Figure 25: Dependencies in case [;; =

Similarly, it can be shown that (V, £, DU A, L) cannot contain any strong-cycles consistent
RTy and RTy if zy, is assigned false. Thus, (V, F, DUA, L) cannot contain any strong-cycles consis
with either RTy or RT,, and is strongly-acyclic with respect to R. O

only if: Suppose there exists an assignment of truth values to literals such that C is satisfis
We show that there exists a set of dependencies A such that D U A is consistent and (V, F, DU A
is strongly-acyclic with respect to R. We specify the dependencies in the set A. For every literal
dependency (Ug, Vi)—(Vi, Wy) is added to A if zy is assigned true, else if @y is assigned true, t
(Wi, Vi)—(Vi, Ug) is added to A (since only one of xj or @y is true in the assignment, addition of
dependencies to A does not make D U A inconsistent). Also, for all [;;, if [;; is true in the assignm
then dependency (N;;,0;;)—(0;;, Pi;) is added to A, else dependency (F;;, O;;)—(0;;, N;;) is ad
to A. From the construction of A, it trivially follows that D U A is consistent. We show that
impossible for (V, £, DUA, L) to contain any strong-cycles that are consistent with either RT} or !

We first show that (V, E, D U A, L) cannot contain any strong-cycles consistent with R7j.
strong-cycle consistent with RT} cannot contain nodes R;;i, Sk, Tijk, Fijr, Gijr or H;jp due to dej
dencies (R;jk, Sijk)—(Sijk, Tije) and (Hijk, Gijk)—(Gijk, Fiji). Furthermore, since for every clause
there exists a literal /;; that is assigned true, dependency (N;;, O;;)—(0;;, P;;) is added to A. T
there cannot be any strong-cycle consistent with BTy in (V, E, D UA, L) involving nodes N;;, O;;
P;;, j = 1,2,3. Thus, there are no strong-cycles consistent with BTy in (V, E,DUA,L).

we now show that (V, £, DU A, L) does not contain any strong-cycles consistent with R7%. .
strong-cycle consistent with R7T5 cannot involve any of the nodes NZ»’]«, Ogj or Pi/j due to the depende
(P, 0:;)—=(0};, N[;), and must involve nodes M;;, Pij, Oij, Nij, Lij, Fiji, Gijis Hijr, Xk, U, Vi,
Wi, Y, Tk, Sijk, Bijr, for some literal [;; = 2, or @3. Let us assume that z, is true in the assignm
We consider the following two cases:

l;; = @5 In this case (as shown in Figure 24), since [;; is false in the assignment, depende
(Pij, 0i;)—(0y5, N;;) is added to A and thus, it is impossible for there to be any strong-cycle consis
with RT5 involving nodes P;;,0;;, N;;.

Rijp Tijk

Fij Hijy

Figure 24: Dependencies in case [;; = @,

¥ p— 9. v q . QR o~ N . q q S rT x r N\ PN 1 01 1

Figure 22: Dependencies in case [;; =

l;; = @x: In this case (as shown in Figure 23), dependency (W, Vi)—(Vi, Ug) must belong to A,
there would be a strong-cycle in the TSGD (V, E, DUA, L) consistent with RT5. Since A is consist
only one of (W, Vi)—(Vi, Ux) or (Uk, Vi)—(Vi, W) can belong to A. Thus, (Ug, Vi)—(Vi, W) «

not belong to A, and xj is assigned false (z}, is assigned true).

Rijp Tijk

Fijk H;jp,

Figure 23: Dependencies in case [;; = 7,

m1 I T T T T L Y oS T (. R I (R I [(T I R

Rijp Tijk

Fijn Hijy
Figure 21: Nodes and edges if [;; = 7,

Riji, Tijr, Fijp and H;j, are transaction nodes, while G, and Sj;, are site nodes. Subtr
actions of Ry, Tijk, Fijr and Hyjp, at sites Sijk, Yi, L;; and Gj respectively are of type b, w
subtransactions of Riji, Tijk, Fijr and Hij at sites My, Sik, Gijr and Xj are of type a. 1
that there are at most three edges incident on L;; and M;;. Also, there are two edges incident
each of PZ']‘, OZ']‘, NZ']‘, Rijka Sijka Tijka E]‘k, Gijka Hijka Uk, Vi, Wy, Pi/jv Ogj, Ni/j' Note that the TSGD
be constructed in O(p + ¢) steps.

The regular specification R contains two regular terms, RTy and RT3, RTy = (A :a,b): (A: a,
RTy = (A :c,e): ((A:bya)+ (A :c,c))+. We show that C is satisfiable iff there exist a se
dependencies A such that D U A is consistent and (V, £, DU A, L) is strongly-acyclic with respec
R.

if: Let us assume there exists a set of dependencies A such that (V, £, DUA, L) is strongly-ac;
with respect to R and D U A is consistent. We need to show that there exists an assignment of t:
values to literals such that C' is satisfiable. We assign truth values to literals as follows. If depende
(Uk, Vi) —=(Vi, W) € A, then literal z is assigned true, else xy is assigned false (z}, is assigned ¢r
Thus, only one of z or @} is assigned true.

We further need to show that in every clause C;, there is at least one literal that is true. S
(V,E,DUA,L) is strongly-acyclic with respect to R, for every clause C;, for some [;;, j = 1,
there must be a dependency (N;;, 0ij)—(0y;, P;;) (else there would be a strong-cycle in the TS
(V,E,DUA,L) consistent with RT7). We show that /;; must be assigned true, for which we nee
consider the following two cases:

l;; = xp: In this case (as shown in Figure 22), dependency (Uy, Vi)—(Vi, Wi) must belong tc
else there would be a strong-cycle in the TSGD (V, E, D U A, L) consistent with RT5. Thus, 2

more understandable). For all j = 1,2, 3, nodes P;;, N;;, P and V;; are transaction nodes while nc

M;;, 05, Li; and Ogj are site nodes. Subtransactions of PZ], N”, sz and NZ’ at sites Oyj, Lij,

and M;; respectively are of type a; while subtransactions of P;;, N, sz and NZ’ at sites M;;,

Li(jmod3)+1 and Ogj respectively are of type b. Furthermore, for every literal z, we include the ne
and edges shown in Figure 19 in the TSGD.

Yy

Vi

Xy
Figure 19: Nodes and edges for literal z

Uy and W are transaction nodes, while Y3, V3 and X}, are site nodes. Subtransactions of Uy
Wy, at sites Yy, Vi, and X} are of type ¢. Also, we introduce additional edges and dependencies in

TSGD depending on whether /;; = xy or l;; = . If I;; = 2, then the nodes, edges and dependen
illustrated in Figure 20 are added to the TSGD.

a Y.
a g
Rijk HZ]k

Uy

Figure 20: Nodes and edges if [;; = z,

On the other hand, if [;; = 21, then we include nodes, edges and dependencies in the TSGD sh

N;
a Lg b

M; \ M;y

@ b
NZ'IQ Pil
b a
Oiy < Ot
a b
P!
22 Nil
b
a
Lis L
‘ [T ’
b O
. 13 a
NZ'?’ a ’ b 013 PZ!S
b M q
P
NZ'IS

Figure 18: Structure for clause C}

Proof of Theorem 8: The above problem is in NP since a non-deterministic algorithm only ne
to guess a set A such that there are dependencies between any two edges in the TSGD. A can con
at most |F|? dependencies since there can be at most |F|? dependencies in the TSGD (V, E, D
The algorithm then needs to check if (1) D U A is consistent, and (2) for every regular term R7T i
and every node v in the TSGD, if there is a strong-cycle consistent with RT involving v in the TS
Step 1 can be performed in polynomial time and involves detecting cycles in a directed graph. St
, too, can be performed in polynomial time using an algorithm similar to Detect Ins_Opt that g
arguments a TSGD such that between any two edges there is a dependency, a node v in the TSGD
a regular term RT, precisely detects if the TSGD contains a strong-cycle involving v that is consis
with RT.

We show a polynomial transformation from 3-SAT to the above problem. Consider a 3-SAT forn
C =Cy ANCy A ---ANC, that is defined over literals zq,z2,...,2,. Let [;; denote the literal in cl:
Ci, i = 1,2,...,p, in position j, j = 1,2,3 (I;; could be either z} or z}, for some k = 1,2,...
We construct a TSGD (V, £, D, L) and a regular expression R such that C is satisfiable if and «
if there exists a set of dependencies A such that D U A is consistent, and the TSGD (V, E, DU A
is strongly-acyclic with respect to R. Every global transaction in the MDBS has type A, tha
gr = {A}. Local DBMSs export procedures whose types are one of a, b or ¢, that is, 7 = {a,b,c}

A 9. U/ Ry B I S RYA N R Y A i P [PR DI SR I S RGN 200 I YR RS I [R BRI

L4 (wivbg)v(bg'vNil)v(Nilvzil)v(Zilvifil) (Klvnegz(l))v(negi(l)vNiQ)v(N 7Z22) i
(33|negi|v"€9i(|"€9i|))a(negz’(|n€9i|) i(|negi+1)) (N Inegrl-l)?e;')v(e;' Tit1), if |n692| >0,

4 (xzvbz) (b/) (Nilveg)v (62'7%'4-1)7 if |negz| = 07
This is mainly due to

o the dependency (z1,s0) — (s0,Cpt1), and for all ¢ = 1,2,...,p, dependencies (z;41,¢;
(€is Pi(lposi|+1))s (Tit1, €)= (€}, Ni(jneg;+1)) in D, and

o for all [;; = pos,(k), only two edges are incident on each of P, X,; and W,, and dependen
(Wek,lij)— (I, Ri;) € D and (Byj;, Aij) — (4;;,C;) € D (a similar argument can be use
lij = neg,(k)).

Finally the strong-cycle contains the edges (2441, s2) and (g, ;). Note that no node in the strong-c
is visited more than once. Trivially, all the nodes other than /;; appear only once in the strong-c;
Furthermore, if [;; = pos, (k) (the argument if ;; = neg, (k) is similar), then /;; cannot be in the seque
of edges between both C; and Ci44 as well as z, and x,44 since DU{(R;;, l;;)—(L;, Bij), (Pr(k—l—l)v l;
(li;, Wrk)} is inconsistent, and the sequence of edges are in a strong-cycle.

We now show that there exists an assignment of truth values to zy for all & = 1,2,...,¢, ¢
that for all 7 = 1,2,...,p, for some j = 1,2,3, [;; is assigned true, and thus C' is satisfiable. Fo
i =1,2,...,p, for all j =1,2,3,[;; is assigned true iff the edges (B;;,li;), (li;, R;;) are in the strc

cycle. This assignment causes C' to be true since as shown earlier, for all ¢+ = 1,2,...,p, for s
j =1,2,3, edges (B;;,0;), (l;;, Ri;) are in the strong-cycle.
Further, it is not possible that for some k = 1,2,...,¢,) and z; are both assigned true. If zy

z are both assigned true, then there must exist symbols [;; and [, such that edges (B;;, ;) (L;, !
(Bys,lrs), (I5, Rys) are in the strong-cycle, and l;; = xy, ;s = 4. Thus, |negg| > 0, |posi| >
li; = posp(u), for some w, v = 1,2,...,|posg|, and [, = negg(v), for some v, v = 1,2,...,|ne
However, this is not possible, since as we showed earlier, one of /;; and [, is also in the sequenc
edges between x; and x34q1 in the strong-cycle, and the strong-cycle does not visit a node more t
once. O

We now show that the problem of computing a set of dependencies, A, that is strongly-mini
with respect to (V, E, D, L) and G, is NP-hard.

Proof of Theorem 7: We show that the NP-complete problem of determining if A’ =
not strongly-minimal with respect to G; and (V, E,D,L) can be Turing-reduced to the probler
computing a A such that D U A is consistent and A is strongly-minimal with respect to G|
(V,E,D,L).

Consider a subroutine S((V, £, D, L), G;) that returns a set of dependencies A such that D U.
consistent and A is strongly-minimal with respect to G; and (V, £, D, L) (note that such a A alv
exists if (V, £, D, L) satisfies the conditions mentioned in the theorem). An algorithm for solving
problem of determining if A’ = (} is not strongly-minimal with respect to G; and (V,E, D, L)
calls S((V, E, D, L),G;). If the set of dependencies A returned by S is non-empty, then the algori
responds “yes” (since if A’ =) is strongly-minimal with respect to G; and (V, E, D, L), then a1
empty A cannot be strongly-minimal with respect to G; and (V, E, D, L), and S would return ()
on the other hand, the set of dependencies A returned by S is @), then the algorithm responds *
(since A’ =) is strongly-minimal with respect to (V, E, D, L) and G;). O

xXxX7. . . TYY O

cycle. Since (' is satisfiable, there exists an assignment of truth values to zg, for all £ = 1,2,..
such that for all « = 1,2,...,p, for some j = 1,2,3, [;; is assigned true. We now specify the e
in the strong-cycle. Edge sequence (G, s1)(s1,C1) is in the strong-cycle. For all ¢ = 1,2,...,p,
edge sequence (Cy, Ai;)(Aij, Bij)(Bij, i) (g, Rij)(Rij, Qi;)(Qij, Cigr) is in the strong-cycle, for s
j = 1,2,3 such that [;; is true in the assignment. Edges (Cp11,50), (S0, 21) are also in the strong-c;
For all : = 1,2,...,¢,if ; is false in the assignment, then the following edges are in the strong-c;

L (wivbi)v (bivpil)v (Pileil)v (Xilvwil)v (Wil,pOs (1)) (pOS (1) PZ?) (Pi27Xi2)7 ceey
(Wi|posi|7p08i(|p08i|))7(pOSi(|p08i|)7Pi(|posi—|—1)) (i(|posi+1)s €) (627 i—I—l)v if |p08i| >0,

L (wiv bl)v (blv Pil)v (Pilv ei)v (eiv xi-l—l)v if |p08i| = 07
else if x; is true in the assignment, the strong-cycle contains the edges:

L4 (wivbg)v(bg'vNil)v(Nilvzil)v(Zilvile) (Klvnegz(l))v(negz() Ni?)v(NZ%ZzZ)v-"v
(33|negi|v"€9i(|"€9i|))a(negz’(|n€9i|) i(|negi+1)) (NZ (Inegi+1)» er), (e}, i), if |neg;| > 0,

L4 ($“b;), (bngil)v (Nilveg)v (62'7%'4-1)7 if |negz| = 07

Finally, the sequence of edges (241, $2)(s2, G;) are in the strong-cycle.

In the above choice of edges, we show that no node appears more than once in the strong-c;
Nodes other than /;;, trivially, appear only once. For any node /;;, it is in the sequence of edges betw
nodes C; and Cj4q only if [;; is true in the assignment. If [;; = pos,(k), then [;; = z,, and sinc
is true in the assignment, /;; is not among the nodes in the sequence of edges between z, and z
Similarly, if [;; = neg,(k), then [;; = #,, and since z, is false in the assignment, [;; is not among
nodes in the sequence of edges between z, and x,41. Thus, since

e for any consecutive edges (v1,v3),(v2,v3) in the sequence, v # vz and dependency (v, v

(v2,v3) € D, and

o for all l;; = pos,(k), D U{(Rij,l;;)—(lij, Bij) is consistent and D U {(Py (x1), lij)—(Lij, Wer,
consistent, and

o for all l;; = neg,(k), DU {(Rij,lij)—(lij, Bij) is consistent and D U {(N,(y1), lij)—(lij, Yok,
consistent,

the above sequence of edges constitute a strong-cycle involving G; in the TSGD.

