
An Analytical Taxonomy of Naming SystemsBryan Bayerdor�erDepartment of Computer SciencesUniversity of Texas at AustinTR-92-48 December, 1992AbstractA naming system consists of the mechanisms that govern the de�nition, binding, and access to thenames upon which communication among active objects in a parallel or distributed system depends. Aconcurrent algorithm may require certain patterns of communication among objects. Naming systemsdi�er signi�cantly in the patterns of communication that they support, and this diversity suggests theexistence of e�ciency tradeo�s and specialization among the various approaches. To enable the impactof these di�erences upon the structure of concurrent computations to be examined systematically, wepresent a taxonomy of naming systems that isolates a small set of fundamental naming system properties,and ranks naming systems in (partial) order of the expressiveness they derive from their properties. Wecompare the properties of the naming systems that underlie several representative concurrent program-ming systems, and give examples of algorithms that require speci�c naming system properties.Keywords: classi�cation, communication properties, concurrent programming, expressiveness, namingsystems.

1 IntroductionAn important component of any parallel or distributed system is the naming system that underlies communi-cation among active objects. A naming system consists of the mechanisms that de�ne names and make themaccessible to objects, bind names to objects, and resolve name references during execution. These mecha-nisms are incorporated into concurrent programming languages as well as runtime environments. Certainfundamental properties of naming systems a�ect the structure of computations that may be expressed inconcurrent programs by enabling or prohibiting speci�c patterns of communication among objects. Becausenaming systems di�er signi�cantly in their properties, a thorough understanding of naming systems is usefulto both the designers and users of parallel and distributed systems. However, unlike other important ele-ments of such systems|e.g. synchronization, resource allocation, or scheduling|naming systems have notbeen widely studied as an independent problem domain. In particular, the lack of a precise understanding ofthe role of binding and name access (modi�cation of the set of names known to an object) in communicationcontributes to the di�culty of concurrent programming.1.1 Role of Naming Systems in CommunicationA concurrent computation consists of a set of active, communicating objects. An object is a process, task,or similar entity. In order for object A to successfully initiate a communication with object B, there mustexist a name that is known to A and bound to B. A name is a symbol that either directly points to anactive object, or denotes a passive point of interaction among objects, such as a channel, port, mailbox, orshared variable. Irrespective of the mechanism, a communication occurs from a source object to a destinationobject, over a name. The relationship between the name and the destination object is called a binding. It isthe function of the naming system to establish the necessary bindings and to control which names are knownto a given object.Beyond the fundamental role of names and bindings in distinguishing objects from one another there isgreat variety in the ways that names and bindings are established and manipulated. Naming systems di�er,for example, in the number of bindings in which one name may simultaneously appear, or in whether theset of bindings may be modi�ed during execution. This diversity suggests the existence of tradeo�s andspecialization among the various approaches. It also leads one to search for a unifying framework withinwhich the tradeo�s and design choices can be systematically evaluated.A concurrent algorithmmay require certain patterns of communication among objects. We have identi�edseveral fundamental properties of naming systems that determine their ability to express such patterns. Forexample, a naming system may allow a single name to be bound to a set of objects to enable broadcasting,or may allow each name to be used by at most one object (e.g. exclusive access to a channel). Consequently,for a given algorithm speci�cation there may exist a straightforward implementation under one namingsystem, while the same algorithmmay be awkward or ine�cient to implement under another naming system.Constraints on the form of the implementation (e.g. \clients may not poll servers") may preclude theexistence of a solution altogether. The taxonomy that we de�ne in this paper ranks naming systems in(partial) order of the expressiveness they derive from their properties.1.2 A Preliminary Example: Resource TrackingConsider a system in which a set of resources is shared among several objects that communicate via messagepassing. Each resource is of a speci�c type, and there exists exactly one instance of each type. A resource isowned by one object at a time and can only be accessed by its owner. At any time, an object may relinquishits ownership of a resource in response to a request from another object, which then becomes the new ownerof the resource. Periodically, an object must acquire several resources in order to perform some operation.It sends requests to the current owners of the needed resources and then waits for these to relinquish theresources before it can proceed. Aside from the possibility of deadlock, the fundamental problem encounteredin implementing such a system is that of locating the current owner of a resource to whom a request is tobe issued.Suppose that we wish to solve this problem without using a central coordinator that keeps track of theownership of the resources. If the communication primitive used is, e.g. send(name, message), then the1

most natural solution is one in which an object simply executes send(\owns resource R", request) wheneverit requires resource R. However, such a solution assumes that the name \owns resource R" is in fact boundto the correct object, and that it is rebound whenever the ownership of R changes. The ability to rebind aname during execution is a property of the naming system called dynamic binding, which we de�ne formallyin section 2.3.1. Without this property, the objects must execute some more complex and less e�cientprotocol, either sending every request to all objects, or forwarding a request along a chain of previous ownersof the requested resource. In section 3.6 we discuss two naming systems that di�er from most in that theyallow dynamic binding.A simple generalization of the resource tracking problem is to allow multiple instances of each type ofresource. In this case, it su�ces for an object to acquire any one instance of a resource type, but the requestshould still be delivered to all objects that hold an instance of the requested type. To support this, thenaming system should thus allow the name \owns resource R" to be bound to the set of objects that holdan instance of R. This is the 1{N multiplicity property, de�ned in section 2.3.3.1.3 Impact of Naming SystemsIt will become apparent that the de�nitions of names and bindings used here are quite broad. The conceptof a name encompasses such familiar items as process identi�ers and entries, but also includes such thingsas unbound variables in parallel logic languages and the data values satisfying the condition of a selectiveaccept statement in Concurrent C[11]. Similarly, a binding may be reected by the association of a constantvalue with an object (e.g. the static naming of processes in CSP), by explicitly storing a name in somenaming data structure (e.g. opening a port), or it may be implicit in the state of an object (e.g. executingselective accept with a particular expression). An important step in identifying the properties of a namingsystem is to determine how names and bindings are represented under that naming system. We give severalexamples of this procedure in section 3.Several signi�cant characteristics of concurrent systems are inuenced by properties of the underlyingnaming system. Among these are:� Blocking and queueing of communications: In initiating a communication, reference to a name that isnot bound to any object may cause the communication to block or be queued until the name is bound.� Modularity: Independent speci�cation of the shared components of a system (e.g. servers) requiresthat they be accessed (e.g. by clients) using shared names.� Dynamic structures: To allow creation of new communicating objects during a computation, namingsystems must enable objects to learn new names (i.e. names of objects created on the y), or mustpermit existing names to be dynamically bound to new objects.� Abstraction: Typical communication primitives specify one-to-one communication among directly-named objects. By allowing objects to be referenced through indirect names, and allowing names tobe bound to sets of objects, communication may be speci�ed at a higher level of abstraction.1.4 Syntax vs. SemanticsA naming system consists of two complementary sets of mechanisms: those that establish bindings of namesto objects, and those that subsequently make use of these bindings to resolve name references. Comerand Peterson have observed that name resolution is a strictly syntactic process[6], and that all semanticinformation (i.e. the meaning of a name with respect to a particular concurrent computation) resides in thebindings of names to objects. A name is given a meaning by binding it to an object (or set of objects), andthat meaning is independent of the method by which references to that name are later resolved. An analogywith compilers serves to illustrate the relationship between binding and resolution: Compilation of a programrequires a language de�nition step, which assigns operations to syntactic constructs, and a translation step,which takes a given syntactic construct and generates the corresponding operations. Resolution is to bindingas translation is to language de�nition. 2

