101

ie. at least d+d — 1 = 2d — 1 colors are required to color G(d). By Lemma
4.2 we know that HDF, being a greedy algorithm, requires at most 2d — 1
colors to color G(d). It follows that there exists a sequence of choices for

which HDF uses 2d — 1 colors to color G(d). O

To summarize, by Lemma 4.2 we have shown that any greedy heuristic, and
hence HDF, uses at most 2d — 1 colors to color a bipartite graph, and by
Theorem 4.1 we have shown that for any d we can construct an example for
which HDF actually uses 2d—1 colors. We can use Lemma 4.2 to also obtain

the time complexity of HDF.

Theorem 4.2 HDF takes time O((m + n)d) to solve Unit — Simple DTS,

and produces a schedule of length at most 2 — L times the optimal length.

proof. For the time complexity, note that Sort-by-degree() takes time O(n+d),
if a bucket sort is used. For ea?:h color, each edge is examined at most once.
Thus each color (i.e., iteration of the while loop) takes time O(m + n + d)
[132]. Using Lemma 4.2, the total time is thus O((m + n + d)(2d — 1)) =

O{(m + n)d). The performance guarantee follows from Lemma 4.2 also. O

4.1.2 The Unit — DTS Problem

The program for implementing the HDF heuristic for handling the situation
where a color may be used to color at most k < n edges is a slight modification

of the program given above. We add the following line,

102

11.5 if |E'| = k, break

That is, after every edge is added to E’, the program checks if |E’| = k, and
if so, does not add any more edges to E’ for the current color. We call this

program MHDF for convenience.

The analysis of MHDF is slightly more complicated than for HDF. In par-

ticular, we are not able to prove a bound that is tight for all inputs.

Lemma 4.4 MHDF produces a coloring using at most |m/k| + (2d — 1)
colors for a graph of n vertices, m edges, and degree d, if at most k <n edges

may be colored with a single color.

proof. Suppose HDF was used on the graph instead of MHDF. In the worst
case it uses 2d — 1 colors, with color ¢ coloring m; edges, and 2lm; = m.
If MHDF uses the same sequence of choices, coloring m; edges may require

up to |m;/k] + 1 colors. The result follows. O

Note that this bound is exact for the graph m =n =5,d =1, k = 2. On the
other hand, it is not tight for the class of graphs with k =n and k =1. In
the former case, MHDF is simply HDF, so at most 2d—1 colors are needed.

In the latter case, exactly m/k = m colors are needed.

103

4.2 The Highest Combined Degree (HCDF) Heuristic

An obvious modification to the HDF heuristic is to give preference not nec-
essarily to vertices of highest degree, but to edges whose end vertices have
the highest combined degree. Somalwar [132] experimentally investigated this
Highest-Combined-Degree-First heuristic, HCDF, and found that it gave op-
timal or near-optimal solutions for input graphs generated randomly. In this
section we find the time complexity and performance guarantee of HCDF,
for both the Unit — SimpleDTS and SimpleDT'S problems. This turns out

to be a simple extension to the analysis for HDF.

Our first observation is that HCDF is also a special case of the greedy heu-

ristic. We thus obtain the following result.

Theorem 4.3 HCDF takes time O((m +d)d) to solve Unit — SimpleDTS,

and produces a schedule of length at most 2 — L times the optimal length.

proof. The performance guarantee follows from Lemma 4.2 since HCDF is
also a greedy heuristic. For the time complexity, we observe that the edges
can be sorted using a bucket sort, with buckets in the range 1 to 2d, and for
every color, each edge is examined at most once. Therefore every color takes

time O(m + d), and there are at most 2d — 1 colors used. 0

We can also show that for certain graphs exactly 2d — 1 colors will be used

by modifying the construction used for HDF.

104

Theorem 4.4 For any positive integer d, there ezists a bipartite graph of
degree d and a sequence of choices made by HCDF such that it uses 2d — 1

colors to color the graph.

proof. Construct G(d) as described for Theorem 4.2. We will construct a
new tree T'(d) by modifying G(d); initially set T(d) = G(d). We call an edge
critical in G(d) or T(d) if the combined degree of its end vertices is 2d. For
all i € {1,...,d}, edge rc(i,d) in G(d) has at least one critical vertex; for each
such edge, ensure the corresponding edge in T(d) has both end vertices critical
by adding appropriate edges and vertices if necessary. Now the sequence of
edge-colorings used by HDF to color re(i,d), i € {1,...,d}, can be used by
HCDF. Thus it takes d — 1 colors before the root of T'(d) is colored, and an
additional d colors to color all the edges incident to the root. Since HCDF
is greedy, by Lemma 4.2 all other edges can be colored using 2d — 1 colors.

O

Finally, we call the algorithm HCDF modified to color at most k < n edges
with the same color the Modified-HCDF algorithm, MHCDEF. For this algo-

rithm applied to the Unit — DT'S problem, we can obtain a result similar to
HDF.

Lemma 4.5 MHCDF produces a coloring using at most |m/k] + (2d - 1)
colors for a graph of n vertices, m edges, and degree d, if at most k < n edges

may be colored with a single color.

proof. Similar to Lemma 4.4. O

105

4.3 Comparison of experimental and theoretical re-
sults

Somalwar [132] has experimentally evaluated the performance of HDF and
HCDF on instances of the Unit — DTS problem He compared their behavior
to that of the exact algorithm A, which is a special case of A2 for unit-weight
edges implemented by Somalwar [132]. We also compare their behavior to the

performance guarantees derived in this chapter.

