
An Architecture for Large Multidatabase Systems�Sharad Mehrotra1Henry F. Korth2Avi Silberschatz3y1Department of Computer SciencesUniversity of Texas at AustinAustin, TX 78712-1188 USA2Matsushita Information Technology Laboratory2 Research WayPrinceton, NJ 085403AT&T Bell Laboratories600 Mountain Ave.Murray Hill, NJ 07974AbstractOver the past decade, substantial research has been done towards developing transaction manage-ment algorithms for multidatabase systems. Most of these research e�orts have concentrated onthe problems that arise due to the heterogeneity and the autonomy of the various local databasesthat are integrated into a multidatabase environment. One issue that has been relatively ignoredis that of the architecture of multidatabase systems. We believe that a large multidatabase systemspanning multiple organizations that are distributed over various geographically distant locationswill not be developed as a single monolithic system. Rather, it will be developed hierarchically.As a result, the transaction management algorithms followed by a multidatabase system must becomposable in such a way that it is feasible to incorporate individual multidatabase systems as el-ements in a larger multidatabase system. In this paper, we present a hierarchical architecture fora multidatabase environment, and develop a methodology for the design of composable transactionmanagement algorithms suited for this architecture.1 IntroductionA multidatabase system (MDBS) is a facility, developed on top of pre-existing local database man-agement systems (DBMSs), that provides users of a DBMS access and update privileges to datalocated in other heterogeneous data sources. The following two characteristics of the MDBS envi-ronments make the task of designing transaction management algorithms di�cult:�Work partially supported by NSF grants IRI-8805215, IRI-9003341 and IRI-9106450, and by a grant from the IBMcorporation.yOn leave from The University of Texas at Austin. 1

� Heterogeneity. Each local DBMS may follow di�erent concurrency control protocols andrecovery algorithms.� Autonomy. The participation of the local DBMS in an MDBS must not result in a loss ofcontrol by the local DBMS over its data and its local transactions.Over the past decade, substantial research has been done to identify mechanisms for e�ectivelydealing with the problems that arise due to the heterogeneity and the autonomy of the local systems(e.g., [BST90, WV90, MRB+92b, Pu88, ED90, MRB+92a, BS88]). This research has resulted intransaction management algorithms that ensure correctness without sacri�cing the autonomy of theindividual systems. Most of the proposed approaches have, however, considered an MDBS as a singlemonolithic system which executes on top of the existing local DBMSs and controls the executionand commitment of the global transactions (transactions that execute at multiple local DBMSs) insuch a way that consistency of the individual system is not jeopardized.One issue that has been given relatively little consideration is that of the architecture of MDBSs.We believe that a large MDBS, that spans multiple organizations distributed over various geograph-ically distant locations, will not be developed as a single monolithic system. Instead it will bedeveloped hierarchically. To illustrate this, let us consider a typical MDBS environment in whichusers wish to execute transactions that span database systems belonging to multiple branches of anorganization. Additionally, users also wish to execute transactions that span di�erent autonomousorganizations. One solution to providing such a service is to develop a single monolithic MDBS sys-tem which integrates all the branches of all the organizations. However, depending upon the natureof transactions that execute within an organization, the computing resources available, and the reli-ability of the network, di�erent organizations may prefer di�erent MDBS transaction managementalgorithms for processing transactions local within the organization. For example, if a high degree ofconcurrency is critical for good performance in a certain organization, that organization may prefera centralized MDBS transaction management algorithm for processing transactions local within theorganization. On the other hand, if databases belonging to various branches of another organiza-tion are geographically distant and the network is not reliable, the organization may prefer a fullydecentralized MDBS transaction management algorithm for processing transactions that executewithin its di�erent branches. Thus, it would be preferable to develop the MDBS as a hierarchicalsystem{ each organization (or a set of organizations) has its own MDBS to control the execution oftransactions within the organization. Furthermore, an inter-organization MDBS controls the exe-cution of transactions that access data belonging to branches of di�erent organizations. Note thatusing a single monolithic MDBS system, whether distributed or centralized, will adversely impactthe performance of transactions that execute within an organization. In contrast, in a hierarchicalMDBS, each organization can use a specialized transaction management algorithm suited for theirenvironment. 2

The above scenario illustrates why it would be desirable for the MDBS architecture to be hierar-chical. However, if the architecture of the MDBS is hierarchical, then the transaction managementalgorithms followed by individual MDBSs need to be composable in such a way that it is feasible toincorporate individual MDBSs as elements in a larger MDBS. In this paper, we present a hierar-chical architecture for multidatabase systems. We adopt serializability as the correctness criterionand develop a methodology for the design of composable transaction management algorithms thatensures global serializability in hierarchical MDBSs.The rest of the paper is organized as follows. In Section 2, we formally de�ne our MDBSarchitecture. In Section 3, we review how the problem of heterogeneity is overcome in MDBSs. InSection 4, we develop a methodology for designing transaction management algorithms suited for ourMDBS architecture. In Section 5, we identify restrictions on the architecture such that concurrencycontrol schemes that follow our methodology result in global serializability. Finally, in Section 6, weo�er concluding remarks and present directions for future work.2 MDBS ArchitectureAn MDBS is an integrated collection of pre-existing local databases: DBMS1, DBMS2, : : :, DBMSm,that permits users to execute transactions that access multiple local DBMSs. Each local DBMS mayitself be either a centralized or a distributed database system. Each DBMSi contains a set of dataitems that are denoted by DBi. To describe the architecture of the MDBS, we associate with theMDBS environment a set of domains denoted by � with an ordering relation <. A domain D 2 �is either� a set of data items in DBi, for some i = 1; 2; : : :;m, or� a union of the set of data items in other domainsD1; D2; : : : ; Dn, denoted bySfD1; D2; : : : ; Dng,where Di 2 �, i = 1; 2; : : : ; n,The ordering relation <, referred to as the domain ordering relation, is such that Di < Dj i�Di � Dj . We use Di v Dj to denote that either Di < Dj or Di = Dj . Let Di and Dj be domainsin �. We refer to Di as the child of Dj , denoted by child(Di; Dj), if Di < Dj and for all Dk 2 �,either Di 6< Dk or Dk 6< Dj . Further, we refer to Dj as a parent of Di, denoted by parent(Dj ; Di),if child(Di; Dj). We denote the set of domains fDj for all Dk 2 �; D 6< Dkg by the set TOP .A transaction Ti = (OTi ;�Ti), where OTi is the set of operations and �Ti is a partial orderover operations in OTi . We assume that a transaction Ti that execute at a local DBMS (or a setof local DBMSs) consist of a set of read (denoted by ri) and write (denoted by wi) operations.Further, each transaction Ti has begin (denoted by bi) and commit (denoted by ci) operations. Atransaction that executes at multiple DBMSs may have multiple begin and commit operations1, one1In contrast, the ri and wi operations of the transaction on each data item are unique. Since, in this paper, we donot consider the problem of replica control, we consider di�erent copies of the same data item as independent data itemswith an equality constraint between them. 3

D2DB2 DB3 DB4DB1DBMS1 DBMS4DBMS2 DBMS3Figure 1(a): An ExampleMDBS Environment Figure 1(b): DomainOrdering for Figure 1(a)D1
for each DBMS at which it executes. We denote by bik and cik, the begin and commit operationsof a transaction Ti in DBMSk respectively.A transaction Ti is said to execute in a domain D 2 �, if there exists a DBj , DBj v D, suchthat Ti accesses data items in DBj . A transaction Ti may execute in multiple domains subject tothe following restriction. If Ti accesses data items in DB1; DB2; : : : ; DBk, then there must exista domain D 2 � such that DBj v D, j = 1; 2; : : : ; k. Such a domain D is denoted by Dom(Ti).Thus, if Ti accesses data item in DBj , then DBj v Dom(Ti). A transaction Ti is said to be globalwith respect to a domain D 2 �, denoted by global(Ti; D), if Ti executes in D and there exists adomain D0, D0 6v D and D 6v D0 such that Ti executes in D0. A transaction Ti is local with respectto a domain D, denoted by local(Ti; D), if Ti executes in D and :global(Ti; D). We illustrate theabove de�ned notations by the following example.Example 1: Consider an MDBS environment consisting of four local DBMSs { DBMS1,DBMS2, DBMS3, DBMS4 (illustrated in Figure 1(a)). DBMS1 and DBMS3 are centralized databasesystems, while DBMS2 and DBMS4 are distributed database systems. The set of domains, � =fDB1; DB2; DB3; DB4; D1; D2g, where Domain D1 = SfDB1; DB2; DB3g and domain D2 =SfDB3; DB4g. The domain ordering relation for the MDBS environment depicted in Figure 1(a)is illustrated in Figure 1(b).Consider a transaction T1 that accesses data items in domainsDB1 and DB2. Thus, Dom(T1) =D1, global(T1; DB1), global(T1; DB2), and local(T1; D1). Consider another transaction T2 that ac-cesses data in domains DB3 and DB4; thus, global(T2; D1), global(T2; D2) and Dom(T2) = D2.Finally, consider a transaction T3 that wishes to access data in DB1 and DB4. T3 will not bepermitted to execute since there does not exist any domain D 2 � such that DB1 < D as well asDB4 < D. However, if there was a domain D3 = SfD1; D2g, then the transaction T3 would bepermitted and Dom(T3) = D3. 2Let S = (�S ;�S) be a schedule, where �S is a set of transactions and �S is a partial order overthe operations belonging to transactions in �S . The partial order �S satis�es the property that4

