An Architecture for Large Multidatabase Systems*

Sharad Mehrotra!
Henry F. Korth?
Avi Silberschatz3t

!Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712-1188 USA

?Matsushita Information Technology Laboratory
2 Research Way
Princeton, NJ 08540

3AT&T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974

Abstract

Over the past decade, substantial research has been done towards developing transaction manage-
ment algorithms for multidatabase systems. Most of these research efforts have concentrated on
the problems that arise due to the heterogeneity and the autonomy of the various local databases
that are integrated into a multidatabase environment. One issue that has been relatively ignored
is that of the architecture of multidatabase systems. We believe that a large multidatabase system
spanning multiple organizations that are distributed over various geographically distant locations
will not be developed as a single monolithic system. Rather, it will be developed hierarchically.
As a result, the transaction management algorithms followed by a multidatabase system must be
composable in such a way that it is feasible to incorporate individual multidatabase systems as el-
ements in a larger multidatabase system. In this paper, we present a hierarchical architecture for
a multidatabase environment, and develop a methodology for the design of composable transaction
management algorithms suited for this architecture.

1 Introduction

A multidatabase system (MDBS) is a facility, developed on top of pre-existing local database man-
agement systems (DBMSs), that provides users of a DBMS access and update privileges to data
located in other heterogeneous data sources. The following two characteristics of the MDBS envi-

ronments make the task of designing transaction management algorithms difficult:

*Work partially supported by NSF grants IRI-8805215, IRI-9003341 and IRI-9106450, and by a grant from the IBM
corporation.
'On leave from The University of Texas at Austin.

e Heterogeneity. Each local DBMS may follow different concurrency control protocols and

recovery algorithms.

e Autonomy. The participation of the local DBMS in an MDBS must not result in a loss of

control by the local DBMS over its data and its local transactions.

Over the past decade, substantial research has been done to identify mechanisms for effectively
dealing with the problems that arise due to the heterogeneity and the autonomy of the local systems
(e.g., [BST90, WV90, MRB*92b, Pu88, ED90, MRB*92a, BS88]). This research has resulted in
transaction management algorithms that ensure correctness without sacrificing the autonomy of the
individual systems. Most of the proposed approaches have, however, considered an MDBS as a single
monolithic system which executes on top of the existing local DBMSs and controls the execution
and commitment of the global transactions (transactions that execute at multiple local DBMSs) in
such a way that consistency of the individual system is not jeopardized.

One issue that has been given relatively little consideration is that of the architecture of MDBSs.
We believe that a large MDBS, that spans multiple organizations distributed over various geograph-
ically distant locations, will not be developed as a single monolithic system. Instead it will be
developed hierarchically. To illustrate this, let us consider a typical MDBS environment in which
users wish to execute transactions that span database systems belonging to multiple branches of an
organization. Additionally, users also wish to execute transactions that span different autonomous
organizations. One solution to providing such a service is to develop a single monolithic MDBS sys-
tem which integrates all the branches of all the organizations. However, depending upon the nature
of transactions that execute within an organization, the computing resources available, and the reli-
ability of the network, different organizations may prefer different MDBS transaction management
algorithms for processing transactions local within the organization. For example, if a high degree of
concurrency is critical for good performance in a certain organization, that organization may prefer
a centralized MDBS transaction management algorithm for processing transactions local within the
organization. On the other hand, if databases belonging to various branches of another organiza-
tion are geographically distant and the network is not reliable, the organization may prefer a fully
decentralized MDBS transaction management algorithm for processing transactions that execute
within its different branches. Thus, it would be preferable to develop the MDBS as a hierarchical
system— each organization (or a set of organizations) has its own MDBS to control the execution of
transactions within the organization. Furthermore, an inter-organization MDBS controls the exe-
cution of transactions that access data belonging to branches of different organizations. Note that
using a single monolithic MDBS system, whether distributed or centralized, will adversely impact
the performance of transactions that execute within an organization. In contrast, in a hierarchical
MDBS, each organization can use a specialized transaction management algorithm suited for their

environment.

The above scenario illustrates why it would be desirable for the MDBS architecture to be hierar-
chical. However, if the architecture of the MDBS is hierarchical, then the transaction management
algorithms followed by individual MDBSs need to be composable in such a way that it is feasible to
incorporate individual MDBSs as elements in a larger MDBS. In this paper, we present a hierar-
chical architecture for multidatabase systems. We adopt serializability as the correctness criterion
and develop a methodology for the design of composable transaction management algorithms that
ensures global serializability in hierarchical MDBSs.

The rest of the paper is organized as follows. In Section 2, we formally define our MDBS
architecture. In Section 3, we review how the problem of heterogeneity is overcome in MDBSs. In
Section 4, we develop a methodology for designing transaction management algorithms suited for our
MDBS architecture. In Section 5, we identify restrictions on the architecture such that concurrency
control schemes that follow our methodology result in global serializability. Finally, in Section 6, we

offer concluding remarks and present directions for future work.

2 MDBS Architecture

An MDBS is an integrated collection of pre-existing local databases: DBMS;, DBMS,, ..., DBMS,,,
that permits users to execute transactions that access multiple local DBMSs. Each local DBMS may
itself be either a centralized or a distributed database system. Each DBMS; contains a set of data
items that are denoted by DB;. To describe the architecture of the MDBS, we associate with the
MDBS environment a set of domains denoted by A with an ordering relation C. A domain D € A

is either
e a set of data items in DB;, for some ¢t =1,2,...,m, or

e aunion of the set of data items in other domains Dy, Dy, ..., Dy, denoted by | J{D1, D, ..., Dn},
where D; € A,i=1,2,...,n,

The ordering relation C, referred to as the domain ordering relation, is such that D; C D; iff
D; C D;. We use D; C D; to denote that either D; C D; or D; = D;. Let D; and D; be domains
in A. We refer to D; as the child of D;, denoted by child(D;, D;), if D; T D; and for all Dy € A,
either D; 7 Dy or Dy [D;. Further, we refer to D; as a parent of D;, denoted by parent(D;, D;),
if child(D;, D;j). We denote the set of domains {D| for all Dy € A, D ¥ Dy} by the set TOP.

A transaction T; = (Or,, <1,), where Or, is the set of operations and <z, is a partial order
over operations in Or,. We assume that a transaction T; that execute at a local DBMS (or a set
of local DBMSs) consist of a set of read (denoted by 7;) and write (denoted by w;) operations.
Further, each transaction 7; has begin (denoted by b;) and commit (denoted by ¢;) operations. A

transaction that executes at multiple DBMSs may have multiple begin and commit operations!, one

'In contrast, the 7; and w; operations of the transaction on each data item are unique. Since, in this paper, we do
not consider the problem of replica control, we consider different copies of the same data item as independent data items
with an equality constraint between them.

D,

DBl DBz DBg DB4

Figure 1(a): An Example MDBS Environment Figure 1(b): Domain Ordering for Figure 1(a)

for each DBMS at which it executes. We denote by b;; and c¢;;, the begin and commit operations
of a transaction T; in DBMS; respectively.

A transaction T; is said to execute in a domain D € A, if there exists a DB;, DB; C D, such
that T; accesses data items in DB;. A transaction T; may execute in multiple domains subject to
the following restriction. If T; accesses data items in DBy, DBs,..., DBy, then there must exist
a domain D € A such that DB; C D, j = 1,2,...,k. Such a domain D is denoted by Dom(T;).
Thus, if T; accesses data item in DBj, then DB; C Dom(T;). A transaction T; is said to be global
with respect to a domain D € A, denoted by global(T;, D), if T; executes in D and there exists a
domain D', D' IZ D and D [Z D' such that T; executes in D’. A transaction T; is local with respect
to a domain D, denoted by local(T;, D), if T; executes in D and —global(T;, D). We illustrate the

above defined notations by the following example.

Example 1: Consider an MDBS environment consisting of four local DBMSs — DBMS;,,
DBMS;, DBMS;, DBMS, (illustrated in Figure 1(a)). DBMS; and DBMS;3 are centralized database
systems, while DBMS; and DBMS, are distributed database systems. The set of domains, A =
{DB1,DB;, DBs, DB4, D1, D2}, where Domain Dy = |J{DBi,DB;, DBs} and domain D; =
\J{DBs, DB4}. The domain ordering relation for the MDBS environment depicted in Figure 1(a)
is illustrated in Figure 1(b).

Consider a transaction 77 that accesses data items in domains DB; and DBj,. Thus, Dom(T) =
D, global(T1, DBy), global(T1, DBy), and local(Ty, D1). Consider another transaction T3 that ac-
cesses data in domains DBs and DBjy; thus, global(Ty, D1), global(T2, D) and Dom(T2) = Ds.
Finally, consider a transaction T3 that wishes to access data in DB; and DBy. T3 will not be
permitted to execute since there does not exist any domain D € A such that DB; C D as well as
DB, C D. However, if there was a domain D3 = |J{D;, D>}, then the transaction T3 would be
permitted and Dom(T3) = D3. O

Let S = (75, <g) be a schedule, where 75 is a set of transactions and <g is a partial order over

the operations belonging to transactions in 7g. The partial order <g satisfies the property that

<7,C<s, for each T; € 7s. Let d be a set of data items. S% denotes the projection of S onto data
items in d. Formally, schedule S¢ is a restriction® of the schedule S over the set of data items in
d. For notational brevity, we denote the projection of S over the set of data items in DBy ; that is,
SPBx by 8.

In a schedule S = (75, <s), transactions T;,7; € 75 are said to conflict in S, denoted by
T; ~5 Tj, if there exists operations o; in T; and o; in T; such that o; and o; conflict in S and
0; <5 o0j. Operations o; and o; are said to conflict if they access the same data item and at least
one of them is a write operation. We denote the transitive closure of the conflict relation ~» among
transactions by the relation ~.

