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Abstract

A naming system consists of the mechanisms that govern the definition, binding, and access to the
names upon which communication among active objects in a parallel or distributed system depends. A
concurrent algorithm may require certain patterns of communication among objects. Naming systems
differ significantly in the patterns of communication that they support, and this diversity suggests the
existence of efficiency tradeoffs and specialization among the various approaches. To enable the impact
of these differences upon the structure of concurrent computations to be examined systematically, we
present a tazonomy of naming systems that isolates a small set of fundamental naming system properties,
and ranks naming systems in (partial) order of the expressiveness they derive from their properties. We
compare the properties of the naming systems that underlie several representative concurrent program-
ming systems, and give examples of algorithms that require specific naming system properties.

Keywords: classification, communication properties, concurrent programming, expressiveness, naming
systems.



1 Introduction

An important component of any parallel or distributed system is the naming system that underlies communi-
cation among active objects. A naming system consists of the mechanisms that define names and make them
accessible to objects, bind names to objects, and resolve name references during execution. These mecha-
nisms are incorporated into concurrent programming languages as well as runtime environments. Certain
fundamental properties of naming systems affect the structure of computations that may be expressed in
concurrent programs by enabling or prohibiting specific patterns of communication among objects. Because
naming systems differ significantly in their properties, a thorough understanding of naming systems is useful
to both the designers and users of parallel and distributed systems. However, unlike other important ele-
ments of such systems—e.g. synchronization, resource allocation, or scheduling—mnaming systems have not
been widely studied as an independent problem domain. In particular, the lack of a precise understanding of
the role of binding and name access (modification of the set of names known to an object) in communication
contributes to the difficulty of concurrent programming.

1.1 Role of Naming Systems in Communication

A concurrent computation consists of a set of active, communicating objects. An object is a process, task,
or similar entity. In order for object A to successfully initiate a communication with object B, there must
exist a name that is known to A and bound to B. A name is a symbol that either directly points to an
active object, or denotes a passive point of interaction among objects, such as a channel, port, mailbox, or
shared variable. Irrespective of the mechanism, a communication occurs from a source object to a destination
object, over a name. The relationship between the name and the destination object is called a binding. It is
the function of the naming system to establish the necessary bindings and to control which names are known
to a given object.

Beyond the fundamental role of names and bindings in distinguishing objects from one another there is
great variety in the ways that names and bindings are established and manipulated. Naming systems differ,
for example, in the number of bindings in which one name may simultaneously appear, or in whether the
set of bindings may be modified during execution. This diversity suggests the existence of tradeoffs and
specialization among the various approaches. It also leads one to search for a unifying framework within
which the tradeoffs and design choices can be systematically evaluated.

A concurrent algorithm may require certain patterns of communication among objects. We have identified
several fundamental properties of naming systems that determine their ability to express such patterns. For
example, a naming system may allow a single name to be bound to a set of objects to enable broadcasting,
or may allow each name to be used by at most one object (e.g. exclusive access to a channel). Consequently,
for a given algorithm specification there may exist a straightforward implementation under one naming
system, while the same algorithm may be awkward or inefficient to implement under another naming system.
Constraints on the form of the implementation (e.g. “clients may not poll servers”) may preclude the
existence of a solution altogether. The tazonomy that we define in this paper ranks naming systems in
(partial) order of the expressiveness they derive from their properties.

1.2 A Preliminary Example: Resource Tracking

Consider a system in which a set of resources is shared among several objects that communicate via message
passing. Fach resource is of a specific type, and there exists exactly one instance of each type. A resource is
owned by one object at a time and can only be accessed by i1ts owner. At any time, an object may relinquish
its ownership of a resource in response to a request from another object, which then becomes the new owner
of the resource. Periodically, an object must acquire several resources in order to perform some operation.
It sends requests to the current owners of the needed resources and then waits for these to relinquish the
resources before it can proceed. Aside from the possibility of deadlock, the fundamental problem encountered
in implementing such a system 1s that of locating the current owner of a resource to whom a request is to
be issued.

Suppose that we wish to solve this problem without using a central coordinator that keeps track of the
ownership of the resources. If the communication primitive used is, e.g. send(name, message), then the



most natural solution is one in which an object simply executes send( “owns resource R”, request) whenever
it requires resource K. However, such a solution assumes that the name “owns resource R” is in fact bound
to the correct object, and that it is rebound whenever the ownership of R changes. The ability to rebind a
name during execution is a property of the naming system called dynamic binding, which we define formally
in section 2.3.1. Without this property, the objects must execute some more complex and less efficient
protocol, either sending every request to all objects, or forwarding a request along a chain of previous owners
of the requested resource. In section 3.6 we discuss two naming systems that differ from most in that they
allow dynamic binding.

A simple generalization of the resource tracking problem is to allow multiple instances of each type of
resource. In this case, it suffices for an object to acquire any one instance of a resource type, but the request
should still be delivered to all objects that hold an instance of the requested type. To support this, the
naming system should thus allow the name “owns resource R” to be bound to the set of objects that hold
an instance of R. This is the 1-N multiplicity property, defined in section 2.3.3.

1.3 Impact of Naming Systems

It will become apparent that the definitions of names and bindings used here are quite broad. The concept
of a name encompasses such familiar items as process identifiers and entries, but also includes such things
as unbound variables in parallel logic languages and the data values satisfying the condition of a selective
accept statement in Concurrent C[11]. Similarly, a binding may be reflected by the association of a constant
value with an object (e.g. the static naming of processes in CSP), by explicitly storing a name in some
naming data structure (e.g. opening a port), or it may be implicit in the state of an object (e.g. executing
selective accept with a particular expression). An important step in identifying the properties of a naming
system is to determine how names and bindings are represented under that naming system. We give several
examples of this procedure in section 3.

Several significant characteristics of concurrent systems are influenced by properties of the underlying
naming system. Among these are:

e Blocking and queueing of communications: In initiating a communication, reference to a name that is
not bound to any object may cause the communication to block or be queued until the name is bound.

o Modularity: Independent specification of the shared components of a system (e.g. servers) requires
that they be accessed (e.g. by clients) using shared names.

e Dynamic structures: To allow creation of new communicating objects during a computation, naming
systems must enable objects to learn new names (i.e. names of objects created on the fly), or must
permit existing names to be dynamically bound to new objects.

e Abstraction: Typical communication primitives specify one-to-one communication among directly-
named objects. By allowing objects to be referenced through indirect names, and allowing names to
be bound to sets of objects, communication may be specified at a higher level of abstraction.

1.4 Syntax vs. Semantics

A naming system consists of two complementary sets of mechanisms: those that establish bindings of names
to objects, and those that subsequently make use of these bindings to resolve name references. Comer
and Peterson have observed that name resolution is a strictly syntactic process[6], and that all semantic
information (i.e. the meaning of a name with respect to a particular concurrent computation) resides in the
bindings of names to objects. A name is given a meaning by binding it to an object (or set of objects), and
that meaning is independent of the method by which references to that name are later resolved. An analogy
with compilers serves to illustrate the relationship between binding and resolution: Compilation of a program
requires a language definition step, which assigns operations to syntactic constructs, and a translation step,
which takes a given syntactic construct and generates the corresponding operations. Resolution is to binding
as translation is to language definition.



1.5 Overview

Typically, the influence of communication mechanisms (and hence naming systems) on the structure of
concurrent computations has been examined in an ad hoc manner. It has been shown, for example, that
limitations of the Ada[8] rendezvous mechanism (which relies on a comparitively restrictive naming system)
lead to programs that poll[12], and that the requirement that communicating processes in CSP[17] name
each other precludes certain desirable communication patterns. Improvements have been suggested for both
languages. Such analyses, while useful, have two shortcomings: they lack generality because they are stated
in terms of the syntax and semantics of the particular language or system in question, and they do not clearly
distinguish the roles of names and bindings, even though these are often critical. Therefore the results do
not extend in an obvious way to other concurrent systems.

