
W

k

X

k

V

k

U

k

Y

k

c

c

c

c

M

ij

L

ij

N

ij

P

ij

O

ij

b

a

b

a

R

ijk

S

ijk

T

ijk

F

ijk

G

ijk

H

ijk

a

b

a

b

b

a

b

a

Figure 25: Dependencies in case l

ij

= x

k

Similarly, it can be shown that (V;E;D [�; L) cannot contain any strong-cycles consistent with

RT

1

and RT

2

if x

k

is assigned false. Thus, (V;E;D[�; L) cannot contain any strong-cycles consistent

with either RT

1

or RT

2

, and is strongly-acyclic with respect to R. 2

61

only if: Suppose there exists an assignment of truth values to literals such that C is satis�able.

We show that there exists a set of dependencies � such that D [� is consistent and (V;E;D [�; L)

is strongly-acyclic with respect to R. We specify the dependencies in the set �. For every literal x

k

,

dependency (U

k

; V

k

)!(V

k

;W

k

) is added to � if x

k

is assigned true, else if �x

k

is assigned true, then

(W

k

; V

k

)!(V

k

; U

k

) is added to � (since only one of x

k

or �x

k

is true in the assignment, addition of the

dependencies to � does not make D [� inconsistent). Also, for all l

ij

, if l

ij

is true in the assignment,

then dependency (N

ij

; O

ij

)!(O

ij

; P

ij

) is added to �, else dependency (P

ij

; O

ij

)!(O

ij

; N

ij

) is added

to �. From the construction of �, it trivially follows that D [� is consistent. We show that it is

impossible for (V;E;D[�; L) to contain any strong-cycles that are consistent with either RT

1

or RT

2

.

We �rst show that (V;E;D [�; L) cannot contain any strong-cycles consistent with RT

1

. Any

strong-cycle consistent with RT

1

cannot contain nodes R

ijk

; S

ijk

; T

ijk

; F

ijk

; G

ijk

or H

ijk

due to depen-

dencies (R

ijk

; S

ijk

)!(S

ijk

; T

ijk

) and (H

ijk

; G

ijk

)!(G

ijk

; F

ijk

). Furthermore, since for every clause C

i

,

there exists a literal l

ij

that is assigned true, dependency (N

ij

; O

ij

)!(O

ij

; P

ij

) is added to �. Thus,

there cannot be any strong-cycle consistent with RT

1

in (V;E;D [�; L) involving nodes N

ij

, O

ij

and

P

ij

, j = 1; 2; 3. Thus, there are no strong-cycles consistent with RT

1

in (V;E;D [�; L).

we now show that (V;E;D [�; L) does not contain any strong-cycles consistent with RT

2

. Any

strong-cycle consistent with RT

2

cannot involve any of the nodes N

0

ij

, O

0

ij

or P

0

ij

due to the dependency

(P

0

ij

; O

0

ij

)!(O

0

ij

; N

0

ij

), and must involve nodes M

ij

; P

ij

; O

ij

; N

ij

; L

ij

; F

ijk

; G

ijk

; H

ijk

; X

k

; U

k

; V

k

;

W

k

; Y

k

; T

ijk

; S

ijk

; R

ijk

, for some literal l

ij

= x

k

or �x

k

. Let us assume that x

k

is true in the assignment.

We consider the following two cases:

l

ij

= �x

k

: In this case (as shown in Figure 24), since l

ij

is false in the assignment, dependency

(P

ij

; O

ij

)!(O

ij

; N

ij

) is added to � and thus, it is impossible for there to be any strong-cycle consistent

with RT

2

involving nodes P

ij

; O

ij

; N

ij

.

W

k

X

k

V

k

U

k

Y

k

c

c

c

c

M

ij

L

ij

N

ij

P

ij

O

ij

b

a

b

a

R

ijk

S

ijk

T

ijk

F

ijk

G

ijk

H

ijk

a b

a b

a

bab

Figure 24: Dependencies in case l

ij

= �x

k

l

ij

= x

k

: In this case (as shown in Figure 25), since dependency (U

k

; V

k

)!(V

k

;W

k

) is added to �,

there cannot be a strong-cycle consistent with RT

2

involving nodes P

ij

; O

ij

; N

ij

and nodes U

k

; V

k

;W

k

.

60

a

b

a

b

b

a

b

a

H

ijk

G

ijk

F

ijk

T

ijk

S

ijk

R

ijk

a

b

a

b

O

ij

P

ij

N

ij

L

ij

M

ij

c

c

c

c

Y

k

U

k

V

k

X

k

W

k

Figure 22: Dependencies in case l

ij

= x

k

l

ij

= �x

k

: In this case (as shown in Figure 23), dependency (W

k

; V

k

)!(V

k

; U

k

) must belong to �, else

there would be a strong-cycle in the TSGD (V;E;D[�; L) consistent with RT

2

. Since � is consistent,

only one of (W

k

; V

k

)!(V

k

; U

k

) or (U

k

; V

k

)!(V

k

;W

k

) can belong to �. Thus, (U

k

; V

k

)!(V

k

;W

k

) does

not belong to �, and x

k

is assigned false (�x

k

is assigned true).

b a b

a

ba

ba

H

ijk

G

ijk

F

ijk

T

ijk

S

ijk

R

ijk

a

b

a

b

O

ij

P

ij

N

ij

L

ij

M

ij

c

c

c

c

Y

k

U

k

V

k

X

k

W

k

Figure 23: Dependencies in case l

ij

= �x

k

Thus, since there exists an assignment of truth values to literals such that in every conjunct C

i

there is a literal that is assigned a value true, C is satis�able.

59

W

k

X

k

V

k

U

k

Y

k

c

c

c

c

M

ij

L

ij

N

ij

P

ij

O

ij

b

a

b

a

R

ijk

S

ijk

T

ijk

F

ijk

G

ijk

H

ijk

a b

a b

a

bab

Figure 21: Nodes and edges if l

ij

= �x

k

R

ijk

, T

ijk

, F

ijk

and H

ijk

are transaction nodes, while G

ijk

and S

ijk

are site nodes. Subtrans-

actions of R

ijk

, T

ijk

, F

ijk

and H

ijk

at sites S

ijk

, Y

k

, L

ij

and G

ijk

respectively are of type b, while

subtransactions of R

ijk

, T

ijk

, F

ijk

and H

ijk

at sites M

ij

, S

ijk

, G

ijk

and X

k

are of type a. Note

that there are at most three edges incident on L

ij

and M

ij

. Also, there are two edges incident on

each of P

ij

; O

ij

; N

ij

; R

ijk

; S

ijk

; T

ijk

; F

ijk

; G

ijk

; H

ijk

; U

k

; V

k

;W

k

; P

0

ij

; O

0

ij

; N

0

ij

. Note that the TSGD can

be constructed in O(p+ q) steps.

The regular speci�cation R contains two regular terms, RT

1

and RT

2

, RT

1

= (A : a; b) : (A : a; b)+,

RT

2

= (A : c; c) : ((A : b; a) + (A : c; c))+. We show that C is satis�able i� there exist a set of

dependencies � such that D [� is consistent and (V;E;D [�; L) is strongly-acyclic with respect to

R.

if: Let us assume there exists a set of dependencies � such that (V;E;D[�; L) is strongly-acyclic

with respect to R and D [� is consistent. We need to show that there exists an assignment of truth

values to literals such that C is satis�able. We assign truth values to literals as follows. If dependency

(U

k

; V

k

)!(V

k

;W

k

) 2 �, then literal x

k

is assigned true, else x

k

is assigned false (�x

k

is assigned true).

Thus, only one of x

k

or �x

k

is assigned true.

We further need to show that in every clause C

i

, there is at least one literal that is true. Since

(V;E;D [�; L) is strongly-acyclic with respect to R, for every clause C

i

, for some l

ij

, j = 1; 2; 3,

there must be a dependency (N

ij

; Oij)!(O

ij

; P

ij

) (else there would be a strong-cycle in the TSGD

(V;E;D [�; L) consistent with RT

1

). We show that l

ij

must be assigned true, for which we need to

consider the following two cases:

l

ij

= x

k

: In this case (as shown in Figure 22), dependency (U

k

; V

k

)!(V

k

;W

k

) must belong to �,

else there would be a strong-cycle in the TSGD (V;E;D [�; L) consistent with RT

2

. Thus, x

k

is

assigned true.

58

more understandable). For all j = 1; 2; 3, nodes P

ij

; N

ij

; P

0

ij

and N

ij

are transaction nodes while nodes

M

ij

; O

ij

; L

ij

and O

0

ij

are site nodes. Subtransactions of P

ij

, N

ij

, P

0

ij

and N

0

ij

at sites O

ij

, L

ij

, O

0

ij

and M

ij

respectively are of type a; while subtransactions of P

ij

, N

ij

, P

0

ij

and N

0

ij

at sites M

ij

, O

ij

,

L

i(jmod3)+1

and O

0

ij

respectively are of type b. Furthermore, for every literal x

k

, we include the nodes

and edges shown in Figure 19 in the TSGD.

c

c

c

c

X

k

W

k

V

k

U

k

Y

k

Figure 19: Nodes and edges for literal x

k

U

k

and W

k

are transaction nodes, while Y

k

, V

k

and X

k

are site nodes. Subtransactions of U

k

and

W

k

at sites Y

k

, V

k

and X

k

are of type c. Also, we introduce additional edges and dependencies in the

TSGD depending on whether l

ij

= x

k

or l

ij

= �x

k

. If l

ij

= x

k

, then the nodes, edges and dependencies

illustrated in Figure 20 are added to the TSGD.

W

k

X

k

V

k

U

k

Y

k

c

c

c

c

M

ij

L

ij

N

ij

P

ij

O

ij

b

a

b

a

R

ijk

S

ijk

T

ijk

F

ijk

G

ijk

H

ijk

a

b

a

b

b

a

b

a

Figure 20: Nodes and edges if l

ij

= x

k

On the other hand, if l

ij

= �x

k

, then we include nodes, edges and dependencies in the TSGD shown

in Figure 21.

57

N

i2

M

i1

L

i1

L

i2

M

i2

L

i3

M

i3

P

i1

O

i1

N

i1

N

0

i1

P

0

i1

O

i2

P

i2

N

0

i2

O

0

i2

P

0

i2

N

i3

O

i3

P

i3

N

0

i3

P

0

i3

a

a

a

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

b

b

b

O

0

i1

O

0

13

Figure 18: Structure for clause C

i

Proof of Theorem 8: The above problem is in NP since a non-deterministic algorithm only needs

to guess a set � such that there are dependencies between any two edges in the TSGD. � can contain

at most jEj

2

dependencies since there can be at most jEj

2

dependencies in the TSGD (V;E;D;L).

The algorithm then needs to check if (1) D [� is consistent, and (2) for every regular term RT in R

and every node v in the TSGD, if there is a strong-cycle consistent with RT involving v in the TSGD.

Step 1 can be performed in polynomial time and involves detecting cycles in a directed graph. Step 2

, too, can be performed in polynomial time using an algorithm similar to Detect Ins Opt that given

arguments a TSGD such that between any two edges there is a dependency, a node v in the TSGD and

a regular term RT , precisely detects if the TSGD contains a strong-cycle involving v that is consistent

with RT .

We show a polynomial transformation from 3-SAT to the above problem. Consider a 3-SAT formula

C = C

1

^ C

2

^ � � � ^ C

p

that is de�ned over literals x

1

; x

2

; : : : ; x

q

. Let l

ij

denote the literal in clause

C

i

, i = 1; 2; : : : ; p, in position j, j = 1; 2; 3 (l

ij

could be either x

k

or �x

k

, for some k = 1; 2; : : : ; q).

We construct a TSGD (V;E;D; L) and a regular expression R such that C is satis�able if and only

if there exists a set of dependencies � such that D [� is consistent, and the TSGD (V;E;D [�; L)

is strongly-acyclic with respect to R. Every global transaction in the MDBS has type A, that is,

g� = fAg. Local DBMSs export procedures whose types are one of a, b or c, that is, l� = fa; b; cg.

We construct the TSGD as follows. For every clause C

i

, the TSGD contains the structure shown in

Figure 18 (edges are labeled with subtransaction types in order to make the construction of the TSGD

56

� (x

i

; b

0

i

); (b

0

i

; N

i1

); (N

i1

; Z

i1

); (Z

i1

; Y

i1

); (Y

i1

; neg

i

(1)); (neg

i

(1); N

i2

); (N

i2

; Z

i2

); : : : ;

(Y

ijneg

i

j

; neg

i

(jneg

i

j)); (neg

i

(jneg

i

j); N

i(jneg

i

+1)

); (N

i(jneg

i

+1)

; e

0

i

); (e

0

i

; x

i+1

), if jneg

i

j > 0,

� (x

i

; b

0

i

); (b

0

i

; N

i1

); (N

i1

; e

0

i

); (e

0

i

; x

i+1

), if jneg

i

j = 0,

This is mainly due to

� the dependency (x

1

; s

0

)! (s

0

; C

p+1

), and for all i = 1; 2; : : : ; p, dependencies (x

i+1

; e

i

)!

(e

i

; P

i(jpos

i

j+1)

), (x

i+1

; e

0

i

)! (e

0

i

; N

i(jneg

i

j+1)

) in D, and

� for all l

ij

= pos

r

(k), only two edges are incident on each of P

rk

, X

rk

and W

rk

, and dependencies

(W

rk

; l

ij

)! (l

ij

; R

ij

) 2 D and (B

ij

; A

ij

)! (A

ij

; C

i

) 2 D (a similar argument can be used if

l

ij

= neg

r

(k)).

Finally the strong-cycle contains the edges (x

q+1

; s

2

) and (s

2

; G

i

). Note that no node in the strong-cycle

is visited more than once. Trivially, all the nodes other than l

ij

appear only once in the strong-cycle.

Furthermore, if l

ij

= pos

r

(k) (the argument if l

ij

= neg

r

(k) is similar), then l

ij

cannot be in the sequence

of edges between both C

i

and C

i+1

as well as x

r

and x

r+1

since D[f(R

ij

; l

ij

)!(l

ij

; B

ij

); (P

r(k+1)

; l

ij

)!

(l

ij

;W

rk

)g is inconsistent, and the sequence of edges are in a strong-cycle.

We now show that there exists an assignment of truth values to x

k

for all k = 1; 2; : : : ; q, such

that for all i = 1; 2; : : : ; p, for some j = 1; 2; 3, l

ij

is assigned true, and thus C is satis�able. For all

i = 1; 2; : : : ; p, for all j = 1; 2; 3, l

ij

is assigned true i� the edges (B

ij

; l

ij

); (l

ij

; R

ij

) are in the strong-

cycle. This assignment causes C to be true since as shown earlier, for all i = 1; 2; : : : ; p, for some

j = 1; 2; 3, edges (B

ij

; l

ij

); (l

ij

; R

ij

) are in the strong-cycle.

Further, it is not possible that for some k = 1; 2; : : : ; q, x

k

and �x

k

are both assigned true. If x

k

and

�x

k

are both assigned true, then there must exist symbols l

ij

and l

rs

such that edges (B

ij

; l

ij

); (l

ij

; R

ij

),

(B

rs

; l

rs

); (l

rs

; R

rs

) are in the strong-cycle, and l

ij

= x

k

, l

rs

= �x

k

. Thus, jneg

k

j > 0, jpos

k

j > 0,

l

ij

= pos

k

(u), for some u, u = 1; 2; : : : ; jpos

k

j, and l

rs

= neg

k

(v), for some v, v = 1; 2; : : : ; jneg

k

j.

However, this is not possible, since as we showed earlier, one of l

ij

and l

rs

is also in the sequence of

edges between x

k

and x

k+1

in the strong-cycle, and the strong-cycle does not visit a node more than

once. 2

We now show that the problem of computing a set of dependencies, �, that is strongly-minimal

with respect to (V;E;D; L) and G

i

, is NP-hard.

Proof of Theorem 7: We show that the NP-complete problem of determining if �

0

= ; is

not strongly-minimal with respect to G

i

and (V;E;D;L) can be Turing-reduced to the problem of

computing a � such that D [� is consistent and � is strongly-minimal with respect to G

i

and

(V;E;D; L).

Consider a subroutine S((V;E;D; L); G

i

) that returns a set of dependencies � such that D [� is

consistent and � is strongly-minimal with respect to G

i

and (V;E;D; L) (note that such a � always

exists if (V;E;D;L) satis�es the conditions mentioned in the theorem). An algorithm for solving the

problem of determining if �

0

= ; is not strongly-minimal with respect to G

i

and (V;E;D;L) �rst

calls S((V;E;D;L);G

i

). If the set of dependencies � returned by S is non-empty, then the algorithm

responds \yes" (since if �

0

= ; is strongly-minimal with respect to G

i

and (V;E;D;L), then a non-

empty � cannot be strongly-minimal with respect to G

i

and (V;E;D; L), and S would return ;). If,

on the other hand, the set of dependencies � returned by S is ;, then the algorithm responds \no"

(since �

0

= ; is strongly-minimal with respect to (V;E;D;L) and G

i

). 2

We now prove Theorem 8.

55

cycle. Since C is satis�able, there exists an assignment of truth values to x

k

, for all k = 1; 2; : : : ; q,

such that for all i = 1; 2; : : : ; p, for some j = 1; 2; 3, l

ij

is assigned true. We now specify the edges

in the strong-cycle. Edge sequence (G

i

; s

1

)(s

1

; C

1

) is in the strong-cycle. For all i = 1; 2; : : : ; p, the

edge sequence (C

i

; A

ij

)(A

ij

; B

ij

)(B

ij

; l

ij

)(l

ij

; R

ij

)(R

ij

; Q

ij

)(Q

ij

; C

i+1

) is in the strong-cycle, for some

j = 1; 2; 3 such that l

ij

is true in the assignment. Edges (C

p+1

; s

0

); (s

0

; x

1

) are also in the strong-cycle.

For all i = 1; 2; : : : ; q, if x

i

is false in the assignment, then the following edges are in the strong-cycle:

� (x

i

; b

i

); (b

i

; P

i1

); (P

i1

; X

i1

); (X

i1

;W

i1

); (W

i1

; pos

i

(1)); (pos

i

(1); P

i2

); (P

i2

; X

i2

); : : : ;

(W

ijpos

i

j

; pos

i

(jpos

i

j)); (pos

i

(jpos

i

j); P

i(jpos

i

+1)

); (P

i(jpos

i

+1)

; e

i

); (e

i

; x

i+1

), if jpos

i

j > 0,

� (x

i

; b

i

); (b

i

; P

i1

); (P

i1

; e

i

); (e

i

; x

i+1

), if jpos

i

j = 0,

else if x

i

is true in the assignment, the strong-cycle contains the edges:

� (x

i

; b

0

i

); (b

0

i

; N

i1

); (N

i1

; Z

i1

); (Z

i1

; Y

i1

); (Y

i1

; neg

i

(1)); (neg

i

(1); N

i2

); (N

i2

; Z

i2

); : : : ;

(Y

ijneg

i

j

; neg

i

(jneg

i

j)); (neg

i

(jneg

i

j); N

i(jneg

i

+1)

); (N

i(jneg

i

+1)

; e

0

i

); (e

0

i

; x

i+1

), if jneg

i

j > 0,

� (x

i

; b

0

i

); (b

0

i

; N

i1

); (N

i1

; e

0

i

); (e

0

i

; x

i+1

), if jneg

i

j = 0,

Finally, the sequence of edges (x

p+1

; s

2

)(s

2

; G

i

) are in the strong-cycle.

