51

A bipartite graph H = (A, B, E) with |A] = |B| that is k-complete with
respect to r can be transformed to one that is k-filled with respect to r by
a construction sketched as follows. Let |A| = |B| = n. Augment H so that
H' = (AU C,BUD,E U F) with vertex sets |C| = |D| = n—k and edge set
F = AD U BC where AD CAx D and BC C BxC. The edges in F' are
added and their weights assigned such that all vertices in H " have weight r
and yet H' is also k-complete with respect to r. We call this algorithm k-fill.
See Bongiovanni et al [10] for a detailed description of this algorithm and its

proof of correctness. We observe that k-fill takes time O(n).

Theorem 3.1 [10]. For any bipartite graph H = (A, B, E) with |A] = |B|
and bound q that is k-complete with respect to g, there ezists a critical k-

matching.

proof. The proof is by construction, as outlined in the algorithm below.

Algorithm CKM(H, k, q)
Input: a bipartite graph H, which is k-complete with respect to its bound ¢
Output: A critical k-matching on H.

H = k-fill(H);
Find a matching M on H’
return(M N E)

> W o

end

Use k-fill to generate H' = (AU C,BU D,E U F) from H. From Lemma

3.5, there exists a matching M of size 2n — k for H'. Since H' contains no

52

edges in C x D.n — k edges of M are required to cover the vertices in C,
and similarly for D. This leaves 2n — k —2(n — k) = k edges of M having
vertices only in H. Further, these k edges cover every critical weight vertex
in H, since such vertices do not need to be augmented by adding edges in F.

Thus M N E gives the required critical k-matching on H. 0

We now cite the theorem that, together with Theorem 3.1, ensures that it is

always possible 10 k-color G.

Def. The duration of a matching M of a graph with bound gisr = min(r’, ¢g—
"), where r’ is tae minimum of the edge weights of M and r” is the maximum

vertex weight armong vertices not covered by M.

Theorem 3.2 Let H = (A, B, E) be a k-complete bipartite graph with |A| =
|B| which is k-complete with respect to its bound q. Let M be a critical k-
matching on H. Let M' be M with the weight of all edges set to the duration
r of M. Then the graph HM = (A, B, E — M"Y is k-complete with respect to

g =q-—r.

proof. See Bongiovanni et al [10]. a

Informally, the duration of a matching is the number of time slots a critical
k-matching can be used repeatedly. At each time slot that it is used, the
weight of all the edges in the graph that are also in the matching decreases

by one, since the remaining length of the transfer represented by that edge

53

decreases by one. A new critical k-matching must be calculated if either the
weight of one of the edges of the matching decreases to zero, or a vertex that

was previously not critical weight becomes critical.

Theorems 3.1 and 3.2 together lead to an optimal algorithm called KT [10.
In KT, dummy traffic is added to augment the bipartite graph and make
it k-complete with respect to its bound. The well-known max-min bipartite
weighted matching a,lgorithm (see [92]), which we call MaxMinMatch, is
then invoked to find a critical k-matching. The result of Theorem 3.2 is
used to calculate its duration. A sequence of critical k-matchings is found
by calling the max-min bipartite algorithm repeatedly. Finally, the dummy

traffic is removed from the k-matchings to obtain an optimal schedule.

It should be pointed out that the objective of Bongiovanni et al [10] was to
obtain a minimum-length schedule while not paying too high a price in terms
of L, the number of times that critical Ek-matchings have to be calculated. The
concern in this paper is to obtain a minimum-length schedule while reducing
the total running time of the algorithm. In the following we evaluate the

running time of KT and suggest an improvement.

Theorem 3.3 The running time of algorithm KT to find a minimum-length
schedule for an instance of DTS is O(n®).

proof. Augmenting a bipartite graph to make it k-complete is O(n) (Lemma

3.4), as is deleting the dummy traffic. Bongiovanni et al [10] show that

54

L = O(n?), but the running time of K'T is not calculated. However, we thus
know that the number of times that the max-min bipartite matching algor-
ithm MaxMinMatch [92] is called is O(n?). Since the max-min matching

algorithm has a running time of O(n?), the result follows. O

3.4 An improved scheduling algorithm (A1)

In this section we show how KT can be improved. We recall that in order
to minimize the running time, an algorithm that simply finds a maximum-
cardinality matching in H’, the regular weight bipartite graph with 2n — k
vertices in each partition, suffices. Such an algorithm will find the required
critical k-matching in H. We can thus use the maximum cardinality matching
algorithm of [71], which we call MaxMatch. We call the resulting optimal
scheduling algorithm A1.

Theorem 3.4 The running time of algorithm A1 to find a minimum-length
schedule for an instance of DTS is O(n*®).

proof. The maximum cardinality matching algorithm MaxMatch of [71]
takes time O(|V|°|E|) = O(|V[*®) for a bipartite graph with |V| vertices and
|E| edges. For A1, |V|=2n — k. Using the maximum cardinality matching
algorithm does not affect the worst-case value of L, or the time complexity
of adding and deleting dummy traffic. We can use the reasoning of Theorem

3.3 to obtain the result. 0

55

3.5 A divide-and-conquer scheduling algorithm (A2)

In this section we obtain an optimal algorithm for DTS which we call A2.
The key observztion is that the bipartite graph G can be partitioned into two
graphs of rougt’v equal weight which represent two independent sub-problems
of roughly ha¥ the complexity of the original problem. Then algorithm Al

can be applied -ecursively to the subproblems to obtain an optimal schedule.

Def. A walk is 3 sequence of distinct adjacent edges. The first and last vertex
of the sequence are called the ends of the walk. An open walk is one in which

the ends are dstinct; otherwise the walk is closed.

A walk differs “rom a path in that any vertex may be included more than
once (not just she first vertex). This definition is used in the following two

definitions, whch are based on Cole and Hopcroft [29].

Def. An Eule- partition of a graph is a partition of the edges into open and
closed walks. s3 that each vertex of odd degree is at the end of exactly one

open walk, anc each vertex of even degree is at the end of no open walk.

Def. An Eule split of a bipartite graph G = (4, B, E) is a pair of bipartite
graphs H = (4. B, F) and H' = (A, B, F') where E = F U F' and a vertex
of degree d in 7 has degree [d/2] in one of H, H' and |d/2] in the other.

Every graph as an Euler partition, but only bipartite graphs need have

Euler splits [5. 2¢°. An Euler split can be formed from an Euler partition of

56

G by placing alternate edges of walks into F° and F’; both can be found in
time O(n + m) for bipartite graphs and multigraphs [48]. An Euler split of
the multigraph G' corresponding to G, using the algorithm of Gabow [48],
suffices to divide G into two subgraphs each having roughly half the weight
of the original. However, this approach would take time proportional to the
maximum edge weight in G. In the following we develop an algorithm which

is faster because it avoids converting G into a multigraph.

Def. An Euler division of a weighted bipartite graph G = (A, B, E) which
is k-complete with respect to its bound ¢ is a pair of bipartite graphs H =
(A,B,F) and H' = (A, B, F') with E = F U F’ where the bounds of H and
H' are r = [¢/2] and r' = |g/2] respectively, and H, H' are k-complete with

respect to their bounds.

In the following we will show that if ¢ is even, an Euler division always exists.
(This result is required for the divide-and-conquer algorithm A2 we develop
later in this section). The proof is constructive, and is based on the Euler
partition algorithm of Gabow [48] and the perfect Euler split algorithm of
Somalwar [132], both of which are designed for bipartite graphs with unit-
weight edges. We use the notation wi(Y,y) to refer to the weight of a vertex

or an edge y in a weighted bipartite graph Y.

57

Algorithm ED

/* Euler Division of bipartite graphs with even bourds */

Input: Bipartite graph G = (4, B, E) that is k-complete with respect to its
bound ¢, which is even.

