
[Pap86] C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science

Press, Rockville, Maryland, 1986.

[Pea84] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, Reading, MA, 1984.

[PR88] P. Peinl and A. Reuter. High contention in a stock trading database: A case study. In

Proceedings of ACM-SIGMOD 1988 International Conference on Management of Data,

Chicago, pages 260{268, June 1988.

[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Theory. Prentice Hall, Englewood Cli�s, New Jersey, 1982.

[Ram92] K. Ramamritham. Real-time databases. International Journal on Parallel and Dis-

tributed Databases, 1992. Invited paper.

[SL90] X. Song and J. W. S. Liu. Performance of multiversion concurrency control algorithms

in maintaining temporal consistency. Technical report, University of Illinois at Urbana-

Champaign, 1990.

[SLKS92] N. R. Soparkar, E. Levy, H. F. Korth, and A. Silberschatz. Adaptive commitment for

real-time distributed transactions. Technical Report TR-92-15, The University of Texas

at Austin, Computer Sciences Department, April 1992.

[Son88] S. H. Son, editor. ACM SIGMOD Record: Special Issue on Real-Time Databases. ACM

Press, March 1988.

[Sop93] N. R. Soparkar. Time-constrained transaction management. Ph.D. dissertation. De-

partment of Computer Sciences, University of Texas at Austin. In preparation, May

1993.

[SRL88] L. Sha, R. Rajkumar, and J.P. Lehoczky. Concurrency control for distributed real-time

databases. ACM SIGMOD Record, 17(1):82{98, March 1988.

[SSK92] N. R. Soparkar, A. Silberschatz, and H.F. Korth. Serializability among autonomous

transaction managers. Submitted for publication, December 1992.

[Sta88] J. A. Stankovic. Misconceptions about real-time computing. IEEE Computer, pages

10{19, October 1988.

39

[HCL90] J. R. Haritsa, M.J. Carey, and M. Livny. On being optimistic about real-time con-

straints. In Proceedings of the nineth ACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, Nashville, pages 331{343, April 1990.

[HMR

+

89] R. Holte, A. K.-L. Mok, L. Rosier, I. Tulchinsky, and D. Varvel. The pinwheel: A real-

time scheduling problem. In Proceedings of the 22nd Hawaii International Conference

on System Sciences, Kailua-Kona, pages 693{702, January 1989.

[JLT85] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling model for real-

time operating systems. In Proceedings of the Eleventh Real-Time Systems Symposium,

Lake Buena Vista, Florida, December 1985.

[JM86] F. Jahanian and A. K.-L. Mok. Safety anaylsis of timing properties in real-time systems.

IEEE Transactions on Software Engineering, SE-12(9):890{904, September 1986.

[KLS90] H. F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by compen-

sating transactions. In Proceedings of the Sixteenth International Conference on Very

Large Databases, Brisbane, pages 95{106, August 1990.

[KM92] T.-W. Kuo and A. Mok. Concurrency control for real-time database management.

In Proceedings of the Thirteenth Real-Time Systems Symposium, Phoenix, Arizona,

December 1992.

[Kri82] R. Krishnamurthy. Concurrency control and transaction processing in a parallel

database machine environment. Ph.D. dissertation. Department of Computer Sciences,

University of Texas at Austin, December 1982.

[KS88] H. F. Korth and G. Speegle. Formal model of correctness without serializability. In

Proceedings of ACM-SIGMOD 1988 International Conference on Management of Data,

Chicago, pages 379{388, June 1988.

[KSS90] H. F. Korth, N. R. Soparkar, and A. Silberschatz. Triggered real-time databases with

consistency constraints. In Proceedings of the Sixteenth International Conference on

Very Large Databases, Brisbane, August 1990.

[LJJL92] K.-J. Lin, F. Jahanian, A. Jhingran, and C. D. Locke. A model of hard real-time

transaction systems. Technical Report RC No. 17515, IBM T.J. Watson Research

Center, January 1992.

[Pap79] C. Papadimitriou. Serializability of concurrent database updates. Journal of the ACM,

26(4):631{653, October 1979.

38

actions requires that several operations be scheduled together. To do so, we have shown how the

existing algorithms from scheduling theory may be used in our context. Finally, we have addressed

the question of uncertainties in the timing characteristics of transaction executions by describing

a probabilistic variant of our model. In several cases, details have been omitted for the sake of

brevity.

References

[AAS91] D. Agrawal, A. El Abbadi, and A. Singh. Consistency and orderability: Semantics-

based correctness criteria for databases. Technical report, University of California,

Santa Barbara, 1991.

[AGM88] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: A performance

evaluation. In Proceedings of the Fourteenth International Conference on Very Large

Databases, Los Angeles, pages 1{12, 1988.

[AGM89] R. Abbott and H. Garcia-Molina. Scheduling real time transactions with disk resident

data. In Proceedings of the Fifteenth International Conference on Very Large Databases,

Amsterdam, pages 385{396, 1989.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

in Database Systems. Addison-Wesley, Reading, MA, 1987.

[BMHD89] A. P. Buchmann, D. R. McCarthy, M. Hsu, and U. Dayal. Time-critical database

scheduling: A framework for integrating real-time scheduling and concurrency control.

In Proceedings of the Fifth International Conference on Data Engineering, Los Angeles,

pages 470{480, February 1989.

[C

+

89] S. Chakravarthy et al. HiPAC: A research project in active, time-constrained database

management. Technical Report XAIT-89-02, Xerox Advanced Information Technology,

July 1989. Final report.

[Cof76] E. G. Co�man, editor. Computer & Job/Shop Scheduling Theory. J. Wiley & Sons,

New York, 1976.

[DLK81] M. A. H. Dempster, J. K. Lenstra, and A. H. G. Rinnooy Kan, editors. Deterministic

and Stochastic Scheduling. D. Reidel Publishing Company, Boston, 1981.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman and

Company, New York, 1979.

37

main memory). Hence, the assumption that O

i

and O

i+1

have independence with respect to their

execution times does not hold, and an analysis of the type described above will not necessarily

yield good schedules. That is, additional information with regard to data placement etc., can be

brought to bear, and thereby, provide a more accurate analysis.

The additional information regarding the underlying system and the applications, in general,

does provide a better handle for scheduling transactions. The problem is that the analyses be-

comes even more di�cult (i.e., considering the intractability results discussed above, more involved

algorithms appear to be counter-productive). Furthermore, the details of data placement, or other

underlying factors, are very di�cult to obtain | especially as they may change dynamically. Our

goal is simply to point out the role played by the estimated values, and the fact that if needed, our

approach can handle additional information as well.

We do not detail the description of our approach in this paper (see [Sop93]), except to provide the

following brief outline. The key idea is to associate a probability distribution for each estimated

weight function time whenever the precise timing is unknown. Note that this implies a lack of

su�cient information to obtain the exact timing. Thus, in the case that added information is

obtained for a particular situation, the probability distribution can be discarded, and the exact

values used in its place. That is, the uncertainty may be counteracted by having more information.

The e�ect of using probability distributions is to create several more alternatives from which

to choose the best schedule. That is, a single schedule, as described in this paper, may give rise to

several alternatives depending on the distributions. Thus, in many ways, this approach is similar

to allowing a larger set of acceptable schedules.

12 Conclusions

We have proposed a model for time-constrained transaction processing based on time associated

with the transactions and their schedules. We have demonstrated that, in general, �nding strategies

for the scheduling problems that arise in this context, is computationally intractable. This negative

result does not preclude the practical use of our model. Rather, it indicates that heuristics or

other suitable \protocols" are required for time-constrained transaction processing. An analogous

situation exists for standard transaction processing, where the set of two-phase locked schedules is

usually accepted as a suitable subset of the set of serializable schedules whose recognition problem

is NP-complete.

We have suggested some approaches toward the practical usage of our time-constrained trans-

action model, but many issues remain to be addressed. For example, good heuristics for the correct

scheduling of transactions with an acceptable level of performance, are needed. As we have ex-

plained in this paper, achieving good results for the dynamic scheduling of time-constrained trans-

36

scheduling. The inherent trade-o�s introduced by such choices, and the formal description of the

problem of real-time optimization are not provided in this paper (see [Sop93]).

11 Dealing with the Unknown

We discuss some issues regarding uncertainties with respect to the timing estimates, and the role of

additional information in this context. Note that we assume that the estimated values are obtained

by some means | experimental, or otherwise. The actual values may vary, and we consider how

this may be handled in our model. In the following discussion, we use a schedule that is a sequence

(i.e., a total order), and we are concerned with a particular subsequence of n operations. The

subsequence, denoted by s, is represented as O

1

; O

2

; : : : ; O

n

, where an operation O

i

precedes the

operation O

i+1

in the schedule, and we are we are not concerned with the transactions per se. We

assume that the estimated execution time (i.e., weight function) for each operation O

i

is 10 time

units, and that no real time elapses between any two consecutive operations.

As an example for discussion, assume that the estimated values are obtained by experiments

that measure the realized weight function for operation O

1

to be 1 time unit nine out of ten trials.

Also, one out of ten trials measures the time taken by O

1

to be 91 time units. This could happen,

for instance, if a disk access were initiated | i.e., the high value being due to the time taken to

process a page fault when the data entity being accessed was not in main memory (and with the

I/O being very e�cient!). This provides the estimated value of 10 time units for O

1

on an average.

However, note that s would have the total makespan of 10(n � 1) + 1 about nine times out

of ten, and 10n one out of ten times | assuming all the other operations take their estimated

time for execution. Similarly, in the case that each operation is similar to O

1

in terms of its

estimated execution time, it should be clear that assuming that the time taken for each operation

is independent of the others, the makespan for s could be n time units 9

n

out of 10

n

times.

The corresponding values accrued for the same legal schedule would di�er with the di�ering

values for the weight functions of each operation. The approach to take then is obviously the

selection based on the average expected value accrued for a particular legal schedule for the criterion

of maximizing the value accrued.

The above shows how a single legal schedule actually produces several alternatives in terms of

values accrued with a detailed examination for the timing. The underlying assumption is that the

trials for two operations are independent, which is only an approximation. In reality, this may not

be true, as shown below.

Consider the possibility that an operation O

i

in s accesses the same data entity as the operation

O

i+1

. In that case, the chances that there will occur a page fault due to the latter operation directly

after the execution of the former, are negligible (since the required data would already be in the

35

the di�culty encountered in proving concrete performance bounds for many sub-optimal

algorithms accords them the label of a heuristic.

10.2 Real-Time Optimization

Whether or not the optimization problems that are encountered in scheduling of transactions are

tractable, there is an interesting general optimization problem that emerges. It is unlike the case

in typical optimization problems where the idea is to �nd an e�cient algorithm that scales-up well

with larger instances of the problem, and produces the best, or at least good, solutions as soon as

possible. Instead, the new problem is complementary to the typical optimization problem. The

goal becomes the �nding of as good a solution as possible, for a given instance of the problem,

within a particular time bound. The time bound usually arises from the application at hand, and

often, there is some exibility in deciding what instance size may be considered for one run of the

algorithm.