Somalwar performed this experimentation in the context of the parallel I/O
application, i.e., scheduling parallel I1/0 operations for a shared-bus multi-
processor system. For this context, certain parameters of the input graph
G = (A, B, E) were fixed. In particular, it was chosen that n; = |A| = 16,
ny = |B| = 64, m = E| varied from 100 to 1000, and k varied from 4 to 16.

Edges were generated using a pseudo-random generator.

Somalwar [132] fourd that in his experiments both HDF and HCDF pro-
duced schedules that are almost always of the optimal length. In that sense,
they perform much better on average, for this set of experiments, than their
performance guarantees predict for the;xr worst case behavior. Although these
results seem surprisingly good, there are some recent related experimental
results to support them. Moret [105] found that for maximum cardinality
bipartite matching, using a simple greedy heuristic similar to HDF delivered
an optimal solution at least 99% of the time. Since the basic operation of
edge-coloring unit-weight graphs can be regarded as repeated matching, these

results are consistent with Somalwar’s observations.

106

700 A
600
500
B
<400
L
]
’?“
= 3004
(o9
O] <
200 -
HCDF
100 4
HDF
0 A i 1§ ¥ 1 T T 1
0 200 400 600 800 1000

Number of transfers, m

Figure 4.2: CPU time versus number of transfers for & = 4

700
600 4
500
2
2 400
u
= 300
@]
200 A
\//HCDF
100 -
— . HDF
0 T 1 I i 1 T 1

Number of simultaneous transfers, k

Figure 4.3: CPU time versus number of simultaneous transfers possible for m

= 1000

107

In Fig. 4.2 and Fig. 4.3 the execution time of A, HDF and HCDF is
compared, as m and k are varied respectively. It can be seen that HDF
executes in at most 10% of the time required for A2 for this set of experiments.
On the other hand, HCDF may take up as much as 80% of the time required
by A2. Since both heuristics almost always produce optimal schedules, this
set of experiments indicates that HDF is to be preferred over HCDF and

A2, unless it is essential to produce optimal schedules, in which case A2

should be used.

4.4 Discussion

4.4.1 Previous related work

The literature on exact edge-coloring of bipartite graphs with unit-weight
edges was discussed in the previous chapter. To our knowledge, there has
been no previous work on analysis of approximate edge-coloring of bipartite

graphs with unit-weight edges.

The only related work that may be relevant deals with approximate edge-
coloring of general graphs and multigraphs. Holyer [70] showed that deter-
mining whether a general graph can be colored in d or d + 1 colors (the
classification problem [41]) is NP-complete. A consequence of his result was
that, unless P = NP, there does not exist an approximation algorithm for
edge coloring a general multigraph using at most (4/3 — €)D colors, for any

¢ >0, where D € {d,d + 1} is the minimum number of colors required. This

108

would seem to imply that for general multigraphs finding a provably good
approximation algorithm is difficult. However, an algorithm using no more
than (4/3)D colors, and running in time O(m(n + D)) was developed [69].
This algorithm uses an “interchange approac ” as its basis: for each edge,
check if some “simple” recoloring of the colored edges would eliminate the
need for an additional color. As the authors say, “in order to prove better

bounds, the ‘simple’ recolorings become more complicated” [69].

We note three deficiencies with this interchange heuristic. Firstly, it does not
consider the practical constraint of a limited number of simultaneous data
transfers, i.e., k < n. For our applications, this constraint corresponds to the
realistic situation of limited bus bandwidth or switching capacity being avail-
able in the system. Secondly, although this heuristic has a better performance
guarantee than those analyzed in this chapter, its time complexity is slightly
worse, unless d = n. Thirdly, since the HDF and HCDF heuristics do not
perform any backtracking or recoloring, they are likely to have smaller con-
stants for their time complexity, and are likely to be simpler to implement,

than the interchange heuristic.

To our knowledge, there has been no previous published experimental evalua-
tion of approximation algorithms for edge-coloring bipartite graphs other than
Somalwar [132]. The only unpublished results we are aware of are those by

Moret [105], which provide evidence to support some of Somalwar’s results.

109

4.4.2 Conclusions and further work

Approximate algorithms for edge coloring bipartite graphs are very attractive
from a practical standpoint, particularly if they are to be used as the basis
of scheduling algorithms that are executed very frequently in a data transfer
application. While Somalwar [132] has suggested some simple greedy heuris-
tics that seem to perform extremely well when evaluated experimentally, there
was no analysis of the time complexity or the performance guarantee for these

heuristics.

Our contribution in this chapter has been to prove the time complexity and
performance guarantees for the heuristics proposed by Somalwar. The heuris-
tics apply to the data transfer problem DTS when restricted to unit-length
transfers. We have shown that the heuristics generate schedules less than
twice the length of the optimal schedule, in the worst case, and take at most
time O((m+n)d) to execute, where n is the number of vertices, m the number

of edges and d the degree of the input graph.

Our result enables us to compare the performance of Somalwar’s heuristics
with more sophisticated “interchange” heuristics [69]. The interchange heuris-
tics are more general than those of Somalwar as they are applicable to general
graphs as well as multigraphs. They also provide a better performance guar-
antee for only a slight increase in time complexity. However, we observe that
for our applications, the Somalwar heuristics may be preferable as the appli-
cations are restricted to bipartite graphs, and the heuristics allow the case

when a limit is placed on the number of simultaneous data transfers allowed.

110

We also surmise that the interchange heuristics have larger time constants,
worse average-case execution time, and are harder to implement, than the

simple greedy heuristics of Somalwar.

For future work, we suggest two questions. The first question is to exper-
imentally and theoretically compare the interchange heuristics and Somal-
war’s greedy heuristic, and determine the range of parameters for which each
is suitable. The comparison could include theoretical average-case analysis
(e.g. [46]) as well as careful experimental evaluation. The second question is
to consider the possibility of using parallel algorithms for scheduling; these
may be especially suitable for the parallel I/O application. The results of
Karloff and Shmoys [86] provide a starting point in this direction.