With each domain D; a domain manager DM (D;) is associated. The domain manager for a
domain D;, along with the domain managers of each domain D;, D; C D;, controls the concurrent
execution of transactions that execute in D; in such a way that the consistency of data within a
domain is preserved. Let D be a domain such that DB; C D, j = 1,2,..., k. The domain managers
of the domains D’ C D, in our architecture, constitute the MDBS software for an MDBS that
integrates DBMS;, DBMS,, ..., DBMS;. Note that if there exists a domain D € A such that
for each DBy, k = 1,2,...,m, parent(D, DBy), then our MDBS architecture reduces to a single
monolithic system. In this case, the existing solutions for transaction management developed for
such systems in [MRB*92a, ED90, BS88, BST90] can be used by the domain manager for D to

control the concurrent execution of the transactions. Similarly, if we were to restrict A such that
for all domains D;, D; € A, if child(D;, D;), then for all Dy # D;, —child(D;, Dy),

then our MDBS architecture reduces to the superdatabase architecture for MDBSs that was developed
in [Pu88] and the algorithms for concurrency control developed there can then be used. However,

our proposed solutions differ widely from the concurrency control algorithms suggested in [Pu88].

3 Background

Before discussing how concurrency control for ensuring global serializability can be done in hier-
archical MDBSs, we first review how global serializability can be ensured if an MDBS were to be
developed as a single monolithic system. Crucial to the development of the concurrency control
protocols is the notion of serialization functions introduced in [MRB'92a] which is similar to the
notion of o-element developed in [Pu88].

Let S = (75, <g) be a serializable schedule. Let 7/ C 75. A serialization function of a transaction
T; € 7' in a schedule S with respect to the set of transactions 7/, denoted by sers ,/(T;) is a function

that maps T; € 7’ to some operation in T; such that the following holds:

Forall T;,T; € 7, if T} g T;, then sers . (T;) <5 sers . (Tj)

2A set P, with a partial order <p, on its elements is a restriction of a set P, with a partial order <p, on its elements
if P, C Ps, and for all e;,ex € Pi, e1 <p, ez if and only if e; <p, e3.

In the remainder of the paper, we will denote the function sers .+ by serg. The set of transactions 7/
will be clear from the context. For numerous concurrency control protocols that generate serializable
schedules, it is possible to associate a serialization function with transactions T in the schedule S
such that the above property is satisfied.

For example, if the timestamp ordering (TO) concurrency control protocol is used to ensure
serializability of S and the scheduler assigns timestamps to transactions when they begin execution,
then the function that maps every transaction 7; € 75 to T;’s begin operation is a serialization
function for transaction T; in S with respect to the set of transactions 7s.

For a schedule S, there may be multiple serialization functions. For example, if S is generated
by a the two-phase locking (2PL) protocol, then a possible serialization function for transactions
in S maps every transaction T; € 75 to the operation that results in 7; obtaining its last lock.
Alternatively, the function that maps every transaction T; € 75 to the operation that results in T;
releasing its first lock is also a serialization function for T} in S3.

It is possible that for transactions in a schedule generated by certain concurrency control proto-
cols, no serialization function may exist. Consider, for example, a schedule generated by serialization-
graph testing (SGT) scheduler. In this case, it may not be possible to associate a serialization function
with transactions. However, in such schedules, serialization functions can be introduced by forcing
direct conflicts between transactions [GRS91]. Let 7’ C 7 be some set of transactions in a schedule
S. If each transaction in 7' executed a conflicting operation (say a write operation on data item
ticket), in S, then the functions that maps a transaction T; € 7’ to its write operation on ticket is
the serialization function for the transactions in S with respect to the set of transactions 7’.

Associating serialization functions with transactions enables us to overcome the problems due
to heterogeneity of local DBMSs in designing concurrency control protocols for ensuring global
serializability in an MDBS environment. To see this, let us consider a collection of local DBMSs,
DBMS,, DBMS,, ..., DBMS,,, which are to be integrated into an MDBS. Each local DBMS,
DBMS;, follows some concurrency control protocol to ensure serializability of its local schedule Sj.
Let 7 = {T; | global(T;, DBy)}, be the set of global transactions (transactions that access data
residing in other databases besides DBg) in Si, £ = 1,2,...,m. We assume that a serialization
function can be associated with global subtransactions in each schedule Sj with respect to the
transactions in 75 (introduced, if necessary, using external means by forcing direct conflicts between
transactions in 7).

Let T; be a global transaction. We denote the projection of T; to its serialization function values
over each of the local schedules as a transaction TZ Thus, TZ is a restriction of 7; consisting of all
the operations in the set {serg, (T;) | T; € 7 }. For the global schedule S, we denote a restriction of
S consisting of the set of operations belonging to transactions T; by s. Thus, 5= (Tg, 43:), where

T5 = {TZ | T; € 7, for some k=1,2,...,m}. Furthermore, <5C<s. In the schedule S, we define

3 Actually, any function that maps a transaction T; € Ts to one of its operations that executes between the time T}
obtains its last lock and the time it releases its first lock is a serialization function for 7; in S.

operations serg, (T;) and serg, (T;), T; # Tj, to conflict iff k = 1. Let us illustrate the above notation

with an example.

Example 2: Consider an MDBS environment consisting of two local databases. DBMS;
contains data items @ and b, while DBMS, contains data item c. Suppose that DBMS; follows the
TO scheme in which a timestamp is assigned to a transaction when it begins execution, and DBMS;
follows the strict 2PL protocol [BHG87] for ensuring serializability of its local schedules. Consider

the following global transactions 77 and T, that execute.
Ty : bin wi(a) bz wie) e11 c12
Ty : ba1 7ra(b) baz ra(c) ca1 ca2

Let T3 be a transaction local to DBMS;.
Ts: bs r3(a) ws(b) c3

Consider the global schedule S resulting from the concurrent execution of transaction 73, T; and T3

such that the local schedules at DBMS; and DBMS, are as follows.

S1: bix by wi(a) bar ra(e) ws(b) e3 ra(b) c11 e

Szt bag b1z wi(e) ciz rafe) ca2
Let m = {T1,T2} and 7 = {T1,T2} be the set of global transactions executing on databases
DBMS; and DBMS; respectively. Let sers, be the function that maps every transaction in 7 to
its begin operation. Also, let serg, be the function that maps every transaction in 75 to its commit
operation. Thus, serg, (Th) = b1, sers, (T2) = ba1, serg,(Th) = c12 and serg,(T2) = c22. As a

result, transactions Tl, Tz are as follows.
Tl 0 bun 12
Tz : bar c22

Schedule S is as follows.
S: bir ba1 c12 c22

In §, operations by; and bs; conflict, whereas operations b;; and ¢33 do not conflict. Note that

operations b11 and by; do not conflict in S. O

Theorem 1: [MRB192a] Consider an MDBS consisting of DBMS;, DBMS,, ..., DBMS,,. Let
S be a global schedule. S is serializable, if the schedule S is serializable. O

In Example 2, note that S is serializable (the serialization order being T, before Tz) As a result,
global schedule S is serializable. Theorem 1 reduces the problem of ensuring global serializability

to the problem of ensuring the serializability of the schedule S. Note that each operation in the

schedule § belongs to only global transactions. Thus, the MDBS can guarantee global serializability
by ensuring that the order in which these operations execute the resulting schedule S is serializable.
Note that the schedule S is distributed over the local DBMSs. Thus, the MDBS transaction manager
can employ any distributed or centralized concurrency control protocol for ensuring serializability of
S. For example, the scheme suggested in [GRS91] uses a SGT certifier to ensure serializability of s.
On the other hand, the scheme suggested in [ED90] uses a TO scheme to ensure serializability of s.
Further, the scheme suggested in [BGR92] uses a distributed TO protocol to ensure serializability

of 5. In [MRBT92a] we suggested various conservative schemes to ensure serializability of s.

4 Concurrency Control in Hierarchical MDBSs

In a hierarchical MDBS, the domain manager for a domain D, along with the domain manager for
each domain D/, D' C D, controls the concurrent execution of the transactions that execute in D.
In order to ensure global serializability, domain manager DM (D) for each domain D must ensure
that the concurrent execution of transactions in D results in a serializable schedule. In this section,
we propose a mechanism that DM (D) can use in order to ensure the serializability of schedules
resulting from the concurrent execution of transactions within D. Crucial to our development is the
appropriate extension of the notion of serialization functions to the domain. Let D be any arbitrary
domain in A. An extended serialization function is a function sf that maps a given transaction

T:, and a domain D, to some operation belonging to 7; that executes in D such that the following

holds:
For all T;, T}, if global(T;, D), global(Tj, D), and T; Lsp T, then sf(T;, D) <so sf(Tj, D)

We refer to sf(T;, D) as a serialization function of transaction 7; with respect to the do-
main D. To see how such a serialization function will aid us in ensuring serializability within
a domain, consider a domain D # DB, k = 1,2,...,m. Let us assume that the above de-
fined serialization function exists for transactions in every child domain of D; that is, for every
Dy, where child(Dy, D). For a given transaction 7; that executes in D, we denote the projec-
tion of T; to its serialization function values over each of the child domains of D as a trans-
action TiD. Formally, T’iD is defined as follows. Let T; be a transaction and D be a domain
such that global(T;, D) for some Dy, where child(Dy, D). ip is a restriction of T; consist-
ing of all the operations in the set {sf(T;,Dx) | T; executes in Dy, and child(Dy, D)}. Fur-
ther, for the global schedule S, we define a schedule SD to be the restriction of S consisting
of the set of operations belonging to transactions ﬁD. Thus, D = (TED,<§D), where 75, =
{TiD | global(T;, Dy) for some Dy, where child(Dy, D)}, and for all operations o,, 0, in sD. 04 <o
or, iff 0, <5 0,. In the schedule §D, we define operations sf(T;, D) and sf(Tj, Dy), T; # Tj, to
conflict iff & = L.

Lemma 1: Consider an MDBS environment with the set A of domains. Let S be a global
schedule and D be an arbitrary domain in A. Schedule SP is serializable, if each of the following

three conditions hold:
e For each domain Dy such that child(Dy, D), SP* is serializable.

e For each domain Dy, such that child(Dy, D), there exists a serialization function sf such that

the following holds:

For all transactions Tj, T}, if global(T;, D), global(T}, D), and T; 5 b, T;, then
sf(T;, Di) <s sf(Tj, D).

e Schedule S? is serializable. O

Lemma 1 demonstrates that if an appropriate serialization function is associated with child do-
mains of a domain D, then serializability of the projection of the schedule S to domain D can be
ensured. We, therefore, need to associate an appropriate serialization function with each domain
D € A. Note that for a domain D = DBy, the function sf is simply sers,. We now define the
function sf for an arbitrary domain D € A, which is done recursively over the domain ordering

relation.