1.5 OverviewTypically, the inuence of communication mechanisms (and hence naming systems) on the structure ofconcurrent computations has been examined in an ad hoc manner. It has been shown, for example, thatlimitations of the Ada[8] rendezvous mechanism (which relies on a comparitively restrictive naming system)lead to programs that poll[12], and that the requirement that communicating processes in CSP[17] nameeach other precludes certain desirable communication patterns. Improvements have been suggested for bothlanguages. Such analyses, while useful, have two shortcomings: they lack generality because they are statedin terms of the syntax and semantics of the particular language or system in question, and they do not clearlydistinguish the roles of names and bindings, even though these are often critical. Therefore the results donot extend in an obvious way to other concurrent systems.The taxonomy enables a more systematic analysis of naming systems and their impact upon the struc-ture of computations by de�ning a set of naming system properties that are independent of any particularconcurrent programming language or system. Once a particular subset of these properties have been shownto hold for a naming system, it becomes possible to determine whether the naming system permits thecommunication patterns necessary for the solution of a given problem. Instead of attempting to implementthe solution, it is only necessary to determine at a high level the naming system properties required by theproblem.1.5.1 Structure of the TaxonomyThe naming system properties are de�ned using a model of concurrency that di�ers from conventionalmodels in two ways. First, it distinguishes exactly that part of the state of a computation that enables usto determine the bindings and known names that exist at any point in the computation. Second, it speci�esfor each communication in a computation the name(s) used in carrying out that communication.We capture the relationship between names, bindings, and communication by augmenting the standardpartial-order model of concurrency[21] with information about the state of the naming system, as follows: Acomputation is a partial order of events interconnected by explicitly represented communications. Each eventis the execution of an action by an object. The events are annotated with the names known to and boundto the object at which the event occurs. Communications are triples containing the source and destinationevents, and the name over which the communication occurs. The only signi�cant characteristics of eventsare their annotations, their positions in the partial order that constitutes a computation, and whether theyparticipate in a communication.Each naming system property is a predicate in �rst-order logic that describes the structure of thesecomputations. A naming system is said to have a given property i� the computations it permits satisfy thepredicate. An ordering of the properties into six orthogonal pairs de�nes a lattice-structured hierarchy ofcategories, which ranks naming systems according to their expressiveness. A category is a combination ofproperties, and a naming system is a member of a category i� it has all of the corresponding properties.1.5.2 Characteristics of the TaxonomyTo summarize: The model of concurrency, properties, and hierarchy together form a taxonomy of namingsystems with the following characteristics.� Speci�cation of communication semantics of naming systems: Work on naming in concurrent systemshas focused on resolution, the syntactic aspect of naming[6, 9, 20, 22]. The taxonomy identi�es thosesemantic properties that are signi�cant in the speci�cation of communication, which have receivedlittle previous systematic study.� Separation of concerns: Naming systems are examined in isolation both from other characteristics ofconcurrent systems and from the implementation details of naming system properties.� Utility: The hierarchy enables systematic evaluation of the relative expressiveness of naming systems.This includes the selection or design of a naming system for a particular problem domain, comparisonof di�erent implementations of equivalent naming systems, or checking the tractability of a problemunder a given naming system prior to implementing a solution.3

� Coverage: The taxonomy covers the naming system properties underlying variety of communicationmodels, including message-passing systems, shared data structures, rendezvous, dataow, and single-assignment variables (e.g. in parallel logic languages). Often models that di�er substantially in otherrespects have many naming system properties in common.The rest of this paper is organized as follows: In section 2, we give de�nitions for the properties andthe hierarchy. Section 3 traces a path through the hierarchy that illustrates the correspondence betweensuccessively more expressive naming system properties and increasingly general communicationmechanisms,which parallels the evolution of concurrent systems from CSP to Ada, Concurrent C, and Linda.2 De�nitions2.1 Model of ConcurrencyA computation is a a partially ordered multiset, or pomset[15], of events, together with a multiset of com-munications. A pomset is a set in which an element may occur more than once, together with an orderingrelation. The relation is de�ned on the distinct occurrences of the elements of the pomset. That is, onecan think of the individual occurrences of a particular element as being indexed so that they can be distin-guished. Similarly, the equality relation, =, only holds reexively for each occurrence of an element|twodistinct occurrences of the same element are not considered to be equal.2.1.1 Objects and their BehaviorsThe objects in a computation are the \communicating entities" that comprise a concurrent system. Examplesof objects are CSP processes, Ada tasks, and clause evaluations in parallel logic languages. A behavior ofan object is a linear sequence of events (i.e. an execution thread), where each event is an occurrence of anaction. For each object there exists a program, which speci�es a �nite set of possible actions, and a (possiblyin�nite) set of possible behaviors of the object. Actions are not distinguished by the values of any variablesto which they refer. In each computation, an object exhibits exactly one of its behaviors.2.1.2 NamesA name is a tuple containing the identi�ers that specify the destination of a communication. Often the onlysuch identi�er is one that appears in the action that initiates a communication; e.g. send(P , msg) to senda message to receiver P . In this case there is a 1{1 correspondence between identi�ers and messages. Somenaming systems use multiple identi�ers to specify a communication. In CSP, for example, the sender andreceiver of a message identify each other, as well as type of the message to be transmitted (see section 3.2).2.1.3 Characteristics of EventsAn event is distinguished from others by exactly four attributes: the object at which it occurs, its binding,and domain (see section 2.1.5), and its position in the partial order of events in the computation.De�nition: The set of events is E = O � D � B, where O is the set of all objects, and D and B are the setof all domains and the set of all bindings, respectively. 2Notation: We denote the components of an event e as e:o (object), e:d (domain), and e:b (binding) 2Events are the \endpoints" of communications among objects, i.e., each event may be the source ordestination of one or more communications. We needn't represent every underlying execution of an actionwith a corresponding event. The only interesting events are those that participate in communications, orthose at which the state of the naming system changes (i.e. the set of names known to or bound to an objectis modi�ed). 4

2.1.4 CommunicationsA communication is a (source event, name, destination event) triple. The name that appears in the com-munication is an element of both the domain of the source event and the binding of the destination event,indicating that the name is known at the object at which the source event occurs, and is bound to the objectat which the destination event occurs. The source and destination events of a communication are temporallyordered such that the source event precedes the destination event. Examples of source/destination eventpairs are sending/receiving a message, writing/reading a shared variable, or invoking/accepting a remoteprocedure call.De�nition: The set of communications is C = E �N � E . 2Notation: We denote the components of a communication, c, as c:s (source), c:n (name), and c:r (destina-tion). 22.1.5 Domains and BindingsGeneralizing from the the de�nitions in [6], a resolution mechanism is a function, R(n;C) whose argumentsare n, a name, and C, a context. A context is a function from names to sets of objects, de�ned by a set oftuples. Each such tuple is a binding, i.e. (name, fset of objectsg). The function R returns the set of objectsto which n is bound within context C.States and Mechanisms A context is a component of the state of the naming system. The resolu-tion function reads, but does not modify, this state. It is possible to de�ne analogous functions for thosemechanisms that do modify the state of the naming system.The mechanism responsible for modifying contexts is the binding mechanism: B(n;C;O), where n is aname, C a context, and O a set of objects. This function binds n to the set of objects O in context C, andpossibly unbinds n from other objects. That is, it replaces (n;X) in C with (n;O), where X is the previousset of objects to which n was bound.The naming system state consists not only of one or more contexts, but also of the set of names knownto each object. The corresponding function that modi�es this component of the state is A(o;K;N), where ois an object, N is a set of names, and K is a function from objects to sets of names, representing the namesknown by a given object, and de�ned as a set of tuples, (object, fset of namesg). The function A replaces(o; Y) with (o;N) in K, where Y is the previous set of names known to object o.Since resolution is outside the scope of, and orthogonal to, our model of concurrency, we assume thatresolution always succeeds, and therefore does not a�ect the structure of computations that may be expressedunder a given naming system. Consequently, a simpli�cation that we can make immediately is to assume asingle universal context, C (i.e. a global namespace). Without loss of generality, we can also assume thatthere exists a single space, K, for known names.Annotation of Computations The state of the naming system, (C;K), at any point is the result ofapplying the binding and resolution functions in some �nite sequence, and starting from some initial state.However, our model of concurrency is based upon partial orders of events, rather than on a state-transitionmodel, because this enables a much simpler de�nition of the concept of a communication, which is centralto the subsequent de�nitions of naming system properties. To capture information about the state of thenaming system, each event in a computation is annotated with the appropriate elements of C and K.There are two annotations for each event, called the domain and binding of the event, whose elementscorrespond to elements of the known-names function, K and the context, C, respectively.De�nition: The domain (binding) of an event is the set of names known (bound) to the object at whichthe event occurs, at the occurrence of the event. 2Domain of an Event An object \knows" a name at a point in its behavior i� it could originate acommunication over the name, were it free to execute any of its actions at that point. Let T be the �nite set5

