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The performance of many applications of parallel computers and communica-
tions systems is limited by the speed of data transfers rather than the speed
of processing. An important, but neglected, aspect of resource management
to overcome this bottleneck is the scheduling of data transfers. Data transfer
scheduling differs from traditional scheduling problems in that data transfer
tasks require multiple resources simultaneously, rather than a single resource

serially, in order to execute.

We study the data transfer scheduling problem by first defining a general
model for precisely specifying and classifying scheduling problems. We use

the model for the recognition of the similarity of seemingly different problems
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from different application areas, for the systematic transformation of one pr-
oblem specification into that of a seemingly different problem, and for the

systematic decomposition of a problem specification into solvable subprob-

lems.

We obtain polynomial-time, optimal and approximate algorithms for a wide
range of data transfer scheduling problems under a variety of architectural
and logical constraints, including communication architectures in which re-
sources are fully connected, communication architectures with a tree topology,
and the presence of mutual exclusion and precedence constraints. Our algo-
rithms either generalize previous results for these problems, or provide better

performance, or both.

Our results are applicable to both parallel computers and communications
systems, including certain types of shared-bus multiprocessor systems such as
the Sequent and the IBM RP3, hierarchical switching systems, tree-structured

multiprocessor architectures, and intersatellite communications systems.
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Chapter 1

Introduction

Extracting optimal performance continues to be a critical issue in computing
and communications systems. Even as faster parallel computers and high-
speed communications networks become available, newer applications such as
image visualization and real-time databases stretch the limits of their per-
formance. Improvements in underlying technology alone are insufficient to
keep pace with these increasing demands. Sophisticated management of the
resources provided by cheaper technology is required. An important compo-
nent of resource management is scheduling, and in particular the scheduling

of data transfers.

In this dissertation we study the scheduling of data transfers in parallel com-
puters and communications systems. We obtain a general model for specify-
ing scheduling problems which allows us to identify useful results in different
application areas, and extend and apply them across application areas. We
obtain optimal and approximate algorithms for a wide range of data transfer

scheduling problems under a variety of architectural and logical constraints.

We focus on data transfer scheduling because this component of resource

1



management has long received insufficient attention in the area of parallel
computer systems. For many applications it is not the processors but the
data transfers for input/output (I/O) that are the bottleneck in parallel co-
mputer system performance. The continuing increase in computing speed
relative to the speed of I/O devices, and the increasing 1/O demands of new
applications, indicate that the I/O bottleneck will be even more serious in the
future. Parallel computer systems will not fully realize their potential perfor-
mance, unless not only the computation but the I /O is performed in parallel,
and equally importantly, unless the I/O resources and parallel 1/O tasks are
managed efficiently. However, while the scheduling of multiple processors
has been studied extensively, there has been almost no study of scheduling
parallel I/O tasks.

For communications systems, on the other hand, particularly satellite switch-
ing systems, scheduling data transfers has been studied for over a decaﬂe.
Since the mid-80’s, research on scheduling file transfers in computer networks
has also been pursued. Nonetheless, improvements continue to be necessary
as satellite and computer communication networks become ubiquitous, am-
bitious satellite networks using intersatellite communications links become

operational, and new applications generate increasing data transfer demands.

Previous work done on scheduling over the last several decades in the fields
of operations research, management sciénce, and engineering, is typically not
applicable to the problem of scheduling data transfers. The reason is that
data transfer tasks require multiple resources simultaneously, rather than a
single resource serially, in order to execute. Almost all previous work on

scheduling theory has concentrated on the single-resource-per-task situation.
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Thus extracting optimal performance requires abandoning traciitional sched-
uling techniques and developing new algorithms and heuristics that perform
simultaneous resource scheduling. The techniques that have been developed
for data transfer scheduling in communications systems are an exception; al-
most all other work has concentrated on studying single resource scheduling

problems such as job-shop scheduling, flow-schop scheduling, and the like.

It is typical of the fragmentation of the scheduling literature that previous
research on data transfer scheduling for satellite communications has been
performed and reported using specialized notation, jargon and narrow as-
sumptions which hold only in the context of that application. The situation
is further exacerbated by the explosion in the quantity of published research
on scheduling since the 1950s. The consequence is that it is difficult to rec-
ognize when a scheduling problem in one application area has already been
studied for a different application, let alone transfer research results across
application areas. Thus, for instance, the results on scheduling data transfers
in communications systems have not previously been applied to other appli-
cations such as scheduling parallel I/O, even though they provide potentially
useful techniques and insights. What is required is a means of specifying and
classifying scheduling problems, as well as solution techniques and algorithms,
in a uniform abstract framework that exposes the underlying similarity of sch-

eduling problems in diverse application areas.

To summarize thus far, we have outlined four motivating issues. Firstly, the
scheduling of data transfers is a neglected but increasingly important compo-
nent of resource management for extracting optimal performance from paral-

lel computer systems. Secondly, while datz transfer scheduling has received



some attention for czmmunications systems, increasingly complex systems
and applications demand improved techniques. Thirdly, previous results on
scheduling do not apoly to data transfer tasks since data transfers require
multiple resources simultaneously in order to execute. Finally, a uniform
abstract framework i required for specifying scheduling problems and their
solutions so that the benefits of research results can be transferred across

application areas. Inzhis dissertation we address all four issues.

In the rest of this ciapter we discuss these issues n more detail, outline
our research approaci. specify the specific problems that we will attack, and
summarize the resubs we have obtained as well as suggestions for future

work.

1.1 The paralel I/O bottleneck

We discuss the paralizl /0 bottleneck in detail in this section. We first give a
historical perspective. We then motivate the use of parallel I/O scheduling as

an important additior to the solutions being developed to address the parallel

I/O bottleneck.

1.1.1 Historical yerspective

It has long been rewognized that a memory hierarchy is required in order
to satisfy the data =quests of a CPU, and that the mechanical delays as-

sociated with input outiput (I/O) devices represent a significant potential



bottleneck in computer system performance (see Gibson [59] for a historical
review). Indeed, the introduction of multiprogramming in computer systems
was motivated by the need to overcome the sequential I/O bottleneck [26].
Nonetheless, “Input/Output has been the orphan of computer architecture”
[68], and the I/O subsytem has received disproportionately little attention in

sequential computer system design.

The I/O subsystem has received even less attention in the design of parallel
computer systems. However, since the early 80’s there has been a growing
awareness of the I/O bottleneck in parallel systems [12, 16, 17]. It was in the
early 80’s that the performance of database machines designed in the late 70’s
(e.g. DIRECT [35]) were found to be severely constrained by I/O bandwidth
[12). While the I/O bottleneck remains a central concern in database ma-
chine architecture today [36, 13, 117], in recent years the concern has spread
to general purpose supercomputers {131, 59, 103, 18] as well as mid-range and
low-end machines [1]. As a case in point, while the early hypercube computers
neglected the I/O subsystem, there have recently been many efforts to address
the I/O bottleneck in hypercube system [14, 65, 116, 118, 121, 44, 57]. In fact,
it has recently been argued that the data transfer capabilities of a system,
including its I/O capabilities, should replace processing speed as the funda-
mental performance metric. For instance, Smith et al [131] predict that “The
performance of supercomputers will ultimately be measured by how fast they
can move data both within the system and across the network”. Similarly,
Jordan argues that for high performance systems, instead of the peak floating
point rate, “A better measure of computer performance is data transport ca-
pacity” [84]. In addition, within the last year the parallel I/O bottleneck has

been receiving substantial attention in the industry and general professional



literature e.g. [67, 104, 18])

1.1.2 Scheduling parallel I/O

There are shree basic reasons for the existence of the parallel I/O bottleneck.
The first i the increasing discrepancy between the speed of computation and
the speed of 1/0. The second is the dramatic increase in the data demands
of new ap:lications such as image visualization and real-time databases. The
third is tie inability of dynamic RAM, despite its spectacular advances, to
replace sezondary storage devices. (See Gibson [59] for a detailed discussion

of these issues).

