
References

[BGRS91] Y. Breitbart, D. Georgakopolous, M. Rusinkiewicz, and A. Silberschatz. On rigorous transaction

scheduling. IEEE Transactions on Software Engineering, 1991.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, Reading, MA, 1987.

[BST90] Y. Breitbart, A. Silberschatz, and G. R. Thompson. Reliable transaction management in a mul-

tidatabase system. In Proceedings of ACM-SIGMOD 1990 International Conference on Manage-

ment of Data, Atlantic City, New Jersey, pages 215{224, 1990.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications

of the ACM, 21(7):558{565, July 1978.

[LL90] G. Le Lann. Critical issues for the develeopment of distributed real-time computing systems.

Technical Report 1274, Institut National de Recherche en Informatique et en Automatique, April

1990.

[MRB

+

92] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. The concurrency control

problem in multidatabases: Characteristics and solutions. In Proceedings of ACM-SIGMOD 1992

International Conference on Management of Data, San Diego, California, 1992.

[Pap79] C. Papadimitriou. Serializability of concurrent database updates. Journal of the ACM, 26(4):631{

653, October 1979.

[Pap86] C. Papadimitriou. The Theory of Database Concurrency Control. Computer Science Press,

Rockville, Maryland, 1986.

[SKS91] N.R. Soparkar, H.F. Korth, and A. Silberschatz. Failure-resilient transaction management in

multidatabases. IEEE Computer, December 1991.

[Son88] S.H. Son, editor. ACM SIGMOD Record: Special Issue on Real-Time Databases. ACM Press,

March 1988.

16



operations that coincide in the mapping imposed by time

i

can be made to be distinct. These, and

other extensions, are not further investigated in any detail in this paper.

7.3 Additional Practical Considerations

Let us direct attention to some additional practical considerations. First, it is necessary for the

LTM

i

to explicitly, or implicitly, provide to the MDBS

i

the allocated points in time

i

for the synch

operations. One way in which this is achieved is to restrict the LTM

i

schedules to be those where

the synch operations may be associated with some pre-determined operation of each transaction

in the sense that the synch operation should be executed directly after that LTM

i

operation, and

before the next LTM

i

operation to which is mapped a synch operation. Such an LTM

i

operation is

referred to as a serialization function in [MRB

+

92]. Second, it is important that the time

i

mapping

for a synch operation should remain unchanged once it is made known to MDBS

i

by the LTM

i

| which we may refer to as the stability of the synch operations. The reason why this stability

is needed is because the MDBS

i

may execute the synchronization protocol corresponding to the

mapping by time

i

of a particular synch operation, and if this mapping changes subsequently, the

global serializability may be jeopardized.

8 Conclusions

Ensuring the serializability of transaction executions in an environment consisting of several au-

tonomous sites was investigated in detail in this paper. We provided a basis for achieving the

synchronization among the subtransactions executing at several sites in order to achieve global

serializability. In doing so, we provided the conditions necessary on the schedules at local sites

to permit such synchronization. The classes of concurrent schedules were delineated as to their

viability with regard to achieving globally serializable schedules. Our research indicates which ex-

isting or future protocols are amenable to synchronization, and also suggests the e�ective means to

do so. Thus, we provide a characterization for integrating the transaction schedules arising from

autonomous sites.

15



7 Further Observations

In this section, we consider some common concurrency control protocols for the local transaction

systems in the context of the above discussions. Also, we consider variations of the transaction

model that we have described above, and examine the implications in the context of MDBSs.

7.1 Common Protocols

We continue to use the restricted model of transactions described in Section 6 for the following

discussion as well. From Theorem 4, it should be clear that schedules from any subclass of Q may

also be synchronized with the synchronization protocol executing under the pragmatic restriction.

Hence, the class of 2PL schedules, and the class of timestamp (TS) schedules are amenable to such

synchronization.

Theorem 2 indicates that not all schedules from the strictly serializable (SSR) class (e.g., see

[Pap79]) can be synchronized. In fact, for the synchronization of SSR schedules (e.g., see [BGRS91]),

note that the synch operations are guaranteed to occur within the requisite active intervals by

ensuring that the corresponding subtransactions do not execute concurrently. In any case, since the

entire SSR class cannot have an e�cient scheduler in the (e.g., see [Pap79, Pap86]), this discussion

may not be very relevant. Note that not all the schedules of the class P3 that are produced by

protocol used in SDD-1 systems (e.g., see [Pap79]), are amenable to synchronization either.