�Ti��S , for each Ti 2 �S . Let d be a set of data items. Sd denotes the projection of S onto dataitems in d. Formally, schedule Sd is a restriction2 of the schedule S over the set of data items ind. For notational brevity, we denote the projection of S over the set of data items in DBk; that is,SDBk , by Sk.In a schedule S = (�S ;�S), transactions Ti; Tj 2 �S are said to con
ict in S, denoted byTi ;S Tj , if there exists operations oi in Ti and oj in Tj such that oi and oj con
ict in S andoi �S oj. Operations oi and oj are said to con
ict if they access the same data item and at leastone of them is a write operation. We denote the transitive closure of the con
ict relation ; amongtransactions by the relation �;.With each domain Di a domain manager DM (Di) is associated. The domain manager for adomain Di, along with the domain managers of each domain Dj , Dj < Di, controls the concurrentexecution of transactions that execute in Di in such a way that the consistency of data within adomain is preserved. Let D be a domain such that DBj < D, j = 1; 2; : : :; k. The domain managersof the domains D0 v D, in our architecture, constitute the MDBS software for an MDBS thatintegrates DBMS1, DBMS2, : : : , DBMSk. Note that if there exists a domain D 2 � such thatfor each DBk , k = 1; 2; : : : ;m, parent(D;DBk), then our MDBS architecture reduces to a singlemonolithic system. In this case, the existing solutions for transaction management developed forsuch systems in [MRB+92a, ED90, BS88, BST90] can be used by the domain manager for D tocontrol the concurrent execution of the transactions. Similarly, if we were to restrict � such thatfor all domains Di; Dj 2 �, if child(Di; Dj), then for all Dk 6= Dj , :child(Di; Dk),then our MDBS architecture reduces to the superdatabase architecture for MDBSs that was developedin [Pu88] and the algorithms for concurrency control developed there can then be used. However,our proposed solutions di�er widely from the concurrency control algorithms suggested in [Pu88].3 BackgroundBefore discussing how concurrency control for ensuring global serializability can be done in hier-archical MDBSs, we �rst review how global serializability can be ensured if an MDBS were to bedeveloped as a single monolithic system. Crucial to the development of the concurrency controlprotocols is the notion of serialization functions introduced in [MRB+92a] which is similar to thenotion of o-element developed in [Pu88].Let S = (�S ;�S) be a serializable schedule. Let � 0 � �S . A serialization function of a transactionTi 2 � 0 in a schedule S with respect to the set of transactions � 0, denoted by serS;� 0 (Ti) is a functionthat maps Ti 2 � 0 to some operation in Ti such that the following holds:For all Ti; Tj 2 � 0, if Ti �;S Tj , then serS;� 0 (Ti) �S serS;� 0 (Tj)2A set P1 with a partial order �P1 on its elements is a restriction of a set P2 with a partial order �P2 on its elementsif P1 � P2, and for all e1; e2 2 P1, e1 �P1 e2 if and only if e1 �P2 e2.5

In the remainder of the paper, we will denote the function serS;� 0 by serS . The set of transactions � 0will be clear from the context. For numerous concurrency control protocols that generate serializableschedules, it is possible to associate a serialization function with transactions T in the schedule Ssuch that the above property is satis�ed.For example, if the timestamp ordering (TO) concurrency control protocol is used to ensureserializability of S and the scheduler assigns timestamps to transactions when they begin execution,then the function that maps every transaction Ti 2 �S to Ti's begin operation is a serializationfunction for transaction Ti in S with respect to the set of transactions �S .For a schedule S, there may be multiple serialization functions. For example, if S is generatedby a the two-phase locking (2PL) protocol, then a possible serialization function for transactionsin S maps every transaction Ti 2 �S to the operation that results in Ti obtaining its last lock.Alternatively, the function that maps every transaction Ti 2 �S to the operation that results in Tireleasing its �rst lock is also a serialization function for Ti in S3.It is possible that for transactions in a schedule generated by certain concurrency control proto-cols, no serialization function may exist. Consider, for example, a schedule generated by serialization-graph testing (SGT) scheduler. In this case, it may not be possible to associate a serialization functionwith transactions. However, in such schedules, serialization functions can be introduced by forcingdirect con
icts between transactions [GRS91]. Let � 0 � � be some set of transactions in a scheduleS. If each transaction in � 0 executed a con
icting operation (say a write operation on data itemticket), in S, then the functions that maps a transaction Ti 2 � 0 to its write operation on ticket isthe serialization function for the transactions in S with respect to the set of transactions � 0.Associating serialization functions with transactions enables us to overcome the problems dueto heterogeneity of local DBMSs in designing concurrency control protocols for ensuring globalserializability in an MDBS environment. To see this, let us consider a collection of local DBMSs,DBMS1, DBMS2, : : :, DBMSm, which are to be integrated into an MDBS. Each local DBMS,DBMSk follows some concurrency control protocol to ensure serializability of its local schedule Sk.Let �k = fTi j global(Ti; DBk)g, be the set of global transactions (transactions that access dataresiding in other databases besides DBk) in Sk, k = 1; 2; : : : ;m. We assume that a serializationfunction can be associated with global subtransactions in each schedule Sk with respect to thetransactions in �k (introduced, if necessary, using external means by forcing direct con
icts betweentransactions in �k).Let Ti be a global transaction. We denote the projection of Ti to its serialization function valuesover each of the local schedules as a transaction bTi. Thus, bTi is a restriction of Ti consisting of allthe operations in the set fserSk (Ti) j Ti 2 �kg. For the global schedule S, we denote a restriction ofS consisting of the set of operations belonging to transactions bTi by bS. Thus, bS = (�bS ;�bS), where�bS = f bTi j Ti 2 �k; for some k = 1; 2; : : : ;mg. Furthermore, �bS��S . In the schedule bS, we de�ne3Actually, any function that maps a transaction Ti 2 �S to one of its operations that executes between the time Tiobtains its last lock and the time it releases its �rst lock is a serialization function for Ti in S.6

operations serSk (Ti) and serSl (Tj), Ti 6= Tj, to con
ict i� k = l. Let us illustrate the above notationwith an example.Example 2: Consider an MDBS environment consisting of two local databases. DBMS1contains data items a and b, while DBMS2 contains data item c. Suppose that DBMS1 follows theTO scheme in which a timestamp is assigned to a transaction when it begins execution, and DBMS2follows the strict 2PL protocol [BHG87] for ensuring serializability of its local schedules. Considerthe following global transactions T1 and T2 that execute.T1 : b11 w1(a) b12 w1(c) c11 c12T2 : b21 r2(b) b22 r2(c) c21 c22Let T3 be a transaction local to DBMS1.T3 : b3 r3(a) w3(b) c3Consider the global schedule S resulting from the concurrent execution of transaction T1, T2 and T3such that the local schedules at DBMS1 and DBMS2 are as follows.S1 : b11 b3 w1(a) b21 r3(a) w3(b) c3 r2(b) c11 c21S2 : b22 b12 w1(c) c12 r2(c) c22Let �1 = fT1; T2g and �2 = fT1; T2g be the set of global transactions executing on databasesDBMS1 and DBMS2 respectively. Let serS1 be the function that maps every transaction in �1 toits begin operation. Also, let serS2 be the function that maps every transaction in �2 to its commitoperation. Thus, serS1 (T1) = b11, serS1 (T2) = b21, serS2 (T1) = c12 and serS2 (T2) = c22. As aresult, transactions bT1, bT2 are as follows.bT1 : b11 c12bT2 : b21 c22Schedule bS is as follows.bS : b11 b21 c12 c22In bS, operations b11 and b21 con
ict, whereas operations b11 and c22 do not con
ict. Note thatoperations b11 and b21 do not con
ict in S. 2Theorem 1: [MRB+92a] Consider an MDBS consisting of DBMS1, DBMS2, : : :, DBMSm. LetS be a global schedule. S is serializable, if the schedule bS is serializable. 2In Example 2, note that bS is serializable (the serialization order being bT1 before bT2). As a result,global schedule S is serializable. Theorem 1 reduces the problem of ensuring global serializabilityto the problem of ensuring the serializability of the schedule bS. Note that each operation in the7

schedule bS belongs to only global transactions. Thus, the MDBS can guarantee global serializabilityby ensuring that the order in which these operations execute the resulting schedule bS is serializable.Note that the schedule bS is distributed over the local DBMSs. Thus, the MDBS transaction managercan employ any distributed or centralized concurrency control protocol for ensuring serializability ofbS. For example, the scheme suggested in [GRS91] uses a SGT certi�er to ensure serializability of bS.On the other hand, the scheme suggested in [ED90] uses a TO scheme to ensure serializability of bS.Further, the scheme suggested in [BGR92] uses a distributed TO protocol to ensure serializabilityof bS. In [MRB+92a] we suggested various conservative schemes to ensure serializability of bS.4 Concurrency Control in Hierarchical MDBSsIn a hierarchical MDBS, the domain manager for a domain D, along with the domain manager foreach domain D0, D0 v D, controls the concurrent execution of the transactions that execute in D.In order to ensure global serializability, domain manager DM (D) for each domain D must ensurethat the concurrent execution of transactions in D results in a serializable schedule. In this section,we propose a mechanism that DM (D) can use in order to ensure the serializability of schedulesresulting from the concurrent execution of transactions within D. Crucial to our development is theappropriate extension of the notion of serialization functions to the domain. Let D be any arbitrarydomain in �. An extended serialization function is a function sf that maps a given transactionTi, and a domain D, to some operation belonging to Ti that executes in D such that the followingholds:For all Ti; Tj, if global(Ti; D), global(Tj ; D), and Ti �;SD Tj , then sf(Ti; D) �SD sf(Tj ; D)We refer to sf(Ti; D) as a serialization function of transaction Ti with respect to the do-main D. To see how such a serialization function will aid us in ensuring serializability withina domain, consider a domain D 6= DBk, k = 1; 2; : : :;m. Let us assume that the above de-�ned serialization function exists for transactions in every child domain of D; that is, for everyDk, where child(Dk; D). For a given transaction Ti that executes in D, we denote the projec-tion of Ti to its serialization function values over each of the child domains of D as a trans-action bTDi . Formally, bTDi is de�ned as follows. Let Ti be a transaction and D be a domainsuch that global(Ti; Dk) for some Dk, where child(Dk; D). bTDi is a restriction of Ti consist-ing of all the operations in the set fsf(Ti ; Dk) j Ti executes in Dk; and child(Dk; D)g. Fur-ther, for the global schedule S, we de�ne a schedule bSD to be the restriction of S consistingof the set of operations belonging to transactions bTDi . Thus, bSD = (�bSD ;�bSD), where �bSD =fbTDi j global(Ti; Dk) for some Dk, where child(Dk; D)g, and for all operations oq ; or in bSD, oq �bSDor, i� oq �S or. In the schedule bSD , we de�ne operations sf(Ti ; Dk) and sf(Tj ; Dl), Ti 6= Tj, tocon
ict i� k = l. 8