The taxonomy enables a more systematic analysis of naming systems and their impact upon the struc-
ture of computations by defining a set of naming system properties that are independent of any particular
concurrent programming language or system. Once a particular subset of these properties have been shown
to hold for a naming system, it becomes possible to determine whether the naming system permits the
communication patterns necessary for the solution of a given problem. Instead of attempting to implement
the solution, it 1s only necessary to determine at a high level the naming system properties required by the
problem.

1.5.1 Structure of the Taxonomy

The naming system properties are defined using a model of concurrency that differs from conventional
models in two ways. First, it distinguishes exactly that part of the state of a computation that enables us
to determine the bindings and known names that exist at any point in the computation. Second, it specifies
for each communication in a computation the name(s) used in carrying out that communication.

We capture the relationship between names; bindings, and communication by augmenting the standard
partial-order model of concurrency[21] with information about the state of the naming system, as follows: A
computation is a partial order of events interconnected by explicitly represented communications. Each event
is the execution of an action by an object. The events are annotated with the names known to and bound
to the object at which the event occurs. Communications are triples containing the source and destination
events, and the name over which the communication occurs. The only significant characteristics of events
are their annotations, their positions in the partial order that constitutes a computation, and whether they
participate in a communication.

Each naming system property is a predicate in first-order logic that describes the structure of these
computations. A naming system is said to have a given property iff the computations it permits satisfy the
predicate. An ordering of the properties into six orthogonal pairs defines a lattice-structured hierarchy of
categories, which ranks naming systems according to their expressiveness. A category i1s a combination of
properties, and a naming system is a member of a category iff it has all of the corresponding properties.

1.5.2 Characteristics of the Taxonomy

To summarize: The model of concurrency, properties, and hierarchy together form a tazonomy of naming
systems with the following characteristics.

e Specification of communication semantics of naming systems: Work on naming in concurrent systems
has focused on resolution, the syntactic aspect of naming[6, 9, 20, 22]. The taxonomy identifies those
semantic properties that are significant in the specification of communication, which have received
little previous systematic study.

e Separation of concerns: Naming systems are examined in isolation both from other characteristics of
concurrent systems and from the implementation details of naming system properties.

e Utility: The hierarchy enables systematic evaluation of the relative expressiveness of naming systems.
This includes the selection or design of a naming system for a particular problem domain, comparison
of different implementations of equivalent naming systems, or checking the tractability of a problem
under a given naming system prior to implementing a solution.



e (overage: The taxonomy covers the naming system properties underlying variety of communication
models, including message-passing systems, shared data structures, rendezvous, dataflow, and single-
assignment variables (e.g. in parallel logic languages). Often models that differ substantially in other
respects have many naming system properties in common.

The rest of this paper 1s organized as follows: In section 2, we give definitions for the properties and
the hierarchy. Section 3 traces a path through the hierarchy that illustrates the correspondence between
successively more expressive naming system properties and increasingly general communication mechanisms,
which parallels the evolution of concurrent systems from CSP to Ada, Concurrent C, and Linda.

2 Definitions

2.1 Model of Concurrency

A computation is a a partially ordered multiset, or pomset[15], of events, together with a multiset of com-
munications. A pomset is a set in which an element may occur more than once, together with an ordering
relation. The relation is defined on the distinct occurrences of the elements of the pomset. That is, one
can think of the individual occurrences of a particular element as being indexed so that they can be distin-
guished. Similarly, the equality relation, =, only holds reflexively for each occurrence of an element—two
distinct occurrences of the same element are not considered to be equal.

2.1.1 Objects and their Behaviors

The objects in a computation are the “communicating entities” that comprise a concurrent system. Examples
of objects are CSP processes, Ada tasks, and clause evaluations in parallel logic languages. A behavior of
an object is a linear sequence of events (i.e. an execution thread), where each event is an occurrence of an
action. For each object there exists a program, which specifies a finite set of possible actions, and a (possibly
infinite) set of possible behaviors of the object. Actions are not distinguished by the values of any variables
to which they refer. In each computation, an object exhibits exactly one of its behaviors.

2.1.2 Names

A name is a tuple containing the identifiers that specify the destination of a communication. Often the only
such identifier is one that appears in the action that initiates a communication; e.g. send(P, msg) to send
a message to receiver P. In this case there is a 1-1 correspondence between identifiers and messages. Some
naming systems use multiple identifiers to specify a communication. In CSP, for example, the sender and
receiver of a message identify each other, as well as type of the message to be transmitted (see section 3.2).

2.1.3 Characteristics of Events

An event is distinguished from others by exactly four attributes: the object at which it occurs, its binding,
and domain (see section 2.1.5), and its position in the partial order of events in the computation.

Definition: The set of eventsis £ = O x D x B, where O is the set of all objects, and D and B are the set
of all domains and the set of all bindings, respectively. a

Notation: We denote the components of an event e as e.o (object), e.d (domain), and e.b (binding) a

Events are the “endpoints” of communications among objects, i.e., each event may be the source or
destination of one or more communications. We needn’t represent every underlying execution of an action
with a corresponding event. The only interesting events are those that participate in communications, or
those at which the state of the naming system changes (i.e. the set of names known to or bound to an object

is modified).



2.1.4 Communications

A communication is a (source event, name, destination event) triple. The name that appears in the com-
munication 1s an element of both the domain of the source event and the binding of the destination event,
indicating that the name is known at the object at which the source event occurs, and is bound to the object
at which the destination event occurs. The source and destination events of a communication are temporally
ordered such that the source event precedes the destination event. Examples of source/destination event
pairs are sending/receiving a message, writing/reading a shared variable, or invoking/accepting a remote
procedure call.

Definition: The set of communicationsisC =& x N x &. O

Notation: We denote the components of a communication, ¢, as c.s (source), c¢.n (name), and c.r (destina-
tion). O

2.1.5 Domains and Bindings

Generalizing from the the definitions in [6], a resolution mechanism is a function, R(n, (") whose arguments
are n, a name, and C, a context. A context is a function from names to sets of objects, defined by a set of
tuples. Each such tuple is a binding, i.e. (name, {set of objects}). The function R returns the set of objects
to which n is bound within context C'.

States and Mechanisms A context is a component of the state of the naming system. The resolu-
tion function reads, but does not modify, this state. It is possible to define analogous functions for those
mechanisms that do modify the state of the naming system.

The mechanism responsible for modifying contexts is the binding mechanism: B(n, C, O), where n is a
name, C' a context, and O a set of objects. This function binds n to the set of objects O in context C', and
possibly unbinds n from other objects. That is, it replaces (n, X) in C with (n,O), where X is the previous
set of objects to which n was bound.

The naming system state consists not only of one or more contexts, but also of the set of names known
to each object. The corresponding function that modifies this component of the state is A(o, K, N), where o
is an object, N 1s a set of names, and K is a function from objects to sets of names, representing the names
known by a given object, and defined as a set of tuples, (object, {set of names}). The function A replaces
(0,Y) with (o, N) in K, where Y is the previous set of names known to object o.

Since resolution is outside the scope of, and orthogonal to, our model of concurrency, we assume that
resolution always succeeds, and therefore does not affect the structure of computations that may be expressed
under a given naming system. Consequently, a simplification that we can make immediately is to assume a
single universal context, C' (i.e. a global namespace). Without loss of generality, we can also assume that
there exists a single space, K, for known names.

Annotation of Computations The state of the naming system, (C, K), at any point is the result of
applying the binding and resolution functions in some finite sequence, and starting from some initial state.
However, our model of concurrency is based upon partial orders of events, rather than on a state-transition
model, because this enables a much simpler definition of the concept of a communication, which is central
to the subsequent definitions of naming system properties. To capture information about the state of the
naming system, each event in a computation is annotated with the appropriate elements of C' and K.

There are two annotations for each event, called the domain and binding of the event, whose elements
correspond to elements of the known-names function, K and the context, C', respectively.