Chapter 5

Scheduling in Hierarchical Architectures

We have so far discussed scheduling of data transfers in system architectures
which have a rather simple, although common, structure. The architecture
of the DTS and the SimpleDTS problems assume that there is a direct
dedicated link between every sender and every receiver; constraints arise in
the number of links that may be used simultaneously, and in the capacity of
cach sender and receiver to engage in at most one transfer at any given time.
In the context of the parallel I/O application, this architecture corresponds to
the commercially succesful and popular class of shared-bus multiprocessors,
in which processors and disks are connected by a set of parallel buses. For the
communications application, it corresponds to the case of scheduling transfers
through a single TDM switch, which can be viewed as a single multiplexer

feeding a single demultiplexer.

In this chapter we consider more complex architectures that do not assume a
direct dedicated link between every sender and every receiver. In particular,
we consider a system where the data transfers must pass through a hierar-

chically arranged set of communication paths, which form a communication

111

112

tree (see Fig. 5.1). We also generalize the architecture to allow arbitrary
capacities, drzwn from the set of positive integers, for each link in the archi-
tecture. Note that this also does away with the restriction that a sender or
receiver can eagage in at most one transfer in any given time. We call this

architecture the tree architecture.

In section 5.1 we define the tree architecture formally in our model and specify
the data transfer scheduling problem that we are interested in. In section 5.2
we show that this problem has application in three different areas: parallel
I/0, switchirz systems, and file transfer in computer networks. The tree
architecture i also of theoretical interest: we surmise that if the architecture
is made more complex than a tree, optimal preemptive scheduling of integer-

length transfers without precedence constraints cannot be done in polynomial

time.

We then develop, in section 5.3, the outline of an algorithm to optimally
solve the scheduling problem, and in section 5.4 we show how the algorithm
can be desigred to obtain a solution in time O(Cn*), where n is the number
of senders and receivers, and C is the average number of transfers a sender
or receiver czn engage in at any one time. This algorithm, which we call
the Tree scheduling algorithm, has been presented in [77, 125]. In general,
Tree is a gereralization and improvement in time complexity over previous

algorithms [24, 11, 96, 20, 136] for this class of problems.

We have implemented the Tree algorithm. In section 5.5 we report the results

of an experimental evaluation of the behavior of the algorithm for random

113

input instances. Finally, in section 5.6 we discuss previous related work, and

end with some conclusions.

5.1 Definition of the problem

We define the generalized data transfer scheduling problem TreeDTS, which
differs from DTS in allowing tree-structured interconnection networks of the

type shown in Fig. 5.1. The interconnection network is defined formally as

AG below.

TreeDTS = (PG, AG, RG, f, Preempt)

where Preempt = true, f is makespan, and, PG, AG, and RG are defined

as follows.

PG = (T, Ep, Lp) with |T| = m, Ep = {}, and Lp(t) 2 0 for all t € T are the
task lengths.

AG = (R, Ea, La) and (see Fig. 5.1) RT = {SUSER, RUSER, MUX, DMUX,
NULL}; |R| = n + n' + 1, n is the number of resources of type SUSER or
RUSER, n' is the number of type MUX and DMUX, and there is one
resource of type NULL. Ea is a directed tree whose root is the resource of
type NULL. The root has a left subtree M T called the multiplexer subtree
with interior nodes of type MUX, leaves of type SUSER, and arcs directed
towards the root. (The definition of the right subtree DT follows by analogy).

114

Dummy node. Type NULL

Root of Multiplexer

Root of Demultiplexer
Subtree, MT

@ Tree, DT

, N Demultiplexer
Multiplexer nodes, type
nodes, type DMUX
MUX

Sending Users, Receiving Users,
type SUSER type RUSER

Figure 5.1: Model of a tree-structured architecture

Now La(r) = 0 if » € R, and La(e) is the capacity of arcs e (in packets per
second) for e € Ea. We assume all interior vertices have degree at least 3 so
as to avoid degenerate trees. We also assume that for vertices in MT the
sum of La(e) for incoming arcs e is at least the value of La(e') for the single
outgoing arc ¢’. There is an analogous assumption for DT', while for the root

the capacity of the incoming arc equals that of the outgoing arc.

RG = (R, Er, Lr) is a bipartite graph, where E7 is a set of arcs from vertices
of type SUSER (senders) to those of type RUSER (receivers) representing
the data transfer operations to be scheduled, and L7 is a bijection from Er to
T. Note that since there is a unique path betwen each sender-receiver pair,
only the assignment of tasks to senders and receivers is shown in RG, the

assignment of other resource types being left implicit.

115

5.2 Three Practical Applications

By casting the extended data transfer scheduling problem in our model, we see
that it is a generalization of problems studied for three applications: parallel
1/0, satellite switching, and network file transfers [80, 81]. Thus the results
we derive in this chapter are available to all three applications. We describe

these applications below.

Application 1: Parallel 1/0 in multiprocessor systems

In this chapter we consider cases of the 1/0 scheduling problem in which we
do not assume a direct dedicated link from every processor to every memory.
In addition, a processor or memory is not limited to engaging in at most
one transfer at any given time. This problem is applicable to I/O schedul-
ing in a variety of tree-structured parallel computer architectures, as well as

interconnection networks such as KYKLOS [102].

