \cdots e d g e\left(t_{n-1}\right)\left(s f i r s t\left(t_{0}\right), G_{0}\right)=\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m-1}\right.$, In order to use Lemma 3, we need to show that there exists a sequence $g_{1} \cdots g_{m-1}$ such that

- if $v_{2 i}=v_{2 i+1}$, then $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$, and
- if $v_{2 i-1}=v_{2 i+1}$, then $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$, and
$s t_{F}\left(i n i t_{-} s t_{F}, g_{1} \cdots g_{m-1}\right)$ is an accept state. We construct the sequence $g_{1} \cdots g_{m-1}$ with the ab properties as follows. For all $i=1, \ldots, n-1$, let $f_{i}=\overline{\left(\operatorname{type}\left(h d r\left(t_{i}\right)\right), \operatorname{type}\left(\operatorname{first}\left(t_{i}\right)\right)\right)}$, if $\operatorname{arity}\left(t_{i}\right)$ else, $f_{i}=\left(\operatorname{type}\left(h d r\left(t_{i}\right)\right)\right.$, type $\left.\left(f i r s t\left(t_{i}\right)\right)\right)\left(\operatorname{type}\left(h d r\left(t_{i}\right)\right)\right.$, type $\left.\left(\operatorname{last}\left(t_{i}\right)\right)\right)$. Since type $\left(t_{1}\right) \cdots$ type $\left(t_{n-1}\right.$ a string in $L($ reg_exp $)$, by the construction of $F A\left(R T_{2}\right)$, it follows that st $\left(\right.$ init_st $\left._{F}, f_{1} \cdots f_{n-1}\right)$ is accept state. Let $g_{1} \cdots g_{m-1}=f_{1} \cdots f_{n-1}$, such that every $g_{i} \in \Sigma_{F}$. Furthermore, from the defini of edge and f_{j}, it follows that, if for some $i=1, \ldots, m-1$, if $\left(v_{2 i-1}, v_{2 i}\right) \in e d g e\left(t_{k}\right)$ and $\operatorname{arity}\left(t_{k}\right)$ then $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$, else $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$.

In order to show that state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{1}, v_{2}\right), \ldots,\left(v_{m-1}, v_{m}\right)\right)$ is an accept state, we need to s . that for all $i, i=1,2, \ldots, m-1$, if $v_{2 i}=v_{2 i+1}$, then $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$ and if $v_{2 i-1}=v_{2 i+1}$, $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$. We first show that if $v_{2 i}=v_{2 i+1}$, and $\left(v_{2 i-1}, v_{2 i}\right) \in \operatorname{edge}\left(t_{k}\right)$ for some k, $1,2, \ldots, n-1$, then $\operatorname{arity}\left(t_{k}\right)=2$. Suppose $\operatorname{arity}\left(t_{k}\right)=1$. Since $\operatorname{last}\left(t_{k}\right)$ and first $\left(t_{(k+1) \mathrm{m}}\right.$ execute at the same site, slast $\left(t_{k}\right)=v_{2 i-1}, \operatorname{sfirst}\left(t_{(k+1) \bmod n}\right)=v_{2 i+1}$, it follows that $v_{2 i-1}=v_{2}$ which leads to a contradiction. Thus, $\operatorname{arity}\left(t_{k}\right)=2$, and $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$. Also, it can be sh that if $v_{2 i-1}=v_{2 i+1}$, and $\left(v_{2 i-1}, v_{2 i}\right) \in e d g e\left(t_{k}\right)$, then $\operatorname{arity}\left(t_{k}\right)=1$. Suppose $\operatorname{arity}\left(t_{k}\right)=2$ $v_{2 i}=G_{k}$, then $v_{2 i}=v_{2 i+1}=G_{k}$, which leads to a contradiction. If $v_{2 i-1}=G_{k}$, then since last $\left(t_{k}\right)$ first $\left(t_{(k+1) \bmod n}\right)$ execute at the same site, slast $\left(t_{k}\right)=v_{2 i}$, sfirst $\left(t_{(k+1) \bmod n}\right)=v_{2 i+1}$, it follows $v_{2 i}=v_{2 i+1}$, which leads to a contradiction. Thus, $\operatorname{arity}\left(t_{k}\right)=1$, and, $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$.

Thus, by Lemma 3, state F_{F} init_st $_{F}$, edge $\left.\left(t_{1}\right) \cdots e d g e\left(t_{n-1}\right)\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right)\right)$ is an accept state. T by corollaries 8 and 10 , during the execution of Detect_Ins_TSGD? $\left((V, E, D, L), G_{0}\right.$, slast $\left(t_{0}\right)$, $\left.s e t_{1}, R T_{2}\right)$, dependency (prev_anc(sfirst $\left.\left.\left(t_{0}\right)\right), \operatorname{sfirst}\left(t_{0}\right)\right) \rightarrow\left(\operatorname{sfirst}\left(G_{0}\right), G_{0}\right)$ is added to Δ, and $\left(\right.$ prev_anc $\left.^{(s f i r s t}\left(t_{0}\right)\right)$, sfirst $\left.\left(t_{0}\right)\right) \rightarrow\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right) \in \Delta_{F}$. However, this leads to a contradiction s we showed earlier that (prev_anc(sfirst $\left.\left(t_{0}\right)\right)$, sfirst $\left.\left(t_{0}\right)\right) \rightarrow\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right) \notin \Delta_{F}$. Thus, every sched S is correct.

When init $_{0}$ is processed, the procedure Detect_Ins_TSGD? is invoked with arguments that incl the $\operatorname{TSGD}(V, E, D, L), G_{0}$, slast $\left(t_{0}\right)$, set t_{1}, and $R T_{2}$ since type $\left(G_{0}\right)=h d r\left(\epsilon_{0}\right)$ and type $\left(\operatorname{last}\left(t_{0}\right)\right.$ $\operatorname{last}\left(\epsilon_{0}\right)$. Also, sfirst $\left(t_{0}\right) \in \operatorname{set}_{1}\left(\right.$ if $\operatorname{arity}\left(t_{0}\right)=1$, then since $\operatorname{sfirst}\left(t_{0}\right)=\operatorname{slast}\left(t_{0}\right), \operatorname{sfirst}\left(t_{0}\right) \in \operatorname{s}$ if binary $\left(t_{0}\right)$, then since $\operatorname{sfirst}\left(t_{0}\right) \neq \operatorname{slast}\left(t_{0}\right)$, and type $\left(\right.$ first $\left.\left(t_{0}\right)\right)=$ first $\left(\epsilon_{0}\right)$, sfirst $\left(t_{0}\right) \in \operatorname{s\epsilon }$ Furthermore, all the edges belonging to G_{0}, \ldots, G_{n-1} are in the TSGD when Detect_Ins_TSGD invoked. In order to show this, we first show that G_{j} 's edges cannot be deleted from the TS before $G_{(j+1) \bmod n}$'s edges are deleted from the TSGD, for all $j, j=1,2, \ldots, n-1$. Suppose, some $j, j=1,2, \ldots, n-1, G_{j}$'s edges are deleted from the TSGD before $G_{(j+1) \mathrm{mod} n}$'s edges deleted from the TSGD. Let slast $\left(t_{j}\right)=s_{k}$. Since $G_{j k}$ is serialized after $G_{((j+1) \bmod n) k}$, at site $\operatorname{ser}_{k}\left(G_{(j+1) \bmod n}\right)$ executes before $\operatorname{ser}_{k}\left(G_{j}\right)$. Thus, since $G_{(j+1) \bmod n}$'s edges are inserted into the TS before $\operatorname{ser}_{k}\left(G_{(j+1) \bmod n}\right)$ executes, while G_{j} 's edges are deleted after $\operatorname{ser}_{k}\left(G_{j}\right)$ executes, $G_{(j+1) \mathrm{mo}}$ edges must be in the TSGD when G_{j} 's edges are deleted (since we have assumed that G_{j} 's ec are deleted before $G_{(j+1) \mathrm{mod} n}$'s edges are deleted). Furthermore, since $\operatorname{ser}_{k}\left(G_{j}\right)$ and $\operatorname{ser}_{k}\left(G_{(j+1) \mathrm{m}}\right.$ must have both executed when G_{j} 's edges are deleted, $G_{(j+1) \bmod n}$ is serialized before G_{j} when edges are deleted. However, this leads to a contradiction, since edges belonging to G_{j} and $G_{(j+1) \mathrm{n}}$ are deleted together when $f i n_{l}$ for some transaction G_{l} is processed (since $G_{(j+1) \bmod n}$ is serial before G_{j}, if for every transaction $G_{k} \in V$ serialized before G_{j}, val l_{k} has been processed, then for ev transaction $G_{k} \in V$ serialized before $G_{(j+1) \bmod n}$ also, val ${ }_{k}$ must have been processed). Thus, edges are not deleted from the TSGD before G_{2} 's edges are deleted, \ldots, G_{n-1} 's edges are not del from the TSGD before G_{0} 's edges are deleted. By transitivity and since G_{0} 's edges are deleted after $i n i t_{0}$ has been processed, when Detect_Ins_TSGD? is invoked during the processing of init $_{0}$, TSGD contains all the edges belonging to transactions $G_{0}, G_{1}, \ldots, G_{n-1}$.

Let Δ_{F} be the set of dependencies returned by Detect_Ins_TSGD?. We now show that (G_{0}, slast $($ $\operatorname{edge}\left(t_{1}\right) \cdots \operatorname{edge}\left(t_{n-1}\right)\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right)$ is a path in the TSGD $\left(V, E, D \cup \Delta_{F}\right)$. We begin by shov that any two consecutive edges in the path have a common node. Consecutive edges in the path co be one of the following:

- $\left(\operatorname{sfirst}\left(G_{j}\right), G_{j}\right)\left(G_{j}, \operatorname{slast}\left(G_{j}\right)\right), j=1,2, \ldots, n-1$, where $\operatorname{arity}\left(t_{j}\right)=2\left(G_{j}\right.$ is the common no
- $\left(G_{j}, \operatorname{slast}\left(t_{j}\right)\right)\left(\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right), G_{(j+1) \bmod n}\right), j=0,1, \ldots, n-1$, where $\operatorname{arity}\left(t_{j}\right)=2$ or j $\operatorname{arity}\left(t_{(j+1) \bmod n}\right)=1$ or 2 (since for all $j, j=0,1, \ldots, n-1, \operatorname{last}\left(t_{j}\right)$ and $\operatorname{first}\left(t_{(j+1) \mathrm{m}}\right.$ execute at the same site, $\operatorname{slast}\left(t_{j}\right)=s \operatorname{first}\left(t_{(j+1) \bmod n}\right)$ is the common node $)$.
- $\left(\operatorname{sfirst}\left(t_{j}\right), G_{j}\right)\left(\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right), G_{(j+1) \bmod n}\right), j=1,2, \ldots, n-1$, where $\operatorname{arity}\left(t_{j}\right)=1, \operatorname{ar}$ $\left.t_{(j+1) \bmod n}\right)=1$ or $2\left(\right.$ since $\operatorname{arity}\left(t_{j}\right)=1 \mathrm{implies}$ that $\operatorname{sfirst}\left(t_{j}\right)=\operatorname{slast}\left(t_{j}\right)$, and $\operatorname{slast}\left(t_{j}\right.$ sfirst $\left(t_{(j+1) \bmod n}\right)$, it follows that $\operatorname{sfirst}\left(t_{j}\right)=\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right)$ is the common node $)$.
Also, for the sequence of edges $\left(\operatorname{sfirst}\left(t_{j}\right), G_{j}\right)\left(G_{j}, \operatorname{slast}\left(t_{j}\right)\right)$ in the path, $j=1,2, \ldots, n-1$, it n be the case that $\operatorname{arity}\left(t_{j}\right)=2$, and thus $s f i r s t\left(t_{j}\right) \neq \operatorname{slast}\left(t_{j}\right)$. Also, if for some $j, k, j=0,1, \ldots, n$ $j<k \leq n$, the sequence of edges $\left(G_{j}, \operatorname{slast}\left(t_{j}\right)\right)\left(\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right), G_{(j+1) \bmod n}\right), \ldots$,
$\left.\left(\operatorname{sfirst}^{\left(t_{k \bmod n}\right)}\right), G_{k \bmod n}\right)$ is in the path, then it must be the case that for all $j<l<k$, $\operatorname{arity}\left(t_{l}\right)$ Thus, by Property 1 , it follows that slast $\left(t_{j}\right)=\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right)=\cdots=\operatorname{sfirst}\left(t_{k \bmod n}\right)$, and fo $r, s, j \leq r<s \leq k$,
- $G_{r} \neq G_{s \bmod n}$, and
- G_{r} is serialized after $G_{s \bmod n}$ at site $\operatorname{sfirst}\left(G_{s \bmod n}\right)$. Thus, by Lemma 14 , dependency $\left(G_{r}, s f i\right.$ $\left.\left.G_{s \bmod n}\right)\right) \rightarrow\left(s f i r s t\left(G_{s \bmod n}\right), G_{s \bmod n}\right)$ does not belong to $D \cup \Delta_{F}$ (since Δ_{F} is added to the of dependencies D in the TSGD immediately after $i n i t_{0}$ is processed).
Thus, $\left(G_{0}\right.$, slast $\left.\left(t_{0}\right)\right)$ edge $\left(t_{1}\right) \cdots e d g e\left(t_{n-1}\right)\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right)$ is a path in the $\operatorname{TSGD}\left(V, E, D \cup \Delta_{F}\right)$. T

However, since in state $S t_{k}^{\prime}$, no forward transition can be made due to edge ($S t_{k}^{\prime} \cdot v, v_{2 m+2}$), it n be the case that

- if $v_{2 m+2}=v_{2 m+3}$, then $S t_{k}^{\prime} \cdot V _$set $\left(v_{2 m+2}\right)$ already contains $\left(s t_{m+1},\left(S t_{k}^{\prime} \cdot v, S t_{k}^{\prime} \cdot v\right)\right)$. Thus, s $S t_{k}^{\prime} \cdot v=v_{2 m+1}, \operatorname{prev}\left(v_{2 m+3}\right)=v_{2 m+1}, \operatorname{prev_ anc}\left(v_{2 m+3}\right)=v_{2 m+1},\left(s t_{m+1},\left(\right.\right.$ prev_anc $\left(v_{2 m+3}\right)$, $\left.\operatorname{prev}\left(v_{2 m+3}\right)\right)$) is added to $V _\operatorname{set}\left(v_{2 m+3}\right)$ during the execution of Detect_Ins_TSGD2.
- if $v_{2 m+1}=v_{2 m+3}$, then $S t_{k}^{\prime} \cdot V _$set $\left(S t_{k}^{\prime} \cdot v\right)$ already contains $\left(s t_{m+1},\left(\right.\right.$ prev_anc $\left(v_{2 m+1}\right), v_{2 m+}$ Thus, since $S t_{k}^{\prime} \cdot v=v_{2 m+1}, \operatorname{prev}\left(v_{2 m+3}\right)=v_{2 m+2}$, prev_anc $\left(v_{2 m+3}\right)=$ prev_anc $\left(v_{2 m}\right.$ $\left(s t_{m+1},\left(\right.\right.$ prev_anc $\left.\left.\left(v_{2 m+3}\right), \operatorname{prev}\left(v_{2 m+3}\right)\right)\right)$ is added to $V_{_} \operatorname{set}\left(v_{2 m+3}\right)$ during the executio Detect_Ins_TSGD2.

Corollary 10: Let Detect_Ins_TSGD2 $\left((V, E, D, L), v_{1}, v_{2}\right.$, set $\left._{1}, R T\right)$ return the set of dependen Δ_{F}. If the TSGD $\left(V, E, D \cup \Delta_{F}\right)$ contains a path $\left(v_{1}, v_{2}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}, v_{1}\right), v_{2}=v_{3}$, s that for the regular term $R T, F=F A(R T)$, st $=$ state $_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}\right.$, is an accept state and $v_{2 n+1} \in s e t_{1}$, then during the execution of Detect_Ins_TSGD2, depende (prev_anc $\left.\left(v_{2 n+1}\right), v_{2_{n+1}}\right) \rightarrow\left(v_{2 n+1}, v_{1}\right)$ is added to Δ.

Proof: By Lemma 13, (st, (prev_anc $\left(v_{2 n+1}\right)$, prev $\left.\left(v_{2 n+1}\right)\right)$) is added to $V _$set $\left(v_{2 n+1}\right)$. S $\operatorname{prev}\left(v_{2 n+1}\right) \neq v_{1}$ and prev_anc($\left.v_{2 n+1}\right) \neq v_{1}$ (by definition of path), Detect_Ins_TSGD2 makes a ward state transition when $\left(\operatorname{st},\left(\operatorname{prev} _a n c\left(v_{2 n+1}\right), \operatorname{prev}\left(v_{2 n+1}\right)\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 n+1}\right)$. Howe just before $\left(s t,\left(p r e v _a n c\left(v_{2 n+1}\right), \operatorname{prev}\left(v_{2_{n+1}}\right)\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2_{n+1}}\right)$, since $s t$ is an accept st $\operatorname{prev} v_{-a n c}\left(v_{2 n+1}\right) \neq v_{1}, \operatorname{prev}\left(v_{2 n+1}\right) \neq v_{1}$ and $v_{2_{n+1}} \in \operatorname{set}_{1}$, dependency $\left(\operatorname{prev} v_{-} a n c\left(v_{2 n+1}\right), v_{2_{n+1}}\right.$ $\left(v_{2 n+1}, v_{1}\right)$ is added to Δ.

We are now in a position to prove that the TSGD scheme ensures the correctness of S. Before present the proof, we prove the following lemma.

Lemma 14: If, in the TSGD scheme, for some site s_{k}, transactions $G_{i}, G_{j}, G_{i k}$ is serialized be $G_{j k}$ at site s_{k}, then there does not exist a dependency $\left(G_{j}, s_{k}\right) \rightarrow\left(s_{k}, G_{i}\right)$ in the TSGD.

Proof: Suppose there exists a dependency $\left(G_{j}, s_{k}\right) \rightarrow\left(s_{k}, G_{i}\right)$ in the TSGD. The dependency car be added to the TSGD once $\operatorname{act}\left(\operatorname{ser}_{k}\left(G_{i}\right)\right)$ has executed. Thus, dependency $\left(G_{j}, s_{k}\right) \rightarrow\left(s_{k}, G_{i}\right)$ mus added to the TSGD before $\operatorname{act}^{\cot }\left(\operatorname{ser}_{k}\left(G_{i}\right)\right)$ executes. However, if this were the case, $\operatorname{act}\left(\operatorname{ser}_{k}\left(G_{i}\right)\right)$ wo not execute until $\operatorname{act}\left(\operatorname{ack}\left(\operatorname{ser}_{k}\left(G_{j}\right)\right)\right)$ completes execution (the dependency $\left(G_{j}, s_{k}\right) \rightarrow\left(s_{k}, G_{i}\right)$ is del from the TSGD only after $\operatorname{ack}\left(\operatorname{ser}_{k}\left(G_{j}\right)\right)$ is processed). Thus, $\operatorname{ser}_{k}\left(G_{j}\right)$ would execute before $\operatorname{ser}_{k}($ and $G_{j k}$ would be serialized before $G_{i k}$ at site s_{k}, which leads to a contradiction.