Definition: The domain (binding) of an event is the set of names known (bound) to the object at which
the event occurs, at the occurrence of the event. a

Domain of an Event An object “knows” a name at a point in its behavior iff it could originate a
communication over the name, were it free to execute any of its actions at that point. Let T be the finite set



of actions that an object can execute, and let eg...e;_1¢; be an initial subsequence of a possible behavior
of the object. Let event & be an occurrence of an action from 7. For all such events z, if the naming
system allows a computation in which the behavior eg .. .e;_12 appears (i.e. x is substituted for e), and that
computation contains a communication (z,n,y), then the name n is in the domain of e;.

Note that eg...e;_12 18 not necessarily a possible behavior of the object, since an object 1s not always
free to execute any of its actions. However, it indicates a set of names that is accessible to the object at the
point at which event e; occurs.

Binding of an Event Where the domain of an event describes the maximal set of communications that
may originate at the point in the behavior at which the event occurs, the binding of an event describes the
maximal set of communications that may terminate at the point in the behavior at which the event occurs.
A name may be known at a point in a behavior at which it is not possible for the object to use the name.
However, a name 1s bound to an object exactly when it is possible for a communication to terminate at that
event. In defining the binding of an event, we can therefore confine our attention to the possible behaviors
of an object:

Let eg...e;x and e .. .e;y be initial prefixes of possible behaviors of an object that are identical except
for their last event (z differs from y). If the naming system allows a computation containing eg .. .e;y, and
that computation contains a communication (z, n,y), then n is in the binding of #. That is, if the object is
capable of receiving a communication over the name n at the point in its behavior where z occurs, then n
1s bound to the object at x.

Correspondence There is a direct correspondence between the domains and bindings of certain sets of
events and the global state of the naming system. Consider taking a “snapshot” or “consistent cut”[5], of a
computation. This cut, s, constitutes a globally consistent state. The context that exists at s is simply the
union of the binding annotations of the events that immediately precede the cut. Similarly, the set of known
names that exists at s is the union of all the domain annotations of the events that immediately precede the
cut.

The domain of an event is determined by the semantics of the actions by which identifiers are created,
destroyed, and propagated among objects. For example, where identifiers are treated as data items, a name
may be added to the domains of subsequent events by receiving a message containing the name. Conversely,
a protection scheme may cause a name to be removed from the domains of subsequent events by revoking
access rights to the name.

The binding of an event is determined by the semantics of the actions by which identifiers are bound
(explicitly or implicitly) to objects. Examples of actions that cause bindings to be modified are attaching a
message port to a process, executing a read operation on a channel, or instantiating a new unbound variable
in a parallel logic language.

2.1.6 Computations

Definition: (precedes, —) Let e and f be two events. The relation e — f indicates that e necessarily
precedes f in time[19]. — is transitive, antisymmetric, and irreflexive. a

Definition: Two events, e, f are concurrent iff =((e — f) V (f — ¢)) a

Definition: A computation, v, is a pair (I, A), where II is a pomset ({e, ... € £),—), and A is a multiset of
communications, {¢|[(¢ € C) A (¢.s € ) A (c.r € IT)) such that:

V(s,n,r) EAs—r
AYe,feTl eo=fo= (e— )V (f—e)
AYe,f €Tl i (eo# fo)A(e— )= T(z,ny) EA(z=eVe—a)A(y=fVy—f) a

There are only two universal constraints on the structure of a computation: first, the source event of
a communication always precedes the corresponding destination event and second, there is a total order-
ing of events at every object. In addition, two non-collocated events are ordered only where there exists



Object P Object Q Object R

Figure 1: A computation

(transitively) a communication between the two events. Naming systems are differentiated according to the
additional constraints they impose upon computations.

Figure 1 shows a possible computation with three objects. The computation contains two communica-
tions: (e, n, f) (from object P to object @) and (g,m, k) (from object R to object @). Name n is in the
domain of event e and the binding of event f. Name m is in the domain of event g and the binding of event

h.

2.2 Naming Systems

Definition: A naming system is a specification of the allowable domains, bindings, communications, and
order of events of computations. For each naming system, a, there exists a mazimal computation set I'y, the
set of all computations specifiable under a. a

If a naming system admits the existence of particular domains, bindings, or communication patterns, then
each of these will exist in at least one of the computations in its maximal computation set. Therefore, the
naming system properties defined below characterize naming systems by stating the existence or nonexistence
of such computations in a maximal computation set.

2.3 Properties of Naming Systems

There are six orthogonal characteristics of naming systems: Mutability of bindings at runtime, name access
(ability of objects to learn new names during execution), binding of names to sets of objects, shared access to
names, “descriptive” names, and binding of multiple names to an object. Each naming system property is a
statement of the presence or absence of one of these characteristics in the set of all computations that may be
specified under a given naming system. These properties meet the following criteria: None of the properties
holds for every naming system; therefore, the properties reflect design decisions made in the development
of the naming system. Each property may be necessary to, or may preclude the existence of solutions to
certain classes of problems; therefore, the properties are relevant to the selection of a naming system that
is appropriate for the solution of a given problem. Finally, the definition of a naming system property does
not specify how the property is to be implemented.

In the definitions below, quantification is over the elements of a maximal computation set, I'. For the
sake of brevity, we use the following shorthand:



Notation:

“Jevent ” means Jec ll ey el

“d behavior ” means I3 ey €T

“d communication ¢” means Ice € A€~y el

“d communication set A” means IA €y € T

“Iname n” means I(e,n, f)e AecyeT a

The definitions of the properties also refer to the following auxiliary function:
Definition: g(n,e, A) = {o|((e,n, f) € A) A (f.o = 0)} a

The function f(n,e, A) denotes the set of objects at which the destination event(s) occur for those
communications in A that have source event e and name n in common.

2.3.1 Mutability of Bindings

A naming system that provides a mechanism for altering bindings at runtime is said to have the dynamic
binding property. The dynamic binding property provides the abstraction of indirect naming, which is
comparable to the abstraction provided by pointers. This property is required where a name (e.g. a “service”)
must remain constant while the object to which it is bound (e.g. the server that implements the service) varies
during the computation. While many naming systems allow dynamic binding, there are some significant
exceptions. CSP and languages based upon it explicitly eschew dynamic binding in favor of statically-named
processes (static binding), as does Ada (in which names used in communication are a concatenation of task TD
and entry ID). Dynamic binding is typically achieved by associating a fixed port or mailbox with successive
objects, or by making use of some shared data conduit, such as a channel, which is accessible to multiple
objects.

Definition: Dynamic binding (B):
J events e, f, communication set A, and name n :: (e #Z f) A (B(n, e, A) # B(n, f, A)) a
Definition: Static binding (b): —-B O

2.3.2 Name Access

The properties dynamic domain and static domain characterize the ability of objects to learn new names
during a computation. Where the dynamic domain property holds, names are typically treated as ordinary
data values that may be passed from object to object during execution, and appear as arguments in commu-
nication primitives. Thus the set of objects with which a given object is able to communicate may grow as
the computation progresses. This property is required by problems having an inherently dynamic structure,
where new objects (and hence new names) are created during a computation. Examples include simulations
of physical processes and data-parallel algorithms where the number of “worker processes” created varies
according to the size of the workload. Nearly all concurrent programming languages allow names to be
manipulated as data, CSP being a notable exception.

Definition: Dynamic domains (D):
Jevent f and namen :: (n € f.d) AV events e :: (e.o= fo)A(e— ) = (n & e.d) a

Definition: Static domains (d): =D O

2.3.3 Multiply-Bound Names

Where a name may be simultaneously bound to multiple objects (i.e. sets of objects), the naming system is
said to have the 1-N multiplicity property. The complementary property is 1-1 multiplicity. 1-N multiplicity
provides the abstraction of allowing communication with arbitrary groups of objects (e.g. broadcasting).