of actions that an object can execute, and let e0 : : : ei�1ei be an initial subsequence of a possible behaviorof the object. Let event x be an occurrence of an action from T . For all such events x, if the namingsystem allows a computation in which the behavior e0 : : : ei�1x appears (i.e. x is substituted for e), and thatcomputation contains a communication (x; n; y), then the name n is in the domain of ei.Note that e0 : : : ei�1x is not necessarily a possible behavior of the object, since an object is not alwaysfree to execute any of its actions. However, it indicates a set of names that is accessible to the object at thepoint at which event ei occurs.Binding of an Event Where the domain of an event describes the maximal set of communications thatmay originate at the point in the behavior at which the event occurs, the binding of an event describes themaximal set of communications that may terminate at the point in the behavior at which the event occurs.A name may be known at a point in a behavior at which it is not possible for the object to use the name.However, a name is bound to an object exactly when it is possible for a communication to terminate at thatevent. In de�ning the binding of an event, we can therefore con�ne our attention to the possible behaviorsof an object:Let e0 : : : eix and e0 : : : eiy be initial pre�xes of possible behaviors of an object that are identical exceptfor their last event (x di�ers from y). If the naming system allows a computation containing e0 : : : eiy, andthat computation contains a communication (z; n; y), then n is in the binding of x. That is, if the object iscapable of receiving a communication over the name n at the point in its behavior where x occurs, then nis bound to the object at x.Correspondence There is a direct correspondence between the domains and bindings of certain sets ofevents and the global state of the naming system. Consider taking a \snapshot" or \consistent cut"[5], of acomputation. This cut, s, constitutes a globally consistent state. The context that exists at s is simply theunion of the binding annotations of the events that immediately precede the cut. Similarly, the set of knownnames that exists at s is the union of all the domain annotations of the events that immediately precede thecut.The domain of an event is determined by the semantics of the actions by which identi�ers are created,destroyed, and propagated among objects. For example, where identi�ers are treated as data items, a namemay be added to the domains of subsequent events by receiving a message containing the name. Conversely,a protection scheme may cause a name to be removed from the domains of subsequent events by revokingaccess rights to the name.The binding of an event is determined by the semantics of the actions by which identi�ers are bound(explicitly or implicitly) to objects. Examples of actions that cause bindings to be modi�ed are attaching amessage port to a process, executing a read operation on a channel, or instantiating a new unbound variablein a parallel logic language.2.1.6 ComputationsDe�nition: (precedes, 7!) Let e and f be two events. The relation e 7! f indicates that e necessarilyprecedes f in time[19]. 7! is transitive, antisymmetric, and irreexive. 2De�nition: Two events, e; f are concurrent i� :((e 7! f) _ (f 7! e)) 2De�nition: A computation, , is a pair (�;�), where � is a pomset (he; ::: 2 Ei; 7!), and � is a multiset ofcommunications, hcj(c 2 C) ^ (c:s 2 �) ^ (c:r 2 �)i such that:8(s; n; r) 2 � :: s 7! r^ 8e; f 2 � :: e:o = f:o =) (e 7! f) _ (f 7! e)^ 8e; f 2 � :: (e:o 6= f:o) ^ (e 7! f) =) 9(x; n; y) 2 � :: (x = e _ e 7! x) ^ (y = f _ y 7! f) 2There are only two universal constraints on the structure of a computation: �rst, the source event ofa communication always precedes the corresponding destination event and second, there is a total order-ing of events at every object. In addition, two non-collocated events are ordered only where there exists6

Figure 1: A computation(transitively) a communication between the two events. Naming systems are di�erentiated according to theadditional constraints they impose upon computations.Figure 1 shows a possible computation with three objects. The computation contains two communica-tions: (e; n; f) (from object P to object Q) and (g;m; h) (from object R to object Q). Name n is in thedomain of event e and the binding of event f . Name m is in the domain of event g and the binding of eventh.2.2 Naming SystemsDe�nition: A naming system is a speci�cation of the allowable domains, bindings, communications, andorder of events of computations. For each naming system, a, there exists a maximal computation set �a, theset of all computations speci�able under a. 2If a naming system admits the existence of particular domains, bindings, or communication patterns, theneach of these will exist in at least one of the computations in its maximal computation set. Therefore, thenaming system properties de�ned below characterize naming systems by stating the existence or nonexistenceof such computations in a maximal computation set.2.3 Properties of Naming SystemsThere are six orthogonal characteristics of naming systems: Mutability of bindings at runtime, name access(ability of objects to learn new names during execution), binding of names to sets of objects, shared access tonames, \descriptive" names, and binding of multiple names to an object. Each naming system property is astatement of the presence or absence of one of these characteristics in the set of all computations that may bespeci�ed under a given naming system. These properties meet the following criteria: None of the propertiesholds for every naming system; therefore, the properties reect design decisions made in the developmentof the naming system. Each property may be necessary to, or may preclude the existence of solutions tocertain classes of problems; therefore, the properties are relevant to the selection of a naming system thatis appropriate for the solution of a given problem. Finally, the de�nition of a naming system property doesnot specify how the property is to be implemented.In the de�nitions below, quanti�cation is over the elements of a maximal computation set, �. For thesake of brevity, we use the following shorthand: 7

Notation:\9 event e" means 9e 2 � 2 2 �\9 behavior b" means 9b 2 2 �\9 communication c" means 9c 2 � 2 2 �\9 communication set �" means 9� 2 2 �\9 name n" means 9(e; n; f) 2 � 2 2 � 2The de�nitions of the properties also refer to the following auxiliary function:De�nition: �(n; e;�) = foj((e; n; f) 2 �) ^ (f:o = o)g 2The function �(n; e;�) denotes the set of objects at which the destination event(s) occur for thosecommunications in � that have source event e and name n in common.2.3.1 Mutability of BindingsA naming system that provides a mechanism for altering bindings at runtime is said to have the dynamicbinding property. The dynamic binding property provides the abstraction of indirect naming, which iscomparable to the abstraction provided by pointers. This property is required where a name (e.g. a \service")must remain constant while the object to which it is bound (e.g. the server that implements the service) variesduring the computation. While many naming systems allow dynamic binding, there are some signi�cantexceptions. CSP and languages based upon it explicitly eschew dynamic binding in favor of statically-namedprocesses (static binding), as does Ada (in which names used in communication are a concatenation of task IDand entry ID). Dynamic binding is typically achieved by associating a �xed port or mailbox with successiveobjects, or by making use of some shared data conduit, such as a channel, which is accessible to multipleobjects.De�nition: Dynamic binding (B):9 events e; f , communication set �, and name n :: (e 6= f) ^ (�(n; e;�) 6= �(n; f;�)) 2De�nition: Static binding (b): :B 22.3.2 Name AccessThe properties dynamic domain and static domain characterize the ability of objects to learn new namesduring a computation. Where the dynamic domain property holds, names are typically treated as ordinarydata values that may be passed from object to object during execution, and appear as arguments in commu-nication primitives. Thus the set of objects with which a given object is able to communicate may grow asthe computation progresses. This property is required by problems having an inherently dynamic structure,where new objects (and hence new names) are created during a computation. Examples include simulationsof physical processes and data-parallel algorithms where the number of \worker processes" created variesaccording to the size of the workload. Nearly all concurrent programming languages allow names to bemanipulated as data, CSP being a notable exception.De�nition: Dynamic domains (D):9 event f and name n :: (n 2 f:d) ^ 8 events e :: (e:o = f:o) ^ (e 7! f) =) (n 62 e:d) 2De�nition: Static domains (d): :D 22.3.3 Multiply-Bound NamesWhere a name may be simultaneously bound to multiple objects (i.e. sets of objects), the naming system issaid to have the 1{N multiplicity property. The complementary property is 1{1 multiplicity. 1{N multiplicityprovides the abstraction of allowing communication with arbitrary groups of objects (e.g. broadcasting).8