Notice that the problem for TCTM is the selection of schedules that are good in terms of perfor-

mance among the set of legal schedules. In this context, the availability of liberal scheduling criteria

(e.g., VSR instead of CSR) provides a larger set of legal schedules, and hence, a higher likelihood

of �nding schedules with good performance. However, simply having more legal schedules available

may not be useful since the time bound for searching out a good schedule may be unavailable, or

the algorithms that can produce the candidate schedules may be ine�cient.

Consider the determination of a path that a plotter-pen must follow to plot several points of

a graph. This is an instance of the traveling salesman problem (e.g., see [GJ79]), whose optimal

solution is intractable, in that the time taken to complete a plot should be minimized since the

plotter is a slow device compared to the computer. However, assuming that a dedicated scheduling

processor is available, what is really needed is to ensure that a particular instance of the plotter path

determination should be completed by the time the previous graph plotting instance is completed

by the plotter. Thus, the determination of a good path has a \deadline", and also, the time of

invocation of the problem instance has a \release" time (created by the arrival of the graph plotting

instance).

Although the above example is not precisely in TCTM, it illustrates the utility of a real-time

optimization study. It should be noted that while the example is not from a real-time systems

domain per se, the optimization problem itself is. That is, the best possible solution to a problem

instance is desired subject to a particular time bound.

The choice of the problem instance size may be governed in a TCTM environment as follows.

Instead of considering all the available operations to be scheduled for a given instantiation of the

scheduler, a subset, whose size is decided by the dictates of the time bound, may be chosen for

34

10.1 Seeking Alternative Strategies

Alternative strategies that may be sought are now discussed (e.g., see [PS82]). Again, note that

our discussion is only representative, and is in no way comprehensive. The alternatives that may

be used should be applied to the batch-online transactions scenarios that are the most general case

as explained above. Providing examples for each instance is not within the scope of this paper (see

[Sop93]), but such examples can be easily constructed from published results in scheduling theory

(e.g., see [DLK81]).

� Approximation algorithms: These algorithms produce solutions that are a �xed percentage

away from the optimal solutions. As such, they are the best for providing guarantees (e.g., for

real-time scenarios) as far as the values accrued by the schedules | barring inaccuracies in

the timing estimates. The analysis required to prove the lower bounds on the values accrued

may often be non-trivial.

� Probabilistic algorithms: Assuming some probabilistic distribution of the problem instances,

these attempt to produce solutions that are not \too" bad, and their computation is not

\too" ine�cient. The problem in transaction processing applications may be that such a

distribution of the input parameters is di�cult to obtain, particularly in online situations.

� Special cases: If special cases can be isolated that are relevant for particular applications,

then the intractability results for the general problem are irrelevant. In fact, most of the

available techniques in scheduling theory fall into this category (e.g., see [DLK81]).

� Exponential algorithms: Algorithms that are pseudo-P-time may be exponential time algo-

rithms, but they are e�ectively P-time for practical situations. Furthermore, there may be

branch-and-bound, or dynamic programming, approaches that may actually serve well for

small-sized problems. If, especially in the batch-online transactions case, the scheduling al-

gorithm is invoked often enough, and executes on a dedicated processor, this alternative may

not be too unattractive.

� Local search: Approaches such as neighborhood search techniques (i.e., greedy techniques)

are relevant to attack combinatorially di�cult problems. A large body of literature, especially

from the domain of arti�cial intelligence (e.g., see [Pea84]), exists on this subject, and may

be used in our context.

� Heuristics: A technique which simply produces \good" results without any guarantees with

regard to the degree to which it is \good", may be regarded as a heuristic. Most of the

empirical work in TCTM falls into this category (e.g., see [Ram92]), and it is the case that

33

� meeting deadlines on individual operation in a PRAM machine.

Proof: The proof is essentially the same as for the case of scheduling a single transaction.2

A large number of similar intractability results can be derived for DRAM machines in the

context of batch-online transactions for CSR schedules since the essentially intractable problems in

areas such ow-shop and job-shop scheduling involve the assignment of tasks to speci�c processors.

9.4 Scheduling with Aborts

So far we have assumed that the optimality results are sought without taking recourse to the abort-

ing of transactions. However, except for the cases of minimizing tardy transactions or operations,

all the intractability results hold even with the option of aborting transactions. We direct attention

to the fact that in cases where minimization of transactions, or operations, that will miss their

deadlines, is concerned, the additional possibility of aborting the tardy executions exists. Such

aborts may increase the chances for improving the overall performance given that the executions

that do not contribute su�ciently to the value accrued for the schedule are eliminated. In fact, in

the batch-online transactions case, other operations belonging to a transaction that are available to

be scheduled at that point. This improves the availability of the shared resources for the purposes

of scheduling other executions that do contribute to the value accrued. A more detailed discussion

of scheduling when aborts are available is not included in this paper (see [Sop93]).

The importance of aborts becomes very evident when the time estimates, heretofore assumed

to be accurate, are found to be undependable. In such cases, a scheduled operation may take

inordinately long to execute, and then it becomes imperative to abort the rest of the transaction.

Otherwise, the entire transaction must be unnecessarily executed without contributing to the value

accrued | especially if it is a transaction that has a deadline. Hence, it is necessary in the

practical scenarios where precise estimates on execution times are unavailable that the facility to

abort transactions internally be available to the scheduler.

10 When the Going Gets Tough

The search for optimality led to intractability results. Thus, the approach to take then is to

attempt alternatives, or to examine the problem in a di�erent manner. This paper is not concerned

so much with seeking alternatives for particular scheduling problems as much as with adapting

existing techniques to the transaction management problem. Again, unfortunately, the state-of-

the-art techniques available in scheduling, especially for multiprocessors, are meager. A recourse

often taken is to attempt ad hoc heuristics, and to attempt to study the problems from an empirical

standpoint (e.g., see [JLT85, HCL90]).

32

Since it is the case that the restricted and the less restricted transactions scenarios are restric-

tions of the batched-online situation, we note that optimal results for the cases considered above

hold for the batched-online case as well. Moreover, note that an instance of a problem in the

batched-online case where there is no conicting accesses between the transactions, is exactly the

same as a restricted transactions scenario for the purposes of deriving intractability results.

Let us consider an interesting situation that imposes a �xed partial order << on the set of n

operations as a result of the realized schedule. Note that CSR schedules require that conicting

accesses between transactions must be ordered in the same manner. Consider two conicting

operations, O

0

i

and O

0

j

, from transactions T

i

and T

j

, respectively, such that in the realized schedule,

<, it is the case that O

0

i

precedes O

0

j

. In that case, a partial order relationship is necessary between

two conicting operations, O

i

and O

j

, from the transactions T

i

and T

j

, respectively, created by <<,

if the expected completions are to be legal CSR schedules. That is, a �xed precedence relationship

<< is created for each batch-online problem instance due to the realized schedule. Such precedence

requirements can arise for other logical correctness criteria as well.

The above observation is important since it not only allows us to recognize certain problems

as being intractable, but more importantly, it allows the use of heuristic approaches developed in

the context of precedence constrained scheduling. To utilize tractable algorithms, the << partial

order must also be made to include the <

i

partial order for each transaction T

i

in the schedule, for

reasons that are obvious. Furthermore, we need to assume that there are no conicting operations

within a transaction T

i

that are not ordered by <

i

. With the above explanation, it becomes clear

that the problem is similar to the situation for scheduling a single transaction, and thus, we may

state the following results.

Theorem 9. There exists an e�cient algorithm to schedule a set of batch-online transactions

operations such that the throughput of operations is maximized for CSR schedules.

Proof: The requisite algorithm is the same as that for the scheduling of a single transaction to

maximize throughput.2

Of course, there do remain the large number of intractable problems. The following are a

representative set of such results.

Theorem 10. The following scheduling problems are intractable in the context of batch-online

transactions for CSR schedules.

� minimizing tardy operations, and weighted tardiness, on a RAM machine, with individual

deadlines on the operations.

� maximizing the throughput of operations with unit weight functions on PRAM and DRAM

multiprocessors.

31

Not surprisingly, similar problems for the multiprocessor cases are also intractable. In fact, the

uniprocessor cases may be regarded as special cases of the multiprocessor scenarios. Additionally,

the multiprocessor scheduling issues yield further results as follows.

Theorem 7. Scheduling a set of restricted transactions that have an overall deadline on a

PRAM machine is intractable.

Proof: The proof is a simple reduction from the multiprocessor scheduling problem (e.g., see

[SS8] in [GJ79]).2

The restricted transactions case is possibly too restrictive, and hence, we now consider the

more general case where each transaction T

i

is a partial order <

i

on its constituent operations.

We continue to disregard aborts as explained above, and we refer to this as the less restricted

transactions scenario. We consider only the question of maximizing throughput in this model.

Theorem 8. Scheduling a set of less restricted transactions on a PRAM machine with a �nite

or in�nite number of processors so as to maximize throughput, with CSR or VSR as the logical

correctness criteria, is intractable.

Proof: (From [Kri82]) It is known that minimizing the makespan for a set of less restricted

transactions is intractable.2

9.3 Scheduling Sets of Operations Online

Now we consider a more general case wherein a set of transactions must be scheduled, but neither

are all the transactions, nor are the operations of each, known a priori. Thus, the scheduling

problem becomes one where a set of n operations are outstanding, and there is a need to schedule

them. We briey discuss issues regarding the frequency of the scheduling, and the manner in which

the n operations are obtained, in Section 10. We have discussed above how the value functions

are assigned to the operations, and these are derived from the value functions assigned to the

transactions themselves. An interesting observation in such cases is that deadlines may occur in

the context of interactive transactions wherein after an operation is invoked, a deadline speci�c to

that operation is created, and such a situation is also represented in the scenario under study.

Clearly, this is a situation where a set of operations is scheduled online. It is realistic in that

it lies in-between the optimistic extreme of assuming that all the transactions and operations are

known a priori (e.g., see [Kri82]), and the pessimistic extreme of assuming that only one operation

is outstanding at a time (e.g., see [Pap79]). Hence, we refer to such scenarios as batched-online

transactions scheduling. The legal schedules are taken to be CSR or VSR, as indicated. Finally, as

above, we shall consider that aborts are disregarded.

30

scheduling of a single transaction. To state these more rigorously, the model in Section 2 needs to

be extended to include value functions for individual operations, and hence, we do not explore it

further.