That is, communication over a multiply-bound name is a generalization of communication between exactly
two objects. This property is required where the size of the set of objects with which it 1s to communicate is
transparent to the originator of the communication. This is common in systems where objects are replicated
for fault tolerance (group broadcast in ISIS[4] is an example), and group communication is the primary
mode of object interaction in several systems, such as BSP[13], broadcast channels[2], and Associative
Broadcast[3]. In addition, concurrent systems in which objects communicate through shared data structures
(e.g. Linda[14]) have the 1-N multiplicity property as well, since multiple objects may read any value written
to such a data structure.

Definition: 1-N multiplicity (M):
J event e, communication set A, and name n :: |3(n,e, A)| > 1 a

Definition: 1-1 multiplicity (m): =M a

2.3.4 Multiply-Named Objects

Some naming systems allow a given object to refer to another object by more than one name. This dual of
1-N multiplicity is called the aliased names property. Where every object is known to every other object
by at most one name throughout the computation, the unaliased names property holds. Typically, multiple
aliases are required where the name signifies an action to be performed by the destination object, as in
an entry (e.g. Ada), or remote procedure call. Multiple aliases enable a destination object to selectively
accept communications from a given source object. Such selectivity is often required to prevent polling (see
section 3.3).

Definition: Aliased names (A):
3 communications (e, n, f),(g,m,h) e.o=g.oANfo=hoAn#m a
(

Definition: Unaliased names (a): -A O

2.3.5 Name Sharing

A shared name is one that is accessible by more than one object, i.e., two communications over a single
name may be initiated by distinct objects. Naming systems that permit such behaviors are said to have the
shared-name property; if all names are accessible by at most one object then the naming system has the
private-name property. Shared names are required where an object to which exactly one name is bound is
to be the destination of communications from more than one source object, or where names are to be passed
as data between objects. While most naming systems permit name sharing, 1t is sometimes desirable to
prevent the nondeterminism that can arise from multiple communications over the same name. The BSM
system[16], designed for real-time process control, allows each process to receive messages from at most one
other process. This restriction assumes that each process has at most one name, the names are not shared,
and bindings are not mutable. In section 3.2 we show that the CSP naming system also does not permit
names to be shared, because it requires senders and receivers to name each other, so that each (sender,
recetver) identifier pair constitutes a unique name.

Definition: Shared names (S):
3 communications (e, n, f),(g,n,h) 1 e.0 £ g.0 a

Definition: Private names (s): =S m|

2.3.6 Descriptive names

Descriptive names carry information about the states of objects to which they are bound. That 1s, instead
of associating arbitrary identifiers with objects (e.g. process “X”), it is often useful to be able to assign
meanings to identifiers (e.g. “idle”) that are bound to objects exactly when they are in the corresponding



state. The naming system must provide mechanisms for establishing and removing such bindings so that
they always reflect the current states of the objects. Since a descriptive name reflects an object’s state, and
the range of states is potentially infinite, it must further be possible for each name from an infinite set of
names to be bound to the object during a computation.

Such naming systems are said to have the descriptive reference property, while naming systems in which
names are uninterpreted identifiers are characterized by nondescriptive reference. Descriptive reference is
required where the identities of a set of objects that are to participate in a given communication depends upon
the local states of the potential participants. For example, the initiator of a deadlock-detection computation
may need to send a message to “all processes waiting for resource R.” Most conventional naming systems
do not support descriptive reference. The designers of Concurrent C addressed the limitations in Ada that
are due to its lack of descriptive reference by introducing the selective accept action, which effectively binds
a descriptive name to the object (process) that executes it (see section 3.5). Both Associative Broadcast
and Linda integrate descriptive reference with dynamic binding and 1-N multiplicity, allowing dynamic,
descriptively-named sets of objects to be specified as the destinations of communications, although the
manner in which these implement their naming system properties differ fundamentally.

Definition: Descriptive reference (R):

3d behavior eg ... :: Uei.b is countably infinite O

)

Definition: Nondescriptive reference (r): =R a

2.4 Hierarchy of Naming Systems

The six mutually exclusive pairs of naming system properties form the axes of a coordinate space, within
which exists a complete lattice of naming system categories. A category is a unique point in the coordinate
space, having one property from each axis.

Definition: A coordinale is one of the properties {B, b, D, d, M, m, A, a, S, s, R, r} a

Definition: (satisfies, ) Let T' be a maximal computation set and P a coordinate. T' satisfies P iff
Vv :v €' :: Pis true for 4. m]

Definition: (subsumes, 3, w.r.t. coordinates) Let T'y be the set of all maximal computation sets, and P, Q)
two distinct coordinates. J is a reflexive, asymmetric, transitive relation such that:

POQ<«<= (VI T, €ly) = (T, FQAT, F P) =
(T EPHOA(Ty F QYA (T, UT E PYA(T,UT, F@)) O
From their respective definitions, it follows that
BdOb,DO3Od M IJJm,A 3Ja,SJs,and R Jr.
Definition: An azis is one of the ordered sets of coordinates
(B, b), (D, ), (M, m), (A, a), (S, s), (R, 1) 0

Definition: A category is a tuple of coordinates Ry ... Rs, one from each axis a

Definition: Let J = Ry ... R5 be a category. Naming system a is a member of J iff
Vi:0<:<b T, FR; a

Definition: (subsumes, J, w.r.t. categories) Let J and K be categories. J 3 K iff each coordinate of J
subsumes the corresponding coordinate of K a
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Figure 2: A portion of the hierarchy

The core of the hierarchy is the subsumes relation, 3. If two distinct coordinates P and ) are related by
P 3 @, then a larger set of computations satisfies P than ). This larger set contains computations that
violate @ but not P;i.e. P is a weaker constraint than ¢). Thus a naming system that has property P allows
computations that cannot be obtained under a naming system with property . Where category J subsumes
category K, each naming system that is a member of J allows computations that cannot be obtained under
any naming system that is a member of K.

3 Examples

While every naming system belongs to one of the categories of the hierarchy, an exhaustive classification of
existing naming systems is beyond the scope of this paper. This section illustrates the 7 relation among
several representative categories with a traversal of one of the many possible paths through the hierarchy
from the category bdmasr, also called 1, to BDMASR (T). The intervening categories contain several
familiar naming systems. Figure 2 shows a portion of the hierarchy with representative naming systems for
each category. Lines between categories are labeled with the properties by which the categories differ. Solid
outlines indicate categories discussed in this section.

3.1 Classification Procedure

To classify a naming system as a member of a particular category, we must show for each property (co-
ordinate) of the category that the naming system’s maximal computation set satisfies the property. The
first step in this procedure is to identify the elements of computations (objects, names, communications,
domains, bindings), which, for example, a given concurrent system may define in terms of processes, process
identifiers, communication operators, and messages.

The next section contains a detailed classification of CSP. CSP has influenced the design of many con-
current programming systems, and so its classification provides a relatively well-understood starting point
for a traversal of the hierarchy of naming systems. Subsequent sections examine successively more expres-
sive naming systems. In the interest of brevity, however, their full classification is omitted, and only the
properties by which they differ are discussed in detail.
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3.2 Classification of CSP

Communicating Sequential Processes[17] is a model of concurrent computation that emphasizes simplicity of
communication in order to make reasoning about the interactions of processes manageable. By classifying it
within the taxonomy, we show that its naming system 1s correspondingly simple—in fact it differs from the
category containing the simplest possible naming systems only in that it has the aliased names property. By
comparing the position of the CSP naming system in the hierarchy to the positions of other naming systems,
we gain a more precise understanding of the relative simplicity of CSP, and of its applicability to problems
that require specific naming system properties.