Definition 1: Let D be a domain and T; be a transaction such that global(T;, D). The serial-
ization function for transaction T; in domain D is defined as follows:

T;), if f DBy, D= DB;.
S§(T:, D) = serg, (’\2:) i .or some & &
sersp (I;7), iffor all DBy, D # DBy O
We next show that the above defined function sf indeed meets our requirement of a serialization

function for a domain D.

Lemma 2: Consider an MDBS environment with the set A of domains. Let S be a global sched-
ule, T3, T; be transactions in S, and D be an arbitrary domain in A. If global(T;, D), global(T}, D)
and T; S 5o Tj, then sf(T;, D) <5 sf(Tj, D). O

Using Lemmas 1 and 2, we can show that if for each domain D', D' C D, the schedule 5D is

serializable, then the schedule S is serializable. This is stated in the following theorem.

Theorem 2: Consider an MDBS environment with the set A of domains. Let S be a global
schedule and D be an arbitrary domain in A. Schedule S is serializable, if the following three

conditions hold:

domain managers of parent domains of D

| eaec(sf(T;, D)) | Rack(sf(T:, D))

DM(D)

sf(Ti, D)

ecec(sf(T;, D))

T (T\
L) e G0N

sf(T:, D) exec(sf(T;, D)) ack(sf(T%, D))

| domain managers of child domains of D |

Figure 2: Components of a Domain Manager

e For each DBy, such that DB, C D, S; is serializable and further there exists a function serg,
such that for all transactions T;, T}, if global(T;, DBy), global(T;, DBy), and T; s, Tj, then
sers, (T;) <s sers, (T;).

e For all domains D’ € A such that D' C D, SD' is serializable and further there exists a function
serzp such that for all transactions T3, T, if global(T;, D'), global(T};, D'), and i-Dl '*’)?D’ ij',

(TP") =s sergm (TP").

then serz.,

e 5D is serializable. O

Theorem 2 states that in order to ensure the serializability of the schedule S?, the domain
manager of each domain D’ C D needs to ensure that the schedule SD' is serializable. Let D be
an arbitrary domain in A such that D ¢ TOP and D # DBy, for all k = 1,2,...,m. We next
consider a design of the domain manager for such a domain D (denoted by DM (D)) that ensures
the serializability of the schedule SP. Domain managers for domains D such that D € TOP or
D = DBy, for some k =1,2,...,m, are a slight modifications of the basic design and are discussed
later.

DM (D) consists of three components — DM;(D), DM2(D) and DMs(D) (see Figure 2). Com-
ponents DM, (D) and DM,(D) together are responsible for submitting the operations belonging
to the transactions fﬁD to the component DMs(D). Component DMs(D) schedules the operations

belonging to transactions T’iD in such a fashion that the schedule S is serializable.

e DM;(D): The component DM (D) is responsible for forwarding the requests from the domain
manager of the child domains of D to either the parent domains of D, or to the component
DMs3(D). DM1(D) receives operations o = sf(T;, D) from the domain manager of Dy, where

child(Dy, D). Tt uses the information about the concurrency control protocol followed by

10

DMs3(D) to determine if the operation is the serialization function of T; with respect to the
domain D; that is, if o = sf(T;, D). If the transaction T; is local to D (that is, local(T;, D)),
or if o # sf(T;, D), DM1(D) submits a request for the execution of the operation sf(7;, Di)
(denoted by ezec(sf(T;, Di))) to DMs(D). Else, if T; is global to D (that is, global(T;, D)),
and o = sf(T;, D), then it submits the operation to the domain managers of every domain
D’ such that parent(D’, D). Recall that a domain D, in our MDBS architecture, may have
multiple domains D’ such that parent(D’, D).

e DM,(D): The component DM;(D) is responsible for collecting requests for the execution of
operations o = sf(T;, D) from the parent domains of D. DM;(D) receives requests for the
execution of the operations o = sf(T;, D) (that is, ezec(sf(T;, D)) requests) from the domain
managers of the domains D', where parent(D’, D). In case there are multiple domains D’ such
that parent(D’, D), DM,(D) waits until it receives requests ezec(sf(T;, D)) from each domain
D', where parent(D’, D). On receipt of the request from each of the parent domains, it submits
the operation for execution to the component DMs5(D). On receipt of the acknowledgement for
the successful execution of the operation sf(T;, D) (denoted by ack(sf(T;, D))) from DMs(D),
DM;(D), in turn, forwards the acknowledgement to the domain managers of each of the

domains D', where parent(D’, D).

e DMs5(D): The component DM3(D) is responsible for scheduling the operations of the trans-
actions ip in such a fashion that the schedule SP is serializable. DMs3(D) receives request
for the execution of operations o = sf(T;, Dy), where child(Dy, D) from DM;(D) (if either o
belongs to a transaction T; such that local(T;, D), or if o # sf(T;, D)) and from the compo-
nent DM(D) (if o = sf(T;, D), and global(T;, D)). DMs(D), in turn, submits the request for
the execution of the operation sf(T;, Di), to the domain manager of the domain Dy, where
child(Dy, D). Further, on receipt of the acknowledgement for the operation o = sf(T;, Di)
(that is, ack(sf(T;, Dx))) from the domain manager of the domain Dy, in case the operation is
also the serialization function of T; with respect to D (that is, sf(T;, D)), DMs(D) forwards the
acknowledgement to the component DM;(D) which, as mentioned previously, acknowledges
the execution of the operation to the domain managers of each of the parent domains of D.
DMs3(D) controls the submission order of the operations sf(T;, D) to the domain managers

of the domains Dy, where child(Dy, D), in such a fashion that the schedule 5D is serializable.

The domain manager for the domain D € TOP differs from the above in that it does not contain

the component DM3(D). Note that if D € TOP, then there does not exist a domain D’ such that
parent(D', D). Thus, the component DM;(D) of the domain manager for a domain D € TOP,

on receipt of the any operations o = sf(T;, D), where child(Dy, D), submits a request for the
execution of sf(T;, D) (that is, ezec(sf(T;, D)) to the component DM3(D) directly.

The domain manager for the domain D = DBy, for some k = 1,2,...,m, differs from the

design of the domain manager illustrated in Figure 2 in that it does not contain the component

11

DMs3(D). In this case, the request for the execution of the operations sf(7;, D) by the components
DM,(D) and DM3(D) are submitted directly to the local DBMS for execution. We assume that
each local DBMS, on successful execution of the operation, acknowledges its execution to DM (D).
Furthermore, unlike the case for other domains, operations belonging to transactions that are local to
D (that is, local(T;, D)) are not controlled by the domain manager of D. Instead, they are submitted
to the local DBMS directly for execution. In contrast, operations belonging to the transactions
that are global to D, that is, global(T;, D), as in the case of other domains, are controlled by the
domain manager. For each transaction T; such that global(T;, D), the component DM;(D), based
on the concurrency control protocol followed by the local DBMS to ensure serializability of the
schedule S?, determines whether the operation is the serialization function of 7} with respect to
D. If the operation o = sf(T;, D), then, as before, DM (D) forwards the operation to the domain
managers of all domains D', where parent(D’, D). Else, it submits the operation to the local DBMS
for execution. The local DBMS, on receipt of the operation from DM (D) executes the operation.
Further, on completion of the execution of the operation, it acknowledges its execution to the domain
manager DM (D). DM;(D), on receipt of the acknowledgement of the operation from the local
DBMS, determines if the acknowledgement is for an operation sf(7;, D). If the acknowledgement
if for the operation sf(T;, D), then as in the case of other domain managers, DM;(D) sends an
acknowledgement to the domain managers of the parent domains of D.

In our design of the domain manager for a domain D, the operation o = sf(T;, D) does not
execute in S until the component DMs(D) of the domain manager for domain D submits a request
for the execution of the operation sf(T;, Di); that is, ezec(sf(T;, Dx)) to the domain manager of
domain Dy, where child(Dy, D). Note that this is true since the component DM;(Dy) of the do-
main manager for the child domain Dy waits to receive a request for the execution of the operation
sf(T;, D) from each parent domain of Dy. Furthermore, for each operation sf(T;, D), the com-
ponent DM3(D) of the domain manager for the domain D receives the acknowledgement for the
execution of sf(T;, D), where child(Dy, D), sometime after the execution of sf(T;, Dy) in S. This
is true since we assume that each DBMS; acknowledges the execution of the operations belong-
ing to the transactions that are global with respect to DB; to the domain manager of D = DB;,
and the domain manager for each domain D, in turn, acknowledges the execution of the operation
sf(T;, D), to the domain managers of each of its parent domains. Thus, the operation sf(7;, Dy)
executes in S after DMs(D) submits sf(T;, D) for execution to the domain manager of Dy, and
before DMs5(D) receives the acknowledgement for the execution of s f(T;, Di) from the domain man-
ager of D. Hence, to ensure that the schedule 5D s serializable, the component DM3(D) can use
any concurrency control protocol that ensures serializability (e.g., 2PL, TO, SGT) to schedule the
submission of the operations belonging to transactions T’iD to the domain managers of the child
domains. Note that since the schedule SP is distributed over the domains Dy, Ds,..., Dy, where

child(D;, D), j =1,2,...,k, DM3(D) can follow any distributed or centralized concurrency control

12

DB, DB DBs DB,
Ty~ Ty T~ T3 Ty~T I3~ Ty

Figure 3: Example of a Non-serializable Execution
protocol to ensure serializability of SD.

5 Ensuring Global Serializability

In the previous section, we developed a mechanism that the domain managers can use to ensure
that the projection of the schedule to their domains is serializable. Our mechanism, however, may

not ensure global serializability. To see this, let us consider the following example.