In the above choice of edges, we show that no node appears more than once in the strong-cycle.

Nodes other than l

ij

, trivially, appear only once. For any node l

ij

, it is in the sequence of edges between

nodes C

i

and C

i+1

only if l

ij

is true in the assignment. If l

ij

= pos

r

(k), then l

ij

= x

r

, and since x

r

is true in the assignment, l

ij

is not among the nodes in the sequence of edges between x

r

and x

r+1

.

Similarly, if l

ij

= neg

r

(k), then l

ij

= �x

r

, and since x

r

is false in the assignment, l

ij

is not among the

nodes in the sequence of edges between x

r

and x

r+1

. Thus, since

� for any consecutive edges (v

1

; v

2

); (v

2

; v

3

) in the sequence, v

1

6= v

3

and dependency (v

1

; v

2

)!

(v

2

; v

3

) 62 D, and

� for all l

ij

= pos

r

(k), D [f(R

ij

; l

ij

)!(l

ij

; B

ij

) is consistent and D [f(P

r(k+1)

; l

ij

)!(l

ij

;W

rk

)g is

consistent, and

� for all l

ij

= neg

r

(k), D [f(R

ij

; l

ij

)!(l

ij

; B

ij

) is consistent and D [f(N

r(k+1)

; l

ij

)!(l

ij

; Y

rk

)g is

consistent,

the above sequence of edges constitute a strong-cycle involving G

i

in the TSGD.

We now show that if there is a strong-cycle involving G

i

in the TSGD, then there exists an assign-

ment of truth values to literals such that C is satis�able. Any strong-cycle involving G

i

in the TSGD

must contain the sequence of edges (G

i

; s

1

)(s

1

; C

1

). Further, we claim that for all i = 1; 2; : : : ; p, the

sequence of edges (C

i

; A

ij

)(A

ij

; B

ij

)(B

ij

; l

ij

)(l

ij

; R

ij

); (R

ij

; Q

ij

)(Q

ij

; C

i+1

) are in the strong-cycle, for

some j = 1; 2; 3. This follows from the fact that there are dependencies (C

r+1

; Q

rs

)!(Q

rs

; R

rs

), for

all r = 1; 2; : : : ; p, for all s = 1; 2; 3 and also if l

ij

= pos

r

(k), then the dependencies (W

rk

; X

rk

)!

(X

rk

; P

rk

) 2 D and (B

ij

; l

ij

)!(l

ij

; P

r(k+1)

) 2 D (a similar set of dependencies can be identi�ed in case

l

ij

= neg

r

(k)). Thus, the strong-cycle also contains edges (C

p+1

; s

0

); (s

0

; x

1

).

Also, for all i = 1; 2; : : : ; q, the strong-cycle contains either edges

� (x

i

; b

i

); (b

i

; P

i1

); (P

i1

; X

i1

); (X

i1

;W

i1

); (W

i1

; pos

i

(1)); (pos

i

(1); P

i2

); (P

i2

; X

i2

); : : : ;

(W

ijpos

i

j

; pos

i

(jpos

i

j)); (pos

i

(jpos

i

j); P

i(jpos

i

+1)

); (P

i(jpos

i

+1)

; e

i

); (e

i

; x

i+1

), if jpos

i

j > 0,

� (x

i

; b

i

); (b

i

; P

i1

); (P

i1

; e

i

); (e

i

; x

i+1

), if jpos

i

j = 0,

or edges

54

R

13

Q

13

Q

12

R

12

Q

11

R

11

e

0

3

b

0

3

e

0

2

b

0

2

e

3

b

3

e

2

b

2

P

32

N

31

N

22

P

21

N

11

P

12

e

0

1
b

0

1

e

1

b

1

W

31

X

31

Y

21

Z

21

X

11

W

11

P

11

N

21

P

31

x

3

x

2

x

4

s

2

G

i

s

0

s

1

x

1

C

2

B

13

B

12

B

11

A

13

A

12

A

11

l

11

l

12

l

13

C

1

Figure 17: TSGD

only if r < s). In addition, there is no strong-cycle in (V

0

; E

0

; D

0

; L

0

) consisting of transaction nodes from

both S

1

and S

2

since such a strong-cycle must contain the sequence of edges (v

1

; l

ij

)(l

ij

; v

2

), for some site

node l

ij

, v

1

2 S

2

and v

2

2 S

1

(s

0

and l

ij

are the only site nodes that have edges to transaction nodes in

both S

1

and S

2

, and due to the dependency (x

1

; s

0

)!(s

0

; C

p+1

), the sequence of edges (x

1

; s

0

)(s

0

; C

p+1

)

cannot be in a strong-cycle). Let l

ij

= pos

r

(k) (the argument if l

ij

= neg

r

(k) is similar). Node v

1

cannot

be P

r(k+1)

since if k < jpos

r

j, then only two edges are incident on each of P

r(k+1)

and X

r(k+1)

, and the

edges preceding (v

1

; l

ij

) in the strong-cycle must be the sequence (W

r(k+1)

; X

r(k+1)

)(X

r(k+1)

; P

r(k+1)

).

However, due to the dependency (W

r(k+1)

; X

r(k+1)

)!(X

r(k+1)

; P

r(k+1)

), this is not possible. On the

other hand, if k = jpos

r

j, then since only two edges are incident on each of P

r(jpos

r

j+1)

and e

r

, the

edges preceding (v

1

; l

ij

) in the strong-cycle must be the sequence (x

r+1

; e

r

)(e

r

; P

r(jpos

r

j+1)

). However,

due to the dependency (x

r+1

; e

r

)!(e

r

; P

r(k+1)

), this is not possible. Thus, v

1

= W

rk

. However, due

to the dependency (W

rk

; l

ij

)!(l

ij

; R

ij

), v

2

6= R

ij

. Thus, it must be the case that v

2

= B

ij

. However,

since only two edges are incident on A

ij

and B

ij

, the sequence of edges immediately following B

ij

in

the cycle must be (B

ij

; A

ij

)(A

ij

; C

i

) which is not possible due to the dependency (B

ij

; A

ij

)!(A

ij

; C

i

).

Thus, there can be no strong-cycle in (V

0

; E

0

; D

0

; L

0

) consisting of transaction nodes from both S

1

and

S

2

, and (V

0

; E

0

; D

0

; L

0

) is strongly-acyclic.

We now show that C is satis�able i� (V;E;D;L) contains a strong-cycle involving G

i

. If C is

satis�able, we show that there is a strong-cycle involving G

i

by specifying the edges in the strong-

53

{ (x

i

; b

0

i

); (b

0

i

; N

i1

); (N

i1

; Z

i1

); (Z

i1

; Y

i1

); (Y

i1

; neg

i

(1)); (neg

i

(1); N

i2

); (N

i2

; Z

i2

); : : : ;

(Y

ijneg

i

j

; neg

i

(jneg

i

j)); (neg

i

(jneg

i

j); N

i(jneg

i

j+1)

); (N

i(jneg

i

j+1)

; e

0

i

); (e

0

i

; x

i+1

), if jneg

i

j > 0,

{ (x

i

; b

0

i

); (b

0

i

; N

i1

); (N

i1

; e

0

i

); (e

0

i

; x

i+1

), if jneg

i

j = 0,

� (x

q+1

; s

2

); (s

2

; G

i

); (G

i

; s

1

); (s

1

; C

1

).

Note that there are two edges incident on each of the symbols e

i

, e

0

i

, b

i

, b

0

i

, A

ij

, B

ij

, Q

ij

, R

ij

, P

ij

, W

ij

,

X

ij

, N

ij

Y

ij

and Z

ij

. In addition, there are four edges incident on every symbol l

ij

.

� If l

ij

= pos

r

(k), there are edges (B

ij

; l

ij

), (l

ij

; R

ij

), (W

rk

; l

ij

) and (l

ij

; P

r(k+1)

) in the TSGD.

� If l

ij

= neg

r

(k), there are edges (B

ij

; l

ij

), (l

ij

; R

ij

), (Y

rk

; l

ij

) and (l

ij

; N

r(k+1)

) in the TSGD.

The set of dependencies D consist of

� (B

ij

; A

ij

)!(A

ij

; C

i

), (C

i+1

; Q

ij

)!(Q

ij

; R

ij

), for all i = 1; 2; : : : ; p, for all j = 1; 2; 3,

� (x

1

; s

0

)!(s

0

; C

p+1

),

� for i = 1; 2; : : : ; q,

{ (P

i1

; b

i

)!(b

i

; x

i

); (W

i1

; X

i1

)!(X

i1

; P

i1

); (W

i2

; X

i2

)!(X

i2

; P

i2

); : : : ;

(W

ijpos

i

j

; X

ijpos

i

j

)!(X

ijpos

i

j

; P

ijpos

i

j

); (x

i+1

; e

i

)!(e

i

; P

i(jpos

i

j+1)

), if jpos

i

j > 0,

{ (P

i1

; b

i

)!(b

i

; x

i

); (x

i+1

; e

i

)!(e

i

; P

i1

), if jpos

i

j = 0,

{ (N

i1

; b

0

i

)!(b

0

i

; x

i

); (Y

i1

; Z

i1

)!(Z

i1

; N

i1

); (Y

i2

; Z

i2

)!(Z

i2

; N

i2

); : : : ;

(Y

ijneg

i

j

; Z

ijneg

i

j

)!(Z

ijneg

i

j

; N

ijneg

i

j

); (x

i+1

; e

0

i

)!(e

0

i

; N

i(jneg

i

j+1)

), if jneg

i

j > 0,

{ (N

i1

; b

0

i

)!(b

0

i

; x

i

); (x

i+1

; e

0

i

)!(e

0

i

; N

i1

), if jneg

i

j = 0,

� for each symbol l

ij

,

{ if l

ij

= pos

r

(k), then the following dependencies are in D: (W

rk

; l

ij

)! (l

ij

; R

ij

) and

(B

ij

; l

ij

)!(l

ij

; P

r(k+1)

).

{ if l

ij

= neg

r

(k), then the following dependencies are inD: (Y

rk

; l

ij

)!(l

ij

; R

ij

) and (B

ij

; l

ij

)!

(l

ij

; N

r(k+1)

).

� (C

1

; s

1

)!(s

1

; G

i

),

It is easy to see that the number of steps required to construct the TSGD (V;E;D;L) is O(p+ q). If

C = �x

2

_ x

1

_ x

3

, then the constructed TSGD is as shown in Figure 17.

Our goal is to show that C is satis�able i� (V;E;D;L) contains a strong-cycle involving G

i

. We

begin by showing that the TSGD (V;E;D;L) satis�es the conditions. In D, the only dependency

involving any of G

i

's edges is (C

1

; s

1

)!(s

1

; G

i

). Thus, in D, there are only dependencies into G

i

's

edges. Also, the set of dependencies, D, is consistent. Further, we show that the TSGD (V

0

; E

0

; D

0

; L

0

)

is strongly-acyclic, where V

0

= V �G

i

, E

0

= E�f(G

i

; s

1

); (G

i

; s

2

)g, and D

0

= D�f(C

1

; s

1

)!(s

1

; G

i

)g.

Let S

1

= fC

1

; C

2

; : : : ; C

p+1

g [fB

ij

; R

ij

: i = 1; 2; : : : ; p; j = 1; 2; 3g, and S

2

= fx

1

; x

2

; : : : ; x

q+1

g [

fN

rk

; Y

rk

: r = 1; 2; : : : ; q; k = 1; 2; : : : ; jneg

r

jg [fP

rk

;W

rk

: r = 1; 2; : : : ; q; k = 1; 2; : : : ; jpos

r

jg [

fP

r(jpos

r

j+1)

; N

r(jneg

r

j+1)

: r = 1; 2; : : : ; qg. Note that there cannot exist a strong-cycle in (V

0

; E

0

; D

0

; L

0

)

such that all the transaction nodes in the cycle are in S

1

(since there are dependencies (B

ij

; A

ij

)!

(A

ij

; C

i

), (C

i+1

; Q

ij

)!(Q

ij

; R

ij

), for all i = 1; 2; : : : ; p, for all j = 1; 2; 3, a sequence of edges from C

r

to

C

s

can be part of a strong-cycle only if r < s). Similarly, there can be no strong-cycle in (V

0

; E

0

; D

0

; L

0

)

such that all the transaction nodes in the cycle are in S

2

(due to dependencies (P

i1

; b

i

)! (b

i

; x

i

),

(N

i1

; b

0

i

)!(b

0

i

; x

i

), for all i = 1; 2; : : : ; q, a sequence of edges from x

r

to x

s

can belong to a strong-cycle

52

X

rk

W

rk

P

r(k+1)

P

rk

l

ij

= pos

r

(k)

Q

ij

R

ij
C

i+1

B

ij

A

ij

C

i

Figure 15: Edges and Dependencies if l

ij

= pos

r

(k)

On the other hand, if l

ij

= neg

r

(k), then edges and dependencies shown in Figure 16 are introduced

in the TSGD.

Q

ij

R

ij

N

r(k+1)

Y

rk

Z

rk

N

rk

l

ij

= neg

r

(k)

C

i+1

B

ij

A

ij

C

i

Figure 16: Edges and Dependencies if l

ij

= neg

r

(k)

We now describe the nodes, edges and dependencies in the TSGD. The set of nodes V consist of

transaction and site nodes. The set of transaction nodes in the TSGD consists of C

1

; C

2

; : : : ; C

p

; C

p+1

,

x

1

; x

2

; : : : ; x

q

; x

q+1

, B

ij

; R

ij

, i = 1; 2; : : : ; p, j = 1; 2; 3, G

i

(C

p+1

; x

q+1

and G

i

are new symbols) in

addition to P

r(jpos

r

j+1)

, P

rk

, W

rk

, for all r = 1; 2; : : : ; q, k = 1; 2; : : : ; jpos

r

j, and for all r = 1; 2; : : : ; q,

N

r(jneg

r

j+1)

, N

rk

, Y

rk

k = 1; 2; : : : ; jneg

r

j. Site nodes consist of l

ij

, A

ij

; Q

ij

, i = 1; 2; : : : ; p, j = 1; 2; 3,

for all i, i = 1; 2; : : : ; q, e

i

; e

0

i

; b

i

; b

0

i

, X

rk

for all r = 1; 2; : : : ; q, k = 1; 2; : : : ; jpos

r

j, and Z

rk

for all

r = 1; 2; : : : ; q, k = 1; 2; : : : ; jneg

r

j in addition to new symbols s

0

; s

1

,s

2

.

The set of edges E consist of

� (C

i

; A

ij

), (A

ij

; B

ij

), (B

ij

; l

ij

), (l

ij

; R

ij

), (R

ij

; Q

ij

) and (Q

ij

; C

i+1

), for all i = 1; 2; : : : ; p, for all

j = 1; 2; 3,

� (C

p+1

; s

0

), (s

0

; x

1

),

� for i = 1; 2; : : : ; q,

{ (x

i

; b

i

); (b

i

; P

i1

); (P

i1

; X

i1

); (X

i1

;W

i1

); (W

i1

; pos

i

(1)); (pos

i

(1); P

i2

); (P

i2

; X

i2

); : : : ;

(W

ijpos

i

j

; pos

i

(jpos

i

j)); (pos

i

(jpos

i

j); P

i(jpos

i

j+1)

); (P

i(jpos

i

j+1)

; e

i

); (e

i

; x

i+1

), if jpos

i

j > 0,

{ (x

i

; b

i

); (b

i

; P

i1

); (P

i1

; e

i

); (e

i

; x

i+1

), if jpos

i

j = 0,

51

Appendix -E- : Intractability results

Theorem 7 is a consequence of the following NP-completeness result.

Theorem 9: The following problem is NP-complete: Given a TSGD (V;E;D; L) and a transaction

node G

i

2 V , such that D is consistent, and for all transactions G

j

2 V , for all sites s

k

, dependency

(G

i

; s

k

)!(s

k

; G

j

) 62 D. Also, TSGD (V

0

; E

0

; D

0

; L

0

) resulting due to the deletion of G

i

, its edges and

dependencies from (V;E;D; L), is strongly-acyclic. Is � = ; not strongly-minimal with respect to the

TSGD and transaction G

i

?

Proof: We begin by showing that � = ; is not strongly-minimal with respect to G

i

and (V;E;D; L)

i� (V;E;D; L) contains a strong-cycle involving transaction G

i

. Since � = ;, and universal quanti�ca-

tion over ; is always true, by the de�nition of strong-minimality, � is strongly-minimal with respect

to G

i

and (V;E;D; L) i� (V;E;D;L) does not contain any strong-cycles involving G

i

. As a result, it

su�ces to show that the following problem is NP-complete: Does (V;E;D; L) contain a strong-cycle

involving G

i

?

The above problem is in NP since a non-deterministic algorithm only needs to guess a sequence

containing at most 2jEj

2

+1 edges and then check in polynomial time if the sequence of edges result in

a strong-cycle involving G

i

in the TSGD (V;E;D; L). The algorithm only needs to guess a sequence

of 2jEj

2

+1 edges since in any strong-cycle with more than 2jEj

2

+1 edges, a consecutive pair of edges

must be repeated (the total number of distinct pairs of edges is jEj

2

). Thus, the strong-cycle must

be of the form � � � (v

0

1

; v

1

)(v

1

; v

2

)(v

2

; v

3

) � � � (v

1

; v

2

)(v

2

; v

3

)(v

3

; v

0

2

) � � � for some nodes v

1

; v

2

; v

3

; v

0

1

; v

0

2

in

the TSGD. However, there exists a strong-cycle with fewer edges: � � � (v

0

1

; v

1

)(v

1

; v

2

)(v

2

; v

3

)(v

3

; v

0

2

) � � �.

Thus, if (V;E;D; L) contains a strong-cycle involving G

i

, then it contains a strong-cycle involving G

i

with no more than 2jEj

2

+ 1 edges.

We show a polynomial transformation from 3-SAT. Consider a formula in Conjunctive Normal Form

(CNF) C = C

1

^C

2

^� � �^C

p

that is de�ned over literals x

1

; x

2

; : : : ; x

q

. Let l

ij

, i = 1; 2; : : : ; p, j = 1; 2; 3,

be a new symbol for the j

th

literal in clause C

i

. Each symbol l

ij

is either x

k

or �x

k

, k = 1; 2; : : : ; q. In

addition, for every literal x

i

, we introduce new symbols e

i

, e

0

i

, b

i

and b

0

i

, and for literal l

ij

, we introduce

new symbols A

ij

, B

ij

, Q

ij

and R

ij

. For r = 1; 2; : : : ; q, pos

r

denotes the sequence of symbols l

ij

in

the order of increasing i, such that l

ij

= x

r

. For r = 1; 2; : : : ; q, neg

r

denotes the sequence of symbols

l

ij

in the order of increasing i, such that l

ij

= �x

r

. Also jpos

r

j denotes the number of elements in the

sequence pos

r

and for k = 1; 2; : : : ; jpos

r

j, pos

r

(k) denotes the k

th

element in the sequence pos

r

(jneg

r

j

and neg

r

(k) are similarly de�ned). For all r = 1; 2; : : : ; q, we introduce new symbols P

rk

, W

rk

, X

rk

for each pos

r

(k), k = 1; 2; : : : ; jpos

r

j, and P

r(jpos

r

j+1)

; for r = 1; 2; : : : ; q, new symbols N

rk

, Y

rk

, Z

rk

for

each neg

r

(k), k = 1; 2; : : : ; jneg

r

j, and N

r(jneg

r

j+1)

. We illustrate the notation by means of the following

example (\�" is the concatenation operator for sequences and \�" is the empty sequence).