Output: An Euler division of G into bipartite grapis H = (A, B, F), H' =
(A, B, F").

ot

B P =L {B

2. for each e € E such that wt(G, e) >1 do

3. wt(H, e), wt(H,), wt(G, e) := | wt(G, e) /2], Lwt(G,e) /2],
wt(G,e) - 2* [wt(G,e) [2 [;

F,F':=F U{e}, P’ U{e};
end for
G = G; /* G’ introduced for convenlence only */
P := EP(G’); /* EP generates an Euler partition [48]*/

balance := true;

© o N> T

for each walk p € P do
10. for each edge e € p do

11. if balance = true then

12. wt(H, e), F = wt(H,e) + 1, F U {e};
13. else

14. wt(H?, e), I’ := wt(H’,) + 1, F’ U {e};
15. end if

16. balance := —balance;

17. end for

18. end for

Lemma 3.6 Algorithm ED generates an Euler division of G.

proof. The first for loop divides all even weight edges from G and converts
all odd weight edges to unit weight. Thus G’ is a unit-weight bipartite graph,
and at line 6 H and H' have equal weights and equal degrees at every vertex.
Algorithm EP generates an Euler partition for a unit-weight bipartite graph
[48]. 1t is clear that lines 9 - 18 ensure that edges from walks in the Euler
partition are assigned to H and H' in such a manner that the weights of H

and H' differ by at most 1 at the end of the algorithm.

We now show that H, H' are an Euler division of G. Clearly E = F U F' by
construction. Let X and X' be, respectively, the weights of H and H', z, &'
the weights of their critical vertices, and r, r’ their bounds. Since ¢ is even,
and W = kg, W is even. Also, W = X + X' and | X —X'| <1 by construction.
Hence X = X' = kq/2. Consequently, if we show that r = r' = ¢/2, then
H,H' will be k-complete with respect to their bounds and thus be an Euler

division of G.

By definition of bound, showing r = r' = q/2 requires that we show that
z, o < q/2. Let z = wt(G,c) be the weight of an arbitrary vertex ¢ in
G at the start of the algorithm. Note that at line 1, if z is even, there
are an even number of odd-weight edges incident upon ¢ in G, and an odd
number otherwise. Consequently, after line 6, wt(G',c) = d is even if z is
even, and odd otherwise. In either case, after line 6, wt(H, ¢) = wt(H',c) =
(z — d)/2 is even. Next, recall that by definition an Euler partition results

in an odd-degree vertex being at the end of exactly one open walk; hence

59

observe that EP followed by lines 8 - 18 results in a vertex of weight d
in G contibuting weight at most [d/2] in H, H'. Therefore, lines 7 - 18
result in wt(H,c),wt(H',c) <(z—d)/2 + [d/2] = [z/2]. Since G is k-
complete with respect to ¢, z < ¢, and since g is even, [z/2] < ¢/2. Hence
wt(H,c),wt(H',c) < q/2.]

Lemma 3.7 ED takes time O(n +m).

proof. The first for loop takes time O(m). From Gabow [48], EP takes time
O(n + m). The for loop from lines 9 - 18 also takes time O(m). 0

We can now state the algorithm A2 which is based on a divide-and-conquer
strategy. If ¢ is odd, a critical k-matching of unit duration is found and
deleted from the graph to make ¢ even. If ¢ is even, an Euler division is
performed and the algorithm applied to the resulting smaller graphs. In the
following, angle brackets delimit a sequence and parallel bars denote sequence

concatenation.

Algorithm A2.

Input: Bipartite graph G = (A, B, E) with weight function wt : E U AUB — N,
and integer k.

Output: A minimum-length k-coloring of G, as a sequence s of (M, b) pairs,

where M is a critical k-coloring and b is its duration.

0.s:={()

1. w := max(wt(v): v €A UB;

60

W := sum(wt(e): e € E);

. q = max(w, [W/k1);

4. Add dummy traffic to make G k-complete with respect to g.
5. A2-color(G); /* Updates s */

6. Delete dummy traffic from s.

7. end A2,

Procedure A2-color(G)

1. if q is odd then

2 M := CKM(G); /* CKM will find a critical k-matching */
3. s Eq=s||{(M1)),E-Maq-1
4. end if

5. H, H = ED(G);
6. A2-color(H);

7. A2-color(H’);
8. end A2-color

Theorem 3.5 Algorithm A2 finds a minimum-length schedule for an in-
stance of DT'S.

proof. We need to show that A2 generates a minimum-length k-coloring of
G. Lines 1 - 4 and 6 - 7 of A2 are similar to K'T. Procedure A2-color is
called with G, a bipartite graph k-complete with respect to its bound g, as its
argument. Thus, from Theorem 3.1, G contains a critical k-matching, which

can be found by the procedure CKM outlined in the proof of Theorem 3.1.

61

If ¢ is odd, a critical k-matching is found in line 2 of A2-color. Now the
graph G with edge set E — M has an even bound ¢ — 1, and from a corollary
of Theorem 3.2, is also k-complete with respect to its bound. Thus from
Lemma 3.6, ED generates an Euler division of G into H, H', which are k-
complete graphs with respect to their bounds |g/2]. A2-color is applied to
them recursively, and by the induction hypothesis generates two k-colorings of
length |g/2]. Together with the k-matching generated if ¢ is odd, we obtain

a k-coloring in s of length q. m]

Theorem 3.6 Algorithm A2 runs in time Oi{Kmn3logn), where K is the

mazimum edge weight of G.

proof. Procedure CKM takes time O(n®m) using the MaxMatch algorithm
of Hopcroft and Karp [71]. By Lemma 3.7, each invocation of ED takes time
O(n+m). Aslongas K > 1, ED results in two subgraphs with bound |¢/2],
each having upto n vertices and m edges. When K =1, ED results in two
subgraphs with bound |q /2], each having roughly m/2 edges. Therefore, for
K > 1, the time T{g,m) for an invocation of A2-color with a graph of bound
g and m edges is T(g,m) = O(n3m) +2T(lg/2],m) = KT(q/K,m)+ (K —
1)0(n’m) < KT(m,m) + KO{n®m). Now T'(m,m) = 2T(m/[2,m/[2) +
O(n®m), i.e., for some c, m e N, T(m,m)<2T(m/2,m/2) + en®m for all
m > m'. Hence T(m,m) <4T(m/4,m/[4) + 2en®m/2 + en®m < mT(1,1)
+ (logm)en®m, for all m > m', ie., T(m,m) = O(n’mlog n). Therefore,

the total time T'(g,m) = O(Kmn®logn). i

Thus A2 is superior to KT for problem classes where K is small relative to

62

n*%/(mlogn), i.e., say smaller than n?. A2 is superior to Al when K is

small relative to n*/(mlogn), say smaller than n'®.

3.6 An algorithm for large transfer lengths (A3)

While A2 is satisfactory for problems where K increases at a modest rate
relative to n, it does not handle problems with large transfer lengths well.
In fact, A2 is not a polynomial-time algorithm, but a pseudo-polynomial
time algorithm [56]. This is because the weight of each edge in the input
graph must be supplied to the algorithm.? In this section we describe how
an algorithm for edge coloring of weighted bipartite graphs with k = n [51],
can be applied for DTS when k < n. The key observation is that deleting
a maximal matching from a k-filled graph (see section 3.3) leaves a k-filled
graph.

Consider a weighted bipartite graph G = (A, B, E) with weight W, maximum
vertex weight w, maximum edge weight K, and bound ¢. By Lemma 3.4, it
can be converted to a k-complete graph with respect to ¢ by adding dummy
traffic, and then to a k-filled graph G’ with respect to ¢ using the k-fill
algorithm This conversion 1s performed in KT and A1, and takes time O(m+

21t takes O(log K) bits to encode the weight of each edge, so that O(mlog K) bits are
needed to supply the information about the edge weights in the input graph. On the other
hand, it takes O(logn) bits to encode each vertex label, and hence O((m + n)logn) bits
to encode the graph connectivity. Thus the total length of the string describing the input
is I = O(n*(logn + log K)). The time complexity of A2 increases as a polynomial in [if
ounly n increases, but as an exponential in I if K increases.