Lemma 1: Consider an MDBS environment with the set � of domains. Let S be a globalschedule and D be an arbitrary domain in �. Schedule SD is serializable, if each of the followingthree conditions hold:� For each domain Dk such that child(Dk; D), SDk is serializable.� For each domain Dk, such that child(Dk; D), there exists a serialization function sf such thatthe following holds:For all transactions Ti; Tj, if global(Ti; Dk), global(Tj ; Dk), and Ti �;SDk Tj , thensf(Ti; Dk) �S sf(Tj ; Dk).� Schedule bSD is serializable. 2Lemma 1 demonstrates that if an appropriate serialization function is associated with child do-mains of a domain D, then serializability of the projection of the schedule S to domain D can beensured. We, therefore, need to associate an appropriate serialization function with each domainD 2 �. Note that for a domain D = DBk , the function sf is simply serSk . We now de�ne thefunction sf for an arbitrary domain D 2 �, which is done recursively over the domain orderingrelation.De�nition 1: Let D be a domain and Ti be a transaction such that global(Ti; D). The serial-ization function for transaction Ti in domain D is de�ned as follows:sf(Ti ; D) = � serSk (Ti); if for some DBk , D = DBk:serbSD (bTDi); if for all DBk , D 6= DBk 2We next show that the above de�ned function sf indeed meets our requirement of a serializationfunction for a domain D.Lemma 2: Consider an MDBS environment with the set � of domains. Let S be a global sched-ule, Ti, Tj be transactions in S, and D be an arbitrary domain in �. If global(Ti; D), global(Tj ; D)and Ti �;SD Tj , then sf(Ti; D) �S sf(Tj ; D). 2Using Lemmas 1 and 2, we can show that if for each domain D0, D0 v D, the schedule bSD0 isserializable, then the schedule SD is serializable. This is stated in the following theorem.Theorem 2: Consider an MDBS environment with the set � of domains. Let S be a globalschedule and D be an arbitrary domain in �. Schedule SD is serializable, if the following threeconditions hold: 9

domainmanagers of child domains ofD
domainmanagers of parent domains ofD

sf(Ti ; Dk)sf(Ti; D) ack(sf(Ti; D))ack(sf(T i;Dk))ack(sf(Ti ; D))DM1(D) DM2(D)exec(sf(Ti ; Dk))exec(sf(Ti ; D))exec(sf(Ti; D))exec(sf(Ti; D)) DM (D)DM3(D)Figure 2: Components of a Domain Manager� For each DBk such that DBk < D, Sk is serializable and further there exists a function serSksuch that for all transactions Ti; Tj, if global(Ti; DBk), global(Tj ; DBk), and Ti �;Sk Tj , thenserSk (Ti) �S serSk (Tj).� For all domainsD0 2 � such thatD0 < D, bSD0 is serializable and further there exists a functionserbSD0 such that for all transactions Ti; Tj, if global(Ti; D0), global(Tj ; D0), and bTD0i �;bSD0 bTD0j ,then serbSD0 (bTD0i) �S serbSD0 (bTD0j).� bSD is serializable. 2Theorem 2 states that in order to ensure the serializability of the schedule SD , the domainmanager of each domain D0 v D needs to ensure that the schedule bSD0 is serializable. Let D bean arbitrary domain in � such that D 62 TOP and D 6= DBk, for all k = 1; 2; : : :;m. We nextconsider a design of the domain manager for such a domain D (denoted by DM (D)) that ensuresthe serializability of the schedule bSD . Domain managers for domains D such that D 2 TOP orD = DBk, for some k = 1; 2; : : : ;m, are a slight modi�cations of the basic design and are discussedlater.DM (D) consists of three components { DM1(D), DM2(D) and DM3(D) (see Figure 2). Com-ponents DM1(D) and DM2(D) together are responsible for submitting the operations belongingto the transactions bTDi to the component DM3(D). Component DM3(D) schedules the operationsbelonging to transactions bTDi in such a fashion that the schedule bSD is serializable.� DM1(D): The componentDM1(D) is responsible for forwarding the requests from the domainmanager of the child domains of D to either the parent domains of D, or to the componentDM3(D). DM1(D) receives operations o = sf(Ti; Dk) from the domain manager of Dk, wherechild(Dk; D). It uses the information about the concurrency control protocol followed by10

DM3(D) to determine if the operation is the serialization function of Ti with respect to thedomain D; that is, if o = sf(Ti; D). If the transaction Ti is local to D (that is, local(Ti; D)),or if o 6= sf(Ti ; D), DM1(D) submits a request for the execution of the operation sf(Ti; Dk)(denoted by exec(sf(Ti ; Dk))) to DM3(D). Else, if Ti is global to D (that is, global(Ti; D)),and o = sf(Ti; D), then it submits the operation to the domain managers of every domainD0 such that parent(D0; D). Recall that a domain D, in our MDBS architecture, may havemultiple domains D0 such that parent(D0; D).� DM2(D): The component DM2(D) is responsible for collecting requests for the execution ofoperations o = sf(Ti; D) from the parent domains of D. DM2(D) receives requests for theexecution of the operations o = sf(Ti ; D) (that is, exec(sf(Ti ; D)) requests) from the domainmanagers of the domainsD0, where parent(D0; D). In case there are multiple domainsD0 suchthat parent(D0; D), DM2(D) waits until it receives requests exec(sf(Ti ; D)) from each domainD0, where parent(D0; D). On receipt of the request from each of the parent domains, it submitsthe operation for execution to the componentDM3(D). On receipt of the acknowledgement forthe successful execution of the operation sf(Ti; D) (denoted by ack(sf(Ti ; D))) fromDM3(D),DM2(D), in turn, forwards the acknowledgement to the domain managers of each of thedomains D0, where parent(D0; D).� DM3(D): The component DM3(D) is responsible for scheduling the operations of the trans-actions bTDi in such a fashion that the schedule bSD is serializable. DM3(D) receives requestfor the execution of operations o = sf(Ti; Dk), where child(Dk; D) from DM1(D) (if either obelongs to a transaction Ti such that local(Ti; D), or if o 6= sf(Ti ; D)) and from the compo-nent DM2(D) (if o = sf(Ti; D), and global(Ti; D)). DM3(D), in turn, submits the request forthe execution of the operation sf(Ti ; Dk), to the domain manager of the domain Dk, wherechild(Dk; D). Further, on receipt of the acknowledgement for the operation o = sf(Ti; Dk)(that is, ack(sf(Ti; Dk))) from the domain manager of the domainDk, in case the operation isalso the serialization function of Ti with respect toD (that is, sf(Ti; D)), DM3(D) forwards theacknowledgement to the component DM2(D) which, as mentioned previously, acknowledgesthe execution of the operation to the domain managers of each of the parent domains of D.DM3(D) controls the submission order of the operations sf(Ti; Dk) to the domain managersof the domains Dk, where child(Dk; D), in such a fashion that the schedule bSD is serializable.The domain manager for the domainD 2 TOP di�ers from the above in that it does not containthe component DM2(D). Note that if D 2 TOP , then there does not exist a domain D0 such thatparent(D0; D). Thus, the component DM1(D) of the domain manager for a domain D 2 TOP ,on receipt of the any operations o = sf(Ti ; Dk), where child(Dk; D), submits a request for theexecution of sf(Ti; Dk) (that is, exec(sf(Ti ; Dk)) to the component DM3(D) directly.The domain manager for the domain D = DBk, for some k = 1; 2; : : : ;m, di�ers from thedesign of the domain manager illustrated in Figure 2 in that it does not contain the component11

DM3(D). In this case, the request for the execution of the operations sf(Ti ; D) by the componentsDM1(D) and DM2(D) are submitted directly to the local DBMS for execution. We assume thateach local DBMS, on successful execution of the operation, acknowledges its execution to DM (D).Furthermore, unlike the case for other domains, operations belonging to transactions that are local toD (that is, local(Ti; D)) are not controlled by the domain manager ofD. Instead, they are submittedto the local DBMS directly for execution. In contrast, operations belonging to the transactionsthat are global to D, that is, global(Ti; D), as in the case of other domains, are controlled by thedomain manager. For each transaction Ti such that global(Ti; D), the component DM1(D), basedon the concurrency control protocol followed by the local DBMS to ensure serializability of theschedule SD , determines whether the operation is the serialization function of Ti with respect toD. If the operation o = sf(Ti ; D), then, as before, DM1(D) forwards the operation to the domainmanagers of all domainsD0, where parent(D0; D). Else, it submits the operation to the local DBMSfor execution. The local DBMS, on receipt of the operation from DM (D) executes the operation.Further, on completion of the execution of the operation, it acknowledges its execution to the domainmanager DM (D). DM2(D), on receipt of the acknowledgement of the operation from the localDBMS, determines if the acknowledgement is for an operation sf(Ti ; D). If the acknowledgementif for the operation sf(Ti ; D), then as in the case of other domain managers, DM2(D) sends anacknowledgement to the domain managers of the parent domains of D.In our design of the domain manager for a domain D, the operation o = sf(Ti ; Dk) does notexecute in S until the component DM3(D) of the domain manager for domainD submits a requestfor the execution of the operation sf(Ti ; Dk); that is, exec(sf(Ti ; Dk)) to the domain manager ofdomain Dk, where child(Dk; D). Note that this is true since the component DM2(Dk) of the do-main manager for the child domain Dk waits to receive a request for the execution of the operationsf(Ti; Dk) from each parent domain of Dk. Furthermore, for each operation sf(Ti ; Dk), the com-ponent DM3(D) of the domain manager for the domain D receives the acknowledgement for theexecution of sf(Ti ; Dk), where child(Dk; D), sometime after the execution of sf(Ti; Dk) in S. Thisis true since we assume that each DBMSj acknowledges the execution of the operations belong-ing to the transactions that are global with respect to DBj to the domain manager of D = DBj ,and the domain manager for each domain D, in turn, acknowledges the execution of the operationsf(Ti; D), to the domain managers of each of its parent domains. Thus, the operation sf(Ti; Dk)executes in S after DM3(D) submits sf(Ti; Dk) for execution to the domain manager of Dk, andbefore DM3(D) receives the acknowledgement for the execution of sf(Ti ; Dk) from the domain man-ager of Dk. Hence, to ensure that the schedule bSD is serializable, the component DM3(D) can useany concurrency control protocol that ensures serializability (e.g., 2PL, TO, SGT) to schedule thesubmission of the operations belonging to transactions bTDi to the domain managers of the childdomains. Note that since the schedule bSD is distributed over the domains D1; D2; : : : ; Dk, wherechild(Dj ; D), j = 1; 2; : : : ; k, DM3(D) can follow any distributed or centralized concurrency control12

T3 ; T4T2 ; T3T1 ; T2 D2D1 T4 ; T1DB1 DB2 DB3 DB4Figure 3: Example of a Non-serializable Executionprotocol to ensure serializability of bSD .5 Ensuring Global SerializabilityIn the previous section, we developed a mechanism that the domain managers can use to ensurethat the projection of the schedule to their domains is serializable. Our mechanism, however, maynot ensure global serializability. To see this, let us consider the following example.Example 3: Consider an MDBS environment consisting of local databases: DBMS1 withdata item x, DBMS2 with data item z, DBMS3 with data item y, and DBMS4 with data itemu. Let the domain ordering relation be as illustrated in Figure 3. The set of domains � =fDB1; DB2; DB3; DB4; D1; D2g, where D1 = SfDB1; DB2; DB3g, and D2 = SfDB2; DB3; DB4g.Consider the following transactions T1, T2, T3, and T4:T1 : b11 w11(x) b13 w13(y) c11 c13T2 : b21 w21(x) b22 w22(z) c21 c22T3 : b32 w32(z) b34 w34(u) c32 c34T4 : b44 w44(u) b43 w43(y) c44 c43Note that Dom(T1) = D1, Dom(T2) = D1, Dom(T3) = D2 and Dom(T4) = D2. Suppose that eachlocal DBMS follows a timestamp scheme for concurrency control in which a timestamp is assignedto a transaction when it begins execution. Since each local DBMS follows the timestamp schemeand the timestamp is assigned to a transaction when it begins execution, the serialization functionfor a transaction with respect to DBi, i = 1; 2; 3; 4, is the transaction's begin operation at the localDBMSs. Thus, the transactions bTi for the transactions T1; T2; T3; T4 with respect to each of thedomains D1 and D2 are as follows:bTD11 : b11 b13 bTD12 : b21 b22 bTD13 : b32 bTD14 : b43bTD21 : b13 bTD22 : b22 bTD23 : b32 b34 bTD24 : b44 b43Consider a schedule S resulting from the concurrent execution of transactions T1, T2, T3, and T4such that the local schedules at DBMS1, DBMS2, DBMS3 and DBMS4 are as follows:13