Parallel database machines have been built that have tree-structured architec-
tures, such as the VLSI tree machine of Song [133] and the relational database
machine REPT [127]. The VLSI tree machine consists of two mirrpred bi-
nary trees connecting a common set of leaves. The root of the top (called
“circle”) tree receives data and commands from the external host and broad-
casts them down to the leaves (“square nodes”). The leaves perform the data
manipulations in parallel and deliver results via the bottom (“triangle”) tree.
The interior nodes of the bottom tree combine results from the leaves before

transferring them to the external host via the root of the bottom tree.

116

Concentrated Concentrated
"~ | MUX | TDM Lines TDMLines | DMUX|
%ending . DM Receiving
sers .
Switch) Users
: MUX DMUX

Figure 5.2: SS/TDMA hierarchical switching system

Application 2: Hierarchical switching systems

Hierarchical time division multiplexed (TDM) switching systems have been
proposed [39] that connect sending users via a bank of multiplexers, followed
by a TDM switch, followed by a bank of demultiplexers to receiving users, as
in Fig. 5.2. Hence, the switch has three stages. Advantages of the hierarchical
structure are that fewer switches may be needed to serve the user population;
trunking efficiency may be increased due to the fact that end users have access
to multiple input links; and modular growth is possible if additional lines and

multiplexers/demultiplexers are required.

The hierarchical switching systems we consider in the remainder of this paper
have an arbitrary number of stages, but are required to conform to a tree

topology. A special case of our switching systems includes the one in Fig. 5.2

Oo0—> —>0
>0
O—> =

Send;

Uesréién g Receiving
o Users
o—N > L
O
O —>0

—>0
Multiplexer Tree Switch Demultiplexer Tree

Figure 5.3: Hierarchical switching system

but where the middle n x n switch can transport at most £ < n packets per

slot.

Note that the central TDM switch can also be regarded as a multiplexer
feediing a demultiplexer. Thus the switching system can be regarded as being
composed of only two elements, as shown in Fig. 5.3. We will use this model

for the system architecture in the rest of this chapter.

Application 3: File transfers in computer networks

Consider a communications network where each node has several ports that
can simultaneously transfer files, file transmission can be preempted, and the
maximum number of simultaneous transfers at any time in the network is

fixed. Each user is connected to a single network node and assigned a unique

118

port on that node for file transfers. Such a network can be modeled as a
hierarchical switching system, or a specialized tree-structured architecture (a

special case of the architecture shown in Fig. 5.1).

5.3 The Tree scheduling algorithm

In order to develop an algorithm for solving TreeDTS optimally, we first
introduce some notation and some definitions. We then introduce the notion

of critical transfers and develop the outline of an algorithm.

5.3.1 Basic definitions and notation

The sets of senders and receivers are denoted Vs and Vp, and the sets of
multiplexers and demultiplexers are denoted Viy and Vp. The architecture
graph is sometimes called a system graph in this section, and is shown in
Fig. 5.4. It is denoted (V, E) where V = Vs UV U Vp UVg and the directed
links E are as follows. The set E = Ep U Ep U{[zm,zD]}, where znm € Vur,
Tp € ‘VD, (Vs U Vi, Ear) denotes the multiplexer tree with root node I,
and (Vg U Vp, Ep) denotes the demultiplexer tree with root node zp. In
addition, the links of (Vs U Vi, Ep) are directed towards zp, and the links
of (Vg U Vp, Ep) are directed away from zp. Note that a multiplexer node
v € Vi (resp., demultiplexer node v € Vp) is one with a single outgoing
(resp., incoming) link and at least two incoming (resp., outgoing) links. Let

n = |Vs| +|Vrl-

119

2

M Xp

St

Vs (Vi Em) (Vp,Ep) Vg
Figure 5.4: Switching system graph (V, E)

For each link e € E, the positive integer c(e) is the number of transfers
that can be carried on simultaneously over that link; in terms of the satellite
switching application, it is the number of packets that can be delivered over
the link in one time slot. For each node v € V, let I{v) and O(v) be the sets of
incoming and outgoing links of v, respectively. We assume for a multiplexer
node v € Vir, Yeerw) €(€) 2 Leeow cle); and for a demultiplexer node v €
VD, Yeerw) €(€) £ Ceeoqw) cle). For a user node v € Vs U Vg, let C(v) be the

capacity c(e) of the single link e incident to v.

Note that |V]| < 2n, since (Vs U Vi, Ear) and (Ve U Vp, Ep) are trees and
each node in Vj; (vesp., Vp) has at least two incoming (resp., outgoing links)

links.

We now introduce some specializations of the definitions given in Chapter 2,

120

in order to simplify the discussion of the solution to TreeDTS. Let Esp =
{{u,v] : u € Vs,v € Vr}. We call any nonnegative integer matrix r = (r(e):
e € Esg) a traffic matriz. The interpretation of r([u,v]) is the number of
packets to be transferred through the system from user u to user v; in effect
it captures the resource graph of the problem. If ris a traffic matrix then let
t, = (t,(e) : € € E), where t.(e) is the number of packets to be transferred
over link e with respect to r. More formally, ¢, satisfies the following: if e
is the outgoing (resp., incoming) link of node v € Vs (resp., v € Vg) then
t,(e) = Tyevy r([vs ul) (resp., Luevs r([u,v])); and for all nodes v € VarU Vb,
Yeclw) tr(€) = Leeo() t.(e). Clearly, t, can be calculated from r in O(n?)

time.

A traffic matrix r is called a feasible transfer if for all e € E, t.(e) < c(e).
A schedule is a sequence s = (di,ri 11 = 1,...,m), where d; > 0 is integer,
and r; is a feasible transfer. The length of the schedule is 3", d;, the scalar
d; is called a duration, and m is called the switching complezity. A schedule

s=(di,r;:1=1,..,m) is said to satisfy a traffic matrix v if 30 diry = 7.