Example 6. The schedule R

3

[b]R

1

[b]W

1

[a]R

2

[a]W

3

[a]W

2

[a], which is a modi�ed version of Ex-

ample 3, is SSR in the restricted model with the equivalent serial schedule being < T

3

T

1

T

2

>. This

is an example of an SSR schedule, which is not CSR, and hence, does not permit synchronization

in the order of execution of the con
icting operations. Note that the the schedule of Example 4 is

also SSR. 2

7.2 Variants of the Model

The imposition of restrictions on the transactions helps to further classify the protocols that may be

synchronized. For example, as discussed in [Pap79], the absence of blind writes in the transactions

changes the containment structure among the classes. In such cases, it is possible to synchronize

the entire class VSR by Theorem 3, and the entire class SSR even under the pragmatic restriction.

The discussions that have been limited to the restricted model of transactions described in

Section 5 may be extended to a more general model. For example, the major observation of the

importance of the class Q of schedules, as described by Theorem 4, could be easily extended by

requiring the real numbers r

j

to lie in the active intervals of the transactions in the general model.

Similarly, it should be clear that extending these ideas to partial orders of transactions, and partially

ordered local schedules, is not a di�cult task. The proof of Theorem 3 suggests the way in which

14



the subsequent possibility of aborting T

j

in case the synchronization fails, is precluded. Note that

since the LTM

i

are unaware of the distinction between a local transaction and subtransaction, this

requirement must extend to all the transactions executing at a site.

Example 4. The schedule R

3

[a]R

1

[b]W

1

[a]R

2

[c]W

2

[d]W

3

[c], which is CSR, has the sole equiv-

alent serial schedule < T

2

T

3

T

1

>. However, note that synch

1

and synch

2

cannot lie within their

respective active intervals for the same time

i

mapping. This happens because the active intervals

for T

1

and T

2

do not overlap, and also, the order of occurrence of these intervals is di�erent as

compared to the serialization order of the corresponding transactions. 2

We now consider the restricted model of transactions that have exactly two operations, R[: : :]

followed by W [: : :], each (e.g., see [Pap79]). In this model, the two operations that constitute each

transaction correspond to the �rst and the last operations, clearly. For the pragmatic restriction

in the CSR schedules, the proof of Theorem 3 suggests that we should de�ne a class of schedules

with the real number r

j

to additionally lie within the active interval in time

j

for the transaction

T

j

. By setting the time

i

mapping as is done in the proof of Theorem 3, we ensure that synch

j

will lie within the active interval for T

j

. The construction of the function time

i

for the proof of

Theorem 3 indicates that without loss of generality, we may require the numbers r

j

to be distinct

non-integral, reals. Note that the endsynch operations should also get executed during the active

interval to permit the abort of a subtransaction in case the synchronization fails.

Example 5. The schedule R

1

[a]R

2

[a]R

3

[b]W

1

[b]W

2

[cd]W

3

[c], which has the equivalent serial

schedule < T

2

T

3

T

1

>, provides an example of a CSR schedule that permits the pragmatic restriction.

Note that all serial schedules obviously permit this restriction. 2

Thus, we have characterized a class of schedules for which the set of distinct real numbers

r

1

; r

2

; : : : ; r

m

exist with the properties as described for CSR, and additionally, they have the

pragmatic restriction that for each transaction T

j

, it is the case that time

i

(R

j

[: : :]) < r

j

<

time

i

(W

j

[: : :]). These schedules form the class Q in [Pap79], and they may be characterized by

a graph very similar to an SG. The pre�x class for Q is e�ciently recognizable, and hence, there

exist e�cient schedulers for the class.

Theorem 4. The class of CSR schedules of LTM

i

that can be synchronized to provide globally

serializable schedules using the synchronization protocol executed under the pragmatic restriction

includes, and is no larger than, Q.

Proof: By Theorem 1, the de�nition of the class Q, and methods similar to the proof for

Theorem 3. 2

13



Theorem 3. The class of LTM

i

schedules that can be synchronized to provide globally serial-

izable schedules includes the class CSR.

Proof: Firstly, Theorem 1 provides the basis for using the synchronization protocol. Next, we

de�ne a time

i

function corresponding to any CSR schedule that is plausible for the synchronization

protocol to have acted upon. Note that in the following construction, the CSR properties of the

LTM

i

schedule remain una�ected.