Example 3: Consider an MDBS environment consisting of local databases: DBMS; with
data item z, DBMS; with data item z, DBMS3; with data item y, and DBMS, with data item
u. Let the domain ordering relation be as illustrated in Figure 3. The set of domains A =
{DB1,DB;, DBs, DB4, D1, D2}, where Dy = | J{DB1, DB;, DB3}, and D; = | J{DB;, DB3, DB4}.
Consider the following transactions 77, T3, T3, and Ty:

Ty: bin wi(z) bz wis(y) ci1 cis
T,: by wzl(fﬂ) ba2 wzz(z) C21 C22
T5: bs2 wsz(z) bas w34(u) C32 C3za
Ty: baa waa(u) baz was(y) caa cas

Note that Dom(Ty) = D1, Dom(T2) = D1, Dom(T3) = D, and Dom(Ty) = D;. Suppose that each
local DBMS follows a timestamp scheme for concurrency control in which a timestamp is assigned
to a transaction when it begins execution. Since each local DBMS follows the timestamp scheme
and the timestamp is assigned to a transaction when it begins execution, the serialization function
for a transaction with respect to DB;, i = 1, 2, 3,4, is the transaction’s begin operation at the local
DBMSs. Thus, the transactions T, for the transactions T1, T3, T3, T4 with respect to each of the
domains D; and D, are as follows:

TP by bis TPr: by by TP bay TP:: by

TPz b4 TPz : by, TP2: bsy bay TP?: bay bas
Consider a schedule S resulting from the concurrent execution of transactions 73, T3, T3, and Ty

such that the local schedules at DBMS;, DBMS,;, DBMS3 and DBMS, are as follows:

13

Ds

DBl DBz DBg DB4
Figure 4: Example of A that Satisfies R1

S1: bin wll(m) ba1 wzl(fﬂ) Ci1 C21
Syt b2 wzz(z) bsz wsz(z) C22 C32
Szt bas w43(y) bia wls(y) Ca3 Ci13
Sa: bas was(u) bas waa(y) csa cas

Furthermore let the schedules SP and S22 be as follows:

EDl i bz baz b b3z b2 b3

S§P2: byp baz bas bsz bz bag
In schedule SP: operations by1, ba1, operations bsg, bz, and operations bs3, bsy conflict. Thus, SD:
is serializable in the order T4Dl, TlDl, Trfl, T:f)l. Similarly, in the schedule SD= operations bag, b3a,
operations b43, b13, and operations bzq, bsq conflict. Thus, SD: ig serializable in the order TZPE, TP?E,

T4DE, TlDE. Thus, each schedule §D1, 5Dz and §P: is serializable. However, the global schedule S is

not serializable. O

The above example illustrates that even if the domain managers of each domain D ensures
that the schedule S? is serializable, the resulting global schedules may not be serializable. For the
schedule S to be globally serializable, the set of domains A must be appropriately restricted. In
the remainder of the section, we consider a restriction on A that guarantees that if each domain
manager ensures serializability of §D, then the resulting global schedule is serializable.

To identify the appropriate restriction on A, let us reexamine the non-serializable execution in
Example 3. Let the domain managers of the domains D; and D, ensure serializability of SD: and
SD= respectively, by following a timestamp scheme in which timestamps are assigned to a transac-
tion when it begins execution. In the schedule §D1, the begin operation for the transactions TlDl
and Tzf)l are the operations by; and bz respectively. Further, in the schedule §D2, the begin oper-
ation for the transactions TlDE and TP?E are the operations b3 and bz4 respectively. It is possible
that the domain manager of the domain D; assigns a timestamp to the transaction TlDl that is
lower than the timestamp it assigns to the transaction T:f)l. In contrast, the domain manager of
the domain D, assigns a lower timestamp to the transaction TP?E than the timestamp it assigns
to the transaction TPPE, thereby resulting in the loss of serializability. If, however, there existed a
domain D3 = | J{DB,, DBs} (illustrated in Figure 4), then the order in which the domain manager

for domain D; assigns timestamps to any pair of transactions TiDl and TJ.Dl, and the order in which

14

the domain manager of D, assigns timestamps to TiD2 and TJ.DE must be the same (identical to
the order in which D3 assigns timestamps to transactions, assuming Ds also follows a timestamping
scheme). Hence, if there existed a domain D3 = | J{DBz, DB3}, then the non-serializable execution
in Example 3 would not result. We therefore consider the following restriction on the set A of

domains:
R1: For all domains D;, D; € TOP, there exists a Dy € A, such that Dy = D; N D;.

In the domain ordering relation illustrated in Figure 3, since DBy = D;, DBy; C D,, and
DB3 C Dy, DBs C D, the domain D; N D, does not exist. Thus, the corresponding set A does
not satisfy R1. In contrast, in the domain ordering relation illustrated in Figure 4, the domain
D3 = Dy N Dy. Thus, the corresponding set A satisfies the restriction R1.

Unfortunately, even if the set of domain A satisfies the restriction R1, and each domain manager
ensures serializability of the schedule §D, the resulting global schedule may not be serializable. To

see this let us consider the following example.

Example 4: Consider an MDBS environment consisting of local databases: DBMS; with
data item z, DBMS; with data item y, and DBMS3; with data item z. Let the domain or-
dering be as illustrated in Figure 5. The set of domains A = {DBi,DB,, DBs, D, Dy, D3},
where Dy = |J{DB1,DB;}, D; = |J{DB;,DBs}, and D3 = |J{DB1,DBs}. Further, the set
TOP = {D1,D3,D3}, D1 N Dy = DBy, Dy N D3 = DB3, and D; N D3 = DB;. Hence, A satisfles
the restriction R1. Consider the following transactions 77, T3, and T3 that execute:

Ty: bin wii(e) bz wis(y) e cis

T,: by wzl(fﬂ) ba2 wzz(z) C21 C22

Ts: bay wsz(z) bazs was(y) cs2 caa
Note that Dom(T1) = D3, Dom(T;) = Dy, and Dom(T5) = D,;. Suppose that each local DBMS
follows a timestamp scheme for concurrency control in which a timestamp is assigned to a transaction
when it begins execution. Since each local DBMS follows the TO scheme and the timestamps are
assigned to transactions when they begin execution, the serialization function for a transaction with
respect to DB;, ¢t = 1,2, 3,4, is the transactions’ begin operation at the local DBMSs. Thus, the
transactions ﬁ for the transactions Ty, T3, T3 with respect to each of the domains D1, Dy and D3

are as follows:

?1[)1 : by @Pl :oba1 bao ?3[)1 : bay
T1[)2 : b13 T2[)2 : b22 T'gD2 : b32 b33
TlDS : b11 b13 T2Ds : b21 T'3D3 : b33

Consider a schedule S resulting from the concurrent execution of transactions 77, T3, and T3 such
that the local schedules at DBMS;, DBMS;, DBMS3 and DBMS, are as follows:

S1: bin wll(m) ba1 wzl(fﬂ) Ci1 C21
Syt b2 wzz(z) bsz wsz(z) C22 C32
Sz bss wss(y) bia wls(y) €33 Ci13

15

DB, DB, DB;

T1 ~ T2 T2 ~ T3 T3 ~ T1

Figure 5: A Domain Ordering with a cyclic DG

Furthermore let the schedules §D1, 5Dz and SP: be as follows:

SPri by bay bar baa

5Pz byy baz bz bis

SPs: b1y baz by bz
In schedule SP: operations b11, b1, and operations bsy, b3z, conflict. Thus, SD: s serializable in
the order TlDl, Trfl, T?Pl. In the schedule S22 operations bys, bzz, and operations bsz, b1z conflict.
Thus, SD: ig serializable in the order TZPE, T:?E, TlDE. Similarly, in the schedule SDs operations by1,
ba1, and operations bs3, b1z conflict. Thus, SDs ig serializable in the order T:?S, Tle, T,fs. Thus,

each schedule §D1, 5Dz and SP: is serializable. However, the global schedule S is not serializable. O

The above example illustrates that even if A satisfies the restriction R1, ensuring serializability
of SP for each domain D may not ensure global serializability. To identify conditions under which
global serializability is ensured we need to introduce the notion of a domain graph. A domain graph
(DG) for a set of domains A, is an undirected graph whose nodes correspond to the set of domains
D € TOP. Let D; and D; be two nodes in DG. There is an edge (D;, D;) in DG if there exists a
domain Dy € A such that Dy C D; and Dy C D;.

Theorem 3: Consider an MDBS environment with the set A of domains. Let S be a global
schedule. Further, let each of the following three hold:

e For each DBy, such that DB, C D, S; is serializable and further there exists a function serg,
such that for all transactions T;, T}, global(T;, DBy), global(T;, DBy), and T; s, T;, then
sers, (T;) <s sers, (T;).

e For all domains D € A such that D ¢ TOP, 5P is serializable and further there exists a

such that for all transactions T;, Ty, if global(T;, D), global(T}, D), and ip NN

function ser+ 5o

sD
T]-D, then sers, (TP) <s sersy (T]-D).

e For all domains D € A such that D € TOP, SP is serializable.

16

If A satisfies R1 and the DG is acyclic, then S is serializable. O

The DG for the set of domains A corresponding to the domain ordering relation illustrated in
Figure 4 contains nodes D; and D; and an edge (D1, D;). Since this DG is acyclic and the set
of domains A satisfies R1, it follows that in order to ensure global serializability, it suffices to
ensure that the schedules §D, for each domain D € A, is serializable. In contrast, the DG for
the set of domains corresponding to the domain ordering relation illustrated in Figure 5 contains a
cycle (D1, D2), (D2, D3) and (Ds, D). Hence, even if for each domain D € A, the schedule 5D s
serializable and the set of domains A satisfies restriction R1, loss of global serializability may result.

In the superdatabase architecture, proposed in [Pu88], the set of domains A is restricted as

follows:
For all domains D;, Dj, if child(D;, D;), then for all Dy # D;, —child(D;, Dy).

It is easy to see that this is a special instance of A that satisfies restriction R1 and, further, the
domain graph corresponding to A is acyclic. Thus, from Theorem 3, it follows that a concurrency
control scheme based on ensuring the serializability of 5D for each domain D € A can be used in
superdatabases to ensure global serializability.

In contrast to our scheme, where for each domain D, the domain manager DM (D) ensures
serializability of the schedule §D, [Pu88] uses a protocol referred to as the hierarchical validation,
in order to ensure global serializability. The following two differences between our approach and
the hierarchical validation protocol are noteworthy. First, in hierarchical validation, each domain
manager must follow a SGT certification based protocol. In contrast, in our approach, different
domain managers may follow different concurrency control protocols (centralized or distributed),
for ensuring serializability of the schedule SD. Second, in our approach, for a transaction 7T; and a
domain D such that local(T;, D), the domain manager of D does not need to submit any operations
of T; to the parent domain of D. In contrast, in the hierarchical validation protocol, the domain
manager for the domain D must submit operations of all the transactions, whether local(T;, D) or
global(T;, D), to the parent domain of D. A detailed comparison between our approach and the
hierarchical validation protocol suggested in [Pu88] can be found in Appendix A.