Note that a lower bound to the minimum length is L(r) = maXccE (%'(%l] . In
section 5.3.2, we provide the outline of an algorithm that finds a schedule
of length L(r) that satisSes 7. Thus, the schedule has minimum length. In
section 5.4, a time complexity analysis of a fast design for this algorithm is

given.

For the rest of this chapter we will use the following notation. Suppose
f=(f(z):z€X),g=19(z):z€ X), and X is some set. Then f < (zesp.,
=,>) g is interpreted as f(z) < (resp., =,>) g(z) for all z € X.

121

5.3.2 The scheduling algorithm

In this section we first define a critical transfer. Informally, for any time slot,
a critical transfer is the minimum transfer required to ensure that the lower
bound of the schedule length decreases by one unit; a sequence of critical
transfers will thus result in an optimum schedule. In the first two lemmas we
show the condition a transfer must satisfy in order to be a critical transfer. In
the third lemma we show that a critical transfer exists for our system, leading

to an algorithm for solving TreeDT'S.

Def. A feasible transfer g is called critical with respect to a traffic matrix h

ifg<hand L(h—g)=L(h)—1.

We also define by, = (by(e) : e € E) to be a function of traffic matrix h such
that by(e) = max{0,tx(e) — (L(k) — 1)c(e)}.

Lemma 5.1 Suppose h is a traffic matriz, g is a feasible transfer, and d > 0
is an integer such that h > dg. Then L(h — dg) = L(h) — d if and only if
L(h —dg) < L(h) — d.

Proof. Since g is a feasible transfer, ¢;(e) — dt,(e) > t4(e) — dc(e). Therefore,

L(h — dg) = max,¢p[2ELFe)]

> maxeeg[%—((g] —d
= L(h) —d.

122

Since L(h — dg) > L(h) — d, the lemma is implied. O

Lemma 5.2 Suppose h is a traffic matriz. A feasible transferg < h is critical

with respect to h if and only if t; > by.

Proof. By definition, g is critical if and only if L(h —g) = L(h) — 1. From
Lemma 5.1, we know L(h —g) = L(h) — 1 if and only if L(h—g) < L(h)-—-1.
The last inequality is equivalent to ?-'z-(d)-) < L(h) — 1 for all e € E, because
L(h) -1 is integer valued. Next note that =2 < L(h) — 1 is equivalent to
t,(e) > tn(e) —(L(h) —1)c(e). Therefore, g is critical with respect to h if and
only if for all e € E, t,(e) > tu(e) —(L(k) — 1)c{e). The lemma is implied

since t,(e) >0 for all e € E.]

For the next lemma, and the remainder of this section, we consider another
network (V, E*) (see Fig. 5.5), where the nodes are V, the directed links are
E* = EU Egs, and Ers = {[u,v] : u € Vg,v € Vs}. (Notice that the links in
Egs are oriented from receiver nodes to sender nodes.) A nonnegative vector
f=(f(e): e € E) is called a flow. For each v € V, let I*(v) and O*(v) be
the set of incoming and outgoing links, respectively, for the node v. A flow f

is node-conserved if for all v € V, Yeerr(v) F(€) = Lecor(v) f(e).

Def. For any traffic matrix h, let the network link lower bound b} = (br(e) -

e € E*) and network link capacity ¢, = (cj(e) : e € E7), such that

f(e) = {bh(e), if e € E;
h - 0, if e € Egs.

123

c‘(e) - {C(e)» if e € F;
M = U min{h([v,u]),C(u), (1 v)}, if [u,v] =€ € Ers.

Note that 4} and ¢} are integ=r and ¢, > b;. Also, for the special case in
[24] when “speed-up” is not zlowed, we would replace h([v,u]) by 1 in the
definition of ¢} above; this chzzge leads to minor modifications in the proofs

below which are left to the rezder.

Lemma 5.3 For any traffic natriz h such that L(h) > 1, there is a critical

feasible transfer g.

Proof. The proof has three seps. We define a flow f and observe that it
is node-conserved, show that 77 < f < ¢}, and then use the corresponding
integer-valued flow to define ¢ traffic matrix. Let f be a flow such that

, if [u,v] = e € ERgs;
- ifee E.

Then f is node conserved. Nzxt we show that b; < f < ¢j. Suppose € =
[u,v] € Egs. Let ¢’ and €” be the outgoing link of v and the' incoming link of u,
respectively. (Notice that her: we use the property that leaves of a tree have
only one parent). Then L(h) > max{i((f,)l, —C(i;;)l, 1} > ma,x{hc’z‘; , JC%D, 1}

and

bi(e) = 0 < f(e) = M2l

< min{C(w), C(v),h([v.+ i} < ci(e)-

P

124

Algorithm Tree.

Input: Traffic matrix r.

Output: Schedule s = (di,r; 11 =1,...,m)
that satisfies r.

Tetm=0andr' =r.
while v’ # 0 do
Let m=m+ 1.
Note that ' = r — 727" dirs.
Compute a critical feasible transfer
rm of 7.
Let d,, > 0 be the maximum value d such
that v’ > dr,, and
L(r' —dry) = L(r') — d.
v =7 —drp,
=nd

Table 5.1: The Tree algorithm

tuppose e € E. Then f(e) = %% < Q%l(%ﬂ = c}(e). Also, note that %é?))
<L) ta(e) < L()e(©); tale)(1 — L(R) = —(L(R) = DL(Rie(e): ta(e)
> ti(e)L(h) —(L(h) — 1)L(h)c(e); and %(% > ta(e) —(L(h) — 1)e(e). Thus,

“Ie} > by(e). We are done verifying b; < f < cj.