Proof of Theorem 5: Suppose S is not correct. Thus, there exists a regular term $R T$ in R an instantiation I of $R T$ in S. Let G_{0} be the transaction in I such that $i n i t_{0} t_{0}$ is processed after init, every other transaction G_{i} in I is processed. By Lemma 1 , since R is complete, there exists a reg term $R T_{2}=\epsilon_{0}:$ reg_exp and an instantiation $t_{0}: t_{1} t_{2} \cdots t_{n-1}$ of $R T_{2}$ in S such that $h d r\left(t_{0}\right)=$ Thus,

- for all $j, j=0,1, \ldots, n-1$,

1. $t_{j} \in \Sigma_{S}$ (without loss of generality, let $h d r\left(t_{j}\right)=G_{j}$), and
2. $\operatorname{last}\left(t_{j}\right)$ and $\operatorname{first}\left(t_{(j+1) \bmod n}\right)$ execute at the same site, and $\operatorname{last}\left(t_{j}\right)$ is serialized a first $\left(t_{(j+1) \bmod n}\right)$ at the site, and
the conditions in Step 2 need to be checked, on an average, for v_{S} edges (the average number of a global transaction executes at is v_{S}), while every time a site node is visited, the conditions in St need to be checked for at most n_{G} edges (since the number of transaction nodes in the TSGD is at n $\left.n_{G}\right)$. Furthermore, every transaction node can be visited at most $v_{S}^{2} n_{S}$ times, while every site n can be visited at most $n_{G}^{2} n_{S}$ times (every node v in the TSGD can be visited in a state st of F at n once for every pair of nodes u, w such that (v, w) and (v, u) are edges in the TSGD, and F has at n n_{S} states). Since there are m site nodes and at most n_{G} transaction nodes in the TSGD, the num of times Detect_Ins_TSGD2 checks if an edge satisfies the conditions in Step 2 is $n_{G}^{3} m n_{S}+n_{G} v_{S}^{3}$ Since each of the conditions in Step 2 can be checked in constant time and $v_{S} \ll n_{G}, v_{S}<m$, tect_Ins_TSGD2 terminates in $O\left(n_{G}^{3} m n_{S}\right)$ steps.

We now show that Detect_Ins_TSGD2 traverses edges in the TSGD in a manner that ensure detects instantiations of regular terms.

Lemma 13: Let Detect_Ins_TSGD2 $\left((V, E, D, L), v_{1}, v_{2}, \operatorname{set}_{1}, R T\right)$ return the set of depend cies Δ_{F}. If the TSGD $\left(V, E, D \cup \Delta_{F}\right)$ contains a path $\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right), \ldots,\left(v_{2 n-3}, v_{2 n-2}\right),\left(v_{2 n-1}, v\right.$ $v_{2}=v_{3}$, such that for the regular term $R T, F=F A(R T)$, state $F\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right), \ldots,\left(v_{2 n-1}, v_{2 n}\right.$ defined, then during the execution of Detect_Ins_TSGD2, (st, (prev_anc $\left(v_{2 i+1}\right)$, prev $\left.\left.\left(v_{2 i+1}\right)\right)\right)$ is adde $V_{_} \operatorname{set}\left(v_{2 i+1}\right)$, where $s t=\operatorname{state}_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2 i+2}\right)\right)$, for all $i, i=1,2,3, \ldots$

Proof: We prove the above lemma by induction on i. We prove that for all $i, i=1,2, \ldots, n$ $\left(s t,\left(\operatorname{prev} _a n c\left(v_{2 i+1}\right), \operatorname{prev}\left(v_{2 i+1}\right)\right)\right)$ is added to $V _\operatorname{set}\left(v_{2 i+1}\right)$, where $s t=\operatorname{state}_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right) \cdot$. $\left.\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2 i+2}\right)\right)$.
Basis $(i=1)$: In Step 1 of Detect_Ins_TSGD2, $\left(\right.$ init_st $\left._{F},\left(v_{1}, v_{1}\right)\right)$ is added to $V _$_set $\left(v_{2}\right)$. Since $v_{2}=$ $\operatorname{prev} v_{-} \operatorname{anc}\left(v_{3}\right)=\operatorname{prev}\left(v_{3}\right)=v_{1}$, and state $\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right)\right)=$ init_st $_{F}$, the lemma is true for i $\left(\left(\right.\right.$ init_st $_{F},\left(\right.$ prev_anc $\left.\left.\left(v_{3}\right), \operatorname{prev}\left(v_{3}\right)\right)\right)$ is added to $V _$set $\left.\left(v_{3}\right)\right)$.
Induction: Let us assume that the lemma is true for $i=m, 1 \leq m<n-1$. Thus,
$\left(s t_{m},\left(\right.\right.$ prev_anc $\left(v_{2 m+1}\right)$, prev $\left.\left.\left(v_{2 m+1}\right)\right)\right)$ is added to $V _$set $\left(v_{2 m+1}\right)$, where $s t_{m}=\operatorname{state}_{F}\left(\right.$ init_st $_{F},\left(v_{3}\right.$ $\left.\cdots\left(v_{2 m-1}, v_{2 m}\right)\left(v_{2 m+1}, v_{2 m+2}\right)\right)$. We show the lemma to be true for $i=m+1$. Thus, we need to s that $\left(s t_{m+1},\left(\operatorname{prev}-\operatorname{anc}\left(v_{2 m+3}\right), \operatorname{prev}\left(v_{2 m+3}\right)\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m+3}\right)$, where $s t_{m+1}=\operatorname{state}_{F}\left(\right.$ init $^{\prime}$ $\left.\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\left(v_{2 m+3}, v_{2 m+4}\right)\right)$. By the definition of state, st $t_{m+1}=s t_{F}\left(s t_{m}, L\left(v_{2 m+1}, v_{2}\right.\right.$ if $v_{2 m+2}=v_{2 m+3}$ and $s t_{m+1}=s t_{F}\left(s t_{m}, L\left(v_{2 m+1}, v_{2 m+2}\right)\right)$, if $v_{2 m+1}=v_{2 m+3}$.

Let $S t_{k}$ be the resulting state of Detect_Ins_TSGD2 after $\left(s t_{m},\left(\right.\right.$ prev_anc $\left(v_{2 m+1}\right), p r e v\left(v_{2 m+1}\right)$ added to $V _\operatorname{set}\left(v_{2 m+1}\right)$ (the state $S t_{k}$ results either due to the forward transition $S t_{j} \rightarrow S t_{k}$, ei $S t_{j} \cdot v=v_{2 m+1}$ or $S t_{j} \cdot v=\operatorname{prev}\left(v_{2 m+1}\right)$, or due to Step 1). Thus, $S t_{k} \cdot v=v_{2 m+1}, S t_{k} \cdot c u r_{-s t}=s t_{m}$ in state $S t_{k}, \operatorname{head}\left(S t_{k} \cdot \operatorname{anc}\left(S t_{k} \cdot v\right)\right)=\left(\operatorname{prev} \operatorname{anc}\left(v_{2_{m+1}}\right), \operatorname{prev}\left(v_{2 m+1}\right)\right)$. Furthermore, it follows f Lemma 12 that after a finite number of steps, Detect_Ins_TSGD2 is in a state $S t_{k}^{\prime}$ such that $S t_{k}^{\prime} \equiv$ and no further forward transitions can be made from $S t_{k}^{\prime}$. Thus, in state $S t_{k}^{\prime}$,

- Since $\operatorname{prev}\left(v_{2 m+1}\right) \neq v_{2 m+2}$ and $\operatorname{prev}-a n c\left(v_{2 m+1}\right) \neq v_{2 m+2}, \operatorname{head}\left(S t_{k}^{\prime} \cdot \operatorname{anc}\left(S t_{k}^{\prime} \cdot v\right)\right)[1] \neq v_{2 \pi}$ head $\left(S t_{k}^{\prime} \cdot a n c\left(S t_{k}^{\prime} \cdot v\right)\right)[2] \neq v_{2 m+2}$,
- Since $S t_{k}^{\prime} . \Delta \subseteq \Delta_{F}$ and $\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)$ is a path in $\left(V, E, D \cup \Delta_{F}\right)$, there are no del dencies $\left(\operatorname{prev}\left(v_{2 m+1}\right), v_{2 m+1}\right) \rightarrow\left(v_{2 m+1}, v_{2 m+2}\right)$ and (prev_anc $\left.\left(v_{2 m+1}\right), v_{2 m+1}\right) \rightarrow\left(v_{2 m+1}, v_{2 m+2}\right.$ $D \cup \Delta_{F}$; thus, dependencies $\left(\operatorname{head}\left(S t_{k}^{\prime} \cdot a n c\left(S t_{k}^{\prime} \cdot v\right)\right)[2], S t_{k}^{\prime} \cdot v\right) \rightarrow\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)$ and $\left(\right.$ head $\left.\left(S t_{k}^{\prime} \cdot \operatorname{anc}\left(S t_{k}^{\prime} \cdot v\right)\right)[1], S t_{k}^{\prime} \cdot v\right) \rightarrow\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)$ are not in $D \cup S t_{k}^{\prime} \cdot \Delta$,
- Since state $F_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\left(v_{2 m+3}, v_{2 m+4}\right)\right)$ is defined, if $v_{2 m+2}=v_{2 n}$
or $S t_{j} \cdot v=$ prev_anc $\left(v_{2 m+1}\right)$, or due to Step 1). Thus, $S t_{k} \cdot v=v_{2 m+1}, S t_{k} \cdot c u r_{-} s t=s t_{m}$ and in s $S t_{k}, \operatorname{head}\left(S t_{k} \cdot a n c\left(S t_{k} \cdot v\right)\right)=\operatorname{prev} a n c\left(v_{2 m+1}\right)$. Furthermore, it follows from Lemma 10 that aft finite number of steps, Detect_Ins_TSGD1 is in a state $S t_{k}^{\prime}$ such that $S t_{k}^{\prime} \equiv S t_{k}$ and no further fork transitions can be made from $S t_{k}^{\prime}$. Thus, in state $S t_{k}^{\prime}$,
- Since prev_anc $\left(v_{2 m+1}\right) \neq v_{2 m+2}$ (by the definition of path $)$, $h e a d\left(S t_{k}^{\prime} \cdot a n c\left(S t_{k}^{\prime} \cdot v\right)\right) \neq v_{2 m+2}$,
- Since $S t_{k}^{\prime} . \Delta \subseteq \Delta_{F}$, and $\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)$ is a path in $\left(V, E, D \cup \Delta_{F}\right)$, there is no pendency $\left(\right.$ prev_anc $\left.\left(v_{2 m+1}\right), v_{2 m+1}\right) \rightarrow\left(v_{2 m+1}, v_{2 m+2}\right)$ in $D \cup \Delta_{F}$; thus, there is no depende $\left(\operatorname{head}\left(S t_{k}^{\prime} \cdot \operatorname{anc}\left(S t_{k}^{\prime} \cdot v\right)\right), S t_{k}^{\prime} \cdot v\right) \rightarrow\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)$ in $D \cup S t_{k}^{\prime} \cdot \Delta$,
- Since state ${ }_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\left(v_{2 m+3}, v_{2 m+4}\right)\right)$ is defined, if $v_{2 m+2}=v_{2 n}$ then $s t_{m+1}=s t_{F}\left(S t_{k}^{\prime} \cdot c u r_{_} s t, L\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)\right)$ is defined, else if $v_{2 m+1}=v_{2 m+3}$, then $s t_{m+}$ $s t_{F}\left(S t_{k}^{\prime} . c u r_{-} s t, \overline{L\left(S t_{k}^{\prime} . v, v_{2 m+2}\right)}\right)$ is defined.

However, since in state $S t_{k}^{\prime}$, no forward transition can be made due to edge ($S t_{k}^{\prime} \cdot v, v_{2 m+2}$), it n be the case that

- if $v_{2 m+2}=v_{2 m+3}$, then $S t_{k}^{\prime} \cdot V _\operatorname{set}\left(v_{2 m+2}\right)$ already contains $\left(s t_{m+1}, S t_{k}^{\prime} \cdot v\right)$. Thus, since $S t_{k}^{\prime}$. $v_{2 m+1}, \operatorname{prev} v_{-} a n c\left(v_{2 m+3}\right)=v_{2 m+1},\left(s t_{m+1}\right.$, prev_anc $\left.\left(v_{2 m+3}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m+3}\right)$ during execution of Detect_Ins_TSGD1.
- if $v_{2 m+1}=v_{2 m+3}$, then $S t_{k}^{\prime} \cdot V _\operatorname{set}\left(S t_{k}^{\prime} \cdot v\right)$ already contains $\left(s t_{m+1}, \operatorname{prev} v_{-} a n c\left(v_{2 m+1}\right)\right) . \mathrm{T}$ since $S t_{k}^{\prime} \cdot v=v_{2 m+1}$, prev_anc $\left(v_{2 m+3}\right)=$ prev_anc $\left(v_{2 m+1}\right),\left(s t_{m+1}, \operatorname{prev} v_{-} a n c\left(v_{2 m+3}\right)\right)$ is ad to $V _\operatorname{set}\left(v_{2 m+3}\right)$ during the execution of Detect_Ins_TSGD1.

Corollary 8: Let Detect_Ins_TSGD1 $\left((V, E, D, L), v_{1}, v_{2}\right.$, set $\left.t_{1}, R T\right)$ return the set of dependen Δ_{F}. If the TSGD $\left(V, E, D \cup \Delta_{F}\right)$ contains a path $\left(v_{1}, v_{2}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}, v_{1}\right), v_{2}=v_{3}$, that for the regular term $R T, F=F A(R T)$, st $=$ state $_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}\right.$, is an accept state and $v_{2 n+1} \in \operatorname{set}_{1}$, then during the execution of Detect_Ins_TSGD1, depende $\left(p r e v_{-} a n c\left(v_{2 n+1}\right), v_{2 n+1}\right) \rightarrow\left(v_{2 n+1}, v_{1}\right)$ is added to Δ.

Proof: By Lemma 11, (st, prev_anc($\left.\left.v_{2 n+1}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 n+1}\right)$. Since prev_anc $\left(v_{2 n+1}\right) \neq$ Detect_Ins_TSGD1 makes a forward state transition when $\left(s t, p r e v_{-} a n c\left(v_{2 n+1}\right)\right)$ is added to $V_{-} s e t\left(v_{2}\right.$ However, just before $\left(s t\right.$, prev_anc $\left.\left(v_{2 n+1}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 n+1}\right)$, since st is an accept state, prev_ $\left(v_{2 n+1}\right) \neq v_{1}$ and $v_{2 n+1} \in \operatorname{set}_{1}$, dependency $\left(\operatorname{prev}-a n c\left(v_{2 n+1}\right), v_{2 n+1}\right) \rightarrow\left(v_{2 n+1}, v_{1}\right)$ is added to Δ.

We now show that Detect_Ins_TSGD2 terminates in $O\left(n_{G}^{2} m v_{S}\right)$ steps, for which we need to p the following lemma.

Lemma 12: If during its execution, Detect_Ins_TSGD2 is in state $S t_{k}$, then after a finite num of steps, it enters a state $S t_{k}^{\prime} \equiv S t_{k}$ such that no forward transitions from $S t_{k}^{\prime}$ are possible.

Proof: Similar to proof of Lemma 8.
Corollary 9: Procedure Detect_Ins_TSGD2 terminates in $O\left(n_{G}^{3} m n_{S}\right)$ steps.
Proof: Detect_Ins_TSGD2 can be shown to terminate as a result of Lemma 12 using a sin argument as in Corollary 3.

The number of steps Detect_Ins_TSGD2 terminates in is equal to the product of the numbe

Appendix -D- : TSGD Schemes

In this appendix, we prove Theorem 5 . We begin by showing that Detect_Ins_TSGD1 and tect_Ins_TSGD2 detect instantiations of regular terms in S. States $S t_{k}$ between the execution of two steps of Detect_Ins_TSGD1 and Detect_Ins_TSGD2 are as defined earlier for Detect_Ins_Opt.

Lemma 10: If during its execution, Detect_Ins_TSGD1 is in state $S t_{k}$, then after a finite num of steps, it enters a state $S t_{k}^{\prime} \equiv S t_{k}$ such that no forward transitions from $S t_{k}^{\prime}$ are possible.

Proof: Similar to proof of Lemma 2.
Corollary 7: Procedure Detect_Ins_TSGD1 terminates in $O\left(n_{G}^{2} m n_{S}\right)$ steps.
Proof: Detect_Ins_TSGD1 can be shown to terminate as a result of Lemma 10 using a sin argument as in Corollary 3.

The number of steps Detect_Ins_TSGD1 terminates in is equal to the product of the numbe times Detect_Ins_TSGD1 checks if an edge satisfies the conditions in Step 2 and the number of s required to check if an edge satisfies the conditions in Step 2. Every time a transaction node is visi the conditions in Step 2 need to be checked, on an average, for v_{S} edges (the average number of s a global transaction executes at is v_{S}), while every time a site node is visited, the conditions in Ste need to be checked for at most n_{G} edges (since the number of transaction nodes in the TSGD i most n_{G}). Furthermore, every transaction node can be visited at most $v_{S} n_{S}$ times, while every node can be visited at most $n_{G} n_{S}$ times (every node v in the TSGD can be visited in a state st at most once for every node w such that edge (v, w) is in the TSGD, and F has at most n_{S} stat Since there are m site nodes and at most n_{G} transaction nodes in the TSGD, the number of ti Detect_Ins_TSGD1 checks if an edge satisfies the conditions in Step 2 is $n_{G}^{2} m n_{S}+n_{G} v_{S}^{2} n_{S}$. Since of the conditions in Step 2 can be checked in constant time and $v_{S} \ll n_{G}, v_{S}<m$, Detect_Ins_TS(terminates in $O\left(n_{G}^{2} m n_{S}\right)$ steps.

We now show that Detect_Ins_TSGD1 traverses edges in the TSGD in a manner that ensure detects instantiations of regular terms.

Lemma 11: Let Detect_Ins_TSGD1 $\left((V, E, D, L), v_{1}, v_{2}, \operatorname{set}_{1}, R T\right)$ return the set of dependen Δ_{F}. If the TSGD $\left(V, E, D \cup \Delta_{F}\right)$ contains a path $\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right), \ldots,\left(v_{2 n-3}, v_{2 n-2}\right),\left(v_{2 n-1}, v_{2 n}\right)$, v_{3}, such that for the regular term $R T, F=F A(R T)$, state $e_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right), \ldots,\left(v_{2 n-1}, v_{2 n}\right)\right)$ is fined, then during the execution of Detect_Ins_TSGD1, for all $i, i=1,2,3, \ldots, n-1$, $\left(s t, p r e v_{-} a n c\left(v_{2 i}\right.\right.$ is added to $V_{-} \operatorname{set}\left(v_{2 i+1}\right)$, where $s t=$ state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2 i+2}\right)\right)$.