We now show that if there is a strong-cycle involving G; in the TSGD, then there exists an ass
ment of truth values to literals such that C' is satisfiable. Any strong-cycle involving G'; in the TS
must contain the sequence of edges (G, s1)(s1,C1). Further, we claim that for all i = 1,2,...,p,
sequence of edges (Cy, Ai;)(Asj, Bij)(Bij, L) (L, Rij), (Rij, Qi)(Q45, Cigr) are in the strong-cycle.
some j = 1,2,3. This follows from the fact that there are dependencies (Cy11,Qs)—(Qrs, Rrs):
all r = 1,2,...,p, for all s = 1,2,3 and also if [;; = pos,(k), then the dependencies (W,, X}
(Xok, Prr) € D and (B, L) —=(lij, Pr(x41)) € D (a similar set of dependencies can be identified in
li; = neg,(k)). Thus, the strong-cycle also contains edges (Cpy1,50), (S0, 21).

Also, for all e = 1,2,..., ¢, the strong-cycle contains either edges

L (wivbi)v (bivpil)v (Pileil)v (Xilvwil)v (Wil,pOs (1)) (pOS (1) PZ?) (Pi27Xi2)7 ceey
(Wi|posi|7p08i(|p08i|))7(pOSi(|p08i|)7Pi(|posi—|—1)) (i(|posi+1)s €) (627 i—I—l)v if |p08i| > 0,

L (wivbi)v (bivpil)v (Pilvei)v (eivxi-l—l)v if |p08i| = 07

Figure 17: TSGD

only if r < s). In addition, there is no strong-cyclein (V', £/, D', L') consisting of transaction nodes f
both S7 and S5 since such a strong-cycle must contain the sequence of edges (vy, l;;)(;;, v2), for some
node [;;, v1 € 9 and vy € S (s¢ and [;; are the only site nodes that have edges to transaction node
both 57 and 53, and due to the dependency (21, so)—(s0, Cpt1), the sequence of edges (1, s0)(so, C,
cannot be in a strong-cycle). Let l;; = pos, (k) (the argument if [;; = neg, (k) is similar). Node vy car
be P, (r41) sinceif k < |pos,|, then only two edges are incident on each of Pr(k41y and X, (441, and
edges preceding (vy,l;;) in the strong-cycle must be the sequence (W, (x41), X (hg1)) (X (kt1)s Pr(k-
However, due to the dependency (W, (rq1), Xp(k41)) = (Xp(hg1)> Pr(k41)), this is not possible. On
other hand, if & = |pos,|, then since only two edges are incident on each of Pr(lpos,|+1) and ey,
edges preceding (vy,/;;) in the strong-cycle must be the sequence (2,41,)(€r, Prjpos,|+1)). Howe
due to the dependency (7,41, €)= (er, Pr(x41)), this is not possible. Thus, vy = W,;. However,
to the dependency (Wi, li;)—(l;, Rij), v2 # R;;. Thus, it must be the case that vy = B;;. Howe
since only two edges are incident on A;; and B;;, the sequence of edges immediately following B,
the cycle must be (B;;, A;;)(A;;, Ci) which is not possible due to the dependency (B;;, A;;)—(A;;,
Thus, there can be no strong-cycle in (V’/, E’, D', L") consisting of transaction nodes from both 5y
So, and (V' E', D', L) is strongly-acyclic.

We now show that C' is satisfiable iff (V, F, D, L) contains a strong-cycle involving G;. If (

- (wivbg)v(bngil)v(NilvZil)v(Zilvifil)v(ifilvnegi(l))v(negl() N)7(Ni27Zi2)7"'7
(Yilnegilv neg;(|negil)), (neg:(|neg:|), Ni(lnegi|+1))v (N2(|n6g1|+1)7 er), (€5, i), if negi| > 0,
- (xiv b;)v (bgv Nil)v (Nilv 6;»), (627 xi—l—l)v if |negz| = 07

o (Tg41,82), (82, Gi), (G, 81), (51, Ch).

Note that there are two edges incident on each of the symbols e;, €/, b;, b}, A;;, Bij, Qij, Rij, Pij, |
Xi;, Ni; Y;; and Z;;. In addition, there are four edges incident on every symbol [;;.

o If l;; = pos,(k), there are edges (Bij,li;), (lij, Rij), (Weg,lij) and (155, Pr(x41)) in the TSGD.
o If l;; = neg,(k), there are edges (Bij,l;;), (lij, Rij), (Yrk, li;) and (15, Ny (x41)) in the TSGD.
The set of dependencies D consist of

o (Bij, Aij)—(Aij, Ci), (Cig1,Qij)—(Qij, Rij), for all i = 1,2,....p,for all j = 1,2,3,
o (21,50)=(50, Cpt1),

e fore=1,2,...,q,

715) (b“$) (217) (levpzl)v(Wi27Xi2)_>(Xi27Pi2)7-' ©
W|posz|7X [posi| (X |posl|7P|pos,|) (Lit1,€ ')H(eivpi(|posi|—|—1))7 if |p08i| > 0,
115

- (P,
(
(7) (b“x)7(Lit1,€) (627) if |p052| —0

— (Ni1, b= (b, 24), (Yi, Zin)—=(Zia, Nav), (Yio, Zio)—(Ziz, Ni2)s - - -,
Yinegil> Zilneg:|) =(Zi |negz|vN negil)» (Zit1, €)= (€5 Ni(lnegil4+1)), if [negil >0,
- (N

7l 2) ()7(Tit1,€ 2) (62'7 21)71f|negz| :07

e for each symbol [;;,

—if I;; = pos,(k), then the following dependencies are in D: (Wyy,1l;;) — (L, Rij)
(Bij, lij)—=(lijs Pr(y1))-

— ifl;; = neg,(k), then the following dependencies are in D: (Y, ;;)—(1;;, Ri;) and (By;, ;
(Lijs Np(hg1))-

L (Clv 81)_>(817Gi)7

It is easy to see that the number of steps required to construct the TSGD (V, E, D, L)is O(p + ¢q
C' = a3V a1 V &3, then the constructed TSGD is as shown in Figure 17.

Our goal is to show that C' is satisfiable iff (V, £, D, L) contains a strong-cycle involving G.
begin by showing that the TSGD (V, E, D, L) satisfies the conditions. In D, the only depende
involving any of G)’s edges is (C1,s1)—(s1,G;). Thus, in D, there are only dependencies into :
edges. Also, the set of dependencies, D, is consistent. Further, we show that the TSGD (V', £/, D’
is strongly-acyclic, where V! =V -G, ' = E—{(G}, 1), (G4, 82)}, and D' = D —{(Cq,s1)—(s1,G
Let Sl = {Cl,CQ,.. .,Cp_|_1} U {BZ],R” = 1,2,. ..,p,j = 1,2,3}, and SQ = {$1,$2,. <oy T
N, Yo, 170 = 1,2,...,0,k = 1,2,...,|neg, |} U{Pk, Wy, : 7 = 1,2,....q,k = 1,2,...,|pos,
P (jposel+1)» Vo(lregel+1) 1 7 = 1,2,...,q}. Note that there cannot exist a strong-cycle in (V', £/, D'
such that all the transaction nodes in the cycle are in Sy (since there are dependencies (B;;, A;.
(Ai;, C), (Cig1, Qi) —(Qij, Rij), forall e = 1,2,...,p, for all j = 1,2, 3, a sequence of edges from C
Cs can be part of a strong-cycle only if r < s). Slmllarly, there can be no strong cycle in (V’ KD

v = ¥ ‘1

Cip

Aij lij = pOST(k) Qij
Figure 15: Edges and Dependencies if [;; = pos, (k)

On the other hand, if [;; = neg,(k), then edges and dependencies shown in Figure 16 are introdt
in the TSGD.

Cip

Figure 16: Edges and Dependencies if [;; = neg, (k)

We now describe the nodes, edges and dependencies in the TSGD. The set of nodes V' consis
transaction and site nodes. The set of transaction nodes in the TSGD consists of C,Cs,...,C,,C
T1,89, .y B, Tay1, Bij, Rijy t = 1,2,...,p, 7 = 1,2,3, G; (Cpt1, 2441 and G; are new symbols
addition to Py(pos, |+1)s Prks Wik, forall v = 1,2,...,¢, k = 1,2,..., |pos,|, and for all r = 1,2, ..
Ny (jnegrl+1)s Neks Yor b = 1,2,...,|neg,|. Site nodes consist of l;;, A;j, Qi 1 = 1,2,...,p, j = 1,
for all ¢, ¢ = 1,2,...,q, e;, €, b0, X, forall r = 1,2,...,q, k = 1,2,...,|pos,|, and Z,; for
r=1,2,....q, k=1,2,...,|neg,| in addition to new symbols sg, s1,93.

The set of edges E consist of

o (Ci, Ajj), (A, Bij), (Bij, lij), (Lij, Rij), (Rij, Qi) and (Q45,Ciqr), for all i = 1,2,...,p, fo
Jj=1,2,3,

. (Cp+1750)7 (507$1)7
e fore=1,2,...,q,

- (xivbi)v(bivpil)v(Pileil)v(Xilvwil)v(Wilvposi(l))v(posi(l)vpiQ)v(Pi27Xi2)7'--7
(W:l.... 1 nns;”nns;“_ (ﬂfm;(lﬂfm;“. P:/l.... 1 1\\. (P:/l.... 1y o4y P,;\. (P,;. e 1\.]f |7)0.Q;| ~)

Appendix -E- : Intractability results

Theorem 7 is a consequence of the following NP-completeness result.

Theorem 9: The following problem is NP-complete: Given a TSGD (V, F, D, L) and a transac
node G; € V, such that D is consistent, and for all transactions G; € V, for all sites s;, depende
(Gy,s8)—(sx,G;) € D. Also, TSGD (V', E’, D', L) resulting due to the deletion of G, its edges
dependencies from (V, E, D, L), is strongly-acyclic. Is A = () not strongly-minimal with respect to
TSGD and transaction G;7

Proof: We begin by showing that A = @) is not strongly-minimal with respect to G; and (V, E, L
iff (V, F, D, L) contains a strong-cycle involving transaction G;. Since A = (J, and universal quantii
tion over) is always true, by the definition of strong-minimality, A is strongly-minimal with res;
to Gy and (V, E, D, L)iff (V,E, D, L) does not contain any strong-cycles involving G;. As a resul
suffices to show that the following problem is NP-complete: Does (V, F, D, L) contain a strong-c
involving G; 7

The above problem is in NP since a non-deterministic algorithm only needs to guess a seque
containing at most 2| E|?+ 1 edges and then check in polynomial time if the sequence of edges resu
a strong-cycle involving G in the TSGD (V, £, D, L). The algorithm only needs to guess a seque
of 2| F|? +1 edges since in any strong-cycle with more than 2| F|?+ 1 edges, a consecutive pair of e
must be repeated (the total number of distinct pairs of edges is |F|?). Thus, the strong-cycle n
be of the form ---(v],v1)(v1,v2)(v3, v3) - - (1, v2)(v2, v3)(v3, V) - - - for some nodes vy, vz, v3,v], v
the TSGD. However, there exists a strong-cycle with fewer edges: --- (v}, v1)(v1, v2)(v2, v3)(v3, V})
Thus, if (V, E, D, L) contains a strong-cycle involving (;, then it contains a strong-cycle involving
with no more than 2|F|? 4+ 1 edges.

We show a polynomial transformation from 3-SAT. Consider a formula in Conjunctive Normal F
(CNF) C' = C1ACyA- - -NC), that is defined over literals z1, 2g,...,24. Let [;;, 1 =1,2,...,p,j =1,
be a new symbol for the j* literal in clause C;. Each symbol l;; is either xp or 2, k =1,2,...,¢
addition, for every literal z;, we introduce new symbols e;, €/, b; and b, and for literal /;;, we introc
new symbols A;;, B;;, ();; and R;;. For r = 1,2,...,¢q, pos, denotes the sequence of symbols /;
the order of increasing 7, such that [;; = x,. For r =1,2,...,¢, neg, denotes the sequence of sym
l;; in the order of increasing 7, such that [;; = ,. Also |pos,| denotes the number of elements in
sequence pos, and for k = 1,2,...,|pos,|, pos,(k) denotes the k" element in the sequence pos, (|n
and neg,(k) are similarly defined). For all » = 1,2,...,q, we introduce new symbols P, W,,
for each pos,(k), k = 1,2,...,[pos.|, and Py(pos,|+1); for 7 =1,2,...,q, new symbols N,x, Y,1, Z,4
each neg,(k), k = 1,2,...,[neg,|, and Ny (|ncg,+1). We illustrate the notation by means of the follos
example (“-” is the concatenation operator for sequences and “€” is the empty sequence).

Example: Let C' = (21 V@3V ag) A (22 V 31 Vas)A (T3 V 34V aq).
lia=a1,lp0=a1,132=74.

posy = 11,1 : 13,3, negr = 12,27 posy = €.

Also, |posy| = 2, |poss| = 0, |negy| = 2.

posi(1) =11, posi(2) = l33, negi(1) = ly 2, nega(2) = l3;. O

We now construct the TSGD as follows. The main components in the TSGD are the edges
dependencies that we introduce for literals [;;. If [;; = pos,(k), then edges and dependencies sho
in Figure 15 are included in the TSGD.

We further use Lemma 3 to show that, for }' = FA(RT,), statep(init_stp,edge(ty) - - -edge(t,-
(sfirst(to),Go))is an accept state. Let edge(ty) - - -edge(t,,—1)(sfirst(ty), Go) = (v1,v2) -+ - (vam—1,"
In order to use Lemma 3, we need to show that there exists a sequence gy - - - g,,—1 such that

o if vy; = vyiyq, then g; = L(vz;-1,v9;), and
o if vy, = vai41, then g; = L(vgi—1,v), and

stp(init_stp,g1---gm—1) is an accept state. We construct the sequence ¢y ---¢,,—1 with the al
properties as follows. For all i = 1,...,n — 1, let f; = (type(hdr(t;)), type(first(t;))), if arity(t;) ;
else, fi = (type(hdr(Ls)), type(first(t:)))(type(hdr(l;)), type(last(l;))). Since type(ty) - - - type(ln—y
a string in L(reg_exp), by the construction of FA(RT:), it follows that stp(init_stp, fi--- fn_1) i
accept state. Let g1 - ¢m—1 = f1--- fa=1, such that every ¢; € Y. Furthermore, from the defini
of edge and f;, it follows that, if for some ¢ = 1,...,m — 1, if (vy;_1, vy;) € edge(ty) and arity(ty) -
then g; = L(vg;—1,v2;), else g; = L(vgi—1,v2).