Example 4 illustrates that if the DG contains a cycle, our scheme may not ensure global seri-
alizability. However, not every cycle in the DG would result in a potential loss of serializability.
Consider, for example, DG for the set of domains corresponding to the domain ordering relation
illustrated in Figure 6. Note that DG contains a cycle (Dg, D3), (Ds, D4), (D4, D2). However, for
the set of domains corresponding to the domain ordering relation illustrated in Figure 6, if for each
D € A, the domain manager for D ensures that the schedule 5D is serializable, the resulting global
schedule S would be serializable. Thus, certain cycles in DG do not result in a potentially non-
serializable global schedule. To identify such cycles, we introduce the notion of the labeled domain

graph (LDG). An LDG is a domain graph in which each edge (D;, D;) has a label, referred to as

17

Ds

D2 D4
D,

DB, DB, DBs DB, DBs DBs

Figure 6: A Domain Ordering such that LDG Contains No Undesirable Cycles

label(D;, D;), where label(D;, D;) = D; N D;. Let (D1, D), (D2, D3),...,(Dr_1,D,),(Dr,D1) be a
cycle in the LDG. We refer to the cycle in the LDG as a undesirable cycleiff forall k,1, k = 1,2,...,r,
1=1,2,...,r, if k # [, then label(Dy, D(x4+1)mod r) # label(Di, D(111)moq »)- Note that the LDG
for the set of domains corresponding to the domain ordering relation illustrated in Figure 6, has
edges (D3, D3), (Ds, Ds) and (D4, D3), where label(D,, D3) = label(Ds, Ds) = label(Dy, D) = D;.
Thus, LDG does not contain any undesirable cycles. In contrast, the LDG for the set of domains
corresponding to the domain ordering illustrated in Figure 5 contains a cycle (D1, D3), (D2, Ds),
(D3, D1), where label(Dy, D;) = DBy, label(D;, D3) = DBs, label(Ds, D1) = DB;. Hence, LDG
contains a undesirable cycle. If the LDG for the set of domains A does not contain any undesirable
cycles, then ensuring that §D, for each domain D € A would ensure global serializability as is stated

in the following theorem.

Theorem 4: Consider an MDBS environment with the set A of domains. Let S be a global
schedule. Further, let each of the following three hold:

e For each DBy, such that DB, C D, S; is serializable and further there exists a function serg,
such that for all transactions T;, T}, global(T;, DBy), global(T;, DBy), and T; s, T;, then
sers, (T;) <s sers, (T;).

e For all domains D € A, such that D ¢ TOP, SP is serializable and further there exists a
function ser, such that for all transactions T3, Ty, if global(T;, D), global(T}, D), and T’iD '\33:[,
f‘jD, then serz, (i-D) <s sergp (f‘].D).

e For all domains D € A such that D € TOP, SD is serializable.

If A satisfies R1 and LDG contains no undesirable cycles, then S is serializable. O

18

6 Conclusions

A multidatabase system (MDBS) is a facility, developed on top of pre-existing local database man-
agement systems (DBMSs), that provides users of a DBMS access and update privileges to data
located in other heterogeneous data sources. Over the past decade, substantial research has been
done to identify mechanisms for effectively dealing with the problems that arise due to the hetero-
geneity and autonomy of the local systems. This research has resulted in transaction management
algorithms for MDBSs that ensure correctness without sacrificing the autonomy of the individual
system. Most of the proposed approaches have, however, considered an MDBS as a single monolithic
system which, executing on top of the existing local DBMSs, controls the execution and commitment
of the global transactions (transactions that execute at multiple local DBMSs) in such a way that
consistency of the individual systems is not jeopardized.

One issue that has been relatively ignored is that of the architecture of MDBSs. We believe
that a large MDBS, that span multiple organizations distributed over various geographically distant
locations, will not be developed as a single monolithic system; rather, it will be developed hierarchi-
cally. However, if the architecture of the MDBS is hierarchical, then the transaction management
algorithms followed by individual MDBSs needs to be composable in such a way that it is feasible
to incorporate individual MDBSs as elements in a larger MDBS. In this paper, we presented a hi-
erarchical architecture for MDBSs. In our architecture, with an MDBS environment is associated a
set of domain A with an ordering relation C. A domain is either a set of data items at some local
DBMS, or it may consist of a union of the set of data items in other domains. The execution of
the transactions within a domain is controlled by the domain maenager. We adopted serializabil-
ity as the correctness criteria and developed a mechanism which the domain managers can use to
ensure that the concurrent execution of the transactions does not result in a loss of serializability
within their domains. Furthermore, we identified restrictions on the domain order that ensure global
serializability.

In this paper, we did not consider the issue of failure-resilience. Failure-resilience in MDBSs is
complicated since the requirement of autonomy preservation renders the usage of atomic commit
protocols [BHGS8T] unsuitable for MDBS environments. In the absence of atomic commit protocols,
it is possible that certain subtransactions of a multi-site transaction commit, whereas others abort,
thereby violating the atomicity property. The problem of ensuring atomicity in MDBS environments
has been studied in [BST90, WV90, VW90, MRB*92b, MRKS92]. We need to further study how
these schemes can be adapted for our MDBS architecture.

Finally, in this paper we concentrated only on developing mechanisms for ensuring global seri-
alizability in MDBSs that conform to our architecture. Since ensuring global serializability in an
MDBS environment is both complex and expensive, substantial research has been done to develop
correctness criteria for MDBSs that are weaker than serializability but that ensure database con-

sistency under appropriate assumptions about the MDBS environment [DE89, MRKS91]. It will

19

be interesting to study concurrency control schemes and the consistency guarantee that results in

MDBSs in which different domains may follow different notions of correctness.

7 Acknowledgements

We wish to thank Daniel Barbard for many inspiring discussions. We would further like to thank

Rajeev Rastogi for his comments on an earlier draft of the paper.

References

[BGR92]

[BHGST]

[BS8S8]

[BST90]

[DE89]

[ED90]

[GRS91]

[MRB+92a]

[MRB+92b]

R.K. Batra, D. Georgakopoulos, and M. Rusinkiewicz. A decentralized deadlock-
free concurrency control method for multidatabase transactions. In Proceedings of
the Twelfth International Conference on Distributed Computing Systems, Yokohoma,
Japan, 1992.

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery

i Database Systems. Addison-Wesley, Reading, MA, 1987.

Y. Breitbart and A. Silberschatz. Multidatabase update issues. In Proceedings of ACM-
SIGMOD 1988 International Conference on Management of Data, Chicago, pages 135—
141, 1988.

Y. Breitbart, A. Silberschatz, and G. R. Thompson. Reliable transaction manage-
ment in a multidatabase system. In Proceedings of ACM-SIGMOD 1990 International
Conference on Management of Data, Atlantic City, New Jersey, pages 215-224, 1990.

W. Du and A. K. Elmagarmid. Quasi serializability: a correctness criterion for global
concurrency control in InterBase. In Proceedings of the Fifteenth International Confer-

ence on Very Large Databases, Amsterdam, pages 347-355, 1989.

A K. Elmagarmid and W. Du. A paradigm for concurrency control in heterogeneous
distributed database systems. In Proceedings of the Sizth International Conference on

Date Engineering, Los Angeles, 1990.

D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. On serializability of multidatabase
transactions through forced local conflicts. In Proceedings of the Seventh International

Conference on Data Engineering, Kobe, Japan, 1991.

S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. The concur-
rency control problem in multidatabases: Characteristics and solutions. In Proceedings
of ACM-SIGMOD 1992 International Conference on Management of Data, Sen Diego,
California, 1992.

S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. Ensur-

ing transaction atomicity in multidatabase systems. In Proceedings of the FEleventh

20

[MRKS91]

[MRKS92]

[Pu8s)

[VW90]

[WV90]

ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, San
Diego, California, 1992.

S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. Non-serializable executions
in heterogeneous distributed database systems. In Proceedings of the First International
Conference on Parallel and Distibuted Information Systems, Miami Beach, Florida,

1991.

S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. A transaction model for
heterogeneous distributed database systems. In Proceedings of the Twelfth International

Conference on Distributed Computing Systems, Yokohoma, Japan, 1992.

C. Pu. Superdatabases for composition of heterogeneous databases. In Proceedings of

the Fourth International Conference on Data Engineering, Los Angeles, 1988.

J. Veijalainen and A. Wolski. The 2PC agent method and its correctness. Technical
Report Research Notes 1192, Technical research Centre of Finland, December 1990.

A. Wolski and J. Veijalainen. 2PC agent method: Achieving serializability in pres-
ence of failures in a heterogeneous multidatabase. In Proceedings of the International
conference on databases, parallel architectures and their applications, pages 321-330,

March 1990.

21

A Comparison With Superdatabases

In this section, we compare our scheme with the hierarchical validation protocol suggested for
superdatabases in [Pu88]. Before we do so, we first describe the hierarchical validation protocol.

In the hierarchical validation protocol, the domain manager for a domain D, D ¢ TOP, for each
transaction 7T; such that —local(T;, DBy), k = 1,2, ..., m, (that is, transactions that are not local to
any local DBMS), submits the operations {sf(T;, DB;) | DBy C D and T; accesses data item in DBy}
to the domain manager of the domain D', where parent(D’, D)*. We refer to the restriction of a

transaction T; to the set of operation {sf(T;, DBy) | DB, C D and T; accesses data item in DBy}

as a transaction T;”. Further, we refer to the restriction of the schedule S to the operations belong-

ing to transactions T” by SP. In the schedule S” operations sf(T;, DB;) and sf(T;, DB), i # j,
are defined to conflict iff £ = I. In the hierarchical validation protocol, for each domain D # DBy,
k=1,2,...,m, the domain manager DM (D) follows the SGT certification protocol to ensure that

the schedule SP is serializable.
The following two differences between our approach and the hierarchical validation protocol are

noteworthy. First, in hierarchical validation, each domain manager follows the SGT certification

protocol to ensure serializability of S_D. In contrast, in our approach, different domain managers
may follow different concurrency control protocols (centralized or distributed), for ensuring serializ-
ability of the schedule SD. Second, in our approach, for a transaction 7; and a domain D such that
local(T;, D), the domain manager of D does not submit any information to the parent domain of
D. In contrast, in the hierarchical validation protocol, the DM (D) must submit the set of opera-
tions {sf(T;, DBy) | DB C D and T; accesses data item in DBy} for each transaction T;, whether
local(T;, D) or global(T;, D), to the parent domain of D. If, in the hierarchical validation proto-
col, DM (D) does not submit the operations sf(7;, Di), where local(T;, D), to the parent domain of

D, then the protocol may not ensure global serializability. We illustrate this in the following example.