That is, communication over a multiply-bound name is a generalization of communication between exactlytwo objects. This property is required where the size of the set of objects with which it is to communicate istransparent to the originator of the communication. This is common in systems where objects are replicatedfor fault tolerance (group broadcast in ISIS[4] is an example), and group communication is the primarymode of object interaction in several systems, such as BSP[13], broadcast channels[2], and AssociativeBroadcast[3]. In addition, concurrent systems in which objects communicate through shared data structures(e.g. Linda[14]) have the 1{N multiplicity property as well, since multiple objects may read any value writtento such a data structure.De�nition: 1{N multiplicity (M):9 event e, communication set �, and name n :: j�(n; e;�)j > 1 2De�nition: 1{1 multiplicity (m): :M 22.3.4 Multiply-Named ObjectsSome naming systems allow a given object to refer to another object by more than one name. This dual of1{N multiplicity is called the aliased names property. Where every object is known to every other objectby at most one name throughout the computation, the unaliased names property holds. Typically, multiplealiases are required where the name signi�es an action to be performed by the destination object, as inan entry (e.g. Ada), or remote procedure call. Multiple aliases enable a destination object to selectivelyaccept communications from a given source object. Such selectivity is often required to prevent polling (seesection 3.3).De�nition: Aliased names (A):9 communications (e; n; f); (g;m; h) :: e:o = g:o ^ f:o = h:o ^ n 6= m 2De�nition: Unaliased names (a): :A 22.3.5 Name SharingA shared name is one that is accessible by more than one object, i.e., two communications over a singlename may be initiated by distinct objects. Naming systems that permit such behaviors are said to have theshared-name property; if all names are accessible by at most one object then the naming system has theprivate-name property. Shared names are required where an object to which exactly one name is bound isto be the destination of communications from more than one source object, or where names are to be passedas data between objects. While most naming systems permit name sharing, it is sometimes desirable toprevent the nondeterminism that can arise from multiple communications over the same name. The BSMsystem[16], designed for real-time process control, allows each process to receive messages from at most oneother process. This restriction assumes that each process has at most one name, the names are not shared,and bindings are not mutable. In section 3.2 we show that the CSP naming system also does not permitnames to be shared, because it requires senders and receivers to name each other, so that each (sender,receiver) identi�er pair constitutes a unique name.De�nition: Shared names (S):9 communications (e; n; f); (g; n; h) :: e:o 6= g:o 2De�nition: Private names (s): :S 22.3.6 Descriptive namesDescriptive names carry information about the states of objects to which they are bound. That is, insteadof associating arbitrary identi�ers with objects (e.g. process \X"), it is often useful to be able to assignmeanings to identi�ers (e.g. \idle") that are bound to objects exactly when they are in the corresponding9

state. The naming system must provide mechanisms for establishing and removing such bindings so thatthey always reect the current states of the objects. Since a descriptive name reects an object's state, andthe range of states is potentially in�nite, it must further be possible for each name from an in�nite set ofnames to be bound to the object during a computation.Such naming systems are said to have the descriptive reference property, while naming systems in whichnames are uninterpreted identi�ers are characterized by nondescriptive reference. Descriptive reference isrequired where the identities of a set of objects that are to participate in a given communication depends uponthe local states of the potential participants. For example, the initiator of a deadlock-detection computationmay need to send a message to \all processes waiting for resource R." Most conventional naming systemsdo not support descriptive reference. The designers of Concurrent C addressed the limitations in Ada thatare due to its lack of descriptive reference by introducing the selective accept action, which e�ectively bindsa descriptive name to the object (process) that executes it (see section 3.5). Both Associative Broadcastand Linda integrate descriptive reference with dynamic binding and 1{N multiplicity, allowing dynamic,descriptively-named sets of objects to be speci�ed as the destinations of communications, although themanner in which these implement their naming system properties di�er fundamentally.De�nition: Descriptive reference (R):9 behavior e0 : : : ::[i ei:b is countably in�nite 2De�nition: Nondescriptive reference (r): :R 22.4 Hierarchy of Naming SystemsThe six mutually exclusive pairs of naming system properties form the axes of a coordinate space, withinwhich exists a complete lattice of naming system categories. A category is a unique point in the coordinatespace, having one property from each axis.De�nition: A coordinate is one of the properties fB, b, D, d, M, m, A, a, S, s, R, rg 2De�nition: (satis�es, `) Let � be a maximal computation set and P a coordinate. � satis�es P i�8 : 2 � :: P is true for . 2De�nition: (subsumes, =, w.r.t. coordinates) Let �0 be the set of all maximal computation sets, and P;Qtwo distinct coordinates. = is a reexive, asymmetric, transitive relation such that:P = Q() (8(�a;�b 2 �0) :: (�a ` Q ^ �b ` P) =)(:(�a ` P))^ (:(�b ` Q)) ^ (�a [�b ` P) ^ :(�a [�b ` Q)) 2From their respective de�nitions, it follows thatB = b, D = d, M = m, A = a, S = s, and R = r.De�nition: An axis is one of the ordered sets of coordinates(B, b), (D, d), (M, m), (A, a), (S, s), (R, r) 2De�nition: A category is a tuple of coordinates R0 : : :R5, one from each axis 2De�nition: Let J = R0 : : :R5 be a category. Naming system a is a member of J i�8i : 0 � i � 5 :: �a ` Ri 2De�nition: (subsumes, =, w.r.t. categories) Let J and K be categories. J = K i� each coordinate of Jsubsumes the corresponding coordinate of K 210

Figure 2: A portion of the hierarchyThe core of the hierarchy is the subsumes relation, =. If two distinct coordinates P and Q are related byP = Q, then a larger set of computations satis�es P than Q. This larger set contains computations thatviolate Q but not P ; i.e. P is a weaker constraint than Q. Thus a naming system that has property P allowscomputations that cannot be obtained under a naming system with property Q. Where category J subsumescategory K, each naming system that is a member of J allows computations that cannot be obtained underany naming system that is a member of K.3 ExamplesWhile every naming system belongs to one of the categories of the hierarchy, an exhaustive classi�cation ofexisting naming systems is beyond the scope of this paper. This section illustrates the = relation amongseveral representative categories with a traversal of one of the many possible paths through the hierarchyfrom the category bdmasr, also called ?, to BDMASR (>). The intervening categories contain severalfamiliar naming systems. Figure 2 shows a portion of the hierarchy with representative naming systems foreach category. Lines between categories are labeled with the properties by which the categories di�er. Solidoutlines indicate categories discussed in this section.3.1 Classi�cation ProcedureTo classify a naming system as a member of a particular category, we must show for each property (co-ordinate) of the category that the naming system's maximal computation set satis�es the property. The�rst step in this procedure is to identify the elements of computations (objects, names, communications,domains, bindings), which, for example, a given concurrent system may de�ne in terms of processes, processidenti�ers, communication operators, and messages.The next section contains a detailed classi�cation of CSP. CSP has inuenced the design of many con-current programming systems, and so its classi�cation provides a relatively well-understood starting pointfor a traversal of the hierarchy of naming systems. Subsequent sections examine successively more expres-sive naming systems. In the interest of brevity, however, their full classi�cation is omitted, and only theproperties by which they di�er are discussed in detail.11

3.2 Classi�cation of CSPCommunicating Sequential Processes[17] is a model of concurrent computation that emphasizes simplicity ofcommunication in order to make reasoning about the interactions of processes manageable. By classifying itwithin the taxonomy, we show that its naming system is correspondingly simple|in fact it di�ers from thecategory containing the simplest possible naming systems only in that it has the aliased names property. Bycomparing the position of the CSP naming system in the hierarchy to the positions of other naming systems,we gain a more precise understanding of the relative simplicity of CSP, and of its applicability to problemsthat require speci�c naming system properties.3.2.1 ElementsA CSP program speci�es the behavior of a �xed set of processes. Each such process is labeled with a uniqueidenti�er. Communication in CSP consists of synchronous message-passing among exactly one sender andone receiver, and the participants for each communication are �xed by the program text. The value of avariable x local to process P is assigned to the variable y at process Q when P executes the statement Q!c(x)and Q executes the statement P?c(y), where c is an optional constructor, also called a message type. Eachaction of a CSP process is either a send action, a receive action, or an internal action.� Objects: Each object is a distinct CSP process.� Names: Let I be the set of possible CSP process identi�ers, and C the set of possible constructors. Aname is a (sender-id, constructor, receiver-id) triple from the set I � C � I.� Communications: Each communicationarises from the execution of a corresponding pair of send/receiveactions. Let event e be the execution of the send action j!c(x) by the process labeled i. Let event f bethe execution of the corresponding receive action i?c(y) by the process labeled j. Then the computationcontains the communication (e; n; f), i� n is identi�er triple (i; c; j).� Domains: The identi�ers appearing in send actions are �xed by the program text. Therefore, thedomain of each event contains a name n i� n is the identi�er triple (P; c; j), where P is the processidenti�er, and j!c(x) is a send action of the process, for some variable x.� Bindings: CSP processes can choose nondeterministically to execute one of a �nite set of receive actions.Let e0 : : :x be an initial pre�x of a behavior of a process whose identi�er is Q, such that event x is areceive action chosen nondeterministically from the set ft0; : : : ; tkg. Let tj = i?c(y) for 0 � j � k, andsome variable y. Then the name n is in the binding of x i� n is the identi�er triple (i; c;Q).As an example, consider the following simple CSP program:[P :: Q!c(x);R!d(y)jjQ :: P?c(u);R!e(v)jjR :: P?d(w)jQ?e(z)]Process P has a single behavior consisting of two events, one for each of its sequential send actions. Thebehavior of Q is a receive action followed by a send action, while R has two possible single-event behaviors:either to receive from P or from Q. The domain of both events in the behavior of P is f(P; c;Q); (P; d;R)g.The domain of both events in the behavior of Q is f(Q; e;R)g. The binding of Q's �rst event is f(P; c;Q)g,while the binding of the second event is null. Finally, the domain of the single event in both possible behaviorsof R is null, while in each case the binding is f(P; d;R); (Q; e;R)g.3.2.2 PropertiesThe CSP naming system is a member of the category bdmAsr:� Static binding: If a name n = (i; c; j) appears in the binding of an event, e, then the identi�er of e:ois j (see Bindings, above). Since CSP process identi�ers are unique, all events e where n 2 e:b arecollocated, and the naming system has the static binding property.12