Example: Let C = (x

1

_ �x

3

_ x

4

) ^ (�x

2

_ �x

1

_ x

3

) ^ (�x

2

_ �x

4

_ x

1

).

l

1;1

= x

1

, l

2;2

= �x

1

, l

3;2

= �x

4

.

pos

1

= l

1;1

� l

3;3

, neg

1

= l

2;2

, pos

2

= �.

Also, jpos

1

j = 2, jpos

2

j = 0, jneg

2

j = 2.

pos

1

(1) = l

1;1

, pos

1

(2) = l

3;3

, neg

1

(1) = l

2;2

, neg

2

(2) = l

3;1

. 2

We now construct the TSGD as follows. The main components in the TSGD are the edges and

dependencies that we introduce for literals l

ij

. If l

ij

= pos

r

(k), then edges and dependencies show in

in Figure 15 are included in the TSGD.

50

We further use Lemma 3 to show that, for F = FA(RT

2

), state

F

(init st

F

; edge(t

1

) � � �edge(t

n�1

)

(sfirst(t

0

); G

0

)) is an accept state. Let edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) = (v

1

; v

2

) � � �(v

2m�1

; v

2m

).

In order to use Lemma 3, we need to show that there exists a sequence g

1

� � �g

m�1

such that

� if v

2i

= v

2i+1

, then g

i

= L(v

2i�1

; v

2i

), and

� if v

2i�1

= v

2i+1

, then g

i

= L(v

2i�1

; v

2i

), and

st

F

(init st

F

; g

1

� � �g

m�1

) is an accept state. We construct the sequence g

1

� � �g

m�1

with the above

properties as follows. For all i = 1; : : : ; n� 1, let f

i

= (type(hdr(t

i

)); type(first(t

i

))), if arity(t

i

) = 1,

else, f

i

= (type(hdr(t

i

)); type(first(t

i

)))(type(hdr(t

i

)); type(last(t

i

))). Since type(t

1

) � � � type(t

n�1

) is

a string in L(reg exp), by the construction of FA(RT

2

), it follows that st

F

(init st

F

; f

1

� � �f

n�1

) is an

accept state. Let g

1

� � �g

m�1

= f

1

� � �f

n�1

, such that every g

i

2 �

F

. Furthermore, from the de�nition

of edge and f

j

, it follows that, if for some i = 1; : : : ; m� 1, if (v

2i�1

; v

2i

) 2 edge(t

k

) and arity(t

k

) = 2,

then g

i

= L(v

2i�1

; v

2i

), else g

i

= L(v

2i�1

; v

2i

).

In order to show that state

F

(init st

F

; (v

1

; v

2

); : : : ; (v

m�1

; v

m

)) is an accept state, we need to show

that for all i, i = 1; 2; : : : ; m � 1, if v

2i

= v

2i+1

, then g

i

= L(v

2i�1

; v

2i

) and if v

2i�1

= v

2i+1

, then

g

i

= L(v

2i�1

; v

2i

). We �rst show that if v

2i

= v

2i+1

, and (v

2i�1

; v

2i

) 2 edge(t

k

) for some k, k =

1; 2; : : : ; n � 1, then arity(t

k

) = 2. Suppose arity(t

k

) = 1. Since last(t

k

) and first(t

(k+1)modn

)

execute at the same site, slast(t

k

) = v

2i�1

, sfirst(t

(k+1)modn

) = v

2i+1

, it follows that v

2i�1

= v

2i+1

,

which leads to a contradiction. Thus, arity(t

k

) = 2, and g

i

= L(v

2i�1

; v

2i

). Also, it can be shown

that if v

2i�1

= v

2i+1

, and (v

2i�1

; v

2i

) 2 edge(t

k

), then arity(t

k

) = 1. Suppose arity(t

k

) = 2. If

v

2i

= G

k

, then v

2i

= v

2i+1

= G

k

, which leads to a contradiction. If v

2i�1

= G

k

, then since last(t

k

) and

first(t

(k+1)modn

) execute at the same site, slast(t

k

) = v

2i

, sfirst(t

(k+1)modn

) = v

2i+1

, it follows that

v

2i

= v

2i+1

, which leads to a contradiction. Thus, arity(t

k

) = 1, and, g

i

= L(v

2i�1

; v

2i

).

Thus, by Lemma 3, state

F

(init st

F

; edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

)) is an accept state. Thus,

by corollaries 8 and 10, during the execution of Detect Ins TSGD?((V;E;D; L);G

0

; slast(t

0

);

set

1

; RT

2

), dependency (prev anc(sfirst(t

0

)); sfirst(t

0

))!(sfirst(G

0

); G

0

) is added to �, and thus

(prev anc(sfirst(t

0

)); sfirst(t

0

))!(sfirst(t

0

); G

0

) 2 �

F

. However, this leads to a contradiction since

we showed earlier that (prev anc(sfirst(t

0

)); sfirst(t

0

))!(sfirst(t

0

); G

0

) 62 �

F

. Thus, every schedule

S is correct. 2

49

When init

0

is processed, the procedure Detect Ins TSGD? is invoked with arguments that include

the TSGD (V;E;D; L), G

0

, slast(t

0

), set

1

, and RT

2

since type(G

0

) = hdr(e

0

) and type(last(t

0

)) =

last(e

0

). Also, sfirst(t

0

) 2 set

1

(if arity(t

0

) = 1, then since sfirst(t

0

) = slast(t

0

), sfirst(t

0

) 2 set

1

;

if binary(t

0

), then since sfirst(t

0

) 6= slast(t

0

), and type(first(t

0

)) = first(e

0

), sfirst(t

0

) 2 set

1

).

Furthermore, all the edges belonging to G

0

; : : : ; G

n�1

are in the TSGD when Detect Ins TSGD? is

invoked. In order to show this, we �rst show that G

j

's edges cannot be deleted from the TSGD

before G

(j+1)modn

's edges are deleted from the TSGD, for all j, j = 1; 2; : : : ; n � 1. Suppose, for

some j, j = 1; 2; : : : ; n � 1, G

j

's edges are deleted from the TSGD before G

(j+1)modn

's edges are

deleted from the TSGD. Let slast(t

j

) = s

k

. Since G

jk

is serialized after G

((j+1)modn)k

, at site s

k

,

ser

k

(G

(j+1)modn

) executes before ser

k

(G

j

). Thus, since G

(j+1)modn

's edges are inserted into the TSGD

before ser

k

(G

(j+1)modn

) executes, while G

j

's edges are deleted after ser

k

(G

j

) executes, G

(j+1)modn

's

edges must be in the TSGD when G

j

's edges are deleted (since we have assumed that G

j

's edges

are deleted before G

(j+1)modn

's edges are deleted). Furthermore, since ser

k

(G

j

) and ser

k

(G

(j+1)modn

)

must have both executed when G

j

's edges are deleted, G

(j+1)modn

is serialized before G

j

when G

j

's

edges are deleted. However, this leads to a contradiction, since edges belonging to G

j

and G

(j+1)modn

are deleted together when fin

l

for some transaction G

l

is processed (since G

(j+1)modn

is serialized

before G

j

, if for every transaction G

k

2 V serialized before G

j

, val

k

has been processed, then for every

transaction G

k

2 V serialized before G

(j+1)modn

also, val

k

must have been processed). Thus, G

1

's

edges are not deleted from the TSGD before G

2

's edges are deleted, : : :, G

n�1

's edges are not deleted

from the TSGD before G

0

's edges are deleted. By transitivity and since G

0

's edges are deleted only

after init

0

has been processed, when Detect Ins TSGD? is invoked during the processing of init

0

, the

TSGD contains all the edges belonging to transactions G

0

; G

1

; : : : ; G

n�1

.

Let �

F

be the set of dependencies returned by Detect Ins TSGD?. We now show that (G

0

; slast(t

0

))

edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) is a path in the TSGD (V;E;D [�

F

). We begin by showing

that any two consecutive edges in the path have a common node. Consecutive edges in the path could

be one of the following:

� (sfirst(G

j

); G

j

)(G

j

; slast(G

j

)), j = 1; 2; : : : ; n�1, where arity(t

j

) = 2 (G

j

is the common node).

� (G

j

; slast(t

j

))(sfirst(t

(j+1)modn

); G

(j+1)modn

), j = 0; 1; : : : ; n � 1, where arity(t

j

) = 2 or j = 0,

arity(t

(j+1)modn

) = 1 or 2 (since for all j, j = 0; 1; : : : ; n � 1, last(t

j

) and first(t

(j+1)modn

)

execute at the same site, slast(t

j

) = sfirst(t

(j+1)modn

) is the common node).

� (sfirst(t

j

); G

j

)(sfirst(t

(j+1)modn

); G

(j+1)modn

), j = 1; 2; : : : ; n � 1, where arity(t

j

) = 1, arity(

t

(j+1)modn

) = 1 or 2 (since arity(t

j

) = 1 implies that sfirst(t

j

) = slast(t

j

), and slast(t

j

) =

sfirst(t

(j+1)modn

), it follows that sfirst(t

j

) = sfirst(t

(j+1)modn

) is the common node).

Also, for the sequence of edges (sfirst(t

j

); G

j

)(G

j

; slast(t

j

)) in the path, j = 1; 2; : : : ; n�1, it must

be the case that arity(t

j

) = 2, and thus sfirst(t

j

) 6= slast(t

j

). Also, if for some j; k, j = 0; 1; : : : ; n�1,

j < k � n, the sequence of edges (G

j

; slast(t

j

))(sfirst(t

(j+1)modn

); G

(j+1)modn

); : : : ;

(sfirst(t

kmodn

); G

kmodn

) is in the path, then it must be the case that for all j < l < k, arity(t

l

) = 1.

Thus, by Property 1, it follows that slast(t

j

) = sfirst(t

(j+1)modn

) = � � � = sfirst(t

kmodn

), and for all

r; s, j � r < s � k,

� G

r

6= G

smodn

, and

� G

r

is serialized afterG

smodn

at site sfirst(G

smodn

). Thus, by Lemma 14, dependency (G

r

; sfirst(

G

smodn

))!(sfirst(G

smodn

); G

smodn

) does not belong to D [�

F

(since �

F

is added to the set

of dependencies D in the TSGD immediately after init

0

is processed).

Thus, (G

0

; slast(t

0

))edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) is a path in the TSGD (V;E;D[�

F

). Thus,

by the de�nition of path, dependency (prev anc(sfirst(t

0

)); sfirst(t

0

))! (sfirst(t

0

); G

0

) does not

belong to D [�

F

.

48

However, since in state St

0

k

, no forward transition can be made due to edge (St

0

k

:v; v

2m+2

), it must

be the case that

� if v

2m+2

= v

2m+3

, then St

0

k

:V set(v

2m+2

) already contains (st

m+1

; (St

0

k

:v; St

0

k

:v)). Thus, since

St

0

k

:v = v

2m+1

, prev(v

2m+3

) = v

2m+1

, prev anc(v

2m+3

) = v

2m+1

, (st

m+1

; (prev anc(v

2m+3

);

prev(v

2m+3

))) is added to V set(v

2m+3

) during the execution of Detect Ins TSGD2.

� if v

2m+1

= v

2m+3

, then St

0

k

:V set(St

0

k

:v) already contains (st

m+1

; (prev anc(v

2m+1

); v

2m+2

)).

Thus, since St

0

k

:v = v

2m+1

, prev (v

2m+3

) = v

2m+2

, prev anc (v

2m+3

) = prev anc (v

2m+1

),

(st

m+1

, (prev anc (v

2m+3

); prev (v

2m+3

))) is added to V set (v

2m+3

) during the execution of

Detect Ins TSGD2. 2

Corollary 10: Let Detect Ins TSGD2((V;E;D;L); v

1

; v

2

; set

1

; RT) return the set of dependencies

�

F

. If the TSGD (V;E;D [�

F

) contains a path (v

1

; v

2

) � � � (v

2n�1

; v

2n

)(v

2n+1

; v

1

), v

2

= v

3

, such

that for the regular term RT , F = FA(RT), st = state

F

(init st

F

; (v

3

; v

4

) � � � (v

2n�1

; v

2n

)(v

2n+1

; v

1

))

is an accept state and v

2n+1

2 set

1

, then during the execution of Detect Ins TSGD2, dependency

(prev anc(v

2n+1

); v

2n+1

)!(v

2n+1

; v

1

) is added to �.

Proof: By Lemma 13, (st; (prev anc (v

2n+1

); prev (v

2n+1

))) is added to V set (v

2n+1

). Since

prev(v

2n+1

) 6= v

1

and prev anc(v

2n+1

) 6= v

1

(by de�nition of path), Detect Ins TSGD2 makes a for-

ward state transition when (st; (prev anc(v

2n+1

); prev(v

2n+1

))) is added to V set(v

2n+1

). However,

just before (st, (prev anc(v

2n+1

); prev(v

2n+1

))) is added to V set(v

2n+1

), since st is an accept state,

prev anc(v

2n+1

) 6= v

1

, prev(v

2n+1

) 6= v

1

and v

2n+1

2 set

1

, dependency (prev anc(v

2n+1

); v

2n+1

)!

(v

2n+1

; v

1

) is added to �. 2

We are now in a position to prove that the TSGD scheme ensures the correctness of S. Before we

present the proof, we prove the following lemma.

Lemma 14: If, in the TSGD scheme, for some site s

k

, transactions G

i

; G

j

, G

ik

is serialized before

G

jk

at site s

k

, then there does not exist a dependency (G

j

; s

k

)!(s

k

; G

i

) in the TSGD.

Proof: Suppose there exists a dependency (G

j

; s

k

)!(s

k

; G

i

) in the TSGD. The dependency cannot

be added to the TSGD once act(ser

k

(G

i

)) has executed. Thus, dependency (G

j

; s

k

)!(s

k

; G

i

) must be

added to the TSGD before act(ser

k

(G

i

)) executes. However, if this were the case, act(ser

k

(G

i

)) would

not execute until act(ack(ser

k

(G

j

))) completes execution (the dependency (G

j

; s

k

)!(s

k

; G

i

) is deleted

from the TSGD only after ack(ser

k

(G

j

)) is processed). Thus, ser

k

(G

j

) would execute before ser

k

(G

i

),

and G

jk

would be serialized before G

ik

at site s

k

, which leads to a contradiction. 2

Proof of Theorem 5: Suppose S is not correct. Thus, there exists a regular term RT in R and

an instantiation I of RT in S. Let G

0

be the transaction in I such that init

0

is processed after init

i

for

every other transaction G

i

in I is processed. By Lemma 1, since R is complete, there exists a regular

term RT

2

= e

0

: reg exp and an instantiation t

0

: t

1

t

2

� � � t

n�1

of RT

2

in S such that hdr(t

0

) = G

0

.

Thus,

� for all j, j = 0; 1; : : : ; n� 1,

1. t

j

2 �

S

(without loss of generality, let hdr(t

j

) = G

j

), and

2. last(t

j

) and first(t

(j+1)modn

) execute at the same site, and last(t

j

) is serialized after

first(t

(j+1)modn

) at the site, and

� type(t

0

) = e

0

and type(t

1

) � � � type(t

n�1

) is a string in L(reg exp).

47

the conditions in Step 2 need to be checked, on an average, for v

S

edges (the average number of sites

a global transaction executes at is v

S

), while every time a site node is visited, the conditions in Step 2

need to be checked for at most n

G

edges (since the number of transaction nodes in the TSGD is at most

n

G

). Furthermore, every transaction node can be visited at most v

2

S

n

S

times, while every site node

can be visited at most n

2

G

n

S

times (every node v in the TSGD can be visited in a state st of F at most

once for every pair of nodes u; w such that (v; w) and (v; u) are edges in the TSGD, and F has at most

n

S

states). Since there are m site nodes and at most n

G

transaction nodes in the TSGD, the number

of times Detect Ins TSGD2 checks if an edge satis�es the conditions in Step 2 is n

3

G

mn

S

+ n

G

v

3

S

n

S

.

Since each of the conditions in Step 2 can be checked in constant time and v

S

� n

G

; v

S

< m, De-

tect Ins TSGD2 terminates in O(n

3

G

mn

S

) steps. 2

We now show that Detect Ins TSGD2 traverses edges in the TSGD in a manner that ensures it

detects instantiations of regular terms.

Lemma 13: Let Detect Ins TSGD2((V;E;D;L); v

1

; v

2

; set

1

; RT) return the set of dependen-

cies �

F

. If the TSGD (V;E;D [�

F

) contains a path (v

1

; v

2

); (v

3

; v

4

); : : : ; (v

2n�3

; v

2n�2

); (v

2n�1

; v

2n

),

v

2

= v

3

, such that for the regular term RT , F = FA(RT), state

F

(init st

F

; (v

3

; v

4

); : : : ; (v

2n�1

; v

2n

)) is

de�ned, then during the execution of Detect Ins TSGD2, (st; (prev anc(v

2i+1

); prev(v

2i+1

))) is added to

V set(v

2i+1

), where st = state

F

(init st

F

; (v

3

; v

4

) � � � (v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)), for all i, i = 1; 2; 3; : : : ; n�

1.

Proof: We prove the above lemma by induction on i. We prove that for all i, i = 1; 2; : : : ; n� 1,

(st; (prev anc(v

2i+1

); prev(v

2i+1

))) is added to V set(v

2i+1

), where st = state

F

(init st

F

; (v

3

; v

4

) � � �

(v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)).

Basis (i = 1): In Step 1 of Detect Ins TSGD2, (init st

F

; (v

1

; v

1

)) is added to V set(v

2

). Since v

2

= v

3

,

prev anc(v

3

) = prev(v

3

) = v

1

, and state

F

(init st

F

; (v

3

; v

4

)) = init st

F

, the lemma is true for i = 1

((init st

F

; (prev anc(v

3

); prev(v

3

))) is added to V set(v

3

)).

Induction: Let us assume that the lemma is true for i = m, 1 � m < n � 1. Thus,

(st

m

; (prev anc(v

2m+1

); prev(v

2m+1

))) is added to V set(v

2m+1

), where st

m

= state

F

(init st

F

; (v

3

; v

4

)

� � � (v

2m�1

; v

2m

)(v

2m+1

; v

2m+2

)). We show the lemma to be true for i = m+ 1. Thus, we need to show

that (st

m+1

; (prev anc(v

2m+3

); prev(v

2m+3

))) is added to V set(v

2m+3

), where st

m+1

= state

F

(init st

F

,

(v

3

; v

4

) � � �(v

2m+1

; v

2m+2

)(v

2m+3

; v

2m+4

)). By the de�nition of state

F

, st

m+1

= st

F

(st

m

; L(v

2m+1

; v

2m+2

)),

if v

2m+2

= v

2m+3

and st

m+1

= st

F

(st

m

; L(v

2m+1

; v

2m+2

)), if v

2m+1

= v

2m+3

.