63

Let G' = (A',B',E") with |4| = |B| = 2n — k, weight W’ = (2n — k)gq,
maximum edge weight K’, and all vertex weights equal to ¢. In both KT and
A1, a maximal matching M’ of size 2n —k on G’ is obtained, and the k edges
of M = M' N E are deleted from G. This results in a new graph H which is
k-complete with respect to ¢ — 1 but not k-filled with respect to g — 1. It 1s
necessary to invoke k-fill on H before obtaining the next critical k-matching.
We observe that if all 2n — k edges of M’ are deleted from G’, the result is a
graph G” that is k-filled with respect to ¢ —1, obviating the need for k-filling

again before obtaining the next matching.

The argument above leads to the following algorithm, where an edge-coloring
on (' is used to obtain a series of maximal matchings on G', which are
then pruned to obtain a series of critical k-matchings on G. The weighted-
edge-coloring algorithm of Gabow and Kariv [51] is used to edge-color G'.
It should be pointed out that the space complexity of the weighted-edge-
coloring algorithm, and hence of A3, is high: O(mnlog K).

Algorithm A3.

Input: Bipartite graph G = (4, B, E) with bound ¢ and maximum edge
weight K.

Output: A minimum-length k-coloring of G, as a sequence s of (M, b) pairs,

where M is a critical k-coloring and b is its duration.

0. s:=();
1. Add dummy traffic to make G k-complete with respect to g.
2. G’ == k-fill(G);

64

3. C := weighted-edge-color(G’); /* C is an edge coloring of G™*/
4. for each color ¢ £ C

5. M’, b := ecges colored by c, duration c is used; /* M’ is max.
matching on G’ */

6. M: =M NE;

7. s:=s|| { (M. b));

8. end for

9. Delete dummy t-affic from s.

10. end A3.

Theorem 3.7 Algorithm A3 takes time O(n®(logn + log K)).

proof. As noted eaclier, k-fill takes time O(n). The weighted edge coloring
algorithm [51] takes time O(|V{|E|log J) for a weighted bipartite graph with
largest edge weigh: J. In A3 we apply this algorithm to G’, where Vi =
on—k, |E| < (2n—k)?=0(n?),and J = K' < ¢ = mK . Thus the total time
is O(n®(logn + log K)) to obtain an edge-coloring of G'. Since the coloring
algorithm [51] uses O(|E|log J) colors, the number of iterations of the for loop
is O(n*(logn +log K')). Since |M'| =2n — k, lines 5 - 7 can be implemented
in time O(n), and :hus the for loop takes time O(n3(log n + log K)). O

Algorithm A3 is faster than KT and A1 for a large class of graphs, i.e., when
log K is small relaiive to nl5. Note that A2 is still faster than A3 for K =1

or when K is bourded by a small constant.

65

3.7 Experimental evaluation

In this section we present the results of an experimental evaluation of the
algorithms described in this chapter. This work has confirmed that our algo-
rithms provide results that are superior to the KT algorithm for the situations
studied. This experimental work extends the previous related work of Soma-
lwar [132], Kandappan [85], Balan [4] and Jain et al [78]. It has also led to
the investigation of even faster algorithms for data transfer scheduling, which

are heuristic in nature [76], and are discussed in a subsequent chapter.

We compare the effects of using the four scheduling algorithms discussed in
this chapter, namely KT, A1, A2, and A3. Since all four algorithms produce
optimal schedules, the key question is the amount of time taken to produce
those schedules. There are four parameters that affect the performance of
these algorithms: the number of vertices in each partition of the graph (ny and
n,), the number of edges m, the maximum number of simultaneous transfers
allowed k, and the maximum edge weight K. When the number of vertices
in each partition is the same, we set n = n; = ny. We evaluate the bahavior

of the algorithms as each of these parameters is varied.

Scenario: Volume Visualization of Scientific Data. Consider a sce-
nario where users, who may be physicians, health care workers, scientists,
etc., need to share and access a large image database. The images may con-
sist of medical information, e.g. computer-aided tomography (CAT) scans, or
oil prospecting information, e.g. seismic data from acoustical depth sound-

ings, and so on. The database is processed and stored at a parallel computer

66

site, and uszs view the images by requesting image files to be displayed on
their graphcs workstations. The parallel computer is a shared-bus system,
in which pmeassors and disks are connected to a set of common buses (or a
single highspeed system bus that is shared in a time-multiplexed fashion),
which allov mrltiple I/O transfers to proceed in parallel. In order to provide
a reasonabe r=sponse time for the users, the workstations are also connected
to the commem buses. A user request for an image file is processed by the
CPUs a: tie sarallel computer, and results in image data being transferred
from the swtern disks to the user’s workstation across the common buses. The
workstazioss cff-load some low-level image-processing tasks from the parallel
computer. such as rendering, shading, etc. In this scenario, the parallel co-
mputer’s merxzting system batches the image file requests and schedules the

resulting 1 O sransfers.

In terms o’ zhis parallel I/O application, n; and ng correspond to the number
of disks ani workstations, m the number of image files to be transferred, k
the nur=be of parallel buses in the system including the degree to which they
can be time-mmltiplexed, and K the longest file length in disk blocks. Using
the paralle I O application as a context helps to bound the ranges of values
of the parameters for which the scheduling algorithms are evaluated. Given
the scalabiity problems of shared-memory shared-bus parallel computer sys-
tems, we ealzate the algorithms for relatively modest numbers of disks and
workstatios nyp,ng < 256). Typically, we choose n = ny = np = 64. Con-
sistent witl tmis context, we also assume only a relatively modest number of
simultanems parallel transfers (4 <k <16, and k < nqy.ng). As far as the
number of Tansfers is concerned, we choose 100 < m < 1000 as a reasonable

range consdering the image database scenario sketched above. The maximum

67

file length, K, is increased systematically until the behavior of the program

seems to become clear from the trend of the increase in CPU time.

The algorithms were implemented as programs in C, generally following the
outlines sketched in this chapter. The implementation of KT and A2 was
a non-trivial adaptation from the implementation of Somalwar [132], which
handles unit-weight edges only. The Hopcroft and Karp {71} maximum car-
dinality matching algorithm used in A1 and A2 was implemented in a form
very similar to that given in the text by Moret and Shapiro [106]. In the
implementation of A2 we made two modifications: the recursive structure of
the program was replaced by iteration, and rather than performing k-filling

at every iteration, it was performed only at the start of the algorithm.

The main implementation difficulty was with the weighted-edge-color al-
gorithm of Gabow and Kariv [51], especially since their description omits two
important points. The first is regarding the conditions under which new col-
ors are assigned to edges; it was necessary to carry out a detailed case analysis
of the situations in which the weighted augmenting path algorithm should in
fact assign new colors to uncolored edges, taking into account the special cases
that occur when all the remaining uncolored edges are of unit weight. The
second omission was more serious, and was the key observation that as one
weighted colored edge is partially assigned a new color, all edges in the graph
bearing the old color must also be partially assigned the new color. Again,
special cases arise when all uncolored edges are unit-weight. These two points
are very important as they form the basis for guaranteeing that the number

of colors used in weighted-edge-color, and hence its time complexity, is

63

logarithmic in K rather than linear. Implementing weighted-edge-color to

correctly handle these two points is quite involved.

The programs implementing KT and A1-A3 were evaluated by measuring
the CPU time they take to execute when presented with uniformly randomly
generated bipartite graphs as inputs. Random graphs were generated for
selected combinations of the ny,ng,m and K program parameters using a
pseudo-random number generator [94]. The programs were executed on a Sun
Sparc 2 workstation running the SunOS™ Release 4.1.1 operating system,
after being compiled using the Sun Microsystems C compiler (bundled with
SunOS Release 4.1.1), with Level 4 optimization enabled (“-O4” option). The
data structures for the programs all fit in the 32 MB main memory of the
workstation, and so the programs do not perform any I/0 in order to execute,

except to read the input graph and print results.