Several atiempts have been made to address the parallel I/0 bottleneck in
the last few years. They include approaches such as decreasing the number
of 1/O reciests (improved or larger caches, larger block sizes, improved data
allocation <o allow contiguous files), increasing the parallelism of I/O requests
(overlapping 1/0 with computation where possible, using asynchronous 1/0),
decreasing average disk access times (reducing utilization, introducing buffer-
ing, schecling requests that are waiting at the disk controller), special 1/0
devices ard controllers (multiple I/O processors, optical disks), and replacing
secondary storage by RAM (or optical RAM). As argued by Gibson [59], none

of these zzproaches provides a general-purpose solution that is satisfactory.

An imporiant class of new approaches has been the introduction of synchro-

nized disk interleaving [88], and disk striping [124] or data declustering [97].



The disk array approach [82], in particular Redundant Arrays of Independent
Disks (RAID), combines the benefits of these approaches with increasing the
ratio of disk heads to user data [113, 59].

For applications with high data demands for entities (e.g. files) of known
size stored at known locations, and where the demand is relatively irregu-
lar, scheduling parallel I/O operations is an attractive addition to the set
of techniques available for attacking the parallel 1/O bottleneck. While the
scheduling of I/O operations has been studied in the context of sequential
computer organizations [33], the potential for improving parallel system per-
formance by scheduling parallel I/O operations has been almost completely
neglected.

As discussed below, review of previous work reveals that almost all previous
research on parallel scheduling deals with tasks which require only a single
resource at any given time. Single resource scheduling is not relevant for
parallel scheduling of I/O operations where each operation requires multiple
resources (e.g. processor, transfer media and external memory) in order to
execute. Serial acquistion of multiple resources does not in general lead to
optimal schedules; algorithms which simultaneously assign multiple resources
to the members of a request set are required. This dissertation focuses on

algorithms appropriate for centralized scheduling of batched 1/O operations.



1.1.3 The structure of I/O requests

The conditions for scheduling to be effective are that there are choices to
be made which affect performance, and that there are resource bottlenecks
whose utilization can be improved by scheduling. The nature of the stream
of 1/0 requests and the resource configuration determine whether these con-
ditions hold, and if so, the characteristics of scheduling algorithms that will

be effective.

The stream of I/O requests generated by multiprogrammed workloads is
largely uncorrelated and has traditionally been scheduled dynamically at the
level of device controllers or channels. There is usually sufficient randomness
among requests to avoid long queues at any given disk so that scheduling
parallel /O operations above the controller level is of little benefit. How-
ever, the amount of correlation among 1/0 requests varies substantially with
the application. Certain applications, such as 3D migration codes in seismic
processing where the solution progresses systematically across a coordinate
space, yield highly structured and totally predictable patterns of requests for
data. In this case scheduling of I/O requests is of little benefit since the order
of the requests can be predicted in advance and thus the problem reduces to
" one of assigning data to storage devices so as to minimize conflicts (17, 85].
On the other hand, certain families of applications, such as 3D visualization
and decision support systems, pass through phases with different degrees of
parallelism in computation and I/O requests. These applications, whether
executing in parallel or sequentially, generate I/O requests in bursts as the
locality of the data to be displayed or analyzed changes. It is often the case

that the entire set of requests must be satisfied before the computation can



proceed. These families of applications may benefit substantially from batch-
oriented scheduling of parallel I/O operations if resource bottlenecks exist in

the 1/0 system architecture.

As far as resource bottlenecks go, it is typically the case in large-scale parallel
architectures that there are fewer access paths to I/O devices than either I/O

devices or processors. This is commonly observed in current bus-oriented

architectures (e.g. [100]).

The combination of bursts of I/O requests and potential resource bottlenecks
suggest that there may be utility in efficient algorithms for generating parallel
schedules. Efficient algorithms are needed because they will be executed re-
peatedly during the execution of the applications. This dissertation develops
and characterizes algorithms which are applicable to a significant class of I/O

system architectures.

1.2 Data transfers in communications systems

In contrast with parallel computer systems, the desirability of scheduling data
transfers in communications systems has long been observed and accepted.
There are two major applications areas where it has been actively pursued:

satellite communications and computer networks.

The first operational communications satellite was deployed in 1965. Some of

the earliest work on data transfer scheduling dates to the late 70’s [75, 87, 38].
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In satellite switching systems, the motivation for scheduling has arisen from a
need to maximize utilization of switch hardware, or minimize the number of
times that the switch has to be reconfigured for a given set of input transfers,
or to minimize the probability that an incoming transfer is blocked because
either an input port or an output port of a switch is unavailable. In time
division multiple access (TDMA) satellite switches, this problem is known as
the time slot assignment problem. There is a substantial literature on various
aspects and approaches to this problem [75, 74, 9, 10, 7, 39, 111, 66, 11, 53,
96, 19, 20, 54, 21, 22, 81, 77, 125, 126, 136, and references therein] which will

be reviewed at the end of each relevant chapter as necessary.

Another area where scheduling data transfers in communications systems
arises is the scheduling of file transfers in a computer network. The earliest
work on this dates to the mid-80’s, starting with Coffman et al’s landmark
paper [27]. Typically the objective here is to minimize the total amount of
time that the transfers take to complete. In contrast to the work on satellite
switching systems, research has tended to consider general communications
topologies, non-preemptive transfers, and diverse kinds of communications
devices, such as transceivers. Nonetheless, the underlying issues in the two
application areas are very similar; once again it is symptomatic of the method-
ology in scheduling research that there is almost no recognition of this fact
and no attempt to exploit it. The literature on this problem is not as large as
for satellite switching - perhaps because of the remarkable number of results
already contained in the original Coffman et al paper - but it is still significant
[27, 23, 24, 25, 66, 142, 77, 125, 101]. Tt will be reviewed at the end of each

relevant chapter as necessary.
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While there has been substantial work on data transfer scheduling in com-
munications networks, improvements continue to be necessary. Most of the
scheduling algorithms have high time complexities that make them imprac-
tical, particularly for the satellite communications application. Moreover,
ambitious satellite communications systems which were only being discussed
in the research literature as little as a decade ago, such as satellites connected
by intersatellite links [87], are now being designed. These communications
systems present a host of new challenges and constraints that alter the sat-
ellite switching environment considerably. Finally, for both satellite systems
and terrestrial computer networks, new applications such as scientific visu-
alization [32, 110, 2], videoconferencing and multimedia information systems
[139, 43, 90, 120}, and personal communications services [99, 73] are creating

tremendous demands on the available communications resources.

In this dissertation, we will explicitly address the concerns of obtaining faster
scheduling algorithms and heuristics, covering more sophisticated communica-
tions architectures such as networks using intersatellite links, and applications

such as 3D visualization of scientific data stored in image databases.

1.3 Simultaneous resource scheduling

One of the reasons that there is little previous work that applies to scheduling
data transfers is that the problem involves simultaneous resource scheduling.
The vast majority of previous work on scheduling resources concerns sched-
uling tasks which require a single resource at a time. In computer science,

this includes the tremendous amount of research on disk, drum and CPU



12

scheduling carriec o=t in the late 60’s and 70’s [129]. It also includes most
of the research or sc==duling tasks on multiprocessors carried out since then;

this literature is =w=wed in Chapter 2.