� Static domains: For any two events e; f , if e:o = f:o, then e:d = f:d. Therefore the naming system hasthe static domains property.� 1{1 multiplicity: From Static binding, above, we have e:b\ f:b = ; for two events e and f , if e:o 6= f:o.Therefore each name is bound to at most one object, and the naming system has the 1{1 multiplicityproperty.� Nondescriptive reference: The binding of each event in a behavior is �xed by the program text thatspeci�es the possible actions of the process. The set of possible actions is �nite, and each receive actionspeci�es a �nite set of sender-ids. Therefore, in a behavior e0 : : :, Si ei:b is �nite, and nondescriptivereference holds.� Aliased names: Let P be the identi�er of a process with actions Q!c(x) and Q!d(y). Let Q be theidenti�er of a process with actions P?c(v) and P?d(w). Then there exists a computation containingtwo communications (e; n; f) and (g;m; h), such that e and g are events of P , f and h are events of Q,and n = (P; c;Q), m = (P; d;Q). Therefore the naming system allows aliased names.� Private names: For any name n = (i; c; j), n 2 e:d i� e is an event of the process whose identi�er is i.Therefore, for any two communications (e; n; f) and (g; n; h), e:o = g:o, and the naming system allowsonly private names.3.3 Category bdmAsr (CSP) vs. ?The CSP naming system resides in a category immediately above ?, which is the greatest lower bound onthe lattice, and the category containing the simplest naming systems in the hierarchy. We have found nogeneral-purpose models of concurrency in the literature whose naming systems reside in ?, although somespecialized naming systems like the one described in [16] are members of that category. Nevertheless, it isinstructive to study ? as a lower limit on the expressiveness of naming systems. Naming systems that residehigher in the hierarchy presumably incur some overhead in their implementation. This additional complexityis only justi�ed if these naming systems are also more expressive. One may question, for instance, why evennaming systems such as that of CSP, for which simplicity was a primary design goal, are not members of ?,and whether the aliased names property in particular imparts any additional expressiveness to CSP.3.3.1 A Resource Allocation ProblemThe combination of properties that comprise ? are su�ciently restrictive to make even some simple problemsimpossible to solve e�ciently. Consider a simple resource allocation algorithm, in which client objects requestand release units of a single resource from a centralized manager object. To limit overhead within themanager, it does not queue requests that it can't immediately satisfy. Unsatis�able requests are rejectedand may subsequently be reissued by the client. Since no particular communication mechanism is assumed,it is not speci�ed whether communication is synchronous or asynchronous. For purposes of this example, weignore issues of fairness. The objects act as follows:1. There are two types of communications from clients to the manager: one which signals a request, andone which signals a release. Clients issue request and release in arbitrary order, provided that # ofreleases issued � # of succeed responses received. Clients must wait for either the succeed or thefail response from the manager before issuing subsequent requests.2. There are two types of communications from the manager to a client, one which signals success of thepreceding request, and one which signals failure of the request. Upon receiving request, the managerresponds with succeed or fail before processing more requests or releases.3. A request succeeds i� initial # of resource units � # succeed issued + # releases received > 0.4. The manager may not refuse to accept a release.5. There are no communications between clients. 13

An implementation of this algorithm under almost any naming system is straightforward. However, it isine�cient in that it relies upon polling. Polling occurs where an unbounded number of communications maypass between two objects before at least one object makes progress[12]. In a case where a client requires arequest to succeed in order to make progress, the manager may issue an unbounded number of failures to agiven client before issuing a success response.The tendency to poll is often viewed as an artifact of a synchronization mechanism, or simply poorprogramming practice. However, we show here, as is alluded to in [12], that polling can be a consequence ofa restrictive naming system.3.3.2 Avoiding PollingIn order to prevent clients from polling the manager, we must eliminate the condition under which themanager is forced to issue a failure in response to a request. Since the problem speci�cation states thatthe manager responds immediately to a request with fail when it has no free resources, eliminating thepossibility of fail responses implies that the manager must not receive a request unless it is prepared toissue succeed. Thus it must be possible to specify the type of communication that the manager will acceptat a given point in its behavior.Theorem: A non-polling solution to the resource allocation problem requires the aliased names property.2Proof: Consider a computation consisting of the manager and two clients, A and B, in which the managernever issues fail. Let e0 : : : sxr : : : be the behavior of the manager, such that s is an event at which themanager issues succeed, and the number of free resources has become 0.1. Let a be the source event of a communicationat A, and b the source event of a communicationat B, suchthat a, b, and s are concurrent. By condition 1, each is either a request or release. By conditions 5and 2, the clients have no information about each others state, or the state of the manager. Therefore,each communication may be either a request or a release.2. If the communication originating at a is a request, and the communication originating at b is a release,then the communication (a; n; x) does not exist, since otherwise the manager would have to issue failat r. The communication (b;m; x) exists, since the manager may not refuse a release (condition 4),and no other possible communications exist.3. If instead the communication originating at a is a release, the communication originating at b is arequest, then the communication (a; l; x) exists, and the communication (b; p; x) does not exist.4. Since either a request or release may originate at a, l 2 a:d and n 2 a:d. However, n 62 x:b (step 2),and l 2 x:b (step 3). Therefore, l 6= n (l and n are distinct names), and the aliased names propertyholds. 2Informally, polling can be avoided only if distinct names for requests and releases are known to each client,so that the manager can accept only releases when a request would result in a failure response. If a clientmay communicate with the manager over only a single name, then it is impossible to determine whether themanager will receive a request or a release at any given point. Since it may not refuse to accept releases, itcannot refuse to accept requests either, and may be forced to respond with fail. Thus a non-polling solutionto the resource allocation problem does not exist under any naming system that is a member of ?. However,the CSP naming system and all others that subsume it have the properties necessary for non-polling solution.3.3.3 Expressiveness PrincipleAlthough the manager does not queue requests, clearly an unsatis�able request must be blocked or queued(depending on the synchronization properties of communication) at some level in order to avoid polling. Thusone might observe that the responsibility for queueing requests has merely been shifted to the communication14