The CPU time taken by a program for each input random graph was mea-
sured by the C Shell “time” command. Although this measurement tool has
a resolution of only 20 ms, it was not thought necessary to use a higher
resolution Iﬂeasurment (e.g. the system’s real-time clock) since most mea-
surements we take are on the order of seconds and the programs tend to
display rather pronounced differences in their execution times. For each se-
lected combination of the program parameters, one hundred random graphs
were generated, and the CPU time taken by each program, as reported by
the “time” command, was recorded for each input graph. The mean and
standard deviation of each set of 100 measurements was calculated using the
programs given in Numerical Recipes [119]. The data was plotted using the

DeltaGraph Professional™ software package, on a Macintosh system. The

69

same software was also used to generate smooth curve fits based on models

that were supplied to the program as candidates.

In the following we present the results of the experiments, the calculated
means, and plotted points and curve fits for each progream as each of the
four parameters, m,m,n and K were varied. Although the data presented
here are for n = n; = ny, in a previous study we have considered the case ny

ny and found qualitatively similar results [78].

3.7.1 Effect of varying the number of transfers

In Fig. 3.1 we plot the mean CPU time taken by each program implementing
KT, A1, A2 and A3 for inputs where the parameters n = n; = ngz = 64,
L =4 and K = 1 are fixed and m varies from 100 to 1000. That is, we see the
effect of varying the number of transfers while keeping all other parameters
fixed. Fach data point represents the mean of 100 measurements of CPU
time, and the error bars indicate one standard deviation above and below the
mean. The curve-fits shown in Fig. 3.1 correspond to the following equations

and correlation coefficients:

KT(t) =1.55x 1076 m? +2.18 x 1072 m — 2.18 x 1072,

R2? = .98, R1? = .99, R0% = .99

Al(t) =1.73 x 1076 m2 + 1.48 x 1073 m — 6.66 x 1072 ,

59 A3

KT

Al

25

CPU Time (sec)

S maaa o e s ey
0 160 2(‘)0 300 400 500 600 700 800 900 1000
Number of transfers, m

Figure 3.1: CPU time versus number of transfers for n = 64, k = 4, K = 1

R2% = .99, R1? = .98, R0* = .99

A2(4) =169 x 107 m —3.82 x 1072, R’ = .99

A3(t) = 7.37 x 107* mlogm — 0.258, R? = .99

The results plotted and curve-fitted in Fig. 3.1 display some interesting chai-
acteristics. It is interesting to see that the execution time of A2 in these
experiments increases very close to linearly with m, exactly as predicted by
the theoretical worst-case time complexity formula O(K'mn®logn) derived
for A2 in the previous section. On the other hand, we see that the other
three algorithms also show marked increases with m, which are not predicted
by the theoretical complexity analysis. This discrepancy is discussed in the

next section of this chapter.

71

Qualitatively, however, we see that for this combination of parameters, A2
out-performs the other algorithms significantly, and is likely to continue doing

SO as M Increases.

3.7.2 Effect of varying the degree of data transfer parallelim

In Fig. 3.2 the parameters n =n; = ng = 64, m = 1000, and K =1 are fixed
and k varies. That is, we see the effect of varying the degree of parallelism
in the data transfer while keeping all other parameters fixed. The equations

corresponding to the curve fits are given by:

KT(t) = 15.33 k=192, R* = .99

Al(t) = 12.23 k0%, R? = .99

A2(t) = 5.13 k084, R?* = .99

A3(t) = 30.49 k1%, R? = .99

For all four algorithms, the CPU time varies inversely with k, a trend not
predicted by the theoretical time complexity formulas derived earlier. It is
interesting to see that for all practical purposes the variation is proportional

to 1/k for KT and A1. This is discussed in the next section.

Qualitatively, we again observe that for this set of parameters, A2 out-

performs the other algorithms signficantly.

—1
(8]

A3

KT

Al

CPU Time (sec)

A2

Number of simultaneous transfers, k

Figure 3.2: CPU time versus number of simultaneous transfers for n =.64, m

= 1000, K = 1
3.7.3 Effect of varying the number of resources
In Fig. 3.3 the parameters k& = 4, m = 1000, and ' = 1 are fixed and
n = n, = ny is varied. That is, we see the effect of varying the number of
resources in the system while keeping all other parameters fixed. The curve
fits are given by:
KT(t) =4.45 x 1074 n? +1.01 x 107% n 4 1.26,

R2? = 99, R1? = .96, R0O* = .99

A1(t) = 1.17 x 1073 n'® 4+ 1.91 x 107! n° + 1.26, R* = .99

A2(t) = 1.18 x 1072 nlogn + 1.55, R* =.

O

9

30+
25
] A3 KT

20-

15

CPU Time (sec)

10 o A2
Al

04—y T T
0 2 64 9 128 160 192 224
Number of disks, n
Figure 3.3: CPU time versus number of resources for k = 4, m = 1000, K =
1

A3(t) = 2.75 x 1074 n? +5.68 x 1072 n + 0.02,

R2? = .99, R1? = .98, R0? = .99

We observe that, at least for the set of experiments described here, the per-
formance of both KT and A1l appears to be significantly better than that
predicted by their theoretical complexity formulas O(n®) and O(n*?) respec-

tively. This is discussed in the next section.

Qualitatively, we observe that for this set of parameters Al and A2 sig-
nificantly out-perform the other algorithms, with A1 likely to have better

performance than A2 only for n > 160.

74

3.7.4 Effect of large transfer lengths

In Fig. 3.4 the paramete= n = 64, k = 4, and m = 1000, are fixed while K
is varied. Thus the same —umber of transfers have to take place for all runs,

but their lengths are intezers drawn uniformly at random from the interval

[1, K]. The curve fits are ziven by:

KT(t)=023log K +0.22. R?=.96

Al(t) =0.14log K + 015 R*=.9

A2(t) = 0.08K +0.09, R?=.99

A3(t) = —8.65 x 10~* K* + 0.18K +0.29,

R2? = .82, R1%? = .96, R0? = .99

We observe a number of nteresting features in this set of curves. The first
is that although the CP” time behavior of both KT and A1l can be fit to
an O(log K) curve, the onstants involved are so small that it is essentially
independent of K for K > 10. This is as predicted by the theoretical time
complexity analysis. We also see that the CPU time for A2 increases very
close to linearly with K. again as predicted by theoretical analysis. On the
other hand, the behavior of A3 does not follow O(log K) for this range. This

is discussed in the followng section.

-~J
Ut

CPU Time (sec)

Maximum transfer length, K

Figure 3.4: CPU time versus maximum transfer length n = 64, k=4 m=

1000

Qualitatively, we observe that KT and A1 significantly out-perform the other
algorithms, both in terms of absolute CPU time and in terms of its variance for
random input instances. Between the better two algorithms, A1 consistently

out-performs K'T.

3.8 Interaction of theoretical and experimental eval-
uation

Our study of the four scheduling algorithms K'T', and A1 - A3, is an interest-
ing example of the importance of cross-checking theoretical and experimental
evaluations of algorithm behavior. In several sets of experiments described
above, we found that the measured time behavior of the algorithm differs

significantly from that predicted by theoretical analysis alone. These discrep-

76

Algorithm Method m k n K

KT theory const. comst. n® const.
experiment | m? 1/k n? const.

Al theory const. const. n*® const.
experiment | m? 1/k n®+n'® const.

A2 theory m const. n®logn K
experiment | m 1/k% n®logn K

A3 theory const. const. n®logn logK
experiment | mlogm 1/k'® n? K?