Example 5: Consider an MDBS environment consisting of local databases: DBMS; with data
item z, DBMS; with data item y, DBMS3 with data item z, and DBMS,; with data item u. Let
the set of domains A = {DBy, DBy, DB3, DBy, D1, D3, D3}, where Dy = |J{DB1,DB;}, D; =
{DB3, DB}, and D3 = | J{D1, D2}. Note that the set of domains A conforms to the superdatabase
architecture. Consider the following transactions T, T3, T3 and T4 that execute:

Ty : bin w11($) b1z wls(z) Ci1 Ci3
Ty : by wzz() baa w24(u) C22 C24
Ts: bar wsz(z) bz waz(y) csz2 ca2
Ty bas w43() bas w44(u) C43 Caq
Note that Dom(Ty) = Dz, Dom(Ty) = D3, Dom(Ts) = Dy and Dom(T,) = D;. Further,

global(Ty, D1), global(Ty, D1) and local(Ts, D). Similarly, global(T, Ds), global(T,, D) and local(Ty, D3).

*Note that in the superdatabases each domain may have at most one parent.

22

Suppose that each local DBMS follows a timestamp scheme for concurrency control in which a
timestamp is assigned to a transaction when it begins execution. Since each local DBMS follows the
timestamp scheme and the timestamps is assigned to a transaction when it begins execution, the
serialization function for a transaction with respect to DB;, i = 1,2, 3,4, is the transactions’ begin
operation at the local DBMSs. Thus, the transactions fZiD for the transactions T4, Ts, T3, T4 with

respect to each of the domains Dy, Dy and D3 are as follows:

TlDli b11 Tlei b22 T3Dl: b31 b32
T1[)2: b13 T2[)2: b24 T4[)2: b43 b44
TP b1y b1z TP bay bag

Consider a schedule S resulting from the concurrent execution of transactions Ty, T3, T4, and Ty
such that the local schedules at DBMS;, DBMS,;, DBMS3 and DBMS, are as follows:

S1: bin wll(m) bs1 wsl(fﬂ) Ci1 Cz1
Syt b2 wsz(y) b2 wzz(y) C32 C22
Szt bas w43(z) b1z wls(z) C43 Ci13
Sq: by w24(u) bas w44(u) C24 Caq

Let us assume that since local(Ts, D1) and local(Ty, D), the schedule SPs does not contain the

transactions T:f)s and T4DS. Thus, the schedule SP are as follows:

SPi: byy bar bax by
SP2: byy bas baz bis

SPa: biy baa biz by

In schedule SP* operations b1, bs1, and operations baa, bag, conflict. Thus, SP* is serializable in
the order TlDl, T:f)l, Trfl. In the schedule SP> operations bys, bas, and operations bys, b1z conflict.

Thus, SP2 is serializable in the order TZPE, T4DE, TlDE. In the schedule SP3 no two operations con-
_Ds -
flict. Thus, § is serializable. Note that since each schedule SP, D = Dy, Dy, D5 is serializable,

it could have been generated by the hierarchical validation protocol. However, the global schedule

S is not serializable. Thus, for the hierarchical validation protocol to ensure global serializability,

the schedule SP2 must contain transactions TPPS and T4DS. Hence, the domain managers of domains

D; and D; must submit the operations belonging to the transactions TPPS and T4D3 to the domain

manager of Dz. O

23

B Proofs of the Theorems

Proof of Lemma 1: Assume that S” is not serializable. Since by (1) each SP* is serializable,
. Tns
T, f*»spkn Ty, where child(Dy,, D), global(T;, Dy,), and global(T(;11)mod ns D), 1 =1,2,...,n. By
(2), sf(T1, Dx,) <s sf(T2, D,), sf(T2, Dx,) <s sf(T3, Dis), -« s $Sf(Tn—1, Dk,,_,) <5 $f(Tn, Dk,),
sf(Tn, Dx,,) <s sf(T1, Dy,). Thus, by the definition of conflicts in sD. TlD ~ %o TZP, TZP ~ %o T:P,

~ o~ ~ o ~ L 2 . ~
e, TP ~%p TP, TP ~%p TP. Hence, TP ~Ep TP which is a contradiction since S by (3)

. . * * *
there exist transactions 71,73, ..., T, such that T} ~ oDy, Tz, T ~ gDy, T3, ..y Th 1 ~ 4 Du,_

above is serializable. Hence proved. O

In order to prove Lemma 2, we need to associate a notion of a level with a domain:

1 if D = DBy, for some local database DBMS,,
mazimum(level(Dy)) + 1 where child(Dg, D) D

level(D) =
Proof of Lemma 2: The proof is by the induction over the level of the domains.

Basis (level(D) = 1): If level(D) = 1, then for some DBy, D = DBy. Hence, for all transactions
T;, Tj, if global(T;, D), global(T;, D), and T; Bos, T;, then by definition of sers,, sers, (T;) <s
sergs, (T;). Hence, sf(T;, D) <5 sf(T;, D).
Induction: Assume that the lemma is true for all domains D such that level(D) < p. Let D =
\U{D1, D, ..., D,} be an arbitrary domain such that level(D) = p+ 1. Let T;,T; be transactions
such that global(T;, D), global(Tj, D), and T; g T;. There are two cases to consider:

o (T; Sgo, T; for some Dy such that child(Dg, D):) Since global(T;, D) and global(T}, D)
and T;, T; executes in Dy, global(T;, Dy) and global(T;, D). Thus, by IH, sf(T;, Di) <s
sf(T;, Dy). Hence, by definition of a conflict in sD. TiD ~%p T]-D. As a result, by the
definition of sf(T, D), sf(T;, D) <s sf(T;, D)

o (There exist transactions T1, T3, . . ., T, such that T; '*”th T, Th ’\);SD,GZ Toy.o0Th 1 NS

Dy, _,
T., Tn '*»SD,% T;, where child(Dy;, D), i = 1,2,...,n:) Note that global(Ti,Dki),si =
1,2,...,n, and global(T; 41, Dy,), i = 1,2,...,n— 1. Thus, by IH, sf(T;, Di,) <s sf(T1, Dg,),
sf(T1, Dr,) <s sf(T2, Diy)y - -+ 8f(Tn—1, D,._,) <5 8f(Tn, Di,_,), 8f(Tns Di,,) <s sf(T;, Dy,,)-
Hence, by definition of a conflict in §D, T’iD ~op TlD, TlD ~op TZP, ce T,f’_l ~op T,f),

T,f) ~%p T}-D. Hence, fﬁp '\ZED T}-D. As a result, by the definition of sf(T, D), sf(T;, D) <s
sf(T;, D). Hence proved. O

Proof of Theorem 2: The proof is by the induction over the level of the domain D.
Basis (level(D) = 1): If level(D) = 1, then for some DBy, D = DBy. Since S is serializable, for
allk=1,2,...,n, SP is serializable.
Induction: Assume that the theorem is true for each D such that level(D) < p. We show it to be
true for each domain, D such that level(D) = p+ 1. Let D be such a domain and further let D =
U{D1, Dy, ..., D,}. Since level(Dy) < p, child(Dy, D), by TH, SP* is serializable. Further, since

24

child(Dy, D), Dy, € TOP. Thus, the function sersp, exists. By Lemma 2, sf(T;,Dp) = sersp, (T3)
satisfles the property that for all T;, T}, such that global(T;, D), global(Tj, D), T; 5 gpy T =
sf(T;, D) <s sf(Tj, Di). Thus, by Lemma 1, since SD is serializable, ST is serializable. Hence

proved. O

Proof of Theorem 3 and 4: Theorem 3 directly follows from Theorem 4. So we only prove

Theorem 4. To prove Theorem 4, we will need the following lemmas.

Lemma 3: Let D be a domain and T;, Tj be transactions such that global(T;, D) and global(T}, D).
If there exists a D' C D such that TZ-D’ '\33:[, T , then T~D ~%p TD

Proof: The proof in by induction on the level of the domain D, where D’ C D.
Basis (level(D) = level(D')): Since D' C D, it must be the case that D' = D. Thus, T~D ~%p TD
Induction: Assume that the lemma is true for all domains D, D’ C D such that level(D) <
level(D')+p. We show that the lemma is true for all domains such that level(D) = level(D')+p+1.
Let D be such a domain. Since D' C D, there exists a domain D", D’ C D", where child(D", D).
Further, since global(T;, D) and global(T};, D), and since T; and T; execute in D", it must be the
case that global(T;, D"') and global(T;, D"). Thus, by IH, TZ-D” '\33:[,,, T-D” Since T-D” TD”
by definition of sf, sf(T;, D) <s sf(T;,D"). Thus, by definition of T TZ ~3p TD Hence,
e

Lemma 4: Let T; and T; be transactions and D be a domain such that global(T;, D) and
global(T;, D) and level(D) > 2. f T; Lsp T, then T~ '\»A TD