D1 D2DB1 DB3DB2 DB4D3Figure 4: Example of � that Satis�es R1S1 : b11 w11(x) b21 w21(x) c11 c21S2 : b22 w22(z) b32 w32(z) c22 c32S3 : b43 w43(y) b13 w13(y) c43 c13S4 : b34 w34(u) b44 w44(y) c34 c44Furthermore let the schedules bSD1 and bSD2 be as follows:bSD1 : b22 b43 b11 b32 b21 b13bSD2 : b22 b43 b34 b32 b13 b44In schedule bSD1 operations b11, b21, operations b22, b32, and operations b43, b41 con
ict. Thus, bSD1is serializable in the order bTD14 , bTD11 , bTD12 , bTD13 . Similarly, in the schedule bSD2 operations b22, b32,operations b43, b13, and operations b34, b44 con
ict. Thus, bSD2 is serializable in the order bTD22 , bTD23 ,bTD24 , bTD21 . Thus, each schedule bSD1 , bSD2 and bSD3 is serializable. However, the global schedule S isnot serializable. 2The above example illustrates that even if the domain managers of each domain D ensuresthat the schedule bSD is serializable, the resulting global schedules may not be serializable. For theschedule S to be globally serializable, the set of domains � must be appropriately restricted. Inthe remainder of the section, we consider a restriction on � that guarantees that if each domainmanager ensures serializability of bSD , then the resulting global schedule is serializable.To identify the appropriate restriction on �, let us reexamine the non-serializable execution inExample 3. Let the domain managers of the domains D1 and D2 ensure serializability of bSD1 andbSD2 respectively, by following a timestamp scheme in which timestamps are assigned to a transac-tion when it begins execution. In the schedule bSD1 , the begin operation for the transactions bTD11and bTD13 are the operations b11 and b32 respectively. Further, in the schedule bSD2 , the begin oper-ation for the transactions bTD21 and bTD23 are the operations b13 and b34 respectively. It is possiblethat the domain manager of the domain D1 assigns a timestamp to the transaction bTD11 that islower than the timestamp it assigns to the transaction bTD13 . In contrast, the domain manager ofthe domain D2 assigns a lower timestamp to the transaction bTD23 than the timestamp it assignsto the transaction bTD23 , thereby resulting in the loss of serializability. If, however, there existed adomainD3 = SfDB2; DB3g (illustrated in Figure 4), then the order in which the domain managerfor domainD1 assigns timestamps to any pair of transactions bTD1i and bTD1j , and the order in which14

the domain manager of D2 assigns timestamps to bTD2i and bTD2j must be the same (identical tothe order in which D3 assigns timestamps to transactions, assuming D3 also follows a timestampingscheme). Hence, if there existed a domain D3 = SfDB2; DB3g, then the non-serializable executionin Example 3 would not result. We therefore consider the following restriction on the set � ofdomains:R1: For all domains Di; Dj 2 TOP , there exists a Dk 2 �, such that Dk = Di \Dj .In the domain ordering relation illustrated in Figure 3, since DB2 < D1, DB2 < D2, andDB3 < D1, DB3 < D2, the domain D1 \D2 does not exist. Thus, the corresponding set � doesnot satisfy R1. In contrast, in the domain ordering relation illustrated in Figure 4, the domainD3 = D1 \D2. Thus, the corresponding set � satis�es the restriction R1.Unfortunately, even if the set of domain � satis�es the restriction R1, and each domain managerensures serializability of the schedule bSD , the resulting global schedule may not be serializable. Tosee this let us consider the following example.Example 4: Consider an MDBS environment consisting of local databases: DBMS1 withdata item x, DBMS2 with data item y, and DBMS3 with data item z. Let the domain or-dering be as illustrated in Figure 5. The set of domains � = fDB1; DB2; DB3; D1; D2; D3g,where D1 = SfDB1; DB2g, D2 = SfDB2; DB3g, and D3 = SfDB1; DB3g. Further, the setTOP = fD1; D2; D3g, D1 \D2 = DB2, D2 \D3 = DB3, and D1 \D3 = DB1. Hence, � satis�esthe restriction R1. Consider the following transactions T1, T2, and T3 that execute:T1 : b11 w11(x) b13 w13(y) c11 c13T2 : b21 w21(x) b22 w22(z) c21 c22T3 : b32 w32(z) b33 w33(y) c32 c34Note that Dom(T1) = D3, Dom(T2) = D1, and Dom(T3) = D2. Suppose that each local DBMSfollows a timestamp scheme for concurrency control in which a timestamp is assigned to a transactionwhen it begins execution. Since each local DBMS follows the TO scheme and the timestamps areassigned to transactions when they begin execution, the serialization function for a transaction withrespect to DBi, i = 1; 2; 3; 4, is the transactions' begin operation at the local DBMSs. Thus, thetransactions bTi for the transactions T1; T2; T3 with respect to each of the domains D1, D2 and D3are as follows:bTD11 : b11 bTD12 : b21 b22 bTD13 : b32bTD21 : b13 bTD22 : b22 bTD23 : b32 b33bTD31 : b11 b13 bTD32 : b21 bTD33 : b33Consider a schedule S resulting from the concurrent execution of transactions T1, T2, and T3 suchthat the local schedules at DBMS1, DBMS2, DBMS3 and DBMS4 are as follows:S1 : b11 w11(x) b21 w21(x) c11 c21S2 : b22 w22(z) b32 w32(z) c22 c32S3 : b33 w33(y) b13 w13(y) c33 c1315

T2 ; T3T1 ; T2 D2D1D3 T3 ; T1DB2DB1 DB3Figure 5: A Domain Ordering with a cyclic DGFurthermore let the schedules bSD1 , bSD2 and bSD3 be as follows:bSD1 : b11 b22 b21 b32bSD2 : b22 b33 b32 b13bSD3 : b11 b33 b21 b13In schedule bSD1 operations b11, b21, and operations b22, b32, con
ict. Thus, bSD1 is serializable inthe order bTD11 , bTD12 , bTD13 . In the schedule bSD2 operations b22, b32, and operations b33, b13 con
ict.Thus, bSD2 is serializable in the order bTD22 , bTD23 , bTD21 . Similarly, in the schedule bSD3 operations b11,b21, and operations b33, b13 con
ict. Thus, bSD3 is serializable in the order bTD33 , bTD31 , bTD32 . Thus,each schedule bSD1 , bSD2 and bSD3 is serializable. However, the global schedule S is not serializable. 2The above example illustrates that even if � satis�es the restriction R1, ensuring serializabilityof bSD for each domain D may not ensure global serializability. To identify conditions under whichglobal serializability is ensured we need to introduce the notion of a domain graph. A domain graph(DG) for a set of domains �, is an undirected graph whose nodes correspond to the set of domainsD 2 TOP . Let Di and Dj be two nodes in DG. There is an edge (Di; Dj) in DG if there exists adomain Dk 2 � such that Dk < Di and Dk < Dj .Theorem 3: Consider an MDBS environment with the set � of domains. Let S be a globalschedule. Further, let each of the following three hold:� For each DBk such that DBk < D, Sk is serializable and further there exists a function serSksuch that for all transactions Ti; Tj, global(Ti; DBk), global(Tj ; DBk), and Ti �;Sk Tj , thenserSk (Ti) �S serSk (Tj).� For all domains D 2 � such that D 62 TOP , bSD is serializable and further there exists afunction serbSD such that for all transactions Ti; Tj, if global(Ti; D), global(Tj ; D), and bTDi �;bSDbTDj , then serbSD (bTDi) �S serbSD (bTDj).� For all domains D 2 � such that D 2 TOP , bSD is serializable.16

If � satis�es R1 and the DG is acyclic, then S is serializable. 2The DG for the set of domains � corresponding to the domain ordering relation illustrated inFigure 4 contains nodes D1 and D2 and an edge (D1; D2). Since this DG is acyclic and the setof domains � satis�es R1, it follows that in order to ensure global serializability, it su�ces toensure that the schedules bSD , for each domain D 2 �, is serializable. In contrast, the DG forthe set of domains corresponding to the domain ordering relation illustrated in Figure 5 contains acycle (D1; D2), (D2; D3) and (D3; D1). Hence, even if for each domain D 2 �, the schedule bSD isserializable and the set of domains � satis�es restriction R1, loss of global serializability may result.In the superdatabase architecture, proposed in [Pu88], the set of domains � is restricted asfollows:For all domains Di; Dj, if child(Di; Dj), then for all Dk 6= Dj , :child(Di; Dk).It is easy to see that this is a special instance of � that satis�es restriction R1 and, further, thedomain graph corresponding to � is acyclic. Thus, from Theorem 3, it follows that a concurrencycontrol scheme based on ensuring the serializability of bSD for each domain D 2 � can be used insuperdatabases to ensure global serializability.In contrast to our scheme, where for each domain D, the domain manager DM (D) ensuresserializability of the schedule bSD , [Pu88] uses a protocol referred to as the hierarchical validation,in order to ensure global serializability. The following two di�erences between our approach andthe hierarchical validation protocol are noteworthy. First, in hierarchical validation, each domainmanager must follow a SGT certi�cation based protocol. In contrast, in our approach, di�erentdomain managers may follow di�erent concurrency control protocols (centralized or distributed),for ensuring serializability of the schedule bSD . Second, in our approach, for a transaction Ti and adomainD such that local(Ti; D), the domain manager of D does not need to submit any operationsof Ti to the parent domain of D. In contrast, in the hierarchical validation protocol, the domainmanager for the domain D must submit operations of all the transactions, whether local(Ti; D) orglobal(Ti; D), to the parent domain of D. A detailed comparison between our approach and thehierarchical validation protocol suggested in [Pu88] can be found in Appendix A.Example 4 illustrates that if the DG contains a cycle, our scheme may not ensure global seri-alizability. However, not every cycle in the DG would result in a potential loss of serializability.Consider, for example, DG for the set of domains corresponding to the domain ordering relationillustrated in Figure 6. Note that DG contains a cycle (D2; D3), (D3; D4), (D4; D2). However, forthe set of domains corresponding to the domain ordering relation illustrated in Figure 6, if for eachD 2 �, the domain manager for D ensures that the schedule bSD is serializable, the resulting globalschedule S would be serializable. Thus, certain cycles in DG do not result in a potentially non-serializable global schedule. To identify such cycles, we introduce the notion of the labeled domaingraph (LDG). An LDG is a domain graph in which each edge (Di; Dj) has a label, referred to as17