Proof: We prove the above lemma by induction on i. We prove that for all $i, i=1,2, \ldots, n$ $\left(\operatorname{st}, \operatorname{prev}\left(v_{2 i+1}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 i+1}\right)$, where $s t=$ state $_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2}\right.$ Basis $(i=1)$: In Step 1 of Detect_Ins_TSGD1, $\left(\right.$ init_st $\left._{F}, v_{1}\right)$ is added to V_{-}set $\left(v_{2}\right)$. Since $v_{2}=$ prev_anc $\left(v_{3}\right)=v_{1}$, and state ${ }_{F}\left(\right.$ init_st $\left.t_{F},\left(v_{3}, v_{4}\right)\right)=i n i t_{-} s t_{F}$, the lemma is true for $i=1$ (init_ prev_anc $\left.\left(v_{3}\right)\right)$ is added to $\left.V_{-} \operatorname{set}\left(v_{3}\right)\right)$.
Induction: Let us assume that the lemma is true for $i=m, 1 \leq m<n-1$. Thus, ($s t_{m}$, prev_anc $\left(v_{2}\right.$ is added to $V_{-} \operatorname{set}\left(v_{2 m+1}\right)$, where $s t_{m}=\operatorname{state}_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m-1}, v_{2 m}\right)\left(v_{2 m+1}, v_{2 m+2}\right)\right)$. show the lemma to be true for $i=m+1$. Thus, we need to show that $\left(s t_{m+1}\right.$, prev_anc $\left(v_{2 n}\right.$ is added to $V_{-} \operatorname{set}\left(v_{2 m+3}\right)$, where $s t_{m+1}=$ state $_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\left(v_{2 m+3}, v_{2 m+}\right.$ By the definition of state $e_{F}, s t_{m+1}=s t_{F}\left(s t_{m}, L\left(v_{2 m+1}, v_{2 m+2}\right)\right)$, if $v_{2 m+2}=v_{2 m+3}$ and $s t_{m+}$ $s t_{F}\left(s t_{m}, \overline{L\left(v_{2 m+1}, v_{2 m+2}\right)}\right)$, if $v_{2 m+1}=v_{2 m+3}$.
$j<k \leq n$, the sequence of edges $\left(G_{j}, \operatorname{slast}\left(t_{j}\right)\right)\left(\operatorname{sirst}\left(t_{(j+1) \bmod n}\right), G_{(j+1) \bmod n}\right), \ldots$,
$\left(s f i r s t\left(t_{k \bmod n}\right), G_{k \bmod n}\right)$ is in the path, then it must be the case that for all $j<l<k, \operatorname{arity}\left(t_{l}\right)$ Thus, by Property 1, it follows that $\operatorname{slast}\left(t_{j}\right)=\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right)=\cdots=\operatorname{sfirst}\left(t_{k \bmod n}\right)$, and all $r, s, j \leq r<s \leq k, G_{T} \neq G_{s \bmod n}$. Thus, $\left(G_{0}, \operatorname{slast}\left(t_{0}\right)\right) \operatorname{edge}\left(t_{1}\right) \cdots \operatorname{edge}\left(t_{n-1}\right)\left(s f i r s t\left(t_{0}\right), G_{0}\right)$ path in the TSG (V, E, L). Furthermore, if Δ_{F} is the set of site nodes returned by Detect_Ins_TS then for some $j=0,1, \ldots, n-1$, if sfirst $\left(t_{(j+1) \bmod n}\right) \in \operatorname{set}_{2} \cup \Delta_{F}$, then $G_{(j+1) \bmod n} \neq G_{0}$ $s_{k}=\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right)=\operatorname{slast}\left(t_{j}\right)$. If $s_{k} \in \operatorname{set}_{2} \cup \Delta_{F}$ and $G_{(j+1) \bmod n}=G_{0}$, then $\operatorname{ser}_{k}\left(G_{(j+1) \mathrm{m}}\right.$ in the queue is marked when $i n i t_{0}$ is processed. Since $i n i t_{0}$ is processed after $i n i t_{j}, \operatorname{ser}_{k}\left(G_{j}\right.$ inserted into the queue for site s_{k} before $\operatorname{ser}_{k}\left(G_{(j+1) \bmod n}\right)$ is inserted into the queue for s_{k}. T $\operatorname{ser}_{k}\left(G_{(j+1) \bmod n}\right)$ executes after $\left.\operatorname{ser}_{k}\left(G_{j}\right)\right)$, and $\operatorname{first}\left(t_{(j+1) \bmod n}\right)=G_{((j+1) \bmod n) k}$ must be serial after $\operatorname{last}\left(t_{j}\right)=G_{j k}$ at site s_{k}, which leads to a contradiction). Thus, sfirst $\left(t_{0}\right) \notin \operatorname{set}_{2} \cup \Delta_{F} . \mathrm{T}$ the path $\left(G_{0}\right.$, slast $\left.\left(t_{0}\right)\right) e d g e\left(t_{1}\right) \cdots e d g e\left(t_{n-1}\right)\left(s f i r s t\left(t_{0}\right), G_{0}\right)$ is consistent with respect to set $t_{2} \cup \Delta$

We further use Lemma 3 to show that, for $F=F A\left(R T_{2}\right)$, state s $_{F}$ (init_st t_{F}, edge $\left(t_{1}\right) \cdots$ edge $\left(t_{n}\right.$ $\left.\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right)\right)$ is an accept state. Let edge $\left(t_{1}\right) \cdots \operatorname{edge}\left(t_{n-1}\right)\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right)=\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m-1}\right.$, In order to use Lemma 3, we need to show that there exists a sequence $g_{1} \cdots g_{m-1}$ such that

- if $v_{2 i}=v_{2 i+1}$, then $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$, and
- if $v_{2 i-1}=v_{2 i+1}$, then $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$, and
$s t_{F}\left(i n i t_{-} s t_{F}, g_{1} \cdots g_{m-1}\right)$ is an accept state. We construct the sequence $g_{1} \cdots g_{m-1}$ with the ab properties as follows. For all $i=1, \ldots, n-1$, let $f_{i}=\overline{\left(\operatorname{type}\left(h d r\left(t_{i}\right)\right), \operatorname{type}\left(\operatorname{first}\left(t_{i}\right)\right)\right)}$, if arity $\left(t_{i}\right)$ else, $f_{i}=\left(\operatorname{type}\left(h d r\left(t_{i}\right)\right), \operatorname{type}\left(f \operatorname{frst}\left(t_{i}\right)\right)\right)\left(\operatorname{type}\left(h d r\left(t_{i}\right)\right)\right.$, type $\left.\left(\operatorname{last}\left(t_{i}\right)\right)\right)$. Since type $\left(t_{1}\right) \cdots$ type $\left(t_{n-1}\right.$ a string in $L($ reg_exp $)$, by the construction of $F A\left(R T_{2}\right)$, it follows that st $\left(\right.$ init_st $\left.t_{F}, f_{1} \cdots f_{n-1}\right)$ is accept state. Let $g_{1} \cdots g_{m-1}=f_{1} \cdots f_{n-1}$, such that every $g_{i} \in \Sigma_{F}$. Furthermore, from the defini of edge and f_{j}, it follows that, if for some $i=1, \ldots, m-1$, if $\left(v_{2 i-1}, v_{2 i}\right) \in e d g e\left(t_{k}\right)$ and $\operatorname{arity}\left(t_{k}\right)$ then $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$, else $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$.

In order to show that state $F\left(\right.$ init_st $\left.F,\left(v_{1}, v_{2}\right), \ldots,\left(v_{m-1}, v_{m}\right)\right)$ is an accept state, we need to s. that for all $i, i=1,2, \ldots, m-1$, if $v_{2 i}=v_{2 i+1}$, then $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$ and if $v_{2 i-1}=v_{2 i+1}$, $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$. We first show that if $v_{2 i}=v_{2 i+1}$, and $\left(v_{2 i-1}, v_{2 i}\right) \in \operatorname{edge}\left(t_{k}\right)$ for some k, $1,2, \ldots, n-1$, then $\operatorname{arity}\left(t_{k}\right)=2$. Suppose $\operatorname{arity}\left(t_{k}\right)=1$. Since $\operatorname{last}\left(t_{k}\right)$ and first $\left(t_{(k+1) \mathrm{m}}\right.$ execute at the same site, slast $\left(t_{k}\right)=v_{2 i-1}, \operatorname{sfirst}\left(t_{(k+1) \bmod n}\right)=v_{2 i+1}$, it follows that $v_{2 i-1}=v_{2}$ which leads to a contradiction. Thus, $\operatorname{arity}\left(t_{k}\right)=2$, and $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$. Also, it can be sh that if $v_{2 i-1}=v_{2 i+1}$, and $\left(v_{2 i-1}, v_{2 i}\right) \in e d g e\left(t_{k}\right)$, then $\operatorname{arity}\left(t_{k}\right)=1$. Suppose $\operatorname{arity}\left(t_{k}\right)=2$. $v_{2 i}=G_{k}$, then $v_{2 i}=v_{2 i+1}=G_{k}$, which leads to a contradiction. If $v_{2 i-1}=G_{k}$, then since last $\left(t_{k}\right)$ first $\left(t_{(k+1) \bmod n}\right)$ execute at the same site, slast $\left(t_{k}\right)=v_{2 i}$, sfirst $\left(t_{(k+1) \bmod n}\right)=v_{2 i+1}$, it follows $v_{2 i}=v_{2 i+1}$, which leads to a contradiction. Thus, $\operatorname{arity}\left(t_{k}\right)=1$, and, $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$.

Thus, by Lemma 3 , state $F_{F}\left(\right.$ init_st $_{F}$, edge $\left.\left(t_{1}\right) \cdots e d g e\left(t_{n-1}\right)\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right)\right)$ is an accept state. T by corollaries 4 and 6 , during the execution of Detect_Ins_TSG? $\left((V, E, L), G_{0}, \operatorname{slast}^{2} t_{0}\right), \operatorname{set}_{1}, \operatorname{set}_{2}, R$ sfirst $\left(t_{0}\right)$ is added to Δ, and thus sfirst $\left(t_{0}\right) \in \Delta_{F}$. However, this leads to a contradiction since showed earlier that sfirst $\left(t_{0}\right) \notin \operatorname{set}_{2} \cup \Delta_{F}$. Thus, every schedule S is correct.

Proof of Theorem 3: Suppose S is not correct. Thus, there exists a regular term $R T$ in R an instantiation I of $R T$ in S. Let G_{0} be the transaction in I such that init t_{0} is processed after init every other transaction G_{i} in I is processed. By Lemma 1 , since R is complete, there exists a reg term $R T_{2}=e_{0}:$ reg_exp and an instantiation $t_{0}: t_{1} t_{2} \cdots t_{n-1}$ of $R T_{2}$ in S such that $h d r\left(t_{0}\right)=$ Thus,

- for all $j, j=0,1, \ldots, n-1$,

1. $t_{j} \in \Sigma_{S}$ (without loss of generality, let $h d r\left(t_{j}\right)=G_{j}$), and
2. last $\left(t_{j}\right)$ and $\operatorname{first}\left(t_{(j+1) \bmod n}\right)$ execute at the same site, and last $\left(t_{j}\right)$ is serialized a $\operatorname{first}\left(t_{(j+1) \bmod n}\right)$ at the site, and

- type $\left(t_{0}\right)=\epsilon_{0}$ and type $\left(t_{1}\right) \cdots$ type $\left(t_{n-1}\right)$ is a string in $L($ reg_exp $)$.

When $i n i t_{0}$ is processed, the procedure Detect_Ins_TSG? is invoked with arguments that include $\operatorname{TSG}(V, E, L), G_{0}, \operatorname{slast}\left(t_{0}\right)$, set $_{1}$, set $_{2}$ and $R T_{2}$ since type $\left(G_{0}\right)=h d r\left(e_{0}\right)$ and type $\left(\operatorname{last}\left(t_{0}\right)\right)=$ last $($ Also, sfirst $\left(t_{0}\right) \in \operatorname{set}_{1}$ (if arity $\left(t_{0}\right)=1$, then since $\operatorname{sfirst}\left(t_{0}\right)=\operatorname{slast}\left(t_{0}\right)$, sfirst $\left(t_{0}\right) \in \operatorname{set}_{1}$ $\operatorname{binary}\left(t_{0}\right)$, then since $\operatorname{sfirst}\left(t_{0}\right) \neq \operatorname{slast}\left(t_{0}\right)$, and type $\left(\operatorname{first}\left(t_{0}\right)\right)=\operatorname{first}\left(\epsilon_{0}\right)$, sfirst $\left(t_{0}\right) \in \operatorname{se}$ Furthermore, all the edges belonging to G_{0}, \ldots, G_{n-1} are in the TSG when Detect_Ins_TSG? is invo In order to show this, we first show that G_{j} 's edges cannot be deleted from the TSG before $G_{(j+1) \text { mo }}$ edges are deleted from the TSG, for all $j, j=1,2, \ldots, n-1$. Suppose, for some $j, j=1,2, \ldots, n-1$, edges are deleted from the TSG before $G_{(j+1) \bmod n}$'s edges are deleted from the TSG. Let $\operatorname{slast}\left(t_{j}\right)=$ Since $G_{j k}$ is serialized after $G_{((j+1) \bmod n) k}$, at site $s_{k}, \operatorname{ser}_{k}\left(G_{(j+1) \bmod n}\right)$ executes before $\operatorname{ser}_{k}\left(G_{j}\right)$. T since $G_{(j+1) \bmod n}$'s edges are inserted into the TSG before $\operatorname{ser}_{k}\left(G_{(j+1) \bmod n}\right)$ executes, while G_{j} 's ed are deleted after $\operatorname{ser}_{k}\left(G_{j}\right)$ executes, $G_{(j+1) \bmod n}$'s edges must be in the TSG when G_{j} 's edges are dele (since we have assumed that G_{j} 's edges are deleted before $G_{(j+1) \bmod n}$'s edges are deleted). Howe this leads to a contradiction, since edges belonging to G_{j} and $G_{(j+1) \bmod n}$ are deleted together w fin ${ }_{l}$ for some transaction G_{l} is processed (due to the sequence of edges between G_{j} and $G_{(j+1) \mathrm{m}}$ $\left(G_{j}, s_{k}\right)\left(s_{k}, G_{(j+1) \bmod n}\right)$, if for every transaction $G_{k} \in V$ such that there is a sequence of edges f G_{j} to G_{k} in the TSG, val ${ }_{k}$ has been processed, then for every transaction $G_{k} \in V$ such that there sequence of edges from $G_{(j+1) \bmod n}$ to G_{k}, val l_{k} must also have been processed). Thus, G_{1} 's edges not deleted from the TSG before G_{2} 's edges are deleted, ..., G_{n-1} 's edges are not deleted from TSG before G_{0} 's edges are deleted. By transitivity and since G_{0} 's edges are deleted only after init ${ }_{0}$ been processed, when Detect_Ins_TSG? is invoked during the processing of init_{0}, the TSG (V, E contains all the edges belonging to transactions $G_{0}, G_{1}, \ldots, G_{n-1}$.

We now show that $\left(G_{0}\right.$, slast $\left.\left(t_{0}\right)\right)$ edge $\left(t_{1}\right) \cdots e d g e\left(t_{n-1}\right)\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right)$ is a path in the TSG (V, We begin by showing that any two consecutive edges in the path have a common node. Consecu edges in the path could be one of the following:

- $\left(\operatorname{sfirst}\left(G_{j}\right), G_{j}\right)\left(G_{j}, \operatorname{slast}\left(G_{j}\right)\right), j=1,2, \ldots, n-1$, where $\operatorname{arity}\left(t_{j}\right)=2\left(G_{j}\right.$ is the common no
- $\left(G_{j}, \operatorname{slast}\left(t_{j}\right)\right)\left(\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right), G_{(j+1) \bmod n}\right), j=0,1, \ldots, n-1$, where $\operatorname{arity}\left(t_{j}\right)=2$ or j $\operatorname{arity}\left(t_{(j+1) \bmod n}\right)=1$ or 2 (since for all $j, j=0,1, \ldots, n-1, \operatorname{last}\left(t_{j}\right)$ and first $\left(t_{(j+1) \mathrm{m}}\right.$ execute at the same site, $\operatorname{slast}\left(t_{j}\right)=\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right)$ is the common node).
- $\left(\operatorname{sfirst}\left(t_{j}\right), G_{j}\right)\left(\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right), G_{(j+1) \bmod n}\right), j=1,2, \ldots, n-1$, where $\operatorname{arity}\left(t_{j}\right)=1$, ar $\left.t_{(j+1) \bmod n}\right)=1$ or 2 (since $\operatorname{arity}\left(t_{j}\right)=1$ implies that $\operatorname{sfirst}\left(t_{j}\right)=\operatorname{slast}\left(t_{j}\right)$, and $\operatorname{slast}\left(t_{j}\right.$ $\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right)$, it follows that $s \operatorname{first}\left(t_{j}\right)=\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right)$ is the common node).
or $S t_{j} \cdot v=$ prev_anc $\left(v_{2 m+1}\right)$, or due to Step 1). Thus, $S t_{k} \cdot v=v_{2 m+1}, S t_{k} \cdot c u r_{-} s t=s t_{m}$ and in s $S t_{k}, \operatorname{head}\left(S t_{k} \cdot a n c\left(S t_{k} \cdot v\right)\right)=\left(p r e v_{-} a n c\left(v_{2 m+1}\right), v_{j}\right)$. Furthermore, it follows from Lemma 8 that a a finite number of steps, Detect_Ins_TSG2 is in a state $S t_{k}^{\prime}$ such that $S t_{k}^{\prime} \equiv S t_{k}$ and no further forn transitions can be made from $S t_{k}^{\prime}$. Thus, in state $S t_{k}^{\prime}$,
- Since prev_anc $\left(v_{2 m+1}\right) \neq v_{2 m+2}$ and $v_{j} \neq v_{2 m+2}, \operatorname{head}\left(S t_{k}^{\prime} . a n c\left(S t_{k}^{\prime} \cdot v\right)\right)[1] \neq v_{2 m+2}$, $\operatorname{head}\left(S t_{k}^{\prime} \cdot \operatorname{anc}\left(S t_{k}^{\prime} \cdot v\right)\right)[2] \neq v_{2 m+2}$,
- Since state ${ }_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\left(v_{2 m+3}, v_{2 m+4}\right)\right)$ is defined, if $v_{2 m+2}=v_{2 n}$ then $s t_{m+1}=s t_{F}\left(S t_{k}^{\prime} \cdot c u r_{-} s t, L\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)\right)$ is defined, else if $v_{2 m+1}=v_{2 m+3}$, then $s t_{m+}$ $s t_{F}\left(S t_{k}^{\prime} . c u r_{-} s t, \overline{L\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)}\right)$ is defined.
- Since $S t_{k}^{\prime} . \Delta \subseteq \Delta_{F}$, and $\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)$ is consistent with $\operatorname{set}_{2} \cup \Delta_{F},\left(v_{3}, v_{4}\right) \cdots$ $\left(v_{2 m+1}, v_{2 m+2}\right)$ is consistent with $\operatorname{set}_{2} \cup S t_{k}^{\prime} . \Delta$; thus, if $S t_{k}^{\prime} . v \in\left(\operatorname{set}_{2} \cup S t_{k}^{\prime} . \Delta\right)$, then $v_{2 m+2} \neq$

However, since in state $S t_{k}^{\prime}$, no forward transition can be made due to edge ($S t_{k}^{\prime} \cdot v, v_{2 m+2}$), it n be the case that

- if $v_{2 m+2}=v_{2 m+3}$, then either

1. $S t_{k}^{\prime} \cdot V _\operatorname{set}\left(v_{2 m+2}\right)$ already contains $\left(s t_{m+1},\left(S t_{k}^{\prime} \cdot v, S t_{k}^{\prime} \cdot v\right)\right)$. Thus, since $S t_{k}^{\prime} \cdot v=v_{2 n}$ $v_{2 m+1} \neq v_{2 m+4}$, prev_anc $\left(v_{2 m+3}\right)=v_{2 m+1},\left(s t_{m+1},\left(\right.\right.$ prev_anc $\left.\left.\left(v_{2 m+3}\right), v_{j}^{\prime}\right)\right)$ is adde $V _\operatorname{set}\left(v_{2 m+3}\right)$ during the execution of Detect_Ins_TSG2, $v_{j}^{\prime} \neq v_{2 m+4}$.
2. $S t_{k}^{\prime} \cdot V _\operatorname{set}\left(v_{2 m+2}\right)$ already contains $\left(s t_{m+1},\left(S t_{k}^{\prime} \cdot v, u_{2}\right)\right)$ and $\left(s t_{m+1},\left(S t_{k}^{\prime} \cdot v, u_{3}\right)\right), u_{2} \neq$ Thus, since $S t_{k}^{\prime} \cdot v=v_{2 m+1}$, either $u_{2} \neq v_{2 m+4}$ or $u_{3} \neq v_{2 m+4}\left(\right.$ since $\left.u_{2} \neq u_{3}\right)$, $\operatorname{prev} v_{-} \operatorname{anc}\left(v_{2 m+3}\right)=v_{2 m+1},\left(s t_{m+1},\left(\operatorname{prev} v_{-} a n c\left(v_{2 m+3}\right), v_{j}^{\prime}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m+3}\right)$ du the execution of Detect_Ins_TSG2, $v_{j}^{\prime} \neq v_{2 m+4}$.

- if $v_{2 m+1}=v_{2 m+3}$, then either

1. $S t_{k}^{\prime} \cdot V _\operatorname{set}\left(S t_{k}^{\prime} \cdot v\right)$ already contains $\left(s t_{m+1},\left(\operatorname{prev} a n c\left(v_{2 m+1}\right), v_{2 m+2}\right)\right)$. Thus, since $S t_{k}^{\prime}$. $v_{2 m+1}, v_{2 m+2} \neq v_{2 m+4}$, prev_anc $\left(v_{2 m+3}\right)=p r e v_{-} a n c\left(v_{2 m+1}\right),\left(s t_{m+1},\left(\right.\right.$ prev_anc $\left(v_{2 m+3}\right)$, is added to $V _\operatorname{set}\left(v_{2 m+3}\right)$ during the execution of Detect_Ins_TSG2, $v_{j}^{\prime} \neq v_{2 m+4}$.
2. $S t_{k}^{\prime} \cdot V _\operatorname{set}\left(S t_{k}^{\prime} \cdot v\right)$ already contains $\left(s t_{m+1},\left(\operatorname{prev} a n c\left(v_{2 m+1}\right), u_{2}\right)\right)$ and $\left(s t_{m+1},\left(\right.\right.$ prev_anc $\left.\left.\left(v_{2 m+1}\right), u_{3}\right)\right), u_{2} \neq u_{3}$. Thus, since $S t_{k}^{\prime} \cdot v=v_{2 m+1}$, either $u_{2} \neq v_{2 m+}$, $u_{3} \neq v_{2 m+4}\left(\right.$ since $\left.u_{2} \neq u_{3}\right)$, prev_anc $\left(v_{2 m+3}\right)=$ prev_anc $\left(v_{2 m+1}\right),\left(s t_{m+1},\left(\right.\right.$ prev_anc $\left(v_{2 m}\right.$ $\left.v_{j}^{\prime}\right)$) is added to $V_{-} \operatorname{set}\left(v_{2 m+3}\right)$ during the execution of Detect_Ins_TSG2, $v_{j}^{\prime} \neq v_{2 m+4}$.