9.2 Sets of Transactions

It may be argued that a single transaction, especially with all its operations known a priori, does not

represent a reasonable scheduling problem. We now make the problem more realistic by considering

sets of transactions, each known a priori, that need to be scheduled to maximize performance. In

this case, note that it is always possible to create legal schedules for the transactions such that

each is committed. We assume that a non-zero penalty accrues for an abort, and the value function

for committed transactions is always non-negative. This e�ectively ensures that we do not need to

deal with aborted transactions. Examples of situations where such sets of transactions are known

a priori include well-studied scenarios (e.g., in a manufacturing environment), or for a particular

period in a periodic problem in real-time systems.

We specify the legal schedules to be those that are CSR and VSR | similar intractability results

occur in each case. The size of the problems that are considered is n where n is the total number

of operations arising from all the transactions in the set to be scheduled. For the other features in

the model considered above, we state that m = m

0

, and << is empty.

First, we consider the simple case where each transaction T

i

has exactly one operation O

i

other

than the commit or abort operation. The weight function estimates are provided as discussed for the

results discussed above. Also, we assume that the commit operation has a weight function of 0 (e.g.,

imagine a main-memory architecture that is battery backed-up so that no explicit commitment is

necessary). In such a situation, any partial order of the operations O

i

constitutes a legal schedule

obeying CSR. We refer to this situation as the scheduling of restricted transactions. It should be

noted that this situation is exactly one of an independent set of tasks for the purposes of obtaining

intractability results.

Theorem 6. the problem of scheduling a set of restricted transactions on a RAM machine to:

� meeting transaction release times and deadlines,

� maximize the value accrued for transactions with deadlines, and values before the deadlines

di�er among the transactions,

� minimize weighted tardiness of transactions with deadlines,

is intractable for each of the above.

Proof: Simple reductions from essentially the same problems in sequencing theory (e.g., see

problems [SS1,SS3,SS7] in [GJ79]) exist.2

29

execution time limit. The task lengths map to the weight function on the operations, and the

overall deadline maps to an overall execution time limit. Since there is no precedence constraint on

the tasks for the multiprocessor scheduling problem, the partial order <

i

is regarded to be empty.2

In the presence of a non-empty partial order <

i

, the situation is even more grim.

Theorem 3. The scheduling of a single transaction with unit weight functions on the operations

on a PRAM machine so as to maximize throughput is intractable.

Proof: An instance of the precedence constrained scheduling problem (e.g., see [SS9] in [GJ79])

can be reduced to our problem. The precedence constraint on the tasks maps to the partial order

<

i

.2

However, the above problems may be solved tractably for some special cases (e.g., see [Cof76,

GJ79]).

The situation for a single transaction scheduled on a DRAM is also bad.

Theorem 4. The scheduling of a single transaction with unit weight functions on the operations

on a DRAM machine so as to maximize throughput is intractable.

Proof: An instance of the precedence constrained scheduling problem (e.g., see [SS9] in [GJ79])

with each task mapped to a speci�c processor, can be reduced to our problem. To create a situation

that such a mapping is required in our problem, let each operation access a di�erent data entity.

Hence, if a task t is mapped to a processor p, then the corresponding situation in our problem is to

assume that the data entity accessed by the operation corresponding to t resides in the processor-

memory pair corresponding to p.2

Essentially the same results hold for the question of scheduling a single transaction with a

deadline constraint (i.e., a value function that is constant, say 1, up to the deadline point in real

time, and 0 thereafter), and with a non-zero penalty associated with the abort (i.e., aborting is

not an option given that late commitment does not incur a penalty). Let us simply call this a

\deadline-constrained" scheduling problem.

Theorem 5. The deadline-constrained scheduling of a single transaction on PRAM and DRAM

multiprocessors is intractable.

Proof: Simple reductions similar to the proofs for Theorems x and y above from the same

intractable problems in multiprocessor scheduling.2

Consider a situation where there are individual deadlines on the operations of a single trans-

action which may occur when transactions are used in the design of real-time systems. This is

because a transaction simply captures a logically coherent set of tasks to be executed, and these

tasks, which can also be viewed as operations, may have individual deadlines. They may have a

partial order of execution as well. In such cases, there exist similar intractability results for the

28

use operations that span more than one processor-memory pair. Again, we regard this architecture

to be a backend platform.

We shall refer to the three target architectures as RAM, PRAM, and DRAM machines. The

time estimates for particular operations or transactions etc., are assumed to be independent of the

workload on the systems. In other words, we assume that the systems have normal workloads for

the weight function estimates, and that these estimates remain stable.

As mentioned earlier, we encounter, not unexpectedly, intractability results in the attempt to

obtain optimal results. We consider the di�erent avors of intractable results, and consider their

signi�cance. Note that the following discussion is not meant to be comprehensive in any sense of

the word; instead, it represents the di�culties encountered in attempting to obtain optimality. We

do not use value functions per se in the discussions; instead, we use the traditional nomenclature

of \deadlines" etc., where it should be understood that corresponding value functions could have

also been used.

9.1 Single Transactions

Consider the scheduling questions faced when a single transaction, T

i

, is known, and it is the only

transaction that needs to be scheduled. In such a situation, the partial order << may be regarded

as the partial order <

i

that represents the precedence order on n operations of T

i

. Note that <

i

does not necessarily relate two operations within T

i

that may access the same data entity in a

conicting manner. Thus, when a P-time algorithm is provided to schedule the operations in T

i

on

a multiprocessor, additional relationships must be de�ned in the << partial order. Also, assume

that the weight functions for the operations in T

i

are provided by estimation.

Consider the maximization of throughput in the the above scenario. Clearly, it is the minimiza-

tion of the makespan of the transaction execution.

Theorem 1. A single transaction can be e�ciently scheduled to maximize throughput on a

RAM machine.

Proof: The requisite algorithm is to topologically sort the operations of a single transaction

T

i

, and to execute it on the uniprocessor machine in the resulting order. The makespan of the

execution is the minimum possible since it is the sum of the weight functions of the operations.2

Unfortunately, as may be expected, even in this simple case, the multiprocessor scheduling

problem is intractable.

Theorem 2. The scheduling of a single transaction on a PRAM machine so as to maximize

throughput is intractable.

Proof: An instance of the multiprocessor scheduling problem (e.g., see [SS8] in [GJ79]) can

be reduced to the problem of executing a single transaction on a PRAM machine with an overall

27

scheduling the n operations, it is not unreasonable to assume that the value function for T

i

may

be applied to O

i

after \shifting" it by t

i

in the real time domain. That is, the value function to be

considered for an operation O

i

is vf(T

i

) with the di�erence that the value mapped to for O

i

from

a real time point t is the same as the value mapped to for T

i

from the real time point t+ t

i

.

It is possible to seek optimal solutions to the restricted maximization problem that is sketched

above. Unfortunately, extant results from scheduling theory preclude the e�cient handling of the

problem. Thus, to obtain the best results, the underlying system may have to wait inordinately

long periods of time as examined below.

9 The Best comes to those who Wait

We consider the issue of obtaining the optimal results in time-constrained transaction scheduling

in this section, and we show that it is an intractable problem, in general. To do so, it is necessary

to briey examine the target architectures on which these results are based, and also, to explain

the meaning of the optimality criteria.

We consider three major target hardware architectures in a centralized environment. As of

now, the secondary storage considerations are ignored, and hence, the databases may be regarded

as being entirely resident in main-memory. To account for stable storage, when necessary, the main

memories may be regarded as being battery backed-up. Note that in all cases, a common clock is

assumed to be available.

First, consider a uniprocessor architecture whose relevant abstract counterpart to it should be

regarded as a random access memory (RAM) machine. Thus, the operations, or tasks, assigned to

the processor are executed by accessing the main memory. There could be further enhancements

to the basic architecture to allow separate processors to execute the transaction programs and the

scheduling disciplines. These are not not explicitly considered, and thus, the architecture represents

a backend database server platform.

Second, consider a multiprocessor architecture with shared memory. The abstractions used to

study such architectures are called parallel RAM (PRAM) machines with variations as to their

abilities to access the memory in true parallelism. We assume that there is no di�erence in the ease

of accessing any data between the processors. As for the case of the uniprocessor, this architecture

is regarded as a backend database server platform.

Third, consider a distributed memory multiprocessor architecture. The counterpart abstract

machines are called distributed RAM (DRAM) machines. The constraint in such machines is that

the data is distributed, and the dictates of e�ciency require that operations, or tasks, be scheduled

on the particular processor-memory pair that house the data being accessed. Also, it is ine�cient to

26

queued at the input of a scheduler, and there is the need to schedule these in a logically correct

manner while also considering the enhancement of performance criteria.

The model that we use has the following general features for a particular instance when a

scheduler is invoked. There are m active transactions, where an active transaction is one whose

invocation is known to the scheduler, and whose �nal commit or abort operation is not included

in the realized schedule. The total number of transactions in the schedule is m

0

. Also, there are

n operations that need to be scheduled, and all these operations belong to the active transactions.

In some instances, we require that a partial order, <<, on the operations is imposed such that the

partial order < produced by the scheduler must subsume <<. Usually, the partial order << arises

from certain logical correctness criteria or from within the partial order <

i

de�ned for an active

transaction T

i

, and this is discussed below. For those instances where we allow the scheduler to

abort transactions at will, we also consider an internal abort operation| where the term \internal"

is used to distinguish it from a transaction-supplied, or external, abort | for each active transaction

which has no external abort represented in the n operations. Note that if a commit operation for

an active transaction is included in the n operations, then any schedule includes only one of the

abort or commit operations. Usually, there is also a need to consider the commit operations of the

active transactions to study the expected completion of a schedule.

Consider the expected completion of an incomplete schedule. By providing estimates for the

weight functions in the portion of the expected completion that is not part of the realized schedule,

a time-annotated schedule is obtained. The value accrued for the expected completion may be

regarded as the expected value accrued for a schedule with the completed transactions in the realized

schedule, and with expected completions for the active transactions. Thus, we are in a position to

restate the goal of the scheduler in TCTM environments, which is \to maximize the value accrued

for the expected completions." That is, the goal of ensuring good performance for the transaction

schedules generated, is made explicit. Note that since the value accrued for a logically incorrect

schedule is in�nitely negative, the preservation of consistency is subsumed in the above goal.

The scheduler is in a position to deal with the scheduling of the n operations available to it.

Assume that none of the active transactions are to be internally aborted. The question then arises

as to how to provide value functions for the restricted optimization problem of scheduling the n

operations. To do so, let the expected value of the weight function (i.e., estimated time) from

the point that a particular operation O

i

for an active transaction T

i

is acknowledged to have been

executed, up to the point that the �nal operation for the transaction T

i

is acknowledged to have

completed, is t

i

. Assume that the value t

i

is the same for every expected completion | we relax this

simplifying assumption in Section 11. Furthermore, assume that there is at most one outstanding

operation O

i

for each active transaction T

i

. In the case of the restricted maximization problem in

25

of scheduling operations, and this bene�t does not seem to be adversely a�ected by the

intractability results.