subsystem. This is true, and it is in fact desirable in most circumstances to implement the necessary queuingonce in the communication subsystem, rather than repeatedly at the object level. Note, however, that it isnot possible to force the communication subsystem to handle queueing of requests in the �rst place unlessthere exists some action by which the communication subsystem can be informed when the manager isprepared to accept a request. That action is precisely the binding of the name associated with requests tothe manager object, which in turn requires the existence of distinct names for requests and releases.This illustrates a general principle of the relationship between naming systems and communication: Amore expressive naming system does not alter the communication requirements of an algorithm. However,it allows the required actions (e.g. queueing) to be speci�ed at the interface between objects and thecommunication subsystem, and thereby allows the actions to be implemented at a lower level.3.4 Category bDmASr (Ada) vs. bdmAsr (CSP)Ada[8] is a language designed from the beginning with concurrent programming in mind, and addresses someof the perceived limitations of CSP. Ada allows objects (called tasks) to be created on the y, and thus mustallow existing tasks to learn the names of newly created ones. Ada also relaxes the constraint in CSP thatrequires objects to identify each other in order to carry out communication.Communication in Ada is by means of the rendezvous1, using the entry call and the accept action. Atask initiates a communication by specifying a task identi�er and an entry identi�er of the called task. Thetask identi�er denotes the task that must execute the accept action for the speci�ed entry.3.4.1 Properties of the Ada Naming SystemA name as de�ned by the Ada naming system is a pair, (destination-task-id, entry-id). This di�ers fromCSP in that the source task is not identi�ed.The domain of an event is determined by two types of identi�ers: entry identi�ers and identi�ers ofdeclared tasks, which are speci�ed as constants in the program, and identi�ers of created tasks, which arepointer values that can be assigned to local variables of the task. A name (t; e) is in the domain of an eventi� e is an entry-id �xed by the program text of the task, and t is a declared-task-id �xed by the programtext of the task, or t is a created-task-id assigned to a local variable of the task at the occurrence of theevent. Thus the Ada naming system has both the dynamic domains property and the shared names property.However, Ada's support for dynamic domains is not as general as it could be, since tasks cannot learn newentry identi�ers, nor can they learn the identi�ers of declared tasks. If a task is to have access to theseidenti�ers, they must be speci�ed as constants in the program.Ada tasks may choose nondeterministically to accept one of a set of entries. Thus the binding of an eventthat is an accept action is f(i; d); (i; e); : : :g, where i is the identi�er of the task at which the event occurs,and d; e; : : : are the entries speci�ed in the accept action.As does CSP, Ada has the aliased names property, because two names (t; d) and (t; e) may coexist ina domain. It has the static binding property and the 1{1 multiplicity property because a name (t; e) isbound only at events of the object whose identi�er is t, and task identi�ers are globally unique. Finally,nondescriptive reference holds because the binding of each event is �xed by the program text, which speci�esa constant and �nite set of entry identi�ers.3.4.2 Advantages of the Ada Naming SystemOne of the early criticisms of CSP was that its use of symmetric names (receivers identify senders) preventedits use in problems that require \anonymous" senders. For example, it is often the case that an object thatimplements a service (e.g. in an operating system or network routing protocol) must receive communicationsfrom an indeterminate set of clients. While it is accurate to say that this limitation of CSP is due to itssymmetric names, it is important to note that this use of symmetric names is only one of the possible mani-festations of the private names property. The shared names property of the Ada naming system distinguishesit not only from CSP, but from all naming systems that allow only private names, regardless of how the1Ada also permits tasks to share variables, but the semantics of shared variables are not completely speci�ed.15

private names property is realized. Examples of systems in which communication among objects is speci�edusing private names include dataow languages[1] (streams), parallel logic languages[23] (single-assignmentvariables), and point-to-point channels.The Ada naming system is further distinguished from that of CSP by the dynamic domain property.This property is required for the implementation of \reactive systems," where events in the environment(e.g. a user login) necessitate the creation of new objects at runtime. Dynamic domains are also usefulin data-parallel computations, where the number of objects among which a data set is partitioned variesaccording to the size of the input.3.5 Category bDmASR (Concurrent C) vs. bDmASr (Ada)Concurrent C[11] is an extension of the C language[18] that supports distributed programming. It resemblesAda in that a computation consists of a dynamic set of processes that communicate using the rendezvousmechanism2 through transactions (equivalent to entries in Ada). A process initiates a communication byexecuting a transaction call. The transaction call is completed when the destination process executes theaccept action for the given transaction.The designers of Concurrent C have observed that Ada would bene�t from the ability to accept out-standing entry calls conditionally, based on the values of the parameters[12]. In Concurrent C, an acceptaction may be augmented with the quali�er suchthat (expr), causing an outstanding transaction call to beaccepted when expr is true for the parameters of the transaction call. This generalization of accept is theprinciple advantage of the Concurrent C naming system over that of Ada, as it implements the descriptivereference property.3.5.1 Properties of the Concurrent C Naming SystemA transaction call speci�es two static identi�ers that indicate the called process and a transaction withinthat process respectively. In this respect Concurrent C names resemble those de�ned by the Ada namingsystem. However, because of the suchthat quali�er, Concurrent C names have a third component, consistingof the values of the parameters of the transaction call, i.e., a name is a triple, (process-id, transaction-id,parameter-list). Let event e be the execution of the action accept t(: : :) suchthat (expr) by the process whoseidenti�er is p. Then a name n is in the binding of event e i� n = (p; t; r), where r is a parameter list forwhich expr evaluates to true. Because expr may refer to the local variables of the process, the set of namesthat is bound to an object at an event may depend upon the local state of the object. This in turn impliesthat the set of names that may be bound to an object over its entire behavior is potentially in�nite, andthereby the descriptive reference property holds.The remaining properties of the Concurrent C naming system are identical to those of the Ada namingsystem. The way in which Concurrent C implements dynamic domains is more general than Ada's imple-mentation because both process identi�ers and transaction identi�ers are values that can be passed from oneprocess to another. While an object may have any number of names bound to it, each name, when bound, isalways bound to the same object, because process identi�ers are unique and static. In section 3.6 we discussnaming systems that combine descriptive reference with dynamic binding and 1{N multiplicity.3.5.2 A Preemptive Scheduling ProblemThe descriptive reference property is required when the set of communications an object is prepared toreceive varies according to the state of the object, and the state space of the object is potentially in�nite.Consider the problem of managing prioritized access to a single resource (perhaps a specialized processor ordevice controller). As in the resource allocation problem described in section 3.3.1, client objects request andrelease the resource from a manager object, and the manager does not queue requests. Associated with eachrequest is an integer priority that is used to determine when one client may preempt another in accessingthe resource. The objects act as follows:2More recent versions of Concurrent C allow asynchronous communication as well.16

1. Clients may initiate either a (request, p) communication, or a release communication to the manager,where p is an integer priority. Clients must wait for either the succeed or the fail response from themanager before issuing subsequent requests. Upon receiving succeed, a client issues release beforeissuing another request, i� it has not received preempt subsequent to the most recent succeed.2. There are three types of communications from the manager to a client, one that signals success ofthe preceding request, one that signals failure of the request, and one that preempts the most recentsucceed . Upon receiving (request, p), the manager responds with succeed or fail before processingmore requests or releases.3. A (request, p) succeeds i� the resource is currently free, or if p > q where q is the priority of themost recent successful request. In the latter case, the manager issues preempt to the client to whichit issued the most recent succeed, before responding with succeed to the current request.4. The manager may not refuse to accept a release nor a satis�able request.5. There are no communications between clients.As in the resource allocation algorithm, a client maymake an unbounded number of unsuccessful attemptsto obtain the resource before succeeding. However, in this case it is not su�cient for the naming system toallow the manager to distinguish only between requests and releases, it must also distinguish satis�able fromunsatis�able requests.3.5.3 Avoiding Polling, RevisitedAgain, eliminating polling requires that the manager not be forced to issue fail in response to a request.The manager can satisfy a request when the priority of the request exceeds the priority of the most recentsuccessful request. Thus the name over which the request communication is initiated must encode the priorityof the request, and that name must be bound to the manager object exactly when it is able to satisfy therequest.Theorem: A non-polling solution to the preemptive scheduling problem requires the descriptive referenceproperty. 2Proof: Assume that the set of names that may be bound to the manager object contains at most m names.Consider a computation consisting of the manager and k (k > m) clients, in which the manager never issuesfail.1. By conditions 1, 2 and 5 the �rst event at each client may be the initiation of a request communication,all these events may be concurrent, and the priorities of all requests may be distinct.2. Since k requests are initiated concurrently and at most k � 1 names are ever bound to the manager,there exist at least two communications that are initiated over a common name. Let a be the sourceevent of the �rst such communication, (request, p). Let b be the source event of the second, (request,q). Let n be the common name.3. Let e0 : : : sxr : : : be the behavior of the manager, such that s is an event at which the manager issuessucceed, in response to a request whose priority is w, such that p < w < q. Then (b; n; x) is apossible communication, since q > w and the manager may not refuse satis�able requests (condition 4).Therefore, n is bound to the manager at event x. Since a and b are concurrent, and n is bound at x,(a; n; x) is also a possible communication. By condition 3, the manager must issue fail at event r inthis case. Contradiction.4. By step 3, there are at least k names that are bound to the manager. As k !1, the number of namesthat must be bound to the manager grows without bound, and the descriptive reference property holds.217