Trom the Integrality Theorem for Flows (see [122]) we know that since there is
: node-conserved flow f such that bf < f < ¢f, then thereis a node-conserved
ateger-valued flow f' such that b} < f' < c;. Let g be a traffic matrix such
aat g([u,v)) = f'([v,u]). Then ty(e) = f'(e) for all e € E. Note that ¢ is
. feasible transfer because t,(e) = f'(e) < c(e); and g < h because g [u,v])

= f([v,u]) < h([u,v]). Finally, g is critical since f’ > b} and Lemma 52. O

Def. Let Rj=r — ;‘:}1 d;r;.

Theorem 5.1 Algorithm Tree solves TreeDTS.

125

Proof. Lemma 5.3 implies that a critical feasible transfer r; can always be
found for a traffic matrix R;. Also, the value d; is greater than zero, because
r; is a critical feasible transfer for R;. Therefore, the sequence R;, Ra,...
is decreasing in value and the algorithm will eventually terminate with the
schedule s. Since S, d; = Y7 [L(R;) — L(Riy1)], the length of s is L(r)
and is optimal. O

For the rest of the section we discuss the computation of d;, which is the
maximum value d such that R; > dr; and L(R; — dr;) = L(R;) — d. The
inequality R; > dr; is equivalent to d < mlneEE!_ » (e)J From Lemma 5.1,

L(R;—dr;) = L(R;)—d is equivalent to [M] < L(R;) —dforalle € E.

tr.(e)~dtr, (e)

Since L(R;) — d is integer, the last inequality is equivalent to ©

< L(R;) — d, which in turn is equivalent to

d< ﬂRini(e)

_ { LB it ole) > tnle)

0, otherwise.

=S~ 4 1e(e)—tr. (e
_ { L) EC‘(’:}}_ii((e)) t;), if C(e) > tr,’(e);

00, otherwise.

Therefore, d; = min{min.eg Br; r(€), MiNecEsn L tr; ((:))J }-

5.4 A time efficient design

In this section we discuss time efficient implementations of Algorithm Tree

and the time complexity. First we prove a bound on the sum of the link

126

(NRa AR) ARS (NS’ AS)

Figure 5.5: Network model G = (V, E~)

capacities in the network (V*, E*), and a bound on the switching complexity
m of Algorithm Tree. These bounds are used in the calculation of the time

complexity of our implementation of Algorithm Tree.

Lemma 5.4 Let C =25 vy, C(v) and ¢ = (c(e) 1 € € E7) such that

cle) = {c(e), feeL;
min{C(v),C(v)}, ife=[u,v] € Egs.

Then S ecp- c*(e) is O(n*C).

Proof. We know Yecine €(€) € Ypunjeras C(u) + C0)] < n3veviuvs C(v)
= n2C. Now consider the directed spanning tree (V' U {zp}, E), where 1’
— Vs U Viyand E' = Epr U {[zar,2p]}. Let ¢ = (c(e) : e € E'), where c(e) =

C(v)if v € Vs and e is the outgoing link of v, and if v € Vir then 3= ¢y, ¢'(€)

127

= Yeco(w) €'(€)- Since X eer(v) c(e) > Teeow) cle) for each v € Vu, it follows
1hat ¢ > ¢*. Let p, be the length of the path in (V',E") from node v € V'
10 node zp. Then Teep €*(€) < Teer €'(€) = Lvevs p.C(v). Due to the fact
hat each node v € Vi has at least two incoming links and (V/, E') is a tree,
we know p, < |Vs| for any u € V'. Therefore, 3 ccer c*(e) < |Vs| Toevs C(v)
< n Y evs C(v). Similarly,
S e<n Y C).
e€EpU{fear,zpl} vEVR

Thus, Teer c*(€) < nTvevsuva C(v) and we are done. a

Lemma 5.5 Suppose h is a traffic matric such that L(h) > 1. Let f be an
integer, node-conserved flow and g be the traffic matriz such that g([u,v]) =

#([v,u)). Then g is a critical feasible transfer for k if and only if b, < f < ¢j.

Proof. Note that for e € E, f(e) = ty(e). Next, note that f < ¢ if and only
** both g is a feasible transfer and g < h. Hence, Lemma 5.2 implies that g is

= critical feasible transfer for h if and only if b; < f < ¢;. 3

Let f; be the node-conserved flow such that

riv,u]), if [u,v] € ERs;
fillu,v]) = {t((([ug])) if %uv{ € EI.%S

Lemma 5.6 The switching complezity m of Algorithm Tree is o(n*C).

Proof. Let the residual traffic at iteration i after a transfer r; of duration d

~ime slots be r? = R; — dr;. From Lemma 5.5, r; is a critical feasible transfer

128
for ¢ if and only if 8% < fi < ¢ja. Then
d; =1+ max{d>0:b% < f; < ca}.

Therefore, for each 1 < m, at least one of the two inequalities must hold:

R 7 VR, OF CR # ch,,,- i-e., either the lower bound or the upper bound of
the flow changes.

Next note that cp, 2 ¢, for i < m, because R; > Ri}. Since Ry =

R, — d;r;,if e € E then

fopa(€) = max{0,tr,; (€) — (L(Ris1) — 1)e(e)}

= max{0, tr,(€) — ditr,(¢) — (L(R:) — di = 1)c(e)}

= max{0, tr,(€) — (L(R:) — e(e) +(c(e) — tr.(e))di}

> by (e)-

If e € Egs then by, () = 0 = by (e).

bk.,, OF Ck, # Chy, Lhis implies m < m + Y.epe (Vg (€) + k... (€)) <
Yeer~ (bh,.,, (€) + R, (€)), which is O(n*C) from Lemma 5.4. W

Thus, bk, < bk, < o < brops €Ry 2 R, 2 o > Ch,0 and b, #

Theorem 5.2 Algorithm Tree can be designed so that it has a time comp-

lezity O(n*C).