3.2.1 Elements

A CSP program specifies the behavior of a fixed set of processes. Each such process is labeled with a unique
identifier. Communication in CSP consists of synchronous message-passing among exactly one sender and
one receiver, and the participants for each communication are fixed by the program text. The value of a
variable # local to process P is assigned to the variable y at process @ when P executes the statement Qle(x)
and ) executes the statement P?¢(y), where ¢ is an optional constructor, also called a message type. FEach
action of a CSP process is either a send action, a receive action, or an internal action.

e QObjects: Each object is a distinct CSP process.

e Names: Let I be the set of possible CSP process identifiers, and C' the set of possible constructors. A
name is a (sender-id, constructor, receiver-id) triple from the set I x C' x I.

o Communications: Each communication arises from the execution of a corresponding pair of send /receive
actions. Let event e be the execution of the send action jle(x) by the process labeled é. Let event f be
the execution of the corresponding receive action i7¢(y) by the process labeled j. Then the computation
contains the communication (e, n, f), iff n is identifier triple (4, ¢, j).

e Domains: The identifiers appearing in send actions are fixed by the program text. Therefore, the
domain of each event contains a name n iff n is the identifier triple (P, ¢, j), where P is the process
identifier, and jle(z) is a send action of the process, for some variable .

e Bindings: CSP processes can choose nondeterministically to execute one of a finite set of receive actions.
Let eg...2 be an initial prefix of a behavior of a process whose 1dentifier is (), such that event x is a
receive action chosen nondeterministically from the set {tg,... 5 }. Let t; = i7¢(y) for 0 < j <k, and
some variable y. Then the name n is in the binding of # iff n is the identifier triple (¢, ¢, @).

As an example, consider the following simple CSP program:

[ P Qle(x); Rld(y)
[|Q :: P7e(u); Rle(v)
[|R:: P7d(w)|Q7e(z) ]

Process P has a single behavior consisting of two events, one for each of its sequential send actions. The
behavior of () 1s a receive action followed by a send action, while R has two possible single-event behaviors:
either to receive from P or from (). The domain of both events in the behavior of P is {(P,¢,Q), (P, d, R)}.
The domain of both events in the behavior of @ is {(Q, e, R)}. The binding of @’s first event is {(P,¢, Q)},
while the binding of the second event is null. Finally, the domain of the single event in both possible behaviors

of R is null, while in each case the binding is {(P,d, R),(Q, e, R)}.

3.2.2 Properties
The CSP naming system is a member of the category bdmAsr:

e Static binding: If a name n = (7, ¢, j) appears in the binding of an event, e, then the identifier of e.o
is j (see Bindings, above). Since CSP process identifiers are unique, all events e where n € e.b are
collocated, and the naming system has the static binding property.
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e Static domains: For any two events e, f, if e.o = f.o, then e.d = f.d. Therefore the naming system has
the static domains property.

o -1 multiplicity: From Static binding, above, we have e.bN f.b = () for two events e and f, if .o # f.o.
Therefore each name is bound to at most one object, and the naming system has the 1-1 multiplicity

property.

e Nondescriptive reference: The binding of each event in a behavior is fixed by the program text that
specifies the possible actions of the process. The set of possible actions 1s finite, and each receive action
specifies a finite set of sender-ids. Therefore, in a behavior eq ..., |J; €;.b is finite, and nondescriptive
reference holds.

o Aliased names: Let P be the identifier of a process with actions Qle(#) and Q!d(y). Let @ be the
identifier of a process with actions P7¢(v) and P?d(w). Then there exists a computation containing
two communications (e, n, f) and (g, m, h), such that e and g are events of P, f and h are events of @),
and n = (P, c,Q), m = (P,d, Q). Therefore the naming system allows aliased names.

e Private names: For any name n = (¢,¢,j), n € e.d iff e is an event of the process whose identifier is i.
Therefore, for any two communications (e, n, f) and (g,n, k), e.o = g.0, and the naming system allows
only private names.

3.3 Category bdmAsr (CSP) vs. L

The CSP naming system resides in a category immediately above L which is the greatest lower bound on
the lattice, and the category containing the simplest naming systems in the hierarchy. We have found no
general-purpose models of concurrency in the literature whose naming systems reside in L, although some
specialized naming systems like the one described in [16] are members of that category. Nevertheless, it is
instructive to study L as a lower limit on the expressiveness of naming systems. Naming systems that reside
higher in the hierarchy presumably incur some overhead in their implementation. This additional complexity
is only justified if these naming systems are also more expressive. One may question, for instance, why even
naming systems such as that of CSP, for which simplicity was a primary design goal, are not members of L,
and whether the aliased names property in particular imparts any additional expressiveness to CSP.

3.3.1 A Resource Allocation Problem

The combination of properties that comprise L are sufficiently restrictive to make even some simple problems
impossible to solve efficiently. Consider a simple resource allocation algorithm, in which client objects request
and release units of a single resource from a centralized manager object. To limit overhead within the
manager, it does not queue requests that it can’t immediately satisfy. Unsatisfiable requests are rejected
and may subsequently be reissued by the client. Since no particular communication mechanism is assumed,
it 1s not specified whether communication is synchronous or asynchronous. For purposes of this example, we
ignore issues of fairness. The objects act as follows:

1. There are two types of communications from clients to the manager: one which signals a request, and
one which signals a release. Clients issue request and release in arbitrary order, provided that # of
releases 1ssued < # of succeed responses received. Clients must wait for either the succeed or the
fail response from the manager before issuing subsequent requests.

2. There are two types of communications from the manager to a client, one which signals success of the
preceding request, and one which signals failure of the request. Upon receiving request, the manager
responds with succeed or fail before processing more requests or releases.

3. A request succeeds iff initial # of resource units — # succeed issued + # releases received > 0.
4. The manager may not refuse to accept a release.

5. There are no communications between clients.
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An implementation of this algorithm under almost any naming system is straightforward. However, it is
inefficient in that it relies upon polling. Polling occurs where an unbounded number of communications may
pass between two objects before at least one object makes progress[12]. In a case where a client requires a
request to succeed in order to make progress, the manager may issue an unbounded number of failures to a
given client before issuing a success response.

The tendency to poll is often viewed as an artifact of a synchronization mechanism, or simply poor
programming practice. However, we show here, as is alluded to in [12], that polling can be a consequence of
a restrictive naming system.

3.3.2 Avoiding Polling

In order to prevent clients from polling the manager, we must eliminate the condition under which the
manager is forced to issue a failure in response to a request. Since the problem specification states that
the manager responds immediately to a request with fail when it has no free resources, eliminating the
possibility of fail responses implies that the manager must not receive a request unless it is prepared to
issue succeed. Thus it must be possible to specify the type of communication that the manager will accept
at a given point in its behavior.

Theorem: A non-polling solution to the resource allocation problem requires the aliased names property.
O

Proof: Consider a computation consisting of the manager and two clients, A and B, in which the manager
never issues fail. Let eg...sxr... be the behavior of the manager, such that s is an event at which the
manager issues succeed, and the number of free resources has become 0.

1. Let a be the source event of a communicationat A, and b the source event of a communication at B, such
that a, b, and s are concurrent. By condition 1, each is either a request or release. By conditions 5
and 2, the clients have no information about each others state, or the state of the manager. Therefore,
each communication may be either a request or a release.

2. If the communication originating at a is a request, and the communication originating at b 1s a release,
then the communication (a, n, ) does not exist, since otherwise the manager would have to issue fail
at r. The communication (b, m, z) exists, since the manager may not refuse a release (condition 4),
and no other possible communications exist.

3. If instead the communication originating at « is a release, the communication originating at b is a
request, then the communication (a, [, z) exists, and the communication (b, p, #) does not exist.

4. Since either a request or release may originate at a, [ € a.d and n € a.d. However, n & x.b (step 2),
and [ € z.b (step 3). Therefore, | # n ({ and n are distinct names), and the aliased names property
holds. ad

Informally, polling can be avoided only if distinct names for requests and releases are known to each client,
so that the manager can accept only releases when a request would result in a failure response. If a client
may communicate with the manager over only a single name, then 1t is impossible to determine whether the
manager will receive a request or a release at any given point. Since it may not refuse to accept releases, it
cannot refuse to accept requests either, and may be forced to respond with fail. Thus a non-polling solution
to the resource allocation problem does not exist under any naming system that is a member of L. However,
the CSP naming system and all others that subsume it have the properties necessary for non-polling solution.