Table 3.1: Asymptotic theoretical vs. experimental behavior of algorithms as
input parameters vary. (See following Table also)
ncies motivate us to re-examine our theoretical and experimental evaluation

more closely, leading to a better understanding of the algorithms’ behavior.

The discrepancies we observe are summarized in Table 3.1, where we show
the asymptotic theoretical and experimental behavior of the algorithms as
each of the parameters m, k,n and K is varied. (The curve-fitted constants
have been omitted from the experimental results as we are only considering
the estimated asymptotic algorithm behavior). In this section we show that
most of these apparent discrepancies can in fact be resolved by one of two

ways: more sophisticated theoretical analysis, and further experimentation.

3.8.1 Effect of number of transfers

We first consider the marked discrepancy between theoretical and experimen-
tal behavior of KT and A1l as m is varied. We re-examine the theoretical
time complexity analysis presented earlier in this chapter and observe that it

can be made more precise in two ways.

7

Observation. The time complexity of the max-min bipartite weighted ma-
tching algorithm [92], MaxMinMatch can be refined to O(mn) from O(n?).
Similarly, the time complexity of the maximum cardinality matching algori-

thm MaxMatch [71] can be refined to O(mn*) from O(n??). O

Lemma 3.8 The number of times that critical k-matchings have to be calcu-
lated in either KT or A1, i.e., the number of iterations L, can be refined to

L =O0(m +n) from L = O(n?).

proof. Recall that a new critical k-matching must be calculated, in both
KT or Al, if either the weight of one of the edges covered by the matching
decreases to zero, or a vertex that was previously not critical weight becomes
critical. Thus at every iteration of the algorithm, either an edge can be
deleted, or a vertex becomes critical, or both. Now observe that once a vertex
becomes critical it remains critical until the algorithm terminates (since it
must continue to receive full service if the algorithm is to produce a schedule
which meets the lower bound on schedule length). Hence any vertex can be
promoted from being non-critical to critical at most once during the execution
of the algorithm. Also, any edge can be deleted at most once. Since at each
iteration at least one of these events (edge deletion or vertex promotion)

occurs, there are at most O(m + n) iterations. o

A careful reading of the proof in [9] shows that the authors have used a similar
reasoning to the one we have presented above, but have set m = O(n?),

leading to the L = O(n?) bound.

78

Theorem 3.8 The time complezity of algorithm KT can be refined to O(m?n
+mn?) from O(n®), and of algorithm A1l to O(m*n® +mn'?®).

proof. The time complexity of both KT and A1 is given by L times C, the
time for the critical k-matching algorithm used. From the observation, C' =
O(mn) for KT and C = O(mn?®) for Al. From Lemma 3.8, L = O(m + n).
The theorem follows. =

We can use this result to explain the experimentally observed variation of

KT and A1’s running time not only with m, but with n.

We now consider the discrepancy between the theoretical time complexity of
A3. O(n®(logn +log K)), and the experimentally observed variation with m.
Recall that A3 performs k-fill on the input graph G with n vertices and m
edges to produce a graph G’ which is then colored using the weighted-ege-
color algorithm of Gabow and Kariv [51]. We first show that k-filling G only

increases the number of edges in G’ to O(m + n) instead of O(n?).

Lemma 3.9 A bipartite graph with n vertices and m edges can be converted
to a k-filled graph with at most O(m+n) edges, assuming that weighted edges
can be used for k-filling.

proof. Let G = (A, B, E) be the input graph, w its vertex weight and W its
total weight. For ease of exposition we assume |A| = | Bl = n in the following;

the case |A| # |B| is very similar and left to the reader.

79

From the time complexity analysis of the k-complete algorithm we see that
at most O(n) edges are added during this phase. The k-filled bipartite graph
G' = (AUC,BUD,EU E') is obtained by adding n — k vertices to each
partition of G and by adding edges E' C (A x D) U (B x C) until all vertices

have weight gq.

It has been shown that k-filling can always be done [10]. We show by induction
the proposition that k-filling G requires adding at most 4n edges, as follows.
It suffices to consider vertices in only one partition of G, say A, with the
number of its vertices examined, j, being the induction variable. Initially the
first vertex a; € A has been examined. An edge of weight ¢ — wt(ay) is added
from a, to d;, the first vertex in D; the proposition holds. Assume that after
§ vertices have been examined, at most 2j edges have been added. When
a;41 is examined, let di be the first vertex in D with weight less than ¢. An
edge (aj41,dx) of weight w' = ¢ — max(wt(a;4+1, wt(dr)), and another edge
(aj41,drs1) of weight ¢ — w’, are all that are needed to make wt(aj41) = q-

Thus the induction is complete and the proposition holds.

It follows that if non-unit-weight edges are used for k-filling, G’ has O(m+n)

edges. a

Notice that making a graph k-filled with respect to its bound increases not
only its number of edges but also the maximum edge weight. In fact, during
k-complete, for instance, the maximum edge weight can increase from K to
as much as mK. To see an example of this, consider the graph with n =5,

m = 4 edges each of weight K = 2 connected from a single vertex a € A

80

<o four distinct vertices in B, and given k = 3. Then w = W =8, and
g = 8, so that edges of total weight kq — W = 16 need to be added while not
increasing the maximum vertex weight. This can be done by adding three
edges, of weights 8, 6 and 2, respectively, making K' = 8 = mK. However,
the the bound of the graph, ¢, remains unchanged, and so the time complexity

analysis of A3 and other algorithms is not affected.

Theorem 3.9 The time complezity of A3 can be refined to O((nm + n?)
(logm + log K)) from O(n® (logn + log K)).

proof. The weighted-edge-color algorithm of [51] takes time O(|V'| |E|
log J) where V' is the total number of vertices and J is the maximum edge
weight of G’. While [V’| = O(n) and J < mK, from Lemma 3.9 we have
|E'| = O(m + n), giving the new complexity estimate. A similar argument

holds for the while loop in the A3 algorithm. O

As an aside, we make the following observation here, which will be used in a

later section.

Observation. If only unit-weight edges can be used for k-filling, G’ can have

upto O(nm) edges. o

3.8.2 Effect of data transfer parallelism

We consider the effect of increasing k, the number of simultaneous transfers

posssible, upon the behavior of the four scheduling algorithms.

81

Informally, we can consider this effect by recalling that the length of the
schedule is given by the bound of the graph, ¢ = max(w, [W/k]). In general,
as k decreases the second component of ¢ dominates, and the schedule length
increases. Since all four algorithms are essentially iterative computations of
matchings (or, in the case of A3, of augmenting paths), and the number of
‘terations increases with the schedule length, as k decreases the execution
time of all four algorithms increases. For situations where [W/k] > w, the

CPU time for all four algorithms should vary as 1/k.

3.8.3 Effect of transfer lengths

The theoretical advantage of A3 over A2 is that its time complexity is poly-
nomial in K rather than a pseudo-polynomial. However, while A2’s CPU
time increases linearly with K as expected for 1 < K < 80, A3 appears to

perform much worse.

We observe from the variation of A3 with m,n, and k that it appears to
have much larger constants of variation than the other three algorithms. We
thus extended the investigation of A3’s behavior to larger values of K in
order to estimate its asymptotic behavior. However, as noted earlier, A3’s
storage requirements are very high. In order to keep all data structures in
memory, experiments for K > 80 could not be conducted on the Sun Sparc
2 workstation, which has 32 MB of main memory. The program was run
instead on a Solbourne Series5e/900™ workstation with 128 MB of main
memory. The workstation runs Solbourne’s UNIX-like OS/MP 4.1A.1 and

can run programs compiled for the Sun Sparc 2 without recompilation. Input

o0
S

20 4

15

CPU Time (scc)

0 200 400 00 800 1000 1200
K

Figure 3.5: CPU time on Solbourne versus maximum transfer length for n =
64, k=8 m = 100

graphs, time measurements, and mean CPU times were generated as before,
and plotted with error bars and curve fits as before, to yield the plot in Fig.
3.5. Notice the relatively large standard deviation of the measurments. The

curve fit for K > 80 is given by:
A3(K) = 9.83log K — 24.2, R* =0.96

The revised comparison of theoretical and experimental results in Table 3.2

displays good agreement between the two.