In order to show that statep(init_stp,(vi,v2),...,(Vm—1,0m)) is an accept state, we need to s
that for all ¢, ¢ = 1,2,...,m — 1, if vy; = vg;41, then ¢; = L(vy—1,ve) and if vgi—1 = vai41, t
gi = L(vgi—1,v3;). We first show that if vy, = vg41, and (vgi—1,v2) € edge(ty) for some k, |
L,2,...,n — 1, then arity(ty) = 2. Suppose arity(ty) = 1. Since last(ty) and first({(z41)m
execute at the same site, slast(ty) = vqi—1, sfirst(t(k+1)modn) = Vyit1, it follows that ve;—1 = v3
which leads to a contradiction. Thus, arity(ty) = 2, and g; = L(vg—1,v9). Also, it can be sh
that if vy;—1 = wvai41, and (vgi—1,v2;) € edge(ty), then arity(ty) = 1. Suppose arity(ty) = 2
vy = G, then vy, = v9;41 = G, which leads to a contradiction. If vy;_1 = G/, then since last(ty)
first(t(k41)modn) execute at the same site, slast(ty) = v2;, sfirst(t(p41)ymodn) = v2i41, it follows -

vy = V241, which leads to a contradiction. Thus, arity(ty) = 1, and, ¢; = L(v2i—1, v2;).

Thus, by Lemma 3, statep(init_stg, edge(ly) - - - edge(t,—1)(sfirst(lo), Go)) is an accept state. T
by corollaries 8 and 10, during the execution of Detect_Ins_/TSGD?((V, E, D, L), Gy, slast(ty),
sety, RT3), dependency (prev_anc(sfirst(ty)),sfirst(to))—(sfirst(Go),Go) is added to A, and 1
(prev_anc(sfirst(to)), s first(to))—(sfirst(to), Go) € Ap. However, this leads to a contradiction s
we showed earlier that (prev_anc(sfirst(t)), s first(to))—(sfirst(ty),Go) € Apr. Thus, every sche
S is correct. O

When tnity is processed, the procedure Detect Ins_ TSGD? is invoked with arguments that incl
the TSGD (V,E, D, L), Gy, slast(ty), sety, and RT, since type(Go) = hdr(eg) and type(last(io)
last(eg). Also, sfirst(ty) € sety (if arity(ty) = 1, then since sfirst(ty) = slast(ty), sfirst(ty) € «
if binary(to), then since sfirst(to) # slast(ty), and type(first(ty)) = first(eg), sfirst(tg) € se
Furthermore, all the edges belonging to Gy,...,G,—1 are in the TSGD when Detect_Ins_TSGD
invoked. In order to show this, we first show that G;’s edges cannot be deleted from the TS
before G'(;11)modn’s edges are deleted from the TSGD, for all j, j = 1,2,...,n — 1. Suppose,
some 7, j = 1,2,...,n — 1, G;’s edges are deleted from the TSGD before G(; 1)modn’s edges
deleted from the TSGD. Let slast(t;) = sg. Since G is serialized after G((j+1)modn)k» al site
$eTk(G (j41)modn) €xecutes before serg(G;). Thus, since G\(j11)modn s edges are inserted into the TS
before ser(G(;41)modn) executes, while ;s edges are deleted after sery(G;) executes, G'(j41ymo
edges must be in the TSGD when G,’s edges are deleted (since we have assumed that G;’s e
are deleted before G(;41)modn’s edges are deleted). Furthermore, since ser(G;) and seri(G(j41)m
must have both executed when G;’s edges are deleted, G(;11)mod. is serialized before G; when
edges are deleted. However, this leads to a contradiction, since edges belonging to G; and G(j41)n
are deleted together when fin; for some transaction () is processed (since G (j41)modn is serial
before (7}, if for every transaction G, € V serialized before (7}, val), has been processed, then for e
transaction G € V serialized before G(;41)ymodn also, valy must have been processed). Thus, ¢
edges are not deleted from the TSGD before GG3’s edges are deleted, ..., G,,_1’s edges are not del
from the TSGD before Gy’s edges are deleted. By transitivity and since Gy’s edges are deleted «
after inity has been processed, when Detect_Ins_TSGD? is invoked during the processing of initg,
TSGD contains all the edges belonging to transactions Gg, Gy, ..., Gr—1.

Let A be the set of dependencies returned by Detect_Ins_TSGD?. We now show that (G, slast(
edge(ty) - --edge(t,—1)(sfirst(ty),Go) is a path in the TSGD (V, E,D U Ap). We begin by shov
that any two consecutive edges in the path have a common node. Consecutive edges in the path c
be one of the following:

o (sfirst(G;),G;)(Gy,slast(G;)), 7 =1,2,...,n—1, where arity(t;) = 2 (G is the common no

o (G, slast(t;))(sfirst(t(j41)ymodn)s G(j41)modn), J = 0,1,...,n — 1, where arity(t;) = 2 or j :
arity(t(j41)ymodn) = 1 or 2 (since for all j, j = 0,1,...,n — 1, last(t;) and first(t(;41)m
execute at the same site, slast(t;) = sfirst(t(;41)modn) is the common node).

o (sfirst(t;), G;)(sfirst(t(;41)modn)s G(j41)modn)s J = 1,2,...,n — 1, where arity(t;) = 1, ar
t(j41)modn) = 1 or 2 (since arity(t;) = 1 implies that sfirst(t;) = slast(t;), and slast(t;
sfirst(t(;41)ymodn), it follows that sfirst(t;) = sfirst(t(;41)mods) is the common node).

Also, for the sequence of edges (s first(t;), G;)(G;, slast(t;)) in the path, j = 1,2,...,n—1,itn
be the case that arity(t;) = 2, and thus sfirst(t;) # slast(t;). Also, if for some j, k, 7 =0,1,...,n
j < k < n, the sequence of edges (G, slast(t;))(sfirst(t(j11)modn)» G (j+1)modn)s - - -5
(sfirst(tkmodn), Gkmodn) is in the path, then it must be the case that for all j <1 < k, arity(#) :
Thus, by Property 1, it follows that slast(t;) = sfirst({(;41)modn) = *++ = 8first(tkmodn), and fo
r,s,] <r<s<Ek,

L4 GT 7£ Gsmodn7 and

o (. isserialized after Gsmodyn at site sfirst(Gsmodn). Thus, by Lemma 14, dependency (G, s fi
Gsmodn))— (8 f1rst(Gsmodn), Gsmodn) does not belong to D U Ap (since A is added to the
of dependencies D in the TSGD immediately after initq is processed).

Thus, (Go, slast(ty))edge(ty) - - -edge(t,—1)(sfirst(ty), Go) is a path in the TSGD (V, E, DUAFR). T

2 VR /s o N o~ N

However, since in state St , no forward transition can be made due to edge (5t},.v, vapm42), it 1
be the case that

o if vy, 49 = Vo3, then SV _set(vyn42) already contains (sty,41,(5t;.v,5t,.v)). Thus, s

Stz-?f = V2m+1, PTeU(Uzm+3) = V2m+1, prev_anc(v2m+3) = V2m+1, (Stm-l—lv (prev—anc(v2m+3)7
prev(vem43))) is added to V_set(vgp43) during the execution of Detect Ins TSGD2.

o if Vo411 = Vymys, then St).V_set(St).v) already contains (stp,41, (prev_anc(vam41), V2,
Thus, since St,.v = vopq1, Prev (Vamys) = Vapmye, prevoanc (Vamqs) = prevoanc (Vo
(stmy1, (preveanc (va,43), prev (vam4s))) is added to V _set (va,43) during the executio
Detect Ins_TSGD2. O

Corollary 10: Let Detect_Ins_TSGD2((V, F, D, L), v, va, sety, RT) return the set of dependen
Ap. If the TSGD (V,E,D U Ap) contains a path (vy,v2) - (v2n—1, v20)(V2nt1,v1), V2 = Vs, s
that for the regular term RT, F' = FA(RT), st = statep(init_stp,(vs,v4) - (V2n-1, V20)(V2n+1,
is an accept state and wvy,41 € sety, then during the execution of Detect_Ins_TSGD2, depende
(prev_anc(vent1), v2nt+1)—(v2n41, v1) is added to A.

Proof: By Lemma 13, (st, (prev_anc (ven41), prev (vent1))) is added to V_set (vgp41). S
prev(vy,41) # v1 and prev_anc(vy,41) # v1 (by definition of path), Detect Ins-TSGD2 makes a
ward state transition when (st,(prev_anc(vy,41), prev(ven41))) is added to V_set(vgn41). Howe
just before (st, (prev_anc(ven41), prev(va,41))) is added to V_set(vg,41), since st is an accept st
prev_anc(ve,41) # v1, prev(vens1) # v1 and vg,4q € sety, dependency (prev_anc(van41), V2nti
(v2041,01) is added to A. O

We are now in a position to prove that the TSGD scheme ensures the correctness of 5. Before
present the proof, we prove the following lemma.

Lemma 14: If, in the TSGD scheme, for some site s, transactions G;, GG, Gy, is serialized be
G ;1 at site sy, then there does not exist a dependency (G, s)—(sk, G;) in the TSGD.

Proof: Suppose there exists a dependency (G, sg)—(si, G;) in the TSGD. The dependency car
be added to the TSGD once act(sery(G;)) has executed. Thus, dependency (G, sg)—(sk, G) mus
added to the TSGD before act(sery(G;)) executes. However, if this were the case, act(sery(G;)) we
not execute until act(ack(sery(G;))) completes execution (the dependency (G, sk)—(sk, G;) is del
from the TSGD only after ack(sery(G;)) is processed). Thus, sery(G;) would execute before ser(
and Gj; would be serialized before (v at site si, which leads to a contradiction. O

Proof of Theorem 5: Suppose 5 is not correct. Thus, there exists a regular term RT in R
an instantiation I of RT in 5. Let (Gg be the transaction in I such that tnity is processed after inat,
every other transaction G in I is processed. By Lemma 1, since R is complete, there exists a reg
term RTy = eg : reg_exp and an instantiation to : t1t2---t,—1 of RT3 in S such that hdr(ty) =
Thus,

o forallj,j=0,1,....n—1,

1. t; € ¥g (without loss of generality, let hdr(t;) = G;), and

2. last(t;) and first({(j41)modn) execute at the same site, and last(t;) is serialized a
first(t:11)ymodn) at the site, and

the conditions in Step 2 need to be checked, on an average, for vg edges (the average number of s
a global transaction executes at is vg), while every time a site node is visited, the conditions in Ste
need to be checked for at most ng edges (since the number of transaction nodes in the TSGD is at n
ne). Furthermore, every transaction node can be visited at most ving times, while every site n
can be visited at most nZng times (every node v in the TSGD can be visited in a state st of F at n
once for every pair of nodes u, w such that (v, w) and (v, u) are edges in the TSGD, and F has at n
ng states). Since there are m site nodes and at most n¢ transaction nodes in the TSGD, the nun
of times Detect_Ins_TSGD2 checks if an edge satisfies the conditions in Step 2 is n%mns + nGvg
Since each of the conditions in Step 2 can be checked in constant time and vg < ng,vs < m,
tect_Ins_TSGD2 terminates in O(nkmng) steps. O

We now show that Detect_Ins_TSGD2 traverses edges in the TSGD in a manner that ensure
detects instantiations of regular terms.

Lemma 13: Let DetectIns.TSGD2((V, F, D, L), v, vz, sety, RT') return the set of depenc
cies Ap. If the TSGD (V, £, D U Ap) contains a path (v1,v2),(v3,04), ..., (V20-3, V2n—2), (V2n—1,1
vy = w3, such that for the regular term RT, ' = FA(RT), statep(init_stp,(vs,v4),...,(V2n—1,V2p
defined, then during the execution of Detect_Ins TSGD2, (st, (prev_anc(vgitq1), prev(vytq))) is adde
V_set(vz;41), where st = statep(init_stp, (vs,va) - - (vai—1, v2;)(V2i41, V2iy2)), forall i, = 1,2,3,...
1.

Proof: We prove the above lemma by induction on :. We prove that for all 2, ¢ = 1,2,...,n
(st, (prev_anc(vyiyr), prev(vyiqy))) is added to V_set(vg;41), where st = statep(init_stp,(vs,vq) - -
(Uzz’—h U2i)(v2i+17 U2i+2))-

Basis (¢ = 1): In Step 1 of Detect Ins_TSGD2, (init_sty, (v, v1)) is added to V_set(vy). Since vy =
prev_anc(vs) = prev(vs) = vy, and statep(init_sty,(vs,v4)) = tnit_sty, the lemma is true for i
((init_stp, (prevanc(vs), prev(vs))) is added to V_set(v3)).

Induction: Let us assume that the lemma is true for ¢ = m, 1 < m < n — 1. Thus,

(Stm, (preveanc(vem41), prev(vam4+1))) is added to V _set(vy41), where st,, = statep(init_sty, (vs
- (V2m—1, V2m) (V2m+1, Vam+2)). We show the lemma to be true for i = m 4 1. Thus, we need to s
that (st,41, (preveanc(vam4s), prev(vam4s)))is added to V_set(vq,,4+3), where st,, 11 = statep(init.
(v3,v4) * - (V2415 V2m+2)(V2m43, V2m+44)). By the definition of statep, sty11 = stp(stp, L(vami1, vs
if Vam+2 = V2m+3 and Stm+1 = StF(Stm, L(U2m+1, ?sz_|_2)), if Vam+1 = V2m+3-

Let Stx be the resulting state of Detect_Ins_T'SGD2 after (st,,, (prev_anc(vam41), prev(vamy1)
added to V_set(vgm41) (the state Sti results either due to the forward transition St; — St, el
St;.0 = vgm4q O Stj.v = prev(vam,41), or due to Step 1). Thus, Stp.v = vop 41, Stp.cur_st = st,,
in state Stx, head(Sty.anc(Sty.v)) = (prev_anc(vyy,41), prev(vem41)). Furthermore, it follows f
Lemma 12 that after a finite number of steps, Detect Ins_/ TSGD?2 is in a state St such that S| =
and no further forward transitions can be made from St,. Thus, in state St}

o Since prev(vem41) # Vam4e and prev_anc(vym41) # Vam42, head(St .anc(St,.v))[1] # vo,
head(St),.anc(St,.v))[2] # vamt2,

o Since St..A C Ap and (v1,v2) - - - (V2m41, V2m+2) is a path in (V, £, DU AF), there are no dej
dencies (PTeU(UzmH)aUzm+1)—>(vzm+17@2m+2) and (prev—anC(UZm—l—l)vv2m+1)_>(v2m+177]2m—|—2
D U Ap; thus, dependencies (head(St).anc(St),.v))[2], 5t}.v)—(S5t},.v, vam42) and
(head(St).anc(St),.v))[1], St}.v)—(St}.v, vamy2) are not in D U S, A,

e Since statep(init_stp,(vs,v4) - (Vam+1, V2m+2)(V2m+3, V2m4a)) is defined, if va,q0 = vg

9 P 3 B Y 1 NN e 1 q .

or St;.v = prev_anc(vyy,41), or due to Step 1). Thus, Sty.v = vom41, Sty.cur_st = st,, and in s
Sty, head(Sty.anc(Sty.v)) = prev_anc(vyy,41). Furthermore, it follows from Lemma 10 that aft
finite number of steps, Detect Ins_/TSGD1 is in a state St} such that St} = St; and no further forw
transitions can be made from St,. Thus, in state St},

o Since prev_anc(vgm41) # vam+2 (by the definition of path), head(St).anc(St,.v)) # vomt2,

o Since St3..A C Ap, and (v1,v2) - -+ (V2m41, Vam+2) 1s a path in (V, E, D U Ap), there is no
pendency (prev_anc(vem+1), v2m+1) — (V2m+1, V2m+2) in D U Ap; thus, there is no depende
(head(St).anc(St),.v)), St,.v)—=(5t).v, vap42) in D U St.A,

e Since statep(init_stp,(vs,v4) - (Vam+1, V2m+2)(V2m+3, V2m+4a)) is defined, if va,p0 = vg
then st 41 = stp(St).cur_st, L(St},.v,v3m42)) is defined, else if vo,,41 = Vo443, then st 4
stp(Sty.cur_st, L(S1),.v, vap42)) is defined.