129

Proof. Each iteration 7 of Algorithm Tree requires computing r;, d;, and
updating r’. The implementation of the algorithm we consider will compute
ri by constructing an integer, node-conserved flow f; such that b3, < f; < cjg,.
By Lemma 5.5, the traffic matrix r;, where r;([u,v]) = fi([v, u]), is a critical

feasible transfer for R;.

To construct f;;; we consider an implementation that uses f;, where fo = (0 :

e € E*). Let f{,, be a flow, that may not be node-conserving, such that

i+1(e) = min{cg,,, (¢), max{fi(e), by,,, (€)}}.

Thus, by,,, < fiy1 < ck,,- For each node v, let the surplus flow 8i41(v)
= Peel*(v) fi’_H(e) — Yecor(v) fiy1(€)- Let fi}, be aflow such that fii, = fi,,.
The flow f/; can be modified by the Feasible Distribution Algorithmin Rock-
afellar {122] so that fi\; becomes integer, node-conserved, and by, | < fii; <
Chiyi- Then fiyr = fli;. The Feasible Distribution Algorithm Wﬂl modify f
by applying at most 1 3 ,cv |6i1(v)| integer flow augmentations, similar to
flow augmentations of the Ford-Fulkerson Labeling Algorithm [42]. Each flow
augmentation will take O(n?) time. Therefore, the transformation of f7,, will

take O(} Tpev 6i41(v)|n?) time. Thus, the time to compute fl,fg,...,fm is
O(Dn?), where D = 321 Tpev [6:(v)].

Since [8i41(v)] < Teerewyuorw) [fiz1(e) — file)l,

we have

D <TG Toev Teerr (wyuor(v) 1 fiva(e) — fi(e)]

130

< Zﬁ—ﬁl 2 cepe [flpa(e) — fi(e)]
= 2T cen Lo’ [flsale) = file)l:

Note that, informally, either f/,,(e) is increased as the lower bound increases

to bg,,, (), or is decreased as the upper bound decreases, i.e.,

[Fin(e) = Fi(e)|
— max{bi,, (¢) — fi(€),0}
4 max{fi(e) — e, (€), 0}

-—<— bﬁ;{;.*.} (e) - b;?,‘ (e) + C;%,‘(e) - C}%“.}.l (e)'

Therefore, D < Y.cg- ¢*(€), and applying Lemma 5.4, D is O(n?C). This
implies that the time it takes to coﬁpute f1s f2, ey fmg1 18 O(n*C).

For each iteration ¢ of Algorithm Tree, the time to compute d;, by, and cg,
and to update r' is O(n?). By Lemma 5.6, the number of iterations is O(n?C).
We can conclude that the time complexity of the algorithm is O(n*C). D

5.5 Experimental evaluation

In this section we describe the results of an experimental evaluation of the
performance of the Tree algorithm. since the algorithm always produces an
optimal schedule, the key question is the time that it takes to produce that

schedule.

131

We implemented the Tree algorithm as a C program, generally along the lines
we have discussed in this chapter. The main difficulty was in implementing
the routines to find augmenting paths to modify a flow so as to make it
node-conserved. The shortest augmenting path subroutines were implemen-

ted using the algorithms sketched in Gibbons [58] as a guide.

The program implementing Tree was evaluated by measuring the CPU time
it took to execute when presented with uniformly randomly generated graphs
as inputs. Randorm graphs were generated for selected combinations of the in-
put parameters using a pseudo-random number generator [94]. The programs
were executed on a Sun Sparc 2 workstation running the SunOS™ Release
4.1.1 operating system after being compiled using the Sun Microsystems C
compiler (bundled with SunOS Release 4.1.1), with Level 4 optimization en-
abled (“-O4” option). The data structures for the program fit in the 32 MB
main memory of the system, and so the program does not perform any 1/0

in order to execute, except to read the input graph and print results.

Tree expt. 1. Effect of varying number of senders. The first experiment
estimated the performance of Tree for architecture graphs in which both
the multiplexer tree and the demultiplexer tree are complete balanced binary
trees with unit capacities for all links, and all edges in the resource graph have
unit weights. Thus the average capacity of the user links in the architecture
graph is C = 1, the number of senders and receivers is the same, and if there
are S senders there are (S — 1) multiplexers, each with two incoming links
and one outgoing link. Clearly S is constrained to be a power of 2, and once
it is chosen the structure of the architecture graph, and the number of nodes

in the resource graph, is completely fixed.

132

The =+ random variable remaining in the architecture graph is the capacity
of i =k from the root of the multiplexer tree to the root of the demultiplexer
tree. Tme capacity of this link is set to be an integer drawn randomly from
the merval [2,5/2]. The edges of the resource graph (i.e., the entries of the

trafic matrix) were generated by a pseudo-random number generator [94].

Faci =ge exists with probability 0.5; if it exists, it carries unit traffic.

For = value of S, one hundred random input instances, or batches, were
geneaiad as described above, and the CPU time taken by Tree to generate
a sciecule for the entire one hundred batches, as reported by the C Shell
“1ine” command, was recorded. The “time” command used has a resolution
of 2(=s. Since all (except one) of the measurements are of times greater than
4 seormds, and many are of times of hundreds of seconds, this resolution is
sFiemt. The mean for each set of 100 measurements was calculated, plotted

anc —ve-fitted as described in section 3.7.