Corollary 6: Let Detect_Ins_TSG2 $\left((V, E, L), v_{1}, v_{2}\right.$, set $_{1}$, set $\left._{2}, R T\right)$ return the set of site nc Δ_{F}. If the TSG (V, E, L) contains a path $\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}, v_{1}\right), v_{2}=v_{3}$, consis with $s e t_{2} \cup \Delta_{F}$, such that for the regular term $R T, F=F A(R T)$, st $=$ state $_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right)$ $\left.\cdot\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}, v_{1}\right)\right)$ is an accept state and $v_{2 n+1} \in \operatorname{set}_{1}$, then during the execution of tect_Ins_TSG2, $v_{2 n+1}$ is added to Δ.

Proof: By Lemma $9,\left(s t,\left(\right.\right.$ prev_anc $\left.\left.\left(v_{2 n+1}\right), v_{j}\right)\right)$ is added to $V _\operatorname{set}\left(v_{2 n+1}\right)$, where $v_{j} \neq v_{1}$. S prev_anc $\left(v_{2 n+1}\right) \neq v_{1}$ and $v_{j} \neq v_{1}$, Detect_Ins_TSG2 makes a forward state transition when $(s t,(p$ $\left.\left(v_{2 n+1}\right), v_{j}\right)$) is added to $V_{-} \operatorname{set}\left(v_{2 n+1}\right)$. However, just before $\left(s t,\left(\operatorname{prev} a n c\left(v_{2 n+1}\right), v_{j}\right)\right)$ is added $V_{-} \operatorname{set}\left(v_{2 n+1}\right)$, since st is an accept state, $\operatorname{prev}_{-} \operatorname{anc}\left(v_{2 n+1}\right) \neq v_{1}, v_{j} \neq v_{1}$ and $v_{2 n+1} \in \operatorname{set}_{1}, v_{2 n+}$ added to Δ.

Corollary 5: Procedure Detect_Ins_TSG2 terminates in $O\left(n_{G}^{2} m n_{S}\right)$ steps.
Proof: Detect_Ins_TSG2 can be shown to terminate as a result of Lemma 8 using a similar argun as in Corollary 3.

The number of steps Detect_Ins_TSG2 terminates in is equal to the product of the number of ti Detect_Ins_TSG2 checks if an edge satisfies the conditions in Step 2 and the number of steps requ to check if an edge satisfies the conditions in Step 2. Every time a transaction node is visited, the ditions in Step 2 need to be checked, on an average, for v_{S} edges (the average number of sites a gla transaction executes at is v_{S}), while every time a site node is visited, the conditions in Step 2 nee be checked for at most n_{G} edges (since the number of transaction nodes in the TSG is at most Furthermore, every transaction node can be visited at most $2 v_{S} n_{S}$ times, while every site node car visited at most $2 n_{G} n_{S}$ times (every node v in the TSG can be visited in a state st of F at most twice every node w such that edge (v, w) is in the TSG, and F has at most n_{S} states). Since there are m nodes and at most n_{G} transaction nodes in the TSG, the number of times Detect_Ins_TSG2 checks i edge satisfies the conditions in Step 2 is $2 n_{G}^{2} m n_{S}+2 n_{G} v_{S}^{2} n_{S}$. Since each of the conditions in Step 2 be checked in constant time and $v_{S} \ll n_{G}, v_{S}<m$, Detect_Ins_TSG2 terminates in $O\left(n_{G}^{2} m n_{S}\right)$ steps

In order to show that Detect_Ins_TSG2 traverses edges in the TSG in a manner that ensure detects instantiations of regular terms, we define the following.

Definition 13: Consider a TSG/TSGD containing a path $\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right), v_{2}=$ For all $i=1,2, \ldots, n-1$, prev_anc($\left.v_{2 i+1}\right)$ is defined as follows.

$$
\text { prev_anc }\left(v_{2 i+1}\right)= \begin{cases}\text { prev_anc }\left(v_{2 i-1}\right) & \text { if } v_{2 i-1}=v_{2 i+1} \\ v_{2 i-1} & \text { if } v_{2 i}=v_{2 i+1}\end{cases}
$$

Note that, by the definition of path, it follows that for all $i, i=1,2, \ldots, n-1, v_{2 i+2} \neq$ prev_anc $^{2}\left(v_{2}\right.$ and dependency $\left(\right.$ prev_anc $\left.\left(v_{2 i+1}\right), v_{2 i+1}\right) \rightarrow\left(v_{2 i+1}, v_{2 i+2}\right)$ does not belong to the TSGD.

Lemma 9: Let Detect_Ins_TSG2 $\left(T S G, v_{1}, v_{2}\right.$, set $_{1}$, set $\left._{2}, R T\right)$. return the set of nodes Δ_{F}. If $\operatorname{TSG}(V, E, L)$ contains a path $\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right), \ldots,\left(v_{2 n-3}, v_{2 n-2}\right),\left(v_{2 n-1}, v_{2 n}\right), v_{2}=v_{3}$, consistent respect to set $_{2} \cup \Delta_{F}$, such that for the regular term $R T, F=F A(R T)$, state $e_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right)$, .,$\left.\left(v_{2 n-1}, v_{2 n}\right)\right)$ is defined, then during the execution of Detect_Ins_TSG2, for all $i, i=1,2,3, \ldots, n$ there exists a node $v_{j}, v_{j} \neq v_{2 i+2},\left(s t,\left(p r e v_{-} \operatorname{anc}\left(v_{2 i+1}\right), v_{j}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 i+1}\right)$, where s state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2 i+2}\right)\right)$.

Proof: We prove the above lemma by induction on i. We prove that for all $i, i=1,2, \ldots, n$ there exists a $v_{j} \neq v_{2 i+2}$, such that $\left(s t,\left(\operatorname{prev} v_{-} \operatorname{anc}\left(v_{2 i+1}\right), v_{j}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 i+1}\right)$, where state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2 i+2}\right)\right)$.
Basis $(i=1)$: In Step 1 of Detect_Ins_TSG2, (init_st $\left._{F},\left(v_{1}, v_{1}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2}\right)$. Since $v_{2}=$ prev_anc $\left(v_{3}\right)=v_{1}, v_{1} \neq v_{4}$, and state $F_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right)\right)=$ init_st $_{F}$, the lemma is true for i $\left(\left(\right.\right.$ init_st $F_{F},\left(\right.$ prev_anc $\left.\left.\left(v_{3}\right), v_{j}\right)\right)$ is added to $\left.V_{-} \operatorname{set}\left(v_{3}\right), v_{j} \neq v_{4}\right)$.
Induction: Let us assume that the lemma is true for $i=m, 1 \leq m<n-1$. Thus, $\left(s t_{m},\left(\right.\right.$ prev_anc $\left.\left.\left(v_{2 m+1}\right), v_{j}\right)\right)$ is added to $V_{_} \operatorname{set}\left(v_{2 m+1}\right)$, where $v_{j} \neq v_{2 m+2}, s t_{m}=s t a t e_{F}\left(\right.$ init_st $t_{F},\left(v_{3}\right.$ $\left.\cdots\left(v_{2 m-1}, v_{2 m}\right)\left(v_{2 m+1}, v_{2 m+2}\right)\right)$. We show the lemma to be true for $i=m+1$. Thus, we I to show that $\left(s t_{m+1},\left(\operatorname{prev} _a n c\left(v_{2 m+3}\right), v_{j}^{\prime}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m+3}\right)$, where $v_{j}^{\prime} \neq v_{2 m+4}, s t_{m+}$ state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\left(v_{2 m+3}, v_{2 m+4}\right)\right)$. By the definition of state ${ }_{F}$, st $t_{m+1}=s t_{F}$ $\left.L\left(v_{2 m+1}, v_{2 m+2}\right)\right)$, if $v_{2 m+2}=v_{2 m+3}$ and $s t_{m+1}=s t_{F}\left(s t_{m}, \overline{L\left(v_{2 m+1}, v_{2 m+2}\right)}\right)$, if $v_{2 m+1}=v_{2 m+3}$.

Corollary 4: Let Detect_Ins_TSG1 $\left((V, E, L), v_{1}, v_{2}, \operatorname{set}_{1}, \operatorname{set}_{2}, R T\right)$. return the set of site nc Δ_{F}. If the TSG (V, E, L) contains a path $\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}, v_{1}\right), v_{2}=v_{3}$, consis with $\operatorname{set}_{2} \cup \Delta_{F}$, such that for the regular term $R T, F=F A(R T)$, st $=$ state $_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right)$ $\left.\cdots\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}, v_{1}\right)\right)$ is an accept state and $v_{2 n+1} \in \operatorname{set}_{1}$, then during the execution of tect_Ins_TSG1, $v_{2 n+1}$ is added to Δ.

Proof: By Lemma $7,\left(s t, v_{j}\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 n+1}\right)$, where $v_{j} \neq \operatorname{foll}\left(v_{2 n+1}\right)$. Since foll $\left(v_{2 n+1}\right.$ $v_{1}, v_{j} \neq v_{1}$ and Detect_Ins_TSG1 makes a forward state transition when $\left(s t, v_{j}\right)$ is added to V _set $\left(v_{2 n}\right.$ However, just before $\left(s t, v_{j}\right)$ is added to $V_{_} \operatorname{set}\left(v_{2 n+1}\right)$, since $s t$ is an accept state, $v_{j} \neq v_{1}$ $v_{2 n+1} \in \operatorname{set}_{1}, v_{2 n+1}$ is added to $\Delta . \square$

We now show that Detect_Ins_TSG2 terminates in $O\left(n_{G}^{2} m v_{S}\right)$ steps, for which we need to p1 the following lemma.

Lemma 8: If during its execution, Detect_Ins_TSG2 is in state $S t_{k}$, then after a finite numbe steps, it enters a state $S t_{k}^{\prime} \equiv S t_{k}$ such that no forward transitions from $S t_{k}^{\prime}$ are possible.

Proof: We prove the lemma by induction on num, the number of elements in $\left\{\left(s t, v_{1}, v_{2}\right.\right.$, $(s t$ is a state of $\left.F) \wedge\left(v_{1}, v_{2}, v_{3} \in V\right) \wedge\left(\left(s t,\left(v_{1}, v_{2}\right)\right) \notin V _\operatorname{set}\left(v_{3}\right)\right)\right\}$ in state $S t_{k}$.
Basis $(n u m=0)$: If $n u m=0$ in state $S t_{k}$, then, in state $S t_{k}$, for every edge $\left(S t_{k} \cdot v, u\right)$, if s $s t_{F}\left(S t_{k} \cdot c^{c u r _s t,} L\left(S t_{k} \cdot v, u\right)\right)$ is defined, then $\left(s t,\left(S t_{k} \cdot v, S t_{k} \cdot v\right)\right) \in S t_{k} \cdot V _\operatorname{set}(u)$ (alternatively, if s $s t_{F}\left(S t_{k} \cdot c u r_{-} s t, \overline{L\left(S t_{k} \cdot v, u\right)}\right)$ is defined, then $\left.\left(s t^{\prime},\left(\operatorname{head}\left(S t_{k} \cdot a n c\left(S t_{k} \cdot v\right)\right)[1], u\right)\right) \in S t_{k} \cdot V_{_} \operatorname{set}\left(S t_{k} \cdot v\right)\right)$. no forward transition can be made from state $S t_{k}$ (since every edge ($S t_{k} \cdot v, u$) satisfies the third co tion in Step 2).
Induction: Let us assume the lemma is true for $n u m \leq m, m \geq 0$. We show that the lemma is if num $\leq m+1$ in state $S t_{k}$. We show that after a finite number of moves, Detect_Ins_TSG2 is state $S t_{k}^{\prime}$ such that $S t_{k}^{\prime} \equiv S t_{k}$ and no forward transitions can be made from state $S t_{k}^{\prime}$.

Let $S t_{k}^{\prime \prime}$ be any state equivalent to $S t_{k}$ such that in $S t_{k}^{\prime \prime}$, num $\leq m+1$. If Detect_Ins_T makes the forward transition $S t_{k}^{\prime \prime} \rightarrow S t_{l}$ due to some edge $\left(S t_{k}^{\prime \prime} \cdot v, u\right)$ and $L\left(S t_{k}^{\prime \prime} \cdot v, u\right)$, then it m be the case that $S t_{l} \cdot v=u, S t_{l} \cdot c u r_{-} s t=s t_{F}\left(S t_{k}^{\prime \prime} \cdot c u r_{-} s t, L\left(S t_{k}^{\prime \prime} \cdot v, u\right)\right)$. Furthermore, in state $\left(S t_{l} \cdot c u r_{-} s t,\left(S t_{k}^{\prime \prime} \cdot v, S t_{k}^{\prime \prime} \cdot v\right)\right) \notin S t_{k}^{\prime \prime} \cdot V _\operatorname{set}(u)$ and in state $S t_{l},\left(S t_{l} \cdot c u r_{-} s t,\left(S t_{k}^{\prime \prime} \cdot v, S t_{k}^{\prime \prime} \cdot v\right)\right) \in S t_{l} \cdot V _s e$ (since the transition $S t_{k}^{\prime \prime} \rightarrow S t_{l}$ causes $\left(S t_{l} . c u r_{-} s t,\left(S t_{k}^{\prime \prime} \cdot v, S t_{k}^{\prime \prime} \cdot v\right)\right)$ to be added to $\left.V _\operatorname{set}(u)\right)$. Note t since before the transition is made, $\left(S t_{l} \cdot \operatorname{cur}_{-s} s t,\left(S t_{k}^{\prime \prime} \cdot v, S t_{k}^{\prime \prime} \cdot v\right)\right)$ does not belong to $V_{_} \operatorname{set}(u)$ and nur $m+1$ in $S t_{k}^{\prime \prime}$, after the transition $S t_{k}^{\prime \prime} \rightarrow S t_{l}$ is made, num $\leq m$ in $S t_{l}$. By IH, after a finite num of steps, Detect_Ins_TSG2 enters a state $S t_{l}^{\prime} \equiv S t_{l}$, such that no forward transitions are possible f $S t_{l}^{\prime}$. Thus, Detect_Ins_TSG2 makes the reverse transition $S t_{l}^{\prime} \rightarrow S t_{k}^{\prime \prime \prime}$ after a finite number of st where $S t_{k}^{\prime \prime \prime} \equiv S t_{k}^{\prime \prime} \equiv S t_{k}$. Furthermore, in state $S t_{k}^{\prime \prime \prime},\left(S t_{l} . c u r_{-} s t,\left(S t_{k}^{\prime \prime} \cdot v, S t_{k}^{\prime \prime} \cdot v\right)\right) \in S t_{k}^{\prime \prime \prime} \cdot V _$set (u) $S t_{k}^{\prime \prime \prime} \cdot v=S t_{k}^{\prime \prime} \cdot v$, and thus, no forward transition can be made from state $S t_{k}^{\prime \prime \prime}$ due to edge ($S t_{k}^{\prime \prime \prime} \cdot v, u$) $L\left(S t_{k}^{\prime \prime \prime} \cdot v, u\right)$ (edge $\left(S t_{k}^{\prime \prime \prime} \cdot v, u\right)$ does not satisfy the condition in Step $3(\mathrm{~b})$). Using a similar argumen can be shown that if Detect_Ins_TSG2 makes a forward transition $S t_{k}^{\prime \prime} \rightarrow S t_{l}$ due to edge ($S t_{k}^{\prime \prime} \cdot v, u$) $\overline{L\left(S t_{k}^{\prime \prime} \cdot v, u\right)}$, then in a finite number of steps, Detect_Ins_TSG2 enters a state $S t_{k}^{\prime \prime \prime} \equiv S t_{k}^{\prime \prime}$ such that forward transitions are possible from $S t_{k}^{\prime \prime \prime}$ due to edge $\left(S t_{k}^{\prime \prime \prime} \cdot v, u\right)$ and $\overline{L\left(S t_{k}^{\prime \prime \prime} \cdot v, u\right)}$.

Thus, once a forward transition is made by Detect_Ins_TSG2 due to an edge e and $L(\epsilon) / \overline{L(\epsilon)} \mathrm{f}$ a state equivalent to $S t_{k}$, then no further forward transitions can be made by Detect_Ins_TSG2 to e and $L(e) / \overline{L(e)}$ from any state equivalent to $S t_{k}$. Furthermore, everytime a forward transitio made from a state $S t_{k}^{\prime \prime}$ that is equivalent to $S t_{k}$ such that $n u m \leq m+1$ in $S t_{k}^{\prime \prime}$, a reverse transi is made by Detect_Ins_TSG2 to a state $S t_{k}^{\prime \prime \prime}$ equivalent to $S t_{k}$ such that $n u m \leq m+1$ in $S t_{k}^{\prime \prime \prime}$. S there are a finite number of edges incident on each node and in state $S t_{k}, n u m \leq m+1$, eventu:

1, there exists a node $v_{j}, v_{j} \neq \operatorname{foll}\left(v_{2 i+1}\right)$, such that $\left(s t, v_{j}\right)$ is added to $V _\operatorname{set}\left(v_{2 i+1}\right)$, where s state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2 i+2}\right)\right)$.

Proof: We prove the above lemma by induction on i. We prove that for all $i, i=1,2, \ldots, n$ there exists a $v_{j} \neq$ foll $\left(v_{2 i+1}\right)$, such that $\left(s t, v_{j}\right)$ is added to $V_{_} \operatorname{set}\left(v_{2 i+1}\right)$, where st $=$ state ${ }_{F}$ (init_ $\left.\left(v_{3}, v_{4}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2 i+2}\right)\right)$.
Basis $(i=1)$: In Step 1 of Detect_Ins_TSG1, $\left(\right.$ init_st $\left._{F}, v_{1}\right)$ is added to V_{-}set $\left(v_{2}\right)$. Since $v_{2}=$ $v_{1} \neq$ foll $\left(v_{3}\right)$, and state $\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right)\right)=$ init_st $_{F}$, the lemma is true for $i=1\left(\left(\right.\right.$ init_st $_{F}, v_{3}$ added to $\left.V_{-} \operatorname{set}\left(v_{3}\right), v_{j} \neq f o l l\left(v_{3}\right)\right)$.
Induction: Let us assume that the lemma is true for $i=m, 1 \leq m<n-1$. Thus, $\left(s t_{m}, v_{j}\right)$ is ad to $V_{_} \operatorname{set}\left(v_{2 m+1}\right)$, where $v_{j} \neq$ foll $\left(v_{2 m+1}\right)$, st $t_{m}=\operatorname{state}_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\right)$. We s. the lemma to be true for $i=m+1$. Thus, we need to show that $\left(s t_{m+1}, v_{j}^{\prime}\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m}\right.$ where $v_{j}^{\prime} \neq$ foll $\left(v_{2 m+3}\right)$, st $t_{m+1}=$ state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+3}, v_{2 m+4}\right)\right)$. By the definition $s t a t e_{F}, s t_{m+1}=s t_{F}\left(s t_{m}, L\left(v_{2 m+1}, v_{2 m+2}\right)\right)$, if $v_{2 m+2}=v_{2 m+3}$ and $s t_{m+1}=s t_{F}\left(s t_{m}, \overline{L\left(v_{2 m+1}, v_{2 m+}\right.}\right.$ if $v_{2 m+1}=v_{2 m+3}$.