However, since in state St , no forward transition can be made due to edge (5t},.v, vapm42), it 1
be the case that

o if Vo490 = Vomts, then StV _set(vyy42) already contains (st,4q1,5t,.v). Thus, since St;.
V21, PTEV-anc(Vam43) = Vami1, (Stmt1, prev_anc(vym43)) is added to V _set(vgy,43) during
execution of Detect Ins_ TSGD1.

o if vy, 11 = Vo3, then 5.V _set(S5t).v) already contains (st,,41,prevanc(vemsr)). T
since St.v = vypq1, prevoanc(vy,ys) = prev_anc(vem41), (Stmi1, prevanc(vem,43)) is ad
to V_set(vamys) during the execution of Detect_Ins_.TSGD1. O

Corollary 8: Let Detect_Ins_.TSGD1((V, £, D, L), v1,vs, set1, RT) return the set of dependen
Ap. If the TSGD (V,E,D U Ap) contains a path (vy,v2) - (v2n—1, v20)(V2nt1,v1), V2 = Vs, s
that for the regular term RT, F' = FA(RT), st = statep(init_stp,(vs, va) - (V2n-1, V20)(V2n+1,
is an accept state and wvy,41 € sety, then during the execution of Detect_Ins_TSGD1, depende
(prev_anc(vent1), v2nt+1)—(v2n41, v1) is added to A.

Proof: By Lemma 11, (st, prev_anc(vz,41)) is added to V_set(va,41). Since prev_anc(vy,41) 7
Detect _Ins_TSGD1 makes a forward state transition when (st, prev_anc(vy,4+1)) is added to V _set(v
However, just before (st, prev_anc(vy,41)) is added to V _set(vq,41), since st is an accept state, prev.
(v2n41) # v1 and vg,41 € sety, dependency (prev_anc(vans1), vent1)—(van41,v1) is added to A. O

We now show that Detect_Ins_TSGD2 terminates in O(nZmuvs) steps, for which we need to p:
the following lemma.

Lemma 12: If during its execution, Detect Ins_TSGD2 is in state S, then after a finite nun
of steps, it enters a state St} = St such that no forward transitions from St} are possible.

Proof: Similar to proof of Lemma 8. O

Corollary 9: Procedure Detect_Ins_TSGD2 terminates in O(n&mng) steps.

Proof: Detect_Ins_-TSGD2 can be shown to terminate as a result of Lemma 12 using a sim
argument as in Corollary 3.
The number of steps Detect Ins_ TSGD2 terminates in is equal to the product of the numbe

3 s Mt mnrmt T TSI Alnnlre € v o Aadvon cadttcalt e 4hhn mmamr A4 o 2 O mneny) aamnd 4T A sva199 e o~ -

Appendix -D- : TSGD Schemes

In this appendix, we prove Theorem 5. We begin by showing that Detect Ins_.TSGD1 and
tect_Ins_TSGD2 detect instantiations of regular terms in 5. States St; between the execution of
two steps of Detect Ins_TSGD1 and Detect_Ins_ TSGD?2 are as defined earlier for Detect Ins_Opt.

Lemma 10: If during its execution, Detect Ins_TSGD1 is in state S, then after a finite nun
of steps, it enters a state St), = 51 such that no forward transitions from St are possible.

Proof: Similar to proof of Lemma 2. O

Corollary 7: Procedure Detect_Ins_-TSGD1 terminates in O(nimng) steps.

Proof: Detect_Ins_-TSGD1 can be shown to terminate as a result of Lemma 10 using a sim
argument as in Corollary 3.

The number of steps Detect Ins_TSGD1 terminates in is equal to the product of the numbe
times Detect_Ins_TSGD1 checks if an edge satisfies the conditions in Step 2 and the number of s
required to check if an edge satisfies the conditions in Step 2. Every time a transaction node is visi
the conditions in Step 2 need to be checked, on an average, for vg edges (the average number of s
a global transaction executes at is vg), while every time a site node is visited, the conditions in Ste
need to be checked for at most ng edges (since the number of transaction nodes in the TSGD i
most ng). Furthermore, every transaction node can be visited at most vgng times, while every
node can be visited at most ngng times (every node v in the TSGD can be visited in a state st ¢
at most once for every node w such that edge (v, w) is in the TSGD, and F' has at most ng stat
Since there are m site nodes and at most ng transaction nodes in the TSGD, the number of ti
Detect Ins_TSGD1 checks if an edge satisfies the conditions in Step 2 is n%mns + nGv%nS. Since ¢
of the conditions in Step 2 can be checked in constant time and vg <€ ng,vs < m, Detect _Ins_TS(
terminates in O(n&mng) steps. O

We now show that Detect_Ins_TSGD1 traverses edges in the TSGD in a manner that ensure
detects instantiations of regular terms.

Lemma 11: Let Detect_Ins-TSGD1((V, F, D, L), v, vy, sety, RT) return the set of dependen
Ap. If the TSGD (V, E, DU AF) contains a path (v1,v2),(vs,v4), ..., (V2n-3, Van—2), (V2n-1, V2n), 1
vs, such that for the regular term RT', F' = FA(RT), statep(init_stp,(vs, v4), ..., (Van—1,02,)) is
fined, then during the execution of Detect_Ins_TSGD1, forall 7,7 = 1,2,3,...,n—1, (st, prev_anc(vy,
is added to V_set(vy;41), where st = statep(init_sty,(vs,va) - (v2i—1, v2;)(V2i41, V2it2))-

Proof: We prove the above lemma by induction on :. We prove that for all 2, ¢ = 1,2,...,n
(st,prev(vyiq1))is added to V _set(vq;11), where st = statep (init_stp, (vs, vq) - - - (v2i—1, V2i)(V2i41, V;
Basis (: = 1): In Step 1 of Detect_Ins_TSGDI1, (init_stp,vy) is added to V_set(vy). Since vy =
prev_anc(vs) = vy, and statep(init_stp,(vs,v4)) = init_sty, the lemma is true for i = 1 ((inut_
prev_anc(vs)) is added to V_set(vs3)).

Induction: Let us assume that the lemmais true for i = m, 1 < m < n—1. Thus, (st,,, prev_anc(vy
is added to V_set(vam41), where st,, = statep(init_stp,(vs,vs) - (V2m—-1, V2m)(V2m+1, V2m+2))-
show the lemma to be true for i+ = m + 1. Thus, we need to show that (st,,1,prev_anc(vy,
is added to V_set(vym43), where st 41 = statep(init_stp,(vs, v4) -+ (V2m+1, V2m+2)(V2m+3, V2m4
By the definition of stater, st,11 = stp(stm, L(v2m+t1, Vam+2)), if Vamis = Vamgs and stp4

StE(Stm, L(vam+1, Vam+2)), if V2mt1 = V2mes.

. . N p— Y N T ~, VN v NN e T

j < k < n, the sequence of edges (G, slast(t;))(sfirst(t(j11)modn)» G (j+1)modn)s - - -5
(sfirst(tkmodn), Gkmodn) is in the path, then it must be the case that for all j <1 < k, arity(#) :
Thus, by Property 1, it follows that slast(t;) = sfirst({(;41)ymodn) = *+* = $first(tgmodn), and
all 7,8, 7 <r < s <k, G # Gemodn- Thus, (Go, slast(ty))edge(ty)---edge(t,—1)(sfirst(ty), Go)
path in the TSG (V, E, L). Furthermore, if Ap is the set of site nodes returned by Detect_Ins_TS
then for some j = 0,1,...,n — 1, if sfirst({(j41)modn) € setz U Ap, then G(jt1ymoan # Go
sk = sfirst(t(j41)ymodn) = slast(t;). If sp € setg U Ap and G(j11)modn = Go, then seri(G(j41)m
in the queue is marked when inity is processed. Since inity is processed after init;, sery(G,
inserted into the queue for site s; before serk(G(Hl)modn) is inserted into the queue for s;. T
$eTk(G (j41)modn) €xecutes after serp(Gy)), and first(t(;j11)ymodn) = G((j+1)modn)k Must be serial
after last(t;) = G at site sg, which leads to a contradiction). Thus, sfirst(ty) € seta U Ap. T
the path (Go, slast(to))edge(ty) - - -edge(t,—1)(sfirst(to), Go) is consistent with respect to sety U 2

We further use Lemma 3 to show that, for }' = FA(RT,), statep(init_stp,edge(ty) - - -edge(t,-
(sfirst(to),Go))is an accept state. Let edge(ty) - - -edge(t,,—1)(sfirst(ty), Go) = (v1,v2) -+ - (vam—1,"
In order to use Lemma 3, we need to show that there exists a sequence gy - - - g,,—1 such that

o if vy; = vyiyq, then g; = L(vz;-1,v9;), and
o if vy, = vai41, then g; = L(vgi—1,v), and

stp(init_stp,g1---gm-1) is an accept state. We construct the sequence ¢y ---¢,,—1 with the al
properties as follows. For all i = 1,...,n — 1, let f; = (type(hdr(t;)), type(first(t;))), if arity(t;) ;
else, fi = (type(hdr(l;)), type(first(t:)))(type(hdr(l;)), type(last(l;))). Since type(ty) - - type(ln—y
a string in L(reg_exp), by the construction of FA(RT:), it follows that stp(init_stp, fi--- fn_1) i
accept state. Let g1 - ¢m—1 = f1--- fa=1, such that every ¢; € Y. Furthermore, from the defini
of edge and f;, it follows that, if for some ¢ = 1,...,m — 1, if (vy;_1, vy;) € edge(ty) and arity(ty) -
then g; = L(vg;—1,v2;), else g; = L(vgi—1,v2).

In order to show that statep(init_stp,(vi,v2),...,(Vm—1,0m)) is an accept state, we need to s
that for all ¢, ¢ = 1,2,...,m — 1, if vy; = vg;41, then ¢; = L(vg—1,ve) and if vg;—1 = vai41, t
gi = L(vgi—1,v3;). We first show that if vy, = vg41, and (vgi—1,v2) € edge(ty) for some k, |
L,2,...,n — 1, then arity(ty) = 2. Suppose arity(ty) = 1. Since last(ty) and first({(z41)m
execute at the same site, slast(ty) = vqi—1, sfirst(t(k+1)modn) = Vyit1, it follows that ve;—1 = v3
which leads to a contradiction. Thus, arity(ty) = 2, and g; = L(vg—1,v9). Also, it can be sh
that if vy;—1 = wvai41, and (vgi—1,v2;) € edge(ty), then arity(ty) = 1. Suppose arity(ty) = 2
vy = G, then vy, = v9;41 = G, which leads to a contradiction. If vy;_1 = G/, then since last(ty)
first(t(k41)modn) execute at the same site, slast(ty) = v2;, sfirst(t(p41)ymodn) = v2i41, it follows -

vy = V241, which leads to a contradiction. Thus, arity(ty) = 1, and, ¢; = L(v2i—1, v2;).

Thus, by Lemma 3, statep(init_stg, edge(ty) - - - edge(t,—1)(sfirst(lo), Go)) is an accept state. T
by corollaries 4 and 6, during the execution of Detect _Ins_ TSG?((V, £, L), Gy, slast(ty), setq, sety, R
sfirst(tp) is added to A, and thus sfirst(ty) € Ap. However, this leads to a contradiction since
showed earlier that sfirst(tg) ¢ seta U Ap. Thus, every schedule S is correct. O

Proof of Theorem 3: Suppose 5 is not correct. Thus, there exists a regular term RT in R
an instantiation I of RT in 5. Let (Gg be the transaction in I such that tnity is processed after inat,
every other transaction G in I is processed. By Lemma 1, since R is complete, there exists a reg
term RT3 = eg : reg_exp and an instantiation to : t1t2---t,—1 of RT3 in S such that hdr(ty) =
Thus,

o forallj,j=0,1,....n—1,

1. t; € ¥g (without loss of generality, let hdr(t;) = G;), and

2. last(t;) and first({(j41)modn) execute at the same site, and last(t;) is serialized a
Jirst(t(j41)modn) at the site, and

o type(ty) = eg and type(ty) - - -type(t,—1) is a string in L(reg_exp).

When nitg is processed, the procedure Detect Ins_TSG? is invoked with arguments that include
TSG (V,E, L), Go, slast(ty), setq, sety and RT; since type(Go) = hdr(eg) and type(last(ty)) = last(
Also, sfirst(ty) € sety (if arity(ty) = 1, then since sfirst(ty) = slast(ty), sfirst(ty) € set,
binary(tg), then since sfirst(ty) # slast(ty), and type(first(ty)) = first(eg), sfirst(ty) € s
Furthermore, all the edges belonging to Gy, ..., G,—1 arein the TSG when Detect_Ins_TSG? is invo
In order to show this, we first show that G;’s edges cannot be deleted from the TSG before G'(;11)mo
edges are deleted from the TSG, forall 5,7 = 1,2,...,n—1. Suppose, forsome j, 5 = 1,2,...,n—1,1
edges are deleted from the TSG before G4 1)modn s edges are deleted from the TSG. Let slast(t;) =
Since Gy, is serialized after G ((j41)modn)k» at site sg, $€7k(G(j11)modn) executes before serg(G;). T
since G/ 41)modn 5 €dges are inserted into the TSG before serk(G(Hl)modn) executes, while G;’s e
are deleted after sery(G;) executes, G (j41)modn s €dges must be in the TSG when G;’s edges are del
(since we have assumed that G;’s edges are deleted before G (j41)modn’s €dges are deleted). Howe
this leads to a contradiction, since edges belonging to G; and G(;41)modn are deleted together w
fing for some transaction G is processed (due to the sequence of edges between G; and G(i41)m
(G5 36)(8k, G(j41)modn), if for every transaction Gy € V such that there is a sequence of edges f
G/; to Gy in the TSG, valy, has been processed, then for every transaction G/ € V' such that there
sequence of edges from G(;41)modn 10 G, valy must also have been processed). Thus, G1’s edges
not deleted from the TSG before G3’s edges are deleted, ..., G,—1’s edges are not deleted from
TSG before Gg’s edges are deleted. By transitivity and since Gg’s edges are deleted only after initg
been processed, when Detect_Ins_TSG? is invoked during the processing of inity, the TSG (V, E
contains all the edges belonging to transactions Go,G1,...,Gph_1.