Outside the co—i=xz of communications systems described previously, to our
knowledge there s =o research on scheduling multiple resources simultane-
ously that is relerac: to our concerns. The research carried out in the con-
text of manage=en: 130, and references therein], operations research [98],
manufacturing 2", a=d references therein], multiprocessing computer systems
[55, 56, and rezermces therein], and real-time multiprocessing computer sys-
tems [146, 128. z1c =ferences therein] is interesting but of limited usefulness
to us. The prizary —eason for this is that in these papers the simultaneous
resource requiremenis have been addressed in a very general fashion, leading
immediately t= mro-iems that are known to be NP-complete [56] or which
require general Inear programming solutions of unacceptably high time com-
plexity [130]. It -octrast, we seek to exploit the special structure of simul-
taneous resource “ecirements that arise in data transfer tasks, and hence
derive polynor=ia-time algorithms and simple, fast heuristics that are effec-
tive for our ap oirazion. In later chapters we will demonstrate the results of

this approach.

1.4 Statemrent of the problem

The fundameria problem studied in this dissertation is the scheduling of
data transfers = a-zllel computers and communications systems, with spe-

cial reference :c sz-zllel 1/0, and satellite and computer communications
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applications. We thus investigate an important special case of the problem
of scheduling tasks which require multiple resources simultaneously. We also
investigate the problem of identifying and exploiting the underlying similarity

of scheduling problems drawn from different application areas.

The simplest case of the data transfer problem we study, which we call Simple

Data Transfer Scheduling or Simple DTS, can be stated informally as follows:

Given a set of data transfers, where

1. each transfer requires a fixed but possibly distinct time,

9. each transfer requires a specified pair of resources, one from each of two
given sets of resources,

3. each resource belonging to one resource set can communicate via a direct
dedicated link with every resource in the other set, and

4. the transfers may occur in any order,

is there a preemptive schedule for performing the transfers whose total length

is at most some given bound?

When the problem is stated as an optimization problem the objective is to

minimize the schedule length. An example is given below.

Example. An instance of the Simple DTS scheduling problem is given for
the parallel 1/O application in Fig. 1.1. Assume that each processor and each
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Schedule 1
Disks
Processors ' Channels | T2
Transfers of unit length 1 - T
T4 ) 0 1 2 3 4
P20 O D2 -
ime
PO 13 D3 Schedule 2
P4 O - D4
T2 Channels | 13 T4
System Diagram Ti T2
0 1 2 3 4
Makespan Time

Figure 1.1: Parallel I/O scheduling example

1/0 device can participate in at most one data transfer at any given time,
and each transfer is of unit length. Clearly the minimum length of time for
completing the transfers corresponds to the optimal schedule rather than the

schedule obtained by executing the tasks in the order they are numbered.

In this dissertation we will consider the following specific problems, each of
which has applicability to both parallel I/O scheduling as well as schedul-
ing data transfers in communications systems. The problems are necessarily
described informally at this stage; they will be specified formally in the dis-

sertation.

1. The development of a general abstract model for specifying scheduling

problems.

o

The problem of developing optimal and approximate algorithms for solv-

ing the Simple DTS problem.
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The problem of developing optimal and approximate algorithms for the
SimpleDTS problem where the communication architecture restricts

the number of simultaneous transfers possible.

. The problem of developing optimal and approximate algorithms for pre-

emptive data transfer scheduling where the communication architecture

has a tree topology (‘tree architectures’).

. The problem of developing algorithms for preemptive data transfer sch-

eduling in tree architectures where preemptions may occur at non-
integer boundaries, and both ‘local’ and ‘remote’ data transfers may

take place.

. The problem of developing algorithms for scheduling data transfers in

the presence of mutual exclusion constraints and precedence constraints.

. The problem of experimentally evaluating the effectiveness of algorithms

for SimpleDTS and for scheduling in tree architectures.

Research approach

We first approach the problem of defining an abstract model for specify-

ing scheduling problems by using a formal graph-theoretic formulation. We

choose a graph-theoretic approach because graph theory has proven useful as

a unifying modeling and analysis formalism for a diverse range of applications

[34], and because of its wide accessibility.

The scheduling model is not only a research result but an invaluable aid in

our approach to the other problems we study. We formally specify all the
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problems in the framework of the model, allowing us to easily expose the

underlying similarities of problems in different application domains.

The graph-theoretic nature of the problem specifications in our model im-
mediately points to fundamental computational graph theory techniques for
solutions. In particular, we are able to apply and extend graph matching,
edge coloring, and network flow techniques for developing solutions to our
problems. We can do this with confidence because the formal nature of the
problem specifications eliminates any ambiguities or doibts about the appli-

cability of these techniques.

The scheduling model also allows us to manipulate the problem specifications.
This has tremendous practical benefit in some cases, as we are able to avoid
developing new scheduling algorithms for new problems, by exploiting exist-
ing solutions. We use the model to recognize the equivalence of scheduling
problems drawn from different applications by inspecting their specifications
in the model. We also use the model to systematically transform a prob-
lem specification into the specification of a seemingly different problem. And
finally we show that it is possible to decompose problem specifications into
sub-problems whose solution is known, and solve the original problem by

combining these solutions.

An important aspect of our research approach is to experimentally evaluate
our scheduling algorithms. While doing so it is important to carefully consider
and state the assumptions and the range of parameter values for which the

algorithms are to be evaluated. In order to do so effectively, it is desirable
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to select specific application scenarios and operating conditions. We have |
focused on the parallel I/O application, and in particular, for the projected

workloads from high-demand applications such as 3D visualization of scientific

data.

1.6 Summary of results obtained

We obtain the following results:

1. An abstract graph-theoretic model for specifying scheduling problems,
and a demonstration of its use for specifying a wide range of traditional
and simultaneous resource scheduling problems [80, 81].

9. A set of three optimal algorithms, A1 - A3, for solving the S impleDTS
problem, and for Simple DTS where the architecture restricts the num-
ber of simultaneous transfers [78]. These algorithms generalize previous
work for these problems and provide algorithms with better time com-
plexity.

3. A detailed experimental evaluation of the performance of A1 - A3 for
the parallel I/O application, with a determination of the situations for
which each is best suited.

4. A theoretical analysis of the worst-case time complexity and schedule
length generated by two heuristics for the situations covered by Al -
A3, when all tasks are of the same length. We prove that the heuristics
produce schedules that are at most twice the length of the optimal

schedule.



-3

1.7

18

An optimal algorithm, Tree, for preemptive data transfer scheduling
where the communication architecture is a tree [77]. This algorithm
solves more general cases of this class of scheduling problems than pre-
viously available algorithms, and provides a better time complexity.

An extension of the Tree algorithm to optimally solve problems where
preemptions may take place at non-integer boundaries, reflecting the

characteristics of multimedia applications involving continuous media

(125, 126).

. An approximate algorithm for preemptive data transfer scheduling in

tree architectures.

An approximate algorithm for scheduling data transfers in tree archi-
tectures when both local and remote data transfers may take place [81].
An optimal algorithm for scheduling data transfers where there are no
architecture constraints but the tasks are instead subject to logical mu-
tual exclusion constraints [81]. The allowable class of mutual exclusion
constraints includes those expressible in the CODE 1.2 parallel pro-

gramming environment [140].

10. The data transfer problem is NP-complete if precedence constraints are

permitted, even if their structure is restricted to be a tree.

Organization of the thesis

Iz Chapter 2 we define our model for specifying scheduling problems. In the

following chapters we consider specific scheduling problems and their solu-

tions. We give a survey of previous related work and suggestions for future



19

work as needed in each chapter. In Chapter 3 we design solutions to the first
problems we consider, Simple DTS as well as SimpleDTS when only a re-
stricted number of transfers may occur in parallel. We present the results of
an extensive experimental evaluation of the optimal solution algorithms. In
Chapter 4 we discuss heuristics that have been proposed and experimentally
evaluated for these problems, but for which no analysis of time complexity or
worst-case schedule length was previously given; we derive both. In Chapter
5 we consider data transfers in hierarchical, tree-structured architectures, and
design an optimal algorithm which generalizes previous work for this problem
and obtains a better time complexity. In the following chapter we discuss an
approximation algorithm for this problem. In Chapter 7 we consider various
extensions and applications of the algorithm for tree architectures, including
arbitrary preemptions and both local and remote data transfers. In Chapter
8 we consider the effects of mutual exclusion and precedence constraints, and
in Chapter 9 we end with some conclusions and some broad suggestions for

future work.