Proof: Let p = level(D) The proof is by induction on p.
Basis (p = 2): Thus, D = {DB;, DB,,...,DB,,} for some local database DBMS;, k= 1,2,...,m
Since T; ’*/>SD T;, there exists transactions T1,T3,...,T, such that T; '*»skl Ty, Th ’*/)SkE Ts,
eo Thot '*”Skn T, Tn '*»S,Wr1 T;, where global(T}, DBy,) and global(Tl,DBk(Hl)), where [=
1,2,...,n. Hence by definition of the serialization function sf, sf(T;, DBx,) <s sf(Ti,DBs,),
sf(T1, DBy,) <s sf(T2,DBg,), ..., sf(Tn-1,DBt,) <s sf(Tn,DBy,), and sf(Tn,DBy,,,) <s
sf(T;, DByg,,,). Thus, by definition of T., TP ~ %o TP TD ~ %o TP, ..., TP, ~g o TP and
TD ~%p TD Hence, T~ 'vv\ TD
Induction: Assume that the lemma holds for all domains such that level(D) < p. We show that
it holds for domains such that level(D) = p+ 1. Let D = |U{D1, D2,..., D} be an arbitrary
domain such that level(D) = p+ 1. Since T; Lsp T;, there exists transactions T1,T3,...,T5,
n > 0, such that T; '*’)th T, Th A 5Pk, Toy ooy Tn1 '*’)s by, In, and T, ’\);SDkn_'_l T;. Since

child(Dy,, D), level(Dy,) < level(D). Thus, by IH, T '\»Epk T1D'°_1, TlD'c2 ’*/>ng2 Tf'“, e

~D * ~D /\Dkn * ADk . « 1. . .
T,27 ~go, T and T oo, T . Hence by definition of the serialization function

sf, sf(Ti, Dy,) <s sf(T1,Dy,), sf(T1,Dy,) <s sf(T2, Dy,), .y sf(Tno1,Dr,) <s sf(Tn, Dt,.),

25

and sf(T,, Dg,,,) <s sf(T;, Dy,,,). Thus, by definition of T, TP ~a TlD, TlD ~ %o TZP, e

7 sD
T,f’_l ~%p T,f), T,f) ~%p j\ij‘ Hence, TiD '\ZED T}-D. Hence proved. O
Lemma 5: Let T;,T; be transactions and let D be a domain such that ip '\ZED ij' For all
D', D' C D, ifT; and Tj execute in D', then sf(T;, D') <5 sf(Tj,D’).
Proof: Say there exists a D’ such that sf(Tj, D’) <s sf(Ti, D). Hence there exists a domain D"
such that D" C D, parent(D", D’) such that T]-D” ~gpn fﬁ.D”, Hence by Lemma 3, {f‘jD ~3p {f‘iD_

Thus, SD is not serializable which is a contradiction. Hence, such a D’ does not exist. Thus, for all

D', D' C D, sf(T;, D) <s sf(Tj, D). O

Lemma 6: Let T1,T3,...,T,, n > 2, be transactions such that 71 ~g, T3, T ~gs, T3, ...,
T.-1~s, , Tn. Let D' and D", D' € TOP, D" € TOP, be domains such that DB; C D’ and
DB, _; C D". There exists a path (D', D1), (D1, D3), .., (Dr_1, D), (Dr, D) in LDG such that
for all D;, i=1,2,...,r, there exists a DB;, j = 1,2,...,n — 1, such that DB; C D;. Further, let
edges (D', D1), (D1, D2), ..., (Dr_1, D), (D,, D”) have labels Ly, Ly, ..., L, respectively. For all
L;,1=1,2,...,r, there exists a DB;, j = 1,2,...,n— 1, such that DB; C L;.

Proof: The proof is by induction on n.

Basis (n = 3): Thus, T} ~g, Tp and T3 ~g, T5, where DBy C D' and DB, C D”. Consider the
domain D € TOP such that Dom(T;) C D. If D = D/, then since DB; C D" and DBy C D/, there
is an edge (D', D") in LDG. Further, DB; T label(D’, D"). Else, if D = D", then since DBy C D’
and DB, C D", there is an edge (D', D") in LDG. Further, DBy T label(D', D"). Else, if D # D’
and D # D", then there are edges (D', D) and (D, D") in LDG such that DBy C label(D', D) and
DB; C label(D, D).
Induction: Assume that the lemma holds for n = m—1, m > 4. We show it holds for n = m. Thus,
we have Ty ~g, Ta, Ty ~s, T3, ..., Tn—1 ~s,,_, Tm. Let DB,,_o C D", where D" € TOP. If
D" = D', then by base case, the lemma holds. Else, if D"/ = D", then since T} ~g, Ty, To ~g, Ts,
ey Tm—2 ~s,,_, Tm_1. Hence, by IH, the lemma holds. Else, D"/ # D' and D" # D"”. By
IH, there exists a path (D', D1), (D1, D2), ..., (Dy_1,Dy), (Dr, D) in LDG such that for all D;,
1 =1,2,...,r, there exists a DB;, j = 1,2,...,m — 2, such that DB; C— D;. Further, for all L;,
1=1,2,...,r, there exists a DB;, j = 1,2,...,m — 2, such that DB; C L;. By the base case, since
) Tp, there exists a path (D', DY), (D, Dj), .. .(DL._,, DL),
(D;.,,D") such that for all D, i = 1,2,...,7, there exists a DB;, j = m — 2,m — 1, such that
DB; C D,. Further, for all L;, ¢ = 1,2,...,r/, there exists a DB;, j = m — 2,m — 1, such that
DB; T L;. Hence, for some s there exists a path (D', D1), (D1, Ds), ..., (Ds—1,Ds), (Ds,D")
in LDG such that for all D;, 7 = 1,2,...,s, there exists a DB;, j = 1,2,...,m — 1, such that
DB; C D;. Further, for all L;, ¢ = 1,2,...,s, there exists a DB;, j = 1,2,...,m — 1, such that
DB, C L;. O

Tm—2 NS Tm—l and Tm—l N 1

26

Lemma 7: Let the set A satisfy restriction R1 and the LDG be acyclic. Further, let T3, T; be
transactions and D, D’ € TOP be domains such that global(T;, D') and global(T;, D). If T’iD '\33:[,
ij, then i-Dl '*’)ED’ TjD’.

Proof: There are two cases to consider.

o (DND'"# 0:) We first show that both T; and T} execute at DN D'. If T; does not execute at

D n D', then since T; executes at D, there exists a DB; C D and a DB; C— D’ such that T;
executes at DBy and DB;, where DB; [DN D’ and DB, ¥ DN D’. Since T; executes at DBy
and DBg, there exists a domain D" € TOP, Dom(T;) C D", such that D" # D and D" # D'.
Consider the labeled domain graph LDG. In LDG since DB; C D and DB; C D", there is an
edge (D, D) such that DBy T label(D, D"). Further, since DB; — D' and DB; C D", there
is an edge (D', D") such that DB, C label(D, D"). Since DN D' # 0, there exists an edge
(D, D') in LDG. Thus, LDG contains a cycle (D, D), (D", D"), (D', D). Since DB; [D/,
DBy ¢ label(D, D). Further, since DB, i D, DB; [label(D, D). Hence, the cycle (D, D"),
(D", D", (D', D) is a undesirable cycle. Thus, it must be the case that T; executes in DN D'
Similarly, it is the case that T; executes in D N D’. Since T’iD SN T]-D, by Lemma 5, we

sD
have that sf(T;, DN D') <5 sf(T;,D N D'). Thus, by Lemma 3, since global(T;, D’) and

o~

global(T;, D), we have that ﬁD’ '\33:,:,, T]-D

e (DN D = 0:) Since T; executes at D as well as D', let T; executes at DBy, DBs, where
DBy C D and DB3 T D'. Further since T; executes at D as well as D', let T; executes
at DBy, DBy, where DBy C D and DBy C— D’. We show that there exists a domain D"
such that DBy = D", DBy, © D", DBs = D", DBy £ D". Say such a domain D" does
not exist. Since T; executes at DBy and DBs, there exists a domain D'/ € TOP, such that
Dom(T;) C D" and thus DBy T D" and DB3 T D', Further, since T} executes at DB; and
DB,, there exists a domain D"" € TOP, such that Dom(T;) C D"" and thus DB, — D"
and DBy C D", If D" = D", then DB, = D", DB, = D', DBs = D', and DBy C D"
Hence, D' # D"". Thus, D # D' # D' # D"". Consider the labeled domain graph LDG.
In LDG, there is an edge (D, D'") such that DBy C label(D, D'"), there is an edge (D", D’)
such that DBs C label(D, D), there is an edge (D', D"’} such that DBy C label(D’, D""),
and there is an edge (D", D) such that DB; C label(D"", D). Thus, LDG contains a cycle
(D, D", (D",D"), (D',D""), (D"",D). We next show that LDG contains a undesirable
cycle. There are two cases to consider:

— (D""'NnD" =0:) Since DB, C label(D, D), DB, C D''. Since D" N D"" =0, DB, It
D"". Thus, DBy [label(D"", D) and further DB; [Z label(D"", D’). Similarly, since
DB, D', DBy I label(D', D"'). Hence label(D, D"") # label(D', D), label(D, D"") #
label(D’, D', and label(D, D'") # label(D, D""). Using similar reasoning, we can show

27

that label(D, D) # label(D"', D’) # label(D', D"") # label(D"", D). Hence, the cycle
(D, D", (D", D", (D', D""), (D", D) is a undesirable cycle.

— (D""ND" #£0:)If D""ND"" # 0, then LDG contains an edge (D', D"’) and thus LDG
besides containing the cycle (D, D"), (D", D), (D', D""), (D", D), also contains cy-
cles (D, D), (D™, D), (D", D) and (D', D), (D", D""), (D", D). Note that since
DND’ = 0, it must be the case that DB, [label(D’, D"') and DB i label(D', D""). Fur-
ther, DBy [Z label(D', D"') and DBy I label(D’, D'""). Similarly, DB3 [label(D', D""),
DBs £ label(D',D""), DB4 i label(D,D"') and DBy [label(D, D). Thus, if the
cycle (D, D), (D",D", (D',D""), (D"",D) is not a undesirable cycle, then either
label(D, D) = label(D, D"") or label(D’, D"} = label(D', D"'). Note that label(D, D"") =
label(D, D'} and label(D', D) = label(D', D'") both cannot hold since then D3 would
be such that DBy C D3, DBy C Ds, DB3 T Ds, and DBy T Ds. If label(D, D"") =
label(D, D), and label(D', D"") # label(D’, D'"), then the cycle (D', D""), (D", D""),
(D", D’) is a undesirable cycle. Else, if label(D', D""") = label(D’', D'"), and label(D, D"} +
label(D, D'"), then the cycle (D, D), (D", D""), (D", D) is a undesirable cycle.