Let $S t_{k}$ be the resulting state of Detect_Ins_TSG1 after $\left(s t_{m}, v_{j}\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m+1}\right)$ state $S t_{k}$ results either due to the forward transition $S t_{j} \rightarrow S t_{k}$, either $S t_{j} \cdot v=v_{2 m+1}$ or $S t_{j} \cdot v=v_{j}$ due to Step 1). Thus, $S t_{k} \cdot v=v_{2 m+1}, S t_{k} \cdot c u r_{-} s t=s t_{m}$ and in state $S t_{k}, \operatorname{head}\left(S t_{k} \cdot a n c\left(S t_{k} \cdot v\right)\right)=$ Furthermore, it follows from Lemma 6 that after a finite number of steps, Detect_Ins_TSG1 is in a s $S t_{k}^{\prime}$ such that $S t_{k}^{\prime} \equiv S t_{k}$ and no further forward transitions can be made from $S t_{k}^{\prime}$. Thus, in state

- Since state $\boldsymbol{e}_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\left(v_{2 m+3}, v_{2 m+4}\right)$ is defined, if $v_{2 m+2}=v_{2 m+3}$, t $s t_{m+1}=s t_{F}\left(S t_{k}^{\prime} \cdot c u r_{-} s t, L\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)\right)$ is defined, else if $v_{2 m+1}=v_{2 m+3}$, then $s t_{m+1}$ $s t_{F}\left(S t_{k}^{\prime} . c u r_{-} s t, \bar{L}\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)\right)$ is defined.
- Since $S t_{k}^{\prime} . \Delta \subseteq \Delta_{F}$, and $\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)$ is consistent with $\operatorname{set}_{2} \cup \Delta_{F},\left(v_{3}, v_{4}\right) \cdots$ $\left(v_{2 m+1}, v_{2 m+2}\right)$ is consistent with $\operatorname{set}_{2} \cup S t_{k}^{\prime} . \Delta$; thus, if $S t_{k}^{\prime} \cdot v \in\left(\operatorname{set}_{2} \cup S t_{k}^{\prime} . \Delta\right)$, then $v_{2 m+2} \neq$

However, since in state $S t_{k}^{\prime}$, no forward transition can be made due to edge ($S t_{k}^{\prime} \cdot v, v_{2 m+2}$), it n be the case that

- if $v_{2 m+2}=v_{2 m+3}$, then foll $\left(v_{2 m+1}\right)=v_{2 m+2}$ and since $v_{j} \neq$ foll $\left(v_{2 m+1}\right)$ (by the definitio path $), h e a d\left(S t_{k}^{\prime} \cdot a n c\left(S t_{k}^{\prime} \cdot v\right)\right) \neq v_{2 m+2}$, and thus, either

1. $S t_{k}^{\prime} \cdot V_{-} \operatorname{set}\left(v_{2 m+2}\right)$ already contains $\left(s t_{m+1}, S t_{k}^{\prime} \cdot v\right)$. Thus, since $S t_{k}^{\prime} \cdot v=v_{2 m+1}, v_{2 m+}$ foll $\left(v_{2 m+3}\right),\left(s t_{m+1}, v_{j}^{\prime}\right)$ is added to $V _\operatorname{set}\left(v_{2 m+3}\right)$ during the execution of Detect_Ins_TS $v_{j}^{\prime} \neq \operatorname{foll}\left(v_{2 m+3}\right)$.
2. $S t_{k}^{\prime} \cdot V_{\operatorname{set}}\left(v_{2 m+2}\right)$ already contains $\left(s t_{m+1}, u_{2}\right)$ and $\left(s t_{m+1}, u_{3}\right), u_{2} \neq u_{3}$. Thus, since ei $u_{2} \neq \operatorname{foll}\left(v_{2 m+3}\right)$ or $u_{3} \neq \operatorname{foll}\left(v_{2 m+3}\right)$ (since $\left.u_{2} \neq u_{3}\right),\left(s t_{m+1}, v_{j}^{\prime}\right)$ is added to $V _\operatorname{set}\left(v_{2 m}\right.$ during the execution of Detect_Ins_TSG1, $v_{j}^{\prime} \neq \operatorname{foll}\left(v_{2 m+3}\right)$.

- if $v_{2 m+1}=v_{2 m+3}$, then either

1. $S t_{k}^{\prime} \cdot V_{_} \operatorname{set}\left(S t_{k}^{\prime} \cdot v\right)$ already contains $\left(s t_{m+1}, v_{j}\right)$. Thus, since $S t_{k}^{\prime} \cdot v=v_{2 m+1}$, foll $\left(v_{2 m+1}\right.$ foll $\left(v_{2 m+3}\right), v_{j} \neq \operatorname{foll}\left(v_{2 m+1}\right),\left(s t_{m+1}, v_{j}^{\prime}\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m+3}\right)$ during the executio Detect_Ins_TSG1, $v_{j}^{\prime} \neq \operatorname{foll}\left(v_{2 m+3}\right)$.
2. $S t_{k}^{\prime} \cdot V _\operatorname{set}\left(S t_{k}^{\prime} \cdot v\right)$ already contains $\left(s t_{m+1}, u_{2}\right)$ and $\left(s t_{m+1}, u_{3}\right), u_{2} \neq u_{3}$. Thus, since ei $u_{2} \neq \operatorname{foll}\left(v_{2 m+3}\right)$ or $u_{3} \neq$ foll $\left(v_{2 m+3}\right)$ (since $\left.u_{2} \neq u_{3}\right),\left(s t_{m+1}, v_{j}^{\prime}\right)$ is added to $V _\operatorname{set}\left(v_{2 m}\right.$ during the execution of Detect_Ins_TSG1, $v_{j}^{\prime} \neq$ foll $\left(v_{2 m+3}\right)$.

Appendix -C- : TSG Schemes

In this appendix, we prove Theorem 3. We begin by showing that Detect_Ins_TSG1 and tect_Ins_TSG2 detect instantiations of regular terms in S. States $S t_{k}$ between the execution of any steps of Detect_Ins_TSG1 and Detect_Ins_TSG2 are as defined earlier for Detect_Ins_Opt.

Lemma 6: If during its execution, Detect_Ins_TSG1 is in state $S t_{k}$, then after a finite numbe steps, it enters a state $S t_{k}^{\prime} \equiv S t_{k}$ such that no forward transitions from $S t_{k}^{\prime}$ are possible.

Proof: Similar to proof of Lemma 2.

Corollary 3: Procedure Detect_Ins_TSG1 terminates in $O\left(n_{G} m n_{S}\right)$ steps.
Proof: We first show that Detect_Ins_TSG1 terminates in a finite number of steps. Let $S t_{1}$ der the state immediately after the execution of Step 1 of algorithm Detect_Ins_TSG1. By Lemm: after a finite number of steps, Detect_Ins_TSG1 is in a state $S t_{1}^{\prime} \equiv S t_{1}$ such that no further fork transitions can be made from $S t_{1}^{\prime}$. Detect_Ins_TSG1, thus executes Step 4 and since, in state head $\left(S t_{1}^{\prime} . F _l i s t\left(S t_{1}^{\prime} \cdot v\right)\right)=\left(s *, G_{i}\right)$, Detect_Ins_TSG1 terminates in a finite number of steps.

The number of steps Detect_Ins_TSG1 terminates in is equal to the product of the number of ti Detect_Ins_TSG1 checks if an edge satisfies the conditions in Step 2 and the number of steps requ to check if an edge satisfies the conditions in Step 2. Every time a transaction node is visited, conditions in Step 2 need to be checked, on an average, for v_{S} edges (the average number of sit global transaction executes at is v_{S}), while every time a site node is visited, the conditions in Ste need to be checked for at most n_{G} edges (since the number of transaction nodes in the TSG is at n n_{G}). Furthermore, every transaction and site node can be visited at most $2 n_{S}$ times (every node the TSG can be visited in a state st of F at most twice, and F has at most n_{S} states). Since there ar site nodes and at most n_{G} transaction nodes in the TSG, the number of times Detect_Ins_TSG1 ch if an edge satisfies the conditions in Step 2 is $2 n_{G} m n_{S}+2 n_{G} v_{S} n_{S}$. Since each of the condition Step 2 can be checked in constant time and $v_{S}<m$, Detect_Ins_TSG1 terminates in $O\left(n_{G} m n_{S}\right)$ step

In order to show that Detect_Ins_TSG1 traverses edges in the TSG in a manner that ensure detects instantiations of regular terms, we define the following.

Definition 11: Consider a TSG containing a path $\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)$. For all i, $1,2, \ldots, n-1$, we define foll $\left(v_{2 i-1}\right)$ as follows.

$$
\text { foll }\left(v_{2 i-1}\right)= \begin{cases}\text { foll }\left(v_{2 i+1}\right) & \text { if } i<n \text { and } v_{2 i-1}=v_{2 i+1} \\ v_{2 i} & \text { if } i=n \text { or } v_{2 i}=v_{2 i+1}\end{cases}
$$

Note that, by the definition of path, for all $i=1,2, \ldots, n-1$, if $v_{2 i}=v_{2 i+1}$, then $v_{2 i-1} \neq$ foll $\left(v_{2 i}\right.$
Definition 12: Consider a TSG containing a path $\left(v_{1}, v_{2}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)$. The path is said to consistent with a set of nodes set if for all $i, i=1, \ldots, n$, if $v_{2 i-1} \in$ set, then $v_{2 i} \neq v_{1}$.

Lemma 7: Let Detect_Ins_TSG1 $\left((V, E, L), v_{1}, v_{2}\right.$, set $_{1}$, set $\left._{2}, R T\right)$ return the set of site nodes If the TSG (V, E, L) contains a path $\left(v_{1}, v_{2}\right),\left(v_{3}, v_{4}\right), \ldots,\left(v_{2 n-3}, v_{2 n-2}\right),\left(v_{2 n-1}, v_{2 n}\right), v_{2}=v_{3}$, consis with set $_{2} \cup \Delta_{F}$ such that for the regular term $R T, F=F A(R T)$, state ${ }_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right)$, $\left.\ldots,\left(v_{2 n-1}, v_{2 n}\right)\right)$ is defined, then during the execution of Detect_Ins_TSG1, for all $i, i=1,2,3, \ldots$,

- $\left(\operatorname{sfirst}\left(G_{j}\right), G_{j}\right)\left(G_{j}, \operatorname{slast}\left(G_{j}\right)\right), j=1,2, \ldots, n-1$, where $\operatorname{arity}\left(t_{j}\right)=2\left(G_{j}\right.$ is the common no
- $\left(G_{j}, \operatorname{slast}\left(t_{j}\right)\right)\left(\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right), G_{(j+1) \bmod n}\right), j=0,1, \ldots, n-1$, where $\operatorname{arity}\left(t_{j}\right)=2$ or j $\operatorname{arity}\left(t_{(j+1) \bmod n}\right)=1$ or 2 (since for all $j, j=0,1, \ldots, n-1, \operatorname{last}\left(t_{j}\right)$ and $\operatorname{first}\left(t_{(j+1) \mathrm{m}}\right.$ execute at the same site, slast $\left(t_{j}\right)=s f i r s t\left(t_{(j+1) \bmod n}\right)$ is the common node).
- $\left(\operatorname{sfirst}\left(t_{j}\right), G_{j}\right)\left(\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right), G_{(j+1) \bmod n}\right), j=1,2, \ldots, n-1$, where $\operatorname{arity}\left(t_{j}\right)=1$, ar $\left.t_{(j+1) \bmod n}\right)=1$ or $2\left(\right.$ since $\operatorname{arity}\left(t_{j}\right)=1$ implies that $\operatorname{sfirst}\left(t_{j}\right)=\operatorname{slast}\left(t_{j}\right)$, and slast $\left(t_{j}\right.$ sfirst $\left(t_{(j+1) \bmod n}\right)$, it follows that $s f i r s t\left(t_{j}\right)=\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right)$ is the common node).

Also, for the sequence of edges $\left(\operatorname{sfirst}\left(t_{j}\right), G_{j}\right)\left(G_{j}, \operatorname{slast}\left(t_{j}\right)\right)$ in the path, $j=1,2, \ldots, n-1$, it n be the case that $\operatorname{arity}\left(t_{j}\right)=2$, and thus $\operatorname{sfirst}\left(t_{j}\right) \neq \operatorname{slast}\left(t_{j}\right)$. Also, if for some $j, k, j=0,1, \ldots, n$ $j<k \leq n$, the sequence of edges $\left(G_{j}\right.$, slast $\left.\left(t_{j}\right)\right)\left(\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right), G_{(j+1) \bmod n}\right), \ldots$,
$\left(s f i r s t\left(t_{k \bmod n}\right), G_{k \bmod n}\right)$ is in the path, then it must be the case that for all $j<l<k$, arity $\left(t_{l}\right)$ Thus, by Property 1, it follows that $\operatorname{slast}\left(t_{j}\right)=\operatorname{sfirst}\left(t_{(j+1) \bmod n}\right)=\cdots=\operatorname{sfirst}\left(t_{k \bmod n}\right)$, and fo $r, s, j \leq r<s \leq k$,

- $G_{r} \neq G_{s \bmod n}$, and
- G_{T} is serialized after $G_{s \bmod n}$ at site $\operatorname{sfirst}\left(G_{s \bmod n}\right)$. Thus, by Lemma 5 , dependency $\left(G_{r}, \operatorname{sfirst}\left(G_{s \bmod n}\right)\right) \rightarrow\left(\operatorname{sfirst}\left(G_{s \bmod n}\right), G_{s \bmod n}\right)$ does not belong to D^{\prime}.
Thus, $\left(G_{0}\right.$, slast $\left.\left(t_{0}\right)\right) e d g e\left(t_{1}\right) \cdots e d g e\left(t_{n-1}\right)\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right)$ is a path in the $\operatorname{TSGD}\left(V^{\prime}, E^{\prime}, D^{\prime}, L^{\prime}\right)$.
We further use Lemma 3 to show that, for $F=F A\left(R T_{2}\right)$, state $e_{F}\left(\right.$ init_st $_{F}$, edge $\left(t_{1}\right) \cdots e d g e\left(t_{n}\right.$ $\left.\left(s f i r s t\left(t_{0}\right), G_{0}\right)\right)$ is an accept state. Let $\operatorname{edge}\left(t_{1}\right) \cdots \operatorname{edge}\left(t_{n-1}\right)\left(s f i r s t\left(t_{0}\right), G_{0}\right)=\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m-1}\right.$, In order to use Lemma 3, we need to show that there exists a sequence $g_{1} \cdots g_{m-1}$ such that
- if $v_{2 i}=v_{2 i+1}$, then $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$, and
- if $v_{2 i-1}=v_{2 i+1}$, then $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$, and
$s t_{F}\left(i n i t_{-} s t_{F}, g_{1} \cdots g_{m-1}\right)$ is an accept state. We construct the sequence $g_{1} \cdots g_{m-1}$ with the at properties as follows. For all $i=1, \ldots, n-1$, let $f_{i}=\overline{\left(\operatorname{type}\left(h d r\left(t_{i}\right)\right), \operatorname{type}\left(\operatorname{first}\left(t_{i}\right)\right)\right)}$, if $\operatorname{arity}\left(t_{i}\right)$ else, $f_{i}=\left(\operatorname{type}\left(h d r\left(t_{i}\right)\right)\right.$, type $\left.\left(f i r s t\left(t_{i}\right)\right)\right)\left(\operatorname{type}\left(h d r\left(t_{i}\right)\right)\right.$, type $\left.\left(\operatorname{last}\left(t_{i}\right)\right)\right)$. Since type $\left(t_{1}\right) \cdots$ type $\left(t_{n-}\right.$ a string in $L($ reg_exp $)$, by the construction of $F A\left(R T_{2}\right)$, it follows that st $\left(\right.$ init_st $\left.t_{F}, f_{1} \cdots f_{n-1}\right)$ i accept state. Let $g_{1} \cdots g_{m-1}=f_{1} \cdots f_{n-1}$, such that every $g_{i} \in \Sigma_{F}$. Furthermore, from the defini of edge and f_{j}, it follows that, if for some $i=1, \ldots, m-1$, if $\left(v_{2 i-1}, v_{2 i}\right) \in e d g e\left(t_{k}\right)$ and $\operatorname{arity}\left(t_{k}\right)$ then $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$, else $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$.

In order to show that state ${ }_{F}\left(\right.$ init_st $\left._{F},\left(v_{1}, v_{2}\right), \ldots,\left(v_{m-1}, v_{m}\right)\right)$ is an accept state, we need to s. that for all $i, i=1,2, \ldots, m-1$, if $v_{2 i}=v_{2 i+1}$, then $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$ and if $v_{2 i-1}=v_{2 i+1}$, $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$. We first show that if $v_{2 i}=v_{2 i+1}$, and $\left(v_{2 i-1}, v_{2 i}\right) \in \operatorname{edge}\left(t_{k}\right)$ for some k, $1,2, \ldots, n-1$, then $\operatorname{arity}\left(t_{k}\right)=2$. Suppose $\operatorname{arity}\left(t_{k}\right)=1$. Since last $\left(t_{k}\right)$ and first $\left(t_{(k+1) \mathrm{m}}\right.$ execute at the same site, slast $\left(t_{k}\right)=v_{2 i-1}, \operatorname{sfirst}\left(t_{(k+1) \bmod n}\right)=v_{2 i+1}$, it follows that $v_{2 i-1}=v_{2}$ which leads to a contradiction. Thus, arity $\left(t_{k}\right)=2$, and $g_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$. Also, it can be she that if $v_{2 i-1}=v_{2 i+1}$, and $\left(v_{2 i-1}, v_{2 i}\right) \in e d g e\left(t_{k}\right)$, then $\operatorname{arity}\left(t_{k}\right)=1$. Suppose $\operatorname{arity}\left(t_{k}\right)=2$. $v_{2 i}=G_{k}$, then $v_{2 i}=v_{2 i+1}=G_{k}$, which leads to a contradiction. If $v_{2 i-1}=G_{k}$, then since last $\left(t_{k}\right)$ first $\left(t_{(k+1) \bmod n}\right)$ execute at the same site, slast $\left(t_{k}\right)=v_{2 i}$, sfirst $\left(t_{(k+1) \bmod n}\right)=v_{2 i+1}$, it follows $v_{2 i}=v_{2 i+1}$, which leads to a contradiction. Thus, $\operatorname{arity}\left(t_{k}\right)=1$, and, $g_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$.

Thus, by Lemma 3, state Linit_st $_{F}$, edge $\left(t_{1}\right) \cdots e d g e\left(t_{n-1}\right)\left(\right.$ sfirst $\left.\left.\left(t_{0}\right), G_{0}\right)\right)$ is an accept state. T by Corollary 2, Detect_Ins_Opt $\left(\left(V^{\prime}, E^{\prime}, D^{\prime}, L^{\prime}\right), G_{0}, \operatorname{slast}\left(t_{0}\right), \operatorname{set}_{1}, R T_{2}\right)$ returns abort and G_{0} is abo by the optimistic scheme. However, this leads to a contradiction since G_{0} is a transaction in I
dependency is added during the execution of $\left.\operatorname{act}^{\operatorname{ser}} \operatorname{ser}_{k}\left(G_{i}\right)\right)$, then $\operatorname{act}^{\cot }\left(\operatorname{ser}_{k}\left(G_{j}\right)\right.$ must have already cuted. On the other hand, if the dependency were added to the TSGD before $\operatorname{act}\left(\operatorname{ser}_{k}\left(G_{i}\right)\right)$ execu then $\operatorname{act}\left(\operatorname{ser}_{k}\left(G_{i}\right)\right)$ would not execute until $\left.\operatorname{act}\left(\operatorname{ack}^{\operatorname{ser}}\left(\operatorname{ser}_{k}\right)\right)\right)$ completes execution (the depende $\left(G_{j}, s_{k}\right) \rightarrow\left(s_{k}, G_{i}\right)$ is deleted from the TSGD only after $\operatorname{ack}\left(\operatorname{ser}_{k}\left(G_{j}\right)\right)$ is processed $)$. Thus, in both c $\operatorname{ser}_{k}\left(G_{j}\right)$ executes before $\operatorname{ser}_{k}\left(G_{i}\right)$, and thus, $G_{j k}$ is serialized before $G_{i k}$ at site s_{k}, which leads contradiction.