� The important question of aborted transactions is not handled by the characterization. In-

deed, the model in [Pap79] does not consider the commit and abort operations. As such,

the question of the degree of concurrency with aborts possible is not addressed. Thus, any

scheduler based on certi�cation does support the maximum possible concurrency in a model

since it potentially permits every possible schedule. In our model, we potentially take into ac-

count the impact of aborted transactions since the value functions may be de�ned for aborted

transactions as well.

� In our context, the most important shortcoming of the no-delay schedulers is that they do

not attempt to provide better performance explicitly despite the fact that it is supposed to

be a primary goal. Thus, a no-delay scheduler simply depends on the input sequence to be

one that will actually provide good performance, and it outputs the schedule unchanged. A

closer examination reveals that the problem is not so much with the scheduler as it is with the

schedules themselves; the problem lies with the assumption that all logically correct schedules

are equally desirable. This is fallacious for the purposes of enhancing performance criteria, and

examples provided above exhibit this shortcoming. In the case of time-constrained transaction

scheduling, this problem becomes more acute since the correct schedules cannot be regarded

as being equally important.

8.2 Enhancing Performance Explicitly

To output schedules that are better for some given measure of performance, it becomes necessary

to schedule operations in terms of sets of operations rather than the approach used for no-delay

schedulers. The reason is that a no-delay scheduler simply has two choices with regard to an

input operation | either to output it, or to delay it and to check the next one. Since there is

no performance bene�t possible in the model by delaying an operation if its output does produce

a legal pre�x, the operation is output and this leads to the shortcomings in no-delay scheduling

discussed above.

A consideration of the options that a scheduler has to enhance performance shows that it

can a�ect the ordering of the operations in the output, and abort certain transactions. Given

this limited power, the option available to enhance performance is to schedule a set of operations

together, and possibly abort some of the active transactions. The objection to this approach is that

a set of operations may not be available, and in that case, the approach reduces to the no-delay

scheduler approach. However, in general, it is likely that a set of n outstanding operations are

24

However, if the scheduler did not guarantee that a schedules in its output class would be output

unchanged if it were provided as an input, then this argument does not hold. It is not clear that

such schedulers that may change legal input sequences admit of e�cient implementations.

The no-delay characterization of schedulers has been long used to compare the utility of sched-

ulers. Its success lies in its simplicity, and elegant mathematical characterization. Thus, it is used

to make comparisons between the concurrency level supported by di�erent schedulers (e.g., see

[Pap79, KS88]). For example, a scheduler F

1

is said to allow more concurrency than a scheduler

F

2

if, and only if, the class of schedules handled by F

2

is a proper subclass of the class handled by

F

1

. Furthermore, the no-delay stipulations permit the outright rejection of classes of schedules that

cannot be e�ciently recognized (e.g., see [KS88, AAS91]). Conversely, the existence of algorithms

that e�ciently recognize the legal pre�xes of a class of schedules is considered as an indication that

requisite schedulers may be constructed for that class. Note that the characterization includes all

commonly used schedulers such as 2PL, TO, etc. In the case of certi�cation, the only di�erence is

that the check to ensure that a legal pre�x has been generated is done at the end of a transaction

rather than at each operation (e.g., see [BHG87]).

Unfortunately, there are several drawbacks to this approach to scheduling, even considered in a

theoretical framework. Furthermore, for time-constrained transaction scheduling, the de�ciencies

are more acute.

� In practice, delays may be encountered for operations that arrive in an input sequence that

is legal for a scheduler. For example, in a 2PL scheduler, an operation O

i

that arrives while

a conicting operation O

j

from another transaction is holding a lock, must await the release

of the lock. In such cases, the scheduler delays the operation O

i

, and instead, outputs some

other operation O

k

, thereby e�ecting a change in the input sequence. This is possible even

though there may be a schedule in which O

j

immediately precedes O

i

. The problem is that

the mathematical characterization does not capture such delays since the model used does

not explicitly account for the passage of real time. The manner in which this is resolved in the

characterization described above is that an output sequence that schedules O

i

directly after

O

j

is created, and the underlying system is expected to e�ect the necessary delays between the

two operations. It is a moot point whether the scheduler has indeed scheduled the operations

with no delay involved.

� Intractability results exhibited for some liberal classes of schedules renders the classes unusable

in practice for no-delay schedulers. This seems to indicate that those classes are entirely

unusable in practice for any schedulers. However, as discussed above, that is not necessarily

justi�ed. One bene�t of using more liberal classes is the greater choice they a�ord in terms

23

on the number of operations of transactions that are incomplete (i.e., transactions that are active).

Thus, the scheduler behaves as an on-line scheduler since it does not need to examine the entire

s

i

sequence to produce s

o

. Furthermore, the scheduler behaves in an optimistic manner in that a

pre�x of the output sequence is produced whenever it is possible to extend the pre�x to a schedule

that is legal within the correctness class that is handled by F . Thus, the function F is de�ned

also for pre�xes of schedules, and the output pre�x of s

o

must be legal. The latter requirement

obviously subsumes the requirement that the s

o

should be legal.

There is an implicit assumption that a scheduler must not delay any operation unless it is

necessary to do so. The manner in which this is expressed mathematically is to require that any

input sequence belonging to the logically correct class of schedules handled by the scheduler must

be output unchanged. That is, scheduler F is said to handle a correctness class C if, and only if,

for any input sequence s

i

2 C, F produces s

i

itself as the output (i.e., for any s

i

2 C, it is the

case that s

o

= s

i

). From the above discussion, this implies that the pre�x of s

o

that is output

must be the same as the pre�x of s

i

that is input, for any pre�x that is legal. Note that if there

exists an algorithm that can e�ciently recognize all legal pre�xes for a correctness class C, then

that algorithm can be used to construct a scheduler F that handles schedules in C. In doing so,

the scheduler outputs operations from the input sequence one at a time by computing whether

or not the output pre�x generated thus far will be legal. We refer to such e�cient, optimistic,

on-line schedulers that do not delay any operations unnecessarily for a class C, as discussed in this

paragraph, as no-delay schedulers for the class C.

It is not di�cult to construct examples for situations where a sequence s

i

may be within a class

C that is e�ciently recognizable, but whose pre�x may belong to a class C

0

that is not e�ciently

recognizable (e.g., see [Pap79]). Hence, the e�cient recognition of all legal pre�xes of a class C is

also necessary for the existence of a no-delay scheduler for that class.

Note that the above discussion indicates why the existence of no-delay schedulers for the class

VSR is precluded since the class is not e�ciently recognizable [Pap79]. However, it does not

preclude the existence of schedulers that do not have all the characteristics of no-delay schedulers.

In particular, if it is not necessary that an input sequence s

i

that is legal with regard to a class

C be output unchanged, then a scheduler may exist that outputs all schedules in C despite the

possibility that legal pre�xes of C are not e�ciently recognizable. This may be understood by

considering how the intractability of recognizing a legal schedule hinders the existence of no-delay

schedulers. For, if it were the case that an e�cient no-delay scheduler did exist for such a class, then

the recognition problem for legal schedules could be tractably resolved as follows. The schedule in

question, s

i

, would be provided as input to the scheduler, and the output schedule, s

o

, would be

compared to the s

i

. The schedule s

i

would be recognized as being legal if, and only if, s

i

= s

o

.

22

It is outside the scope of this paper to examine the meaning and formulation of the various value

functions. Indeed, we examine but a small subset of the large number of such possible formulations.

Furthermore, in many cases it may happen that a value function is not available. In such situations,

we exercise our discretion in suggesting that default value functions be used | keeping in mind

that such functions are employed implicitly in any scheduling technique.

Several other issues that arise for our model may be easily incorporated within the framework.

These include the questions of deadlocks, livelocks, and priority inversions (e.g., see [Son88] for a

limited discussion relevant to TCTM). Su�ce to say that their presence degrades performance, and

their characteristics may be observed in our model in which they are reected in schedules with

low accrued values.

8 Revisiting Traditions

The traditional approach to transaction scheduling regards every logically correct schedule as being

equally desirable. As large a number of schedules as possible are certi�ed as being logically correct

with the expectation that the concurrency control module will impact the performance as little as

possible. In a nutshell, as stated in [Pap86], the goal of a scheduler is \to preserve consistency while

maintaining a high level of parallelism or performance." Note that the preserving of consistency

refers to the ensuring of logically correct schedules, and the parallelism refers to the number of

such permitted schedules. In this section, we examine this goal in some detail in our context, and

we use the description in the literature (e.g., see [Pap79, Pap86]) to study this established goal of

transaction processing protocols.

8.1 No-delay Scheduling

We restrict our attention here to schedules that are sequences (i.e., total orders). Similar consid-

erations for partial orders have been examined with essentially the same approach in the research

literature (e.g., see [Kri82]).

A scheduler, or the concurrency control module, is regarded as a function F that transforms

an input sequence of operations, s

i

, into an output sequence of operations, s

o

. The two sequences

contain exactly the same operations, say n, in number. There are several requirements on a

scheduler F as described below.

First, the output sequences that it produces must belong to an acceptable logically correct

class of schedules (i.e., the output should be \legal") | the largest such class is taken to be VSR.

Second, the function F must be e�ciently computable in that its computational complexity must

be P-time in n. Third, each operation in s

i

should be output in P-time in the length of the pre�x

of s

i

examined till that point. In practice, the e�ciency requirement is changed to a P-time bound

21

those that are invoked in that period, those that complete, or both, etc.), must be speci�ed. Since

it is a rate measure, it is supposed to be de�ned for each point in real time; however, it is unclear

as to which period is intended to be used to for counting the transactions. In UNIX, for example,

the past few minutes are regarded as the period for the purposes of accounting the throughput.

However, for scheduling, that does not serve the purpose since the obtained values are for the

realized schedule rather than for the expected completion of an incomplete schedule.

Let us assume that the throughput is measured as the number of transactions that complete in

some pre-speci�ed real time interval (i.e., the transactions need not necessarily have been invoked

during that period). Since we are not dealing with transactions that have any particular time

constraint per se, it is not unreasonable to assume that the associated value functions are constant

at a value, say 1. Assume that the penalty due to aborts may be disregarded. Hence, the throughput

for the pre-speci�ed period is simply the sum of the values accrued by the transactions during that

period.

The problem with the above de�nition is that it is not entirely clear how the average throughput

may be obtained. Thus, some ad hoc approach must be taken to de�ne and maximize throughput.

One approach that appears to be reasonable is to minimize the makespan of the schedule (i.e., the

total length in real time for a schedule). We shall use this alternative approach to study throughput

maximization.

7.4 Complicated Value Functions

The value functions examined so far are comparatively simple in that they have essentially only

one parameter. However, it is possible that some performance criteria may be best represented by

comparatively more complex value functions as the next example shows.