We now show that (G, slast(to))edge(ty) - - - edge(t,—1)(sfirst(to), Go) is a path in the TSG (V.
We begin by showing that any two consecutive edges in the path have a common node. Consecu
edges in the path could be one of the following:

o (sfirst(G;),G;)(Gy,slast(G;)), 7 =1,2,...,n—1, where arity(t;) = 2 (G is the common no

o (G, slast(t;))(sfirst(t(j41)ymodn)s G(j41)modn), J = 0,1,...,n — 1, where arity(t;) = 2 or j :
arity(t(j41)ymodn) = 1 or 2 (since for all j, j = 0,1,...,n — 1, last(t;) and first(t(;41)m
execute at the same site, slast(t;) = sfirst(t(;41)modn) is the common node).

o (sfirst(t;), G;)(sfirst(t(;41)modn)s G(j41)modn)s J = 1,2,...,n — 1, where arity(t;) = 1, ar
t(j41)modn) = 1 or 2 (since arity(t;) = 1 implies that sfirst(t;) = slast(t;), and slast(t;
s first(t(j41)modn), it follows that sfirst(t;) = sfirst(t(;41)mods) is the common node).

Alco for the seatience of edoes (s first(+:) (GG - slast(+-V)inthenpath =192 »n—1 it n

or St;.v = prev_anc(vyy,41), or due to Step 1). Thus, Sty.v = vom41, Sty.cur_st = st,, and in s
Sty, head(Stg.anc(Sty.v)) = (prev_anc(vyy,41),v;). Furthermore, it follows from Lemma 8 that @
a finite number of steps, Detect Ins_TSG2 is in a state St such that St} = St; and no further forw
transitions can be made from St,. Thus, in state St},

o Since prev_anc(vamy1) # Vamye and v; # voppo, head(St .anc(St), .v))[1] # vape,
head(St),.anc(St,.v))[2] # vamt2,

e Since statep(init_stp,(vs,v4) - (Vam+1, V2m+2)(V2m+3, V2m4a)) is defined, if van40 = vg
then st 41 = stp(St),.cur_st, L(St,.v,v3ym42)) is defined, else if vo,,41 = Vo443, then st 4
stp(Sty.cur_st, L(S1,..v, vap42)) is defined.

o Since St}..A C Ap, and (v3,v4) - - (V2m41, V2my2) 18 consistent with sety U Ap, (v, v4) -+
(V2m—+1, Vam+2) is consistent with sety U St} A; thus, if St).v € (sety U St)..A), then vy, 49 #

However, since in state St , no forward transition can be made due to edge (5t},.v, vapm42), it 1
be the case that

o if vy19 = Vom43, then either

1. St,..V _set(vap42) already contains (stp,q1,(St,.v,51,.v)). Thus, since St,.v = vy,
Vo4l F V2mia, Prev_anc (Vzm4s) = Vami1, (Stmt1, (prev_anc (vem4s), ?J;)) is adde
V _set(vgm43) during the execution of Detect_Ins_TSG2, ?J; # Vomta.

2. 51,V _set(vom42) already contains (sty,41,(St}.v,u2)) and (sty,41,(St.v,us)), ug #
Thus, since St,.v = vop41, either uy # Vo Or ug # Vopya (since ug # us),
prev_anc(vam+3) = Vmi1, (Stmtt, (prev_anc(v2m+3),v§«)) is added to V_set(vy43) du
the execution of Detect_Ins_TSG2, ?J; # Vomta.

o if vy11 = Vo3, then either

1. St,..V_set(St).v) already contains (stp,41, (prev_anc(vam41), vam+2)). Thus, since St.
Vo4l V2m42 F V2m4d, prev_anc(v2m+3) = prev_anc(v2m+1), (Stm-l—lv (prev_anc(v2m+3),
is added to V_set(vay43) during the execution of Detect_Ins_TSG2, ?J; # Vomta.

2. 51,V _set(St),.v) already contains (st,,41, (prev_anc(vym,41),u2)) and
(Stpgt, (preveanc(vom4t), us)), ug # us. Thus, since St).v = vop 41, either ug # vopy

Uz F# Vamta (Since uy # us), prev_anc(vem+3) = prevanc(vam41), (Stmi1, (prevaanc(vy,

U;)) is added to V_set(vy,,43) during the execution of Detect_Ins_TSG2, ?J; # Vomtq. O

Corollary 6: Let Detect_Ins TSG2((V, F, L), v, va, sety, seta, RT) return the set of site nc
Ap. If the TSG (V, E, L) contains a path (v, v2)(vs, v4) - - - (v2n—1, ¥20) (Y2041, V1), V2 = v3, consis
with sety U Ap, such that for the regular term RT, F' = FA(RT), st = statep(init_sty,(vs,v4)

-+ (v2n—-1, V2n)(V2p41, 1)) is an accept state and wvy,y1 € sety, then during the execution of
tect_Ins_TSG2, vy,41 is added to A.

Proof: By Lemma 9, (st,(prev_anc(vy,41),v;)) is added to V_set(va,41), where v; # v1. S
prev_anc(ven41) # v1 and v; # vy, Detect Ins TSG2 makes a forward state transition when (st, (;
(v2n41),v;)) is added to V_set(vy,41). However, just before (st,(prev_anc(vy,41),v;)) is addec
V _set(vy,41), since st is an accept state, prev_anc(ven41) # v1, v; # vy and vo,41 € sely, Vo

added to A. O

PR . PR N 9 P N N q —~ s

Corollary 5: Procedure Detect_Ins_TSG2 terminates in O(nZmng) steps.

Proof: Detect_Ins_TSG2 can be shown to terminate as a result of Lemma 8 using a similar argun
as in Corollary 3.

The number of steps Detect Ins_TSG2 terminates in is equal to the product of the number of ti
Detect Ins_TSG2 checks if an edge satisfies the conditions in Step 2 and the number of steps requ
to check if an edge satisfies the conditions in Step 2. Every time a transaction node is visited, the
ditions in Step 2 need to be checked, on an average, for vg edges (the average number of sites a gl
transaction executes at is vg), while every time a site node is visited, the conditions in Step 2 nee:
be checked for at most ng edges (since the number of transaction nodes in the TSG is at most
Furthermore, every transaction node can be visited at most 2vgng times, while every site node cas
visited at most 2ngng times (every node v in the TSG can be visited in a state st of F’ at most twice
every node w such that edge (v, w) is in the TSG, and F has at most ng states). Since there are m
nodes and at most n¢ transaction nodes in the TSG, the number of times Detect Ins_TSG2 checks i
edge satisfies the conditions in Step 2 is Qnémng + QnGvgnS. Since each of the conditions in Step 2
be checked in constant time and vg < ng,vs < m, Detect_Ins_TSG2 terminates in O(némng) step:

In order to show that Detect_Ins_TSG2 traverses edges in the TSG in a manner that ensure
detects instantiations of regular terms, we define the following.

Definition 13: Consider a TSG/TSGD containing a path (v, v3)(vs, v4) - - (van—1, V2n), V2 =
Foralli=1,2,...,n — 1, prev_anc(vyit1) is defined as follows.

prev_anc(vgi—1) if ve;—1 = vai41

prev_anc(vyiy1) = .
V2i—1 if vg; = w941 O

Note that, by the definition of path, it follows that forall ¢,7 = 1,2, ..., n—1, v3;12 # prev_anc(v:
and dependency (prev_anc(vziy1), v2it+1)—(v2i41, v2i42) does not belong to the TSGD.

Lemma 9: Let Detect Ins_ TSG2(T'SG, vy, vq, sety, sety, RT). return the set of nodes Ap. If
TSG (V, E, L) contains a path (vy,v2), (vs,v4), ..., (V2n-3, V2n—2), (V2n—1, V2n), V2 = V3, consistent
respect to sety U Ap, such that for the regular term RT, F' = FA(RT), statep(init_sty,(vs,vs),
ooy (V2n-1,02,)) is defined, then during the execution of Detect_Ins_TSG2, forall ¢,¢ =1,2,3,...,n
there exists a node v;, v; # vgiq2, (st, (prev_anc(vyitr),v;)) is added to V_set(vy;41), where s
statep (init_stp, (vs,va) - - (v2i—1, v2;)(V2i41, V2i42))-

Proof: We prove the above lemma by induction on :. We prove that for all 2, ¢ = 1,2,...,n
there exists a v; # va42, such that (st, (prev_anc(vgitq1),v;)) is added to V_set(vy;41), where s
statep(init_sty, (vs,va) - - (v2i—1, v2;)(V2i41, V2i42))-

Basis (i = 1): In Step 1 of Detect Ins_TSG2, (init_stp,(vy,v1)) is added to V_set(vy). Since vy =
prev_anc(vs) = vy, v1 # va, and statep(init_sty,(vs,v4)) = init_stp, the lemma is true for ¢
((init_stp, (previanc(vs),v;)) is added to V_set(vs), v; # vq).

Induction: Let us assume that the lemma is true for ¢ = m, 1 < m < n — 1. Thus,

(St , (preveanc(vay,41),v;)) is added to V _set(vay,41), where v; # vgp 49, sty = statep(init_stp, (v:
- (V2m—1, V2m) (V2m+1, V2m+2)). We show the lemma to be true for ¢ = m + 1. Thus, we 1
to show that (stm_H,(prev_anc(v2m+3),v§)) is added to V_set(van43), where ?J; £ Vom4d, Stomt
statep (init_sty, (vs,v4) -+ (Vam+1, V2m+2)(V2m+3, Vam+4)). By the definition of statep, st,,41 = stp

L(02m41,V2m+2))s if V2mq2 = vomas and stp1 = stp(stm, L(vamt1, V2m+2))s if Y2mt1 = vamys.
T & O 1o e oo o as T s cdcd e oo Yt mod T QLY ot g Y Y N WYY 2. 1

Corollary 4: Let Detect_Ins_TSG1((V, E, L), v1, vq, sety, sety, RT). return the set of site n
Ap. If the TSG (V, E, L) contains a path (v, v2)(vs, v4) - - - (v2n—1, ¥20) (Y2041, V1), V2 = v3, consis
with sety U Ap, such that for the regular term RT, F' = FA(RT), st = statep(init_sty,(vs,v4)

-+ (v2n—-1, V2n)(V2p41, 1)) is an accept state and wvy,y1 € sety, then during the execution of
tect_Ins_TSGI, vy,41 is added to A.

Proof: By Lemma 7, (st,v;) is added to V _set(vg,41), where v; # foll(vgn41). Since foll(vg,4;
vy, v; # v1 and Detect Ins_TSG1 makes a forward state transition when (st, v;)is added to V _set(vy,
However, just before (st,v;) is added to V_set(vg,41), since st is an accept state, v; # vy
Vont1 € Se€l1, Vap41 is added to A. O

We now show that Detect_Ins_TSG2 terminates in O(nZmuvg) steps, for which we need to p:
the following lemma.

Lemma 8: If during its execution, Detect _Ins_TSG2 is in state S, then after a finite numbe
steps, it enters a state St = St such that no forward transitions from S5t are possible.

Proof: We prove the lemma by induction on num, the number of elements in {(st, vy, vz,1
(st is a state of F') A (v1,v3,v3 € V) A ((st,(v1,v2)) € V_set(vs))} in state Stg.

Basis (num = 0): If num = 0 in state St;, then, in state St;, for every edge (Stx.v,u), if s
stp(Stg.cur_st, L(Sty.v,u)) is defined, then (st,(Stg.v, Sty.v)) € Sti.V_set(u) (alternatively, if s
stp(Stg.cur_st, L(Sty.v,u))is defined, then (st’, (head(Stg.anc(Stg.v))[1],u)) € Sti.V _set(Sty.v)).

no forward transition can be made from state St; (since every edge (Stx.v, u) satisfies the third co
tion in Step 2).

Induction: Let us assume the lemma is true for num < m, m > 0. We show that the lemma is
if num < m + 1 in state St;. We show that after a finite number of moves, Detect_Ins_ TSG2 is

state St such that St} = St and no forward transitions can be made from state St}.

Let St/ be any state equivalent to St such that in S/, num < m + 1. If Detect_Ins_T!
makes the forward transition St} — St due to some edge (St].v,u) and L(St/.v,u), then it n
be the case that Stj.v = wu, Stj.cur_st = stp(St].cur_st, L(5t].v,u)). Furthermore, in state
(St.cur_st, (St].v, St).v)) ¢ St].V_set(u) and in state St;, (St.cur_st,(St].v, 5t v)) € St;.V _se
(since the transition St/— S5t causes (St.cur_st,(St].v, St).v)) to be added to V _set(u)). Note t
since before the transition is made, (St;.cur_st, (St].v, St/.v)) does not belong to V _set(u) and nu
m + 1 in St7, after the transition St7— St is made, num < m in S¢;. By IH, after a finite nun
of steps, Detect_Ins_TSG2 enters a state St; = 51, such that no forward transitions are possible f
St;. Thus, Detect Ins_TSG2 makes the reverse transition St)— St} after a finite number of st
where St} = St = St. Furthermore, in state St}/, (St.cur_st,(St]l.v, St).v)) € St]'.V_set(u)
Sty!.v = St.v, and thus, no forward transition can be made from state St} due to edge (St}.v, u)
L(St)' v, u) (edge (St)'.v,u) does not satisfy the condition in Step 3(b)). Using a similar argumen
can be shown that if Detect_Ins_TSG2 makes a forward transition St7—St; due to edge (5t}.v,u)
L(St].v,u), then in a finite number of steps, Detect_Ins_TSG2 enters a state 5S¢} = St} such tha
forward transitions are possible from S} due to edge (5} .v,u) and L(St] v, u).

Thus, once a forward transition is made by Detect_Ins_TSG2 due to an edge e and L(e)/L(e) f
a state equivalent to Stg, then no further forward transitions can be made by Detect_Ins_TSG2
to e and L(e)/L(e) from any state equivalent to St;. Furthermore, everytime a forward transitic
made from a state St} that is equivalent to St; such that num < m 4 1 in St}/, a reverse transi
is made by Detect_Ins_TSG2 to a state St} equivalent to St such that num < m + 1in St}’. S
there are a finite number of edges incident on each node and in state Stx, num < m 4+ 1, eventu
DNetect Tne TSED world he in a etate S = §+;, c1ieh that na fiirther forward trancitione can be made

1, there exists a node v;, v; # foll(vyi11), such that (st,v;) is added to V _set(vg;41), where s
statep (init_stp, (vs,v4) - - (V25-1, V2;)(V241, V2i42))-

Proof: We prove the above lemma by induction on :. We prove that for all 2, ¢ = 1,2,...,n
there exists a v; # foll(vg;41), such that (st,v;) is added to V _set(vg;41), where st = statep(init_
(713, ?J4) . '(v2i—17 U2i)(”2i+17 U2i+2))-

Basis (« = 1): In Step 1 of DetectIns_ TSG1, (init_stp,vy) is added to V_set(vy). Since vy =
vy # foll(vs), and statep(init_stp,(vs,v4)) = init_stp, the lemma is true for ¢ = 1 ((initstp, v,
added to V _set(vs), v; # foll(vs)).