D2 D1 D3D4DB1 DB2 DB3 DB4 DB5 DB6Figure 6: A Domain Ordering such that LDG Contains No Undesirable Cycleslabel(Di; Dj), where label(Di; Dj) = Di\Dj . Let (D1; D2); (D2; D3); : : : ; (Dr�1; Dr); (Dr ; D1) be acycle in the LDG.We refer to the cycle in the LDG as a undesirable cycle i� for all k; l, k = 1; 2; : : : ; r,l = 1; 2; : : : ; r, if k 6= l, then label(Dk ; D(k+1)mod r) 6= label(Dl; D(l+1)mod r). Note that the LDGfor the set of domains corresponding to the domain ordering relation illustrated in Figure 6, hasedges (D2; D3), (D3; D4) and (D4; D2), where label(D2; D3) = label(D3; D4) = label(D4; D2) = D1.Thus, LDG does not contain any undesirable cycles. In contrast, the LDG for the set of domainscorresponding to the domain ordering illustrated in Figure 5 contains a cycle (D1; D2), (D2; D3),(D3; D1), where label(D1; D2) = DB2, label(D2; D3) = DB3, label(D3; D1) = DB1. Hence, LDGcontains a undesirable cycle. If the LDG for the set of domains � does not contain any undesirablecycles, then ensuring that bSD, for each domainD 2 � would ensure global serializability as is statedin the following theorem.Theorem 4: Consider an MDBS environment with the set � of domains. Let S be a globalschedule. Further, let each of the following three hold:� For each DBk such that DBk < D, Sk is serializable and further there exists a function serSksuch that for all transactions Ti; Tj, global(Ti; DBk), global(Tj ; DBk), and Ti �;Sk Tj , thenserSk (Ti) �S serSk (Tj).� For all domains D 2 �, such that D 62 TOP , bSD is serializable and further there exists afunction serbSD such that for all transactions Ti; Tj, if global(Ti; D), global(Tj ; D), and bTDi �;bSDbTDj , then serbSD (bTDi) �S serbSD (bTDj).� For all domains D 2 � such that D 2 TOP , bSD is serializable.If � satis�es R1 and LDG contains no undesirable cycles, then S is serializable. 218

6 ConclusionsA multidatabase system (MDBS) is a facility, developed on top of pre-existing local database man-agement systems (DBMSs), that provides users of a DBMS access and update privileges to datalocated in other heterogeneous data sources. Over the past decade, substantial research has beendone to identify mechanisms for e�ectively dealing with the problems that arise due to the hetero-geneity and autonomy of the local systems. This research has resulted in transaction managementalgorithms for MDBSs that ensure correctness without sacri�cing the autonomy of the individualsystem. Most of the proposed approaches have, however, considered an MDBS as a single monolithicsystem which, executing on top of the existing local DBMSs, controls the execution and commitmentof the global transactions (transactions that execute at multiple local DBMSs) in such a way thatconsistency of the individual systems is not jeopardized.One issue that has been relatively ignored is that of the architecture of MDBSs. We believethat a large MDBS, that span multiple organizations distributed over various geographically distantlocations, will not be developed as a single monolithic system; rather, it will be developed hierarchi-cally. However, if the architecture of the MDBS is hierarchical, then the transaction managementalgorithms followed by individual MDBSs needs to be composable in such a way that it is feasibleto incorporate individual MDBSs as elements in a larger MDBS. In this paper, we presented a hi-erarchical architecture for MDBSs. In our architecture, with an MDBS environment is associated aset of domain � with an ordering relation <. A domain is either a set of data items at some localDBMS, or it may consist of a union of the set of data items in other domains. The execution ofthe transactions within a domain is controlled by the domain manager. We adopted serializabil-ity as the correctness criteria and developed a mechanism which the domain managers can use toensure that the concurrent execution of the transactions does not result in a loss of serializabilitywithin their domains. Furthermore, we identi�ed restrictions on the domain order that ensure globalserializability.In this paper, we did not consider the issue of failure-resilience. Failure-resilience in MDBSs iscomplicated since the requirement of autonomy preservation renders the usage of atomic commitprotocols [BHG87] unsuitable for MDBS environments. In the absence of atomic commit protocols,it is possible that certain subtransactions of a multi-site transaction commit, whereas others abort,thereby violating the atomicity property. The problem of ensuring atomicity in MDBS environmentshas been studied in [BST90, WV90, VW90, MRB+92b, MRKS92]. We need to further study howthese schemes can be adapted for our MDBS architecture.Finally, in this paper we concentrated only on developing mechanisms for ensuring global seri-alizability in MDBSs that conform to our architecture. Since ensuring global serializability in anMDBS environment is both complex and expensive, substantial research has been done to developcorrectness criteria for MDBSs that are weaker than serializability but that ensure database con-sistency under appropriate assumptions about the MDBS environment [DE89, MRKS91]. It will19

be interesting to study concurrency control schemes and the consistency guarantee that results inMDBSs in which di�erent domains may follow di�erent notions of correctness.7 AcknowledgementsWe wish to thank Daniel Barbar�a for many inspiring discussions. We would further like to thankRajeev Rastogi for his comments on an earlier draft of the paper.References[BGR92] R.K. Batra, D. Georgakopoulos, and M. Rusinkiewicz. A decentralized deadlock-free concurrency control method for multidatabase transactions. In Proceedings ofthe Twelfth International Conference on Distributed Computing Systems, Yokohoma,Japan, 1992.[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recoveryin Database Systems. Addison-Wesley, Reading, MA, 1987.[BS88] Y. Breitbart and A. Silberschatz. Multidatabase update issues. In Proceedings of ACM-SIGMOD 1988 International Conference on Management of Data, Chicago, pages 135{141, 1988.[BST90] Y. Breitbart, A. Silberschatz, and G. R. Thompson. Reliable transaction manage-ment in a multidatabase system. In Proceedings of ACM-SIGMOD 1990 InternationalConference on Management of Data, Atlantic City, New Jersey, pages 215{224, 1990.[DE89] W. Du and A. K. Elmagarmid. Quasi serializability: a correctness criterion for globalconcurrency control in InterBase. In Proceedings of the Fifteenth International Confer-ence on Very Large Databases, Amsterdam, pages 347{355, 1989.[ED90] A.K. Elmagarmid and W. Du. A paradigm for concurrency control in heterogeneousdistributed database systems. In Proceedings of the Sixth International Conference onData Engineering, Los Angeles, 1990.[GRS91] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. On serializability of multidatabasetransactions through forced local con
icts. In Proceedings of the Seventh InternationalConference on Data Engineering, Kobe, Japan, 1991.[MRB+92a] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. The concur-rency control problem in multidatabases: Characteristics and solutions. In Proceedingsof ACM-SIGMOD 1992 International Conference on Management of Data, San Diego,California, 1992.[MRB+92b] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. Ensur-ing transaction atomicity in multidatabase systems. In Proceedings of the Eleventh20

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, SanDiego, California, 1992.[MRKS91] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. Non-serializable executionsin heterogeneous distributed database systems. In Proceedings of the First InternationalConference on Parallel and Distibuted Information Systems, Miami Beach, Florida,1991.[MRKS92] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. A transaction model forheterogeneous distributed database systems. In Proceedings of the Twelfth InternationalConference on Distributed Computing Systems, Yokohoma, Japan, 1992.[Pu88] C. Pu. Superdatabases for composition of heterogeneous databases. In Proceedings ofthe Fourth International Conference on Data Engineering, Los Angeles, 1988.[VW90] J. Veijalainen and A. Wolski. The 2PC agent method and its correctness. TechnicalReport Research Notes 1192, Technical research Centre of Finland, December 1990.[WV90] A. Wolski and J. Veijalainen. 2PC agent method: Achieving serializability in pres-ence of failures in a heterogeneous multidatabase. In Proceedings of the Internationalconference on databases, parallel architectures and their applications, pages 321{330,March 1990.

21

A Comparison With SuperdatabasesIn this section, we compare our scheme with the hierarchical validation protocol suggested forsuperdatabases in [Pu88]. Before we do so, we �rst describe the hierarchical validation protocol.In the hierarchical validation protocol, the domain manager for a domainD, D 62 TOP , for eachtransaction Ti such that :local(Ti; DBk), k = 1; 2; : : : ;m, (that is, transactions that are not local toany local DBMS), submits the operations fsf(Ti; DBk) jDBk v D and Ti accesses data item in DBkgto the domain manager of the domain D0, where parent(D0; D)4. We refer to the restriction of atransaction Ti to the set of operation fsf(Ti; DBk) j DBk v D and Ti accesses data item in DBkgas a transaction �TDi . Further, we refer to the restriction of the schedule S to the operations belong-ing to transactions �TDi by �SD . In the schedule SD operations sf(Ti ; DBk) and sf(Tj ; DBl), i 6= j,are de�ned to con
ict i� k = l. In the hierarchical validation protocol, for each domain D 6= DBk ,k = 1; 2; : : : ;m, the domain manager DM (D) follows the SGT certi�cation protocol to ensure thatthe schedule �SD is serializable.The following two di�erences between our approach and the hierarchical validation protocol arenoteworthy. First, in hierarchical validation, each domain manager follows the SGT certi�cationprotocol to ensure serializability of �SD . In contrast, in our approach, di�erent domain managersmay follow di�erent concurrency control protocols (centralized or distributed), for ensuring serializ-ability of the schedule bSD . Second, in our approach, for a transaction Ti and a domainD such thatlocal(Ti; D), the domain manager of D does not submit any information to the parent domain ofD. In contrast, in the hierarchical validation protocol, the DM (D) must submit the set of opera-tions fsf(Ti; DBk) j DBk v D and Ti accesses data item in DBkg for each transaction Ti, whetherlocal(Ti; D) or global(Ti; D), to the parent domain of D. If, in the hierarchical validation proto-col, DM (D) does not submit the operations sf(Ti; Dk), where local(Ti; D), to the parent domain ofD, then the protocol may not ensure global serializability. We illustrate this in the following example.Example 5: Consider an MDBS environment consisting of local databases: DBMS1 with dataitem x, DBMS2 with data item y, DBMS3 with data item z, and DBMS4 with data item u. Letthe set of domains � = fDB1; DB2; DB3; DB4; D1; D2; D3g, where D1 = SfDB1; DB2g, D2 =fDB3; DB4g, and D3 = SfD1; D2g. Note that the set of domains � conforms to the superdatabasearchitecture. Consider the following transactions T1, T2, T3 and T4 that execute:T1 : b11 w11(x) b13 w13(z) c11 c13T2 : b22 w22(y) b24 w24(u) c22 c24T3 : b31 w32(x) b32 w32(y) c32 c32T4 : b43 w43(z) b44 w44(u) c43 c44Note that Dom(T1) = D3, Dom(T2) = D3, Dom(T3) = D1 and Dom(T4) = D2. Further,global(T1; D1), global(T2; D1) and local(T3; D1). Similarly,global(T1; D2), global(T2; D2) and local(T4; D2).4Note that in the superdatabases each domain may have at most one parent.22