Chapter 2

A Model for the Scheduling Problem

We define our scheduling model in this chapter. The model restricts attention
to providing a framework for formally specifying scheduling problems which
are static and deterministic, i.e., all relevant problem pafameters are fixed

and known a priort.

The term “scheduling” has sometimes been used loosely in the literature, with
different interpretations in different application domains. In the following we
define the terms allocation, assignment and schedule precisely. We later give
examples of practical problems drawn from different application areas where
the object is to calculate an allocation, an assignment or a schedule for a
given set of tasks. Finally we compare the model with previous classification

schemes.

2.1 Basic Definitions

We take certain notions as primitive. We shall assume the existence of primi-

tive objects called resources; intuitively these correspond to machines, parts,

20
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communicztions links, disks etc. We also assume the existence of primitive
objects caled units of computation; intuitively these correspond to computer
subroutinss, data transfers, industrial processes, etc. Finally, we assume dis-
crete time to be a primitive notion, represented in the model as the set of

natural nembers. The following two definitions relate these primitive notions.

Def. A task is a unit of computation that requires a fixed set of resources.

Notice thes this definition does not assume that the actual resources required
by a task are known, only that they form a fixed set. It is assumed that all
the resources are required for the entire duration of the task. In practice a
complex process requiring different sets of resources at different times may be

represented as a sequence of tasks.

Def. The length of a task is the amount of time the task requires its fixed

set of rescirces.

In practics we may specify the task length in units such as machine instruc-
tions or machine cycles, from which the task length in units of time can be

readily czlculated knowing the speed of the resource.

We assurre that resources are partitioned into a collection of disjoint sets; the

set to which a resource belongs is called its type.

Notation. Let T denote the set of tasks, R the set of resources, and RT the
set of rescurce types. Let 7 denote the set (of natural numbers) representing

time and N the set of natural numbers.
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Def. The task resource requirement is a function tr : T'— N |r7| specifying

for each task the number and type of resources required by the task.

We assume that the task resource requirement is known for all tasks, i.e., is
an “input” to any problem we shall consider. The solutions of different types

of problems are the allocation, assignment and schedule functions, which we

define as follows.

Def. An allocation, al: {T} - N |RT ‘, specifies the number of resources of

each type to be used by the set of tasks T'.

An allocation differs from a task resource requirement in that it refers to
the number and type of resources used by the set of tasks as a whole. For
instance, 5 independent tasks, each requiring a tape drive, may be allocated

only a single tape drive and hence have to be serviced in sequence.

Def. An assignment is a function as : T — 2F specifying the resources to be

used by each task.

An assignment differs from an allocation in that it specifies, for each task,
the exact resource instance that the task requires. For example, given 5 tasks
Ty, ..., Ts, specifying that task 7} requires tape drive unit (: mod 3) is an

assignment.

Def. A schedule is a function s : T — 2F x 27X N specifying for each task
the resources and the times 7; and durations n; for which they are held, i.e.,

for each task ¢t € T, there exists k € N such that
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s(t) = R(t) U {(r1,m1),(72,n2), ey (TEs k) }

where, for 1 <1<k, R(t) CR, T; €7, Tita 2 Ti T i and n; € N.

Note that if schedule s is non-preemptive then for all t € T,k =1, i.e., there
is only a single non-interrupted block of contiguous time slots during which

the task executes.

Def. Given a schedule s(t) as defined above we can define the following
auxiliary functions. Functions start and stop give the times at which a given
job starts executing and is completed, respectively. The makespan is the time
from the start of the earliest job to the time that the latest job completes.

Function active gives the time slots during which a given job executes.

start(s,t) =11

stop(s,t) = Tk + Nk

makespan(s) = maz{stop(s,t) : t € T} — min{start(s,t):t € T}
active(s,t) = {(ri,7i +1): 35,1 <J < k7 STiATS +1<7;+n;}

2.2 Allocation and Assignment Problems

We show how allocation and assignment problems are defined in the model.

The definitions introduced here are used to define the scheduling problem.

Assuming a task resource requirement is given, the problem of computing an

allocation meeting specified constraints among the tasks and minimizing some
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objective function is called the allocation problem. The constraints among

the tasks are specified using an eztended precedence graph, defined below.

Terminology. A hyperedge is an undirected connection between one or more
vertices. A hypsredge on one vertex is called a self-loop. A hyperedge on two
vertices is called an edge. (We represent hyperedges connecting three or more
vertices as a liv= incident on the vertices). An arc is a directed edge. A path
is a sequence ¢ arcs or hyperedges in which consecutive arcs or hyperedges
share a vertex and no vertex is included twice. A (linear) chain is a path
consisting only of arcs. A cycle consists of a path and an arc or hyperedge

connecting the irst and last vertex of the path.

Def. An eztenied precedence graph PG = (T, Ep, Lp) consists of a set T of
vertices representing tasks, a set Ep of arcs and hyperedges, and a labeling

function Lp wkere

length of task z, if z € T
Lp(z) ={ corrmunication cost from task u to v, if z = (u,v) is an arc
0, ¥ r is a hyperedge

Informally, a hrperedge specifies that the tasks connected by the edge are to
be mutually exclusive, i.e., no two may execute or operate simultaneously. An
arc (u,v) specifes that task u must complete before task v may begin. These
notions are made precise when the scheduling problem is defined below. We
will sometimes refer to the extended precedence graph simply as a precedence

graph for breviy.

Def. An allocation problem is a tuple ALP = (PG, f) where f is an objective

function and P75 is a precedence graph.
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Example 1. Consider a set of 5 tasks, Ti....,Ts, each of which consists of
a unit-weight data transfer between a processor and a disk. If the tasks are
independent, PG consists of 5 vertices and no arcs. If the the objective is
to minimize the number of disks and processors so as to achieve a minimum
makespan, upto 5 processors and disks can be used in parallel. However, if
T; is to precede T, which is to precede T3, PG consists of 3 vertices labeled
Ty, T», Ts with an arc from T to T; and an arc from 75 to 7, and two vertices
labeled T, Ts with no arcs incident upon them. In this case, only 3 processors

and 3 disks need to be allocated to obtain a minimum-length schedule.

A precedence graph with no hyperedges, i.e., consisting only of arcs, is a fa-
miliar structure from previous work in computer science areas such as parallel
architectures, compilers, etc., as well as traditional scheduling theory. The ad-
dition of hyperedges is necessary to express the synchronization requirements
between parallel tasks commonly encountered in parallel programming. In our
model the precedence graph is used also to express what are known in sched-
uling theory as technological constraints [43], such as the sequence in which
jobs visit machines in a job-shop. Finally, the vertices in the precedence
graph can be annotated with additional task information, such as release

times, deadlines, etc., although these will not be considered in this paper.

Assuming a task resource requirement is given, the process of computing an
assignment meeting specified constraints among the resources as well as the
tasks and minimizing some objective function is called the assignment prob-
lem. The constraints among the resources are specified using an architecture

graph, and are called architecture constrainis.
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Def. An architecture graph AG = (R, Ea,La) consists of a set R of ver-
tices representing resources, a set Ea of arcs and hyperedges, and a labeling

function La:

| processing speed, if z € R
La(z) = { capacity, if z € Fa

An arc or hyperedge in AG represents interconnection of resources. Typically

hyperedges represent buses and arcs represent unidirectional communication

links.