Consider the description of the 100 transactions per second benchmark for transaction process-

ing systems. It is de�ned as the committing of 100 transactions each second, and additionally, with

90% having a response time of less than one second. To represent such a performance criterion, two

value functions can be de�ned for each transaction | one to be used for the throughput, and the

other to be used for the response time. In this case, the value function related to the throughput

may be taken to be a constant function, and the one for the response time may be taken as a

block-shaped function.

Thus, the value function for the schedule would need to be maximized along two dimensions,

and the benchmark would be met for schedules that have a throughput value of 100� , and a deadline

value of 90� , for each time period of � seconds that may be examined. The precise meaning of an

average value of 100 transactions per second is not very well de�ned.

20

value function. Such a value function is constant at, say, 1, up to the deadline point in real time,

and after that, it reduces to a lower value. Note that there are several ways in which this reduction

in value occurs, and consequently, a deadline can be interpreted in several ways. For example, soft

deadlines permit the value to fall-o� gradually | implying that the transaction in question accrues

a non-negative value even if it does not commit by the deadline. In �rm deadlines, the value falls

abruptly to 0 | meaning that there are no gains nor penalties associated with the commitment of

the concerned transaction after the deadline. Sometimes, a large negative value accrues after the

deadline is passed, and consequently, it is preferable not to commit the concerned transaction after

the deadline.

The above discussion suggests that a transaction should be aborted in some instances when

the deadline passes or cannot be met. In such cases, it is necessary to consider the penalty (also

provided by the value function) associated with the abort. In traditional real-time systems, this

penalty is usually disregarded. Thus, in using extant results, for many cases, we disregard the

penalty as well. Disregarding a penalty implies that the value function is taken to be 0.

Ensuring that our choice of schedules, guided by the maximization of the value accrued by them,

does reect, for example, meeting as many deadlines as possible, is not di�cult. By disregarding

the penalty of aborted transactions, the value function for a schedule is de�ned simply as the sum

of the values accrued by the constituent transactions.

This example demonstrates how the sum of accrued values of transactions may be used to de�ne

the value functions for schedules.

7.2 Response Time

To achieve a minimization of the response times, consider a response time graph that plots the

response time against the completion point in real time. This is a straight line that begins at the

invocation point in time with a response time being 0, and has a slope of 45

�

. Thus, minimizing

the average response time for a schedule is equivalent to �nding a schedule such that the sum of the

response times, divided by the number of transactions, is minimized. To state this in terms of the

maximization of the sum of values accrued by transactions, the value function of each transaction

should be regarded as the negative of the response time graph described above. Note that the value

function formulation permits the expression of minimizing response times in a manner that favors

the \more important" transactions as well.

7.3 Throughput

Throughput is a measure of the rate at which transactions are processed. Thus, the period of time

over which the throughput is measured, and which transactions to include within that period (i.e.,

19

operating conditions (i.e., both \normal" and \crisis" situations). Thus, we do not address the

question of whether or not a particular scheduling strategy produces schedules that commit the

transactions \in time", or whether some transactions need to be aborted; such considerations are

subsumed in the maximization described.

We do not deal with the various possible failures or their solutions speci�cally with regard to

time-constrained situations in any detailed manner. Instead, it should be understood that the

extant methods used in transaction management technology are to be used. In particular, logging

on stable storage etc., are assumed to be required as in extant technology. However, it should be

noted that in many instances, the full-edged use of failure-resilience techniques may be unnecessary

for time-constrained transactions (e.g., see [LJJL92]). For example, data that has signi�cance for

only a short period of time (e.g., the position of a target aircraft) need not be saved onto stable

storage media. In general, this may be true only for a part of the data.

The above creates the problem that the access to the stable storage media makes for uncertainty

in the timing estimates. With the extant technology, there is essentially little that can be done to

alleviate this problem. In Section 11, we discuss the uncertainties in timing estimates.

7 The Performing Arts

We consider the performance metrics for time-constrained transactions in this section. It is assumed

that the necessary triggering associated with the invocation of the transactions is achieved by other

processes. Thus, compensating transactions, for example, are assumed to be triggered by other

processes, and are treated simply like any other transaction. The emphasis in this paper is on

centralized scheduling (i.e., there is exactly one concurrency control module).

It should be clear at this point that not all schedules that are logically correct are attractive in

terms of performance. The performance that a schedule provides is de�ned by the value accrued by

that schedule. We examine how several well-understood performance measures may be represented

in the value function framework. This allows us to use value functions, in general, and to use extant

techniques developed for the performance metrics we consider, in particular. The whole approach

is to devise value functions that are, as far as possible, independent of the underlying system, the

environment, and other concurrently executing processes. Note again that it is not within the scope

of this research to provide studies on how the value functions are obtained.

7.1 Deadlines

Real-time applications are often associated with situations that have stringent timing constraints

within which each process in the system must complete execution. These time constraints are in the

form of deadlines. Deadlines, as used in real-time systems, may be represented by a block-shaped

18

Note that if the deadlines for each were changed to 4 instead of 5, the corresponding values accrued

for the schedules a, b, c, d, and e, would be 2, 1, 1, 2, and �1, respectively.

Concurrency control modules are in a position to handle only a restricted set of value functions

within their repertoire. We do not deal with the value functions directly, in general. Thus, the

discussion may refer to value functions only implicitly by dealing with the notions of a deadline

etc., instead of the corresponding value functions explicitly.

6 Time and Tide Wait for No Man

Given that some logically correct schedules are better than the others in terms of performance, the

question arises as to how these may be selected. We address this question in some detail in Section

9. At this point, we consider the important issue of meeting the various temporal constraints in

terms of the invocation times of the transactions, and the values accrued from the schedules. Also,

we state our position with respect to what is meant when by the meeting of temporal constraints,

at least in our context.

Note that except for entirely idealized situations, it is never possible to meet all the logical and

temporal correctness criteria with complete certainty. Given that unforeseen failures and delays

(which may be regarded as a kind of failure for time-constrained environments) may always occur,

such guarantees are impossible. Instead, the recourse taken traditionally is to assume that certain

types of failures do not occur, and to design systems based on these assumptions. The failures that

are assumed not to occur are those that have a very low probability of actually occurring. Hence,

systems that are based on failure-free assumptions do have a small, non-zero probability that they

may fail.

In time-constrained environments, the question arises as to whether the probabilities that an

estimated time for some execution will actually deviate from the actual time taken, is small. With

the current technology, the answer is negative, and hence, it is futile to attempt to provide any

certain guarantees with regard to the execution times (e.g., see [BMHD89]). However, that does

not resolve the issues that are faced by a time-constrained scenario.

Further, note that meeting the time constraints on transactions is comparatively simple as

regards the invocation times { which we state without further explanation | and research e�orts

are in progress to address these issues (e.g., see [BMHD89, C

+

89]). We regard the problem of

meeting the invocation times accurately as being resolved | except for crisis situations that are

discussed in [KSS90]. However, the constraints on the execution times with regard to the value

functions accrued, are quite di�cult to meet. In our context, the meeting of time constraints

is \equivalent" to �nding those schedules for the invoked transactions that maximize the value

accrued. Note that this provides a common framework, and common objective, for all types of

17

vf(T) parameterized by the value of time (i.e., the clock) at the point in the schedule where the

acknowledgment for the �nal commit or abort operation for T is received by the concurrency control

module. This provides a means to determine the value accrued by each transaction in a schedule.

We are interested in the value accrued by a schedule. This may be represented as a value function

for a schedule where the function is parameterized by the values accrued by the transactions in the

schedule. Thus, the value function for a schedule s, denoted by vf(s), is a mapping from the values

accrued by its constituent transactions, among other parameters, to the set of real numbers.

Usually, the value function for a schedule is the sum of the values accrued by each transaction in

the schedule. However, the value function for a schedule may depend on several other parameters

as well. Note that the value function for a logically incorrect schedule is assumed to be in�nitely

negative. We provide an example to clarify the concept for the value of a schedule.

Consider two time-constrained transactions, T

1

and T

2

, with associated value functions repre-

senting deadlines (both are assumed to commit), as follows.

� T

1

: R

1

[y]R

1

[x]W

1

[x]W

1

[y]; vf(T

1

) = 2 if clock� 5, else 0.

� T

2

: R

2

[x]W

2

[x]; vf(T

2

) = 1 if clock� 5, else 0.

Thus, T

1

and T

2

have the same deadline of 5 time units, and if they commit by that deadline,

their corresponding values accrued are 2 and 1, respectively. Assume that the value function for

the schedule is the sum of the values accrued by the constituent transactions, and that the weight

functions (i.e., the time taken) for each operation is 1. The following schedules start at the clock

value 0.

� Schedule a. vf(a) = 3; a is CSR.

R

1

[y] R

1

[x] W

1

[x] W

1

[y]

R

2

[x] W

2

[x]

� Schedule b. vf(b) = 3; b is CSR.

R

1

[y] R

1

[x] W

1

[x] W

1

[y]

R

2

[x] W

2

[x]

� Schedule c. vf(c) = 1; c is a serial schedule.

R

1

[y] R

1

[x] W

1

[x] W

1

[y]

R

2

[x] W

2

[x]

� Schedule d. vf(d) = 2; d is another serial schedule.

R

1

[y] R

1

[x] W

1

[x] W

1

[y]

R

2

[x] W

2

[x]

� Schedule e. vf(e) = �1; e is logically incorrect.

R

1

[y] R

1

[x] W

1

[x] W

1

[y]

R

2

[x] W

2

[x]

16

the weight function for a particular operation O may di�er in di�erent schedules for the same set

of transactions.

In a similar manner, the real time elapsed between the acknowledgment for an operation O

i

, and

the subsequent submission of an operation O

j

, where O

i

precedes O

j

in a schedule, is measured on

the clock, and is also represented by a weight function. This weight function, denoted by w(O

i

; O

j

)

for a pair of operations O

i

and O

j

such that O

i

< O

j

in a partial order < that represents a

schedule, is a mapping from the set of such pairs of operations in a schedule to the set of positive

real numbers. Again, this weight function may represent the actual or expected time elapsed. In

general, the weights represent the actual elapsed real time for those portions of a schedule that are

already realized, and estimated elapsed times for the portions that have not yet been executed.

Extrapolating from these de�nitions, it is possible to represent the real time elapsed between

the submission (or acknowledgment) of an operation O

i

up to the the same for another operation

O

j

in a schedule, where O

i

< O

j

. Without formally de�ning a function time that maps particular

points in a schedule | where points are also to be understood intuitively | to the clock value

(if the clock is accessed at that point in the schedule), we use it to associate the clock with real

time.

1

Intuitively, time represents the real time at any particular point in the schedule (i.e., its

value is exactly the same as the value for the clock at that point in the schedule). Clearly, the

weight functions represent the di�erence in the values of time for the elapsed time. Of course, the

value for time at a point that precedes another point in a schedule, is at most its value at the latter

point. Finally, we assume the existence of a big bang event at which the clock value, and hence the

value for time, happens to be 0. It is assumed that every operation in a schedule is preceded by

the big bang event. Note that providing all the weight functions (including the ones from the big

bang event to the submission of an operation) is equivalent to providing the time values for each

point in a schedule.