Let St

k

be the resulting state of Detect Ins TSGD2 after (st

m

; (prev anc(v

2m+1

); prev(v

2m+1

))) is

added to V set(v

2m+1

) (the state St

k

results either due to the forward transition St

j

!St

k

, either

St

j

:v = v

2m+1

or St

j

:v = prev(v

2m+1

), or due to Step 1). Thus, St

k

:v = v

2m+1

, St

k

:cur st = st

m

and

in state St

k

, head(St

k

:anc(St

k

:v)) = (prev anc(v

2m+1

); prev(v

2m+1

)). Furthermore, it follows from

Lemma 12 that after a �nite number of steps, Detect Ins TSGD2 is in a state St

0

k

such that St

0

k

� St

k

and no further forward transitions can be made from St

0

k

. Thus, in state St

0

k

,

� Since prev(v

2m+1

) 6= v

2m+2

and prev anc(v

2m+1

) 6= v

2m+2

, head(St

0

k

:anc(St

0

k

:v))[1] 6= v

2m+2

,

head(St

0

k

:anc(St

0

k

:v))[2] 6= v

2m+2

,

� Since St

0

k

:� � �

F

and (v

1

; v

2

) � � �(v

2m+1

; v

2m+2

) is a path in (V;E;D[�

F

), there are no depen-

dencies (prev(v

2m+1

); v

2m+1

)!(v

2m+1

; v

2m+2

) and (prev anc(v

2m+1

); v

2m+1

)!(v

2m+1

; v

2m+2

) in

D [�

F

; thus, dependencies (head(St

0

k

:anc(St

0

k

:v))[2]; St

0

k

:v)!(St

0

k

:v; v

2m+2

) and

(head(St

0

k

:anc(St

0

k

:v))[1]; St

0

k

:v)!(St

0

k

:v; v

2m+2

) are not in D [St

0

k

:�,

� Since state

F

(init st

F

; (v

3

; v

4

) � � � (v

2m+1

; v

2m+2

)(v

2m+3

; v

2m+4

)) is de�ned, if v

2m+2

= v

2m+3

,

then st

m+1

= st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned, else if v

2m+1

= v

2m+3

, then st

m+1

=

st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned.

46

or St

j

:v = prev anc(v

2m+1

), or due to Step 1). Thus, St

k

:v = v

2m+1

, St

k

:cur st = st

m

and in state

St

k

, head(St

k

:anc(St

k

:v)) = prev anc(v

2m+1

). Furthermore, it follows from Lemma 10 that after a

�nite number of steps, Detect Ins TSGD1 is in a state St

0

k

such that St

0

k

� St

k

and no further forward

transitions can be made from St

0

k

. Thus, in state St

0

k

,

� Since prev anc(v

2m+1

) 6= v

2m+2

(by the de�nition of path), head(St

0

k

:anc(St

0

k

:v)) 6= v

2m+2

,

� Since St

0

k

:� � �

F

, and (v

1

; v

2

) � � � (v

2m+1

; v

2m+2

) is a path in (V;E;D [�

F

), there is no de-

pendency (prev anc(v

2m+1

); v

2m+1

)!(v

2m+1

; v

2m+2

) in D [�

F

; thus, there is no dependency

(head(St

0

k

:anc(St

0

k

:v)); St

0

k

:v)!(St

0

k

:v; v

2m+2

) in D [St

0

k

:�,

� Since state

F

(init st

F

; (v

3

; v

4

) � � � (v

2m+1

; v

2m+2

)(v

2m+3

; v

2m+4

)) is de�ned, if v

2m+2

= v

2m+3

,

then st

m+1

= st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned, else if v

2m+1

= v

2m+3

, then st

m+1

=

st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned.

However, since in state St

0

k

, no forward transition can be made due to edge (St

0

k

:v; v

2m+2

), it must

be the case that

� if v

2m+2

= v

2m+3

, then St

0

k

:V set(v

2m+2

) already contains (st

m+1

; St

0

k

:v). Thus, since St

0

k

:v =

v

2m+1

, prev anc(v

2m+3

) = v

2m+1

, (st

m+1

; prev anc(v

2m+3

)) is added to V set(v

2m+3

) during the

execution of Detect Ins TSGD1.

� if v

2m+1

= v

2m+3

, then St

0

k

:V set(St

0

k

:v) already contains (st

m+1

; prev anc(v

2m+1

)). Thus,

since St

0

k

:v = v

2m+1

, prev anc(v

2m+3

) = prev anc(v

2m+1

), (st

m+1

; prev anc(v

2m+3

)) is added

to V set(v

2m+3

) during the execution of Detect Ins TSGD1. 2

Corollary 8: Let Detect Ins TSGD1((V;E;D; L); v

1

; v

2

; set

1

; RT) return the set of dependencies

�

F

. If the TSGD (V;E;D [�

F

) contains a path (v

1

; v

2

) � � � (v

2n�1

; v

2n

)(v

2n+1

; v

1

), v

2

= v

3

, such

that for the regular term RT , F = FA(RT), st = state

F

(init st

F

; (v

3

; v

4

) � � � (v

2n�1

; v

2n

)(v

2n+1

; v

1

))

is an accept state and v

2n+1

2 set

1

, then during the execution of Detect Ins TSGD1, dependency

(prev anc(v

2n+1

); v

2n+1

)!(v

2n+1

; v

1

) is added to �.

Proof: By Lemma 11, (st; prev anc(v

2n+1

)) is added to V set(v

2n+1

). Since prev anc(v

2n+1

) 6= v

1

,

Detect Ins TSGD1makes a forward state transition when (st; prev anc(v

2n+1

)) is added to V set(v

2n+1

).

However, just before (st; prev anc(v

2n+1

)) is added to V set(v

2n+1

), since st is an accept state, prev anc

(v

2n+1

) 6= v

1

and v

2n+1

2 set

1

, dependency (prev anc(v

2n+1

); v

2n+1

)!(v

2n+1

; v

1

) is added to �. 2

We now show that Detect Ins TSGD2 terminates in O(n

2

G

mv

S

) steps, for which we need to prove

the following lemma.

Lemma 12: If during its execution, Detect Ins TSGD2 is in state St

k

, then after a �nite number

of steps, it enters a state St

0

k

� St

k

such that no forward transitions from St

0

k

are possible.

Proof: Similar to proof of Lemma 8. 2

Corollary 9: Procedure Detect Ins TSGD2 terminates in O(n

3

G

mn

S

) steps.

Proof: Detect Ins TSGD2 can be shown to terminate as a result of Lemma 12 using a similar

argument as in Corollary 3.

The number of steps Detect Ins TSGD2 terminates in is equal to the product of the number of

times Detect Ins TSGD2 checks if an edge satis�es the conditions in Step 2 and the number of steps

required to check if an edge satis�es the conditions in Step 2. Every time a transaction node is visited,

45

Appendix -D- : TSGD Schemes

In this appendix, we prove Theorem 5. We begin by showing that Detect Ins TSGD1 and De-

tect Ins TSGD2 detect instantiations of regular terms in S. States St

k

between the execution of any

two steps of Detect Ins TSGD1 and Detect Ins TSGD2 are as de�ned earlier for Detect Ins Opt.

Lemma 10: If during its execution, Detect Ins TSGD1 is in state St

k

, then after a �nite number

of steps, it enters a state St

0

k

� St

k

such that no forward transitions from St

0

k

are possible.

Proof: Similar to proof of Lemma 2. 2

Corollary 7: Procedure Detect Ins TSGD1 terminates in O(n

2

G

mn

S

) steps.

Proof: Detect Ins TSGD1 can be shown to terminate as a result of Lemma 10 using a similar

argument as in Corollary 3.

The number of steps Detect Ins TSGD1 terminates in is equal to the product of the number of

times Detect Ins TSGD1 checks if an edge satis�es the conditions in Step 2 and the number of steps

required to check if an edge satis�es the conditions in Step 2. Every time a transaction node is visited,

the conditions in Step 2 need to be checked, on an average, for v

S

edges (the average number of sites

a global transaction executes at is v

S

), while every time a site node is visited, the conditions in Step 2

need to be checked for at most n

G

edges (since the number of transaction nodes in the TSGD is at

most n

G

). Furthermore, every transaction node can be visited at most v

S

n

S

times, while every site

node can be visited at most n

G

n

S

times (every node v in the TSGD can be visited in a state st of F

at most once for every node w such that edge (v; w) is in the TSGD, and F has at most n

S

states).

Since there are m site nodes and at most n

G

transaction nodes in the TSGD, the number of times

Detect Ins TSGD1 checks if an edge satis�es the conditions in Step 2 is n

2

G

mn

S

+ n

G

v

2

S

n

S

. Since each

of the conditions in Step 2 can be checked in constant time and v

S

� n

G

; v

S

< m, Detect Ins TSGD1

terminates in O(n

2

G

mn

S

) steps. 2

We now show that Detect Ins TSGD1 traverses edges in the TSGD in a manner that ensures it

detects instantiations of regular terms.

Lemma 11: Let Detect Ins TSGD1((V;E;D;L); v

1

; v

2

; set

1

; RT) return the set of dependencies

�

F

. If the TSGD (V;E;D[�

F

) contains a path (v

1

; v

2

); (v

3

; v

4

); : : : ; (v

2n�3

; v

2n�2

); (v

2n�1

; v

2n

), v

2

=

v

3

, such that for the regular term RT , F = FA(RT), state

F

(init st

F

; (v

3

; v

4

); : : : ; (v

2n�1

; v

2n

)) is de-

�ned, then during the execution of Detect Ins TSGD1, for all i, i = 1; 2; 3; : : : ; n�1, (st; prev anc(v

2i+1

))

is added to V set(v

2i+1

), where st = state

F

(init st

F

; (v

3

; v

4

) � � � (v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)).

Proof: We prove the above lemma by induction on i. We prove that for all i, i = 1; 2; : : : ; n� 1,

(st; prev(v

2i+1

)) is added to V set(v

2i+1

), where st = state

F

(init st

F

; (v

3

; v

4

) � � � (v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)).

Basis (i = 1): In Step 1 of Detect Ins TSGD1, (init st

F

; v

1

) is added to V set(v

2

). Since v

2

= v

3

,

prev anc(v

3

) = v

1

, and state

F

(init st

F

; (v

3

; v

4

)) = init st

F

, the lemma is true for i = 1 ((init st

F

,

prev anc(v

3

)) is added to V set(v

3

)).

Induction: Let us assume that the lemma is true for i = m, 1 � m < n�1. Thus, (st

m

; prev anc(v

2m+1

))

is added to V set(v

2m+1

), where st

m

= state

F

(init st

F

; (v

3

; v

4

) � � �(v

2m�1

; v

2m

)(v

2m+1

; v

2m+2

)). We

show the lemma to be true for i = m + 1. Thus, we need to show that (st

m+1

; prev anc(v

2m+3

)

is added to V set(v

2m+3

), where st

m+1

= state

F

(init st

F

; (v

3

; v

4

) � � �(v

2m+1

; v

2m+2

)(v

2m+3

; v

2m+4

)).

By the de�nition of state

F

, st

m+1

= st

F

(st

m

; L(v

2m+1

; v

2m+2

)), if v

2m+2

= v

2m+3

and st

m+1

=

st

F

(st

m

; L(v

2m+1

; v

2m+2

)), if v

2m+1

= v

2m+3

.

Let St

k

be the resulting state of Detect Ins TSGD1 after (st

m

; prev anc(v

2m+1

)) is added to

V set(v

2m+1

) (the state St

k

results either due to the forward transition St

j

!St

k

, either St

j

:v = v

2m+1

44

j < k � n, the sequence of edges (G

j

; slast(t

j

))(sfirst(t

(j+1)modn

); G

(j+1)modn

); : : : ;

(sfirst(t

kmodn

); G

kmodn

) is in the path, then it must be the case that for all j < l < k, arity(t

l

) = 1.

Thus, by Property 1, it follows that slast(t

j

) = sfirst(t

(j+1)modn

) = � � � = sfirst(t

kmodn

), and for

all r; s, j � r < s � k, G

r

6= G

smodn

. Thus, (G

0

; slast(t

0

))edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) is a

path in the TSG (V;E;L). Furthermore, if �

F

is the set of site nodes returned by Detect Ins TSG?,

then for some j = 0; 1; : : : ; n � 1, if sfirst(t

(j+1)modn

) 2 set

2

[�

F

, then G

(j+1)modn

6= G

0

(let

s

k

= sfirst(t

(j+1)modn

) = slast(t

j

). If s

k

2 set

2

[�

F

and G

(j+1)modn

= G

0

, then ser

k

(G

(j+1)modn

)

in the queue is marked when init

0

is processed. Since init

0

is processed after init

j

, ser

k

(G

j

) is

inserted into the queue for site s

k

before ser

k

(G

(j+1)modn

) is inserted into the queue for s

k

. Thus,

ser

k

(G

(j+1)modn

) executes after ser

k

(G

j

)), and first(t

(j+1)modn

) = G

((j+1)modn)k

must be serialized

after last(t

j

) = G

jk

at site s

k

, which leads to a contradiction). Thus, sfirst(t

0

) 62 set

2

[�

F

. Thus,

the path (G

0

; slast(t

0

))edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) is consistent with respect to set

2

[�

F

.

We further use Lemma 3 to show that, for F = FA(RT

2

), state

F

(init st

F

; edge(t

1

) � � �edge(t

n�1

)

(sfirst(t

0

); G

0

)) is an accept state. Let edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) = (v

1

; v

2

) � � �(v

2m�1

; v

2m

).

In order to use Lemma 3, we need to show that there exists a sequence g

1

� � �g

m�1

such that

� if v

2i

= v

2i+1

, then g

i

= L(v

2i�1

; v

2i

), and

� if v

2i�1

= v

2i+1

, then g

i

= L(v

2i�1

; v

2i

), and

st

F

(init st

F

; g

1

� � �g

m�1

) is an accept state. We construct the sequence g

1

� � �g

m�1

with the above

properties as follows. For all i = 1; : : : ; n� 1, let f

i

= (type(hdr(t

i

)); type(first(t

i

))), if arity(t

i

) = 1,

else, f

i

= (type(hdr(t

i

)); type(first(t

i

)))(type(hdr(t

i

)); type(last(t

i

))). Since type(t

1

) � � � type(t

n�1

) is

a string in L(reg exp), by the construction of FA(RT

2

), it follows that st

F

(init st

F

; f

1

� � �f

n�1

) is an

accept state. Let g

1

� � �g

m�1

= f

1

� � �f

n�1

, such that every g

i

2 �

F

. Furthermore, from the de�nition

of edge and f

j

, it follows that, if for some i = 1; : : : ; m� 1, if (v

2i�1

; v

2i

) 2 edge(t

k

) and arity(t

k

) = 2,

then g

i

= L(v

2i�1

; v

2i

), else g

i

= L(v

2i�1

; v

2i

).

In order to show that state

F

(init st

F

; (v

1

; v

2

); : : : ; (v

m�1

; v

m

)) is an accept state, we need to show

that for all i, i = 1; 2; : : : ; m � 1, if v

2i

= v

2i+1

, then g

i

= L(v

2i�1

; v

2i

) and if v

2i�1

= v

2i+1

, then

g

i

= L(v

2i�1

; v

2i

). We �rst show that if v

2i

= v

2i+1

, and (v

2i�1

; v

2i

) 2 edge(t

k

) for some k, k =

1; 2; : : : ; n � 1, then arity(t

k

) = 2. Suppose arity(t

k

) = 1. Since last(t

k

) and first(t

(k+1)modn

)

execute at the same site, slast(t

k

) = v

2i�1

, sfirst(t

(k+1)modn

) = v

2i+1

, it follows that v

2i�1

= v

2i+1

,

which leads to a contradiction. Thus, arity(t

k

) = 2, and g

i

= L(v

2i�1

; v

2i

). Also, it can be shown

that if v

2i�1

= v

2i+1

, and (v

2i�1

; v

2i

) 2 edge(t

k

), then arity(t

k

) = 1. Suppose arity(t

k

) = 2. If

v

2i

= G

k

, then v

2i

= v

2i+1

= G

k

, which leads to a contradiction. If v

2i�1

= G

k

, then since last(t

k

) and

first(t

(k+1)modn

) execute at the same site, slast(t

k

) = v

2i

, sfirst(t

(k+1)modn

) = v

2i+1

, it follows that

v

2i

= v

2i+1

, which leads to a contradiction. Thus, arity(t

k

) = 1, and, g

i

= L(v

2i�1

; v

2i

).

Thus, by Lemma 3, state

F

(init st

F

; edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

)) is an accept state. Thus,

by corollaries 4 and 6, during the execution of Detect Ins TSG?((V;E;L); G

0

; slast(t

0

); set

1

; set

2

; RT

2

),

sfirst(t

0

) is added to �, and thus sfirst(t

0

) 2 �

F

. However, this leads to a contradiction since we

showed earlier that sfirst(t

0

) 62 set

2

[�

F

. Thus, every schedule S is correct. 2

43

Proof of Theorem 3: Suppose S is not correct. Thus, there exists a regular term RT in R and

an instantiation I of RT in S. Let G

0

be the transaction in I such that init

0

is processed after init

i

for

every other transaction G

i

in I is processed. By Lemma 1, since R is complete, there exists a regular

term RT

2

= e

0

: reg exp and an instantiation t

0

: t

1

t

2

� � � t

n�1

of RT

2

in S such that hdr(t

0

) = G

0

.

Thus,

� for all j, j = 0; 1; : : : ; n� 1,

1. t

j

2 �

S

(without loss of generality, let hdr(t

j

) = G

j

), and

2. last(t

j

) and first(t

(j+1)modn

) execute at the same site, and last(t

j

) is serialized after

first(t

(j+1)modn

) at the site, and

� type(t

0

) = e

0

and type(t

1

) � � � type(t

n�1

) is a string in L(reg exp).

When init

0

is processed, the procedure Detect Ins TSG? is invoked with arguments that include the

TSG (V;E;L), G

0

, slast(t

0

), set

1

, set

2

and RT

2

since type(G

0

) = hdr(e

0

) and type(last(t

0

)) = last(e

0

).

Also, sfirst(t

0

) 2 set

1

(if arity(t

0

) = 1, then since sfirst(t

0

) = slast(t

0

), sfirst(t

0

) 2 set

1

; if

binary(t

0

), then since sfirst(t

0

) 6= slast(t

0

), and type(first(t

0

)) = first(e

0

), sfirst(t

0

) 2 set

1

).

Furthermore, all the edges belonging to G

0

; : : : ; G

n�1

are in the TSG when Detect Ins TSG? is invoked.

In order to show this, we �rst show that G

j

's edges cannot be deleted from the TSG before G

(j+1)modn

's

edges are deleted from the TSG, for all j, j = 1; 2; : : : ; n�1. Suppose, for some j, j = 1; 2; : : : ; n�1, G

j

's

edges are deleted from the TSG before G

(j+1)modn

's edges are deleted from the TSG. Let slast(t

j

) = s

k

.