Def. An assignment problem is a tuple ASP = (PG, AG, f) where f is
an objective function, PG is a precedence graph, and AG is an architecture

graph.

Example 2. Consider the set of 5 unit-length tasks Tt,...,T5, with T3 to
precede T, which is to precede T3, as in Example 1. Suppose AG consists of
5 processors and 5 disks interconnected such that there is a direct dedicated
link between every processor-disk pair. The objective function is to obtain
a minimum-length schedule while utilizing a minimum number of resources.
Since at most three of the tasks can be active at any given time, only 3
processors and 3 disks need to be allocated. Further, any two tasks can be

assigned the same processor-disk pair if there is an arc connecting them in

PG.

We now give examples of two applications in computer science and engineering
that demonstrate the ability to specify realistic allocation and assignment

problems using the model.



27

Application 1: Digital Hardware Synthesis. A common problem in the
manufacture of application-specific integrated circuits (ASIC) is to design a
VLSI chip that implements a given computation, e.g. a linear filter for signal
processing. The computation can be broken down into a set of tasks, e.g.
FFT, multiplication, etc.. that are to be performed in some specific partial
order, where each task requires a known set of resources (adders, invertors,
etc.). Depending on the computation, it may be possible to reuse some of the
resources for different tasks, e.g. two tasks that each require an adder may be
able to time-share a single physical adder circuit. Then a typical allocation
problem is to determine the number of resources of each type that are required
in order to perform the computation such that the cost is minimized; the cost
may be simply the total number of resources, or the chip area required to
implement them, etc. [114]. The problem can be specified in the model as
a precedence graph representing the computation and an objective function

which calculates the cost of the number and type of resources used.

Application 2: Parallel Programming. A well-known problem is to min-
imize the execution time of a parallel program on a given parallel computer
architecture, where the program has been decomposed into a set of parallel
tasks. One objective is to allow the parallel tasks to execute on as many sep-
arate prbcessors as possible so as to reduce computation time. This conflicts
with the objective of clustering tasks on a single processor to minimize the
delay incurred when data is communicated among them. (See, for instance,
[89]). In our model the problem is an assignment problem in which the par-
allel program is specified as the set of tasks in a precedence graph and the
given computer architecture as an architecture graph; the objective function

is typically the makespan.
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Note that in the digital hardware synthesis problem, once an allocation has
been calculated, the assignment problem is often trivial. The precedence
graph and allocation together determine the form of the architecture that
is to be synthesized, and hence the assignment of tasks to resources in that

architecture.

2.3 Definition of the Scheduling Problem

Unlike the allocation and assignment problems, the scheduling problem is di-
rectly concerned with determining the times at which tasks execute. In order
to define the scheduling problem, we first introduce the resource graph. A
resource graph specifies the assignment, if it is known, as well as the direction
of any data transfers that are to take place between resources that are held

simultaneously.

Def. A resource graph for a given set of tasks T, RG = (R, Er, Lr), consists of
the set R of vertices representing resources, a set Er of arcs and hyperedges,
and a labeling function Lr. For all arcs and hyperedges e € Er, Lr(e) =t
specifies that task t € T must simultaneously possess all resources connected
by e. In addition, if e = (r,s) € Er is an arc then ¢ involves transfer of
information from r to s. If Er = {} then the assignment of tasks to resources

is not specified.

In some applications, such as the the hardware synthesis and parallel pro-
gramming examples given above, there may be explicit allocation and assign-

ment phases that occur before the scheduling phase, so that the assignment
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is known before scheduling is begun. In other applications, however, such
as multiprocessor scheduling (i.e., scheduling identical parallel machines) the
process of computing an assignment is performed at the same time as that of
scheduling. In the latter class of problems only the task resource requirement
is known; typically this occurs because there is only one resource type and

the interconnection of resources is nonexistent or trivial.

Def. A scheduling problem is a tuple SP = (PG, AG, RG, f, Preempt) spec-
ifying constraints on tasks and resources, where f is an objective function,
Preempt is true iff the schedule may be preemptive, and PG, AG and RG

are precedence, architecture and resource graphs respectively.

The resource graph, whether specified as part of the problem or calculated
during the scheduling process, must be “consistent” with the architecture
graph, since both refer to resources and data transfer between them. To

capture this requirement we define a resource function.

Def. A resource function g : RG — AG is a function which

1. if e = (u,v) € Er is an arc in RG then there is a path from g(u) to g(v)
in AG
2. ignores all hyperedges and labels in RG.

In some cases the resource function may be very simple. For instance, if
the architecture graph contains only arcs and is complete, and there are no

hyperedges or parallel arcs in the resource graph, the resource graph will
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simply be a subgraph of the architecture graph. Also, for brevity we may
not specify a resource graph completely. For instance, if the architecture
provides a unique directed path between every resource pair, the resource
graph may only specify the end vertices involved in a data transfer, leaving
the intermediate vertices along the data path implicit. We will use such

shorthand notation in some of the examples in this paper.

In the following definitions we formalize the notion of a schedule being a
solution to a scheduling problem posed in the model. Most of the definitions
are obvious from the semantics of the various graphs that we have defined.
We include the resource function in the definition of a schedule satisfying a

problem in order to incorporate a notion of consistency.

Def. A schedule s satisfies the precedence graph PG = (T, Ep,Lp) of a
scheduling problem SP = (PG, AG, RG, f, Preempt) iff

1. If (u,v) € Ep is an arc in PG then task u stops before task v begins,
i.e., stop(s,u) < start(s,v)

2. If e € Ep is a hyperedge in PG then no two tasks connected by the
hyperedge are active simultaneously, i.e.,
Y u,v € e, active(s.u) N active(s,v) = {}

3. For all t € T, Lp(t) = |active(s, t)|.

Def. A schedule s satisfies the architecture graph AG = (R, Ea,La) of a
scheduling problem SP = (PG, AG, RG, f, Preempt) iff
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1. For all ¢ = Ea, for all i, 0 < i < makespan(s), if a() is the number of

tasks cerare during time slot ¢ which use e, then a(z) < La(e).

Def. A schedue s satisfies the resource graph RG = (R, Er, Lr) of a sched-
uling problem P = (PG, AG, RG, Preempt) iff

1. For al etges e € Er, if r(e) is the set of resources connected by e,

r(e) C RLre))

Def. A schedie s satisfies a scheduling problem SP = (PG, AG, RG, f,
Preempt) iff

1. s satisfes P53, AG, and RG
9. If Prezmot = false then for allt € T, for some 7 € T,n € N ,s(t) =
R(t)L_ (=.n)

3. there =xiss a resource function g : RG — AG.

Def. A schecie s an optimal solution to a scheduling problem SP = (PG,
AG, RG, f. Prempt) if it satisfies SP and the objective function f is mini-

mized.

Application i: Job-shop scheduling. We use the n-job, m-machine job-
shop problem <o give an example of how a traditional class of scheduling
problems, oot nvolving simultaneous resource requirements, can be specified

formally in the model. In later sections we will specify problems relating to

simultaneo-s rsomrce scheduling, in particular parallel I/0O scheduling.
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JobShop = (PG, AG, RG, f, Preempt)

where PG = (T, Ep, Lp) consists of n linear chains of m vertices each, each
chain representing a job and each vertex an operation on a machine. Thus
|T| = n m and for all tasks t € T, Lp(t) € N specifies the length of the task

as a number of primitive operations.

AG = (R, Ea, La) consists of |R| =m vertices and no edges, i.e., Ea = {}.
For all r € R, La(r) € N specifies the processing speed in operations per unit

time.