Induction: Let us assume that the lemma is true for ¢ = m, 1 < m < n — 1. Thus, (st,,,v;) is ad
to V_set(vop41), where v; # foll(vyp11), st = statep(init_stp,(vs,v4) -+ (V2m+1, V2m+2)). We s
the lemma to be true for i = m + 1. Thus, we need to show that (5tm+1,v§) is added to V _set(vy,,
where ?J; # foll(vam43), Stme1 = statep(init_stp, (vs, va) -+ (V2m43, V2mya)). By the definitio

stater, stpp1 = Stp(stm, L(vamt1, Vam+2))s if Vamt2 = vames and st,41 = stp(sty, L(v2mi1, V2m4
if Vam+1 = V2m+3-

Let St be the resulting state of Detect Ins TSG1 after (st,,,v;) is added to V_set(vgp41)
state St results either due to the forward transition St;—57, either St;.v = va,,41 or St;.0 = v,
due to Step 1). Thus, Stg.v = vapq1, Stg.cur_st = st,, and in state Stg, head(Stg.anc(Sty.v)) =
Furthermore, it follows from Lemma 6 that after a finite number of steps, Detect_Ins_TSG1 isin a s
St) such that St} = St; and no further forward transitions can be made from St,. Thus, in state

e Since statep(init_stp, (v3,v4) -+ (V2m+1s V2m+2)(V2m+43, V2mya) is defined, if v, 42 = vomys, t
Styy1 = stp(Sty.cur_st, L(St},.v,v2,42)) is defined, else if v,41 = vamys, then st
stp(Sty.cur_st, L(S1,.v, vap42)) is defined.

o Since St}..A C Ap, and (v3,v4) - - (V2m41, V2my2) 18 consistent with sety U Ap, (v, v4) -+
(V2m—+1, Vam+2) is consistent with sety U St} A; thus, if St).v € (sety U St)..A), then vy, 49 #

However, since in state St , no forward transition can be made due to edge (5t},.v, vapm42), it 1
be the case that

o if vy, 49 = Vo3, then foll(va,41) = vomye and since v; # foll(vem41) (by the definitio
path), head(St} .anc(St),.v)) # vap42, and thus, either

1. StV _set(vy,42) already contains (stp,41,5t,.v). Thus, since St,.v = vom41, Vot
foll(vamq3), (5tm+1,v§) is added to V _set(vg;,4+3) during the execution of Detect_Ins_T'S
?J; # foll(vam43).

2. 51,V _set(vom42) already contains (sty,41,u2) and (sty41,us), uz # ug. Thus, since ei

ug # foll(vamys) or us # foll(vam4s) (since uz # ug), (5tm+1,v§) is added to V_set(vz,
during the execution of Detect_Ins_TSG1, ?J; # foll(vamy3).

o if vy11 = Vo3, then either

1. St,..V_set(St).v) already contains (st,,41,v;). Thus, since St}..v = vom41, foll(vam41
foll(vam3), v; # foll(vamy1), (5tm+1,v§) is added to V_set(vay43) during the executio
Detect_Ins_TSG1, ?J; # foll(vamy3).

2. 51,V _set(St).v) already contains (st;,41,u2) and (st,41,us), ug # us. Thus, since ei

ug # foll(vamys) or us # foll(vam4s) (since uz # ug), (5tm+1,v§) is added to V_set(vz,
during the execution of Detect_Ins_TSG1, ?J; # foll(vamys). O

Appendix -C- : TSG Schemes

In this appendix, we prove Theorem 3. We begin by showing that Detect Ins_ TSG1 and
tect_Ins_TSG2 detect instantiations of regular terms in 5. States Stz between the execution of any
steps of Detect Ins_TSG1 and Detect Ins_TSG2 are as defined earlier for Detect_Ins_Opt.

Lemma 6: If during its execution, Detect Ins_TSG1 is in state S, then after a finite numbe
steps, it enters a state St = St such that no forward transitions from St} are possible.

Proof: Similar to proof of Lemma 2. O

Corollary 3: Procedure Detect Ins_TSG1 terminates in O(ngmng) steps.

Proof: We first show that Detect_Ins_TSG1 terminates in a finite number of steps. Let Sty der
the state immediately after the execution of Step 1 of algorithm Detect Ins_ TSG1. By Lemm
after a finite number of steps, Detect_Ins_TSG1 is in a state S| = St; such that no further forw
transitions can be made from S5t|. Detect_Ins_-TSG1, thus executes Step 4 and since, in state
head(St).F_list(St).v)) = (s%,G;), Detect Ins_'TSG1 terminates in a finite number of steps.

The number of steps Detect Ins_TSG1 terminates in is equal to the product of the number of ti
Detect Ins_TSG1 checks if an edge satisfies the conditions in Step 2 and the number of steps requ
to check if an edge satisfies the conditions in Step 2. Every time a transaction node is visited,
conditions in Step 2 need to be checked, on an average, for vg edges (the average number of sit
global transaction executes at is vg), while every time a site node is visited, the conditions in Ste
need to be checked for at most ng edges (since the number of transaction nodes in the TSG is at n
ng). Furthermore, every transaction and site node can be visited at most 2ng times (every node
the TSG can be visited in a state st of F' at most twice, and F has at most ng states). Since there ar
site nodes and at most ng transaction nodes in the TSG, the number of times Detect Ins_TSG1 ch
if an edge satisfies the conditions in Step 2 is 2ngmngs + 2ngvsns. Since each of the condition
Step 2 can be checked in constant time and vg < m, Detect _Ins_TSG1 terminates in O(ngmng) steps

In order to show that Detect_Ins_TSG1 traverses edges in the TSG in a manner that ensure
detects instantiations of regular terms, we define the following.

Definition 11: Consider a TSG containing a path (vq,v2)(vs,v4) - - (v25-1,v2,). For all 7,
1,2,...,n — 1, we define foll(vy;_1) as follows.

Va; ifi=mnorwvy =vyy1 O

Foll(vyi_1) = { foll(vyiqy1) if i < m and vyi—1 = voi41

Note that, by the definition of path, for alli = 1,2,...,n—1, if vg; = vg;41, then vy;—1 # foll(vy;

Definition 12: Consider a TSG containing a path (v, v3) - - (v2n-1,v2,). The path is said t
consistent with a set of nodes set if for all 7,7 =1,...,n, if vy;_1 € set, then vy; # vy. O

Lemma 7: Let Detect_Ins_ TSG1((V, ¥, L), v, va, sety, setz, RT) return the set of site nodes
If the TSG (V, F, L) contains a path (v1, v2), (vs,v4), ..., (V2n—3, V2n—2), (Van—1, V2n), ¥2 = V3, consis
with set; U Ap such that for the regular term RT, F' = FA(RT), statep(init_stg,(vs,vs),
ooy (v2n-1,02,)) is defined, then during the execution of Detect_Ins_TSG1, for all ¢, ¢ =1,2,3,...,

o (sfirst(G;),G;)(Gy,slast(G;)), 7 =1,2,...,n—1, where arity(t;) = 2 (G is the common no

o (G, slast(t;))(sfirst(t(j41)ymodn)s G(j41)modn), J = 0,1,...,n — 1, where arity(t;) = 2 or j :
arity(t(j41)ymodn) = 1 or 2 (since for all j, j = 0,1,...,n — 1, last(t;) and first(t(;41)m

execute at the same site, slast(t;) = sfirst(t(;41)modn) is the common node).

o (sfirst(t;), G;)(sfirst(t(;41)modn)s G(j41)modn)s J = 1,2,...,n — 1, where arity(t;) = 1, ar
t(j41)modn) = 1 or 2 (since arity(t;) = 1 implies that sfirst(t;) = slast(t;), and slast(t;
s first(t(j41)modn), it follows that sfirst(t;) = sfirst(t(;41)mods) is the common node).

Also, for the sequence of edges (s first(t;), G;)(G;, slast(t;)) in the path, j = 1,2,...,n—1,itn
be the case that arity(t;) = 2, and thus sfirst(t;) # slast(t;). Also, if for some j, k, 7 =0,1,...,n
j < k < n, the sequence of edges (G, slast(t;))(sfirst(t(j11)modn)» G (j+1)modn)s - - -5
(sfirst(tkmodn), Gkmodn) is in the path, then it must be the case that for all j <1 < k, arity(#) :
Thus, by Property 1, it follows that slast(t;) = sfirst({(;41)modn) = *++ = 8first(tkmodn), and fo
r,s,] <r<s<Ek,

i GT 7£ Gsmodrm and

o (7, is serialized after Gymodn at site sfirst(Gsmodn). Thus, by Lemma 5, dependency
(G, sfirst(Gsmodn))—(sfirst(Gsmodn), Gsmodn) does not belong to D’.

Thus, (Go, slast(to))edge(ty) - - - edge(t,—1)(sfirst(ty), Go) is a path in the TSGD (V', E’, D', L").

We further use Lemma 3 to show that, for }' = FA(RT,), statep(init_stp,edge(ty) - - -edge(t,-
(sfirst(to),Go))is an accept state. Let edge(ty) - - -edge(t,,—1)(sfirst(ty), Go) = (v1,v2) -+ - (vam—1,"
In order to use Lemma 3, we need to show that there exists a sequence gy - - - g,,—1 such that

o if vy; = vyiyq, then g; = L(vz;-1,v9;), and
o if vy, = vai41, then g; = L(vgi—1,v), and

stp(init_stp,g1---gm—1) is an accept state. We construct the sequence ¢y ---¢,,—1 with the al
properties as follows. For all i = 1,...,n — 1, let f; = (type(hdr(t;)), type(first(t;))), if arity(t;) ;
else, fi = (type(hdr(Ls)), type(first(t:)))(type(hdr(l;)), type(last(l;))). Since type(ty) - - - type(ln—y
a string in L(reg_exp), by the construction of FA(RT:), it follows that stp(init_stp, fi--- fn_1) i
accept state. Let g1 - ¢m—1 = f1--- fa=1, such that every ¢; € Y. Furthermore, from the defini
of edge and f;, it follows that, if for some ¢ = 1,...,m — 1, if (vy;_1, vy;) € edge(ty) and arity(ty) -
then g; = L(vg;—1,v2;), else g; = L(vgi—1,v2).

In order to show that statep(init_stp,(vi,v2),...,(Vm—1,0m)) is an accept state, we need to s
that for all ¢, ¢ = 1,2,...,m — 1, if vy; = vy;41, then ¢; = L(vgy—1,ve) and if vgi—1 = vai41, t
gi = L(vgi—1,v3;). We first show that if vy, = vg41, and (vgi—1,v2) € edge(ty) for some k, |
L,2,...,n — 1, then arity(ty) = 2. Suppose arity(ty) = 1. Since last(ty) and first({(z41)m
execute at the same site, slast(ty) = vqi—1, sfirst(t(k+1)modn) = Vyit1, it follows that ve;—1 = v3
which leads to a contradiction. Thus, arity(ty) = 2, and g; = L(vg—1,v9). Also, it can be sh
that if vy;—1 = wvai41, and (vgi—1,v2;) € edge(ty), then arity(ty) = 1. Suppose arity(ty) = 2
vy = G, then vy, = v9;41 = G, which leads to a contradiction. If vy;_1 = G/, then since last(ty)
first(t(k41)modn) execute at the same site, slast(ty) = v2;, sfirst(t(p41)ymodn) = v2i41, it follows -

vy = V241, which leads to a contradiction. Thus, arity(ty) = 1, and, ¢; = L(v2i—1, v2;).

Thus, by Lemma 3, statep(init_stg, edge(ty) - - - edge(t,—1)(sfirst(lo), Go))is an accept state. T
by Corollary 2, Detect_Ins_Opt((V', E', D', L"), Gy, slast(ty), sety, RT5) returns abort and G is abo:
by the optimistic scheme. However, this leads to a contradiction since Gq is a transaction in 1

S q —~ s L

dependency is added during the execution of act(sery(G;)), then act(sery(G;) must have already .
cuted. On the other hand, if the dependency were added to the TSGD before act(sery(G;)) execu
then act(sery(G;)) would not execute until act(ack(sery(G;))) completes execution (the depende
(G, 58)—(sk, G;) is deleted from the TSGD only after ack(sery(G;)) is processed). Thus, in both ¢
sery(G;) executes before sery(G;), and thus, Gy is serialized before Gy at site si, which leads
contradiction. O

For an element ¢; € Xg, we denote by slast(t;) and sfirst(t;), the sites at which last(t;)
first(t;) execute, respectively. Also, if arity(t;) = 1, then edge(t;) = (sfirst(t;), hdr(t;)),
edge(t;) = (sfirst(t;), hdr(t;))(hdr(t;), slast(;)).

Proof of Theorem 1: Suppose 5 is not correct. Thus, there exists a regular term RT in R
an instantiation / of RT in 5. Let GGy be the transaction in I such that valy is processed after val,
every other transaction G in I is processed. By Lemma 1, since R is complete, there exists a reg
term RTy = eg : reg_exp and an instantiation to : t1t2---t,—1 of RT3 in S such that hdr(ty) =
Thus,

o forallj,j=0,1,....n—1,

1. t; € ¥g (without loss of generality, let hdr(t;) = G;), and

2. last(t;) and first({(j41)modn) execute at the same site, and last(t;) is serialized a
Jirst(t(j41)modn) at the site, and

o type(ty) = eg and type(ty) - - -type(t,—1) is a string in L(reg_exp).

When valg is processed, Detect_Ins_Opt is invoked with arguments that include the TSGD (V! F
L"), Gy, slast(ty), sety, and RT; since type(Go) = hdr(eg) and type(last(ty)) = last(eg). A
sfirst(to) € sety (if arity(to) = 1, then since sfirst(ty) = slast(ty), sfirst(ty) € sety; if arity(ty) -
then since sfirst(tg) # slast(ty), and type(first(to)) = first(eg), sfirst(ty) € sety). Furthermore
the edges belonging to Gg,...,Gu—1 are in the TSGD when Detect_Ins_Opt is invoked. In orde
show this, we first show that G;’s edges cannot be deleted from the TSGD before G(;11ymodn’s €
are deleted from the TSGD, for all j, 7 = 1,2,...,n — 1. Suppose, for some j, j = 1,2,....n
Gi;’s edges are deleted from the TSGD before G(;i1)modn’s edges are deleted from the TSGD.
slast(t;) = sg. Since Gy, is serialized after G'((j41)modn)k> at site sk, serk(G(j41)modn) €Xecutes be
serg(G ;). Thus, since G(j{1)modn’s edges are inserted into the TSGD before seri(G (j41)modn) €Xect
while (G;’s edges are deleted after sery(G) executes, G (j41)modn’s €dges must be in the TSGD w
G;’s edges are deleted (since we have assumed that ;s edges are deleted before G(j41)modn 'S €
are deleted). Furthermore, since serg(G;) and serg(G (j41)modn) Must have both executed when ¢
edges are deleted, G(;11)modn is serialized before G; when G;’s edges are deleted. However, this I¢
to a contradiction, since edges belonging to G; and G(;11)modn are deleted together when act(f
for some transaction (4 executes (since G (j41)modn 18 serialized before G, if for every transac
G/, € V serialized before G, valj, has been processed, then for every transaction G € V serial
before G(;11)modn also, valy must have been processed). Thus, G1’s edges are not deleted from
TSGD before G3’s edges are deleted, ..., G,_1’s edges are not deleted from the TSGD before ¢
edges are deleted. By transitivity and since Gy’s edges are deleted only after valy has been proces
when Detect_Ins_Opt is invoked during the processing of valy, the TSGD (V', E', D', L) contain;
the edges belonging to transactions Gg,G1,...,G -1 (since for all i = 1,...,n — 1, val; is proce;
before valy is processed).

We now show that (G, slast(ty))edge(ty) - - - edge(t,—1)(sfirst(ty), Go) is a path in the TSGD.

q

By the definition of stater, stp11 = stp(stm, L(v2m+t1, Vam+2)), if Vamis = Vamgs and stp4

SUE (St L(V2m41, V2m+2)), i Vami1 = vomas.