Let time

i

map each synch

j

operation to the number r

j

. Change the time

i

function by separating

any set of LTM

i

and synch operations mapped to the same value by small � di�erences without

a�ecting the precedence relationship of the allocated points. This separation is ensures that time

i

is a bijection, and hence, that theMDBS

i

does not need to execute more than one synch operation

simultaneously. Hence, directly after each synch operation, and before the next point allocated

in time

i

, specify the corresponding endsynch operation. The last addition ensures that no two

synchronization intervals overlap at site S

i

.

Since the possibility of aborts of transactions leaves the validity of the r

j

numbers una�ected,

we note that the synchronization is indeed possible. 2

6 A Pragmatic Restriction

In this section, we restrict our attention to a smaller subclass of the CSR schedules to ensure that

the synchronization protocol can be utilized e�ectively in practice. This subclass of schedules is

especially useful in an online transaction system. The subclass is one where we restrict the position

of the MDBS

i

operations in time

i

with respect to the LTM

i

operations. Notice that in Section 5,

the position of the synch operation with respect to the time that the corresponding subtransaction

was actually in execution, was not restricted. We shall make the necessary restrictions in this

regard more precise in this section.

We de�ne the active interval of a transaction to consist of the interval (i.e., in time

i

, or in the

local schedule at site S

i

) between its �rst operation and its last operation. The synchronization

protocol is said to execute under a pragmatic restriction if each synch

j

operation lies within the

active interval of the corresponding subtransaction T

j

. The justi�cation for this restriction is that

if synch

j

precedes the �rst operation of the subtransaction, then it happens to be the case that

it is possible to synchronize the global transactions without the LTM

i

even being aware of the

existence of the subtransaction. This is possible only in situations where the subtransactions that

will execute at a site are known a priori. Furthermore, suppose that the synch

j

operation occurs

after the last operation of T

j

. For models where T

j

is considered committed when the last operation

is executed (e.g., an extended model of [Pap79] regards the last operation to be aW operation that

writes into a data item that is speci�c to the transaction in question | so as to indicate a commit),

12



the sequence of operations in a restricted schedule represents the R[: : :] operations as accessing the

values of data items that were last changed by aW [: : :] operation from a transaction which was not

aborted. If there was no preceding W [: : :] of an unaborted transaction, then the values are those

that were present before the schedule was executed. Also, note that the R[: : :] operations of the

aborted transactions are not of signi�cance, and therefore, can be safely omitted by the restriction.

Example 3. Consider the schedule W

1

[a]R

2

[a]W

3

[a]W

2

[a] which is VSR with the equivalent

serial schedule in the order < T

3

T

1

T

2

>. If transaction T

1

is aborted, which could happen subse-

quently due to an atomic commitment protocol, then the above schedule is no longer equivalent to

either < T

2

T

3

>, or < T

3

T

2

>. 2

Lemma 1. Consider an MDBS where each local schedule generated is VSR. If arbitrary trans-

action aborts are supported, then each LTM

i

supports a class that is no larger than CSR.

Proof: Consider a schedule h with operations from a set � of transactions. Let h

�

0
denote

the same schedule, but with all transactions aborted that do not belong to �

0

, where �

0

� � . The

corresponding schedule restricted to the transactions in �

0

is denoted by h

�

0
. Since an arbitrary

subset of transactions in a schedule may be aborted, there is a need to consider arbitrary �

0

� �

that create the restricted schedules h

�

0
. A known result (e.g., see the discussion on the monotonicity

of CSR in [Pap86]) indicates that h is CSR if, and only if, each h

�

0
is VSR. 2

Note that two equivalent CSR schedules remain equivalent when both are restricted to arbitrary

transactions. This follows from the fact that the SG for a restricted schedule is simply a subgraph

of the SG for the same schedule without the restriction.

Theorem 2. The class of VSR schedules of LTM

i

that can be synchronized by the synchro-

nization protocol is no larger than CSR.

Proof: By the requirements of the synchronization protocol, the atomicity of the transaction

executions, and Lemma 1. 2

5 Synchronization of CSR Schedules

Consider a schedule consisting of m transactions, T

1

; T

2

; : : : ; T

m

. A characterization of a CSR

schedule with m transactions is that there existm real numbers r

1

; r

2

; : : : ; r

m

such that r

i

is associ-

ated with transaction T

i

, and the numbers have the following property. Consider two transactions

T

i

and T

j

that have con
icting operations. For each pair of con
icting operations between these

two transactions, if the operation from T

i

precedes the one from T

j

in the schedule, then r

i

< r

j

.