Since G

jk

is serialized after G

((j+1)modn)k

, at site s

k

, ser

k

(G

(j+1)modn

) executes before ser

k

(G

j

). Thus,

since G

(j+1)modn

's edges are inserted into the TSG before ser

k

(G

(j+1)modn

) executes, while G

j

's edges

are deleted after ser

k

(G

j

) executes, G

(j+1)modn

's edges must be in the TSG when G

j

's edges are deleted

(since we have assumed that G

j

's edges are deleted before G

(j+1)modn

's edges are deleted). However,

this leads to a contradiction, since edges belonging to G

j

and G

(j+1)modn

are deleted together when

fin

l

for some transaction G

l

is processed (due to the sequence of edges between G

j

and G

(j+1)modn

:

(G

j

; s

k

)(s

k

; G

(j+1)modn

), if for every transaction G

k

2 V such that there is a sequence of edges from

G

j

to G

k

in the TSG, val

k

has been processed, then for every transaction G

k

2 V such that there is a

sequence of edges from G

(j+1)modn

to G

k

, val

k

must also have been processed). Thus, G

1

's edges are

not deleted from the TSG before G

2

's edges are deleted, : : :, G

n�1

's edges are not deleted from the

TSG before G

0

's edges are deleted. By transitivity and since G

0

's edges are deleted only after init

0

has

been processed, when Detect Ins TSG? is invoked during the processing of init

0

, the TSG (V;E;L)

contains all the edges belonging to transactions G

0

; G

1

; : : : ; G

n�1

.

We now show that (G

0

; slast(t

0

))edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) is a path in the TSG (V;E).

We begin by showing that any two consecutive edges in the path have a common node. Consecutive

edges in the path could be one of the following:

� (sfirst(G

j

); G

j

)(G

j

; slast(G

j

)), j = 1; 2; : : : ; n�1, where arity(t

j

) = 2 (G

j

is the common node).

� (G

j

; slast(t

j

))(sfirst(t

(j+1)modn

); G

(j+1)modn

), j = 0; 1; : : : ; n � 1, where arity(t

j

) = 2 or j = 0,

arity(t

(j+1)modn

) = 1 or 2 (since for all j, j = 0; 1; : : : ; n � 1, last(t

j

) and first(t

(j+1)modn

)

execute at the same site, slast(t

j

) = sfirst(t

(j+1)modn

) is the common node).

� (sfirst(t

j

); G

j

)(sfirst(t

(j+1)modn

); G

(j+1)modn

), j = 1; 2; : : : ; n � 1, where arity(t

j

) = 1, arity(

t

(j+1)modn

) = 1 or 2 (since arity(t

j

) = 1 implies that sfirst(t

j

) = slast(t

j

), and slast(t

j

) =

sfirst(t

(j+1)modn

), it follows that sfirst(t

j

) = sfirst(t

(j+1)modn

) is the common node).

Also, for the sequence of edges (sfirst(t

j

); G

j

)(G

j

; slast(t

j

)) in the path, j = 1; 2; : : : ; n�1, it must

be the case that arity(t

j

) = 2, and thus sfirst(t

j

) 6= slast(t

j

). Also, if for some j; k, j = 0; 1; : : : ; n�1,

42

or St

j

:v = prev anc(v

2m+1

), or due to Step 1). Thus, St

k

:v = v

2m+1

, St

k

:cur st = st

m

and in state

St

k

, head(St

k

:anc(St

k

:v)) = (prev anc(v

2m+1

); v

j

). Furthermore, it follows from Lemma 8 that after

a �nite number of steps, Detect Ins TSG2 is in a state St

0

k

such that St

0

k

� St

k

and no further forward

transitions can be made from St

0

k

. Thus, in state St

0

k

,

� Since prev anc(v

2m+1

) 6= v

2m+2

and v

j

6= v

2m+2

, head(St

0

k

:anc(St

0

k

:v))[1] 6= v

2m+2

,

head(St

0

k

:anc(St

0

k

:v))[2] 6= v

2m+2

,

� Since state

F

(init st

F

; (v

3

; v

4

) � � � (v

2m+1

; v

2m+2

)(v

2m+3

; v

2m+4

)) is de�ned, if v

2m+2

= v

2m+3

,

then st

m+1

= st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned, else if v

2m+1

= v

2m+3

, then st

m+1

=

st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned.

� Since St

0

k

:� � �

F

, and (v

3

; v

4

) � � �(v

2m+1

; v

2m+2

) is consistent with set

2

[�

F

, (v

3

; v

4

) � � �

(v

2m+1

; v

2m+2

) is consistent with set

2

[St

0

k

:�; thus, if St

0

k

:v 2 (set

2

[St

0

k

:�), then v

2m+2

6= v

1

.

However, since in state St

0

k

, no forward transition can be made due to edge (St

0

k

:v; v

2m+2

), it must

be the case that

� if v

2m+2

= v

2m+3

, then either

1. St

0

k

:V set(v

2m+2

) already contains (st

m+1

; (St

0

k

:v; St

0

k

:v)). Thus, since St

0

k

:v = v

2m+1

,

v

2m+1

6= v

2m+4

, prev anc (v

2m+3

) = v

2m+1

, (st

m+1

; (prev anc (v

2m+3

); v

0

j

)) is added to

V set(v

2m+3

) during the execution of Detect Ins TSG2, v

0

j

6= v

2m+4

.

2. St

0

k

:V set(v

2m+2

) already contains (st

m+1

; (St

0

k

:v; u

2

)) and (st

m+1

; (St

0

k

:v; u

3

)), u

2

6= u

3

.

Thus, since St

0

k

:v = v

2m+1

, either u

2

6= v

2m+4

or u

3

6= v

2m+4

(since u

2

6= u

3

), and

prev anc(v

2m+3

) = v

2m+1

, (st

m+1

; (prev anc(v

2m+3

); v

0

j

)) is added to V set(v

2m+3

) during

the execution of Detect Ins TSG2, v

0

j

6= v

2m+4

.

� if v

2m+1

= v

2m+3

, then either

1. St

0

k

:V set(St

0

k

:v) already contains (st

m+1

; (prev anc(v

2m+1

); v

2m+2

)). Thus, since St

0

k

:v =

v

2m+1

, v

2m+2

6= v

2m+4

, prev anc(v

2m+3

) = prev anc(v

2m+1

), (st

m+1

; (prev anc(v

2m+3

); v

0

j

))

is added to V set(v

2m+3

) during the execution of Detect Ins TSG2, v

0

j

6= v

2m+4

.

2. St

0

k

:V set(St

0

k

:v) already contains (st

m+1

; (prev anc(v

2m+1

); u

2

)) and

(st

m+1

; (prev anc(v

2m+1

); u

3

)), u

2

6= u

3

. Thus, since St

0

k

:v = v

2m+1

, either u

2

6= v

2m+4

or

u

3

6= v

2m+4

(since u

2

6= u

3

), prev anc(v

2m+3

) = prev anc(v

2m+1

), (st

m+1

; (prev anc(v

2m+3

),

v

0

j

)) is added to V set(v

2m+3

) during the execution of Detect Ins TSG2, v

0

j

6= v

2m+4

. 2

Corollary 6: Let Detect Ins TSG2((V;E; L); v

1

; v

2

; set

1

; set

2

; RT) return the set of site nodes

�

F

. If the TSG (V;E; L) contains a path (v

1

; v

2

)(v

3

; v

4

) � � �(v

2n�1

; v

2n

)(v

2n+1

; v

1

), v

2

= v

3

, consistent

with set

2

[�

F

, such that for the regular term RT , F = FA(RT), st = state

F

(init st

F

; (v

3

; v

4

)

� � � (v

2n�1

; v

2n

)(v

2n+1

; v

1

)) is an accept state and v

2n+1

2 set

1

, then during the execution of De-

tect Ins TSG2, v

2n+1

is added to �.

Proof: By Lemma 9, (st; (prev anc(v

2n+1

); v

j

)) is added to V set(v

2n+1

), where v

j

6= v

1

. Since

prev anc(v

2n+1

) 6= v

1

and v

j

6= v

1

, Detect Ins TSG2 makes a forward state transition when (st; (prev

(v

2n+1

); v

j

)) is added to V set(v

2n+1

). However, just before (st; (prev anc(v

2n+1

); v

j

)) is added to

V set(v

2n+1

), since st is an accept state, prev anc(v

2n+1

) 6= v

1

, v

j

6= v

1

and v

2n+1

2 set

1

, v

2n+1

is

added to �. 2

We are now in a position to prove that the TSG scheme ensures S is correct.

41

Corollary 5: Procedure Detect Ins TSG2 terminates in O(n

2

G

mn

S

) steps.

Proof: Detect Ins TSG2 can be shown to terminate as a result of Lemma 8 using a similar argument

as in Corollary 3.

The number of steps Detect Ins TSG2 terminates in is equal to the product of the number of times

Detect Ins TSG2 checks if an edge satis�es the conditions in Step 2 and the number of steps required

to check if an edge satis�es the conditions in Step 2. Every time a transaction node is visited, the con-

ditions in Step 2 need to be checked, on an average, for v

S

edges (the average number of sites a global

transaction executes at is v

S

), while every time a site node is visited, the conditions in Step 2 need to

be checked for at most n

G

edges (since the number of transaction nodes in the TSG is at most n

G

).

Furthermore, every transaction node can be visited at most 2v

S

n

S

times, while every site node can be

visited at most 2n

G

n

S

times (every node v in the TSG can be visited in a state st of F at most twice for

every node w such that edge (v; w) is in the TSG, and F has at most n

S

states). Since there are m site

nodes and at most n

G

transaction nodes in the TSG, the number of times Detect Ins TSG2 checks if an

edge satis�es the conditions in Step 2 is 2n

2

G

mn

S

+2n

G

v

2

S

n

S

. Since each of the conditions in Step 2 can

be checked in constant time and v

S

� n

G

; v

S

< m, Detect Ins TSG2 terminates in O(n

2

G

mn

S

) steps. 2

In order to show that Detect Ins TSG2 traverses edges in the TSG in a manner that ensures it

detects instantiations of regular terms, we de�ne the following.

De�nition 13: Consider a TSG/TSGD containing a path (v

1

; v

2

)(v

3

; v

4

) � � � (v

2n�1

; v

2n

), v

2

= v

3

.

For all i = 1; 2; : : : ; n� 1, prev anc(v

2i+1

) is de�ned as follows.

prev anc(v

2i+1

) =

(

prev anc(v

2i�1

) if v

2i�1

= v

2i+1

v

2i�1

if v

2i

= v

2i+1

2

Note that, by the de�nition of path, it follows that for all i, i = 1; 2; : : : ; n�1, v

2i+2

6= prev anc(v

2i+1

)

and dependency (prev anc(v

2i+1

); v

2i+1

)!(v

2i+1

; v

2i+2

) does not belong to the TSGD.

Lemma 9: Let Detect Ins TSG2(TSG; v

1

; v

2

; set

1

; set

2

; RT). return the set of nodes �

F

. If the

TSG (V;E;L) contains a path (v

1

; v

2

); (v

3

; v

4

); : : : ; (v

2n�3

; v

2n�2

); (v

2n�1

; v

2n

), v

2

= v

3

, consistent with

respect to set

2

[�

F

, such that for the regular term RT , F = FA(RT), state

F

(init st

F

; (v

3

; v

4

);

: : : ; (v

2n�1

; v

2n

)) is de�ned, then during the execution of Detect Ins TSG2, for all i, i = 1; 2; 3; : : : ; n�1,

there exists a node v

j

, v

j

6= v

2i+2

, (st; (prev anc(v

2i+1

); v

j

)) is added to V set(v

2i+1

), where st =

state

F

(init st

F

; (v

3

; v

4

) � � � (v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)).

Proof: We prove the above lemma by induction on i. We prove that for all i, i = 1; 2; : : : ; n� 1,

there exists a v

j

6= v

2i+2

, such that (st; (prev anc(v

2i+1

); v

j

)) is added to V set(v

2i+1

), where st =

state

F

(init st

F

; (v

3

; v

4

) � � � (v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)).

Basis (i = 1): In Step 1 of Detect Ins TSG2, (init st

F

; (v

1

; v

1

)) is added to V set(v

2

). Since v

2

= v

3

,

prev anc(v

3

) = v

1

, v

1

6= v

4

, and state

F

(init st

F

; (v

3

; v

4

)) = init st

F

, the lemma is true for i = 1

((init st

F

; (prev anc(v

3

); v

j

)) is added to V set(v

3

), v

j

6= v

4

).

Induction: Let us assume that the lemma is true for i = m, 1 � m < n � 1. Thus,

(st

m

; (prev anc(v

2m+1

); v

j

)) is added to V set(v

2m+1

), where v

j

6= v

2m+2

, st

m

= state

F

(init st

F

; (v

3

; v

4

)

� � � (v

2m�1

; v

2m

)(v

2m+1

; v

2m+2

)). We show the lemma to be true for i = m + 1. Thus, we need

to show that (st

m+1

; (prev anc(v

2m+3

); v

0

j

)) is added to V set(v

2m+3

), where v

0

j

6= v

2m+4

, st

m+1

=

state

F

(init st

F

; (v

3

; v

4

) � � � (v

2m+1

; v

2m+2

)(v

2m+3

; v

2m+4

)). By the de�nition of state

F

, st

m+1

= st

F

(st

m

,

L(v

2m+1

; v

2m+2

)), if v

2m+2

= v

2m+3

and st

m+1

= st

F

(st

m

; L(v

2m+1

; v

2m+2

)), if v

2m+1

= v

2m+3

.

Let St

k

be the resulting state of Detect Ins TSG2 after (st

m

; (prev anc(v

2m+1

); v

j

)) is added to

V set(v

2m+1

) (the state St

k

results either due to the forward transition St

j

!St

k

, either St

j

:v = v

2m+1

40

Corollary 4: Let Detect Ins TSG1((V;E;L); v

1

; v

2

; set

1

; set

2

; RT). return the set of site nodes

�

F

. If the TSG (V;E; L) contains a path (v

1

; v

2

)(v

3

; v

4

) � � �(v

2n�1

; v

2n

)(v

2n+1

; v

1

), v

2

= v

3

, consistent

with set

2

[�

F

, such that for the regular term RT , F = FA(RT), st = state

F

(init st

F

; (v

3

; v

4

)

� � � (v

2n�1

; v

2n

)(v

2n+1

; v

1

)) is an accept state and v

2n+1

2 set

1

, then during the execution of De-

tect Ins TSG1, v

2n+1

is added to �.

Proof: By Lemma 7, (st; v

j

) is added to V set(v

2n+1

), where v

j

6= foll(v

2n+1

). Since foll(v

2n+1

) =

v

1

, v

j

6= v

1

and Detect Ins TSG1makes a forward state transition when (st; v

j

) is added to V set(v

2n+1

).

However, just before (st; v

j

) is added to V set(v

2n+1

), since st is an accept state, v

j

6= v

1

and

v

2n+1

2 set

1

, v

2n+1

is added to �. 2

We now show that Detect Ins TSG2 terminates in O(n

2

G

mv

S

) steps, for which we need to prove

the following lemma.

Lemma 8: If during its execution, Detect Ins TSG2 is in state St

k

, then after a �nite number of

steps, it enters a state St

0

k

� St

k

such that no forward transitions from St

0

k

are possible.

Proof: We prove the lemma by induction on num, the number of elements in f(st; v

1

; v

2

; v

3

) :

(st is a state of F) ^ (v

1

; v

2

; v

3

2 V) ^ ((st; (v

1

; v

2

)) 62 V set(v

3

))g in state St

k

.

Basis (num = 0): If num = 0 in state St

k

, then, in state St

k

, for every edge (St

k

:v; u), if st =

st

F

(St

k

:cur st; L(St

k

:v; u)) is de�ned, then (st; (St

k

:v; St

k

:v)) 2 St

k

:V set(u) (alternatively, if st

0

=

st

F

(St

k

:cur st; L(St

k

:v; u)) is de�ned, then (st

0

; (head(St

k

:anc(St

k

:v))[1]; u)) 2 St

k

:V set(St

k

:v)). Thus,

no forward transition can be made from state St

k

(since every edge (St

k

:v; u) satis�es the third condi-

tion in Step 2).

Induction: Let us assume the lemma is true for num � m, m � 0. We show that the lemma is true

if num � m + 1 in state St

k

. We show that after a �nite number of moves, Detect Ins TSG2 is in a

state St

0

k

such that St

0

k

� St

k

and no forward transitions can be made from state St

0

k

.

Let St

00

k

be any state equivalent to St

k

such that in St

00

k

, num � m + 1. If Detect Ins TSG2

makes the forward transition St

00

k

! St

l

due to some edge (St

00

k

:v; u) and L(St

00

k

:v; u), then it must

be the case that St

l

:v = u, St

l

:cur st = st

F

(St

00

k

:cur st; L(St

00

k

:v; u)). Furthermore, in state St

00

k

,

(St

l

:cur st; (St

00

k

:v; St

00

k

:v)) 62 St

00

k

:V set(u) and in state St

l

, (St

l

:cur st; (St

00

k

:v; St

00

k

:v)) 2 St

l

:V set(u)

(since the transition St

00

k

!St

l

causes (St

l

:cur st; (St

00

k

:v; St

00

k

:v)) to be added to V set(u)). Note that,

since before the transition is made, (St

l

:cur st; (St

00

k

:v; St

00

k

:v)) does not belong to V set(u) and num �

m + 1 in St

00

k

, after the transition St

00

k

!St

l

is made, num � m in St

l

. By IH, after a �nite number

of steps, Detect Ins TSG2 enters a state St

0

l

� St

l

, such that no forward transitions are possible from

St

0

l

. Thus, Detect Ins TSG2 makes the reverse transition St

0

l

!St

000

k

after a �nite number of steps,

where St

000

k

� St

00

k

� St

k

. Furthermore, in state St

000

k

, (St

l

:cur st; (St

00

k

:v; St

00

k

:v)) 2 St

000

k

:V set(u) and

St

000

k

:v = St

00

k

:v, and thus, no forward transition can be made from state St

000

k

due to edge (St

000

k

:v; u) and

L(St

000

k

:v; u) (edge (St

000

k

:v; u) does not satisfy the condition in Step 3(b)). Using a similar argument, it

can be shown that if Detect Ins TSG2 makes a forward transition St

00

k

!St

l

due to edge (St

00

k

:v; u) and

L(St

00

k

:v; u), then in a �nite number of steps, Detect Ins TSG2 enters a state St

000

k

� St

00

k

such that no

forward transitions are possible from St

000

k

due to edge (St

000

k

:v; u) and L(St

000

k

:v; u).