Let St be the resulting state of Detect_Ins_Opt after (st,,, prev(vam41)) is added to V_set(vq,
(the state Stj results either due to the forward transition St;—Sty, either St;.v = vy,41 or St;.
prev(vym41), or due to Step 1). Thus, Stp.v = vapq1, Stg.cur_st = st,, and in state Sty, head(St.
(Stk.v))[2] = prev(vyp41). Furthermore, since Detect Ins_Opt does not return abort, it follows f
Lemma 2 that after a finite number of steps, Detect_Ins_Opt is in a state St} such that St} = Sty
no further forward transitions can be made from St,. Thus, in state S},

o Since prev(vgm41) # vam+2 (by the definition of path), head(St).anc(S5t).v)) # vamt2,

e Since (v1,v2) -+ (V2m+41, V2my2) is a path in (V,E,D), there is no dependency (prev(vam+1), v2m
(V2415 Vam2) in D; thus, there is no dependency (head(St,.anc(St).v)), St).v)—=(5, v, va,
in D,

e Since statep(init_stp,(vs,v4) - (Vam+1, V2m+2)(V2m+3, V2m4a)) is defined, if va,40 = va
then st 41 = stp(St).cur_st, L(St,.v,v3m42)) is defined, else if vo,,41 = Vo443, then st 4
stp(Sty.cur_st, L(St),.v, vap42)) is defined.

However, since in state S}, no forward transition can be made due to edge (51,..v,vom42)
Detect Ins_Opt does not return abort, it must be the case that

o if vy40 = Vomts, then StV _set(vyy42) already contains (st 4q1,5t,.v). Thus, since St;.
V2m+1, Prev(Vam43) = Vamt1, (Stmt1, prev(vem43)) is added to V _set(vq,,4+3) during the execu
of Detect Ins_Opt.

o if vopq1 = Vopgs, then StV _set(St) .v) already contains (sty41,v2m+2). Thus, since St
V2m41, PTeV(V2m+3) = Vamt2, (Stmiy1, prev(vem,43)) is added to V_set(vgy43) during the ex
tion of Detect_Ins_Opt. O

Corollary 2: Consider a TSGD (V, F, D, L) containing a path (v1,v2) - (v2n—1, v2n)(V2n+41,
vy = v3. If, for a regular term RT F'=FA(RT), st = statep(init_stp,(vs, v4) -+ - (V2n—1, V20) (V20415
is an accept state, and vg,41 € sety, then Detect_Ins_Opt((V, E, D, L), v, vz, sety, RT) returns ah

Proof: Suppose Detect_Ins_Opt does not return abort. By Lemma 4, (st, prev(vz,41)) is ad
to V_set(vzny1). Since prev(va,41) # v1, DetectIns_Opt makes a forward state transition w
(st, prev(vy,41))is added to Voset(vy,41). However, just before (st, prev(va,41)) is added to Viset(vy,
since st is an accept state, prev(va,41) # v1, vant1 € sety, and dependency (prev(vent1), Van+i
(v2041,v1) does not belong to D, Detect_Ins_Opt returns abort. This leads to a contradiction,
thus, it must be the case that Detect Ins_Opt returns abort. O

We are now in a position to prove Theorem 1. Before we present the proof, we introduce s
additional notation and the following lemma.

Lemma 5: If, in the optimistic scheme, for some site s, transactions G, G, Gy is serial
before ;1. at site si, then there does not exist a dependency (G, sp)—(s;, G;) in the TSGD.

Proof: Suppose there exists a dependency (G, s;)—(si, G;) in the TSGD. The dependency cc
not have been added to the TSGD after act(sery(G;)) has executed. Thus, dependency (G}, sy

The above definition of stater is recursive. In the following lemma, we show that an alterna
non-recursive definition of stater is possible.

Lemma 3: Consider a TSGD containing a path (vq,v2)(vs, va) - (vap—1,v2,). If €162+, €,
a sequence such that

o if vy, = vgi41, then e; = L(vg;-1,v3;), and
o if v3; 1 = vaiq1, then e; = L(vgi—1,v2),

then for a regular term RT and a state st of F' = FA(RT), statep(st,(vy,v2)(vs,v4) -+ (V20—1, V2,
stp(st,er---en_1).

Proof: We use induction on 7 to prove that for all ¢ = 1,...,n, statep(st, (v1,v2) - - - (v2i-1, V2
stp(st,er - e_1).
Basis (i = 1): statep(st,(v1,v3)) = stp(st,€) = st.
Induction: Assume true for ¢ = m, 1 < m < n, that is, statep(st,(v1,v2) - (V2m—1,V2m)
stp(st,er - en_1). We prove the claim for i = m + 1, that is, we need to show that statep(st, (v
- (V2ma1, Vamt2)) = Stp(st,e1-- €4,). By the definition of statep,

stp(st', L(vam—1, v2m) if vom = vomt1

stater(st, (v, v9) (v v = .
F(7(b 2) (sl 2m+2)) { StF(Stle(UQm—DUZm) if vo—1 = V2m+1

where st’ = statep(st,(v1,v2) - (Vam—1,V2m)). Thus,

stp(st,eq - ep1 L(vam—1,v2mm)) if V2 = Vamia
tat " — AM2m—1, Vam)
sta €F(8 9 (vlv ?]2) (UQm-I—lv UZm-I—?)) { StF(St, €1 em—lL(UQm—17 @2m)) if Vom—1 = V2m41

Thus, statep(st,(vi,v2) (V2m41, Vama2)) = stp(st,eq - -ep). O

For every instantiation of a regular term RT, there is a corresponding path in the TSG/TSGL
which stater (F'= FA(RT)) with respect to the initial state init_stp is an accept state. The follov
lemma lays the groundwork for showing that Detect Ins_Opt detects instantiation by detecting ap
priate paths in the TSGD.

Lemma 4: Consider a TSGD (V, E, D, L) containing a path (vy,v3) - - - (v2n—3, V20-2), (V2n—1,1
vy = w3, such that for a regular term RT, F' = FA(RT), statep(intt_stp,(vs, va) - - (Vap—1, V2y)) is
fined. If Detect_Ins_Opt((V, F, D, L), vy, va, sety, RT) does not return abort, then during the execu
of Detect_Ins_Opt (before it returns commit), for all 4,7 =1,2,3,...,n — 1, (st, prev(vyi41)) is ad
to V_set(vyit1), where st = statep (init_stp, (vs, v4) -+ - (v2i—1, V2i)(V2i41, V2it2))-

Proof: We prove the above lemma by induction on i. We prove that if Detect_Ins_Opt «
not return abort, then for all ¢, ¢ = 1,2,...,n — 1, (st,prev(ve41)) is added to V_set(vy;q1), Wl
st = statep(init_sty, (vs,va) - - (V2i—1, v2;)(V2i41, V2i42))-

Basis (¢ = 1): In Step 1 of Detect Ins_Opt, (init_stp,vy) is added to V_set(vy). Since vy =
prev(vs) = vy, and statep(init_sty, (vs,v4)) = init_stp, the lemmais true for i = 1 ((init_stp, prev(
is added to V_set(v3)).

Induction: Let us assume that the lemma is true for i = m, 1 < m < n — 1. Thus, if
tect_Ins_Opt does not return abort, then (st,,, prev(vam,41)) is added to V_set(vg;,41), where st,
statep (init_stgy, (vs,v4) -+ (Vam—1, V2m) (V2m+1, V2m+2)). We show the lemma to be true for ¢ = 9

q . N q q VN v

node can be visited at most ngng times (every node v in the TSGD can be visited in a state st ¢
at most once for every node w such that edge (v, w) is in the TSGD, and F' has at most ng stat
Since there are m site nodes and at most ng transaction nodes in the TSGD, the number of ti
Detect Ins_Opt checks if an edge satisfies the conditions in Step 2 is némns + nGv%nS. Since ¢
of the conditions in Step 2 can be checked in constant time and vg < ng,vs < m, Detect_Ins_
terminates in O(n&mng) steps. O

Before we show that Detect_Ins_Opt detects instantiations, we define the notion of a path in o
to capture the notion of instantiations in the TSGD. Corresponding to every instantiation, there
path, defined below, in the TSGD (paths are similarly defined for a TSG; the requirement tht ther:
no dependencies between certain edges is trivially satisfied in a TSG).

Definition 9: Consider a TSG/TSGD containing the sequence of edges (v1, v2)(vs, v4) - - - (v2n-1
n > 1. The sequence of edges is a path if

e for every pair of consecutive edges (vg;—1,v2i), (V2i41, V2i42), ? = 1,...,n — 1, either vy; = v;
OT Vg1 = V41, and

o if for some j,k=1,2,...,n,j <k, v9;_1 = Vaj41 = V2j43 = -+ = Vgp_1, then
1. if j < k, then vy; # voj42 # voj4a # -+ # vop, and for all [,m, 7 <1 < m <k, there i
dependency (vay, v21-1)—(V2m—1, V2) in the TSG/TSGD, and

2.if 7 > 1 and vy;—9 = wgj—1, then for all [= j,j +1,...,k, vo;—3 # vy, and there i
dependency (vy;—3, v3;—2)—(v21—1, v2) in the TSG/TSGD. O

Thus, it follows from the definition of path that for every pair of consecutive edges (vz;—1, v2;)(
V3iq42), 1 = 1,...,n — 1, either

® Uy = V241, V2i—1 F Va2it2, and dependency (vgi—1,v;)—(v3i41, v2i42) is not in the TSGD, or
® Vg1 = V2i41, V2 # Va2it2 and dependency (vq;, v2,—1)—(v2i41, V2i42) is not in the TSGD.

Furthermore, for the path (vy,v2)(vs,v4) -+ (v2n—1,v2,), for i = 1,2,...,n — 1, we define prev(vy
as follows.

) _ voi—1 il vy = o4
prev(vgipr) = o — oo
V24 T v3;—1 = V241

Note that, by the definition of path, prev(vqit1) # v2i42 and there is no dependency (prev(wvsy;
v2i4+1)— (V2i41, V2i42) in the TSGD. Only certain paths in the TSG/TSGD in which the sequenc
transaction types are a string in L(reg_exp) correspond to instantiations of RT = e : reg_exp in S
order to ensure that transaction type information can be taken into account when detecting path

the TSG/TSGD, we define stater below.

Definition 10: Consider a TSG/TSGD containing a path (vy,v2) - (v2p—1,v2,). Let RT |
regular term and F' = FA(RT). We define stater for the sequence of edges in the path and a stat
of F', using stp, as follows.

st ifi=1
statep(st, (v, v9) -+ (21, 02;)) = & stp(st', L(vgi—3,v9i—2)) if i > 1 and vy;—9 = v
StF(St/, L(?]Qi_g, ?]22'_2)) if i > 1 and v9;_3 = v9;_1

q s P s . N v N N L

Basis (num = 0): If num = 0 in state Sy, then in state St;, for every edge (Sti.v,u), if s
stp(Stg.cur_st, L(Sty.v,u)) is defined, then (st,Sty.v) € St,.V_set(u) (alternatively, if st/ =
(Stg.cur_st, L(Sty.v,u)) is defined, then (st’,u) € St;.V_set(Stx.v)). Thus, no forward transi
can be made from state St;, (since every edge (S5tx.v, u) satisfies the last condition in Step 2).
Induction: Let us assume the lemma is true if num < m in state Stg, m > 0. We show that
lemma is true if num < m+1in state Stp. We show that if Detect Ins_Opt does not return abort,
after a finite number of moves, Detect_Ins_Opt is in a state St} such that St} = St; and no forw
transitions can be made from state S¢.

Let St/ be any state equivalent to St such that in St}, num < m + 1. If DetectIns_
makes the forward transition St} — St due to some edge (St].v,u) and L(St/.v,u), then it n
be the case that St;.v = w, Stj.cur_st = stp(St]l.cur_st, L(St).v,u)). Furthermore, in state
(St.cur_st, St.v) § St.V_set(u) and in state St;, (St;.cur_st, St}.v) € 5.V _set(u) (since the tra
tion St)—St; causes (St.cur_st, St}.v) to be added to V_set(u)). Note that, since before the transi
is made, (St.cur_st, St].v) does not belong to V_set(u) and num < m 4+ 1 in S}, after the tra
tion St — St is made, num < m in St;. By IH, since Detect_Ins_Opt does not return abort,
a finite number of steps, Detect Ins_Opt enters a state St; = St;, such that no forward transit
are possible from S%). Thus, since it does not return abort, Detect_Ins_Opt makes the reverse t
sition St)— St} after a finite number of steps, where St/ = 5t} = St;. Furthermore, in state |
(St.cur_st, St].v) € StI'.V_set(u) and St)’.v = St]/.v, and thus, no forward transition can be
from state St} due to edge (St} .v,u) and L(St].v,u) (edge (St}.v,u) does not satisfy the condi
in Step 3(c)). Using a similar argument, it can be shown that if Detect_Ins_Opt makes a forward t
sition St}—St; due to edge (St7.v,u) and L(St).v,u), then in a finite number of steps, Detect_Ins_

enters a state 5t = 5t} such that no forward transitions are possible from 5t} due to edge (5t}.1

and L(St)'.v,u).

Thus, once a forward transition is made by Detect Ins_Opt due to an edge e and L(e)/L(e) fro
state equivalent to S, then no further forward transitions can be made by Detect_Ins_Opt due
and L(e)/m from any state equivalent to St;. Furthermore, everytime a forward transition is m
from a state S} that is equivalent to St such that num < m + 1 in S}, a reverse transition is u
by Detect_Ins_Opt to a state St} equivalent to St; such that num < m + 1 in St}’. Since there a
finite number of edges incident on each node, Detect_Ins_Opt does not return abort, and in state
num < m + 1, eventually, Detect_Ins_Opt would be in a state St} = St such that no further forv
transitions can be made. O

Corollary 1: Procedure Detect_Ins_Opt terminates in O(nimng) steps.

Proof: We first show that Detect_Ins_Opt terminates in a finite number of steps. Let St; der
the state immediately after the execution of Step 1 of algorithm Detect_Ins_Opt. If Detect_Ins_
does not return abort, then by Lemma 1, after a finite number of steps, Detect_Ins_Opt is in a s
St} = St; such that no further forward transitions can be made from St]. Detect_Ins_Opt,
executes Step 4 and since, in state S|, head(St).F_list(St).v)) = (s*,G;), Detect Ins_Opt termin
in a finite number of steps. If, on the other hand, Detect_Ins_Opt returns abort, then it trivi
terminates in a finite number of steps.

The number of steps Detect Ins_Opt terminates in is equal to the product of the number of ti
Detect Ins_Opt checks if an edge satisfies the conditions in Step 2 and the number of steps requ
to check if an edge satisfies the conditions in Step 2. Every time a transaction node is visited,
conditions in Step 2 need to be checked, on an average, for vg edges (the average number of sit
global transaction executes at is vg), while every time a site node is visited, the conditions in Ste
need to be checked for at most ng edges (since the number of transaction nodes in the TSGD i

Appendix -B- : Optimistic Scheme

Before we prove Theorem 1, we need to prove certain lemmas. In the following lemma, we s
the implications of complete regular specifications.