Suppose that each local DBMS follows a timestamp scheme for concurrency control in which atimestamp is assigned to a transaction when it begins execution. Since each local DBMS follows thetimestamp scheme and the timestamps is assigned to a transaction when it begins execution, theserialization function for a transaction with respect to DBi, i = 1; 2; 3; 4, is the transactions' beginoperation at the local DBMSs. Thus, the transactions �TDi for the transactions T1; T2; T3; T4 withrespect to each of the domains D1, D2 and D3 are as follows:�TD11 : b11 �TD12 : b22 �TD13 : b31 b32�TD21 : b13 �TD22 : b24 �TD24 : b43 b44�TD31 : b11 b13 �TD32 : b22 b24Consider a schedule S resulting from the concurrent execution of transactions T1, T2, T4, and T4such that the local schedules at DBMS1, DBMS2, DBMS3 and DBMS4 are as follows:S1 : b11 w11(x) b31 w31(x) c11 c31S2 : b32 w32(y) b22 w22(y) c32 c22S3 : b43 w43(z) b13 w13(z) c43 c13S4 : b24 w24(u) b44 w44(u) c24 c44Let us assume that since local(T3; D1) and local(T4; D2), the schedule �SD3 does not contain thetransactions �TD33 and �TD34 . Thus, the schedule �SD are as follows:�SD1 : b11 b31 b32 b22�SD2 : b24 b44 b43 b13�SD3 : b11 b24 b13 b22In schedule �SD1 operations b11, b31, and operations b32, b22, con
ict. Thus, �SD1 is serializable inthe order �TD11 , �TD13 , �TD12 . In the schedule �SD2 operations b24, b44, and operations b43, b13 con
ict.Thus, �SD2 is serializable in the order �TD22 , �TD24 , �TD21 . In the schedule �SD3 no two operations con-
ict. Thus, �SD3 is serializable. Note that since each schedule �SD , D = D1; D2; D3 is serializable,it could have been generated by the hierarchical validation protocol. However, the global scheduleS is not serializable. Thus, for the hierarchical validation protocol to ensure global serializability,the schedule �SD3 must contain transactions �TD33 and �TD34 . Hence, the domain managers of domainsD1 and D2 must submit the operations belonging to the transactions �TD33 and �TD34 to the domainmanager of D3. 2
23

B Proofs of the TheoremsProof of Lemma 1: Assume that SD is not serializable. Since by (1) each SDk is serializable,there exist transactions T1; T2; : : : ; Tn such that T1 �;SDk1 T2, T2 �;SDk2 T3, : : :, Tn�1 �;SDkn�1 Tn,Tn �;SDkn T1, where child(Dki ; D), global(Ti; Dki), and global(T(i+1)mod n; Dki), i = 1; 2; : : :; n. By(2), sf(T1 ; Dk1) �S sf(T2; Dk1), sf(T2; Dk2) �S sf(T3 ; Dk2), : : :, sf(Tn�1; Dkn�1) �S sf(Tn; Dkn�1),sf(Tn; Dkn) �S sf(T1 ; Dkn). Thus, by the de�nition of con
icts in bSD , bTD1 ;bSD bTD2 , bTD2 ;bSD bTD3 ,: : :, bTDn�1 ;bSD bTDn , bTDn ;bSD bTD1 . Hence, bTD1 �;bSD bTD1 which is a contradiction since bSD by (3)above is serializable. Hence proved. 2In order to prove Lemma 2, we need to associate a notion of a level with a domain:level(D) = � 1 if D = DBk for some local database DBMSkmaximum(level(Dk)) + 1 where child(Dk; D) 2Proof of Lemma 2: The proof is by the induction over the level of the domains.Basis (level(D) = 1): If level(D) = 1, then for some DBk, D = DBk . Hence, for all transactionsTi; Tj, if global(Ti; D), global(Tj ; D), and Ti �;Sk Tj , then by de�nition of serSk , serSk (Ti) �SserSk (Tj). Hence, sf(Ti; D) �S sf(Tj ; D).Induction: Assume that the lemma is true for all domains D such that level(D) � p. Let D =SfD1; D2; : : : ; Dng be an arbitrary domain such that level(D) = p + 1. Let Ti; Tj be transactionssuch that global(Ti; D), global(Tj ; D), and Ti �;SD Tj. There are two cases to consider:� (Ti �;SDk Tj for some Dk such that child(Dk; D):) Since global(Ti; D) and global(Tj ; D)and Ti, Tj executes in Dk, global(Ti; Dk) and global(Tj ; Dk). Thus, by IH, sf(Ti ; Dk) �Ssf(Tj ; Dk). Hence, by de�nition of a con
ict in bSD , bTDi ;bSD bTDj . As a result, by thede�nition of sf(T;D), sf(Ti; D) �S sf(Tj ; D)� (There exist transactions T1; T2; : : : ; Tn such that Ti �;SDk1 T1, T1 �;SDk2 T2, : : :, Tn�1 �;SDkn�1Tn, Tn �;SDkn Tj , where child(Dki ; D), i = 1; 2; : : : ; n:) Note that global(Ti; Dki), i =1; 2; : : :; n, and global(Ti+1; Dki), i = 1; 2; : : : ; n� 1. Thus, by IH, sf(Ti; Dk1) �S sf(T1; Dk1),sf(T1; Dk2) �S sf(T2; Dk2), : : :, sf(Tn�1; Dkn�1) �S sf(Tn; Dkn�1), sf(Tn ; Dkn) �S sf(Tj ; Dkn).Hence, by de�nition of a con
ict in bSD , bTDi ;bSD bTD1 , bTD1 ;bSD bTD2 , : : :, bTDn�1 ;bSD bTDn ,bTDn ;bSD bTDj . Hence, bTDi �;bSD bTDj . As a result, by the de�nition of sf(T;D), sf(Ti; D) �Ssf(Tj ; D). Hence proved. 2Proof of Theorem 2: The proof is by the induction over the level of the domain D.Basis (level(D) = 1): If level(D) = 1, then for some DBk , D = DBk. Since Sk is serializable, forall k = 1; 2; : : :; n, SD is serializable.Induction: Assume that the theorem is true for each D such that level(D) � p. We show it to betrue for each domain, D such that level(D) = p+ 1. Let D be such a domain and further let D =SfD1; D2; : : : ; Dng. Since level(Dk) � p, child(Dk; D), by IH, SDk is serializable. Further, since24

child(Dk; D), Dk 62 TOP . Thus, the function serbSDk exists. By Lemma 2, sf(Ti; Dk) = serbSDk (Ti)satis�es the property that for all Ti; Tj, such that global(Ti; Dk), global(Tj ; Dk), Ti �;SDk Tj)sf(Ti; Dk) �S sf(Tj ; Dk). Thus, by Lemma 1, since bSD is serializable, SD is serializable. Henceproved. 2Proof of Theorem 3 and 4: Theorem 3 directly follows from Theorem 4. So we only proveTheorem 4. To prove Theorem 4, we will need the following lemmas.Lemma 3: LetD be a domain and Ti; Tj be transactions such that global(Ti; D) and global(Tj ; D).If there exists a D0 v D such that bTD0i �;bSD0 bTD0j , then bTDi �;bSD bTDj .Proof: The proof in by induction on the level of the domain D, where D0 v D.Basis (level(D) = level(D0)): Since D0 v D, it must be the case that D0 = D. Thus, bTDi �;bSD bTDj .Induction: Assume that the lemma is true for all domains D, D0 v D such that level(D) �level(D0)+p. We show that the lemma is true for all domains such that level(D) = level(D0)+p+1.Let D be such a domain. Since D0 v D, there exists a domain D00, D0 v D00, where child(D00; D).Further, since global(Ti; D) and global(Tj ; D), and since Ti and Tj execute in D00, it must be thecase that global(Ti; D00) and global(Tj ; D00). Thus, by IH, bTD00i �;bSD00 bTD00j . Since bTD00i �;bSD00 bTD00j ,by de�nition of sf , sf(Ti; D00) �S sf(Tj ; D00). Thus, by de�nition of bTi, bTDi ;bSD bTDj . Hence,bTDi �;bSD bTDj . 2Lemma 4: Let Ti and Tj be transactions and D be a domain such that global(Ti; D) andglobal(Tj ; D) and level(D) � 2. If Ti �;SD Tj , then bTDi �;bSD bTDj .Proof: Let p = level(D) The proof is by induction on p.Basis (p = 2): Thus, D = fDB1; DB2; : : : ; DBmg for some local database DBMSk, k = 1; 2; : : : ;m.Since Ti �;SD Tj , there exists transactions T1; T2; : : : ; Tn such that Ti �;Sk1 T1, T1 �;Sk2 T2,: : :, Tn�1 �;Skn Tn, Tn �;Skn+1 Tj , where global(Tl ; DBkl) and global(Tl ; DBk(l+1)), where l =1; 2; : : :; n. Hence by de�nition of the serialization function sf , sf(Ti ; DBk1) �S sf(T1; DBk1),sf(T1; DBk2) �S sf(T2; DBk2), : : :, sf(Tn�1; DBkn) �S sf(Tn ; DBkn), and sf(Tn; DBkn+1) �Ssf(Tj ; DBkn+1). Thus, by de�nition of bTi, bTDi ;bSD bTD1 , bTD1 ;bSD bTD2 , : : :, bTDn�1 ;bSD bTDn , andbTDn ;bSD bTDj . Hence, bTDi �;bSD bTDj .Induction: Assume that the lemma holds for all domains such that level(D) � p. We show thatit holds for domains such that level(D) = p + 1. Let D = SfD1; D2; : : : ; Dmg be an arbitrarydomain such that level(D) = p + 1. Since Ti �;SD Tj, there exists transactions T1; T2; : : : ; Tn,n � 0, such that Ti �;SDk1 T1, T1 �;SDk2 T2, : : :, Tn�1 �;SDkn Tn, and Tn �;SDkn+1 Tj . Sincechild(Dkl ; D), level(Dkl) < level(D). Thus, by IH, bTDk1i �;bSDk1 bTDk�11 , bTDk21 �;bSDk2 bTDk22 , : : :,bTDknn�1 �;bSDkn bTDknn , and bTDkn+1n �;bSDkn+1 bTDkn+1j . Hence by de�nition of the serialization functionsf , sf(Ti; Dk1) �S sf(T1; Dk1), sf(T1 ; Dk2) �S sf(T2 ; Dk2), : : :, sf(Tn�1; Dkn) �S sf(Tn; Dkn),25