Thus, once a forward transition is made by Detect Ins TSG2 due to an edge e and L(e)=L(e) from

a state equivalent to St

k

, then no further forward transitions can be made by Detect Ins TSG2 due

to e and L(e)=L(e) from any state equivalent to St

k

. Furthermore, everytime a forward transition is

made from a state St

00

k

that is equivalent to St

k

such that num � m + 1 in St

00

k

, a reverse transition

is made by Detect Ins TSG2 to a state St

000

k

equivalent to St

k

such that num � m + 1 in St

000

k

. Since

there are a �nite number of edges incident on each node and in state St

k

, num � m + 1, eventually,

Detect Ins TSG2 would be in a state St

0

k

� St

k

such that no further forward transitions can be made. 2

39

1, there exists a node v

j

, v

j

6= foll(v

2i+1

), such that (st; v

j

) is added to V set(v

2i+1

), where st =

state

F

(init st

F

; (v

3

; v

4

) � � � (v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)).

Proof: We prove the above lemma by induction on i. We prove that for all i, i = 1; 2; : : : ; n� 1,

there exists a v

j

6= foll(v

2i+1

), such that (st; v

j

) is added to V set(v

2i+1

), where st = state

F

(init st

F

;

(v

3

; v

4

) � � �(v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)).

Basis (i = 1): In Step 1 of Detect Ins TSG1, (init st

F

; v

1

) is added to V set(v

2

). Since v

2

= v

3

,

v

1

6= foll(v

3

), and state

F

(init st

F

; (v

3

; v

4

)) = init st

F

, the lemma is true for i = 1 ((init st

F

; v

j

) is

added to V set(v

3

), v

j

6= foll(v

3

)).

Induction: Let us assume that the lemma is true for i = m, 1 � m < n� 1. Thus, (st

m

; v

j

) is added

to V set(v

2m+1

), where v

j

6= foll(v

2m+1

), st

m

= state

F

(init st

F

; (v

3

; v

4

) � � �(v

2m+1

; v

2m+2

)). We show

the lemma to be true for i = m+ 1. Thus, we need to show that (st

m+1

; v

0

j

) is added to V set(v

2m+3

),

where v

0

j

6= foll(v

2m+3

), st

m+1

= state

F

(init st

F

; (v

3

; v

4

) � � � (v

2m+3

; v

2m+4

)). By the de�nition of

state

F

, st

m+1

= st

F

(st

m

; L(v

2m+1

; v

2m+2

)), if v

2m+2

= v

2m+3

and st

m+1

= st

F

(st

m

; L(v

2m+1

; v

2m+2

)),

if v

2m+1

= v

2m+3

.

Let St

k

be the resulting state of Detect Ins TSG1 after (st

m

; v

j

) is added to V set(v

2m+1

) (the

state St

k

results either due to the forward transition St

j

!St

k

, either St

j

:v = v

2m+1

or St

j

:v = v

j

, or

due to Step 1). Thus, St

k

:v = v

2m+1

, St

k

:cur st = st

m

and in state St

k

, head(St

k

:anc(St

k

:v)) = v

j

.

Furthermore, it follows from Lemma 6 that after a �nite number of steps, Detect Ins TSG1 is in a state

St

0

k

such that St

0

k

� St

k

and no further forward transitions can be made from St

0

k

. Thus, in state St

0

k

,

� Since state

F

(init st

F

; (v

3

; v

4

) � � � (v

2m+1

; v

2m+2

)(v

2m+3

; v

2m+4

) is de�ned, if v

2m+2

= v

2m+3

, then

st

m+1

= st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned, else if v

2m+1

= v

2m+3

, then st

m+1

=

st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned.

� Since St

0

k

:� � �

F

, and (v

3

; v

4

) � � �(v

2m+1

; v

2m+2

) is consistent with set

2

[�

F

, (v

3

; v

4

) � � �

(v

2m+1

; v

2m+2

) is consistent with set

2

[St

0

k

:�; thus, if St

0

k

:v 2 (set

2

[St

0

k

:�), then v

2m+2

6= v

1

.

However, since in state St

0

k

, no forward transition can be made due to edge (St

0

k

:v; v

2m+2

), it must

be the case that

� if v

2m+2

= v

2m+3

, then foll(v

2m+1

) = v

2m+2

and since v

j

6= foll(v

2m+1

) (by the de�nition of

path), head(St

0

k

:anc(St

0

k

:v)) 6= v

2m+2

, and thus, either

1. St

0

k

:V set(v

2m+2

) already contains (st

m+1

; St

0

k

:v). Thus, since St

0

k

:v = v

2m+1

, v

2m+1

6=

foll(v

2m+3

), (st

m+1

; v

0

j

) is added to V set(v

2m+3

) during the execution of Detect Ins TSG1,

v

0

j

6= foll(v

2m+3

).

2. St

0

k

:V set(v

2m+2

) already contains (st

m+1

; u

2

) and (st

m+1

; u

3

), u

2

6= u

3

. Thus, since either

u

2

6= foll(v

2m+3

) or u

3

6= foll(v

2m+3

) (since u

2

6= u

3

), (st

m+1

; v

0

j

) is added to V set(v

2m+3

)

during the execution of Detect Ins TSG1, v

0

j

6= foll(v

2m+3

).

� if v

2m+1

= v

2m+3

, then either

1. St

0

k

:V set(St

0

k

:v) already contains (st

m+1

; v

j

). Thus, since St

0

k

:v = v

2m+1

, foll(v

2m+1

) =

foll(v

2m+3

), v

j

6= foll(v

2m+1

), (st

m+1

; v

0

j

) is added to V set(v

2m+3

) during the execution of

Detect Ins TSG1, v

0

j

6= foll(v

2m+3

).

2. St

0

k

:V set(St

0

k

:v) already contains (st

m+1

; u

2

) and (st

m+1

; u

3

), u

2

6= u

3

. Thus, since either

u

2

6= foll(v

2m+3

) or u

3

6= foll(v

2m+3

) (since u

2

6= u

3

), (st

m+1

; v

0

j

) is added to V set(v

2m+3

)

during the execution of Detect Ins TSG1, v

0

j

6= foll(v

2m+3

). 2

38

Appendix -C- : TSG Schemes

In this appendix, we prove Theorem 3. We begin by showing that Detect Ins TSG1 and De-

tect Ins TSG2 detect instantiations of regular terms in S. States St

k

between the execution of any two

steps of Detect Ins TSG1 and Detect Ins TSG2 are as de�ned earlier for Detect Ins Opt.

Lemma 6: If during its execution, Detect Ins TSG1 is in state St

k

, then after a �nite number of

steps, it enters a state St

0

k

� St

k

such that no forward transitions from St

0

k

are possible.

Proof: Similar to proof of Lemma 2. 2

Corollary 3: Procedure Detect Ins TSG1 terminates in O(n

G

mn

S

) steps.

Proof: We �rst show that Detect Ins TSG1 terminates in a �nite number of steps. Let St

1

denote

the state immediately after the execution of Step 1 of algorithm Detect Ins TSG1. By Lemma 6,

after a �nite number of steps, Detect Ins TSG1 is in a state St

0

1

� St

1

such that no further forward

transitions can be made from St

0

1

. Detect Ins TSG1, thus executes Step 4 and since, in state St

0

1

,

head(St

0

1

:F list(St

0

1

:v)) = (s�; G

i

), Detect Ins TSG1 terminates in a �nite number of steps.

The number of steps Detect Ins TSG1 terminates in is equal to the product of the number of times

Detect Ins TSG1 checks if an edge satis�es the conditions in Step 2 and the number of steps required

to check if an edge satis�es the conditions in Step 2. Every time a transaction node is visited, the

conditions in Step 2 need to be checked, on an average, for v

S

edges (the average number of sites a

global transaction executes at is v

S

), while every time a site node is visited, the conditions in Step 2

need to be checked for at most n

G

edges (since the number of transaction nodes in the TSG is at most

n

G

). Furthermore, every transaction and site node can be visited at most 2n

S

times (every node v in

the TSG can be visited in a state st of F at most twice, and F has at most n

S

states). Since there arem

site nodes and at most n

G

transaction nodes in the TSG, the number of times Detect Ins TSG1 checks

if an edge satis�es the conditions in Step 2 is 2n

G

mn

S

+ 2n

G

v

S

n

S

. Since each of the conditions in

Step 2 can be checked in constant time and v

S

< m, Detect Ins TSG1 terminates in O(n

G

mn

S

) steps. 2

In order to show that Detect Ins TSG1 traverses edges in the TSG in a manner that ensures it

detects instantiations of regular terms, we de�ne the following.

De�nition 11: Consider a TSG containing a path (v

1

; v

2

)(v

3

; v

4

) � � � (v

2n�1

; v

2n

). For all i, i =

1; 2; : : : ; n� 1, we de�ne foll(v

2i�1

) as follows.

foll(v

2i�1

) =

(

foll(v

2i+1

) if i < n and v

2i�1

= v

2i+1

v

2i

if i = n or v

2i

= v

2i+1

2

Note that, by the de�nition of path, for all i = 1; 2; : : : ; n�1, if v

2i

= v

2i+1

, then v

2i�1

6= foll(v

2i+1

).

De�nition 12: Consider a TSG containing a path (v

1

; v

2

) � � � (v

2n�1

; v

2n

). The path is said to be

consistent with a set of nodes set if for all i, i = 1; : : : ; n, if v

2i�1

2 set, then v

2i

6= v

1

. 2

Lemma 7: Let Detect Ins TSG1((V;E;L); v

1

; v

2

; set

1

; set

2

; RT) return the set of site nodes �

F

.

If the TSG (V;E;L) contains a path (v

1

; v

2

); (v

3

; v

4

); : : : ; (v

2n�3

; v

2n�2

); (v

2n�1

; v

2n

), v

2

= v

3

, consistent

with set

2

[�

F

such that for the regular term RT , F = FA(RT), state

F

(init st

F

; (v

3

; v

4

);

: : : ; (v

2n�1

; v

2n

)) is de�ned, then during the execution of Detect Ins TSG1, for all i, i = 1; 2; 3; : : : ; n�

37

� (sfirst(G

j

); G

j

)(G

j

; slast(G

j

)), j = 1; 2; : : : ; n�1, where arity(t

j

) = 2 (G

j

is the common node).

� (G

j

; slast(t

j

))(sfirst(t

(j+1)modn

); G

(j+1)modn

), j = 0; 1; : : : ; n � 1, where arity(t

j

) = 2 or j = 0,

arity(t

(j+1)modn

) = 1 or 2 (since for all j, j = 0; 1; : : : ; n � 1, last(t

j

) and first(t

(j+1)modn

)

execute at the same site, slast(t

j

) = sfirst(t

(j+1)modn

) is the common node).

� (sfirst(t

j

); G

j

)(sfirst(t

(j+1)modn

); G

(j+1)modn

), j = 1; 2; : : : ; n � 1, where arity(t

j

) = 1, arity(

t

(j+1)modn

) = 1 or 2 (since arity(t

j

) = 1 implies that sfirst(t

j

) = slast(t

j

), and slast(t

j

) =

sfirst(t

(j+1)modn

), it follows that sfirst(t

j

) = sfirst(t

(j+1)modn

) is the common node).

Also, for the sequence of edges (sfirst(t

j

); G

j

)(G

j

; slast(t

j

)) in the path, j = 1; 2; : : : ; n�1, it must

be the case that arity(t

j

) = 2, and thus sfirst(t

j

) 6= slast(t

j

). Also, if for some j; k, j = 0; 1; : : : ; n�1,

j < k � n, the sequence of edges (G

j

; slast(t

j

))(sfirst(t

(j+1)modn

); G

(j+1)modn

); : : : ;

(sfirst(t

kmodn

); G

kmodn

) is in the path, then it must be the case that for all j < l < k, arity(t

l

) = 1.

Thus, by Property 1, it follows that slast(t

j

) = sfirst(t

(j+1)modn

) = � � � = sfirst(t

kmodn

), and for all

r; s, j � r < s � k,

� G

r

6= G

smodn

, and

� G

r

is serialized after G

smodn

at site sfirst(G

smodn

). Thus, by Lemma 5, dependency

(G

r

; sfirst(G

smodn

))!(sfirst(G

smodn

); G

smodn

) does not belong to D

0

.

Thus, (G

0

; slast(t

0

))edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) is a path in the TSGD (V

0

; E

0

; D

0

; L

0

).

We further use Lemma 3 to show that, for F = FA(RT

2

), state

F

(init st

F

; edge(t

1

) � � �edge(t

n�1

)

(sfirst(t

0

); G

0

)) is an accept state. Let edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) = (v

1

; v

2

) � � �(v

2m�1

; v

2m

).

In order to use Lemma 3, we need to show that there exists a sequence g

1

� � �g

m�1

such that

� if v

2i

= v

2i+1

, then g

i

= L(v

2i�1

; v

2i

), and

� if v

2i�1

= v

2i+1

, then g

i

= L(v

2i�1

; v

2i

), and

st

F

(init st

F

; g

1

� � �g

m�1

) is an accept state. We construct the sequence g

1

� � �g

m�1

with the above

properties as follows. For all i = 1; : : : ; n� 1, let f

i

= (type(hdr(t

i

)); type(first(t

i

))), if arity(t

i

) = 1,

else, f

i

= (type(hdr(t

i

)); type(first(t

i

)))(type(hdr(t

i

)); type(last(t

i

))). Since type(t

1

) � � � type(t

n�1

) is

a string in L(reg exp), by the construction of FA(RT

2

), it follows that st

F

(init st

F

; f

1

� � �f

n�1

) is an

accept state. Let g

1

� � �g

m�1

= f

1

� � �f

n�1

, such that every g

i

2 �

F

. Furthermore, from the de�nition

of edge and f

j

, it follows that, if for some i = 1; : : : ; m� 1, if (v

2i�1

; v

2i

) 2 edge(t

k

) and arity(t

k

) = 2,

then g

i

= L(v

2i�1

; v

2i

), else g

i

= L(v

2i�1

; v

2i

).

In order to show that state

F

(init st

F

; (v

1

; v

2

); : : : ; (v

m�1

; v

m

)) is an accept state, we need to show

that for all i, i = 1; 2; : : : ; m � 1, if v

2i

= v

2i+1

, then g

i

= L(v

2i�1

; v

2i

) and if v

2i�1

= v

2i+1

, then

g

i

= L(v

2i�1

; v

2i

). We �rst show that if v

2i

= v

2i+1

, and (v

2i�1

; v

2i

) 2 edge(t

k

) for some k, k =

1; 2; : : : ; n � 1, then arity(t

k

) = 2. Suppose arity(t

k

) = 1. Since last(t

k

) and first(t

(k+1)modn

)

execute at the same site, slast(t

k

) = v

2i�1

, sfirst(t

(k+1)modn

) = v

2i+1

, it follows that v

2i�1

= v

2i+1

,

which leads to a contradiction. Thus, arity(t

k

) = 2, and g

i

= L(v

2i�1

; v

2i

). Also, it can be shown

that if v

2i�1

= v

2i+1

, and (v

2i�1

; v

2i

) 2 edge(t

k

), then arity(t

k

) = 1. Suppose arity(t

k

) = 2. If

v

2i

= G

k

, then v

2i

= v

2i+1

= G

k

, which leads to a contradiction. If v

2i�1

= G

k

, then since last(t

k

) and

first(t

(k+1)modn

) execute at the same site, slast(t

k

) = v

2i

, sfirst(t

(k+1)modn

) = v

2i+1

, it follows that

v

2i

= v

2i+1

, which leads to a contradiction. Thus, arity(t

k

) = 1, and, g

i

= L(v

2i�1

; v

2i

).

Thus, by Lemma 3, state

F

(init st

F

; edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

)) is an accept state. Thus,

by Corollary 2, Detect Ins Opt((V

0

; E

0

; D

0

; L

0

); G

0

; slast(t

0

); set

1

; RT

2

) returns abort and G

0

is aborted

by the optimistic scheme. However, this leads to a contradiction since G

0

is a transaction in I and

thus, must have committed. Thus, every schedule S is correct. 2

36

dependency is added during the execution of act(ser

k

(G

i

)), then act(ser

k

(G

j

) must have already exe-

cuted. On the other hand, if the dependency were added to the TSGD before act(ser

k

(G

i

)) executes,

then act(ser

k

(G

i

)) would not execute until act(ack(ser

k

(G

j

))) completes execution (the dependency

(G

j

; s

k

)!(s

k

; G

i

) is deleted from the TSGD only after ack(ser

k

(G

j

)) is processed). Thus, in both cases

ser

k

(G

j

) executes before ser

k

(G

i

), and thus, G

jk

is serialized before G

ik

at site s

k

, which leads to a

contradiction. 2

For an element t

i

2 �

S

, we denote by slast(t

i

) and sfirst(t

i

), the sites at which last(t

i

) and

first(t

i

) execute, respectively. Also, if arity(t

i

) = 1, then edge(t

i

) = (sfirst(t

i

); hdr(t

i

)), else

edge(t

i

) = (sfirst(t

i

); hdr(t

i

))(hdr(t

i

); slast(t

i

)).

Proof of Theorem 1: Suppose S is not correct. Thus, there exists a regular term RT in R and

an instantiation I of RT in S. Let G

0

be the transaction in I such that val

0

is processed after val

i

for

every other transaction G

i

in I is processed. By Lemma 1, since R is complete, there exists a regular

term RT

2

= e

0

: reg exp and an instantiation t

0

: t

1

t

2

� � � t

n�1

of RT

2

in S such that hdr(t

0

) = G

0

.

Thus,

� for all j, j = 0; 1; : : : ; n� 1,

1. t

j

2 �

S

(without loss of generality, let hdr(t

j

) = G

j

), and

2. last(t

j

) and first(t

(j+1)modn

) execute at the same site, and last(t

j

) is serialized after

first(t

(j+1)modn

) at the site, and

� type(t

0

) = e

0

and type(t

1

) � � � type(t

n�1

) is a string in L(reg exp).

When val

0

is processed, Detect Ins Opt is invoked with arguments that include the TSGD (V

0

; E

0

;D

0

,

L

0

), G

0

, slast(t

0

), set

1

, and RT

2

since type(G

0

) = hdr(e

0

) and type(last(t

0

)) = last(e

0

). Also,

sfirst(t

0

) 2 set

1

(if arity(t

0

) = 1, then since sfirst(t

0

) = slast(t

0

), sfirst(t

0

) 2 set

1

; if arity(t

0

) = 2,

then since sfirst(t

0

) 6= slast(t

0

), and type(first(t

0

)) = first(e

0

), sfirst(t

0

) 2 set

1

). Furthermore, all

the edges belonging to G

0

; : : : ; G

n�1

are in the TSGD when Detect Ins Opt is invoked. In order to

show this, we �rst show that G

j

's edges cannot be deleted from the TSGD before G

(j+1)modn

's edges

are deleted from the TSGD, for all j, j = 1; 2; : : : ; n � 1. Suppose, for some j, j = 1; 2; : : : ; n � 1,

G

j

's edges are deleted from the TSGD before G

(j+1)modn

's edges are deleted from the TSGD. Let

slast(t

j

) = s

k

. Since G

jk

is serialized after G

((j+1)modn)k

, at site s

k

, ser

k

(G

(j+1)modn

) executes before

ser

k

(G

j

). Thus, since G

(j+1)modn

's edges are inserted into the TSGD before ser

k

(G

(j+1)modn

) executes,

while G

j

's edges are deleted after ser

k

(G

j

) executes, G

(j+1)modn

's edges must be in the TSGD when

G

j

's edges are deleted (since we have assumed that G

j

's edges are deleted before G

(j+1)modn

's edges

are deleted). Furthermore, since ser

k

(G

j

) and ser

k

(G

(j+1)modn

) must have both executed when G

j

's

edges are deleted, G

(j+1)modn

is serialized before G

j

when G

j

's edges are deleted. However, this leads

to a contradiction, since edges belonging to G

j

and G

(j+1)modn

are deleted together when act(fin

l

)

for some transaction G

l

executes (since G

(j+1)modn

is serialized before G

j

, if for every transaction

G

k

2 V serialized before G

j

, val

k

has been processed, then for every transaction G

k

2 V serialized

before G

(j+1)modn

also, val

k

must have been processed). Thus, G

1

's edges are not deleted from the

TSGD before G

2

's edges are deleted, : : :, G

n�1

's edges are not deleted from the TSGD before G

0

's

edges are deleted. By transitivity and since G

0

's edges are deleted only after val

0

has been processed,

when Detect Ins Opt is invoked during the processing of val

0

, the TSGD (V

0

; E

0

; D

0

; L

0

) contains all

the edges belonging to transactions G

0

; G

1

; : : : ; G

n�1

(since for all i = 1; : : : ; n � 1, val

i

is processed

before val

0

is processed).