Since a schedule is represented by a partial order, we need to proscribe certain temporally

inconsistent schedules as follows. Since the value of the clock should be unique at any point in

a schedule, we only deal with schedules where the value of time is consistent among any of the

\paths" taken in the schedule from the big bang event, up to the point in question. Thus we only

consider such plausible schedules, and we disregard all others. We refer to schedules with their

weight functions or time values provided as being temporally annotated schedules.

5.2 All Schedules are not Created Equal

Now we are in a position to consider the values assimilated by the execution of transactions in a

schedule. We say that the value accrued by a transaction T in a schedule is obtained by evaluating

1

While it is possible to de�ne these ideas formally, it has been avoided since they can be understood intuitively.

15

defer its execution under certain situations so long as the overall execution appears to have been

one where the transaction to be aborted did not execute. We have exploited this technique further

in [SLKS92], but we do not discuss the implementation issues that arise with respect to handling

immediate aborts and compensations in this paper (see [Sop93]).

It should be noted that the role of abort operations is much greater in time-constrained trans-

action systems. Even if the underlying system can be guaranteed to be failure-free, and all the

transactions guaranteed not to have errors, as long as it is not possible to guarantee execution times,

there may be a need to abort for reasons explained above. The lack of a guarantee on the execution

times is reected in the uncontrolled passage of time represented by the clock. This requirement for

the availability of aborting transactions implies that considerations such as recoverable, cascadeless,

and strict executions, are an inherent part of time-constrained transaction management. We have

examined some issues regarding failures in [SLKS92], and in Sections 6 and 9, we discuss some

issues relevant to the abort operations.

The complementary issue that arises for a transaction execution when its precise execution time

is unknown is that it may complete much earlier than expected. While this may not appear to be

problematic in general, it is quite possible that the early completion creates a negative value in

the associated value function. To handle this problem, the concurrency control module can simply

insert an arti�cial delay in reporting the e�ects of the transaction, and disallowing other operations

from examining the e�ects of the transaction in question. In other words, early completion is indeed

an easily handled issue.

5 O Tempora! O Mores!

In this section, we consider several important issues concerning time-constrained transaction man-

agement. We �rst describe how the time elapsed during an execution, as measured by the clock, is

represented in our model. Subsequently, we di�erentiate the schedules in terms of the values that

they assimilate due to the transactions that occur in them.

5.1 Time Annotations for Executions

We �rst consider the real time elapsed between the submission of an operation to the underlying

system up to the point where it is acknowledged, as measured on the clock by the concurrency

control module. This �nite passage in real time for the execution of an operation is denoted by

a weight function associated with an operation O in a schedule s, is a mapping from the set of

operations in s to the set of positive real numbers.

Note that the weight function may either be the actual elapsed time for an operation within

the realized schedule, or it may be the estimated execution time for the operation. Furthermore,

14

could be regarded as being equivalent to a logically incorrect execution of a transaction | i.e., one

that cannot be permitted under any circumstances. Finally, a constant value function suggests that

the completion time for the corresponding transaction has no signi�cance in terms of its completion

time.

It was mentioned that a value function vf(T

i

) for a transaction T

i

may have parameters other

than the clock value. Thus, the operations of the transaction T

i

may themselves be regarded as a

set of parameters provided to vf(T

i

). In particular, vf(T

i

) evaluates di�erently for the case where

a commit is part of T

i

as compared to the case where an abort is part of T

i

. Thus, we represent the

value assimilated by the committed execution of a transaction in the same way that we represent

a penalty for the aborted execution of the transaction.

4.2 Transaction Commitment

The completion time of a transaction is the value of the clock at the point in real time when the

last operation for the transaction has been acknowledged to have been executed by the underlying

system. In circumstances where the completion is by commitment, and it is delayed (since the

clock has advanced more than was expected), the value function may evaluate to an inordinately

large negative value. In that case, the e�ects of a transaction may need to be undone as though

the execution of that transaction did not occur. Prior to the commitment operation having been

submitted by the concurrency control module, this is generally accomplished by the abort operation

(e.g., see [BHG87]). However, an abort after a commit has been executed creates the anomalous

situation wherein a committed transaction (i.e., the acknowledgment for the commit operation may

have been received by the concurrency control module at that point) needs to be aborted.

The above situation requires an immediate abort to be e�ected as follows. Prior to the sub-

mission of any further operations of the schedule, it is determined whether or not the transaction

needs to be aborted. If the transaction need not be undone, things proceed as usual. Otherwise, a

compensating transaction is invoked which essentially simply undoes the operations just as a simple

abort would do. The di�erence is that the compensating transaction needs to access the commit-

ted values for the data entities that it must change. This also implies that all the accesses to the

database must be e�ected through the concurrency control module alone since some of the database

entities with committed values may actually be undone subsequently. In terms of representation, the

commit of a transaction, followed by an immediate compensation, is simply represented as an abort

operation (e.g., see [KLS90]). This is acceptable since the abort operation itself may be regarded

as a small process which accesses the shadow pages etc. to undo the e�ects of the transaction. The

di�erence here is that the commit operation, followed by the compensation, together constitute

the abort operation. Note that the use of a compensating transaction means that we can actually

13

are investigated in other research (e.g., see [C

+

89]). However, for the important consideration of

crises resolution, we examined some relevant issues in [KSS90].

4 Value Systems and Last Rites

In this section, we consider how transaction executions are concluded, and we examine speci�c

issues that arise in that regard. First, note that while the clock is regarded as a special data

entity, we do not permit the output predicate of a transaction to mention it. This is to prevent the

possibility of an isolated execution of a transaction resulting in a state that does not satisfy the

output predicate. Such a possibility exists as a consequence of the uncontrollable passage of time.

However, it is necessary in many situations to ensure that a transaction is allowed to complete at

a point in real time that satis�es some relationship to the clock value. For example, a transaction

that activates an external physical device that should begin some task at a particular point in real

time, has such constraints.

As a second consideration, certain transactions need to be regarded as being more important or

crucial as compared to the others. For example, the transactions resolving a contingency criterion

may be regarded as being more important than the others. In order to schedule such transactions

with consideration given to their importance, there is a need to represent such relationships among

the transactions explicitly.

4.1 Value Functions

To address both issues that were raised above, we describe the notion of a value function for

a transaction in a manner similar to that examined in the research literature (e.g., see [JLT85,

AGM88]). Such a function is associated with the real time at which a transaction completes its

execution. While it may have several other parameters, one that concerns us is the temporal

parameter, and the value obtained from the execution of a transaction is the value of the function

parameterized by the value of the clock at the time that the execution is completed.

The value function for a transaction T

i

, denoted by vf(T

i

), is a mapping from real time (i.e.,

the clock), among other possible parameters, to the set of real numbers. The values assimilated by

the execution of di�erent transactions may di�er, and that permits the delineation of transactions

in the order of their importance in a quantitative manner. Value functions are derived from the

applications at hand, and several typical functions have been suggested (e.g., see [JLT85]).

It should be clear that several well-known temporal constraints on the completion times of a

process may be represented as suitable value functions. For example, a deadline constraint may be

represented as a suitably designed value function in the form of a constant function that abruptly

drops (possibly to a negative value) at the deadline. Moreover, an in�nitely negative value function

12

Suppose that the temperature in a nuclear reactor is measured and written to a data entity d

in the database. A contingency constraint may be stated as d � 1000 to represent a constraint

that the temperature should never exceed 1000 degrees. Furthermore, a deadline value of 100 time

units may be associated with the constraint to represent that the \dangerous" temperature must

be dealt with in a period not exceeding 100 time units from the time that the crisis was detected.

Hence, a transaction invoked as a result of a violation of the constraint must complete execution

within 100 time units.

Note that contingency constraints are trigger constraints which do not mention the clock, and

furthermore, have an additional associated real time deadline constraint. This permits their use

in situations where certain transactions need to be triggered and executed within a particular

interval of time. Consider the example of airspace tra�c control adapted from [LJJL92] in which

an airplane moves from an airspace A to an adjacent airspace B. Since di�erent air tra�c controllers

are responsible for each airspace, it is required that the aircraft be outside the control of both the

controllers for no more than 500 milliseconds. Moreover, at most a single controller at a time is

permitted to have control over the aircraft. The data entity O

a

indicates whether the control of the

aircraft is with airspace A or not depending on whether the value of O

a

is 1 or 0 | and similarly

for O

b

and airspace B. Clearly, a contingency constraint such as O

a

+O

b

= 1 may be de�ned with

the associated temporal deadline of 500 milliseconds.

The example suggests three transactions as follows. Transaction T

1

updates the values of O

a

and O

b

to indicate the changeover of control between the airspaces. Transactions T

2

and T

3

simply

read the data entity O

a

and update the displays for their respective controllers in case the aircraft

happens to be within the jurisdiction of that airspace.

T

1

: W

1

(O

a

) W

1

(O

b

)

T

2

: R

2

(O

a

) W

2

(display

a

)

T

3

: R

3

(O

b

) W

3

(display

b

)

Note that while any interleaved execution of the above transactions is serializable, unless the tem-

poral constraint is also obeyed, the safety requirement of uncontrolled ight for less than 500

milliseconds would be violated.

Assuming that the contingency constraint violation imposes the 500 milliseconds deadline on

transaction T

1

, and that the deadline is obeyed, it happens to be the case that any serializable

execution where the two operations of T

1

are separated in real time by 500 milliseconds, is safe.

Note that in this example, we happen to have a situation where the transaction that reinstates the

constraint is the same as the one that violates it | something that need not be true in general.

In general, we deal with transactions after they have been invoked. That is, we are not concerned

with the actual mechanisms or issues involving the triggering of the transactions; triggering issues

11

so that the uncontrolled passage of time does not cause the database to become inconsistent. Thus,

in time-constrained environments, we have an additional set of constraints that are similar to

the database integrity constraints | however, these constraints are useful for triggering certain

transactions, and they are liable to become invalid from time-to-time as explained below. Also, in

most instances, these constraints are stated explicitly at least at the design stage for an application.

Assuming that a trigger constraint is stated in a form such that its violation results in the

invocation of a transaction, the resulting transaction execution is expected to restore the database

state to one that satis�es the trigger constraint. Any transaction that may a�ect a trigger constraint

may be regarded as checking the validity of the constraint as well. However, since the clock is not

a�ected by any transaction, triggering mechanisms for constraints that mention the clock have

to be di�erent. Note that such constraints are likely to result in situations where the associated

transactions are periodically triggered.