and sf(Tn; Dkn+1) �S sf(Tj ; Dkn+1). Thus, by de�nition of bTi, bTDi ;bSD bTD1 , bTD1 ;bSD bTD2 , : : :,bTDn�1 ;bSD bTDn , bTDn ;bSD bTDj . Hence, bTDi �;bSD bTDj . Hence proved. 2Lemma 5: Let Ti; Tj be transactions and let D be a domain such that bTDi �;bSD bTDj . For allD0, D0 < D, if Ti and Tj execute in D0, then sf(Ti ; D0) �S sf(Tj ; D0).Proof: Say there exists aD0 such that sf(Tj ; D0) �S sf(Ti; D0). Hence there exists a domainD00such that D00 v D, parent(D00; D0) such that bTD00j ;bSD00 bTD00i . Hence by Lemma 3, bTDj ;bSD bTDi .Thus, bSD is not serializable which is a contradiction. Hence, such a D0 does not exist. Thus, for allD0, D0 < D, sf(Ti; D) �S sf(Tj ; D). 2Lemma 6: Let T1; T2; : : : ; Tn, n > 2, be transactions such that T1 ;S1 T2, T2 ;S2 T3, : : :,Tn�1 ;Sn�1 Tn. Let D0 and D00, D0 2 TOP , D00 2 TOP , be domains such that DB1 v D0 andDBn�1 v D00. There exists a path (D0; D1), (D1; D2), : : :, (Dr�1; Dr), (Dr ; D00) in LDG such thatfor all Di, i = 1; 2; : : : ; r, there exists a DBj , j = 1; 2; : : : ; n� 1, such that DBj < Di. Further, letedges (D0; D1), (D1; D2), : : :, (Dr�1; Dr), (Dr ; D00) have labels L1; L2; : : : ; Lr respectively. For allLi, i = 1; 2; : : :; r, there exists a DBj , j = 1; 2; : : : ; n� 1, such that DBj < Li.Proof: The proof is by induction on n.Basis (n = 3): Thus, T1 ;S1 T2 and T2 ;S2 T3, where DB1 < D0 and DB2 < D00. Consider thedomainD 2 TOP such that Dom(T2) v D. If D = D0, then since DB2 < D00 and DB1 < D0, thereis an edge (D0; D00) in LDG. Further, DB2 < label(D0; D00). Else, if D = D00, then since DB1 < D0and DB2 < D00, there is an edge (D0; D00) in LDG. Further, DB1 < label(D0; D00). Else, if D 6= D0and D 6= D00, then there are edges (D0; D) and (D;D00) in LDG such that DB1 < label(D0; D) andDB2 < label(D;D00).Induction: Assume that the lemma holds for n = m�1, m � 4. We show it holds for n = m. Thus,we have T1 ;S1 T2, T2 ;S2 T3, : : :, Tm�1 ;Sm�1 Tm. Let DBm�2 < D000, where D000 2 TOP . IfD000 = D0, then by base case, the lemma holds. Else, if D000 = D00, then since T1 ;S1 T2, T2 ;S2 T3,: : :, Tm�2 ;Sm�2 Tm�1. Hence, by IH, the lemma holds. Else, D000 6= D0 and D000 6= D00. ByIH, there exists a path (D0; D1), (D1; D2), : : :, (Dr�1; Dr), (Dr ; D000) in LDG such that for all Di,i = 1; 2; : : :; r, there exists a DBj , j = 1; 2; : : :;m � 2, such that DBj < Di. Further, for all Li,i = 1; 2; : : : ; r, there exists a DBj , j = 1; 2; : : : ;m� 2, such that DBj < Li. By the base case, sinceTm�2 ;Sm�2 Tm�1 and Tm�1 ;Sm�1 Tm, there exists a path (D000; D01), (D01; D02), : : :,(D0r0�1; D0r0),(D0r0 ; D00) such that for all D0i, i = 1; 2; : : : ; r0, there exists a DBj , j = m � 2;m � 1, such thatDBj < D0i. Further, for all Li, i = 1; 2; : : : ; r0, there exists a DBj , j = m � 2;m � 1, such thatDBj < Li. Hence, for some s there exists a path (D0; D1), (D1; D2), : : :, (Ds�1; Ds), (Ds; D00)in LDG such that for all Di, i = 1; 2; : : : ; s, there exists a DBj , j = 1; 2; : : : ;m � 1, such thatDBj < Di. Further, for all Li, i = 1; 2; : : : ; s, there exists a DBj , j = 1; 2; : : : ;m � 1, such thatDBj < Li. 2 26

Lemma 7: Let the set � satisfy restriction R1 and the LDG be acyclic. Further, let Ti; Tj betransactions and D;D0 2 TOP be domains such that global(Ti; D0) and global(Tj ; D0). If bTDi �;bSDbTDj , then bTD0i �;bSD0 bTD0j .Proof: There are two cases to consider.� (D \D0 6= ;:) We �rst show that both Ti and Tj execute at D \D0. If Ti does not execute atD \D0, then since Ti executes at D, there exists a DB1 < D and a DB2 < D0 such that Tiexecutes at DB1 and DB2, where DB1 6< D\D0 and DB2 6< D\D0. Since Ti executes at DB1and DB2, there exists a domainD00 2 TOP , Dom(Ti) < D00, such that D00 6= D and D00 6= D0.Consider the labeled domain graph LDG. In LDG since DB1 < D and DB1 < D00, there is anedge (D;D00) such that DB1 < label(D;D00). Further, since DB2 < D0 and DB2 < D00, thereis an edge (D0; D00) such that DB2 < label(D;D00). Since D \ D0 6= ;, there exists an edge(D;D0) in LDG. Thus, LDG contains a cycle (D;D00), (D00; D0), (D0; D). Since DB1 6< D0,DB1 6< label(D;D0). Further, since DB2 6< D, DB2 6< label(D;D0). Hence, the cycle (D;D00),(D00; D0), (D0; D) is a undesirable cycle. Thus, it must be the case that Ti executes in D \D0.Similarly, it is the case that Tj executes in D \ D0. Since bTDi �;bSD bTDj , by Lemma 5, wehave that sf(Ti; D \ D0) �S sf(Tj ; D \ D0). Thus, by Lemma 3, since global(Ti; D0) andglobal(Tj ; D0), we have that bTD0i �;bSD0 bTD0j .� (D \ D0 = ;:) Since Ti executes at D as well as D0, let Ti executes at DB1, DB3, whereDB1 < D and DB3 < D0. Further since Tj executes at D as well as D0, let Tj executesat DB2, DB4, where DB2 < D and DB4 < D0. We show that there exists a domain D00such that DB1 < D00, DB2 < D00, DB3 < D00, DB4 < D00. Say such a domain D00 doesnot exist. Since Ti executes at DB1 and DB3, there exists a domain D000 2 TOP , such thatDom(Ti) < D000 and thus DB1 < D000 and DB3 < D000. Further, since Tj executes at DB2 andDB4, there exists a domain D0000 2 TOP , such that Dom(Tj) < D0000 and thus DB2 < D0000and DB4 < D0000. If D000 = D0000, then DB1 < D000, DB2 < D000, DB3 < D000, and DB4 < D000.Hence, D000 6= D0000. Thus, D 6= D0 6= D000 6= D0000. Consider the labeled domain graph LDG.In LDG, there is an edge (D;D000) such that DB1 < label(D;D000), there is an edge (D000; D0)such that DB3 < label(D;D000), there is an edge (D0; D0000) such that DB4 < label(D0; D0000),and there is an edge (D0000; D) such that DB2 < label(D0000; D). Thus, LDG contains a cycle(D;D000), (D000; D0), (D0; D0000), (D0000; D). We next show that LDG contains a undesirablecycle. There are two cases to consider:{ (D000 \D0000 = ; :) Since DB1 < label(D;D000), DB1 < D000. Since D000 \D0000 = ;, DB1 6<D0000. Thus, DB1 6< label(D0000; D) and further DB1 6< label(D0000; D0). Similarly, sinceDB1 6< D0, DB1 6< label(D0; D000). Hence label(D;D000) 6= label(D0; D000), label(D;D000) 6=label(D0; D0000), and label(D;D000) 6= label(D;D0000). Using similar reasoning, we can show27