RG = (R, Er, Lr) consists of |R| = m vertices, each with n self-loops, Le.,
|Er| = n m, and Lr is a bijection between Er and T. (The labels on the
self-loops in Er together with the precedence order between tasks specified
in PG determine the technological constraints, i.e., the order in which jobs

visit machines in the job-shop).

Example 3. As a numerical example, consider a 3-machine, 3-job job-shop,
where each job J; visits each machine M; in some specified order, for 1 =
1,...,3. The operation performed by job J; at machine M; is a task T3;. The
order in which jobs visit machines is shown in a “fow graph” in Fig. 2.1,

followed by the specification in our model.

The model separates the specification of the technological constraints between
tasks (specified in PG) from the interconnection of resources (AG) and from
the specification of the resources that each task needs (RG). Since the ma-

chines are not interconnected, Ea = {}. Since each task requires exactly one
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3-job, 3-machine job-shop: job flow graph

Formal spec.:

Precedence
Graph, PG

M3 Architecture

bShop = (PG, AG, RG, f, Preempt) M1 M2 . AG
Jo p=( o Y © Graph, A
Til Ti3 T12
O—-30—-30 Resource
Graph, RG
T21 T22 T23
O O— O Ml M2 M3

T11 T12 Ti3
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O——0 O T21 T22 T23

Figure 2.1: Specification of a job-shop example

resource, Er consists only of self loops. This separation of concerns in the

problem specification is especially useful in order to manage the complexity

of scheduling problems such as parallel I/O scheduling, as we’ll see in later

sections.

2.4 Example: Multiprocessor scheduling

In this section we show how the model is used to specify the multiprocessor

(also called the uniform parallel machine) scheduling problem and classity

results. By doing so we are able to survey a substantial portion of the litera-

ture on scheduling parallel tasks and recognize that it is not directly relevant

to the problem of scheduling 1/O operations. The multiprocessor scheduling

problem has received a tremendous amount of attention (see [112], [93] and

[60] for surveys). The basic problem is to schedule a set of n tasks with fixed

and possibly unequal lengths and having a given precedence order, on a set

of m identical processors, where each task can execute on any of the proces-
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sors and the objective is to minimize makespan. In our model the problem is

defined as fclows.

MS = (PG.AG, RG, f, Preempt)

where
PG = (T, E», Lp) where |T| = n, Epis a set of arcs representing the prece-
dence order. and Lp(t) is the length for each task t € T Lp(e) =0fore € Ep.

AG = (R, Es, L) where |R| = m, |Ea| =0, and La(r) is the (same) processing
speed for each r € R. Note |RT| = 1.

RG = (R, E~, Lr) where |Er| = {}.

f is makespan.

The probler is referred to as non-preemptive or preemptive multiprocessor
scheduling cepending on the value of Preempt. Calculating the assignment

is a significant part of the process of calculating a schedule.

We summarize previous work on optimal solutions to MS in Table 2.1 for
the case where Preempt = false, and Lp(t) = 1 forallt € T. In the table,
n = |T|, m = |Ep|, “Arb.” means “arbitrary”, and A(n) is the very slowly-

growing inverse of Ackermann’s function.

Ullman [13%] shows that non-preemptive scheduling for tasks where Lp(t)

€ {1,2} is NP-complete for precedence constraints consisting of arbitrary



35

DAGs and m = 2. Although approximation algorithms have been suggested
for this case (see Lawler et al., [92]), the bulk of the research has concentrated
on optimal algorithms for the tractable case where Lp(t) = 1, and is discussed

here.

Hu’s algorithm [72] can be viewed as a list scheduling algorithm in which jobs
are entered in the list in accordance with their level in the precedence tree.
It can also be viewed as a critical path method (CPM) scheduling algorithm,
since the next job chosen is one on the critical path in the precedence tree.

Gabow’s algorithm [48] can also be viewed as a CPM algorithm.

The Coffman-Graham algorithm [28] is one of the best-known algorithms
in this area, and runs in time O(n?) provided the input to the algorithm
consists of a precedence graph whose transitive closure has been computed.
The improvements by Gabow [49] and Gabow and Tarjan [52] remove this

requirement, thus reducing the time complexity.

Goyal [64] considers the case where there are multiple resource types, but
each task requires exactly one instance of exactly one type. In addition,
there exists only one instance for each resource type. This can be mapped
to the M S problem where Lp(t) = 1, and an assignment is supplied. Goyal
shows the problem is NP-complete when PG is an arbitrary DAG or forest,
and gives a linear-time scheduling algorithm for the case when PG is a “cyclic

forest”.

Palem [112] first shows that M .S is a special case of another well-known pro-

blem, the precedence constrained minimum tardiness scheduling (PCMTS)
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Reference |[R| | PG | Time Complexity

Hu, 1961 [72] Arb. | forest | O(n)

Ullman, 1975 [134] Arb. | DAG | NP-Complete

Fujii et al, 196¢ 47] | 2 DAG | O(min(mn, n*') + n>?®)

Coffman and
Graham, 1¢72 [28] DAG | O(min(mn,n*') + m + nA(n))

Gabow, 1982 [43] 2 DAG | O(m + nA(n))

Gabow and
Tarjan, 1983 [52] | 2 DAG | O(m +n)

Do

Table 2.1: Previous work for non-preemptive multiprocessor scheduling.

problem. He ther shows how several polynomially solvable cases of both M S
and PCMTS caz be cast as a problem of finding an optimum sequence of
edges in a hyperzraph. The cases that can be shown equivalent using this
framework includs those described in this section, subcases of PCMTS, and
cases of schedulizz on pipelined processors. An algorithm to find the opti-

mum sequence of hyperedges with the desired property can be performed in

time O(|T|*log |T)).

Finally, Lenstra :ad Rinnooy Kan [95] show that the ¢-approximation algo-
Fithm with the lcwest worst-case polynomial time complexity has ¢ = 4/3,
and Lam and Seihi [91] show that using the Coffman-Graham algorithm to

generate lists gives approximation algorithms with ¢ =2 —2/m for m > 1.

Previous work on M S where Preempt = true is presented in Table 2.2. In the
Table, “Arb.” stands for “arbitrary” and “Mut. Com.” stands for mutually
commensurable task lengths. Two lengths are mutually commensurable if
there exists a real number such that each length is some integer multiple of the

real number. Lar and Sethi [91] develop a polynomial-time g-approximation
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Refemnce 1 |Rl | Le(t) PG | Time Complexity
Ullmman, 1976 [135] Arb. | 1 DAG | NP-complete
Munz and

Coffman, 1969 [108] | 2 Mut. Com. | DAG | O(n?)
Muznz and
Coffman, 1970 [109] | Arb. | Mut. Com. | tree | O(n?)
Gonzmlez and

J:hnson, 1980 [61] | Arb. | Arb. tree | O(nlogm)

Tatle 2.2: Previous work for preemptive multiprocessor scheduling.

algoriiim based on Muntz and Coffman’s method, and show that ¢ = 2—-2/m

for m > 1.

We observe that the multiprocessor scheduling problem essentially consists
of scheiuling a single resource per task under given precedence constraints,
unlike she I/O scheduling problem, which requires two or more resources
to be smultaneously accessed by each task. Typically these resources may
be processors, disks, etc. In the following chapter we define parallel 1/O

schedting precisely.

2.5 Comparison With Other Models

Theze ~ave been several types of models proposed in the literature for the
schedting problem. In [3, 83] the Gantt chart is mentioned as a uniform
model ‘or representing a schedule once it has been computed, i.e., for the
soluticn of a scheduling problem. In this section we discuss models for the

specifization of scheduling problems.
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In [30] the well-known four-parameter notation A/B/C/D is used to classify
scheduling problems drawn mainly from the area of simple job-shop process
scheduling. In [93] a classification is introduced consisting of a 7-tuple written
as three fields a | B | 7. It is assumed that there are n jobs to be processed
on m machines, with at most one job per machine and at most one machine
per job at any given time. The field a describes the machine environment (a
single machire, identical parallel machines, flow-shop, etc.), B describes the
job characteristics (preemption, precedence constraints, release times, upper
bounds on number of operations per job, and processing times), and specifies
the objective function. Elementary reductions among scheduling problems are

described using this classification scheme.