Consider the relationship timestamp(d) + c � clock to be a trigger constraint. It may be

regarded as representing the requirement that a transaction that updates the value of the entity d

every c units of real time, be invoked periodically with a period of c. Thus, in a situation where

the temperature of a furnace is being monitored every 5 seconds, c may be regarded as 5 seconds, d

may be regarded as the entity that represents the temperature, and the invoked transaction would

be the one that makes a recording of the transducer reading into the database.

Aside from noting that it is possible to state trigger constraints, we shall not direct any further

attention to them except as noted in the next subsection.

3.4 Contingency Constraints

Many time-constrained applications that need the use of transactions are often faced with crisis

situations that need computations that will resolve the crisis quickly (e.g., see [KSS90]). These

crises must be anticipated in advance, and the transactions designed to deal with them should be

triggered automatically. However, the time at which they may occur is not known a priori. We

refer to these special trigger constraints as contingency constraints. The clock is not mentioned in

these constraints, and instead, we associate a temporal deadline within which the constraint needs

to be satis�ed in case it does get violated. The reason for disallowing the clock, in general, is that

unlike typical trigger constraints, contingencies occur with no known periodicity, and no known

relationship to real time. A transaction that is invoked due to a contingency constraint violation is

required to complete execution, and thereby restore the validity of the constraint, within the time

speci�ed by the deadline. We examined such situations in greater detail in [KSS90], and for the

present, we simply provide the following example.

10

currency of data may be accessed either in the input predicate, or at some points in the transaction

programs. A typical example for a temporal currency relationship is as follows.

(timestamp(d

1

) + c

1

� clock) ^ (timestamp(d

2

) + c

2

� clock)

Such a relationship may be used to ensure that the accessed values of the entities d

1

and d

2

(which

may represent the values of stocks, or the temperature in a furnace, etc. in requisite applications),

are not very stale (since c

1

and c

2

are regarded to be suitable constants). In fact, it should be noted

that if such constraints are satis�ed, and they occur within an input predicate, then the associated

transactions happen to have been invoked as required in real time.

3.2 Temporal Coherence

Besides the currency of the accessed data, a transaction may require that the \spread" in the

timestamp() values among the accessed data entities obeys some relationship. This relationship

is often one that ensures that the values accessed represent those that have been generated close

together in real time. This is especially important in situations where multiple alternatives are

accessed. Such a temporal coherence relationship among the data entities is also expressed simply

as a relationship among the timestamp() values. An example for a temporal coherence relationship

is as follows.

jtimestamp(d

1

)� timestamp(d

2

)j � c

Such a relationship may be used to ensure that the accessed values of the entities d

1

and d

2

(which

may represent the values of two di�erent stocks, or the temperature and the pressure in a furnace,

etc. in requisite applications), are within an application-dependent spread of values.

Notice that, in general, the logical constraints, and the two types of temporal constraints de-

scribed above, may not be easily delineated. In fact, they need not be since we regard the clock as

simply another data entity.

3.3 Trigger Constraints

The transactions in a time-constrained environment are often constrained to be invoked at particular

points in real time depending on the state of the database. That is, particular states of the database,

including the state of the clock, may trigger the invocation of a transaction. The inclusion of the

value of the clock in the database state suggests that relationships on the database states may be

de�ned whose violation or satisfaction (depending upon how they are de�ned) should trigger some

transaction. We refer such relationships as trigger constraints. It should be noted that we do not

regard these to be part of the database integrity constraints (e.g., unlike the description in [Ram92])

9

are maintained. Similarly, if T

3

were made to access the value for

i

, the equivalent serial schedule

< T

2

T

3

T

1

> would result. However, a shortcoming of the latter case would be that T

3

would use

old values (which we are not considering at present).

It is not our intention in this paper to study the expressibility of various application-speci�c

requirements, and nor do we detail the requirements of applications aside from the available research

in the literature listed in the references. Instead, we suggest that a general model, such as the NT-

PV model, be used, and our research is useful for in cases where the transactions for the applications

are suitably captured the model.

3 A Brief History of Time

The notion of time plays an important role in our research. For a centralized environment, we

assume the existence of a device available that measures the passage of real time. Furthermore,

we assume that the processes that execute in the system may access the value of time by referring

to a special data entity called the clock. Thus, in a centralized system, the clock is a read-only,

positive, real-valued counter that increases monotonically and atomically, and is accessible to all

processes. Note that since the clock is read-only, it is implied that some process, transparent to the

other processes in the system, increments it. We capture the uncontrollable passage of real time in

this manner.

Since it is a data entity, the clock may be referred to in the input predicate for any transaction.

Similarly, it is permissible to access the clock by reading its value within a transaction as well.

The heretofore uninterpreted attribute, timestamp(d), for an entity d, is to be regarded as the real

timestamp for the entity, and it is regarded as representing the point in real time when the value

of d is valid. That is, timestamp(d) is the value of the clock at which the data entity d has its

\actual" value as regards the environment that the database represents. Note that this is simply

a means to associate the value of the clock with the validity of a data entity, and that validity is

an application-speci�c criterion. Finally, the value of the clock may be used to design the means

to trigger the execution of some transactions that need to be invoked at a particular point in real

time, and under a pre-speci�ed state of the database. Below, we describe several of these important

features.

3.1 Temporal Currency

The data values accessed by a transaction should be \recent" (e.g., see [KM92, SL90, LJJL92]).

To allow us to state this more rigorously, we consider a relationship between the timestamp(d)

attributes of an entity accessed by a transaction, and the value of the clock. We term such a

relationship as one that represents the temporal currency of the accessed data. In general, temporal

8

the consistency constraints of the database (e.g., see [Pap86]). Such a condition is consistent with

the requirement that a transaction executes correctly in isolation. Furthermore, it should be clear

that a transaction may be regarded as a function that maps consistent states of the database to

other consistent states (e.g., see [Pap86, KS88, KLS90]). We use this notion of a transaction in

[SLKS92].

Note that the input predicates are usually derived from the application at hand. Since we use

the criterion of serializability for logical correctness, the particulars of the output predicate are not

crucial since the execution of a transaction in isolation, by de�nition, will ensure it. A condition

that the predicates are required to meet is that they admit tractable evaluation. That is, there

should be an evaluation algorithm that is a polynomial time, in the number of entities mentioned,

to test their satis�ability with the values present in the database.

To illustrate the use of the input predicates, along with alternatives, consider an example

adapted from [LJJL92] for an inertial navigation system in an aircraft. Suppose that the system

provides the aircraft latitude and longitude, � and), respectively, every 59 milliseconds, and these

are written into the database by a transaction T

1

. Also, a radar produces the range and bearing

of a target, � and �, respectively, every 6 seconds, and these are written to the database by a

transaction T

2

. Finally, a sporadically invoked transaction, T

3

, uses these values to compute the

position of the target, pos. Thus, we have the following transactions and their operations.

T

1

: W

1

[�]W

1

[]

T

2

: W

2

[�]W

2

[�]

T

3

: R

3

[�]R

3

[]R

3

[�]R

3

[�]W

3

[pos]

Assume that the recorded values are timestamped, and this timestamp attribute, timestamp(),

is represented by a subscript on the entities when the attribute is signi�cant. Also, let that the

superscripts on the operations represent the time that the corresponding periodic transaction is

invoked. The application is such that a current measurement of the aircraft position is equally good

for the calculation of the target position as a measurement that is 59 milliseconds old. Finally,

assume that the last values written for the target position are good for the calculation. Clearly,

the following schedule would be considered logically incorrect since it is not a serializable schedule.

W

i

1

[�

i

]W

i

1

[

i

]R

3

[�

i

]W

i+59

1

[

i+59

]W

i+59

1

[

i+59

]R

3

[

i+59

]R

3

[�]R

3

[�]W

3

[pos]

However, this situation is alleviated if alternatives are maintained, and an input predicate is

de�ned for transaction T

3

that states a relationship between the accessed entities and alternatives

such as jtimestamp(�)� timestamp()j � 60. Hence, the above schedule may be serializable by

suitably assigning the alternatives that are read. In particular, the above schedule is equivalent

to the serial schedule < T

2

T

1

T

3

> where di�erent alternatives for separate values of timestamp()

7

system. The same module is also responsible for temporal considerations which will be introduced

below. Also, if the invocation of an operation by the concurrency control module occurs after the

reception of an acknowledgment for a previously submitted operation from the underlying system,

then the newly invoked operation is assumed to be executed after the acknowledged operation.

In many cases, all the operations for a transaction T

i

may not be known to the concurrency

control module during the execution of T

i

, and thus, the associated partial order for T

i

that repre-

sents the execution thus far is incomplete in that it does not include all the operations of T

i

. Let

us refer to such partially executed transactions as being incomplete. We �nd it useful to de�ne the

expected completion of an incomplete transaction T

i

by including one of the abort or the commit

operations, and de�ning an expected partial order that agrees with the associated partial order

for the incomplete transaction for all the other operations. An expected completion is said to be

an aborted or a committed expected completion according as the abort or the commit operation

is employed in constructing the completion. Note that the expected completion of an incomplete

transaction e�ectively creates a (complete) transaction.

Since a schedule consists of transaction operations, all the operations in a schedule may not be

known to the concurrency control module at execution time. Thus, we may de�ne an incomplete

schedule as the pre�x of a schedule (i.e., thereby containing an incomplete transaction). Further-

more, an expected completion of an incomplete schedule consists of the the incomplete schedule

augmented by expected completions for each incomplete transaction represented in it. The pre�x

of a schedule that represents operations that are already executed (i.e., their execution is acknowl-

edged by the underlying system at that point in real time) is called a realized schedule. Note that

a realized schedule is, in general, an incomplete schedule.

The NT-PV model [KS88] is adopted to permit the examination of serializable as well as more

liberal correctness criteria within a common framework. The model also helps to explicitly express

certain relationships among the entities that are accessed by the transactions. Such features, from

the NT-PV model, are adopted for some special requirements in a time-constrained environment to

facilitate either more restrictive, or more liberal, classes of correct schedules. Speci�cally, input and

output predicates are de�ned for a transaction that refer to data items within the database (e.g.,

see [KS88]). The input predicate de�nes the conditions under which its associated transaction may

proceed with its execution. If it is not provided, the input predicate is regarded as evaluating to

true. Note that the input predicate may be regarded as being part of the transaction program itself;

whether its evaluation is e�ected by the program or by the modules that control the transaction

executions, is immaterial. The output predicate describes the state in which an isolated execution

of the associated transaction is guaranteed to leave the database if the input predicate of the

transaction were also satis�ed. The input and output predicates of each transaction must satisfy

6

is left unspeci�ed except to state that a transaction preserves the consistency of a database when

executed in isolation | i.e., in the absence of any other concurrently executing transactions (e.g.,

see [Pap86]). Such an execution is regarded as a logically correct execution of a transaction. The

more complex models of transactions (e.g., see [KS88]) may be studied for TCTM in a similar

manner, but they are outside the scope of this paper.