For an element $t_{i} \in \Sigma_{S}$, we denote by $\operatorname{slast}\left(t_{i}\right)$ and s first $\left(t_{i}\right)$, the sites at which last $\left(t_{i}\right)$ first $\left(t_{i}\right)$ execute, respectively. Also, if $\operatorname{arity}\left(t_{i}\right)=1$, then $\operatorname{edge}\left(t_{i}\right)=\left(\operatorname{sfirst}\left(t_{i}\right), h d r\left(t_{i}\right)\right)$, $\operatorname{edge}\left(t_{i}\right)=\left(s f i r s t\left(t_{i}\right), h d r\left(t_{i}\right)\right)\left(h d r\left(t_{i}\right), \operatorname{slast}\left(t_{i}\right)\right)$.

Proof of Theorem 1: Suppose S is not correct. Thus, there exists a regular term $R T$ in R an instantiation I of $R T$ in S. Let G_{0} be the transaction in I such that $v a l_{0}$ is processed after val every other transaction G_{i} in I is processed. By Lemma 1 , since R is complete, there exists a reg term $R T_{2}=\epsilon_{0}:$ reg_exp and an instantiation $t_{0}: t_{1} t_{2} \cdots t_{n-1}$ of $R T_{2}$ in S such that $h d r\left(t_{0}\right)=$ Thus,

- for all $j, j=0,1, \ldots, n-1$,

1. $t_{j} \in \Sigma_{S}$ (without loss of generality, let $h d r\left(t_{j}\right)=G_{j}$), and
2. last $\left(t_{j}\right)$ and $\operatorname{first}\left(t_{(j+1) \bmod n}\right)$ execute at the same site, and last $\left(t_{j}\right)$ is serialized a first $\left(t_{(j+1) \bmod n}\right)$ at the site, and

- type $\left(t_{0}\right)=e_{0}$ and type $\left(t_{1}\right) \cdots$ type $\left(t_{n-1}\right)$ is a string in $L($ reg_exp $)$.

When $v a l_{0}$ is processed, Detect_Ins_Opt is invoked with arguments that include the TSGD (V, E $\left.L^{\prime}\right), G_{0}, \operatorname{slast}\left(t_{0}\right), \operatorname{set}_{1}$, and $R T_{2}$ since type $\left(G_{0}\right)=h d r\left(e_{0}\right)$ and $\operatorname{type}\left(\operatorname{last}\left(t_{0}\right)\right)=\operatorname{last}\left(e_{0}\right)$. $\operatorname{sfirst}\left(t_{0}\right) \in \operatorname{set}_{1}$ (if $\operatorname{arity}\left(t_{0}\right)=1$, then since $\operatorname{sfirst}\left(t_{0}\right)=\operatorname{slast}\left(t_{0}\right), \operatorname{sfirst}\left(t_{0}\right) \in \operatorname{set}_{1}$; if $\operatorname{arity}\left(t_{0}\right)$ then since $\operatorname{sfirst}\left(t_{0}\right) \neq \operatorname{slast}\left(t_{0}\right)$, and type $\left(\operatorname{first}\left(t_{0}\right)\right)=\operatorname{first}\left(\epsilon_{0}\right)$, sfirst $\left.\left(t_{0}\right) \in \operatorname{set}_{1}\right)$. Furthermore the edges belonging to G_{0}, \ldots, G_{n-1} are in the TSGD when Detect_Ins_Opt is invoked. In orde show this, we first show that G_{j} 's edges cannot be deleted from the TSGD before $G_{(j+1) \bmod n}$'s ed are deleted from the TSGD, for all $j, j=1,2, \ldots, n-1$. Suppose, for some $j, j=1,2, \ldots, n$ G_{j} 's edges are deleted from the TSGD before $G_{(j+1) \bmod n}$'s edges are deleted from the TSGD. slast $\left(t_{j}\right)=s_{k}$. Since $G_{j k}$ is serialized after $G_{((j+1) \bmod n) k}$, at site s_{k}, $\operatorname{ser} r_{k}\left(G_{(j+1) \bmod n}\right)$ executes be $\operatorname{ser}_{k}\left(G_{j}\right)$. Thus, since $G_{(j+1) \bmod n}$'s edges are inserted into the TSGD before $\operatorname{ser}_{k}\left(G_{(j+1) \bmod n}\right)$ execu while G_{j} 's edges are deleted after $\operatorname{ser}_{k}\left(G_{j}\right)$ executes, $G_{(j+1) \bmod n}$'s edges must be in the TSGD w G_{j} 's edges are deleted (since we have assumed that G_{j} 's edges are deleted before $G_{(j+1) \bmod n}$'s ed are deleted). Furthermore, since $\operatorname{ser}_{k}\left(G_{j}\right)$ and $\operatorname{ser}_{k}\left(G_{(j+1) \bmod n}\right)$ must have both executed when edges are deleted, $G_{(j+1) \bmod n}$ is serialized before G_{j} when G_{j} 's edges are deleted. However, this le to a contradiction, since edges belonging to G_{j} and $G_{(j+1) \bmod n}$ are deleted together when act f for some transaction G_{l} executes (since $G_{(j+1) \bmod n}$ is serialized before G_{j}, if for every transac $G_{k} \in V$ serialized before $G_{j}, v a l_{k}$ has been processed, then for every transaction $G_{k} \in V$ serial before $G_{(j+1) \bmod n}$ also, valk must have been processed). Thus, G_{1} 's edges are not deleted from TSGD before G_{2} 's edges are deleted, ..., G_{n-1} 's edges are not deleted from the TSGD before edges are deleted. By transitivity and since G_{0} 's edges are deleted only after val l_{0} has been proces when Detect_Ins_Opt is invoked during the processing of valo, the TSGD $\left(V^{\prime}, E^{\prime}, D^{\prime}, L^{\prime}\right)$ contain: the edges belonging to transactions $G_{0}, G_{1}, \ldots, G_{n-1}$ (since for all $i=1, \ldots, n-1$, val l_{i} is proce: before $v a l_{0}$ is processed).

We now show that $\left(G_{0}\right.$, slast $\left.\left(t_{0}\right)\right) e d g e\left(t_{1}\right) \cdots e d g e\left(t_{n-1}\right)\left(\operatorname{sfirst}\left(t_{0}\right), G_{0}\right)$ is a path in the TSGD.

By the definition of state e_{F}, st $t_{m+1}=s t_{F}\left(s t_{m}, L\left(v_{2 m+1}, v_{2 m+2}\right)\right)$, if $v_{2 m+2}=v_{2 m+3}$ and $s t_{m+}$ $s t_{F}\left(s t_{m}, \overline{L\left(v_{2 m+1}, v_{2 m+2}\right)}\right)$, if $v_{2 m+1}=v_{2 m+3}$.

Let $S t_{k}$ be the resulting state of Detect_Ins_Opt after $\left(s t_{m}, \operatorname{prev}\left(v_{2 m+1}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m}\right.$ (the state $S t_{k}$ results either due to the forward transition $S t_{j} \rightarrow S t_{k}$, either $S t_{j} . v=v_{2 m+1}$ or $S t_{j}$. $\operatorname{prev}\left(v_{2 m+1}\right)$, or due to Step 1). Thus, $S t_{k} \cdot v=v_{2 m+1}, S t_{k} . c u r_{-} s t=s t_{m}$ and in state $S t_{k}, h e a d\left(S t_{k}\right.$. $\left.\left(S t_{k} \cdot v\right)\right)[2]=\operatorname{prev}\left(v_{2 m+1}\right)$. Furthermore, since Detect_Ins_Opt does not return abort, it follows f Lemma 2 that after a finite number of steps, Detect_Ins_Opt is in a state $S t_{k}^{\prime}$ such that $S t_{k}^{\prime} \equiv S t_{k}$ no further forward transitions can be made from $S t_{k}^{\prime}$. Thus, in state $S t_{k}^{\prime}$,

- Since $\operatorname{prev}\left(v_{2 m+1}\right) \neq v_{2 m+2}$ (by the definition of path), head $\left(S t_{k}^{\prime} \cdot a n c\left(S t_{k}^{\prime} \cdot v\right)\right) \neq v_{2 m+2}$,
- Since $\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)$ is a path in (V, E, D), there is no dependency $\left(\operatorname{prev}\left(v_{2 m+1}\right), v_{2 m}\right.$. $\left(v_{2 m+1}, v_{2 m+2}\right)$ in $D ;$ thus, there is no dependency $\left(h e a d\left(S t_{k}^{\prime} \cdot \operatorname{anc}\left(S t_{k}^{\prime} \cdot v\right)\right), S t_{k}^{\prime} \cdot v\right) \rightarrow\left(S t_{k}^{\prime} \cdot v, v_{2 m}\right.$ in D,
- Since state ${ }_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\left(v_{2 m+3}, v_{2 m+4}\right)\right)$ is defined, if $v_{2 m+2}=v_{2 n}$ then $s t_{m+1}=s t_{F}\left(S t_{k}^{\prime} \cdot c u r_{-} s t, L\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)\right)$ is defined, else if $v_{2 m+1}=v_{2 m+3}$, then $s t_{m+}$ $s t_{F}\left(S t_{k}^{\prime} . c u r_{-} s t, \overline{L\left(S t_{k}^{\prime} \cdot v, v_{2 m+2}\right)}\right)$ is defined.

However, since in state $S t_{k}^{\prime}$, no forward transition can be made due to edge ($S t_{k}^{\prime} \cdot v, v_{2 m+2}$) Detect_Ins_Opt does not return abort, it must be the case that

- if $v_{2 m+2}=v_{2 m+3}$, then $S t_{k}^{\prime} \cdot V _\operatorname{set}\left(v_{2 m+2}\right)$ already contains $\left(s t_{m+1}, S t_{k}^{\prime} \cdot v\right)$. Thus, since $S t_{k}^{\prime}$. $v_{2 m+1}, \operatorname{prev}\left(v_{2 m+3}\right)=v_{2 m+1},\left(s t_{m+1}, \operatorname{prev}\left(v_{2 m+3}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m+3}\right)$ during the execu of Detect_Ins_Opt.
- if $v_{2 m+1}=v_{2 m+3}$, then $S t_{k}^{\prime} \cdot V _\operatorname{set}\left(S t_{k}^{\prime} \cdot v\right)$ already contains $\left(s t_{m+1}, v_{2 m+2}\right)$. Thus, since $S t_{k}^{\prime}$. $v_{2 m+1}, \operatorname{prev}\left(v_{2 m+3}\right)=v_{2 m+2},\left(s t_{m+1}, \operatorname{prev}\left(v_{2 m+3}\right)\right)$ is added to $V_{_} \operatorname{set}\left(v_{2 m+3}\right)$ during the ex tion of Detect_Ins_Opt.

Corollary 2: Consider a TSGD (V, E, D, L) containing a path $\left(v_{1}, v_{2}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}\right.$, $v_{2}=v_{3}$. If, for a regular term $R T, F=F A(R T)$, st $=$ state $_{F}\left(\right.$ init_st $_{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)\left(v_{2 n+1}\right.$, is an accept state, and $v_{2 n+1} \in \operatorname{set}_{1}$, then Detect_Ins_Opt $\left((V, E, D, L), v_{1}, v_{2}, \operatorname{set}_{1}, R T\right)$ returns ab

Proof: Suppose Detect_Ins_Opt does not return abort. By Lemma 4, (st, prev($\left.v_{2 n+1}\right)$) is ad to $V _\operatorname{set}\left(v_{2 n+1}\right)$. Since $\operatorname{prev}\left(v_{2 n+1}\right) \neq v_{1}$, Detect_Ins_Opt makes a forward state transition w $\left(s t, \operatorname{prev}\left(v_{2 n+1}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 n+1}\right)$. However, just before (st, prev($\left.\left.v_{2 n+1}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 r}\right.$ since $s t$ is an accept state, $\operatorname{prev}\left(v_{2 n+1}\right) \neq v_{1}, v_{2 n+1} \in \operatorname{set}_{1}$, and dependency $\left(\operatorname{prev}\left(v_{2 n+1}\right), v_{2 n+1}\right.$ $\left(v_{2 n+1}, v_{1}\right)$ does not belong to D, Detect_Ins_Opt returns abort. This leads to a contradiction, thus, it must be the case that DetectIns_Opt returns abort.

We are now in a position to prove Theorem 1. Before we present the proof, we introduce s additional notation and the following lemma.

Lemma 5: If, in the optimistic scheme, for some site s_{k}, transactions $G_{i}, G_{j}, G_{i k}$ is serial before $G_{j k}$ at site s_{k}, then there does not exist a dependency $\left(G_{j}, s_{k}\right) \rightarrow\left(s_{k}, G_{i}\right)$ in the TSGD.

Proof: Suppose there exists a dependency $\left(G_{j}, s_{k}\right) \rightarrow\left(s_{k}, G_{i}\right)$ in the TSGD. The dependency co not have been added to the TSGD after $\left.\operatorname{act}^{\operatorname{ser}} \operatorname{ser}_{k}\left(G_{i}\right)\right)$ has executed. Thus, dependency $\left(G_{j}, s_{k}\right.$

The above definition of state e_{F} is recursive. In the following lemma, we show that an alterna non-recursive definition of state F is possible.

Lemma 3: Consider a TSGD containing a path $\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)$. If $e_{1} e_{2} \cdots, e_{n}$ a sequence such that

- if $v_{2 i}=v_{2 i+1}$, then $e_{i}=L\left(v_{2 i-1}, v_{2 i}\right)$, and
- if $v_{2 i-1}=v_{2 i+1}$, then $e_{i}=\overline{L\left(v_{2 i-1}, v_{2 i}\right)}$,
then for a regular term $R T$ and a state st of $F=F A(R T)$, $\operatorname{state}_{F}\left(s t,\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2}\right.\right.$ $s t_{F}\left(s t, e_{1} \cdots e_{n-1}\right)$.

Proof: We use induction on i to prove that for all $i=1, \ldots, n$, state $\left(s t,\left(v_{1}, v_{2}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right.\right.$ $s t_{F}\left(s t, e_{1} \cdots e_{i-1}\right)$.
Basis $(i=1): \operatorname{state}_{F}\left(s t,\left(v_{1}, v_{2}\right)\right)=s t_{F}(s t, \epsilon)=s t$.
Induction: Assume true for $i=m, 1 \leq m<n$, that is, state $_{F}\left(s t,\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m-1}, v_{2 m}\right)\right.$ $\operatorname{st}_{F}\left(s t, e_{1} \cdots e_{m-1}\right)$. We prove the claim for $i=m+1$, that is, we need to show that state $e_{F}\left(s t,\left(v_{1}\right.\right.$ $\left.\cdots\left(v_{2 m+1}, v_{2 m+2}\right)\right)=s t_{F}\left(s t, e_{1} \cdots e_{m}\right)$. By the definition of state e_{F},

$$
\operatorname{state}_{F}\left(s t,\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\right)= \begin{cases}s t_{F}\left(s t^{\prime}, L\left(v_{2 m-1}, v_{2 m}\right)\right. & \text { if } v_{2 m}=v_{2 m+1} \\ s t_{F}\left(s t^{\prime}, \overline{L\left(v_{2 m-1}, v_{2 m}\right)}\right. & \text { if } v_{2 m-1}=v_{2 m+1}\end{cases}
$$

where $s t^{\prime}=\operatorname{state}_{F}\left(s t,\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m-1}, v_{2 m}\right)\right)$. Thus,
$\operatorname{state}_{F}\left(s t,\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\right)= \begin{cases}s t_{F}\left(s t, \epsilon_{1} \cdots \epsilon_{m-1} \frac{\left.L\left(v_{2 m-1}, v_{2 m}\right)\right)}{}\right. & \text { if } v_{2 m}=v_{2 m+1} \\ s t_{F}\left(s t, \epsilon_{1} \cdots \epsilon_{m-1} L\left(v_{2 m-1}, v_{2 m}\right)\right) & \text { if } v_{2 m-1}=v_{2 m+1}\end{cases}$
Thus, $\operatorname{state}_{F}\left(s t,\left(v_{1}, v_{2}\right) \cdots\left(v_{2 m+1}, v_{2 m+2}\right)\right)=s t_{F}\left(s t, e_{1} \cdots e_{m}\right)$.
For every instantiation of a regular term $R T$, there is a corresponding path in the TSG/TSGD
 lemma lays the groundwork for showing that Detect_Ins_Opt detects instantiation by detecting ap priate paths in the TSGD.

Lemma 4: Consider a TSGD (V, E, D, L) containing a path $\left(v_{1}, v_{2}\right) \cdots\left(v_{2 n-3}, v_{2 n-2}\right),\left(v_{2 n-1}\right.$, $v_{2}=v_{3}$, such that for a regular term $R T, F=F A(R T)$, state $F_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)\right)$ is fined. If Detect_Ins_Opt $\left((V, E, D, L), v_{1}, v_{2}\right.$, set $\left.t_{1}, R T\right)$ does not return abort, then during the execu of Detect_Ins_Opt (before it returns commit), for all $i, i=1,2,3, \ldots, n-1,\left(s t, \operatorname{prev}\left(v_{2 i+1}\right)\right)$ is ad to $V _\operatorname{set}\left(v_{2 i+1}\right)$, where $s t=\operatorname{state}_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2 i+2}\right)\right)$.

Proof: We prove the above lemma by induction on i. We prove that if Detect_Ins_Opt not return abort, then for all $i, i=1,2, \ldots, n-1,\left(\operatorname{st}, \operatorname{prev}\left(v_{2 i+1}\right)\right)$ is added to $V _\operatorname{set}\left(v_{2 i+1}\right)$, wl st $=$ state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2 i+1}, v_{2 i+2}\right)\right)$.
Basis $(i=1)$: In Step 1 of Detect_Ins_Opt, (init_st $\left.t_{F}, v_{1}\right)$ is added to $V_{-} \operatorname{set}\left(v_{2}\right)$. Since $v_{2}=$ $\operatorname{prev}\left(v_{3}\right)=v_{1}$, and state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right)\right)=$ init_st $_{F}$, the lemma is true for $i=1\left(\left(\right.\right.$ init_st $_{F}$, prev $($ is added to $\left.V _\operatorname{set}\left(v_{3}\right)\right)$.
Induction: Let us assume that the lemma is true for $i=m, 1 \leq m<n-1$. Thus, if tect_Ins_Opt does not return abort, then $\left(s t_{m}, \operatorname{prev}\left(v_{2 m+1}\right)\right)$ is added to $V_{-} \operatorname{set}\left(v_{2 m+1}\right)$, where $s t_{7}$ state $_{F}\left(\right.$ init_st $\left._{F},\left(v_{3}, v_{4}\right) \cdots\left(v_{2 m-1}, v_{2 m}\right)\left(v_{2 m+1}, v_{2 m+2}\right)\right)$. We show the lemma to be true for $i=$
node can be visited at most $n_{G} n_{S}$ times (every node v in the TSGD can be visited in a state st at most once for every node w such that edge (v, w) is in the TSGD, and F has at most n_{S} stat Since there are m site nodes and at most n_{G} transaction nodes in the TSGD, the number of ti Detect_Ins_Opt checks if an edge satisfies the conditions in Step 2 is $n_{G}^{2} m n_{S}+n_{G} v_{S}^{2} n_{S}$. Since of the conditions in Step 2 can be checked in constant time and $v_{S} \ll n_{G}, v_{S}<m$, Detect_Ins_ terminates in $O\left(n_{G}^{2} m n_{S}\right)$ steps.

Before we show that Detect_Ins_Opt detects instantiations, we define the notion of a path in o to capture the notion of instantiations in the TSGD. Corresponding to every instantiation, there path, defined below, in the TSGD (paths are similarly defined for a TSG; the requirement tht ther no dependencies between certain edges is trivially satisfied in a TSG).

Definition 9: Consider a TSG/TSGD containing the sequence of edges $\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}\right.$ $n>1$. The sequence of edges is a path if

- for every pair of consecutive edges $\left(v_{2 i-1}, v_{2 i}\right),\left(v_{2 i+1}, v_{2 i+2}\right), i=1, \ldots, n-1$, either $v_{2 i}=v_{2}$ or $v_{2 i-1}=v_{2 i+1}$, and
- if for some $j, k=1,2, \ldots, n, j \leq k, v_{2 j-1}=v_{2 j+1}=v_{2 j+3}=\cdots=v_{2 k-1}$, then

1. if $j<k$, then $v_{2 j} \neq v_{2 j+2} \neq v_{2 j+4} \neq \cdots \neq v_{2 k}$, and for all $l, m, j \leq l<m \leq k$, there i dependency $\left(v_{2 l}, v_{2 l-1}\right) \rightarrow\left(v_{2 m-1}, v_{2 m}\right)$ in the TSG/TSGD, and
2. if $j>1$ and $v_{2 j-2}=v_{2 j-1}$, then for all $l=j, j+1, \ldots, k, v_{2 j-3} \neq v_{2 l}$, and there is dependency $\left(v_{2 j-3}, v_{2 j-2}\right) \rightarrow\left(v_{2 l-1}, v_{2 l}\right)$ in the TSG/TSGD.