Note that it is not necessary for there to be k clients in order to generate a set of requests that requirek names to be bound to the manager, nor need the requests be originated concurrently. These assumptionsmerely shorten the proof.The above example further illustrates the principle mentioned in section 3.3.3: A descriptive name makesvisible at the interface to the communication subsystem some portion of the state of the object to which it isbound. This allows decisions about blocking or queueing communications to be made at a lower level, evenwhen these decisions are a function of the local states of objects.A mechanism that implements descriptive reference is useful not only when the set of names that arebound to an object during a computation is potentially in�nite, but also when it is �nite, yet large. It ismuch more clear, concise, and e�cient to write accept t(x) suchthat (0 < x < 100) in Concurrent C, forinstance, than it is to enumerate a family[12] of 99 entries in Ada, one for each possible value of x.3.6 Category > (Linda and Associative Broadcast)There exist naming systems that are members of category >, which subsumes all the categories of thehierarchy. Despite the existence of such naming systems, it is often preferable to use a less expressivenaming system because it can be implemented more e�ciently. We have already seen that the aliasednames and descriptive reference properties may require the communication subsystem to block or queuecommunications, and this may not be desirable in all cases. Similar tradeo�s exist for other naming systemproperties. For example, one of the naming systems in > relies upon a logically shared data structure, whichcan be di�cult to realize on distributed architectures where processors do not share physical memory.Below, we contrast the naming systems of Linda[14] and Associative Broadcast[3], both of which aremembers of >, in order to show that naming systems whose properties are identical may nevertheless havemarkedly di�erent implementations. Unlike Linda processes, Associative Broadcast objects communicateusing asynchronous message passing, subject to only a weak ordering constraint. This shows that the setof properties that constitutes the category > can be implemented in the absence of logically shared datastructures.3.6.1 LindaA Linda program speci�es a set of processes that communicate by inserting, reading, and removing tuples ofdata values in a logically shared data structure called the tuple space (TS). The tuples are stored unorderedin TS. Processes manipulate TS using three operations: in(t), which removes the tuple t from TS, out(t),which places t in TS, and read(t), which reads t but does not remove it. Each data value in a tuple has atype. t may be a pattern that contains a formal parameter in some of its �elds. The tuple returned by theread(t) or in(t) operation is one in which data values match the types of formal parameters. For example,the operation in(\size", var x), where x is of type integermight match the tuple (\size", 20). If more thanone tuple in TS matches, one is chosen arbitrarily. If none match, the operation blocks until some processinserts a matching tuple in TS.3.6.2 Associative BroadcastAssociative Broadcast uses message broadcasting as the fundamental mode of communication among objects.Communication is 1{N: A sender speci�es a target set of objects that are to receive a message. 1{1 com-munication is merely a special case broadcast in which the size of the target set is 1. Associated with eachobject is a pro�le, which consists of a set of attributes. An attribute is either a symbol (a simple attribute) ora (symbol, value) pair (a compound attribute). The symbols may be treated as data values and passed fromone object to another in a message. An attribute may represent the type of an object (operations it supports)or an abstraction of the object's state. For example, in a distributed hashing algorithm, the pro�le fINSERT,FIND, (MIN, 0), (MAX, 10)g might indicate that the object supports the INSERT and FIND operations onkey values in the range 0{10.An object consists of a set of local data structures, and a set of operations. Receipt of a message causesthe operation indicated in the message to be executed. The operation may modify local data, alter thepro�le of the object, and broadcast messages. A message is a tuple, ([selector], arg, : : :), where [selec-18

tor] is a propositional formula over attributes that speci�es the target set of the message. For example,broadcast([INSERT^ MIN < 3], x) might send the value x to all object whose MIN attribute is less than 3, andcause them to perform the INSERT operation using the value x. After a message is broadcast, the selectorcontained in the message is matched against the pro�le of each object. If the selector is true for an object'spro�le, the message is received by the object. The broadcast primitive is not atomic. The pro�le of an objectmay change while the message is in transit. In this case, the object is not guaranteed to receive the message.Two messages are guaranteed to arrive in the order they were sent only if they were sent by the same object.3.6.3 Elements� Communications: In Linda, the execution of an out action may give rise to any number of communi-cations, including 0. The number of communications is de�ned by the number of subsequent read andin actions on the tuple placed in TS by out. Thus a communication (e; n; f) occurs where event e isthe execution of an out action, and f is either a corresponding read or in. In an Associative Broadcastcommunication, (e; n; f), e is the execution of the broadcast action, and f is the receipt of the message.� Names: Communication in Linda is through the TS, which is in e�ect a content-addressable bu�er.Thus the name over which a communication (the \transmission" of a tuple) occurs is the tuple itself,and the set of names de�ned by the Linda naming system is exactly the set of tuples that may appearin TS. Names and data are one and the same in Linda. Associative Broadcast names are simply theselectors appearing in messages.� Bindings: Let event e be the execution of the action in(t) or read(t) by a Linda process, where t is apattern. Then e:b is exactly the set of tuples that match t. In Associative Broadcast, the binding ofan event is determined by the composition of the pro�le of the object at which the event occurs. Letevent f be the receipt of a message, such that the pro�le of object f:o at the occurrence of f is P .Then n 2 f:b i� P satis�es n. That is, a message may be received at f only if its selector is satis�edby P .� Domains: Since names are data tuples in Linda, a name is known to a Linda object exactly when itknows all the elements of the name. Let n = (d0; : : : ; dk). Then n 2 e:d i� for all i, di is either aconstant �xed by the program text of the object at which e occurs, or a value of a local variable of theobject. Similarly, an object in Associative Broadcast knows a name (selector) when it knows all thesymbols appearing in the formula that constitutes the name.3.6.4 Properties> di�ers signi�cantly from the categories discussed earlier in that it combines the descriptive referenceproperty with 1{N multiplicity and dynamic binding. The dynamic domains, shared names, and aliasednames properties of Linda and Associative Broadcast are similar to those of naming systems examinedearlier, so we omit discussion of these properties here.� Dynamic Binding: Any number of copies of a given Linda tuple may appear in TS, either sequentiallyor simultaneously. Thus it is possible for two communications (e; n; f) and (g; n; h) to exist, wheree and g are occurrences of distinct out actions of n, and f and h are occurrences of distinct in orread actions. Since f and h may occur at distinct objects, the Linda naming system has the dynamicbinding property. Dynamic binding also holds for Associative broadcast. For communications (e; n; f)and (g; n; h), n may be satis�ed by pro�le P at f , and by pro�le Q at h, where P and Q are pro�lesof distinct objects.� 1{N multiplicity: Let e be the execution of out(t), and f and g the executions of read(t) by two distinctobjects. Then the communications (e; t; f) and (e; t; g) satisfy the de�nition of the 1{N multiplicityproperty. Similarly, a message in Associative Broadcast may be received by at least two distinct objects.� Descriptive Reference: For an action of a Linda process in(t), where t is a pattern containing formalparameters whose range is in�nite (e.g. formal parameters of type integer), there exists an in�nite19

Figure 3: Partitioning of edges among objectsset of tuples that match t. Therefore, the set of names bound at the occurrence of such an action isin�nite. In Associative Broadcast, the set of potential pro�les of an object is in�nite. For each suchpro�le, there exists a distinct set of selectors that are satis�ed by the pro�le. Therefore, in an in�nitebehavior, an in�nite set of names may be bound to the object.3.6.5 Communication AbstractionCommunication abstraction extends to communication the same principles of abstraction that are commonlyapplied to data types, synchronization, and control sequencing[10]. A naming system with the above threeproperties enables communications to be speci�ed at a level that is signi�cantly more abstract than donaming systems in which these properties are absent. Description is the form of abstraction provided bydescriptive reference, which incorporates the state of an object into the names that are bound to it. Whencombined with the grouping abstraction of 1{N multiplicity, arbitrary sets of objects can be descriptivelynamed. Dynamic binding adds indirection, allowing the membership of a descriptively named group to vary.These forms of abstraction are, respectively, generalizations the structured naming, space uncoupling, andcontinuation passing properties of Linda mentioned in [14].3.6.6 A Distributed Cycle-Detection ProblemThe manager object in section 3.5.2 represents a special case of descriptively-named groups in which thegroup is always of size 1 or 0, and there is only one possible member of the group. However, there existproblems that naturally engender groups of objects in which each object is a potential member of every group,and the membership of each group is dynamic and determined by input from the environment. In these casesgroup membership is determined by the global state of the execution. Because of this, such problems aredi�cult to solve using a distributed (no global data structures), and symmetric (objects execute identicalprograms, no object is distinguished as a coordinator) algorithm in the absence of descriptive reference,dynamic binding, and 1{N multiplicity.Consider the problem of detecting cycles in a dynamic graph that is stored by partitioning its edgeset among a set of objects. Each edge is an ordered pair of nodes, (u; v), and is stored at exactly oneobject (�gure 3). Such graphs arise, for instance, from the precedence relation among transactions in areplicated, distributed database. It is necessary to check these graphs for cycles to determine whethertransactions executed during a network partition failure are serializable[7]. The following solution uses\probe" communications among objects to traverse the graph in place. The graph is not frozen while cycledetection occurs|edges may be added to the graph concurrently with ongoing executions of the algorithm.1. There are two types of communications: (add, (u; v)) is a communication from the environment to20