83

k

Algerithm Method m n K
KT theory m? 1/k n® const.
experiment | m? 1/k n? const.
Al theory m? 1/k n®+4n!® const.
experiment | m? 1/k n®+n!® const.
A2 theory m 1/ n*logn K
experiment | m 1/k* nlogn K
A3 theory mlogm 1/k n? log K
experiment | mlogm 1/k'? n? log K

Table 3.2: Revised asymptotic theoretical vs. experimental behavior of algo-
rithms as izput parameters vary

3.9 Discussion

3.9.1 Previous related work

Algorithms A1 - A3 provide a method for scheduling parallel data trans-
fers such as I/O in multiple-bus parallel computers and time slots in TDMA
switches, ad are a substantial improvement in both theoretical and exper-
imentally chserved execution time over algorithm KT. Since Al - A3 are
framed in ‘erms of optimal edge-coloring of bipartite multigraphs, we review
this literatire briefly. In Table 3.3 we summarize the previous work. We
emphasize shat almost all the literature surveyed consists of theoretical work
only. Very few studies of the type reported in this chapter have been per-
formed to experimentally evaluate the behavior of the scheduling and coloring

algorithms that have been developed.

First consider the optimal edge-coloring of bipartite graphs with unit-weight
edges. Vizing [137] developed an algorithm using the basic notion of aug-

menting pzchs that takes time O(mn). Gabow [48] exploited the partitioning

84

of a bipartite graph by means of Euler partitions in order to apply the divide-
and-conquer strategy to edge coloring algorithms. This idea has been used
repeatedly [50, 51, 29, 132, 78]. In the same paper Gabow noted that the
Mendelsohn-Dulmage method (see [92]) could be used to construct an algo-
rithm to obtain a matching covering all vertices of maximum degree. This
matching algorithm takes time O((m + n)n®®) and was used in conjunction
with the divide-and-conquer strategy to obtain an edge coloring algorithm of

time complexity O(n + mn®®logn).

Gabow [48] also observed that in the special case that the degree of the
graph is a power of 2, the divide-and-conquer algorithm need never call the
matching algorithm, allowing an edge coloring to be found in time O(n +
mlogn). Gabow and Kariv [50, 51] use this observation to obtain faster
edge-coloring algorithms for graphs whose degree is not a power of 2, by
repeatedly constructing partially-colored subgraphs whose degree is a power

of 2 and coloring them efficiently.

Finally, Cole and Hopcroft [29] use the idea of Euler partitioning the graph in
order to design a matching algorithm that covers all vertices of maximum de-
gree. This matching algorithm runs in time O(max(m,n logn log® d)), where
d is the graph degree, and is faster than the Mendelsohn-Dulmage matching
method used by Gabow [48] by a factor of roughly O(n®®); it leads to an

O(mlogn) algorithm for edge coloring.

There has been relatively little attention paid to the problem of edge-coloring

weighted bipartite graphs. Before we review this literature, it is interesting

85

Reference Unit-Weight Edges | Unequal Weight
(K = 1) Edges (K > 1)
Unlimited transfers, k = n:
Vizing, 1964 [137] mn
Gonzalez and Sahni, 1976 [62] | m? m?
Gabow, 1976 [48] n +mn®logn
Gabow and Kariv, 1978 [50] | mn®® logn
Gabow and Kariv, 1982 [51] | mlog®n; n’logn | nmlog K
Cole and Hopcroft, 1982 [29] | mlogn
Limited transfers, k < n:
Bongiovanni et al, 1981 (KT) | m’n + mn? m?*n + mn?
[9, 10]
Somalwar, 1988 [132] mn'®logn
Al m2n0 & mnls m?n®5 + mnl
A2 mn®®logn Kmn®3logn
A3 (n? + nm)logm (n? + nm)
(log m + log K)

Table 3.3: Summary of previous related work

to discuss an influential early application, that of constructing class-teacher
timetables [63], also called the timetabling problem [8, 31]. To quote Gotlieb
in 1962, “For a high school with thirty or more classes, even after the sets of
teachers to be associated with a given class are assigned, it takes many man-
weeks to draw up a schedule specifying when teachers and classes are to meet.
.. [I]n the Metropolitan Toronto area alone, over sixty large time-tables are

drawn up annually” [63].

The class-teacher timetabling application in its simplest form can be modeled
as a problem of edge-coloring a weighted bipartite graph, where the vertex
partitions represent teachers and classes, the edges represent the teachers as-
signed to a class, and edge weights represent the number of contact hours

[8]. The application as specified by Gotlieb included the additional prac-

86

tical constraints that the total number of time slots available is fixed and
that for certain time slots either a class or a teacher is unavailable; for these
constratints the scheduling problem is NP-complete [40]. However, Gotlieb’s
application has continued to attract attention because of its practical impor-

tance and theoretical applicability [31, 142].

It is interesting to note that possibly the earliest efficient algorithm for edge-
coloring weighted bipartite graphs [62] was developed in the context of a
scheduling application, namely the scheduling of jobs in an open shop® Gon-
zalez and Sahni’s algorithm [62] finds shortest augmenting paths to obtain
matchings, a strategy similar to that used in Hopcroft and Karp’s matching
algorithm [71], and thereby obtain an edge coloring algorithm that runs in
time O(m?). Gabow and Kariv [51] again exploit the observation that graphs
whose degree is a power of 2 can be colored efficiently to obtain an algorithm
that takes time O(nmlog K), where K is the largest edge weight; this is faster
than the algorithm of Gonzalez and Sahni [62] for a large class of graphs, i.e.,

whenever nlog K = o(m).

The problems we address in this chapter, SimpleDTS and DTS, are mod-
eled as optimal k-coloring of a bipartite graph, i.e., optimal edge coloring a
bipartite graph where each color can be used to color at most k edges. Opti-
mal k-coloring also directly models the class-teacher timetabling application
if at most k classrooms are available at any given time [8]. However, to our

knowledge, the only previous algorithmic solutions for optimal k-coloring of

3 An open shop is the job-shop problem (defined in Chapter 2) with the restriction that
the precedence graph has no edges, i.e., tasks can be performed in any order.

87

bipartite graphs are by Bongiovanni et al [10] and Somalwar [132]. Algori-
thm KT of Bongiovanni et al [10] can operate on graphs with non-unit edge
weights, and, as described in this chapter, takes time O(m?*n +mn?). The al-
gorithm of Somalwar [132] is applicable only to graphs with unit edge weights,
and takes time O(n'Sqloggq), where ¢ is the bound of the graph, i.e., takes
time O(mn!®logn). As shown in this chapter, our algorithms A1 - A3 are

faster than either of these algorithms.

It is interesting to compare the performance of the algorithm of Somalwar
[132] and A2 for unit-weight edges (see Table 3.3), since A2 basically extends
Somalwar’s algorithm to the unequal weight edges case. The reason that A2
is faster by a factor of n, even if only unit-weight edges are allowed in the
input graph, is that A2 can handle weighted edges being introduced by k-fill,
while Somalwar’s algorithm cannot. Thus for A2 the k-filled graph has only
O(m +n) edges instead of O(mn) edges (see Lemma 3.9 and the Observation
following it). The increase in the number of edges that must be processed by

Somalwar’s algorithm accounts for its time complexity being higher by O(n).