We now show that (G

0

; slast(t

0

))edge(t

1

) � � �edge(t

n�1

)(sfirst(t

0

); G

0

) is a path in the TSGD. We

begin by showing that any two consecutive edges in the path have a common node. Consecutive edges

in the path could be one of the following:

35

By the de�nition of state

F

, st

m+1

= st

F

(st

m

; L(v

2m+1

; v

2m+2

)), if v

2m+2

= v

2m+3

and st

m+1

=

st

F

(st

m

; L(v

2m+1

; v

2m+2

)), if v

2m+1

= v

2m+3

.

Let St

k

be the resulting state of Detect Ins Opt after (st

m

; prev(v

2m+1

)) is added to V set(v

2m+1

)

(the state St

k

results either due to the forward transition St

j

!St

k

, either St

j

:v = v

2m+1

or St

j

:v =

prev(v

2m+1

), or due to Step 1). Thus, St

k

:v = v

2m+1

, St

k

:cur st = st

m

and in state St

k

, head(St

k

:anc

(St

k

:v))[2] = prev(v

2m+1

). Furthermore, since Detect Ins Opt does not return abort, it follows from

Lemma 2 that after a �nite number of steps, Detect Ins Opt is in a state St

0

k

such that St

0

k

� St

k

and

no further forward transitions can be made from St

0

k

. Thus, in state St

0

k

,

� Since prev(v

2m+1

) 6= v

2m+2

(by the de�nition of path), head(St

0

k

:anc(St

0

k

:v)) 6= v

2m+2

,

� Since (v

1

; v

2

) � � � (v

2m+1

; v

2m+2

) is a path in (V;E;D), there is no dependency (prev(v

2m+1

); v

2m+1

)!

(v

2m+1

; v

2m+2

) in D; thus, there is no dependency (head(St

0

k

:anc(St

0

k

:v)); St

0

k

:v)!(St

0

k

:v; v

2m+2

)

in D,

� Since state

F

(init st

F

; (v

3

; v

4

) � � � (v

2m+1

; v

2m+2

)(v

2m+3

; v

2m+4

)) is de�ned, if v

2m+2

= v

2m+3

,

then st

m+1

= st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned, else if v

2m+1

= v

2m+3

, then st

m+1

=

st

F

(St

0

k

:cur st; L(St

0

k

:v; v

2m+2

)) is de�ned.

However, since in state St

0

k

, no forward transition can be made due to edge (St

0

k

:v; v

2m+2

) and

Detect Ins Opt does not return abort, it must be the case that

� if v

2m+2

= v

2m+3

, then St

0

k

:V set(v

2m+2

) already contains (st

m+1

; St

0

k

:v). Thus, since St

0

k

:v =

v

2m+1

, prev(v

2m+3

) = v

2m+1

, (st

m+1

; prev(v

2m+3

)) is added to V set(v

2m+3

) during the execution

of Detect Ins Opt.

� if v

2m+1

= v

2m+3

, then St

0

k

:V set(St

0

k

:v) already contains (st

m+1

; v

2m+2

). Thus, since St

0

k

:v =

v

2m+1

, prev(v

2m+3

) = v

2m+2

, (st

m+1

; prev(v

2m+3

)) is added to V set(v

2m+3

) during the execu-

tion of Detect Ins Opt. 2

Corollary 2: Consider a TSGD (V;E;D;L) containing a path (v

1

; v

2

) � � � (v

2n�1

; v

2n

)(v

2n+1

; v

1

),

v

2

= v

3

. If, for a regular term RT, F =FA(RT), st = state

F

(init st

F

; (v

3

; v

4

) � � �(v

2n�1

; v

2n

)(v

2n+1

;v

1

))

is an accept state, and v

2n+1

2 set

1

, then Detect Ins Opt((V;E;D;L); v

1

; v

2

; set

1

; RT) returns abort.

Proof: Suppose Detect Ins Opt does not return abort. By Lemma 4, (st; prev(v

2n+1

)) is added

to V set(v

2n+1

). Since prev(v

2n+1

) 6= v

1

, Detect Ins Opt makes a forward state transition when

(st; prev(v

2n+1

)) is added to V set(v

2n+1

). However, just before (st; prev(v

2n+1

)) is added to V set(v

2n+1

),

since st is an accept state, prev(v

2n+1

) 6= v

1

, v

2n+1

2 set

1

, and dependency (prev(v

2n+1

); v

2n+1

)!

(v

2n+1

; v

1

) does not belong to D, Detect Ins Opt returns abort. This leads to a contradiction, and

thus, it must be the case that Detect Ins Opt returns abort. 2

We are now in a position to prove Theorem 1. Before we present the proof, we introduce some

additional notation and the following lemma.

Lemma 5: If, in the optimistic scheme, for some site s

k

, transactions G

i

; G

j

, G

ik

is serialized

before G

jk

at site s

k

, then there does not exist a dependency (G

j

; s

k

)!(s

k

; G

i

) in the TSGD.

Proof: Suppose there exists a dependency (G

j

; s

k

)!(s

k

; G

i

) in the TSGD. The dependency could

not have been added to the TSGD after act(ser

k

(G

i

)) has executed. Thus, dependency (G

j

; s

k

)!

(s

k

; G

i

) must have been added to the TSGD before or during the execution of act(ser

k

(G

i

)). If the

34

The above de�nition of state

F

is recursive. In the following lemma, we show that an alternative

non-recursive de�nition of state

F

is possible.

Lemma 3: Consider a TSGD containing a path (v

1

; v

2

)(v

3

; v

4

) � � �(v

2n�1

; v

2n

). If e

1

e

2

� � � ; e

n�1

is

a sequence such that

� if v

2i

= v

2i+1

, then e

i

= L(v

2i�1

; v

2i

), and

� if v

2i�1

= v

2i+1

, then e

i

= L(v

2i�1

; v

2i

),

then for a regular term RT and a state st of F = FA(RT), state

F

(st; (v

1

; v

2

)(v

3

; v

4

) � � � (v

2n�1

; v

2n

) =

st

F

(st; e

1

� � �e

n�1

).

Proof: We use induction on i to prove that for all i = 1; : : : ; n, state

F

(st; (v

1

; v

2

) � � � (v

2i�1

; v

2i

)) =

st

F

(st; e

1

� � �e

i�1

).

Basis (i = 1): state

F

(st; (v

1

; v

2

)) = st

F

(st; �) = st.

Induction: Assume true for i = m, 1 � m < n, that is, state

F

(st; (v

1

; v

2

) � � �(v

2m�1

; v

2m

)) =

st

F

(st; e

1

� � �e

m�1

). We prove the claim for i = m+ 1, that is, we need to show that state

F

(st; (v

1

; v

2

)

� � � (v

2m+1

; v

2m+2

)) = st

F

(st; e

1

� � �e

m

). By the de�nition of state

F

,

state

F

(st; (v

1

; v

2

) � � �(v

2m+1

; v

2m+2

)) =

(

st

F

(st

0

; L(v

2m�1

; v

2m

) if v

2m

= v

2m+1

st

F

(st

0

; L(v

2m�1

; v

2m

) if v

2m�1

= v

2m+1

where st

0

= state

F

(st; (v

1

; v

2

) � � � (v

2m�1

; v

2m

)). Thus,

state

F

(st; (v

1

; v

2

) � � � (v

2m+1

; v

2m+2

)) =

(

st

F

(st; e

1

� � �e

m�1

L(v

2m�1

; v

2m

)) if v

2m

= v

2m+1

st

F

(st; e

1

� � �e

m�1

L(v

2m�1

; v

2m

)) if v

2m�1

= v

2m+1

Thus, state

F

(st; (v

1

; v

2

) � � �(v

2m+1

; v

2m+2

)) = st

F

(st; e

1

� � �e

m

). 2

For every instantiation of a regular term RT , there is a corresponding path in the TSG/TSGD for

which state

F

(F = FA(RT)) with respect to the initial state init st

F

is an accept state. The following

lemma lays the groundwork for showing that Detect Ins Opt detects instantiation by detecting appro-

priate paths in the TSGD.

Lemma 4: Consider a TSGD (V;E;D;L) containing a path (v

1

; v

2

) � � � (v

2n�3

; v

2n�2

); (v

2n�1

; v

2n

),

v

2

= v

3

, such that for a regular term RT , F = FA(RT), state

F

(init st

F

; (v

3

; v

4

) � � � (v

2n�1

; v

2n

)) is de-

�ned. If Detect Ins Opt((V;E;D;L); v

1

; v

2

; set

1

; RT) does not return abort, then during the execution

of Detect Ins Opt (before it returns commit), for all i, i = 1; 2; 3; : : : ; n� 1, (st; prev(v

2i+1

)) is added

to V set(v

2i+1

), where st = state

F

(init st

F

; (v

3

; v

4

) � � �(v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)).

Proof: We prove the above lemma by induction on i. We prove that if Detect Ins Opt does

not return abort, then for all i, i = 1; 2; : : : ; n � 1, (st; prev(v

2i+1

)) is added to V set(v

2i+1

), where

st = state

F

(init st

F

; (v

3

; v

4

) � � �(v

2i�1

; v

2i

)(v

2i+1

; v

2i+2

)).

Basis (i = 1): In Step 1 of Detect Ins Opt, (init st

F

; v

1

) is added to V set(v

2

). Since v

2

= v

3

,

prev(v

3

) = v

1

, and state

F

(init st

F

; (v

3

; v

4

)) = init st

F

, the lemma is true for i = 1 ((init st

F

; prev(v

3

))

is added to V set(v

3

)).

Induction: Let us assume that the lemma is true for i = m, 1 � m < n � 1. Thus, if De-

tect Ins Opt does not return abort, then (st

m

; prev(v

2m+1

)) is added to V set(v

2m+1

), where st

m

=

state

F

(init st

F

; (v

3

; v

4

) � � � (v

2m�1

; v

2m

)(v

2m+1

; v

2m+2

)). We show the lemma to be true for i = m +

1. Thus, we need to show that if Detect Ins Opt does not return abort, then (st

m+1

; prev(v

2m+3

)

is added to V set(v

2m+3

), where st

m+1

= state

F

(init st

F

; (v

3

; v

4

) � � �(v

2m+1

; v

2m+2

)(v

2m+3

; v

2m+4

)).

33

node can be visited at most n

G

n

S

times (every node v in the TSGD can be visited in a state st of F

at most once for every node w such that edge (v; w) is in the TSGD, and F has at most n

S

states).

Since there are m site nodes and at most n

G

transaction nodes in the TSGD, the number of times

Detect Ins Opt checks if an edge satis�es the conditions in Step 2 is n

2

G

mn

S

+ n

G

v

2

S

n

S

. Since each

of the conditions in Step 2 can be checked in constant time and v

S

� n

G

; v

S

< m, Detect Ins Opt

terminates in O(n

2

G

mn

S

) steps. 2

Before we show that Detect Ins Opt detects instantiations, we de�ne the notion of a path in order

to capture the notion of instantiations in the TSGD. Corresponding to every instantiation, there is a

path, de�ned below, in the TSGD (paths are similarly de�ned for a TSG; the requirement tht there be

no dependencies between certain edges is trivially satis�ed in a TSG).

De�nition 9: Consider a TSG/TSGD containing the sequence of edges (v

1

; v

2

)(v

3

; v

4

) � � � (v

2n�1

; v

2n

),

n > 1. The sequence of edges is a path if

� for every pair of consecutive edges (v

2i�1

; v

2i

); (v

2i+1

; v

2i+2

), i = 1; : : : ; n� 1, either v

2i

= v

2i+1

,

or v

2i�1

= v

2i+1

, and

� if for some j; k = 1; 2; : : : ; n, j � k, v

2j�1

= v

2j+1

= v

2j+3

= � � �= v

2k�1

, then

1. if j < k, then v

2j

6= v

2j+2

6= v

2j+4

6= � � � 6= v

2k

, and for all l;m, j � l < m � k, there is no

dependency (v

2l

; v

2l�1

)!(v

2m�1

; v

2m

) in the TSG/TSGD, and

2. if j > 1 and v

2j�2

= v

2j�1

, then for all l = j; j + 1; : : : ; k, v

2j�3

6= v

2l

, and there is no

dependency (v

2j�3

; v

2j�2

)!(v

2l�1

; v

2l

) in the TSG/TSGD. 2

Thus, it follows from the de�nition of path that for every pair of consecutive edges (v

2i�1

; v

2i

)(v

2i+1

,

v

2i+2

), i = 1; : : : ; n� 1, either

� v

2i

= v

2i+1

, v

2i�1

6= v

2i+2

, and dependency (v

2i�1

; v

i

)!(v

2i+1

; v

2i+2

) is not in the TSGD, or

� v

2i�1

= v

2i+1

, v

2i

6= v

2i+2

and dependency (v

2i

; v

2i�1

)!(v

2i+1

; v

2i+2

) is not in the TSGD.

Furthermore, for the path (v

1

; v

2

)(v

3

; v

4

) � � � (v

2n�1

; v

2n

), for i = 1; 2; : : : ; n � 1, we de�ne prev(v

2i+1

)

as follows.

prev(v

2i+1

) =

(

v

2i�1

if v

2i

= v

2i+1

v

2i

if v

2i�1

= v

2i+1

Note that, by the de�nition of path, prev(v

2i+1

) 6= v

2i+2

and there is no dependency (prev(v

2i+1

),

v

2i+1

)!(v

2i+1

; v

2i+2

) in the TSGD. Only certain paths in the TSG/TSGD in which the sequence of

transaction types are a string in L(reg exp) correspond to instantiations of RT = e

0

: reg exp in S. In

order to ensure that transaction type information can be taken into account when detecting paths in

the TSG/TSGD, we de�ne state

F

below.

De�nition 10: Consider a TSG/TSGD containing a path (v

1

; v

2

) � � � (v

2n�1

; v

2n

). Let RT be a

regular term and F = FA(RT). We de�ne state

F

for the sequence of edges in the path and a state st

of F , using st

F

, as follows.

state

F

(st; (v

1

; v

2

) � � �(v

2i�1

; v

2i

)) =

8

>

<

>

:

st if i = 1

st

F

(st

0

; L(v

2i�3

; v

2i�2

)) if i > 1 and v

2i�2

= v

2i�1

st

F

(st

0

; L(v

2i�3

; v

2i�2

)) if i > 1 and v

2i�3

= v

2i�1

where st

0

= state

F

(st; (v

1

; v

2

) � � � (v

2i�3

; v

2i�2

)). 2

32

Basis (num = 0): If num = 0 in state St

k

, then in state St

k

, for every edge (St

k

:v; u), if st =

st

F

(St

k

:cur st; L(St

k

:v; u)) is de�ned, then (st; St

k

:v) 2 St

k

:V set(u) (alternatively, if st

0

= st

F

(St

k

:cur st; L(St

k

:v; u)) is de�ned, then (st

0

; u) 2 St

k

:V set(St

k

:v)). Thus, no forward transition

can be made from state St

k

(since every edge (St

k

:v; u) satis�es the last condition in Step 2).

Induction: Let us assume the lemma is true if num � m in state St

k

, m � 0. We show that the

lemma is true if num � m+1 in state St

k

. We show that if Detect Ins Opt does not return abort, then

after a �nite number of moves, Detect Ins Opt is in a state St

0

k

such that St

0

k

� St

k

and no forward

transitions can be made from state St

0

k

.

Let St

00

k

be any state equivalent to St

k

such that in St

00

k

, num � m + 1. If Detect Ins Opt

makes the forward transition St

00

k

! St

l

due to some edge (St

00

k

:v; u) and L(St

00

k

:v; u), then it must

be the case that St

l

:v = u, St

l

:cur st = st

F

(St

00

k

:cur st; L(St

00

k

:v; u)). Furthermore, in state St

00

k

,

(St

l

:cur st; St

00

k

:v) 62 St

00

k

:V set(u) and in state St

l

, (St

l

:cur st; St

00

k

:v) 2 St

l

:V set(u) (since the transi-

tion St

00

k

!St

l

causes (St

l

:cur st; St

00

k

:v) to be added to V set(u)). Note that, since before the transition

is made, (St

l

:cur st; St

00

k

:v) does not belong to V set(u) and num � m + 1 in St

00

k

, after the transi-

tion St

00

k

!St

l

is made, num � m in St

l

. By IH, since Detect Ins Opt does not return abort, after

a �nite number of steps, Detect Ins Opt enters a state St

0

l

� St

l

, such that no forward transitions

are possible from St

0

l

. Thus, since it does not return abort, Detect Ins Opt makes the reverse tran-

sition St

0

l

!St

000

k

after a �nite number of steps, where St

000

k

� St

00

k

� St

k

. Furthermore, in state St

000

k

,

(St

l

:cur st; St

00

k

:v) 2 St

000

k

:V set(u) and St

000

k

:v = St

00

k

:v, and thus, no forward transition can be made

from state St

000

k

due to edge (St

000

k

:v; u) and L(St

00

k

:v; u) (edge (St

000

k

:v; u) does not satisfy the condition

in Step 3(c)). Using a similar argument, it can be shown that if Detect Ins Opt makes a forward tran-

sition St

00

k

!St

l

due to edge (St

00

k

:v; u) and L(St

00

k

:v; u), then in a �nite number of steps, Detect Ins Opt

enters a state St

000

k

� St

00

k

such that no forward transitions are possible from St

000

k

due to edge (St

000

k

:v; u)

and L(St

000

k

:v; u).

Thus, once a forward transition is made by Detect Ins Opt due to an edge e and L(e)=L(e) from a

state equivalent to St

k

, then no further forward transitions can be made by Detect Ins Opt due to e

and L(e)=L(e) from any state equivalent to St

k

. Furthermore, everytime a forward transition is made

from a state St

00

k

that is equivalent to St

k

such that num � m+ 1 in St

00

k

, a reverse transition is made

by Detect Ins Opt to a state St

000

k

equivalent to St

k

such that num � m + 1 in St

000

k

. Since there are a

�nite number of edges incident on each node, Detect Ins Opt does not return abort, and in state St

k

,

num � m+ 1, eventually, Detect Ins Opt would be in a state St

0

k

� St

k

such that no further forward

transitions can be made. 2

Corollary 1: Procedure Detect Ins Opt terminates in O(n

2

G

mn

S

) steps.