that label(D;D000) 6= label(D000; D0) 6= label(D0; D0000) 6= label(D0000; D). Hence, the cycle(D;D000), (D000; D0), (D0; D0000), (D0000; D) is a undesirable cycle.{ (D000\D0000 6= ; :) If D000\D0000 6= ;, then LDG contains an edge (D0000; D000) and thus LDGbesides containing the cycle (D;D000), (D000; D0), (D0; D0000), (D0000; D), also contains cy-cles (D;D000), (D000; D0000), (D0000; D) and (D0; D000), (D000; D0000), (D0000; D0). Note that sinceD\D0 = ;, it must be the case thatDB1 6< label(D0; D000) andDB1 6< label(D0; D0000). Fur-ther, DB2 6< label(D0; D000) and DB2 6< label(D0; D0000). Similarly, DB3 6< label(D0; D000),DB3 6< label(D0; D0000), DB4 6< label(D;D000) and DB4 6< label(D;D0000). Thus, if thecycle (D;D000), (D000; D0), (D0; D0000), (D0000; D) is not a undesirable cycle, then eitherlabel(D;D0000) = label(D;D000) or label(D0; D0000) = label(D0; D000). Note that label(D;D0000) =label(D;D000) and label(D0; D0000) = label(D0; D000) both cannot hold since then D3 wouldbe such that DB1 < D3, DB2 < D3, DB3 < D3, and DB4 < D3. If label(D;D0000) =label(D;D000), and label(D0; D0000) 6= label(D0; D000), then the cycle (D0; D000), (D000; D0000),(D0000; D0) is a undesirable cycle. Else, if label(D0; D0000) = label(D0; D000), and label(D;D0000) 6=label(D;D000), then the cycle (D;D000), (D000; D0000), (D0000; D) is a undesirable cycle.Hence, there must exist a domain D00 such that DB1 < D00, DB2 < D00, DB3 < D00, andDB4 < D00. Since global(Ti; D \D00) and global(Tj ; D \D00), and bTDi �;bSD bTDj , by Lemma 5,sf(Ti; D \D00) �S sf(Tj ; D \D00). Hence by Lemma 3, and the de�nition of bTi, bTD00i �;bSD00bTD00j . Since global(Ti; D0 \D00) and global(Tj ; D0 \D00), and bTD00i �;bSD00 bTD00j , by Lemma 5,sf(Ti; D0 \D00) �S sf(Tj ; D0 \D00). Hence by Lemma 3, and the de�nition of bTi, bTD0i �;bSD0bTD0j . Hence proved. 2Lemma 8: Let the set � of domains satisfy the restriction R1 and let LDG be acyclic. Further,let D be a domain in �, level(D) � 2, and T1 and Tn be transactions such that global(T1; D) andglobal(Tn; D). If T1 ;DB1 T25, T2 ;DB2 T3, : : :, Tn�1 ;DBn�1 Tn, then bTD1 �;bSD bTDn .Proof: The proof in by induction on n.Basis (n = 1): Thus, T1 ;DB1 T2. There are two cases to consider.� (DB1 v D:) In this case, T1 ;SD T2. Thus, by Lemma4, since global(T1; D) and global(T2; D),we have that bTD1 �;bSD bTD2 .� (DB1 6v D:) Let DB1 < D0, where D0 2 TOP . By Lemma 4, bTD01 �;bSD0 bTD02 . Sinceglobal(T1; D) and global(T2; D), by Lemma 7, bTD1 �;bSD bTDn .Induction: Assume that the lemma holds for all n � m � 1. We show that it holds for n = m.Thus, we have T1 ;DB1 T2, T2 ;DB2 T3, : : :, Tm�1 ;DBm�1 Tm. There are two cases to consider.� (there exists i, i = 1; 2; 3; : : :;m � 1, DBi < D:) Let DBk < D, 1 � k � m � 1. Further,let DBk1 and DBk2 , 1 � k1 � k, and k � k2 � m � 1, be such that for all DBi, i =k1; k1 + 1; : : : ; k; k + 1; : : : ; k2, DBi < D, DBk1�1 6< D and DBk2+1 6< D. If k1 = 1 and5For notational brevity, we denote ;SDBi by ;DBi . 28

k2 = m� 1, then by Lemma 4, since for all DBi, i = 1; 2; : : : ;m� 1, DBi < D, bTD1 �;bSD bTDm .So we only need to consider the case in which either 1 < k1 or k2 < m � 1. There are twocases to consider:{ (1 < k1:) Consider transaction Tk1 . Note that Tk1�1 ;DBk1�1 Tk1 and further Tk1 ;DBk1Tk1+1. Since DBk1�1 6v D, DBk1 v D, and transaction Tk1 executes on DBk1 andDBk1�1, global(Tk1 ; D). Hence, by IH, bTD1 �;bSD bTDk1 and further bTDk1 �;bSD bTDn . Hence,bTD1 �;bSD bTDn .{ (k2 < m:) Consider transaction Tk2 . Note that Tk2�1 ;DBk2�1 Tk2 and furtherTk2 ;DBk2 Tk2+1. Since DBk2+1 6v D, DBk2 v D, and transaction Tk2 executes onDBk2 and DBk1+1, global(Tk2 ; D). Hence, by IH, bTD1 �;bSD bTDk2 and further bTDk2 �;bSD bTDn .Hence, bTD1 �;bSD bTDn .� (for all i, i = 1; 2; 3; : : :;m � 1, DBi 6< D:) Let DB1 < D0, D0 6= D, where D0 2 TOP andDom(T1) v D0. There are two cases to consider:{ (DBm�1 v D0:) We �rst show that bTD01 �;bSD0 bTD0m . It will follow from Lemma 7 thatbTD1 �;bSD bTDm . Since DBm�1 v D0, we have that T1 ;DB1 T2, T2 ;DB2 T3, : : :,Tm�1 ;DBm�1 Tm, where DB1; DBm�1 < D0. If for all DBi, i = 1; 2; : : :;m � 1,DBi < D0, then since T1 �;SD0 Tm, by Lemma 4, we have that bTD01 �;bSD0 bTD0m .Thus, by Lemma 7, bTD1 �;bSD bTDm . Else, there exists a DBk , k = 2; 3; : : : ;m � 2, suchthat DBk 6< D0. Let k1 be such that DBk1 6< D0 and for all k = 1; 2; : : : ; k1 � 1,DBk < D0. Thus, Tk1�1 ;DBk1�1 Tk1 and Tk1 ;DBk1 Tk1+1, where DBk1�1 < D0 andDBk1 6< D0. Since Tk1 executes both on DBk1�1 and DBk1 , global(Tk1 ; D0). Hence byIH, bTD01 �;bSD0 bTD0k1 and bTD0k1 �;bSD0 bTD0m . Hence, bTD01 �;bSD0 bTD0m . Thus, by Lemma 7,bTD1 �;bSD bTDm .{ (DBm�1 6v D0:) Let DBm�1 < D00, where D00 2 TOP and Dom(Tm) v D00. Note thatD00 6= D0 and further D00 6= D. Since T1 executes in both D and D0, and Dom(T1) v D0,LDG contains an edge (D;D0). Let label(D;D0) = L0. Similarly, since Tm executes in bothD and D00, and Dom(Tm) v D00, LDG contains an edge (D;D00). Let label(D;D00) = L00.We �rst show that it must be the case that L0 = L00.Assume on the contrary that L0 6= L00. Since T1 ;DB1 T2, T2 ;DB2 T3, : : :, Tm�1 ;DBm�1Tm, where DB1 < D0 and DBm�1 < D00, by Lemma 6, there exists a path (D0; D1),(D1; D2), : : :, (Dr�1; Dr), (Dr ; D00) such that for all Di, i = 1; 2; : : : ; r, there exists aDBj , j = 1; 2; : : : ;m�1, DBj < Di and further, for all edges in the path (Dl; Dm), thereexists a DBj , j = 1; 2; : : : ;m�1, DBj < label(Dl; Dm). Since for all DBj , DBj 6< D, thepath does not contain D. Hence, LDG contains a cycle (D;D0), (D0; D1), (D1; D2), : : :,(Dr�1; Dr), (Dr ; D00), (D00; D). We next show, using induction on r, that LDG containsa undesirable cycle.Basis (r = 0:) Thus, LDG contains an edge (D0; D00). Let label(D0; D000) = L000. Since29

there exists a DBj such that DBj < L000, and further since L0 < D and L00 < D, it isthe case that L000 6= L00 and L000 6= L00. Since by assumption L0 6= L00, the cycle, (D;D0),(D0; D00), (D00; D) is a undesirable cycle.Induction: Assume that if there is a cycle (D;D0), (D0; D1), (D1; D2), : : :, (Dr�2; Dr�1),(Dr�1; D00), (D00; D), then LDG contains a undesirable cycle. We next show that if thereexists a cycle (D;D0), (D0; D1), (D1; D2), : : :, (Dr�1; Dr), (Dr ; D00), (D00; D) in the LDG,then LDG contains a undesirable cycle. Consider the cycle (D;D0), (D0; D1), (D1; D2),: : :, (Dr�1; Dr), (Dr ; D00), (D00; D). Let the labels on the edges (D0; D1), (D1; D2), : : :,(Dr�1; Dr), (Dr ; D00) be L1; L2; : : : ; Lr respectively. By assumption L0 6= L00. Further,since for each Li, there exists a DBj , j = 1; 2; : : : ;m� 1 such that DBj < Li, and sinceL0 < D, L00 < D, and since for all DBj , j = 1; 2; : : : ;m� 1, DBj 6< D, it is the case thatL0 6= Li and L00 6= Li, for all i = 1; 2; : : : ; r. Thus, if the cycle (D;D0), (D0; D1), (D1; D2),: : :, (Dr�2; Dr�1), (Dr�1; D00), (D00; D), is not a undesirable cycle, then there must existlabels Lr1 ; Lr2 in the cycle such that Lr1 = Lr2 . Consider domains Dr1�1, Dr2+1. SinceLr1 < Dr1�1 and Lr2 < Dr2+1, there is an edge between Dr1�1 and Dr2+1 with a label Lsuch that Lr1 < L. Hence, there exists a cycle in LDG, (D;D0), (D0; D1), (D1; D2), : : :,(Dr1�1; Dr2+1), (Dr2+1; Dr2+2), : : :, (Dr�1; Dr), (Dr ; D00), (D00; D) such that the lengthof the cycle is less than r. Thus, by IH, there exists a undesirable cycle in LDG.Hence it must be the case that L0 = L00. Since Dom(Tm) v D00, and Tm executes inD, Tm executes in L00. Since L00 = L0 and L0 < D0, it is the case that Tm executes inD0. Further since global(Tm; D), it is the case that global(Tm ; D0). Hence, we have thatT1 ;DB1 T2, T2 ;DB2 T3, : : :, Tm�1 ;DBm�1 Tm, where global(T1; D0), global(Tm ; D0)and DB1 < D0 and DBm�1 < D00. Since D0 6= D00, there exists a k such that for all i,1 � i < k, DBk < D0 and DBk 6< D0. Hence, since Tk�1 ;DBk�1 Tk, and Tk ;DBk Tk+1,where DBk�1 < D0 and DBk 6< D0, we have that global(Tk; D0). Thus, by IH, we havethat bTD01 �;bSD0 bTD0k and bTD0k �;bSD0 bTD0n . Thus, bTD01 �;bSD0 bTD0n . Hence, by Lemma 7,bTD1 �;bSD bTDn . Hence proved. 2Proof of Theorem 4 (cont.): If S is not serializable, then there exists transactions T1; T2; : : : ; Tnsuch that T1 ;DB1 T2, T2 ;DB2 T3, : : :, Tn�1 ;DBn�1 Tn, Tn ;DBn T1. Let D 2 TOP suchthat DB1 < D. If for all DBi, i = 1; 2; : : : ; n, DBi < D, then T1 �;SD T1. Hence, by Lemma 4,bTD1 �;bSD bTD1 which is a contradiction. Thus, there exists a DBk 6< D. Let for all DBi, 1 � i < k,DBi < D and further DBk 6< D. Hence, since transaction Tk executes on both DBk�1 andDBk, global(Tk; D). Consider the sequence of con
icts Tk ;DBk Tk+1, Tk+1 ;DBk+1 Tk+2, : : :,Tn�1 ;DBn�1 Tn, Tn ;DBn T1, T1 ;DB1 T2, : : :, Tk�1 ;DBk�1 Tk. Since global(Tk; D), byLemma 8, bTDk �;bSD bTDk which is a contradiction. Hence, the sequence of transactions cannot exist.Thus, S is serializable. 2 30