3.3.3 Expressiveness Principle

Although the manager does not queue requests, clearly an unsatisfiable request must be blocked or queued
(depending on the synchronization properties of communication) at some level in order to avoid polling. Thus
one might observe that the responsibility for queueing requests has merely been shifted to the communication
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subsystem. This is true, and it 1s in fact desirable in most circumstances to implement the necessary queuing
once in the communication subsystem, rather than repeatedly at the object level. Note, however, that it is
not possible to force the communication subsystem to handle queueing of requests in the first place unless
there exists some action by which the communication subsystem can be informed when the manager is
prepared to accept a request. That action is precisely the binding of the name associated with requests to
the manager object, which in turn requires the existence of distinct names for requests and releases.

This illustrates a general principle of the relationship between naming systems and communication: A
more expressive naming system does not alter the communication requirements of an algorithm. However,
it allows the required actions (e.g. queueing) to be specified at the interface between objects and the
communication subsystem, and thereby allows the actions to be implemented at a lower level.

3.4 Category bDmASr (Ada) vs. bdmAsr (CSP)

Ada[8] is a language designed from the beginning with concurrent programming in mind, and addresses some
of the perceived limitations of CSP. Ada allows objects (called tasks) to be created on the fly, and thus must
allow existing tasks to learn the names of newly created ones. Ada also relaxes the constraint in CSP that
requires objects to identify each other in order to carry out communication.

Communication in Ada is by means of the rendezvous', using the entry call and the accept action. A
task initiates a communication by specifying a task tdentifier and an entry identifier of the called task. The
task identifier denotes the task that must execute the accept action for the specified entry.

3.4.1 Properties of the Ada Naming System

A name as defined by the Ada naming system is a pair, (destination-task-id, entry-id). This differs from
CSP in that the source task 1s not identified.

The domain of an event 1s determined by two types of identifiers: entry identifiers and identifiers of
declared tasks, which are specified as constants in the program, and identifiers of created tasks, which are
pointer values that can be assigned to local variables of the task. A name (¢, ¢€) is in the domain of an event
iff ¢ is an entry-id fixed by the program text of the task, and ¢ is a declared-task-id fixed by the program
text of the task, or ¢ is a created-task-id assigned to a local variable of the task at the occurrence of the
event. Thus the Ada naming system has both the dynamic domains property and the shared names property.
However, Ada’s support for dynamic domains is not as general as it could be, since tasks cannot learn new
entry identifiers, nor can they learn the identifiers of declared tasks. If a task is to have access to these
identifiers, they must be specified as constants in the program.

Ada tasks may choose nondeterministically to accept one of a set of entries. Thus the binding of an event
that is an accept action is {(¢,d), (¢,¢), ...}, where i is the identifier of the task at which the event occurs,
and d, e, ... are the entries specified in the accept action.

As does CSP, Ada has the aliased names property, because two names (¢,d) and (¢,e) may coexist in
a domain. Tt has the static binding property and the 1-1 multiplicity property because a name (¢,e) is
bound only at events of the object whose identifier is ¢, and task identifiers are globally unique. Finally,
nondescriptive reference holds because the binding of each event is fixed by the program text, which specifies
a constant and finite set of entry identifiers.

3.4.2 Advantages of the Ada Naming System

One of the early criticisms of CSP was that its use of symmetric names (receivers identify senders) prevented
its use in problems that require “anonymous” senders. For example, it is often the case that an object that
implements a service (e.g. in an operating system or network routing protocol) must receive communications
from an indeterminate set of clients. While it is accurate to say that this limitation of CSP is due to its
symmetric names, it is important to note that this use of symmetric names is only one of the possible mani-
festations of the private names property. The shared names property of the Ada naming system distinguishes
it not only from CSP, but from all naming systems that allow only private names, regardless of how the

1 Ada also permits tasks to share variables, but the semantics of shared variables are not completely specified.
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private names property is realized. Examples of systems in which communication among objects is specified
using private names include dataflow languages[1] (streams), parallel logic languages[23] (single-assignment
variables), and point-to-point channels.

The Ada naming system is further distinguished from that of CSP by the dynamic domain property.
This property is required for the implementation of “reactive systems,” where events in the environment
(e.g. a user login) necessitate the creation of new objects at runtime. Dynamic domains are also useful
in data-parallel computations, where the number of objects among which a data set is partitioned varies
according to the size of the input.

3.5 Category bDmASR (Concurrent C) vs. bDmASr (Ada)

Concurrent C[11] is an extension of the C language[18] that supports distributed programming. It resembles
Ada in that a computation consists of a dynamic set of processes that communicate using the rendezvous
mechanism? through transactions (equivalent to entries in Ada). A process initiates a communication by
executing a transaction call. The transaction call 1s completed when the destination process executes the
accept action for the given transaction.

The designers of Concurrent C have observed that Ada would benefit from the ability to accept out-
standing entry calls conditionally, based on the values of the parameters[12]. In Concurrent C, an accept
action may be augmented with the qualifier suchthat (expr), causing an outstanding transaction call to be
accepted when ezpr is true for the parameters of the transaction call. This generalization of accept is the
principle advantage of the Concurrent C naming system over that of Ada, as it implements the descriptive
reference property.

3.5.1 Properties of the Concurrent C Naming System

A transaction call specifies two static i1dentifiers that indicate the called process and a transaction within
that process respectively. In this respect Concurrent C names resemble those defined by the Ada naming
system. However, because of the suchthat qualifier, Concurrent C names have a third component, consisting
of the values of the parameters of the transaction call, i.e., a name is a triple, (process-id, transaction-id,
parameter-list). Let event e be the execution of the action accept #(... ) suchthat (expr) by the process whose
identifier is p. Then a name n is in the binding of event e iff n = (p,¢,r), where r is a parameter list for
which expr evaluates to true. Because expr may refer to the local variables of the process, the set of names
that is bound to an object at an event may depend upon the local state of the object. This in turn implies
that the set of names that may be bound to an object over its entire behavior 1s potentially infinite, and
thereby the descriptive reference property holds.

The remaining properties of the Concurrent C naming system are identical to those of the Ada naming
system. The way in which Concurrent C implements dynamic domains is more general than Ada’s imple-
mentation because both process identifiers and transaction identifiers are values that can be passed from one
process to another. While an object may have any number of names bound to 1t, each name, when bound, is
always bound to the same object, because process identifiers are unique and static. In section 3.6 we discuss
naming systems that combine descriptive reference with dynamic binding and 1-N multiplicity.

3.5.2 A Preemptive Scheduling Problem

The descriptive reference property is required when the set of communications an object is prepared to
receive varies according to the state of the object, and the state space of the object is potentially infinite.
Consider the problem of managing prioritized access to a single resource (perhaps a specialized processor or
device controller). Asin the resource allocation problem described in section 3.3.1, client objects request and
release the resource from a manager object, and the manager does not queue requests. Associated with each
request is an integer priority that is used to determine when one client may preempt another in accessing
the resource. The objects act as follows:

2More recent versions of Concurrent C allow asynchronous communication as well.
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1. Clients may initiate either a (request, p) communication, or a release communication to the manager,
where p is an integer priority. Clients must wait for either the succeed or the fail response from the
manager before issuing subsequent requests. Upon receiving succeed, a client issues release before
issuing another request, iff it has not received preempt subsequent to the most recent succeed.

2. There are three types of communications from the manager to a client, one that signals success of
the preceding request, one that signals failure of the request, and one that preempts the most recent
succeed . Upon receiving (request, p), the manager responds with succeed or fail before processing
more requests or releases.

3. A (request, p) succeeds iff the resource is currently free, or if p > ¢ where ¢ is the priority of the
most recent successful request. In the latter case, the manager issues preempt to the client to which
it 1ssued the most recent succeed, before responding with succeed to the current request.

4. The manager may not refuse to accept a release nor a satisfiable request.
5. There are no communications between clients.

As in the resource allocation algorithm, a client may make an unbounded number of unsuccessful attempts
to obtain the resource before succeeding. However, in this case it is not sufficient for the naming system to
allow the manager to distinguish only between requests and releases, it must also distinguish satisfiable from
unsatisfiable requests.