Note that one such set of real numbers can be obtained by the topological sort of the SG. Also

from the SG, it should be evident that aborts of arbitrary transactions do not a�ect the validity of

these numbers. We use this characterization by numbers to prove the following result.

11



consider the operations, send

x

1

i

1

, endsynch

x

1

i

1

, synch

x

2

i

1

, recv

x

2

i

1

, send

x

2

i

2

, endsynch

x

2

i

2

, : : : ,

synch

x

1

i

u

, recv

x

1

i

u

, send

x

1

i

1

, in that order (the property relating the time

i

k

(synch

x

j

i

k

) values as

described above provides the clue to this order of operations). Figure 3 gives a simple example of

this order (marked by numbers 1, 2, : : : , 8, 1) for two global transactions, T

x

and T

y

, executing at

sites S

p

and S

q

. By the description of the synchronization protocol, each adjacent pair of operations

in this order is related by the happened-before relationship (e.g., see [Lam78]). However, that is

not possible since the order described constitutes a cycle, whereas the happened-before relationship

de�nes a partial order on the operations. Hence, such a cycle in the global SG is not possible. 2

In the subsequent sections, we restrict attention to schedules at a particular site S

i

. It should be

clear that any local schedule with synch operations which have the properties as described above,

are plausible local schedules for which there exist global executions that are serializable. However,

other considerations may restrict the allowable sets of schedules as we shall examine below.

4 E�ects of Transaction Failures

The synchronization mechanism described above requires the use of an abort operation to ensure

global serializability. In fact, any synchronization protocol that relies on checking for the cor-

rectness of the executions must have the option of aborting subtransactions whenever the global

serializability is threatened, since the LTM

i

are not under the control of the MDBS

i

. Hence, the

underlying LTM

i

must support the aborts of arbitrary transactions that execute under its control.

Note that we have not considered the question of ensuring the atomicity of the global transac-

tions (e.g., see [SKS91]) in the sense that all or none of the subtransactions of a global transaction

should be completed. This is the problem of global atomic commitment which is e�ected by means

of committing, or aborting, all the subtransactions. In this paper, we have considered the synchro-

nization protocol to be distinct as compared to a global atomic commitment protocol (in standard

distributed database systems, the two are inseparable | e.g., see [SKS91]). However, it should be

noted that the latter would have to be executed, and as a consequence, even after a subtransaction

is fully executed at a site in terms of all the operations as described in Section 2, it may need to

be aborted.

While we do not formally include an abort operation in the repertoire of operations that the

LTM

i

supports, we nevertheless describe the e�ect of the abort of transactions on a local schedule.

Since it is the case that a schedule with aborted transactions should be such that the operations of

those transactions should not have executed at all, consider a schedule to be restricted to only the

operations of transactions that are not aborted. Note that the committed projection used to check

that a schedule is CSR or VSR is exactly such a restricted schedule (e.g., see [BHG87]). That is,

10



Theorem 1. The synchronization protocol ensures globally serializable executions.

Proof: We exhibit that the serializability graph constructed for the global transactions will

indeed be acyclic. Assume that is not so, and that a cycle of global transactions T

x

1

! T

x

2

!

: : : ! T

x

u

exists, and without loss of generality, assume that the transactions in the cycle are

distinct. Then the following situation must exist. There are sites S

i

1

, S

i

2

, : : : , S

i

u

, not all the

same,

1

where the subtransaction pairs (T

x

1

i

u

; T

x

1

i

1

), (T

x

2

i

1

; T

x

2

i

2

), : : : , (T

x

u

i

u�1

; T

x

u

i

u

) correspond-

ing to global transactions T

x

1

, T

x

2

, : : : , T

x

u

, respectively, execute. Note that a subtransaction

T

x

j

i

k

executes at the site S

i

k

, and that it is distinct from the other transactions since we assume

that any given global transaction has at most one subtransaction executing at a particular site.

These subtransactions must cause the cycle described above. Using the de�nition of a global

SG, we have time

i

1

(synch

x

1

i

1

) < time

i

1

(synch

x

2

i

1

), time

i

2

(synch

x

2

i

2

) < time

i

2

(synch

x

3

i

2

), : : : ,

time

i

u

(synch

x

u

i

u

) < time

i

u

(synch

x

1

i

u

).