Hence, there must exist a domain D" such that DB, = D", DBy, — D", DB; — D", and
DB, C D". Since global(T;, DN D") and global(T;, DN D"), and T’iD '\ZTS\D T]-D, by Lemma 5,
sf(T;, DN D") <s sf(T;, DN D"). Hence by Lemma 3, and the definition of ﬁ, TD" 25

7 s
T]-D”. Since global(T;, D' N D) and global(T;, D' N D"), and T’iD” '\ZED” T}-D”, by Lemma 5,
sf(T;, D' N D") <5 sf(Tj, D' N D"”). Hence by Lemma 3, and the definition of T, fﬁDl '*’)?D’

j?]p" Hence proved. O

Lemma 8: Let the set A of domains satisfy the restriction R1 and let LDG be acyclic. Further,
let D be a domain in A, level(D) > 2, and T} and T, be transactions such that global(Ti, D) and
global(Ty, D). If Ty ~pp, Ts%, To ~pB, Ts, -, Ta1 ~DB,_, Tn, then TP 5= TP.

Proof: The proof in by induction on 7.

Basis (n = 1): Thus, T4 ~pp, To. There are two cases to consider.

e (DB C D:) In this case, T1 ~gp Ty. Thus, by Lemma 4, since global(Ty, D) and global(Tz, D),
we have that TlD '\ZED TZP

e (DBy £ D:) Let DBy C— D', where D' € TOP. By Lemma 4, Tll ~ Zpi TZP’. Since
global(Ty, D) and global(T3, D), by Lemma 7, TlD '\33:[, TD.

n

Induction: Assume that the lemma holds for all n < m — 1. We show that it holds for n = m.

Thus, we have T3 ~pp, T3, T2 ~pB, I3, .. -, Tm—1 ~DB,,_, Im. There are two cases to consider.

o (there exists 4, ¢ = 1,2,3,...,m— 1, DB; C D:) Let DB, C D, 1 < k < m — 1. Further,
let DB, and DBy,, 1 < k1 < k, and k& < k2 < m — 1, be such that for all DB;, ¢ =
kl,k1—|— 1,...,k,k—|— 1,...,]62, DB; C D, DBk1_1 ¢ D and DBk2+1 ¢ D. If k1 = 1 and

5For notational brevity, we denote ~+¢pB; by ~>DB;.

28

ko = m — 1, then by Lemma 4, since for all DB;,1=1,2,...,m—1, DB; C D, TlD '\33:,:, T£
So we only need to consider the case in which either 1 < k; or k3 < m — 1. There are two

cases to consider:

— (1 < kq:) Consider transaction Tj,. Note that Ty, 1 ~>DBy,_, Tk, and further T}, ~pp,,
Tk,+1. Since DBy, 1 [D, DBy, C D, and transaction T}, executes on DBy, and
DBy, -1, global(Ty,, D). Hence, by IH, TlD '\33:[, Tlg and further Tlg '\33:[, TD . Hence,

n

=~ *

— (k2 < m:) Consider transaction Ty,. Note that Tj,_1 ~DBy,_, Tk, and further

T, ~ DB, Tky+1. Since DBy,y1 £ D, DB, C D, and transaction T}, executes on
DBy, and DBy, 11, global(Ty,, D). Hence, by IH, TP '\ZE‘\D T,f; and further T,f; '\ZTS\D TP,
Hence, TlD '\ZED T,f)

e (foralli, :=1,2,3,...,m—1, DB; D:) Let DB, C D', D' # D, where D' € TOP and

Dom(T,) C D’. There are two cases to consider:

— (DBp—1 C D':) We first show that TlDl '\ZS‘\D’ Tﬁl. It will follow from Lemma 7 that
TlD '\ZTS‘\D T£ Since DB,,_1 T D’, we have that Ty ~pp, T, T2 ~pp, Ts, ...,
Tm—1 ~pB,,_, Im, where DB1,DB,,_y C D'. If for all DB;, i = 1,2,...,m — 1,
DB; — D', then since T} ’*’)sD’ Tm, by Lemma 4, we have that le’ '\ZE‘\D’ D',

m

Thus, by Lemma 7, TlD '\ZED TP, Else, there exists a DB, k = 2,3,...,m — 2, such

m

that DBy [/ D’. Let k; be such that DBy, I/ D’ and for all ¥ = 1,2,...,k — 1,
DB, C D'. Thus, Th, 1 ~ps,,_, Th,
DBy, D'. Since Ty, executes both on DBy, 1 and DBy,, global(Ty,, D’). Hence by
IH, Tl ’ '*’)?D’ Tlﬁl and Tlﬁl '*’)?D’ D', Hence, le’ '*’)?D’ D', Thus, by Lemma 7,

m m
7D * 7D
TP Lg, TP,

and Ty, ~pg,, Tk,+1, where DBy, 1 C D' and

— (DBp_1 £ D":) Let DB,,_1 C D", where D" € TOP and Dom(T,,) C D". Note that
D" # D' and further D" # D. Since T; executes in both D and D', and Dom(Ty) C D/,
LDG contains an edge (D, D’). Let label(D, D’') = L’. Similarly, since 7;,, executes in both
D and D", and Dom(T,,) C D", LDG contains an edge (D, D"). Let label(D, D") = L".
We first show that it must be the case that L' = L”.

Assume on the contrary that L' # L”. Since Ty ~pp, T2, To ~pp, T8y .-y Tmm—1~DB,._,
Ty, where DBy C D' and DB,,_; C D", by Lemma 6, there exists a path (D', Dy),
(D1, D2), ..., (Dy_1,D;), (Dr,D") such that for all D;, ¢« = 1,2,...,r, there exists a

DB;,j=1,2,...,m—1, DB; C D; and further, for all edges in the path (D;, D,,), there
existsa DB, j=1,2,...,m—1, DB; T label(D;, Dy,). Since for all DB;, DB; i D, the
path does not contain D. Hence, LDG contains a cycle (D, D’), (D', D), (D1, D2), ...,
(Dy_1,D.), (D,,D"), (D", D). We next show, using induction on r, that LDG contains
a undesirable cycle.

Basis (r = 0:) Thus, LDG contains an edge (D', D"). Let label(D’, D) = L"'. Since

29

there exists a DB; such that DB; T L', and further since L' — D and L C D, it is
the case that L' # L and L' # L”. Since by assumption L' # L”, the cycle, (D, D’),
(D', D), (D", D) is a undesirable cycle.
Induction: Assume that if there is a cycle (D, D'), (D', D1), (D1, D32), - .., (Dr—2, Dr_1),
(Dy_1,D"), (D", D), then LDG contains a undesirable cycle. We next show that if there
exists a cycle (D, D), (D', D1), (D1, D3), ..., (Dr—1,Dy), (D,, D"), (D", D) in the LDG,
then LDG contains a undesirable cycle. Consider the cycle (D, D’), (D', D1), (D1, D3),
oy (Dp_1,Dp), (Dr,D"), (D", D). Let the labels on the edges (D', D1), (D1, Da), ...,
(Dy_1,D:), (Dr,D") be Ly, Ly, ..., L, respectively. By assumption L' # L”. Further,
since for each L;, there exists a DB;, j = 1,2,...,m — 1 such that DB; C L;, and since
L't D, L" C D, and since for all DB;j, j =1,2,...,m—1, DB; 7 D, it is the case that
L' # L;and L" # L;, for all i = 1,2, ..., r. Thus, if the cycle (D, D"), (D', D1), (D1, D3),
ey (Dr—2,Dp_1), (Dr_1,D"), (D", D), is not a undesirable cycle, then there must exist
labels L,,, L., in the cycle such that L,, = L,,. Consider domains D,, 1, D,,+1. Since
L, C D, _1and L,, C D, 41, there is an edge between D,, ;1 and D,,; with a label L
such that L,, C L. Hence, there exists a cycle in LDG, (D, D’), (D', D1), (D1, D2), ...,
(Dry—1, Dry41)y (Dryt1s Dryi2)s ooy (Dr—1, Dr), (Dr, D), (D", D) such that the length
of the cycle is less than r. Thus, by IH, there exists a undesirable cycle in LDG.
Hence it must be the case that L’ = L”. Since Dom(T,,) C D", and T,, executes in
D, T,, executes in L”. Since L = L' and L' C D/, it is the case that T, executes in
D’. Further since global(T,,, D), it is the case that global(T,,, D’). Hence, we have that
Ty ~pp, T2, T2 ~pB, T3, ..., Trn—1 ~DB,,_, Tm, where global(Ty, D'), global(Ty,, D’)
and DBy = D' and DB,,_; = D"”. Since D' # D", there exists a k such that for all ¢,
1<i¢<k,DB,C D' and DBy [D'. Hence, since Ty,_1 ~pp,_, Tk, and Ty ~pp, Tet1,
where DBy_1 = D' and DBy [D’, we have that global(Ty, D’'). Thus, by IH, we have

that TlDl N T,?’ and T,?’ s, TP Thus, TlDl Lo, TD. Hence, by Lemma 7,

sD! sD! *n sD! *n

~ ~
TP ~5p TP. Hence proved. O

Proof of Theorem 4 (cont.): If S is not serializable, then there exists transactions Ty, To, ..., T,
such that Ty ~pp, T2, T2 ~pB, T3, ..+, Tn_1 ~pB,_; In, Tn ~pB, T1. Let D € TOP such
that DBy © D. If for all DB;, i = 1,2,...,n, DB; C D, then Ty ~>50 Ti. Hence, by Lemma 4,
TlD '\33:[, TlD which is a contradiction. Thus, there exists a DBy [D. Let for all DB;, 1 <1 < k,
DB; — D and further DBy [D. Hence, since transaction 7} executes on both DBj_; and
DBy, global(Ty, D). Consider the sequence of conflicts Ty ~pB, Trt1, Th41 ~DBrys Tht2s -+
Tw-1 ~DBy_y Tn, Tn ~pB, T1, Tt ~pB, T2, .-+, Tt—1 ~pDB,_, Tk. Since global(Ty, D), by
Lemma 8, T,f) '\ZED T,f) which is a contradiction. Hence, the sequence of transactions cannot exist.

Thus, S is serializable. O

30