3.5.3 Avoiding Polling, Revisited

Again, eliminating polling requires that the manager not be forced to issue fail in response to a request.
The manager can satisfy a request when the priority of the request exceeds the priority of the most recent
successful request. Thus the name over which the request communication is initiated must encode the priority
of the request, and that name must be bound to the manager object exactly when it is able to satisfy the
request.

Theorem: A non-polling solution to the preemptive scheduling problem requires the descriptive reference
property. O

Proof: Assume that the set of names that may be bound to the manager object contains at most m names.
Consider a computation consisting of the manager and & (k > m) clients, in which the manager never issues

fail.

1. By conditions 1, 2 and b the first event at each client may be the initiation of a request communication,
all these events may be concurrent, and the priorities of all requests may be distinct.

2. Since k requests are initiated concurrently and at most & — 1 names are ever bound to the manager,
there exist at least two communications that are initiated over a common name. Let a be the source
event of the first such communication, (request, p). Let b be the source event of the second, (request,
q). Let n be the common name.

3. Let eg...sxzr... be the behavior of the manager, such that s is an event at which the manager issues
succeed, in response to a request whose priority is w, such that p < w < ¢. Then (b,n,2) is a
possible communication, since ¢ > w and the manager may not refuse satisfiable requests (condition 4).
Therefore, n 1s bound to the manager at event xz. Since a@ and b are concurrent, and n is bound at z,
(a,n, ) is also a possible communication. By condition 3, the manager must issue fail at event r in
this case. Contradiction.

4. By step 3, there are at least £ names that are bound to the manager. As k& — oo, the number of names
that must be bound to the manager grows without bound, and the descriptive reference property holds.
O
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Note that it is not necessary for there to be k clients in order to generate a set of requests that require
k names to be bound to the manager, nor need the requests be originated concurrently. These assumptions
merely shorten the proof.

The above example further illustrates the principle mentioned in section 3.3.3: A descriptive name makes
visible at the interface to the communication subsystem some portion of the state of the object to which it 1s
bound. This allows decisions about blocking or queueing communications to be made at a lower level, even
when these decisions are a function of the local states of objects.

A mechanism that implements descriptive reference is useful not only when the set of names that are
bound to an object during a computation is potentially infinite, but also when it is finite, yet large. It is
much more clear, concise, and efficient to write accept {(z) suchthat (0 < x < 100) in Concurrent C, for
instance, than it is to enumerate a family[12] of 99 entries in Ada, one for each possible value of «.

3.6 Category T (Linda and Associative Broadcast)

There exist naming systems that are members of category T, which subsumes all the categories of the
hierarchy. Despite the existence of such naming systems, it is often preferable to use a less expressive
naming system because it can be implemented more efficiently. We have already seen that the aliased
names and descriptive reference properties may require the communication subsystem to block or queue
communications, and this may not be desirable in all cases. Similar tradeoffs exist for other naming system
properties. For example, one of the naming systems in T relies upon a logically shared data structure, which
can be difficult to realize on distributed architectures where processors do not share physical memory.

Below, we contrast the naming systems of Linda[l4] and Associative Broadcast[3], both of which are
members of T, in order to show that naming systems whose properties are identical may nevertheless have
markedly different implementations. Unlike Linda processes, Associative Broadcast objects communicate
using asynchronous message passing, subject to only a weak ordering constraint. This shows that the set
of properties that constitutes the category T can be implemented in the absence of logically shared data
structures.

3.6.1 Linda

A Linda program specifies a set of processes that communicate by inserting, reading, and removing tuples of
data values in a logically shared data structure called the tuple space (TS). The tuples are stored unordered
in TS. Processes manipulate TS using three operations: in(%), which removes the tuple ¢ from TS, out(t),
which places t in TS, and read(t), which reads ¢ but does not remove it. Each data value in a tuple has a
type. t may be a pattern that contains a formal parameter in some of its fields. The tuple returned by the
read(1) or in(t) operation is one in which data values match the types of formal parameters. For example,
the operation in( “size”, var z), where z is of type integer might match the tuple (“size”, 20). If more than
one tuple in TS matches, one is chosen arbitrarily. If none match, the operation blocks until some process
inserts a matching tuple in TS.

3.6.2 Associative Broadcast

Associative Broadcast uses message broadcasting as the fundamental mode of communication among objects.
Communication is 1-N: A sender specifies a target set of objects that are to receive a message. 1-1 com-
munication is merely a special case broadcast in which the size of the target set is 1. Associated with each
object is a profile, which consists of a set of attributes. An attribute is either a symbol (a simple attribute) or
a (symbol, value) pair (a compound attribute). The symbols may be treated as data values and passed from
one object to another in a message. An attribute may represent the {ype of an object (operations it supports)
or an abstraction of the object’s state. For example, in a distributed hashing algorithm, the profile {INSERT,
FIND, (MIN, 0), (MAX, 10)} might indicate that the object supports the INSERT and FIND operations on
key values in the range 0-10.

An object consists of a set of local data structures, and a set of operations. Receipt of a message causes
the operation indicated in the message to be executed. The operation may modify local data, alter the
profile of the object, and broadcast messages. A message is a tuple, ([selector], arg, ...), where [selec-
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tor] is a propositional formula over attributes that specifies the target set of the message. For example,
broadcast([INSERT AMIN < 3], z) might send the value x to all object whose MIN attribute is less than 3, and
cause them to perform the INSERT operation using the value x. After a message is broadcast, the selector
contained in the message is matched against the profile of each object. If the selector is true for an object’s
profile, the message is received by the object. The broadcast primitive is not atomic. The profile of an object
may change while the message is in transit. In this case, the object is not guaranteed to receive the message.
Two messages are guaranteed to arrive in the order they were sent only if they were sent by the same object.

3.6.3 Elements

e Communications: In Linda, the execution of an out action may give rise to any number of communi-
cations, including 0. The number of communications is defined by the number of subsequent read and
in actions on the tuple placed in TS by out. Thus a communication (e, n, f) occurs where event e is
the execution of an out action, and f is either a corresponding read or in. In an Associative Broadcast
communication, (e, n, f), e is the execution of the broadcast action, and f is the receipt of the message.

e Names: Communication in Linda is through the TS, which is in effect a content-addressable buffer.
Thus the name over which a communication (the “transmission” of a tuple) occurs is the tuple itself,
and the set of names defined by the Linda naming system is exactly the set of tuples that may appear
in TS. Names and data are one and the same in Linda. Associative Broadcast names are simply the
selectors appearing in messages.

e Bindings: Let event e be the execution of the action in(?) or read(t) by a Linda process, where ¢ is a
pattern. Then e.b is exactly the set of tuples that match ¢. In Associative Broadcast, the binding of
an event 1s determined by the composition of the profile of the object at which the event occurs. Let
event f be the receipt of a message, such that the profile of object f.o at the occurrence of f is P.
Then n € f.b iff P satisfies n. That is, a message may be received at f only if its selector is satisfied
by P.

e Domains: Since names are data tuples in Linda, a name is known to a Linda object exactly when it
knows all the elements of the name. Let n = (dp,...,d;). Then n € e.d iff for all ¢, d; is either a
constant fixed by the program text of the object at which e occurs, or a value of a local variable of the
object. Similarly, an object in Associative Broadcast knows a name (selector) when it knows all the
symbols appearing in the formula that constitutes the name.