In comparison with our model, the classification schemes of [30] and [93] have
the advantage of compactness, but they are highly restricted in assuming
that jobs require only a single instance of a single resource type at any given
time. Hence they do not consider the interconnection of resources, as de-
scribed by the architecture graph in our model. Thus the large section of
the literature they address is not directly relevant to the parallel I/O sched-
uling problem. In addition the popular A/B/C/D scheme is open-ended in
nature, with the parameter C becoming longer as more complex problems
need to be specified, so that it is not obvious if some problem constraint
has been omitted inadvertently from the specification. The formal nature of
our model facilitates complete and precise specifications of problem classes as
well as individual problem instances. The model also divides the specification
into modular sub-specifications (PG, AG, etc.), keeping the concerns of each
sub-specification separate. It thus becomes possible to reason systematically

about the relationships between problems, and to use well-defined and formal
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manipulations on problem specifications.

We choose to use graph theory as the underlying formalism for several reasons.
Firstly, graph theory has proven itself invaluable as a modeling and analysis
formalism in a wide range of applications in areas as diverse as engineer-
ing, physical sciences, life sciences and sociology [34]. Secondly, fundamental
graph theoretic problems. such as graph coloring and matching, have been
found to underlie seemingly different problems in these areas, leading us to
surmise that they may be useful for unifying scheduling problems drawn from
different applications also. In later sections we see that this is indeed the case.
Thirdly, the language of graph theory is intuitively appealing and accessible.
Finally, graphs in some form are familiar to both theoreticians as well as
practitioners in many different fields, particularly engineering and computer

science, and are increasirgly being taught and applied in these fields.

The graph-theoretic nature of our model lends itself to our suggestions for
further work in this area. It would be useful to investigate whether the model
can be further formalized to obtain ‘meta-theorems’ about the logical manip-
ulation of problem specifications, including transformation, reducibility and
equivalence of problem specifications. An example of the usefulness of such

formalization can be found in the context of constraint satisfaction problems

[123].



Chapter 3

Optimal Scheduling in Bus Architectures and TDM
Switches

The specific scheduling problem to which the algorithms in this chapter apply

is the following. Given a set of data transfers, where

1. each transfer requires a fixed but possibly distinct time,

2. each transfer requires a specified pair of resources, one from each of two
given sets of resources,

3. each resource belonging to one rersource set can communicate via a
direct dedicated link with every resource in the other set, and

4. the transfers may occur in any order,

is there a preemptive schedule for performing the transfers whose total length

is at most some given bound?

When the problem is stated as an optimization problem the objective is to
minimize the schedule length. We call this problem the Simple Data Transfer

Scheduling (SimpleDTS) problem. An example of this problem was given in

40
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Chapter 1. For the parallel I/O application, it is applicable to systems such
as the Sequent [100] where I/O devices are connected to processors via a sin-
gle shared bus; when discussing scheduling for this application, we sometimes
refer to this problem as Simple I/O Scheduling (SimpleIOS). For the com-
munications application, it is applicable to time-slot assignment in TDMA
switches which connect a number of input ports to output ports, particularly
in the case of satellite switching, where it is of considerable practical interest
[75, 74, 9, 10]. (The problem also continues to attract attention in other vari-
ations, for example, the multicast version studied by Chen et al. [22], and

references therein).

The formal specification of Simple DTS consists of a precedence graph with
no edges, a complete bipartite! architecture graph, and a bipartite resource

graph representing the transfers [76).

In this chapter we also consider an extension to SimpleDTS that is useful
for modeling some practical parallel data transfer architectures. We call this
problem DTS, and it is identical to SimpleDTS except that the system archi-
tecture imposes an additional constraint: at most a fixed number, k, of data

transfers may take place at any given time.

For the parallel I/O application, DTS arises in multiple-bus systems such
as the IBM RP3, where k parallel buses connect processor and I/0 devices

1A bipartite graph is one where the set of vertices can be partitioned into two subsets,
i.e., divided into two disjoint exhaustive subsets, such that no edge connects vertices in the
same subset. A complete bipartite graph is one where there exists an edge between every
two vertices that belong to different subsets.
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[115]. In general, such multiple parallel bus architectures are attractive for
future high-performance parallel computers as they not only allow more than
one data transfer to be in progress at any given time, but also allow more
processors and devices to be interconnected and improve the system’s fault
tolerance [107]. For the communications application, DTS arises very com-
monly for all switches where the switching capacity is less than the number of
ports, and is useful when the average traffic is much less than the maximum

possible traffic.

The applicability of DTS to the problem of obtaining optimal time-slot as-
signment in a TDMA satellite switch allows us to utilize the algorithm KT
for the satellite switching problem, due to Bongiovanni et al {10}, as a starting
point for developirg an optimal algorithm for DT'S. By a series of improve-
ments we obtain a faster algorithm for solving DTS, improving the time
complexity from O(n®) for Bongiovanni et al’s KT algorithm, n is the num-
ber of resources. Our algorithms are based on optimal k-colorings of bipartite

graphs.

This research is both theoretical and experimental. Earlier work by Somalwar
[132] on parallel I'O scheduling developed and evaluated heuristics for sch-
eduling of simultaneous requests for multiple resources, such as I/O requests,
while Kandappan [85] and Balan [4] studied the impact of data allocation
to disks. This chapter formulates the specific parallel data transfer schedul-
ing (or simultaneous multiple resource scheduling) problem discussed above
and presents a set of efficient algorithms for this problem, which are then

evaluated experimentally for a large range of operating parameters.
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3.1 Overview

In section 3.2 we introduce basic definitions and results from graph theory
used throughout the chapter. In section 3.3 we present Bongiovanni et al’s al-
gorithm in a graph-theoretic form so that it can be applied readily to the DT'S
problem. We then show how this algorithm can be improved, in three ways.
The first improvement arises from the observation that it is not necessary to
obtain a min-max bipartite graph matching, as was done in [10], but that a
maximum cardinality matching suffices. The first improvement is discussed
in section 3.4. The second improvement arises from the observation that a
divide-and-conquer strategy can be used to reduce the worst-case time com-
plexity, and is presented in section 3.5. The third improvement arises from
observing that the graph of interest can be embedded inside a larger graph,
allowing the weighted bipartite matching algorithm of Gabow and Kariv [51]
to be applied, hence reducing the time complexity further. This improvement
is discussed in section 3.6. In section 3.7 we discuss an experimental study
of the efficiency of the scheduling algorithms described in this chapter. The
experimental results give rise to some theoretical issues, which are discussed
in section 3.8. Finally, in section 3.9 we discuss previous work, and we end

with a discussion and suggestions for future work.

3.2 Definitions and problem formulation

The KT algorithm [10] was stated in the context of a specific application and
developed using a matrix formulation. In this section we introduce the defini-

tions and ideas to be used in section 3.3 to give a graph-theoretic presentation
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of the KT algorithm, thus allowing it to be applied directly to DT'S. The
key observation is that computing a schedule corresponds to edge-coloring a
bipartite graph where the two vertex partitions represent two disjoint sets of
resources (say, processors and I/O devices), and edges represent data transfers

between them. We first introduce some definitions and notation.

Def. An edge coloring of a graph G = (V, E) is a function ¢ E — N which
associates a color with each edge such that no two edges of the same color

have a common vertex.