8

7

6

5

4

3

2

1

coordinator for T

y

coordinator for T

x

endsynch

yq

endsynch

yp

endsynch

xq

endsynch

xp

synch

yq

synch

yp

synch

xq

synch

xp

Site S

q

Site S

p

synchronization interval

Figure 3: Impossible Cycle with the Synchronization Protocol

At the coordinator site S

x

j

for a global transaction T

x

j

, let the receipt operation of the message

sent by site S

i

k

due to the synch

x

j

i

k

operation corresponding to the subtransaction T

x

j

i

k

, be denoted

by recv

x

j

i

k

. Similarly, let the send operation of the message to site S

i

k

which will be received by the

endsynch

x

j

i

k

operation corresponding to the subtransaction T

x

j

i

k

, be denoted by sendx

j

i

k

. Now

1

Local concurrency control ensures that global cycles are not caused due to the executions at a single site alone.

9



msg

msg

message

msg

msg

msg

msg

msg

msg

msg

endsynch

yj

endsynch

yi

synch

yj

synch

yi

endsynch

xj

endsynch

xi

synch

xj

synch

xi

Site S

j

Site S

i

T

y

T

x

coordinator forcoordinator for

Figure 2: Overlapped synchronization intervals

involved in a non-serializable execution. Hence, such a global transaction must be aborted by

e�ecting the aborts of each of its subtransactions. We discuss the implications of aborts on the

allowable local schedules in Section 4. This completes the description of the entire synchronization

protocol.

Example 2. Consider an MDBS where each local DBMS uses the 2PL protocol, and the

two-phase commit protocol (e.g., see [BHG87]) is used to coordinate the execution of the global

transactions. To ensure global serializability, each subtransaction is required to hold all its locks

until the point that it is committed (e.g., see [SKS91]). The synch operation may occur at any

point after all the locks for a particular subtransaction are procured, but before the subtransaction

is committed. The endsynch operation, which occurs after the synch operation, must occur prior

to the commitment. It can be shown that the position of the synch operation in the local schedule

does have the properties as described above. 2

8



nodes, and an edge from a node T

j

to T

k

that exists if they have corresponding subtransactions

T

ji

and T

ki

, respectively, that execute at a site S

i

, and time

i

(synch

ji

) < time

i

(synch

ki

). The

acyclicity of such a graph implies the requisite total order that may be obtained by a topological

sort of the nodes.

The synchronization protocol, which is executed once for every global transaction T

x

, can now

be described. In its basic form, the protocol is similar to the ones described in [MRB

+

92, SKS91].

The protocol requires that a coordinator site for the transaction T

x

should receive the messages sent

for synchronization from the participating sites. Upon receiving all such messages, the coordinator

sends an acknowledging message to each participating site to complete the protocol. Our protocol

di�ers from the other protocols in a number of ways. First, it permits a di�erent coordinator site to

be used for each global transaction. Second, and more importantly, the point in time

i

that a site S

i

sends a synchronizing message to the coordinator is not necessarily related to any speci�c operation

in the LTM

i

(e.g., the serialization function used in [MRB

+

92] de�nes a speci�c LTM

i

operation

| directly after which, the synchronization message must be sent). This generality provides us the

means to study the classes of local schedules that may be synchronized in this manner, as will be

discussed below.

Thus, our synchronization protocol for a global transaction T

x

executes in the following manner.

At each site S

i

at which a subtransaction T

xi

of the global transaction T

x

executes, MDBS

i

sends

a message to S

x

, the coordinator site for T

x

, at the synch

xi

operation for T

xi

. After MDBS

x

at

the coordinator site S

x

collects these messages from all the subtransactions corresponding to T

x

,

it sends an acknowledging message to each participating site. The receipt of such a message for

subtransaction T

xi

by MDBS

i

is regarded as the endsynch

xi

operation.

De�ne the synchronization interval for a subtransaction T

xi

to be the interval (i.e., in time

i

, or

in the local schedule at site S

i

) between synch

xi

and endsynch

xi

operations. If two subtransactions

T

xi

and T

yi

that execute at a site S

i

need to be serialized in a particular order (e.g., as may happen if

they both update a common data item), then their corresponding synchronization intervals should

not overlap. This is a necessary condition for the correctness of the synchronization protocol. In

Example 1 below, we show a non-serializable execution that could occur if the intervals do overlap.