Figure 4: Probe propagationan object, causing it to add the edge (u; v) to the set of edges it maintains. Receiving (probe, n, p)causes the object to propagate the probe p along all edges reachable from node n.2. Upon receiving (add, (u; v)), the object propagates a new, unique probe through the graph (�gure 4).Beginning at node v, the object labels the nodes of a traversed edge with p, and issues (probe, n, p)for each node, n, encountered in the traversal. If a node is labeled twice, a cycle exists.3. Upon receiving (probe, n, p), p is propagated as above, starting at node n.4. An object receives (probe, n, p) only if n is a node of one of the edges it maintains.Because there is no provision for objects to communicate their edges to each other, nor for any one objectto coordinate an instance of the algorithm, an implementation must be both symmetric and distributed.Furthermore, condition 4 requires minimal communication: an object may receive a probe only if it actuallymaintains an edge along which the probe is to be propagated. This disallows a brute-force implementationin which every object receives every probe.The algorithm requires the descriptive reference property because of the requirement for minimal com-munication: Each object maintains a subset of an in�nite set of possible nodes. 1{N multiplicity is requiredbecause a given node may belong to any number of edges, and a probe that traverses an edge incident onnode n must reach all objects where n appears. Finally, dynamic binding is required because edges may beadded while probes are traversing the graph: The set of objects at which node n appears may di�er for eachcommunication (probe, n, p).We omit a formal proof in favor of giving an example of how the algorithm is expressed using AssociativeBroadcast. Each object has the following identical speci�cation:initiallypro�le = f(NODES; ;); ADD; PROBEg/* Upon receiving (add, (u; v)) */add(u; v) fNODES := NODES[fug;i := unique id();probe(v; i);g 21

/* Upon receiving (probe, w, p) */probe(w; p) fforeach local node n reachable from w fif n labeled with pdeclare cycle;else f label n with p;broadcast([PROBE^ (n 2 NODES)]; n; p);ggg Here again the principle of expressiveness applies. The descriptive reference, dynamic binding, and 1{Nmultiplicity properties of Associative Broadcast allow us to specify an algorithm that leaves it up to thenaming system to ensure that a probe message is delivered to the correct set of recipients. In the absenceof these properties, it would be necessary for the objects to explicitly implement a protocol that does thework done here by the naming system. This would require the abrogation of one or more of the statedassumptions, either by removing the minimal communication requirement and using a brute-force approach,or by breaking the symmetry of the algorithm.4 ConclusionsIn designing a naming system, one is faced with tradeo�s between expressiveness and complexity that resultfrom the diversity of ways in which names and bindings may be established and manipulated to createpatterns of communication among objects. Such decisions should be made with an awareness of both therange of possible choices, and the impact upon the structure of programs and computations of each choice.The taxonomy of naming systems described here is intended to allow the alternatives to be examined in asystematic way. We have sought to identify a set of fundamental properties that clarify the role of namesand bindings in concurrent programming, and that capture the practical distinctions among naming systemsthat are often implicit in informal comparisons of concurrent programming systems. The arrangement ofthe properties into orthogonal sets of mutually exclusive elements imparts simplicity and regularity to thestructure of the taxonomy, and ensures that every naming system belongs to one of the categories of thehierarchy.The taxonomy is a tool for comparing, selecting, and evaluating naming systems: The position of anaming system within the hierarchy determines the set of naming systems whose properties it subsumes.For an algorithm whose required naming system properties are known, the taxonomy allows the selectionof a naming system having the necessary properties. Finally, one may use some appropriate measure todetermine if a given naming system is the best possible implementation of its properties for a given targetarchitecture (cf. Linda vs. Associative Broadcast). We have seen that more expressive naming systems allowsuch operations as queueing and �ltering of communications to be implemented below the object level. Thiseliminates error-prone duplication of e�ort, encourages more e�cient implementation of the operations, ando�ers the possibility of exploiting or developing specialized features of the underlying architecture.The composition of the taxonomy is driven to some extent by observation: We have sought to de�neproperties that capture signi�cant distinctions among existing naming systems, and that a�ect the abilityof a naming system to express solutions to important classes of problems. It is possible that the suitabilityof the taxonomy to a particular purpose may be improved by the adding more axes to the coordinate spacethat contains the lattice of categories, or subdividing the coordinates of an axis to improve the \resolution"of the hierarchy. Any such changes would not invalidate the results obtained using the current structure.Nevertheless, any modi�cations should be approached with caution, as they might complicate the processof classifying naming systems. In fact, the taxonomy has been simpli�ed signi�cantly over the course of itsdevelopment.We have explicitly avoided discussing resolution, as the resolution mechanism of a naming system is22

orthogonal to its binding and name-access mechanisms. Nevertheless, properties of resolution mechanismsmay in some cases also inuence patterns of communication, and thus the structure of computations. Toaccount for these e�ects, the taxonomy could be augmented with properties of resolution that are orthogonalto the existing sets of properties.References[1] W. Ackerman, Dataow languages, IEEE Computer, vol. 15, no. 2, Feb. 1982[2] M. Ahamad and A. Bernstein, An application of name based addressing to low level distributedalgorithms, IEEE Trans. Software Eng., vol. SE-11, no. 1, Jan. 1985[3] B. Bayerdorffer, Associative broadcast: a comprehensive approach to naming in concurrent pro-gramming, PhD. dissertation, Dept. of Computer Sciences, Univ. of Texas at Austin, (expected)May 1993[4] K. Birman and T. Joseph, Reliable communication in the presence of failures, ACM Trans. Comp.Systems, vol. 5, no. 1, Feb. 1987[5] K. Chandy and L. Lamport, Distributed snapshots: Determining global states of distributed systems,ACM Trans. on Comp. Sys., vol. 3, no. 1, Feb. 1985[6] D. Comer and L. Peterson, Names and name resolution, In Concurrency Control and Reliability inDistributed Systems, B. Bhargava, ed., Van Nostrand Reinhold, 1987[7] S. Davidson, Optimism and consistency in partitioned database systems, ACM Trans. on DatabaseSystems, vol. 9, no. 3, Sept. 1984[8] Department of Defense, Reference manual for the Ada programming language, ANSI/MIL-STD-1815A, DoD, Washington, D.C., Jan. 1983[9] J. Dutton, Naming and object reference: towards a rigorous model, PhD Dissertation Proposal, UTAustin CS Dept., July 1987[10] N. Francez and B. Hailpern, Script: a communication abstraction mechanism, Proc. ACM Symp.Principles Distributed Computing, Aug. 1983[11] N. Gehani and W. Roome, Concurrent C, Software Pract. Exper., vol. 16, no. 9, Sep. 1986[12] N. Gehani and T. Cargill, Concurrent programming in the Ada language: the polling bias, SoftwarePract. Exper., vol. 14, no. 5, May 1984[13] N. Gehani, Broadcasting sequential processes (BSP), IEEE Trans. Software Eng., vol. SE-10, no. 4,July 1984[14] D. Gelernter, Generative communication in linda, ACM Trans. Prog. Languages and Systems, vol. 7,no. 1, Jan. 1985[15] J. Gischer, Partial orders and the axiomatic theory of shu�e, PhD. Thesis, Computer Science Dept.,Stanford Univ., Dec. 1984[16] R. Gueth, J. Kriz, and S. Zueger, Broadcasting source-addressed messages, Proc. 5th Int. Conf.on Distributed Computing Syst., May 1985[17] C. Hoare, Communicating sequential processes, CACM, vol. 21, pp. 666{677, Aug. 1978[18] B. Kernighan and D. Ritchie, The C programming language, Prentice-Hall, Englewood Cli�s, N.J.,1978 23

[19] L. Lamport, Time, clocks, and the ordering of events in a distributed system, CACM, vol. 21, no. 7,July 1978[20] D. Oppen and Y. Dalal, The clearinghouse: a decentralized agent for locating named objects in adistributed environment, XEROX O�ce Products Division Research Report, Oct. 1981[21] V. Pratt, Modeling concurrency with partial orders, Int. Journal of Parallel Programming, vol. 15,no. 1, Feb. 1986[22] J. Saltzer, Naming and binding of objects, In Operating Systems: An Advanced Course, R. Bayer, etal., eds., Springer-Verlag, 1979[23] A Takeuchi and K. Furukawa, Parallel logic programming languages, Proc. 3rd Int. Conf. LogicProg., Springer-Verlag, Berlin, pp. 242{254, 1986

24