3.6.4 Properties

T differs significantly from the categories discussed earlier in that it combines the descriptive reference
property with 1-N multiplicity and dynamic binding. The dynamic domains, shared names, and aliased
names properties of Linda and Associative Broadcast are similar to those of naming systems examined
earlier, so we omit discussion of these properties here.

e Dynamic Binding: Any number of copies of a given Linda tuple may appear in TS, either sequentially
or simultaneously. Thus it is possible for two communications (e, n, f) and (g, n, k) to exist, where
e and g are occurrences of distinct out actions of n, and f and h are occurrences of distinct in or
read actions. Since f and h may occur at distinct objects, the Linda naming system has the dynamic
binding property. Dynamic binding also holds for Associative broadcast. For communications (e, n, f)
and (g, n, h), n may be satisfied by profile P at f, and by profile @ at h, where P and @ are profiles
of distinct objects.

o 1-N multiplicity: Let e be the execution of out(t), and f and g the executions of read(t) by two distinct
objects. Then the communications (e, ¢, f) and (e,t, g) satisfy the definition of the 1-N multiplicity
property. Similarly, a message in Associative Broadcast may be received by at least two distinct objects.

o Descriptive Reference: For an action of a Linda process in(?), where ¢ is a pattern containing formal
parameters whose range is infinite (e.g. formal parameters of type integer), there exists an infinite
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Figure 3: Partitioning of edges among objects

set of tuples that match ¢. Therefore, the set of names bound at the occurrence of such an action is
infinite. In Associative Broadcast, the set of potential profiles of an object is infinite. For each such
profile, there exists a distinct set of selectors that are satisfied by the profile. Therefore, in an infinite
behavior, an infinite set of names may be bound to the object.

3.6.5 Communication Abstraction

Commaunication abstraction extends to communication the same principles of abstraction that are commonly
applied to data types, synchronization, and control sequencing[10]. A naming system with the above three
properties enables communications to be specified at a level that is significantly more abstract than do
naming systems in which these properties are absent. Description is the form of abstraction provided by
descriptive reference, which incorporates the state of an object into the names that are bound to it. When
combined with the grouping abstraction of 1-N multiplicity, arbitrary sets of objects can be descriptively
named. Dynamic binding adds ndirection, allowing the membership of a descriptively named group to vary.
These forms of abstraction are, respectively, generalizations the structured naming, space uncoupling, and
continuation passing properties of Linda mentioned in [14].

3.6.6 A Distributed Cycle-Detection Problem

The manager object in section 3.5.2 represents a special case of descriptively-named groups in which the
group 18 always of size 1 or 0, and there is only one possible member of the group. However, there exist
problems that naturally engender groups of objects in which each object is a potential member of every group,
and the membership of each group is dynamic and determined by input from the environment. In these cases
group membership is determined by the global state of the execution. Because of this, such problems are
difficult to solve using a distributed (no global data structures), and symmetric (objects execute identical
programs, no object is distinguished as a coordinator) algorithm in the absence of descriptive reference,
dynamic binding, and 1-N multiplicity.

Consider the problem of detecting cycles in a dynamic graph that is stored by partitioning its edge
set among a set of objects. Each edge is an ordered pair of nodes, (u,v), and is stored at exactly one
object (figure 3). Such graphs arise, for instance, from the precedence relation among transactions in a
replicated, distributed database. It is necessary to check these graphs for cycles to determine whether
transactions executed during a network partition failure are serializable[7]. The following solution uses
“probe” communications among objects to traverse the graph in place. The graph is not frozen while cycle
detection occurs—edges may be added to the graph concurrently with ongoing executions of the algorithm.

1. There are two types of communications: (add, (u,v)) is a communication from the environment to
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Figure 4: Probe propagation

an object, causing it to add the edge (u,v) to the set of edges it maintains. Receiving (probe, n, p)
causes the object to propagate the probe p along all edges reachable from node n.

2. Upon receiving (add, (u,v)), the object propagates a new, unique probe through the graph (figure 4).
Beginning at node v, the object labels the nodes of a traversed edge with p, and issues (probe, n, p)
for each node, n, encountered in the traversal. If a node is labeled twice, a cycle exists.

3. Upon receiving (probe, n, p), p is propagated as above, starting at node n.

4. An object receives (probe, n, p) only if n is a node of one of the edges it maintains.

Because there is no provision for objects to communicate their edges to each other, nor for any one object
to coordinate an instance of the algorithm, an implementation must be both symmetric and distributed.
Furthermore, condition 4 requires minimal communication: an object may receive a probe only if it actually
maintains an edge along which the probe is to be propagated. This disallows a brute-force implementation
in which every object receives every probe.

The algorithm requires the descriptive reference property because of the requirement for minimal com-
munication: Each object maintains a subset of an infinite set of possible nodes. 1-N multiplicity is required
because a given node may belong to any number of edges, and a probe that traverses an edge incident on
node n must reach all objects where n appears. Finally, dynamic binding 1s required because edges may be
added while probes are traversing the graph: The set of objects at which node n appears may differ for each
communication (probe, n, p).

We omit a formal proof in favor of giving an example of how the algorithm is expressed using Associative
Broadcast. Each object has the following identical specification:

initially
profile = {(NODES, {)), ADD, PROBE}

/* Upon receiving (add, (u,v)) */
add(u,v) {
NODES := NODES U {u};
i := unique_id();
probe(v, i);
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/* Upon receiving (probe, w, p) */
probe(w,p) {
foreach local node n reachable from w {
if n labeled with p
declare cycle;
else {
label n with p;
broadcast([PROBEA (n € NODES)], n, p);

Here again the principle of expressiveness applies. The descriptive reference, dynamic binding, and 1-N
multiplicity properties of Associative Broadcast allow us to specify an algorithm that leaves it up to the
naming system to ensure that a probe message is delivered to the correct set of recipients. In the absence
of these properties, it would be necessary for the objects to explicitly implement a protocol that does the
work done here by the naming system. This would require the abrogation of one or more of the stated
assumptions, either by removing the minimal communication requirement and using a brute-force approach,
or by breaking the symmetry of the algorithm.

4 Conclusions

In designing a naming system, one is faced with tradeoffs between expressiveness and complexity that result
from the diversity of ways in which names and bindings may be established and manipulated to create
patterns of communication among objects. Such decisions should be made with an awareness of both the
range of possible choices; and the impact upon the structure of programs and computations of each choice.
The taxonomy of naming systems described here is intended to allow the alternatives to be examined in a
systematic way. We have sought to identify a set of fundamental properties that clarify the role of names
and bindings in concurrent programming, and that capture the practical distinctions among naming systems
that are often implicit in informal comparisons of concurrent programming systems. The arrangement of
the properties into orthogonal sets of mutually exclusive elements imparts simplicity and regularity to the
structure of the taxonomy, and ensures that every naming system belongs to one of the categories of the
hierarchy.

The taxonomy is a tool for comparing, selecting, and evaluating naming systems: The position of a
naming system within the hierarchy determines the set of naming systems whose properties it subsumes.
For an algorithm whose required naming system properties are known, the taxonomy allows the selection
of a naming system having the necessary properties. Finally, one may use some appropriate measure to
determine if a given naming system is the best possible implementation of its properties for a given target
architecture (cf. Linda vs. Associative Broadcast). We have seen that more expressive naming systems allow
such operations as queueing and filtering of communications to be implemented below the object level. This
eliminates error-prone duplication of effort, encourages more efficient implementation of the operations, and
offers the possibility of exploiting or developing specialized features of the underlying architecture.

The composition of the taxonomy is driven to some extent by observation: We have sought to define
properties that capture significant distinctions among existing naming systems, and that affect the ability
of a naming system to express solutions to important classes of problems. It is possible that the suitability
of the taxonomy to a particular purpose may be improved by the adding more axes to the coordinate space
that contains the lattice of categories, or subdividing the coordinates of an axis to improve the “resolution”
of the hierarchy. Any such changes would not invalidate the results obtained using the current structure.
Nevertheless, any modifications should be approached with caution, as they might complicate the process
of classifying naming systems. In fact, the taxonomy has been simplified significantly over the course of its
development.

We have explicitly avoided discussing resolution, as the resolution mechanism of a naming system is
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orthogonal to its binding and name-access mechanisms. Nevertheless, properties of resolution mechanisms
may 1n some cases also influence patterns of communication, and thus the structure of computations. To
account for these effects, the taxonomy could be augmented with properties of resolution that are orthogonal
to the existing sets of properties.
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