A schedule of transactions, s, is a partial order, <, on the set of operations from the transactions,

and s subsumes each partial order <

i

for a transaction T

i

that is represented in it (e.g., see [Pap86,

BHG87, KS88]). Very often, when a schedule happens to be a total order, it is represented as a

sequence of operations.

We regard the criterion of view serializability (VSR) as the logical correctness criterion for a

schedule for concurrently executing transactions (e.g., see [BHG87, Pap86]). For this correctness

criterion, the e�ect of transaction aborts on a schedule is to restrict the schedule to include only the

unaborted transaction operations (e.g., see [BHG87]). Note that the view serializability criterion is

regarded to be correct primarily for pragmatic reasons; more liberal criteria are certainly possible,

but they are generally more di�cult to state, implement and analyze. An examination of the

bene�ts, if any, of regarding a larger set of schedules as being correct, is deferred to Section 8.

Note that even in situations where non-serializable executions may appear to be acceptable, they

may not be. Consider a Doppler shift based navigational system in an aircraft. Two entities,

velocity and control, are recorded in the database by a transaction T

1

. The latter variable indicates

whether or not the value of the former is accurate (since, under certain situations such as a change

in the direction of the aircraft movement, the recorded value may not be accurate). Suppose

that transaction T

2

reads the values of the two variables, and displays the value of velocity if it is

accurate. Assume that the transactions T

1

and T

2

are invoked periodically to update a display.

This example shows that a serializable schedule of the two transactions, with T

1

preceding T

2

in the

equivalent serial schedule, captures the required behavior. On the other hand, a non-serializable

execution may lead to the incorrect display of an inaccurate value for the velocity.

Exceptions to view serializability may be made in certain carefully considered situations where

serializable schedules are too restrictive, and its requirements are then relaxed (e.g., see [Son88,

KSS90]). However, we focus attention for most part to conict serializability (CSR) as the logical

correctness criterion (e.g., see [BHG87, Pap86]), and such schedules are a proper subset of VSR

schedules. The reasons include the ease of ensuring CSR schedules, the properties of CSR schedules

that make them amenable for use in distributed environments (e.g., see [SSK92]), and the research

results accrued are applicable to more general environments as well.

We assume a model for the software architecture as presented in [BHG87] in that a concurrency

control module responsible for ensuring logically correct schedules exists above the underlying

5

explicitly, the last written alternative will be regarded as being the one to which a reference is

being made. Note that in the standard models (e.g., see [BHG87, Pap86]), only one alternative of

an entity (i.e., the standard alternative | see [KS88, Pap86]) is accessible.

Each entity is permitted to have a set of application-dependent attributes. For example, an

attribute timestamp(d) for an entity d may be regarded as a temporal attribute for the entity d.

Note that the semantics associated with timestamp(d) are entirely application-dependent in that

it may be regarded as the time at which the entity was last updated, or the time at which the

process that created it was initiated, etc. (e.g., see [SL90, LJJL92]). Allowing attributes for the

entities, along with the de�nition of alternatives, facilitates the expression of ideas that are relevant

to TCTM (e.g., it is possible to express a trajectory of the values assigned over time to an entity).

The access of database entities is e�ected by an operation de�ned to be an atomic access of the

database. An operation may be regarded as a function from one database state to another. We are

primarily concerned with the operations read, write, delete, and create of the database entities, and

their semantics are assumed to be well-understood (e.g., see [BHG87, Pap86]). We often abbreviate

read and write to R[: : :] and W [: : :], respectively, where the entities accessed are mentioned in the

square brackets. Since a method used on an object in object-oriented systems is also an atomic

execution, the term \method" is subsumed in the de�nition of an operation. Also, the special

operations for commit and abort are of interest in our discussions, and their semantics are assumed

to be known to the reader (e.g., see [KLS90, BHG87, Pap86]). Thus, while the meaning of an abort

operation may vary with the particular application or model at hand (e.g., see [KLS90, LJJL92]), its

essential characteristic is to undo the e�ects of a partially ordered set of operations that is expected

to execute atomically. Similarly, the commit operation is used to con�rm the atomic execution of

a partially ordered set of operations.

A transaction, T

i

, is a partial order, <

i

, on a �nite set of operations that is guaranteed to

execute in a logically correct manner, as described below, when executed in isolation (e.g., see

[Pap86, BHG87, KS88]). The partial order is generated by the program from which these operations

emanate, and we are not concerned with these transaction programs per se | unless otherwise

indicated. Exactly one of the abort or the commit operation is part of a transaction T

i

, and all

the other operations in T

i

precede it in <

i

. Note that we do not include the abort or the commit

operation for a transaction in some discussions in the paper because we are often interested in the

transaction executions without regard to their �nal outcome. The atomic execution of a transaction

must be provided by the concurrency control with which we are primarily concerned in the following

discussions (e.g., see [BHG87]).

A transaction is also the unit for the consistent access of the database, and a units of recovery

in case of failure (e.g., see [BHG87, KS88, Pap86]). The precise meaning of a consistent access

4

these techniques. The research in [SRL88] proposes concurrency control techniques for distributed

real-time systems based on a partitioning of data, while the studies in [PR88] discuss the speci�c

time-dependent application of stock-market trading.

Thus, most previous work on TCTM assumes a set of transactions and associated temporal

deadlines, and hence, ad hoc heuristics are studied from a performance evaluation standpoint.

These studies are useful to the extent that with realistic workloads, they do provide a measure of

the utility of the heuristics adopted. However, they do not provide a basis for TCTM.

Our model for transaction-processing is based on extensions to established models, and we

briey outline how logical and temporal constraints may be expressed in it. For scheduling the

transactions, we study how legal schedules di�er from one another in terms of meeting the temporal

constraints. Existing scheduling mechanisms do not di�erentiate among legal schedules, and are

thereby de�cient with regard to meeting temporal constraints. This provides the basis for seeking

scheduling strategies that attempt to meet the temporal constraints while continuing to produce

legal schedules.

For the centralized scheduling of transactions, we examine the feasibility of achieving optimal

results in terms of meeting the logical and temporal constraints. In most cases, this is shown to

be intractable using results from extant studies in scheduling. Hence, we describe the means to

achieve good results based on existing heuristics. Also, since the execution time estimates that are

used in such studies are prone to be undependable, the issue of dealing with timing uncertainties

in the context of scheduling is addressed.

2 A Natural Selection

In this section, we describe a framework which serves as a basis for presenting our results for

time-constrained transaction scheduling in a centralized environment. Note that we have chosen to

adapt well-established models for our needs.

The database is a set of data entities. The database is persistent in that the data may have

lifetimes greater than the processes that access them. Entities within the database may be created,

read, modi�ed, and deleted, with suitable access mechanisms described below. An entity may be

very simple, or quite complex; its characteristic feature is that it is always accessed atomically (i.e.,

as a whole).

Each entity is identi�ed by a name, and has associated with it a value from some domain. The

state of a database is a mapping of the entity names to their corresponding values. While each entity

is permitted to have more than one version, we simply regard the di�erent versions of an entity

as separate entities in their own right, and hence, we refer to a version as an alternative. Thus,

the alternatives are expected to be managed by the applications themselves. When not speci�ed

3

1 Introduction

Transaction processing is an established technique for the concurrent and fault-tolerant access of

persistent data. While this technique has been successful in standard database systems, factors

such as time-critical applications, emerging technologies, and a re-examination of existing systems

suggest that the performance, functionality and applicability of transactions may be substantially

enhanced if temporal considerations are taken into account. That is, transactions should not only

execute in a \legal" (i.e., logically correct) manner, but they should meet certain constraints with

regard to their invocation and completion times. These logical and temporal constraints, typically,

are application-dependent, and our research addresses some fundamental issues for the management

of transactions in the presence of such constraints. We refer to this area of study as time-constrained

transaction management (TCTM).

Transaction processing in database systems does not explicitly address the question of meeting

any time constraints. However, performance enhancement techniques, such as query optimization

and concurrency control, are implicitly geared to reducing the time taken by transactions that

access the database. In contrast, the area of real-time systems, which is closely related to TCTM,

has the handling of temporal considerations as a primary goal. Such systems �nd �nds applications

in process-control, and often require a large database of information. Hence, recent e�orts have

aimed at integrating real-time systems with transaction processing to facilitate the e�cient and

correct management of the resulting TCTM systems (e.g., see [Son88]). Also, there are several

examples where explicit temporal considerations are necessary on the transactions that access a

database system (e.g., see [Son88, KSS90]). In this paper, we describe several situations from

TCTM environments that serve as speci�c examples.

There are di�culties in accomplishing the integration of transaction processing and time-

constrained scheduling techniques. First, it is not clear how the scheduling of transactions, whose

aim is to produce correct schedules, may be integrated with time-constrained scheduling, which

aims to meet temporal constraints. Second, the execution of a transaction operation (read or

write) takes a highly variable amount of time depending on whether disk I/O, logging, etc. are

required | which is not the case for tasks in a time-constrained scheduling situation. Also, if con-

current transactions are allowed, the concurrency control, to ensure correctness, may cause aborts

or delays of indeterminate length.

There has been extensive study of real-time systems [Sta88]. Formal aspects of such systems

have been examined from the standpoints of scheduling (e.g., [HMR

+

89]) and veri�cation [JM86].

In the context of real-time databases, [AGM88, AGM89] consider alternative queuing disciplines

with lock-based concurrency control of real-time transactions, and use simulation results to compare

2

Time-Constrained Transaction Scheduling

Nandit Soparkar

1�

Henry F. Korth

2

Avi Silberschatz

1y

1

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712-1188 USA

2

Matsushita Information Technology Laboratory

182 Nassau Street, third oor

Princeton, NJ 08542-7072

Abstract

Time-constrained transaction management incorporates temporal considerations into the trans-

action and scheduling model. In such a model, transactions are expected to meet certain time

constraints with respect to their invocation and execution times. Most existing research deals

with the performance evaluation aspect of deadline-based transaction executions using ad hoc

heuristics. This paper presents a model on which to base the scheduling and correctness crite-

ria for time-constrained transaction management in a centralized computing environment. Our

model permits a rigorous study of the scheduling problems that arise when temporal factors are

explicitly taken into account. We present some of our research results for scheduling, and discuss

several relevant issues regarding the domain of time-constrained transaction management.

�

Work supported by an IBM Graduate Fellowship.

y

Work partially supported by NSF grants IRI-9003341 and IRI-9106450, by the Texas Advanced Technology

Program under Grant No. ATP-024, and by grants from the IBM corporation and the H-P corporation.

1

TIME-CONSTRAINED TRANSACTION

SCHEDULING

Nandit Soparkar

Henry F. Korth

Avi Silberschatz

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712-1188

TR-92-46 December 1992

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

austin, texas 78712