Example 1. A non-serializable execution of two global transactions T

x

and T

y

is depicted

in Figure 2 when the synchronization intervals of their corresponding subtransactions overlap at

one of their common execution sites. In the �gure, T

x

is serialized before T

y

at site S

i

, and T

y

is serialized before T

j

at site S

j

. The messages sent between the sites, as depicted in the �gure,

correspond to the messages of the synchronization protocol. 2

If the protocol fails to execute as described above (e.g., if the coordinator does not receive

the messages from all the participating subtransaction sites), then the global transaction may be

7



time

i

(synch

k

) where time

i

(synch

j

) = r

j

, and time

i

(synch

k

) = r

k

, and for each synch

l

,

1 � l � m, time

i

(R

l

) < time

i

(synch

l

) < time

i

(W

l

) holds.

� 2PL: In addition to satisfying the constraints of the Q class, if time

i

(R

j

) < time

i

(W

k

), where

R

j

and W

k

con
ict, then r

j

< r

k

, and if time

i

(W

j

) < time

i

(W

k

), where W

j

and W

k

con
ict,

then time

i

(W

j

) < r

k

, must both hold.

� TS: In addition to satisfying the constraints of the Q class, if time

i

(R

j

) < time

i

(R

k

), then

r

j

< r

k

.

� P3: Consider SG

0

, the undirected SG (e.g., see [BHG87]) for a schedule. De�ne a cycle to

be a sequence (T

j

1

; T

j

2

; : : : ; T

j

m

) for m > 1, such that adjacent elements in the sequence

are adjacent in SG

0

, and also, T

j

1

is adjacent to T

j

m

in SG

0

. A cycle is bad if there is a

common data item written by T

j

1

and accessed by T

j

m

, and a common data item written

by T

j

2

and read by T

j

1

. The schedule is in P3 if for every bad cycle, it is not the case that

time

i

(R

j

1

) < time

i

(W

j

2

) < time

i

(W

j

1

).

We do not provide the de�nitions of the possible extensions to transaction models that are more

general than the restricted model used in [Pap79] | although the results in this paper also hold

for the extensions unless speci�ed otherwise.

3 Synchronization of the Local Schedules

In this section, we describe a synchronization protocol to ensure globally serializable executions.

The protocol uses the synch operations mentioned above, and has several similarities with existing

distributed database atomic commitment protocols (e.g., see [BHG87, SKS91]).

We require that for subtransactions T

ji

and T

ki

executing at site S

i

, there must exist operations

synch

ji

and synch

ki

such that if time

i

(synch

ji

) < time

i

(synch

ki

), then T

ji

precedes T

ki

in an

equivalent serial schedule for the executions at that site. In other words, the order of execution

of the synch operations in a local schedule provides a serialization order for their corresponding

transactions. The schedule generated by LTM

i

determines these points in time

i

, and since the

LTM

i

does not di�erentiate between subtransactions and local transactions, it is the case that

such synch operations need to be present for all transactions executed at a site.

As suggested in [MRB

+

92], to ensure globally serializable schedules, it is su�cient to ensure

a total order on the global transactions as follows. For two subtransactions T

ji

and T

ki

executed

at a site S

i

, if time

i

(synch

ji

) < time

i

(synch

ki

), then for the corresponding global transactions, T

j

precedes T

k

in the total order on the global transactions. A graph similar to the serializability graph

(SG) for CSR schedules (e.g., see [BHG87]) may be constructed with the global transactions as the

6



and this order subsumes the total order on the operations within each transaction. We assume that

each LTM

i

generates only VSR schedules, which is the most general correctness class given that

an LTM

i

only has syntactic information regarding the transactions (e.g., see [Pap86]).

It is useful to regard a schedule as a function, time

i

, on the operations, where each oper-

ation from the set of m operations in a schedule is bijectively mapped to the natural numbers

f1; 2; : : : ; mg. Since we are interested in the order of the operation executions, without loss of

generality, this mapping may be regarded as the execution point in time as recorded at the site S

i

.

To synchronize the execution of global transactions, the MDBS

i

must send and receive syn-

chronization messages, which we denote by synch and endsynch operations, respectively. For each

subtransaction T

k

executing at the site S

i

, we denote the unique pair of these operations by synch

k

and endsynch

k

. Since the LTM

i

is assumed to be unaware of these message exchanges, these

operations are not part of the schedule generated by it. However, we can discuss the execution

of these MDBS

i

operations by extending the time

i

mapping to include them. We regard each

MDBS

i

operation to be mapped to a positive real number by the time

i

function. We assume

that there is a single processor at each site S

i

to ensure that time

i

remains a bijection (since each

operation, irrespective of whether it is an MDBS

i

or an LTM

i

operation, is then mapped to a

distinct real number by time

i

). Furthermore, all such real numbers that have a pre-image in the

operations executed by LTM

i

or MDBS

i

, are referred to as points allocated in time

i

. Note that

the happened-before relation in [Lam78], for a particular site, is de�ned by the time

i

mapping.