It is for this reason also that any simplistic application of the k-filling tech-
nique to a previous unit-weight edge coloring algorithm will result in an algor-
ithm that performs worse than A2. For example, consider a simple extension
of Cole and Hopcroft’s [29] algorithm to handle K > 1 and k < n. Firstly,
weighted edges will be replaced by unit-weight edges, making the number of
edges O(mK). Then the k-filling technique will increase the number of edges
to O(mnK), vielding an O(Kmnlogn) algorithm for edge coloring, which is

worse that A2 by a factor of O(n®®). (As an aside, we observe that Cole

88

and Hopcroft’s algorithm can be extended in this way to perform better than

Somalwar’s).

Similarly, a simple extension of Gonzalez and Sahni’s [62] algorithm to han-
dle k < n by k-filling will result in an algorithm that is slower than A2 for
bipartite graphs with unit-weight edges by a factor upto O(n); for weighted
edges it will be faster than A3 by a factor O(logn +log K) for sparse graphs,
and slower by a factor O(n/(log n+log K)) for dense graphs. (However, such
an extension to Gonzalez and Sahni’s algorithm may be useful in practice, as

it is relatively simple to implement and takes much less space than A3).

In summary, algorithms A1 - A3 generalize previous edge coloring algorithms
[137, 62, 48, 50, 51, 29, 132] by allowing non-unit edge weights as well as a
restriction on the number of edges that may be colored with a single color.
The only algorithm that is as general as A1 - A3is KT [9, 10], and as shown
in this chapter, our algorithms out-perform it both in terms of theoretical and

experimentally-measured performance.

3.9.2 Conclusions and future work

A key question that arises at this point is: which algorithm should be used
for data transfer scheduling in bipartite architecture graphs, and under which
operating conditions? Our theoretical and experimental results show that for
all the situations considered in this chapter, either A1 or A2 should be used

over the previous best algorithm, KT. In general, A2 is the algorithm of

89

choice unless either the maximum transfer length K is greater than a small
constant, or the number of communicating entities (disks, transmitters, etc)

n is very high, in which cases A1l should be used.

It is interesting to consider the poor observed performance of A3. This seems
to be because of two reasons. Firstly, the conditions under which its exper-
imentally measured performance was better than A2 were very limited: a
relatively small number of transfers m, of large lengths K, to be carried out
between relatively few entities n, with a high degree of parallelism k. This is
because the constants in A3’s asymptotic time complexity seem to be very
high. Secondly, the theoretical worst-case space complexity of weighted-
edge-color, and hence A3 is very large: O(mnlog K) [51]. Our experiments
show that in fact even on average the amount of space required is unaccept-
ably high for most situations of practical interest. For instance, 32 MB of
main memory were not sufficient to handle input graphs with parameters
greater than n = 64,k = 4,m = 1000, and K = 80. Performance consid-
erations aside, it was found that A3 was more difficult and time-consuming
to implement than any of the other algorithms, and consisted of about twice
as many lines of C code. We conclude that although the algorithmic tech-
nique underlying weighted-edge-color is elegant and of theoretical interest,

it does not lead to a practical algorithm for our application.

For future work, there are two interesting questions. The first is whether
Gonzalez and Sahni’s algorithm [62] can indeed be extended to solve DT'S,
either by using the k-filling technique or by some other means, and if so,
whether its performance when implemented is fast enough to make it an

attractive practical solution to DT'S for interesting applications. The second

90

is whether k-filling is needed at all for optimal k-coloring of bipartite graphs,
i.e., perhaps this constraint can be satisfied at a lower level in the coloring

algorithm, say at the level of finding augmenting paths.

To summarize our contributions in this chapter, we have developed and ex-
perimentally evaluated three new algorithms for scheduling data transfers in
communications and parallel computer systems. These algorithms apply to
a significant class of applications, such as satellite data transfers and parallel
I/O due to 3D visualization software. The algorithms apply to a common
class of architectures, including satellite TDMA switches, and shared-bus
multiprocessors such as the Sequent [100], Encore Multimax [143] and the
IBM RP3 [115]. Our theoretical and experimental investigations show that
our algorithms perform significantly better than the previous best available
algorithm, KT. Our algorithms also generalize previous theoretical work on
edge-coloring algorithms for bipartite graphs [137, 62, 48, 50, 51, 29, 132],
both by allowing weighted edges and restrictions on the number of edges that
may be colored with a single color. Finally, to our knowledge, ours is the only
extensive experimental study of the behavior of four edge-coloring algorithms
for bipartite graphs in which the effects of varying the problem parameters
are investigated systematically. Such experimental studies are very valuable
from a practical standpoint; for example, we have shown that the practical
usefulness of the weighted-edge-color algorithm [51] used in A3 is severely

limited both in terms of space and time cost.

Chapter 4

Heuristics for Scheduling in Bus Architectures and
TDM Switches

In the previous chapter we discussed optimal algorithms for scheduling data
transfers in shared-bus multiprocessors and single TDMA switches. While
the algorithms we developed, A1 - A3, are in general faster than previous
optimal algorithms like KT [10], we would like to have even faster algorithms,
since in most applications scheduling algorithms are executed repeatedly, and

any gain in speed helps overall system performance.

In this chapter we turn our attention to approximation algorithms (or heuris-
tics) for the SimpleDTS and DTS problems restricted to unit-length tr-
ansfers. Two simple greedy heuristics for unit-length transfers, HDF and
HCDF, have been proposed and experimentally evaluated by Somalwar [132].
In graph-theoretic terms, these heuristics are essentially approximation algo-
rithms for edge-coloring bipartite graphs with unit-weight edges. Both heur-
sitics performed well in experiments, both with random input graphs as well
as input graphs simulating the projected parallel I1/0 workload generated by

applications such as 3D visualization and split-step migration. For instance,

91

92

for experiments using random bipartite graphs as inputs, one of the heuristics
always generated the exact solution, while running in less than 10% of the

time taken by an optimal algorithm [132].

While Somalwar’s result is encouraging, it is obvious that experimental eval-
uation can only examine a small number of combinations of the input pa-
rameters, and thus explore only a tiny fraction of the input space. In this
chapter we present the first analysis of the worst-case execution time of the
heuristics, as well as an analysis of their divergence from the optimal solution
in the worst case. We will quantify the divergence from the optimal solution

by finding a performance guarantee for each algorithm, defined as follows.

Def. If an approximation algorithm produces a schedule of length L'(RG)
for a problem instance with resource graph RG, and L(RG) is the optimum
schedule length, then the performance guarantee of that algorithm is P(n),
where P(n) is the maximum value of the ratio L'(RG)/L(RG), over all RG

with at most n vertices.

(For the algorithms in this chapter, we will be actually be interested in P(d),
where d is the degree of RG.) In sec 4.1 we derive a bound for the worst-case
time complexity and the performance guarantee for Somalwar’s heuristics
[132]. We remark that this bound is tight, i.e., it is possible to systematically
generate graphs for which the heuristic performs as badly as the worst-case.
In section 4.3 we compare Somalwar’s experimental results [132] with the

theoretical results, and finally we end with a discussion.

93

4.1 The Highest Degree First (HDF) Heuristic

We define the Unit — Simple DTS problem to be the Simple DTS problem
restricted to the case where all tasks have unit length, ie., for all ¢ € T,
Lp(t) = 1. By the observations made in the previous chapter, in graph-
theoretic terms, Unit — Simple DTS corresponds to the problem of finding
a minimum edge-coloring of a bipartite graph with unit-weight edges. Sim-
ilarly, Unit — DTS corresponds to finding a minimum edge-coloring for a
bipartite graph with unit-weight edges given that at most k < n edges may
be colored with a single color. We analyze the behavior of HDF first for
Unit — Simple DTS, and then for Unit — DT'S.

4.1.1 The Unit — SimpleDTS Problem

We introduce some additional terminology. Vertices a,b € A U B of a graph
G = (A, B, E) are called partners if (a,b) € E. A vertex is said to be colored
with color ¢ if some edge incident upon it is colored ¢. Note that an edge has
a unique color but a vertex may have multiple colors. A vertex is said to be
fully colored if every edge incident upon it is colored. The degree of a vertex
v is denoted d(v). The degree of the graph G by d(G), or simply d if clear

from context. A sequence is denoted by angle brackets.