Thus, it follows from the definition of path that for every pair of consecutive edges $\left(v_{2 i-1}, v_{2 i}\right)\left(v_{2}\right.$ $\left.v_{2 i+2}\right), i=1, \ldots, n-1$, either

- $v_{2 i}=v_{2 i+1}, v_{2 i-1} \neq v_{2 i+2}$, and dependency $\left(v_{2 i-1}, v_{i}\right) \rightarrow\left(v_{2 i+1}, v_{2 i+2}\right)$ is not in the TSGD, or
- $v_{2 i-1}=v_{2 i+1}, v_{2 i} \neq v_{2 i+2}$ and dependency $\left(v_{2 i}, v_{2 i-1}\right) \rightarrow\left(v_{2 i+1}, v_{2 i+2}\right)$ is not in the TSGD.

Furthermore, for the path $\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)$, for $i=1,2, \ldots, n-1$, we define $\operatorname{prev}\left(v_{2}\right.$ as follows.

$$
\operatorname{prev}\left(v_{2 i+1}\right)= \begin{cases}v_{2 i-1} & \text { if } v_{2 i}=v_{2 i+1} \\ v_{2 i} & \text { if } v_{2 i-1}=v_{2 i+1}\end{cases}
$$

Note that, by the definition of path, $\operatorname{prev}\left(v_{2 i+1}\right) \neq v_{2 i+2}$ and there is no dependency ($\operatorname{prev}\left(v_{2 i}\right.$ $\left.v_{2 i+1}\right) \rightarrow\left(v_{2 i+1}, v_{2 i+2}\right)$ in the TSGD. Only certain paths in the TSG/TSGD in which the sequenc transaction types are a string in L (reg_exp) correspond to instantiations of $R T=e_{0}:$ reg_exp in S order to ensure that transaction type information can be taken into account when detecting path the TSG/TSGD, we define state e_{F} below.

Definition 10: Consider a TSG/TSGD containing a path $\left(v_{1}, v_{2}\right) \cdots\left(v_{2 n-1}, v_{2 n}\right)$. Let $R T$ regular term and $F=F A(R T)$. We define state F_{F} for the sequence of edges in the path and a stat of F, using $s t_{F}$, as follows.

$$
\operatorname{state}_{F}\left(s t,\left(v_{1}, v_{2}\right) \cdots\left(v_{2 i-1}, v_{2 i}\right)\right)= \begin{cases}s t & \text { if } i=1 \\ s t_{F}\left(s t^{\prime}, L\left(v_{2 i-3}, v_{2 i-2}\right)\right) & \text { if } i>1 \text { and } v_{2 i-2}=v_{2 i-1} \\ s t_{F}\left(s t^{\prime}, \frac{L\left(v_{2 i-3}, v_{2 i-2}\right)}{}\right) & \text { if } i>1 \text { and } v_{2 i-3}=v_{2 i-1}\end{cases}
$$

Basis $(n u m=0)$: If $n u m=0$ in state $S t_{k}$, then in state $S t_{k}$, for every edge $\left(S t_{k} \cdot v, u\right)$, if s $s t_{F}\left(S t_{k} \cdot c u r_{-} s t, L\left(S t_{k} \cdot v, u\right)\right)$ is defined, then $\left(s t, S t_{k} \cdot v\right) \in S t_{k} . V _s e t(u)$ (alternatively, if $s t^{\prime}=$ $\left(S t_{k} \cdot c u r_{-} s t, \overline{L\left(S t_{k} \cdot v, u\right)}\right)$ is defined, then $\left.\left(s t^{\prime}, u\right) \in S t_{k} \cdot V_{-} \operatorname{set}\left(S t_{k} \cdot v\right)\right)$. Thus, no forward transi can be made from state $S t_{k}$ (since every edge ($S t_{k} . v, u$) satisfies the last condition in Step 2).
Induction: Let us assume the lemma is true if $n u m \leq m$ in state $S t_{k}, m \geq 0$. We show that lemma is true if $n u m \leq m+1$ in state $S t_{k}$. We show that if Detect_Ins_Opt does not return abort, after a finite number of moves, Detect_Ins_Opt is in a state $S t_{k}^{\prime}$ such that $S t_{k}^{\prime} \equiv S t_{k}$ and no forn transitions can be made from state $S t_{k}^{\prime}$.

Let $S t_{k}^{\prime \prime}$ be any state equivalent to $S t_{k}$ such that in $S t_{k}^{\prime \prime}$, num $\leq m+1$. If Detect_Ins_ makes the forward transition $S t_{k}^{\prime \prime} \rightarrow S t_{l}$ due to some edge $\left(S t_{k}^{\prime \prime} \cdot v, u\right)$ and $L\left(S t_{k}^{\prime \prime} \cdot v, u\right)$, then it n be the case that $S t_{l} \cdot v=u, S t_{l} \cdot$ cur_st $^{\prime}=s t_{F}\left(S t_{k}^{\prime \prime} \cdot\right.$ cur_st $\left.^{\prime} L\left(S t_{k}^{\prime \prime} \cdot v, u\right)\right)$. Furthermore, in state $\left(S t_{l} \cdot c u r_{-} s t, S t_{k}^{\prime \prime} \cdot v\right) \notin S t_{k}^{\prime \prime} \cdot V _s e t(u)$ and in state $S t_{l},\left(S t_{l} . c u r_{-} s t, S t_{k}^{\prime \prime} \cdot v\right) \in S t_{l} . V _s e t(u)$ (since the tra tion $S t_{k}^{\prime \prime} \rightarrow S t_{l}$ causes $\left(S t_{l} . c u r_{_} s t, S t_{k}^{\prime \prime} \cdot v\right)$ to be added to $\left.V_{_} \operatorname{set}(u)\right)$. Note that, since before the transi is made, $\left(S t_{l} \cdot\right.$ cur_st, $\left.^{\prime} S t_{k}^{\prime \prime} \cdot v\right)$ does not belong to $V _$set (u) and $n u m \leq m+1$ in $S t_{k}^{\prime \prime}$, after the tra tion $S t_{k}^{\prime \prime} \rightarrow S t_{l}$ is made, num $\leq m$ in $S t_{l}$. By IH, since Detect_Ins_Opt does not return abort, a a finite number of steps, Detect Ins_Opt enters a state $S t_{l}^{\prime} \equiv S t_{l}$, such that no forward transit are possible from $S t_{l}^{\prime}$. Thus, since it does not return abort, Detect_Ins_Opt makes the reverse t sition $S t_{l}^{\prime} \rightarrow S t_{k}^{\prime \prime \prime}$ after a finite number of steps, where $S t_{k}^{\prime \prime \prime} \equiv S t_{k}^{\prime \prime} \equiv S t_{k}$. Furthermore, in state $\left(S t_{l} \cdot c u r _s t, S t_{k}^{\prime \prime} \cdot v\right) \in S t_{k}^{\prime \prime \prime} \cdot V_{-} \operatorname{set}(u)$ and $S t_{k}^{\prime \prime \prime} \cdot v=S t_{k}^{\prime \prime} \cdot v$, and thus, no forward transition can be m from state $S t_{k}^{\prime \prime \prime}$ due to edge $\left(S t_{k}^{\prime \prime \prime} \cdot v, u\right)$ and $L\left(S t_{k}^{\prime \prime} \cdot v, u\right)$ (edge $\left(S t_{k}^{\prime \prime \prime} \cdot v, u\right)$ does not satisfy the condi in Step 3(c)). Using a similar argument, it can be shown that if Detect_Ins_Opt makes a forward t sition $S t_{k}^{\prime \prime} \rightarrow S t_{l}$ due to edge $\left(S t_{k}^{\prime \prime} \cdot v, u\right)$ and $\overline{L\left(S t_{k}^{\prime \prime} \cdot v, u\right)}$, then in a finite number of steps, Detect_Ins_ enters a state $S t_{k}^{\prime \prime \prime} \equiv S t_{k}^{\prime \prime}$ such that no forward transitions are possible from $S t_{k}^{\prime \prime \prime}$ due to edge $\left(S t_{k}^{\prime \prime \prime}\right.$. and $\overline{L\left(S t_{k}^{\prime \prime \prime} \cdot v, u\right)}$.

Thus, once a forward transition is made by Detect_Ins_Opt due to an edge e and $L(e) / \overline{L(e)}$ fro state equivalent to $S t_{k}$, then no further forward transitions can be made by Detect_Ins_Opt due and $L(e) / \overline{L(e)}$ from any state equivalent to $S t_{k}$. Furthermore, everytime a forward transition is m from a state $S t_{k}^{\prime \prime}$ that is equivalent to $S t_{k}$ such that $n u m \leq m+1$ in $S t_{k}^{\prime \prime}$, a reverse transition is m by Detect_Ins_Opt to a state $S t_{k}^{\prime \prime \prime}$ equivalent to $S t_{k}$ such that $n u m \leq m+1$ in $S t_{k}^{\prime \prime \prime}$. Since there a finite number of edges incident on each node, Detect_Ins_Opt does not return abort, and in state num $\leq m+1$, eventually, Detect_Ins_Opt would be in a state $S t_{k}^{\prime} \equiv S t_{k}$ such that no further fork transitions can be made.

Corollary 1: Procedure Detect_Ins_Opt terminates in $O\left(n_{G}^{2} m n_{S}\right)$ steps.
Proof: We first show that Detect_Ins_Opt terminates in a finite number of steps. Let $S t_{1}$ del the state immediately after the execution of Step 1 of algorithm Detect_Ins_Opt. If Detect_Ins_ does not return abort, then by Lemma 1, after a finite number of steps, Detect_Ins_Opt is in a s $S t_{1}^{\prime} \equiv S t_{1}$ such that no further forward transitions can be made from $S t_{1}^{\prime}$. Detect_Ins_Opt, executes Step 4 and since, in state $S t_{1}^{\prime}$, head $\left(S t_{1}^{\prime} \cdot F _l i s t\left(S t_{1}^{\prime} \cdot v\right)\right)=\left(s *, G_{i}\right)$, Detect_Ins_Opt termin in a finite number of steps. If, on the other hand, Detect_Ins_Opt returns abort, then it trivi terminates in a finite number of steps.

The number of steps Detect_Ins_Opt terminates in is equal to the product of the number of ti Detect_Ins_Opt checks if an edge satisfies the conditions in Step 2 and the number of steps requ to check if an edge satisfies the conditions in Step 2. Every time a transaction node is visited, conditions in Step 2 need to be checked, on an average, for v_{S} edges (the average number of sit global transaction executes at is v_{S}), while every time a site node is visited, the conditions in Ste need to be checked for at most n_{G} edges (since the number of transaction nodes in the TSGD i

Appendix -B-: Optimistic Scheme

Before we prove Theorem 1, we need to prove certain lemmas. In the following lemma, we s the implications of complete regular specifications.

Lemma 1: Let $R T_{1}$ be a regular term in the regular specification R, I be an instantiation of in the global schedule S, and G_{0} be a transaction in I. If R is complete, then there exists a reg term $R T_{2}$ and an instantiation $t_{0}: t_{1} \cdots t_{m-1}$ of $R T_{2}$ in S such that $h d r\left(t_{0}\right)=G_{0}$.

Proof: Let $R T_{1}=\epsilon_{0}^{\prime}:$ reg_exp $_{1}$ and $I=t_{0}^{\prime}: t_{1}^{\prime} \cdots t_{n-1}^{\prime}, n>1$. Since I is an instantiation of in S,

- for all $j, j=0,1, \ldots, n-1$,

1. $t_{j}^{\prime} \in \Sigma_{S}$, and
2. $\operatorname{last}\left(t_{j}^{\prime}\right)$ and $\operatorname{first}\left(t_{(j+1) \bmod n}^{\prime}\right)$ execute at the same site, and last $\left(t_{j}^{\prime}\right)$ is serialized a first $\left(t_{(j+1) \bmod n}^{\prime}\right)$ at the site, and

- type $\left(t_{0}^{\prime}\right)=\epsilon_{0}^{\prime}$ and type $\left(t_{1}^{\prime}\right) \cdots$ type $\left(t_{n-1}^{\prime}\right)$ is a string in $L\left(\right.$ reg_exp $\left._{1}\right)$.

Let $G_{0}=h d r\left(t_{k}^{\prime}\right)$, for some $k, k=0,1, \ldots, n-1$. Since R is complete, there exists a regular t $R T_{2}=$ type $\left(t_{k}^{\prime}\right):$ reg_exp p_{2} such that

$$
\operatorname{type}\left(t_{(k+1) \bmod n}^{\prime}\right) \cdots \operatorname{type}\left(t_{(k+n-1) \bmod n}^{\prime}\right)
$$

is a string in $\in L\left(\right.$ reg_exp $\left._{2}\right)$. Thus,

$$
t_{k}^{\prime}: t_{(k+1) \bmod n}^{\prime} \cdots t_{(k+n-1) \bmod n}^{\prime}
$$

is the required instantiation of $R T_{2}$ in S.
We next show that the manner in which Detect_Ins_Opt traverses edges in the TSGD ensures it detects instantiations of regular terms in the TSGD. We first introduce the following additi notation.

Between the execution of any two steps ${ }^{3}$ of Detect_Ins_Opt, the contents of v, cur_st, Δ, anc $V_{_} \operatorname{set}\left(v_{i}\right)$ and $F _L i s t\left(v_{i}\right)$ for all $v_{i} \in V$ constitute a state $S t_{k}$ of Detect_Ins_Opt. We denote the cont of v, cur $_$st, Δ, $\operatorname{anc}\left(v_{i}\right), V_{_} \operatorname{set}\left(v_{i}\right)$, and $F_{_} \operatorname{List}\left(v_{i}\right)$ for any $v_{i} \in V$ in state $S t_{k}$ by $S t_{k} \cdot v, S t_{k} \cdot$.cur $S t_{k} \cdot \Delta, S t_{k} \cdot \operatorname{anc}\left(v_{i}\right), S t_{k} \cdot V_{-} \operatorname{set}\left(v_{i}\right)$ and $S t_{k} \cdot F_{-} L i s t\left(v_{i}\right)$ respectively. State changes in Detect_Ins_Opt caused by steps 1,3 and 4 . We refer to state transition $S t_{j} \rightarrow S t_{k}$ due to Step 3 as a forward transit while a state transition $S t_{j} \rightarrow S t_{k}$ due to Step 4 is referred to as a reverse transition. Also, two st $S t_{j}$ and $S t_{j}^{\prime}$ are said to be equivalent (denoted by $S t_{j} \equiv S t_{j}^{\prime}$) if $S t_{j} \cdot v=S t_{j}^{\prime} . v, S t_{j} . c u r_{-} s t=S t_{j}^{\prime}$.cur and for all $v_{i} \in V, S t_{j} \cdot \operatorname{anc}\left(v_{i}\right)=S t_{j}^{\prime} \cdot \operatorname{anc}\left(v_{i}\right), S t_{j} \cdot F_{-} \operatorname{List}\left(v_{i}\right)=S t_{j}^{\prime} \cdot F _$List $\left(v_{i}\right)$. Detect_Ins_Opt has following interesting property: if it makes a forward transition $S t_{j} \rightarrow S t_{k}$ and for a state $S t_{k}^{\prime} \equiv$ makes a reverse transition $S t_{k}^{\prime} \rightarrow S t_{j}^{\prime}$, then $S t_{j} \equiv S t_{j}^{\prime}$.

Lemma 2: If Detect_Ins_Opt does not return abort and during its execution, Detect_Ins_ is in state $S t_{k}$, then after a finite number of steps, it enters a state $S t_{k}^{\prime} \equiv S t_{k}$ such that no forw transitions from $S t_{k}^{\prime}$ are possible.

Proof: We prove the lemma by induction on num, the number of elements in $\left\{\left(s t, v_{1}, v\right.\right.$ $($ st is a state of $\left.F) \wedge\left(v_{1}, v_{2} \in V\right) \wedge\left(\left(s t, v_{1}\right) \notin V \operatorname{sect}\left(v_{2}\right)\right)\right\}$ in state $S t_{k}$.
procedure Detect_Ins_TSGD2((V,E, $\left.D, L), G_{i}, s_{k}, \operatorname{set}_{1}, R T\right)$:

1. For all nodes v in the TSGD, set $F_{-} \operatorname{list}(v)=[], \operatorname{anc}(v)=[], V_{-} \operatorname{set}(v)=\emptyset$. $v=s_{k}, F_{-} \operatorname{list}\left(s_{k}\right)=\left[\left(s t *, G_{i}\right)\right], \operatorname{anc}\left(s_{k}\right)=\left[\left(G_{i}, G_{i}\right)\right], F=F A(R T), V_{-} \operatorname{set}(s$, $\left\{\left(\right.\right.$ init_st $\left.\left._{F},\left(G_{i}, G_{i}\right)\right)\right\}$ and cur_st $=$ init_st $_{F}$. Set $\Delta=\emptyset$.
2. If, for every edge (v, u) one of the following is true:

- head $(\operatorname{anc}(v))[1]=u$.
- head $(\operatorname{anc}(v))[2]=u$.
- There is a dependency $(\operatorname{head}(\operatorname{anc}(v))[1], v) \rightarrow(v, u)$ in $D \cup \Delta$.
- There is a dependency $(h e a d(a n c(v))[2], v) \rightarrow(v, u)$ in $D \cup \Delta$.
- If $s t=s t_{F}($ cur_st, $\underline{L(v, u)})$ is defined then $(s t,(v, v)) \in V_{-} \operatorname{set}(u)$, and if $s t^{\prime}=s t_{F}\left(c u r_{_} s t, \overline{L(v, u)}\right)$ is defined then $\left(s t^{\prime},(\operatorname{head}(\operatorname{anc}(v))[1], u)\right) \in V _\operatorname{set}(v)$. then go to Step 4.

3. Choose an edge (v, u) such that
(a) $\operatorname{head}(\operatorname{anc}(v))[1] \neq u$, and
(b) head $(\operatorname{anc}(v))[2] \neq u$, and
(c) there is no dependency $(\operatorname{head}(a n c(v))[1], v) \rightarrow(v, u)$ in $D \cup \Delta$, and
(d) there is no dependency $(\operatorname{head}(\operatorname{anc}(v))[2], v) \rightarrow(v, u)$ in $D \cup \Delta$, and
(e) $s t=s t_{F}\left(c u r_{-} s t, L(v, u)\right)$ is defined and $(s t,(v, v)) \notin V _\operatorname{set}(u)$, or $s t^{\prime}=s t_{F}\left(c u r_{_} s t, \overline{L(v, u)}\right)$ is defined and $\left(s t^{\prime},(\operatorname{head}(\operatorname{anc}(v))[1], u)\right) \notin V _\operatorname{set}(v)$.

If $s t$ is defined and $(s t,(v, v)) \notin V _\operatorname{set}(u)$, then do

- If st is an accept state, $u \in \operatorname{set}_{1}$ and $v \neq G_{i}$, then $\Delta:=\Delta \cup\left\{(v, u) \rightarrow\left(u, G_{i}\right)\right\}$.
- F_list $(u):=\left(c u r_{_} s t, v\right) \circ F_{_} l i s t(u), \operatorname{anc}(u):=(v, v) \circ a n c(u)$, cur_st $:=s t$, V_set $($ $V _\operatorname{set}(u) \cup\{(s t,(v, v))\}, v:=u$. Go to Step 2.