We now provide the following de�nitions for some of the schedule classes to be discussed in terms

of the time

i

mapping, and the LTM

i

and MDBS

i

operations. Note that these are essentially

obtained from existing de�nitions (e.g., see [Pap79], and we provide the necessary descriptions

of the acronyms in the text. The set of transactions is taken to be T

1

; T

2

; : : : ; T

m

, and for the

ease of presentation, we adopt a restricted model where each transaction consists of exactly one

read operation followed by a write operation (also, see Section 6). Below, we denote an arbitrary

operation by the symbol O.

� CSR: There exist real numbers r

1

; r

2

; : : : ; r

m

such that if any two LTM

i

operations O

j

and

O

k

, j 6= k, con
ict, and time

i

(O

j

) < time

i

(O

k

), then time

i

(synch

j

) < time

i

(synch

k

) where

time

i

(synch

j

) = r

j

, and time

i

(synch

k

) = r

k

.

� SSR: There exists an equivalent serial schedule with the total order, <

s

, such that if time

i

(W

j

) <

time

i

(W

k

) then in the serial schedule, W

j

<

s

W

k

holds.

� Q: There exist distinct, non-integral real numbers r

1

; r

2

; : : : ; r

m

such that if any two LTM

i

operations O

j

and O

k

, j 6= k, con
ict, and time

i

(O

j

) < time

i

(O

k

), then time

i

(synch

j

) <

5



data

communications network

user programs

global subtransactions

local transactions and

MDBS

n

MDBS

i

MDBS

2

MDBS

1

DBMS

n

DBMS

i

DBMS

2

DBMS

1

LTM

i

MDBS

i

Figure 1: MDBS Structure

1. R[: : :] which reads the value(s) of the data items, mentioned within the brackets.

2. W [: : :] which writes the value(s) of data items, mentioned within the brackets.

Operations are assumed to execute atomically and instantaneously. Two operations from di�erent

transactions are said to con
ict if they access a common data item and if one of them is a write

operation.

A transaction consists of a totally ordered set of one or more such operations. Subscripts are

used to indicate the particular transaction to which the operation belongs. For example, R

j

denotes

a read operation transaction T

j

. To improve readability, whenever it is clear from the context, we

omit subscripts.

Each LTM

i

executes all the operations, and no other, from a set of transactions submitted to

it in a sequence called a schedule. That is, the LTM

i

imposes a total order, <

i

, on the operations,

4



to guarantee globally serializable executions. Since any synchronization protocol may require that

subtransactions be aborted, we study the e�ect of aborts on local schedules, and show that only

the class of CSR schedules generated locally are permissible in an MDBS environment. Turning

our attention to online transaction systems (i.e., systems where the transactions are not known a

priori), we prove that a further restriction on the local CSR schedules is necessary in order to use

the synchronization protocol. Using our characterization of the allowable classes of local schedules,

which provides a measure of the permissible degrees of concurrency in the schedules, we examine

several common concurrency control mechanisms that may be used at each local site in an MDBS

environment.

The remainder of the paper is organized as follows. Section 2 provides the logical architecture

and the notation for the system under consideration, and we use them to present our results.

Section 3 describes a general synchronization protocol, with distributed coordinators, that is used

in conjunction with each global transaction. The manner in which the synchronization protocol

restricts the class of schedules generated at the local sites to be CSR, is discussed in Section 4.

The means to synchronize the class of CSR schedules from each local site is described in Section 5.

In Section 6, we study the subclass of CSR schedules at the local sites that may be synchronized

while the concerned subtransactions are active. Section 7 discusses the feasibility of synchronizing

some common classes of local schedules produced by existing concurrency control protocols. The

section also provides discussions regarding the e�ect of some useful restrictions and extensions to

our transaction model on the local schedules in the context of an MDBS environment. Finally,

Section 8 constitutes the conclusions.