Consider two disjoint sets of vertices representing two sets of resources, each
of which can participate in at most one data transfer at any given time.
Then an edge coloring for a graph G, where each edge of G represents a
data transfer requiring one time unit, corresponds to a schedule for the data
transfers, and vice versa. To see this, note that all edges of G colored with
the same color are independent in that they have no common vertex. Hence
the data transfers they represent can be performed simultaneously. An edge
coloring of G represents a schedule, where all edges ¢ with c¢(e) = 1, for some
i, represent data transfers that take place at time i, and vice versa. The

number of colors required to edge-color G equals the length of the schedule,

and vice versa.

As an aside, we note that edge coloring should not be confused with the clas-
sical graph theory problem of vertex coloring, in which vertices are assigned
colors such that no two vertices of the same color share an edge. In graph

theory terminology, the minimum number of colors required to vertex-color a
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graph is called its chromatic number, while we will be interested in the min-
imum number of colors required to edge-color it, called its chromatic index.
In the rest of this thesis, unless explicitly stated, “coloring” a graph refers to

edge coloring. For more information on edge coloring, see [41, 5].

Def. A multigraph is a graph in which an edge can occur more than once.
A weighted graph is a graph in which the edges have been assigned weights

drawn from the set of natural numbers.

Notation. Let G = (A, B, E) denote a bipartite graph where A and B are
two disjoint sets of vertices and E C Ax B is the set of edges. Let |Al+|Bl =n
and |E| = m. Each edge e € E has a weight wi(e) associated with it, and
the weight of a vertex is the sum of the weights of the edges incident upon
it. Thus wt: EU AU B — N. We can also represent the weighted bipartite
graph G as a multigraph G’ = (4, B, E') where each edge e € E is replaced
by wit(e) parallel edges of unit weight in E’. Then G is referred to as the
underlying graph of G', and G’ as the multigraph corresponding to G.

Consider an instance of DTS where the architecture allows at most k simulta-
neous transfers, and data transfers may require an arbitrary positive integer
number of time units. Then the problem can be represented as a weighted
bipartite graph G, where edge weights represent transfer lengths. Since pre-
emption is allowed, a schedule can be obtained as an edge-coloring of the
multigraph corresponding to G, with the restriction that no color may be

used more than k times.

We now state the definitions and lemmas used to derive results on edge-
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colozint. The following two lemmas are well-known results from graph theory.

The res are graph-theoretic versions of those in Bongiovanni et al [10].

Def. T=e degree of a vertex is the number of edges incident upon it. The
degree if a graph is the maximum of the degrees of its vertices. A critical

vertsr 5 one of maximum degree.

Def. Tie weight of a graph is the sum of the weights of its edges. The weight

of a ve—ex is the sum of the weights of the edges incident upon 1t.

Notice =zt for a graph with unit-weight edges the degree of a vertex equals

its weirmz.

Def. - matching M C E is a set of edges such that no two edges have a
cormmam vertex. A mazimal matching is one such that no other matching has

a laree czrdinality. An edge in a matching is said to cover the vertices that

=

are 11z =mZpoints.

Def. ¢ c-itical matching is one which covers all critical vertices.

Lemma 3.1 Every bipartite graph has a critical matching.

procf. ‘es Berge [5]. o

Alt=ous= the following Lemma is well known, we sketch the proof here as it

prod= some intuition for results later in the paper.
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Lemma 3.2 FEzactly d colors are necessary and sufficient to color a bipartite

graph of degree d.

aroof [5]. Clearly, at least d colors are necessary, since a critical vertex requires
-hat each incident edge have a different color. The proof of sufficiency is by
‘nduction, sketched as follows. Find a critical matching M, which, from
Lemma 3.1, must exist. Color the edges in M a single color and delete them
“rom the graph. The remaining graph has degree d — 1, and by the induction
Sypothesis can be colored using d — 1 colors. Hence the graph can be colored

#ith d colors. 0

Def. A k-coloring of a graph is an edge-coloring in which each color may be

1sed to color at most k edges.

Lemma 3.3 At least ¢ = max(d, [m/k]) colors are necessary to k-color a

bipartite graph with m edges, degree d, and unit-weight edges.

proof. If d < [m/k], at least [m/k] colors are required to color the graph.

Otherwise the argument of Lemma 3.2 applies. 0O

Notation. Let w denote the maximum weight of any vertex in the bipartite

zraph G, and W denote the weight of G.

Def. The bound of the bipartite graph G for an instance of DT'S is defined
as ¢ = max(w, [W/k]).
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Any scheduling algorithm which produces a schedule of length equal to the
bound for every instance of DTS, is optimal. Notice that a scheduling al-
gorithm has two measures of performance: optimality, i.e., how close the
length of the schedule it produces is to the minimum length, and how long

the algorithm takes to run.

Def. For a bipartite graph G representing the transfers in DT'S, a critical
weight vertez is one of weight equal to the bound ¢. A critical weight matching
is one which includes all critical weight vertices. A critical k-matching is a

critical weight matching with k edges.

3.3 An algorithm based on max-min matching (KT)

In this section we present the outline of the algorithm KT [10], and in the
following section, our first direct improvement to its time complexity. The
KT algorithm is presented in suficient detail so as to justify the improvement
and to provide a basis for the divide-and-conquer algorithm to be presented

in section 3.5.

We develop the KT algorithm in a graph-theoretic framework, unlike the
matrix formulation in [10]. The key observation in Bongiovanni et al [10] is
that a bipartite graph can always be augmented to have a certain character-
istic, called k-completeness, such that a critical k-matching exists. Further,
deleting a critical k-matching from the graph leaves it k-complete. Thus a

sequence of critical k-matchings can be found, and hence a schedule. The
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folowing two lemmas are used in the proof of Theorem 3.1, which implies

that a critical k-matching exists in G.

Def. A graph of weight W and maximum vertex weight w is k-complete with

respect to a constant r if w < rand W = kr.

Lemma 3.4 Any bipartite graph G with bound q can be augmented by adding
aporopriate weighted edges so as to obtain a bipartite graph H that is k-

complete with respect to g, for any k < n, and further, this can be done in

time O(n).

proof. The proof is constructive, using the algorithm given below.

Algorithm k-complete(G, W, k, q)
Input: a bipartite graph G, eventually to be k-colored, with weight W and
bcund g.

Output: G with additional edges to make it k-complete with respect to g.

1.1, := 0, 0;
2. while W < kq
/* wt(v) is weight of vertex v */
if wt(a(i)) < qand wt(b(j)) <q
add edge (a(i), b(j)) of weight w’ = w - max(wt(a(i)), wt(b(j)))
wi(a(i)), wi(b()), W += w

if wt(a(i)) = q

A o
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7. =141
5. E£wi(b(i) =q
9. j=i+1
10. enc

It is o=te easy to show thai the algorithm is correct [10]. To evaluate its
time ccmplexity, observe tha: at each iteration, either i or j is incremented,
or bot>. and that the proced=re will terminate by the time that either i or j
equals ». Thus there are at most 2n — 1 = O(n) iterations. If the graph is
represezted as an adjacency Zst. adding an edge takes time O(1), leading to

an oveszll time complexity of O(n). O

The a‘ded weighted edges &re called dummy traffic and are deleted at the

end of <he scheduling algorit=m.

Def. ~ bipartite graph is reczlar if all its vertices have the same degree; it is

requla~ weight if all vertices zave the same weight.

Lemma 3.5 For any regula weight bipartite graph G = (A, B, E) with |A| =

|B|. there ezists a matching of size |A|, which is therefore mazimal.

proof. See Berge [3]. O

Def. A bipartite graph of weight W and maximum vertex weight w is k-
filled vith respect to a constent rif it is k-complete with respect to r, and all

e . .
verticss have weight r.