Lemma 1: Let RTj be a regular term in the regular specification R, I be an instantiation of
in the global schedule 5, and G be a transaction in I. If R is complete, then there exists a reg
term RT3 and an instantiation #g : ¢y - - - t,,—1 of RT3 in S such that hdr(ty) = Gb.

Proof: Let RTy = €} : reg_expy and [= ¢{ =t} ---t/ _;, n > 1. Since [is an instantiation of

n—1>
in S,
o forallj,j=0,1,....n—1,

L.t € ¥s, and
2. last(t}) and first(t?
first(t?

j—I—l)modn) execute at the same site, and last(t;) is serialized @

j—I—l)modn) at the site, and

o type(t}) = ef and type(t))---type(t! _,) is a string in L(reg_exp).
Let G = hdr(t}), for some k, k =0,1,...,n — 1. Since R is complete, there exists a regular t
RT, = type(t),) : reg-expy such that

type(tbc-l—l) mod n) o 'type(tbc-l—n—l) mod n)
is a string in € L(reg-exps). Thus,

T !
tk . t(k—l—l) mod n 't(k—l—n—l) mod n

is the required instantiation of RT5 in 5. O

We next show that the manner in which Detect_Ins_Opt traverses edges in the TSGD ensures -
it detects instantiations of regular terms in the TSGD. We first introduce the following additi
notation.

Between the execution of any two steps® of Detect Ins_Opt, the contents of v, cur_st, A, anc|
V _set(v;) and F'_List(v;) for all v; € V constitute a state St of Detect _Ins_Opt. We denote the cont
of v, cur_st, A, anc(v;), V_set(v;), and F_List(v;) for any v; € V in state St; by Stg.v, Sti.cur
Sti.A, Sty.anc(v;), StV _set(v;) and Stg.F'_List(v;) respectively. State changes in Detect_Ins_Opt
caused by steps 1, 3 and 4. We refer to state transition St;—57; due to Step 3 as a forward transit
while a state transition St;—S5t; due to Step 4 is referred to as a reverse transition. Also, two st
St; and St are said to be equivalent (denoted by St; = 51%) if Stj.0 = 510, Stj.cur_st = St’.cur
and for all v; € V', St;.anc(v;) = St.anc(v;), St;. F_List(v;) = St’.F_List(v;). Detect_Ins_Opt has
following interesting property: if it makes a forward transition St;— St; and for a state St =
makes a reverse transition St —S5t", then St; = 5.

Lemma 2: If Detect_Ins_Opt does not return abort and during its execution, Detect_Ins_
is in state Stj, then after a finite number of steps, it enters a state St, = St such that no forv
transitions from St} are possible.

Proof: We prove the lemma by induction on num, the number of elements in {(st,vy,v
(st is a state of FYA (1.1 € VIA ((st.v1) & V_set(vo))) in state St..

procedure Detect Ins TSGD2((V, E, D, L),G;, sk, sety, RT):

1. For all nodes v in the TSGD, set F.list(v) = [], anc(v) = [], Vset(v) = 0.
v = s, Fllist(sy) = [(stx,Gy)], anc(sy) = [(Gi,Gy)], F = FA(RT), V_set(s,
{(init_stp, (G5, G;))} and cur_st = init_stp. Set A = {).

2. If, for every edge (v, u) one of the following is true:

head(anc(v))[1] = u.
head(anc(v))[2] = u.
o There is a dependency (head(anc(v))[1],v)—(v,u)in D U A.
There is a dependency (head(anc(v))2],v)—(v,u)in D U A.

If st = stp(cur_st, L(v,u)) is defined then (st,(v,v)) € V_set(u), and
if st = stp(cur_st, L(v,u)) is defined then (st/, (head(anc(v))[l],u)) € V_set(v).

then go to Step 4.
3. Choose an edge (v, u) such that

a) head(anc(v))[1] # u, and

b) head(anc(v))[2] # u, and

(c) there is no dependency (head(anc(v))[1],v)—(v,u)in DU A, and
(d) there is no dependency (head(anc(v))[2],v)—(v,u)in DU A, and
(e)

e) st = stp(cur_st, L(v,u)) is defined and (st,(v,v)) & V _set(u), or
st = stp(cur_st, L(v,u)) is defined and (st’, (head(anc(v))[1],u)) ¢ V _set(v).

(
(

If st is defined and (st,(v,v)) € V_set(u), then do

o If st is an accept state, u € sety and v # G, then A := AU{(v,u)—(u, G;)}.

o Flist(u) := (cur_st,v)o F_list(u), anc(u) := (v,v) o anc(u), cur_st := st, V _sel(
V _set(u) U {(st,(v,v))}, v :=u. Go to Step 2.

If st’ is defined and (st’, (head(anc(v))[1],u)) ¢ V _set(v) then do

o If st’ is an accept state, v € sety, u # G; and head(anc(v))[1] # G;, then .
A UA{(head(anc(v))[1],v)—(v,G;)}.

o ['list(v) := (cur_st,v)o F_list(v), anc(v) := (head(anc(v))[1],u) o anc(v), cur_st ::
V _set(v) = V_set(v) U {(st', (head(anc(v))[1],u))}. Go to Step 2.

4. If head(Flist(v)) # (stx,G;), then templ = head(F_ list(v))[1], temp2
head(F_ list(v))[2], Flist(v) = tail(Flist(v)), anc(v) = tail(anc(v)), cur_st := te
= temp?2 and go to Step 2.

5. return(A).

Figure 14: Procedure Detect_Ins_ TSGD2

procedure Detect Ins TSGD1((V, E, D, L),G;, sk, sety, RT):

1. For all nodes v in the TSGD, set F_list(v) [], anc(v) = [], V_set(v) = 0. Set v :
Fllist(sg) = [(st*,G)], anc(sk) = [Gy], ¥ = FA(RT), V_set(sy) = {(wnit_stp,G;)]
cur_st = init_stp. Set A = 0.

2. If, for every edge (v, u) one of the following is true:

e head(anc(v)) = u.
o There is a dependency (head(anc(v))—(v,u))in DU A.

o If st = stp(cur_st, L(v,u))is defined then (st,v) € V_set(u), and
if st = stp(cur_st, L(v,u)) is defined then (st’, head(anc(v))) € V _set(v).

then go to Step 4.
3. Choose an edge (v, u) such that

(a) head(anc(v)) # u, and
(b) there is no dependency (head(anc(v))—(v,u))in DU A, and

(c) st = stp(cur_st, L(v,u)) is defined and (st,v) ¢ V_set(u), or
st = stp(cur_st, L(v,u)) is defined and (st’, head(anc(v))) ¢ V _set(v).

If st is defined and (st,v) ¢ V _set(u), then do

e if st is an accept state, u € set; and v # G, then A := AU {(v,u)—(u,G;)}.
o Flist(u) := (cur_st,v) o Flist(u), anc(u) := v o anc(u), cur_st := st, V_set(
V _set(u) U {(st,v)}, v :=u. Go to Step 2.
If st’ is defined and (st’, head(anc(v))) ¢ V _set(v), then do

o if st’ is an accept state, v € set; and head(anc(v)) # G;, then A :=
{(head(anc(v)),v)—(v,G;)}.

o ['list(v) := (cur_st,v) o Fllist(v), anc(v) := head(anc(v)) o anc(v), cur_st :=
V _set(v) = V_set(v) U {(st', head(anc(v)))}. Go to Step 2.

4. If head(Flist(v)) # (stx,G;), then templ = head(F_ list(v))[1], temp2
head(F_ list(v))[2], Flist(v) = tail(Flist(v)), anc(v) = tail(anc(v)), cur_st := te
= temp?2 and goto Step 2.

5. return(A).

Figure 13: Procedure Detect_Ins_ TSGD1

procedure Detect_Ins_.TSG2((V, E, L), G;, sy, setyseta, RT):

1. For all nodes v in the TSG, set F_list(v) =[], anc(v) = [], V_set(v) = 0. Set v = sy, F_list(
[(st*,Gy)], anc(sy) = [(G;,Gy)], F = FA(RT), Vset(sy) = {(init_stp,(Gi,G;))} and cur
init_stp. Set A = 0.

2. TIf, for every edge (v, u) one of the following is true:
o head(anc(v))[1] = u or head(anc(v))[2] = u.
o If st = stp(cur-st, L(v, u)) is defined then

(a) there exist nodes us, us, us # us, such that (st, (v,us)) € V_set(u), (st, (v,uz)) € Vs
or

(b) (st,(v,v)) € V_set(u),
and if st’ = stp(cur_st, L(v,u)) is defined then

(a) there exist nodes ws,us, us # wug, such that (st’,(head(anc(v))[1],u2)) € V_s
(st’, (head(ane(v))[1], us)) € V _set(v), or
(b) (st', (head(anc(v))[1],u)) € V_set(v).
o v € (seta UA) and u = G;.

then go to Step 4.
3. Choose an edge (v, u) such that

o head(anc(v))[1] # v and head(anc(v))[2] # u, and
o st = stp(cur-st, L(v,u)) is defined and

(a) there do not exist nodes us,us, us # ug, such that (st,(v,u2)) € V_set(u), (st, (v,
V_set(u), and

(b) (st,(v,v)) & V_set(u),
or st' = stp(cur-st, L(v,u)) is defined and

(a') there do not exist nodes us, us, us # us, such that (st’, (head(anc(v))[1],u2)) € V_s
(st’, (head(anc(v))[1], us)) € V_set(v), and
(b") (st’, (head(anc(v))[1],u)) & V _set(v), and
o v ¢ (sety UA) or u # Gi.

If st is defined, 3(a) and 3(b) then do

o If st is an accept state, u € sety and v # G, then A := AU {u}.
o I list(u) := (cur_st,v)o Flist(u), anc(u) := (v,v)oanc(u), cur_st := st, V_set(u) = V_se
{(st, (v,v))}, v := u. Go to Step 2.
If st’ is defined, 3(a’) and 3(b’) then do

o If st’ is an accept state, v € sety, u # G; and head(anc(v))[1] # G;, then A .= AU {v}.
o Ilist(v) = (cur_st,v) o Fllist(v), anc(v) = (head(anc(v))[1],u) o anc(v), cur_st :-
V_set(v) = V_set(v) U {(st’, (head(anc(v))[1],u))}. Go to Step 2.

4. Tf head(F list(v)) # (stx,Gy), then templ := head(Flist(v))[1], temp2 = head(F list(:
Fllist(v) := tail(Flist(v)), anc(v) = tail(anc(v)), cur_st := templ, v := temp2 and go to Step

5. return(A).

Figure 12: Procedure Detect_Ins_TSG2

procedure Detect_Ins. TSG1((V, E, L), G, sy, setq, sety, RT):

1. For all nodes v in the TSG, set F_list(v) = [], anc(v) = [], V_set(v) = 0. Set v = sy, F_list(
[(st*,Gy)], anc(sy) = [Gi], F = FA(RT), V_set(sy) = {(init_stp, G;)} and cur_st = init_stp
A=0.

2. TIf, for every edge (v, u) one of the following is true:

o If st = stp(cur-st, L(v, u)) is defined then either
(a) head(anc(v)) = u or
(b) (st,v) € V_set(u) or
(c) there exist two distinct nodes vy, va such that (st,vy) € V_set(u) and (st,ve) € V_set
and if st’ = stp(cur_st,m) is defined then either
(a) (st’,head(anc(v))) € V_set(v), or
(b) there exist two distinct nodes vy, vy such that (st’,v1) € V_set(v) and (st’,va) € V_se

o v € (seta UA) and u = G;.

then go to Step 4.
3. Choose an edge (v, u) such that

o st = stp(cur-st, L(v,u)) is defined and
(a) head(anc(v)) # u, and
(b) (st,v) & V_set(u), and
(c)

there do not exist two distinct nodes vy, ve such that (st,v1) € V_set(u) and (st,

V _set(u),
or st' = stp(cur-st, L(v,u)) is defined and

(a') (st', head(anc(v))) € V_set(v), and
— there do not exist two distinct nodes vy, ve such that (st’,vy) € V_set(v) and (st',
V_set(v), and

o v ¢ (sety UA) or u # Gi.
If st is defined, 3(a), 3(b) and 3(c), then do

o If st is an accept state, u € sety and v # G, then A := AU {u}.

o Ilist(u) := (cur-st,v) o Fllist(u), anc(u) := v o anc(u), cur_st := st, V_set(u) = V _set
{(st,v)}, v :=u. Go to Step 2.

If st = stp(cur_st, L(v,u)) is defined, 3(a’) and 3(b’), then do

o If st’ is an accept state, v € set; and head(anc(v)) # Gy, then A := AU {v}.

o I list(v) := (cur_st,v) o Flist(v), anc(v) := head(anc(v)) o anc(v), cur_st := st’, V_set
Vi_set(v) U{(st', head(anc(v)))}. Go to Step 2.

4. Tf head(Flist(v)) # (stx,Gy), then templ = head(Flist(v))[1], temp2 = head(F list(:
Fllist(v) := tail(Flist(v)), anc(v) = tail(anc(v)), cur_st .= templ, v := temp2, and go to Step

5. return(A).

Figure 11: Procedure Detect_Ins_TSG1

Appendix -A- : Procedures

procedure Detect_Ins_Opt((V, £, D, L), G, sk, sety, RT):

1. For all nodes v in the TSGD, set F'_list(v) = [] ([] is the empty list), anc(v) =[], V _set(v
Set v = s, Flist(sy) = [(st*,G;)] (stx is a special termination state), anc(sy) =
F = FA(RT), V_set(sy) = {(init_stp,G;)} and cur_st = init_stp.

2. If, for every edge (v, u) one of the following is true:
e head(anc(v)) = u.

e There is a dependency (head(anc(v)),v)—(v,u)in D.

o if st = stp(cur_st, L(v,u)) is defined then (st,v) € V_set(u), and
if st = stp(cur_st, L(v,u)) is defined then (st’,u) € V_set(v).

then go to Step 4.
3. Choose an edge (v, u) such that
(a) head(anc(v)) # u, and
(b) there is no dependency (head(anc(v)),v)—(v,u)in D, and

(c) st = stp(cur_st, L(v,u)) is defined and (st,v) ¢ V_set(u), or
st = stp(cur_st, L(v,u)) is defined and (st',u) & V _set(v).

If st is defined and (st,v) ¢ V _set(u) then do

o If st is an accept state, u € sety, v # (; and there is no dependency (v, u)—(u,(
D, then return(abort).

o Flist(u) := (cur_st,v) o Fllist(u), anc(u) = v o anc(u), cur_st := st, V_set(
(st,v)U V_set(u), v :=u. Go to Step 2.
If st’ is defined and (st’,u) & V _set(v) then do

o If st’ is an accept state, v € set;, u # (; and there is no dependency (u,v)—(v
then return(abort).

o Flist(v) := (cur_st,v) o F.list(v), anc(v) = u o anc(v), cur_st := st’, V_set(
(st',u) U V_set(v). Go to Step 2.

4. If head(Flist(v)) # (stx,G;), then templ = head(F_ list(v))[1], temp2
head(Flist(v))[2], anc(v) = tail(anc(v)), Flist(v) = tail(F_list(v)), cur_st := te
= temp?2 and go to Step 2.

5. return(commit).

Figure 10: Procedure Detect_Ins_Opt