2 System Structure and Notation

An MDBS consists of n sites, S

1

, S

2

, : : : , S

n

, interconnected by a computer network as shown in

Figure 1. Each site S

i

has a local database management system, DBMS

i

, with a local transaction

manager, LTM

i

. The MDBS software is distributed among the sites in the form of n software

modules. Each module,MDBS

i

, located at site S

i

is interconnected with the otherMDBS

j

modules

by a communications network, but is otherwise independent of any other MDBS

j

module. All

interaction between the sites takes place via these modules. In particular, the synchronization

between the sites is managed by the MDBS

i

.

All transactions and subtransactions at site S

i

are executed by the LTM

i

, which is not able to

distinguish between transactions and subtransactions. Hence, if no confusion arises, we refer to a

subtransaction as well as a local transaction, by the common term \transaction". A subtransaction

for a global transaction T

i

that executes at site S

j

is denoted by T

ij

.

Each LTM

i

is assumed to support the following two types of operations:

3



1 Introduction

In recent years, there has been has been considerable research e�ort directed to address the issues

of transaction execution in an environment where the data is accessed from a number of di�erent

locations that have autonomous concurrency control. The environment consists of a distributed

system with a database management system (DBMS) present at each location. The practical moti-

vation for such integration arises from areas as diverse as multidatabase transaction management

(e.g., see [SKS91]), and distributed |DBMSs (e.g., see [Son88, LL90]). In the former, the need

arises in order that pre-existing DBMSs can be integrated into a single, homogeneous, distributed

DBMS; whereas in the latter, the autonomous loci of control are necessary in order to ensure that

the varying loads in the distributed environment a�ect a local site minimally. We use the term mul-

tidatabase system (MDBS) to refer to such an integrated system in order to conform with existing

nomenclature.

There are two kinds of transactions that execute in an MDBS system. Transactions that access

data located at only a single site are referred to as local transactions, whereas those that access

data located at several di�erent sites are referred to as global transactions. The latter access data

by means of a subtransaction executed at each site in question. The problem for transaction

management in an MDBS environment, is to identify the conditions that will guarantee that the

concurrent execution of both global and local transactions will ensure the database consistency by

ensuring globally serializable executions.

The existing results in the area of MDBS transaction management typically assume a single

site that coordinates the executions of all the global transactions by the use of a synchronization

protocol, and also, that no modi�cations may be made to the underlying DBMSs (e.g., see [BST90]).

The former assumption may cause problems in the event that some sites or communication links

fail (e.g., see [SKS91]), and the latter assumption is not necessary in many cases (e.g., in an MDBS

used for real-time environments | see [Son88]). Also, the mechanisms that have been suggested

thus far only provide su�cient conditions to guarantee globally serializable executions when used in

conjunction with a synchronization protocol. Hence, it is unclear as to what extent the interleaving

among the operations of the subtransactions and local transactions must actually be a�ected, and

consequently, to what extent the potential concurrency is inhibited.

The research presented in this paper addresses, and resolves, the above de�ciencies in main-

taining globally serializable executions in an MDBS environment. To begin with, we assume that

each site generates view serializable (VSR) schedules locally; VSR is the most general class of

schedules accepted when only syntactic information about the transactions is available (e.g., see

[Pap79, Pap86]). We describe a synchronization protocol that may use distributed coordinator sites

2



Serializability among Autonomous Transaction

Managers

Nandit Soparkar

1�

Henry F. Korth

2

Avi Silberschatz

1y

1

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712-1188 USA

2

Matsushita Information Technology Laboratory

182 Nassau Street, third 
oor

Princeton, NJ 08542-7072

Abstract

Ensuring the serializability of transaction executions in an environment consisting of several

autonomous sites is a current research e�ort. While several ad hoc schemes have been proposed

that are su�cient to ensure serializability, it is not clear what conditions are necessary. We

explore this question in an attempt to delineate those classes of concurrency control protocols

that exist at local sites that may be integrated. Our research indicates the existing or future

protocols that are amenable to integration, and also suggests the means to do so. We provide

a characterization for integrating the transaction schedules from autonomous sites in a manner

similar to that used in centralized concurrency control.

�

Work supported by an IBM Graduate Fellowship.

y

Work partially supported by NSF grants IRI-9003341 and IRI-9106450, by the Texas Advanced Technology

Program under Grant No. ATP-024, and by grants from the IBM corporation and the H-P corporation.

1



SERIALIZABILITY AMONG AUTONOMOUS

TRANSACTION MANAGERS

Nandit Soparkar

Henry F. Korth

Avi Silberschatz

Department of Computer Sciences

University of Texas at Austin

Austin, Texas 78712-1188

TR-92-49 December 1992

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

austin, texas 78712