If $s t^{\prime}$ is defined and $\left(s t^{\prime},(h e a d(a n c(v))[1], u)\right) \notin V _\operatorname{set}(v)$ then do

- If $s t^{\prime}$ is an accept state, $v \in \operatorname{set}_{1}, u \neq G_{i}$ and $\operatorname{head}(\operatorname{anc}(v))[1] \neq G_{i}$, then $\Delta \cup\left\{(\operatorname{head}(\operatorname{anc}(v))[1], v) \rightarrow\left(v, G_{i}\right)\right\}$.
- F_list $(v):=\left(c u r_{_} s t, v\right) \circ F_{-} l i s t(v), \operatorname{anc}(v):=(h e a d(\operatorname{anc}(v))[1], u) \circ a n c(v)$, cur_st $:$ $V _\operatorname{set}(v)=V _\operatorname{set}(v) \cup\left\{\left(s t^{\prime},(\operatorname{head}(\operatorname{anc}(v))[1], u)\right)\right\}$. Go to Step 2.

4. If head $\left(F_{-} l i s t(v)\right) \neq\left(s t *, G_{i}\right)$, then temp $1:=\operatorname{head}(F-l i s t(v))[1], \quad$ temp 2 $h e a d(F-l i s t(v))[2], F_{-} \operatorname{list}(v):=\operatorname{tail}(F-\operatorname{list}(v)), \operatorname{anc}(v)=\operatorname{tail}(\operatorname{anc}(v))$, cur_st $:=t e$ $v:=$ temp 2 and go to Step 2.
5. return(Δ).
procedure Detect_Ins_TSGD1 $\left((V, E, D, L), G_{i}, s_{k}, \operatorname{set}_{1}, R T\right)$:
6. For all nodes v in the TSGD, set $F_{-} \operatorname{list}(v)=[], \operatorname{anc}(v)=[], V_{\operatorname{set}}(v)=\emptyset$. Set v $F _\operatorname{list}\left(s_{k}\right)=\left[\left(s t *, G_{i}\right)\right], \operatorname{anc}\left(s_{k}\right)=\left[G_{i}\right], F=F A(R T), V_{-} \operatorname{set}\left(s_{k}\right)=\left\{\left(\right.\right.$ init_st $\left.\left._{F}, G_{i}\right)\right\}$ cur_st $=$ init_st $_{F}$. Set $\Delta=\emptyset$.
7. If, for every edge (v, u) one of the following is true:

- head $(\operatorname{anc}(v))=u$.
- There is a dependency $(\operatorname{head}(\operatorname{anc}(v)) \rightarrow(v, u))$ in $D \cup \Delta$.
- If $s t=s t_{F}\left(c u r_{-} s t, \underline{L(v, u)}\right)$ is defined then $(s t, v) \in V_{-} \operatorname{set}(u)$, and if $s t^{\prime}=s t_{F}($ cur_st, $\overline{L(v, u)})$ is defined then $\left(s t^{\prime}, \operatorname{head}(\operatorname{anc}(v))\right) \in V_{_} \operatorname{set}(v)$.
then go to Step 4.

3. Choose an edge (v, u) such that
(a) head $\operatorname{anc}(v)) \neq u$, and
(b) there is no dependency $(\operatorname{head}(\operatorname{anc}(v)) \rightarrow(v, u))$ in $D \cup \Delta$, and
(c) $s t=s t_{F}($ cur_st, $L(v, u))$ is defined and $(s t, v) \notin V _s e t(u)$, or $s t^{\prime}=s t_{F}($ cur_st, $\overline{L(v, u)})$ is defined and $\left(s t^{\prime}, \operatorname{head}(\operatorname{anc}(v))\right) \notin V _\operatorname{set}(v)$.

If $s t$ is defined and $(s t, v) \notin V _s e t(u)$, then do

- if st is an accept state, $u \in \operatorname{set}_{1}$ and $v \neq G_{i}$, then $\Delta:=\Delta \cup\left\{(v, u) \rightarrow\left(u, G_{i}\right)\right\}$.
- F_list $(u):=\left(c u r_{-} s t, v\right) \circ F_{_} l i s t(u), a n c(u):=v \circ a n c(u)$, cur_st $:=s t, V_{_} s e t($ $V _\operatorname{set}(u) \cup\{(s t, v)\}, v:=u$. Go to Step 2.

If $s t^{\prime}$ is defined and $\left(s t^{\prime}, \operatorname{head}(\operatorname{anc}(v))\right) \notin V_{-} \operatorname{set}(v)$, then do

- if $s t^{\prime}$ is an accept state, $v \in \operatorname{set}_{1}$ and $\operatorname{head}(\operatorname{anc}(v)) \neq G_{i}$, then $\Delta:=$ $\left\{(h e a d(\operatorname{anc}(v)), v) \rightarrow\left(v, G_{i}\right)\right\}$.
- $F_{-} l i s t(v):=\left(c u r_{_} s t, v\right) \circ F_{-} \operatorname{list}(v), \operatorname{anc}(v):=\operatorname{head}(\operatorname{anc}(v)) \circ \operatorname{anc}(v)$, cur_st $:=$ $V _\operatorname{set}(v)=V _\operatorname{set}(v) \cup\left\{\left(s t^{\prime}, \operatorname{head}(\operatorname{anc}(v))\right)\right\}$. Go to Step 2.

4. If head $\left(F_{-} \operatorname{list}(v)\right) \neq\left(s t *, G_{i}\right)$, then temp $1:=\operatorname{head}(F-l i s t(v))[1]$, temp 2 $h e a d\left(F_{-} \operatorname{list}(v)\right)[2], F_{-} \operatorname{list}(v):=\operatorname{tail}\left(F_{-} \operatorname{list}(v)\right), \operatorname{anc}(v)=\operatorname{tail}(\operatorname{anc}(v))$, cur_st $:=$ te $v:=$ temp 2 and goto Step 2.
5. return(Δ).

Figure 13: Procedure Detect_Ins_TSGD1
procedure Detect_Ins_TSG2($(V, E, L), G_{i}, s_{k}$, set $\left._{1} \operatorname{set}_{2}, R T\right)$:

1. For all nodes v in the TSG, set $F_{-} \operatorname{list}(v)=[], \operatorname{anc}(v)=\square, V_{-} \operatorname{set}(v)=\emptyset$. Set $v=s_{k}$, F_list $($ $\left[\left(s t *, G_{i}\right)\right], \operatorname{anc}\left(s_{k}\right)=\left[\left(G_{i}, G_{i}\right)\right], F=F A(R T), V_{_} \operatorname{set}\left(s_{k}\right)=\left\{\left(\right.\right.$ init_st $\left.\left._{F},\left(G_{i}, G_{i}\right)\right)\right\}$ and cur init_st $_{F}$. Set $\Delta=\emptyset$.
2. If, for every edge (v, u) one of the following is true:

- head $(\operatorname{anc}(v))[1]=u$ or $\operatorname{head}(\operatorname{anc}(v))[2]=u$.
- If $s t=s t_{F}($ cur_st, $L(v, u))$ is defined then
(a) there exist nodes $u_{2}, u_{3}, u_{2} \neq u_{3}$, such that $\left(s t,\left(v, u_{2}\right)\right) \in V_{-} \operatorname{set}(u),\left(s t,\left(v, u_{3}\right)\right) \in V_{-} s$ or
(b) $(s t,(v, v)) \in V_{-} \operatorname{set}(u)$,
and if $s t^{\prime}=s t_{F}($ cur_st, $\overline{L(v, u)})$ is defined then
(a) there exist nodes $u_{2}, u_{3}, u_{2} \neq u_{3}$, such that $\left(\operatorname{st}^{\prime},\left(\operatorname{head}(\operatorname{anc}(v))[1], u_{2}\right)\right) \in V_{-} s$ $\left(s t^{\prime},\left(h e a d(\operatorname{anc}(v))[1], u_{3}\right)\right) \in V_{-s e t}(v)$, or
(b) $\left(s t^{\prime},(\operatorname{head}(\operatorname{anc}(v))[1], u)\right) \in V _\operatorname{set}(v)$.
- $v \in\left(\operatorname{set}_{2} \cup \Delta\right)$ and $u=G_{i}$.
then go to Step 4.

3. Choose an edge (v, u) such that

- $\operatorname{head}(\operatorname{anc}(v))[1] \neq u$ and $\operatorname{head}(\operatorname{anc}(v))[2] \neq u$, and
- $s t=s t_{F}\left(c u r_{-} s t, L(v, u)\right)$ is defined and
(a) there do not exist nodes $u_{2}, u_{3}, u_{2} \neq u_{3}$, such that $\left(s t,\left(v, u_{2}\right)\right) \in V \operatorname{set}(u)$, $(s t,(v, u$ V _set (u), and
(b) $(s t,(v, v)) \notin V-\operatorname{set}(u)$,
or $s t^{\prime}=s t_{F}($ cur_st, $\overline{L(v, u)})$ is defined and
(a^{\prime}) there do not exist nodes $u_{2}, u_{3}, u_{2} \neq u_{3}$, such that $\left(s t^{\prime},\left(\operatorname{head}(\operatorname{anc}(v))[1], u_{2}\right)\right) \in V_{-}$ $\left(s t^{\prime},\left(\operatorname{head}(\operatorname{anc}(v))[1], u_{3}\right)\right) \in V_{-} \operatorname{set}(v)$, and
(b') $\left(s t^{\prime},(\operatorname{head}(\operatorname{anc}(v))[1], u)\right) \notin V_{-s e t}(v)$, and
- $v \notin\left(\right.$ set $\left._{2} \cup \Delta\right)$ or $u \neq G_{i}$.

If $s t$ is defined, $3(\mathrm{a})$ and $3(\mathrm{~b})$ then do

- If $s t$ is an accept state, $u \in \operatorname{set}_{1}$ and $v \neq G_{i}$, then $\Delta:=\Delta \cup\{u\}$.
- $F_{-} \operatorname{list}(u):=\left(c u r_{-} s t, v\right) \circ F_{-} \operatorname{list}(u), \operatorname{anc}(u):=(v, v) \circ a n c(u), c u r_{-} s t:=s t, V_{-} \operatorname{set}(u)=V_{-} s e$ $\{(s t,(v, v))\}, v:=u$. Go to Step 2.

If $s t^{\prime}$ is defined, $3\left(\mathrm{a}^{\prime}\right)$ and $3\left(\mathrm{~b}^{\prime}\right)$ then do

- If $s t^{\prime}$ is an accept state, $v \in \operatorname{set}_{1}, u \neq G_{i}$ and $\operatorname{head}(\operatorname{anc}(v))[1] \neq G_{i}$, then $\Delta:=\Delta \cup\{v\}$.
- F_list $(v):=\left(c u r _s t, v\right) \circ F_{l} \operatorname{list}(v), \operatorname{anc}(v):=(\operatorname{head}(\operatorname{anc}(v))[1], u) \circ \operatorname{anc}(v)$, cur_st $V _\operatorname{set}(v)=V \operatorname{set}(v) \cup\left\{\left(s t^{\prime},(\operatorname{head}(\operatorname{anc}(v))[1], u)\right)\right\}$. Go to Step 2.

4. If head $\left(F_{_} \operatorname{list}(v)\right) \neq\left(s t *, G_{i}\right)$, then temp $1:=\operatorname{head}\left(F_{-} \operatorname{list}(v)\right)[1]$, temp $2:=\operatorname{head}\left(F_{-} \operatorname{list}(?\right.$ $F_{-} \operatorname{list}(v):=\operatorname{tail}\left(F _\operatorname{list}(v)\right), \operatorname{anc}(v)=\operatorname{tail}(\operatorname{anc}(v)), c u r _s t:=\operatorname{temp} 1, v:=\operatorname{temp} 2$ and go to Step
5. return(Δ).
procedure Detect_Ins_TSG1 $\left((V, E, L), G_{i}, s_{k}\right.$, set $_{1}$, set $\left._{2}, R T\right)$:
6. For all nodes v in the TSG, set $F_{-} \operatorname{list}(v)=[], \operatorname{anc}(v)=[], V_{-} \operatorname{set}(v)=\emptyset$. Set $v=s_{k}, F _\operatorname{list}($ $\left[\left(s t *, G_{i}\right)\right], \operatorname{anc}\left(s_{k}\right)=\left[G_{i}\right], F=F A(R T), V_{-} \operatorname{set}\left(s_{k}\right)=\left\{\left(\right.\right.$ init_st $\left.\left._{F}, G_{i}\right)\right\}$ and cur_st $=$ init_st $_{F}$ $\Delta=\emptyset$.
7. If, for every edge (v, u) one of the following is true:

- If $s t=s t_{F}\left(c u r_{-} s t, L(v, u)\right)$ is defined then either
(a) $\operatorname{head}(\operatorname{anc}(v))=u$ or
(b) $(s t, v) \in V-\operatorname{set}(u)$ or
(c) there exist two distinct nodes v_{1}, v_{2} such that $\left(s t, v_{1}\right) \in V _$set (u) and $\left(s t, v_{2}\right) \in V _$set and if $s t^{\prime}=s t_{F}\left(\right.$ cur_st $\left.^{\prime}, \overline{L(v, u)}\right)$ is defined then either
(a) $\left(s t^{\prime}, \operatorname{head}(\operatorname{anc}(v))\right) \in V_{-} \operatorname{set}(v)$, or
(b) there exist two distinct nodes v_{1}, v_{2} such that $\left(s t^{\prime}, v_{1}\right) \in V_{-} \operatorname{set}(v)$ and $\left(s t^{\prime}, v_{2}\right) \in V_{-} s e$ - $v \in\left(\operatorname{set}_{2} \cup \Delta\right)$ and $u=G_{i}$.
then go to Step 4.

3. Choose an edge (v, u) such that

- $s t=s t_{F}($ cur_st, $L(v, u))$ is defined and
(a) $\operatorname{head}(\operatorname{anc}(v)) \neq u$, and
(b) $(s t, v) \notin V _\operatorname{set}(u)$, and
(c) there do not exist two distinct nodes v_{1}, v_{2} such that (st, $\left.v_{1}\right) \in V _\operatorname{set}(u)$ and (st, $V_{\text {_set }}(u)$,
or $s t^{\prime}=s t_{F}($ cur_st, $\overline{L(v, u)})$ is defined and
($\left.\mathrm{a}^{\prime}\right)\left(s^{\prime}, h e a d(\operatorname{anc}(v))\right) \notin V_{-} \operatorname{set}(v)$, and
- there do not exist two distinct nodes v_{1}, v_{2} such that $\left(s t^{\prime}, v_{1}\right) \in V_{-} \operatorname{set}(v)$ and ($s t^{\prime}$, V _set(v), and
- $v \notin\left(\right.$ set $\left._{2} \cup \Delta\right)$ or $u \neq G_{i}$.

If $s t$ is defined, $3(\mathrm{a}), 3(\mathrm{~b})$ and $3(\mathrm{c})$, then do

- If $s t$ is an accept state, $u \in \operatorname{set}_{1}$ and $v \neq G_{i}$, then $\Delta:=\Delta \cup\{u\}$.
- $F_{-} l i s t(u):=\left(c u r_{-} t, v\right) \circ F_{-} l i s t(u), \operatorname{anc}(u):=v \circ \operatorname{anc}(u)$, cur_st $:=s t, V _s e t(u)=V _s e t$ $\{(s t, v)\}, v:=u$. Go to Step 2.

If $s t^{\prime}=s t_{F}($ cur_st,$\overline{L(v, u)})$ is defined, $3\left(\mathrm{a}^{\prime}\right)$ and $3\left(\mathrm{~b}^{\prime}\right)$, then do

- If $s t^{\prime}$ is an accept state, $v \in \operatorname{set}_{1}$ and $\operatorname{head}(\operatorname{anc}(v)) \neq G_{i}$, then $\Delta:=\Delta \cup\{v\}$.
- F_list $(v):=\left(c u r_{-} s t, v\right) \circ F_{-} l i s t(v), \operatorname{anc}(v):=h e a d(\operatorname{anc}(v)) \circ \operatorname{anc}(v), c u r_{_} s t:=s t^{\prime}, V _s e t$ $V _\operatorname{set}(v) \cup\left\{\left(s t^{\prime}, \operatorname{head}(\operatorname{anc}(v))\right)\right\}$. Go to Step 2.

4. If head $\left(F_{-} l i s t(v)\right) \neq\left(s t *, G_{i}\right)$, then $\operatorname{temp} 1:=\operatorname{head}\left(F_{-} l i s t(v)\right)[1]$, temp $2:=\operatorname{head}\left(F_{-} \operatorname{list}(?\right.$ $F_{-} l i s t(v):=\operatorname{tail}\left(F_{-} l i s t(v)\right), \operatorname{anc}(v)=\operatorname{tail}(\operatorname{anc}(v)), c u r_{-} s t:=t e m p 1, v:=\operatorname{temp} 2$, and go to Step
5. return(Δ).

Appendix -A- : Procedures

procedure Detect_Ins_Opt $\left((V, E, D, L), G_{i}, s_{k}, \operatorname{set}_{1}, R T\right)$:

1. For all nodes v in the TSGD, set $F _\operatorname{list}(v)=[]$ ([] is the empty list), $\operatorname{anc}(v)=[], V _\operatorname{set}(v)$ Set $v=s_{k}, F_{-} \operatorname{list}\left(s_{k}\right)=\left[\left(s t *, G_{i}\right)\right](s t *$ is a special termination state $)$, anc $\left(s_{k}\right)=$ $F=F A(R T), V_{-} \operatorname{set}\left(s_{k}\right)=\left\{\left(i n i t_{-} s t_{F}, G_{i}\right)\right\}$ and cur_st $=$ init_st $_{F}$.
2. If, for every edge (v, u) one of the following is true:

- head $(\operatorname{anc}(v))=u$.
- There is a dependency $(\operatorname{head}(a n c(v)), v) \rightarrow(v, u)$ in D.
- if $s t=s t_{F}($ cur_st, $L(v, u))$ is defined then $(s t, v) \in V_{_} \operatorname{set}(u)$, and if $s t^{\prime}=s t_{F}($ cur_st, $\overline{L(v, u)})$ is defined then $\left(s t^{\prime}, u\right) \in V_{-} \operatorname{set}(v)$. then go to Step 4.

3. Choose an edge (v, u) such that
(a) $h e a d(\operatorname{anc}(v)) \neq u$, and
(b) there is no dependency $(\operatorname{head}(\operatorname{anc}(v)), v) \rightarrow(v, u)$ in D, and
(c) $s t=s t_{F}($ cur_st, $L(v, u))$ is defined and $(s t, v) \notin V_{_} \operatorname{set}(u)$, or $s t^{\prime}=s t_{F}\left(c u r_{_} s t, \overline{L(v, u)}\right)$ is defined and $\left(s t^{\prime}, u\right) \notin V_{-} \operatorname{set}(v)$.

If $s t$ is defined and $(s t, v) \notin V _\operatorname{set}(u)$ then do

- If $s t$ is an accept state, $u \in \operatorname{set}_{1}, v \neq G_{i}$ and there is no dependency $(v, u) \rightarrow(u, C$ D, then return(abort).
- F_list $(u):=\left(c u r_{_} s t, v\right) \circ F _l i s t(u), a n c(u)=v \circ a n c(u), c u r_{_} s t:=s t, V _s e t($ $(s t, v) \cup V_{-} \operatorname{set}(u), v:=u$. Go to Step 2.

If $s t^{\prime}$ is defined and $\left(s t^{\prime}, u\right) \notin V _\operatorname{set}(v)$ then do

- If $s t^{\prime}$ is an accept state, $v \in \operatorname{set}_{1}, u \neq G_{i}$ and there is no dependency $(u, v) \rightarrow(v$ then return(abort).
- F_list $(v):=\left(c u r_{_} s t, v\right) \circ F _l i s t(v), a n c(v)=u \circ a n c(v), c u r_{-} s t:=s t^{\prime}, V_{_} s e t($ $\left(s t^{\prime}, u\right) \cup V _\operatorname{set}(v)$. Go to Step 2.

4. If head $\left(F_{-} l i s t(v)\right) \neq\left(s t *, G_{i}\right)$, then temp $1:=\operatorname{head}\left(F_{-} l i s t(v)\right)[1]$, temp 2 $h e a d\left(F _l i s t(v)\right)[2], \operatorname{anc}(v)=\operatorname{tail}(\operatorname{anc}(v)), F_{-} \operatorname{list}(v):=\operatorname{tail}\left(F _l i s t(v)\right)$, cur_st $:=t \epsilon$ $v:=$ temp 2 and go to Step 2.

5. return(commit).