Somalwar’s Highest-Degree-First HDF heuristic for Unit — Simple DTS for
a graph G = (A, B, E) is specified as algorithm HDF below. The Sort-

by-degree() procedure sorts the vertices in order of descending degree. The

94

“hreak” statement exits the smallest enclosing loop. The basic idea of HDF

is give priority to coloring the vertices in order of their degree.

Algorithm HDF
Input: Bipartite graph G = (A, B, E)
Output: An edge-coloring of G

1. (vy,...,v,) 1= Sort-by-degree(A U B);
2. while E # {}

3. E={}

4 for each v read in sequence from (vy,...,v=) {
5 for each e = (v,w) € E {

6. if e is not adjacent to any edge in £’ {
7 Add e to E' and remove it from F
8 Reduce degree of v,w by 1 and

remove from (vy, ..., vp)
9. break
10. }
11. }
12. }
13. Color all edges in E’ with a new color
14. (v1,...,05) 1= Sort-by-degree(A U B);
15. }
16. end

Recall that the minimum number of colors, or schedule length, is d for a

bipartite graph of degree d. How many colors will HDF use in the worst

95

case” It is useful to answer a more general question instead: how many colors
will =z greedy heuristic use in the worst case? We first specify the greedy
heursic which, for every color, attempts to color as many edges as possible

with 12at color.

Algorithm Greedy Heuristic
Inpu:: Bipartite graph G = (A, B, E)
Output: An edge-coloring of G

. Assign some order F = {ey, €, ..., €n) to the edges of E
=0
. while F' # {} {

]

(W]

4. for each e read in sequence from F {
3. if e can be colored with color ¢ {
6. color e with color 2

7. remove e from E and F'

(2]
S

10 ii=1+4+1

4
oy
[S—

Clea-’v, any execution of HDF can be repeated by the greedy heuristic by
choosng an appropriate initial ordering of the edges. Thus HDF is a special

case of the greedy heuristic. We now state a simple but useful fact.

Lemma 4.1 At the end of iteration i of the while loop of the greedy heuristic,
if some vertez v is not fully colored and is not colored ¢, then all of v's partners

are clored 1.

96

proof. Suppose not. _hen v as well as at least one of its partners, say w,
is not colored i. But izen the greedy heuristic would have colored the edge

(v, w) with z. O

Lemma 4.2 The gresiy heuristic produces a coloring using at most 2d — 1

colors for a bipartite raph of degree d.

proof. For a vertex v. let deg(v) be its degree and P(v) its set of partners.
Let L(v) = deg(v) + zax{deg(w) : w € P(v)}. From Lemma 4.1, every color
used by the greedy hezristic reduces L(v) by at least 1. A special case occurs
for the last color use: to color v; for this case, there is one remaining edge
incident on v, so tha: when it is colored L(v) is reduced by 2. Therefore at
most L(v)—1 colors &= used to color all edges incident to v. Since L(v) < 2d,

the result follows. O

It can be shown that shis bound is tight for HDF. A simple example where
the 2d — 1 bound or schedule length is met for d = 2 is the four-transfer
example given in Chipter 1. However, we can prove that such an example
bipartite graph G(d) :zn be constructed for any positive integer d. In fact, we
will show that G(d) is = tree. We first introduce some notation and definitions;

see Fig. 4.1 for exarzles of their use.

Notation. Upper-cise italic letters denote vertices or subtrees of a tree;
they may be subscrizzed. If A and B are vertices, A; B denotes that they
are siblings, and 4 = cenotes that Ais the parent of B. The letter R may

97

be used to distinguish the root of a (sub)tree, and C for its child. Thus
R(Cy; Cy), where the C; are distinguished vertices, denotes a binary tree of
two levels. A set of identical siblings is denoted using an array notation: thus
R(C|2)) also denotes a binary tree with two levels. Angle brackets have higher
precedence than semi-colons. Thus R(C1;C3) ; A denotes a forest with two

trees, and R{C;C2; A) denotes a ternary tree with two levels.

Def. Two trees S and T' with roots Rs and Rr, respectively, are root-merged
by deleting Rs and Rr (along with any incident edges), introducing a vertex
R, and adding edges from R to every child of Rs and Rr. Using the notation

above, and letting + denote root-merging, let

S = Rs(Sy; Sa; - Si)

T = Rp(Ty; Ty; .. 15)

Then S + T = R(Sy;...; Si; T1; - 1) -

We now construct two families of trees to be used later in the construction of

G(d), and consider how they could be colored.

Def. The tree F(i,d), with d > 1, is defined mutually recursively with the

tree H(i,d) as follows. See Fig. 4.1 for examples.

1. Fy4 consists of a single vertex.

98

Figure 4.1: Example construction to show HDF takes up to 2d — 1 colors to
color a graph of degree d

o

. Hyg = Ri{Cy{Foald —1])

Fyg= H(1,d)

CFor 1 <i<d, H(#,d) = R{(C; (Fioy14ld —1]))
CForl<i<d Fig=H g+ Hyg+ ...+ Hiy

- w

Ot

() has precedence over -+, which has precedence over ;. Observe that for every
tree H; g4, the child of the root, C;, has degree d, i.e., is critical. Also note

that for every Fjg, the children of its root are critical.

Lemma 4.3 For every tree F g, 0 < 1 < d, there exists a sequence of choices

99

made by HDF such that the root of F;4 is colored with every color in the set

{1, ..., i}.

proof. By induction over j.

base. j = 1. For Fiy 4 = Hi4 = Ri(C1(S[d — 1])), the choice of coloring edge
(R, C4) with color 1 suffices.

hyp. For all F;4, 0 <t < j < d, there exists a sequence of choices made by
HDF such that the root of F; 4 is colored with all colors in {1, ..., i}.

ind. Consider the coloring of Fj4. By definition,

Fa=Hig+ Hyg+ ... + Hja

= Ri{C1(Foald — 1)); Co(Frald = 11); .. Ci(Fi1ald = 1])3)

We will show that there is a sequence of choices made by HDF such that
for all 7,0 < 1 < j, edge (R;,C;) in the expression above is colored by color
;. First note that by the hypothesis, for every i, 0 < ¢ < j, there exists a
sequence of choices s; such that the root of F. 4 is colored with all colors in
{1,...,i}. Clearly, it is possible to merge these sequences appropriately so
that the resulting sequence, s, colors the root of every F;q with all colors in

{1,...,i}. We now show how s is extended by a sequence of choices that can

be made by HDF.

100

Since every C; is critical, and uncolored, it is eligible to be chosen by HDF.
Let the first choice be to color ;. By applying the hypothesis the root of
every Fp g, is not colored; let HDF choose to color C; by coloring (R;, C1)
with the color 1. Now let HDF choose to color Cp. By the hypothesis, the
root of every F} 4 is colored with color 1; also, R; was just colored 1. Therefore
C, cannot be colored using color 1. Let HDF choose to color C3 by coloring
edge (R;,C,) with color 2.

HDF continues to choose to color each C; in turn by choosing to color (R;, C;)
with color i. The sequence of HDF’s choices is concatenated to the sequence

s, and this gives the result. O

Theorem 4.1 For any positive integer d, there ezists a bipartite graph of
degree d and a sequence of choices made by HDF such that HDF uses 2d—1

colors to color the graph.

proof. By construction of the graph. Let

G(d) = R{F4_1,4[d])

From Lemma 4.3 there exists a sequence of choices made by HDF such that
the toot of every Fy_; 4 is colored with all colors in {1,...,d — 1}. Therefore,
each of the links incident to R will have to be colored with a color not in the
set {1,...,d— 1}, and each will require a distinct color. Therefore d colors are

required to color the links incident to R in addition to the colors {1,...,d—1},