Proof: We �rst show that Detect Ins Opt terminates in a �nite number of steps. Let St

1

denote

the state immediately after the execution of Step 1 of algorithm Detect Ins Opt. If Detect Ins Opt

does not return abort, then by Lemma 1, after a �nite number of steps, Detect Ins Opt is in a state

St

0

1

� St

1

such that no further forward transitions can be made from St

0

1

. Detect Ins Opt, thus

executes Step 4 and since, in state St

0

1

, head(St

0

1

:F list(St

0

1

:v)) = (s�; G

i

), Detect Ins Opt terminates

in a �nite number of steps. If, on the other hand, Detect Ins Opt returns abort, then it trivially

terminates in a �nite number of steps.

The number of steps Detect Ins Opt terminates in is equal to the product of the number of times

Detect Ins Opt checks if an edge satis�es the conditions in Step 2 and the number of steps required

to check if an edge satis�es the conditions in Step 2. Every time a transaction node is visited, the

conditions in Step 2 need to be checked, on an average, for v

S

edges (the average number of sites a

global transaction executes at is v

S

), while every time a site node is visited, the conditions in Step 2

need to be checked for at most n

G

edges (since the number of transaction nodes in the TSGD is at

most n

G

). Furthermore, every transaction node can be visited at most v

S

n

S

times, while every site

31

Appendix -B- : Optimistic Scheme

Before we prove Theorem 1, we need to prove certain lemmas. In the following lemma, we state

the implications of complete regular speci�cations.

Lemma 1: Let RT

1

be a regular term in the regular speci�cation R, I be an instantiation of RT

1

in the global schedule S, and G

0

be a transaction in I . If R is complete, then there exists a regular

term RT

2

and an instantiation t

0

: t

1

� � � t

m�1

of RT

2

in S such that hdr(t

0

) = G

0

.

Proof: Let RT

1

= e

0

0

: reg exp

1

and I = t

0

0

: t

0

1

� � � t

0

n�1

, n > 1. Since I is an instantiation of RT

1

in S,

� for all j, j = 0; 1; : : : ; n� 1,

1. t

0

j

2 �

S

, and

2. last(t

0

j

) and first(t

0

(j+1)modn

) execute at the same site, and last(t

0

j

) is serialized after

first(t

0

(j+1)modn

) at the site, and

� type(t

0

0

) = e

0

0

and type(t

0

1

) � � � type(t

0

n�1

) is a string in L(reg exp

1

).

Let G

0

= hdr(t

0

k

), for some k, k = 0; 1; : : : ; n� 1. Since R is complete, there exists a regular term

RT

2

= type(t

0

k

) : reg exp

2

such that

type(t

0

(k+1) mod n

) � � � type(t

0

(k+n�1) mod n

)

is a string in 2 L(reg exp

2

). Thus,

t

0

k

: t

0

(k+1) mod n

� � � t

0

(k+n�1) mod n

is the required instantiation of RT

2

in S. 2

We next show that the manner in which Detect Ins Opt traverses edges in the TSGD ensures that

it detects instantiations of regular terms in the TSGD. We �rst introduce the following additional

notation.

Between the execution of any two steps

3

of Detect Ins Opt, the contents of v, cur st, �, anc(v

i

),

V set(v

i

) and F List(v

i

) for all v

i

2 V constitute a state St

k

of Detect Ins Opt. We denote the contents

of v, cur st, �, anc(v

i

), V set(v

i

), and F List(v

i

) for any v

i

2 V in state St

k

by St

k

:v, St

k

:cur st,

St

k

:�, St

k

:anc(v

i

), St

k

:V set(v

i

) and St

k

:F List(v

i

) respectively. State changes in Detect Ins Opt are

caused by steps 1, 3 and 4. We refer to state transition St

j

!St

k

due to Step 3 as a forward transition,

while a state transition St

j

!St

k

due to Step 4 is referred to as a reverse transition. Also, two states

St

j

and St

0

j

are said to be equivalent (denoted by St

j

� St

0

j

) if St

j

:v = St

0

j

:v, St

j

:cur st = St

0

j

:cur st,

and for all v

i

2 V , St

j

:anc(v

i

) = St

0

j

:anc(v

i

), St

j

:F List(v

i

) = St

0

j

:F List(v

i

). Detect Ins Opt has the

following interesting property: if it makes a forward transition St

j

!St

k

and for a state St

0

k

� St

k

,

makes a reverse transition St

0

k

!St

0

j

, then St

j

� St

0

j

.

Lemma 2: If Detect Ins Opt does not return abort and during its execution, Detect Ins Opt

is in state St

k

, then after a �nite number of steps, it enters a state St

0

k

� St

k

such that no forward

transitions from St

0

k

are possible.

Proof: We prove the lemma by induction on num, the number of elements in f(st; v

1

; v

2

) :

(st is a state of F) ^ (v

1

; v

2

2 V) ^ ((st; v

1

) 62 V set(v

2

))g in state St

k

.

3

Steps of Detect Ins Opt execute atomically.

30

procedure Detect Ins TSGD2((V;E;D;L);G

i

; s

k

; set

1

; RT):

1. For all nodes v in the TSGD, set F list(v) = [], anc(v) = [], V set(v) = ;. Set

v = s

k

, F list(s

k

) = [(st�; G

i

)], anc(s

k

) = [(G

i

; G

i

)], F = FA(RT), V set(s

k

) =

f(init st

F

; (G

i

; G

i

))g and cur st = init st

F

. Set � = ;.

2. If, for every edge (v; u) one of the following is true:

� head(anc(v))[1] = u.

� head(anc(v))[2] = u.

� There is a dependency (head(anc(v))[1]; v)!(v; u) in D [�.

� There is a dependency (head(anc(v))[2]; v)!(v; u) in D [�.

� If st = st

F

(cur st; L(v; u)) is de�ned then (st; (v; v)) 2 V set(u), and

if st

0

= st

F

(cur st; L(v; u)) is de�ned then (st

0

; (head(anc(v))[1]; u)) 2 V set(v).

then go to Step 4.

3. Choose an edge (v; u) such that

(a) head(anc(v))[1] 6= u, and

(b) head(anc(v))[2] 6= u, and

(c) there is no dependency (head(anc(v))[1]; v)!(v; u) in D [�, and

(d) there is no dependency (head(anc(v))[2]; v)!(v; u) in D [�, and

(e) st = st

F

(cur st; L(v; u)) is de�ned and (st; (v; v)) 62 V set(u), or

st

0

= st

F

(cur st; L(v; u)) is de�ned and (st

0

; (head(anc(v))[1]; u)) 62 V set(v).

If st is de�ned and (st; (v; v)) 62 V set(u), then do

� If st is an accept state, u 2 set

1

and v 6= G

i

, then � := � [f(v; u)!(u;G

i

)g.

� F list(u) := (cur st; v) � F list(u), anc(u) := (v; v) � anc(u), cur st := st, V set(u) =

V set(u) [f(st; (v; v))g, v := u. Go to Step 2.

If st

0

is de�ned and (st

0

; (head(anc(v))[1]; u)) 62 V set(v) then do

� If st

0

is an accept state, v 2 set

1

, u 6= G

i

and head(anc(v))[1] 6= G

i

, then � :=

� [f(head(anc(v))[1]; v)!(v;G

i

)g.

� F list(v) := (cur st; v) �F list(v), anc(v) := (head(anc(v))[1]; u)�anc(v), cur st := st

0

,

V set(v) = V set(v) [f(st

0

; (head(anc(v))[1]; u))g. Go to Step 2.

4. If head(F list(v)) 6= (st�; G

i

), then temp1 := head(F list(v))[1], temp2 :=

head(F list(v))[2], F list(v) := tail(F list(v)), anc(v) = tail(anc(v)), cur st := temp1,

v := temp2 and go to Step 2.

5. return(�).

Figure 14: Procedure Detect Ins TSGD2

29

procedure Detect Ins TSGD1((V;E;D;L);G

i

; s

k

; set

1

; RT):

1. For all nodes v in the TSGD, set F list(v) = [], anc(v) = [], V set(v) = ;. Set v = s

k

,

F list(s

k

) = [(st�; G

i

)], anc(s

k

) = [G

i

], F = FA(RT), V set(s

k

) = f(init st

F

; G

i

)g and

cur st = init st

F

. Set � = ;.

2. If, for every edge (v; u) one of the following is true:

� head(anc(v)) = u.

� There is a dependency (head(anc(v))!(v; u)) in D [�.

� If st = st

F

(cur st; L(v; u)) is de�ned then (st; v) 2 V set(u), and

if st

0

= st

F

(cur st; L(v; u)) is de�ned then (st

0

; head(anc(v))) 2 V set(v).

then go to Step 4.

3. Choose an edge (v; u) such that

(a) head(anc(v)) 6= u, and

(b) there is no dependency (head(anc(v))!(v; u)) in D [�, and

(c) st = st

F

(cur st; L(v; u)) is de�ned and (st; v) 62 V set(u), or

st

0

= st

F

(cur st; L(v; u)) is de�ned and (st

0

; head(anc(v))) 62 V set(v).

If st is de�ned and (st; v) 62 V set(u), then do

� if st is an accept state, u 2 set

1

and v 6= G

i

, then � := � [f(v; u)!(u;G

i

)g.

� F list(u) := (cur st; v) � F list(u), anc(u) := v � anc(u), cur st := st, V set(u) =

V set(u) [f(st; v)g, v := u. Go to Step 2.

If st

0

is de�ned and (st

0

; head(anc(v))) 62 V set(v), then do

� if st

0

is an accept state, v 2 set

1

and head(anc(v)) 6= G

i

, then � := � [

f(head(anc(v)); v)!(v;G

i

)g.

� F list(v) := (cur st; v) � F list(v), anc(v) := head(anc(v)) � anc(v), cur st := st

0

,

V set(v) = V set(v) [f(st

0

; head(anc(v)))g. Go to Step 2.

4. If head(F list(v)) 6= (st�; G

i

), then temp1 := head(F list(v))[1], temp2 :=

head(F list(v))[2], F list(v) := tail(F list(v)), anc(v) = tail(anc(v)), cur st := temp1,

v := temp2 and goto Step 2.

5. return(�).

Figure 13: Procedure Detect Ins TSGD1

28

procedure Detect Ins TSG2((V;E; L); G

i

; s

k

; set

1

set

2

; RT):

1. For all nodes v in the TSG, set F list(v) = [], anc(v) = [], V set(v) = ;. Set v = s

k

, F list(s

k

) =

[(st�; G

i

)], anc(s

k

) = [(G

i

; G

i

)], F = FA(RT), V set(s

k

) = f(init st

F

; (G

i

; G

i

))g and cur st =

init st

F

. Set � = ;.

2. If, for every edge (v; u) one of the following is true:

� head(anc(v))[1] = u or head(anc(v))[2] = u.

� If st = st

F

(cur st; L(v; u)) is de�ned then

(a) there exist nodes u

2

; u

3

, u

2

6= u

3

, such that (st; (v; u

2

)) 2 V set(u), (st; (v; u

3

)) 2 V set(u),

or

(b) (st; (v; v)) 2 V set(u),

and if st

0

= st

F

(cur st; L(v; u)) is de�ned then

(a) there exist nodes u

2

; u

3

, u

2

6= u

3

, such that (st

0

; (head(anc(v))[1]; u

2

)) 2 V set(v),

(st

0

; (head(anc(v))[1]; u

3

)) 2 V set(v), or

(b) (st

0

; (head(anc(v))[1]; u)) 2 V set(v).

� v 2 (set

2

[�) and u = G

i

.

then go to Step 4.

3. Choose an edge (v; u) such that

� head(anc(v))[1] 6= u and head(anc(v))[2] 6= u, and

� st = st

F

(cur st; L(v; u)) is de�ned and

(a) there do not exist nodes u

2

; u

3

, u

2

6= u

3

, such that (st; (v; u

2

)) 2 V set(u), (st; (v; u

3

)) 2

V set(u), and

(b) (st; (v; v)) 62 V set(u),

or st

0

= st

F

(cur st; L(v; u)) is de�ned and

(a

0

) there do not exist nodes u

2

; u

3

, u

2

6= u

3

, such that (st

0

; (head(anc(v))[1]; u

2

)) 2 V set(v),

(st

0

; (head(anc(v))[1]; u

3

)) 2 V set(v), and

(b

0

) (st

0

; (head(anc(v))[1]; u)) 62 V set(v), and

� v 62 (set

2

[�) or u 6= G

i

.

If st is de�ned, 3(a) and 3(b) then do

� If st is an accept state, u 2 set

1

and v 6= G

i

, then � := � [fug.

� F list(u) := (cur st; v)�F list(u), anc(u) := (v; v)�anc(u), cur st := st, V set(u) = V set(u)[

f(st; (v; v))g, v := u. Go to Step 2.

If st

0

is de�ned, 3(a

0

) and 3(b

0

) then do

� If st

0

is an accept state, v 2 set

1

, u 6= G

i

and head(anc(v))[1] 6= G

i

, then � := � [fvg.

� F list(v) := (cur st; v) � F list(v), anc(v) := (head(anc(v))[1]; u) � anc(v), cur st := st

0

,

V set(v) = V set(v) [f(st

0

; (head(anc(v))[1]; u))g. Go to Step 2.

4. If head(F list(v)) 6= (st�; G

i

), then temp1 := head(F list(v))[1], temp2 := head(F list(v))[2],

F list(v) := tail(F list(v)), anc(v) = tail(anc(v)), cur st := temp1, v := temp2 and go to Step 2.

5. return(�).

Figure 12: Procedure Detect Ins TSG2

27

procedure Detect Ins TSG1((V;E; L); G

i

; s

k

; set

1

; set

2

; RT):

1. For all nodes v in the TSG, set F list(v) = [], anc(v) = [], V set(v) = ;. Set v = s

k

, F list(s

k

) =

[(st�; G

i

)], anc(s

k

) = [G

i

], F = FA(RT), V set(s

k

) = f(init st

F

; G

i

)g and cur st = init st

F

. Set

� = ;.

2. If, for every edge (v; u) one of the following is true:

� If st = st

F

(cur st; L(v; u)) is de�ned then either

(a) head(anc(v)) = u or

(b) (st; v) 2 V set(u) or

(c) there exist two distinct nodes v

1

; v

2

such that (st; v

1

) 2 V set(u) and (st; v

2

) 2 V set(u),

and if st

0

= st

F

(cur st; L(v; u)) is de�ned then either

(a) (st

0

; head(anc(v))) 2 V set(v), or

(b) there exist two distinct nodes v

1

; v

2

such that (st

0

; v

1

) 2 V set(v) and (st

0

; v

2

) 2 V set(v).

� v 2 (set

2

[�) and u = G

i

.

then go to Step 4.

3. Choose an edge (v; u) such that

� st = st

F

(cur st; L(v; u)) is de�ned and

(a) head(anc(v)) 6= u, and

(b) (st; v) 62 V set(u), and

(c) there do not exist two distinct nodes v

1

; v

2

such that (st; v

1

) 2 V set(u) and (st; v

2

) 2

V set(u),

or st

0

= st

F

(cur st; L(v; u)) is de�ned and

(a

0

) (st

0

; head(anc(v))) 62 V set(v), and

{ there do not exist two distinct nodes v

1

; v

2

such that (st

0

; v

1

) 2 V set(v) and (st

0

; v

2

) 2

V set(v), and

� v 62 (set

2

[�) or u 6= G

i

.

If st is de�ned, 3(a), 3(b) and 3(c), then do

� If st is an accept state, u 2 set

1

and v 6= G

i

, then � := � [fug.

� F list(u) := (cur st; v) � F list(u), anc(u) := v � anc(u), cur st := st, V set(u) = V set(u) [

f(st; v)g, v := u. Go to Step 2.

If st

0

= st

F

(cur st; L(v; u)) is de�ned, 3(a

0

) and 3(b

0

), then do

� If st

0

is an accept state, v 2 set

1

and head(anc(v)) 6= G

i

, then � := �[fvg.

� F list(v) := (cur st; v) � F list(v), anc(v) := head(anc(v)) � anc(v), cur st := st

0

, V set(v) =

V set(v) [f(st

0

; head(anc(v)))g. Go to Step 2.

4. If head(F list(v)) 6= (st�; G

i

), then temp1 := head(F list(v))[1], temp2 := head(F list(v))[2],

F list(v) := tail(F list(v)), anc(v) = tail(anc(v)), cur st := temp1, v := temp2, and go to Step 2.

5. return(�).

Figure 11: Procedure Detect Ins TSG1

26

Appendix -A- : Procedures

procedure Detect Ins Opt((V;E;D;L);G

i

; s

k

; set

1

; RT):

1. For all nodes v in the TSGD, set F list(v) = [] ([] is the empty list), anc(v) = [], V set(v) = ;.

Set v = s

k

, F list(s

k

) = [(st�; G

i

)] (st� is a special termination state), anc(s

k

) = [G

i

],

F = FA(RT), V set(s

k

) = f(init st

F

; G

i

)g and cur st = init st

F

.

2. If, for every edge (v; u) one of the following is true:

� head(anc(v)) = u.

� There is a dependency (head(anc(v)); v)!(v; u) in D.

� if st = st

F

(cur st; L(v; u)) is de�ned then (st; v) 2 V set(u), and

if st

0

= st

F

(cur st; L(v; u)) is de�ned then (st

0

; u) 2 V set(v).

then go to Step 4.

3. Choose an edge (v; u) such that

(a) head(anc(v)) 6= u, and

(b) there is no dependency (head(anc(v)); v)!(v; u) in D, and

(c) st = st

F

(cur st; L(v; u)) is de�ned and (st; v) 62 V set(u), or

st

0

= st

F

(cur st; L(v; u)) is de�ned and (st

0

; u) 62 V set(v).

If st is de�ned and (st; v) 62 V set(u) then do

� If st is an accept state, u 2 set

1

, v 6= G

i

and there is no dependency (v; u)!(u;G

i

) in

D, then return(abort).

� F list(u) := (cur st; v) � F list(u), anc(u) = v � anc(u), cur st := st, V set(u) =

(st; v) [V set(u), v := u. Go to Step 2.

If st

0

is de�ned and (st

0

; u) 62 V set(v) then do

� If st

0

is an accept state, v 2 set

1

, u 6= G

i

and there is no dependency (u; v)!(v;G

i

),

then return(abort).

� F list(v) := (cur st; v) � F list(v), anc(v) = u � anc(v), cur st := st

0

, V set(v) =

(st

0

; u) [V set(v). Go to Step 2.

4. If head(F list(v)) 6= (st�; G

i

), then temp1 := head(F list(v))[1], temp2 :=

head(F list(v))[2], anc(v) = tail(anc(v)), F list(v) := tail(F list(v)), cur st := temp1,

v := temp2 and go to Step 2.

5. return(commit).

Figure 10: Procedure Detect Ins Opt

25