Iz Fz. 5.6 the mean CPU time per batch taken by Tree as the number of
sencers (or receivers) S is increased, is shown. The curve-fit shown in the

f zue corresponds to the following equation and correlation coefficients:

Trein)=2.78 x 1075 n® — 9.26 x 107* n? — 055,

R3? = .99, R2? = .98, R1% = .89, R0?* = 1.0

For -== sake of completeness, some data on ‘internal’ measures of perfor-

—arce of Tree are summarized in Table 5.2. These are the average number

133

60.00

50.00

30.00 -

CPU Time (see)

20.00 -

10.00

0.00 - : ‘ : : ‘ : :
0 8 16 24 32 an 43 56 64

S, Number of senders and receivers

Figure 5.6: CPU time versus number of senders or receivers for unit-length
transfers and complete binary tree architectures

of unit-length transfers to be scheduled per batch, the average optimal sched-
ule length per batch in time slots, the average number of augmenting paths

calculated in order to find the optimal schedule, and the average CPU time

per batch.

Tree expt. 2. Effect of varying transfer lengths. In the second experiment,
the architecture graph of the input instances to Tree is kept fixed and only
the lengths of transfers are varied. The architecture graph is fixed to be a
balanced binary tree with 64 senders and unit capacity links. Each edge in
the resource graph exists with probability 0.5; it is labeled with the length
of the transfer by a random number drawn from the interval [1, K], where
K is the maximum transfer length and is varied from 2 to 1024. For each
value of I, one hundred batches are generated randomly as described above,

and the time for calculating the optimal schedule for the entire one hundred

Senders, S | Transfers Makespan Paths CPU Time
(sec)

8 7.99 5.0 7.46 014

16 31.28 1777 29.96 .050

32 127.94 68.34 123.97 365

64 515.09 266.61 501.27 4.362

134

Table 5.2: Behavior of Tree as number of senders is varied for balanced binary
trees of unit capacities and unit-length transfers

Maximum | Transfers Trafic ~ Make- Switchings Paths CPU
Transfer span Time
Length, K (sec)
1 515.09 515.09 266.61 266.61 501.27 4.362

2 515.09 771.88 401.76 348.69 505.78 5.242

16 515.09 4377.62 2290.63 486.37 513.54 6.709

128 515.09 33217 17402 511.35 514.86 6.982

512 515.00 132092 69207 514.21 515.06 6.999

1024 515.09 263929 138282 514.53 515.06 7.017

Table 5.3: Behavior of Tree as maximum transfer length is varied for balanced

binary trees of unit capacities and 64 senders

batches is measured using the “time” command, as for Tree expt. 1. Figure
g g

5.7 shows the mean CPU time taken to calculate the schedule, per batch, as

K is varied.

Table 5.3 shows ‘internal’ measures of the behavior of Tree as K is varied,

averaged per batch. Since transfers are no longer of unit length, the total

traffic per batch does not equal the number of transfers (unlike Table 5.2), and

the makespan does not equal the switching complexity. Thus these quantities

are displayed separately.

Tree expt. 3. Effect of varying link capacities. In the third experiment,

CPU Time (sec)
o
1

¥ S D T
0 128 256 384 512 640 768 896 1024
Maximum transfer length, K

Figure 5.7: CPU time versus maximum transfer length for complete binary
tree architectures with 64 senders

balanced binary trees were again considered, but the capacity of the user
links, C, was varied as described below. The maximum transfer length was

set at N = 2.

Recall that the architecture graph for TreeDT'S contains sending users con-
nected to a bank of multiplexers. In order to keep the structure of the graph
‘sensible’; it was assumed that the sum of the incoming link capacities to a
multiplexer is at least equal to the outgoing link capacity (and the analogous
assumption for demultiplexers). When C' =1, and the tree 1s not degenerate
(i.e., the branching factor is at least two), this assumption is easily captured
by generating input architecture graphs in which all links have unit capacity.
For C > 1, we capture this assumption by setting the capacity of all user
links to exactly C'. The capacity of non-user links in the architecture graph is

then generated as an integer drawn randomly from the interval [1, C'], where

136

y oy

CPU Time (sec)

O~y T T L SRR SRR
0 16 32 48 64 80 96 112 128

Capacity of links to users, C
Figure 5.8: CPU time versus user link capacity for complete binary tree
architectures with 64 senders

(" is the sum of the incomping links to a multiplexer (or outgoing links at a

demultiplexer).

Figure 5.8 shows the mean CPU time per batch for generating an optimal
schedule using Tree for 100 batches of randomly generated inputs as C' is

varied from 1 to 128. The curve is described by:

Tree(C) = 5.64C701°, R* = .98

The internal performance measures of the algorithm are summarized in Table

5.4.

It is interesting to note that the execution time of the algorithm decreases

as C is increased, if the architecture and resource graph (traffic) inputs are

137

User Link | Transfers Traffic Make- Switchings Paths CPU
Capacity, C span ' Time
(sec)

1 515.09 515.09 266.61 266.61 501.27 4.362

2 515.09 771.88 383.23 335.20 505.88 5.172

4 515.09 771.88 337.21 205.48 506.24 4.729

8 515.09 771.88 284.32 249.04 512.69 4.181

32 515.09 771.88 172.73 151.0 541.20 3.251

128 515.09 771.88 78.56 73.42 573.88 2.498

Table 5.4: Behavior of Tree as user link capacity is varied for balanced binary
rees of 64 senders

kept the same. Informally, the explanation for this is straightforward: as C is
increased, more traffic can be transferred per time slot, so that the switching
complexity (number of feasible transfers that need to be calculated) decreases.
The multiplicative factor of C in the theoretical asymptotic time complexity
arises from assuming that in the worst case, at each time slot, the capacity
or lower bound of any link changes by at most one unit; then the number
of times that feasible transfers have to be calculated is proportional to the
maximum difference between capacity and lower bound for any link, which in
turn is proportional to C. In order to bring the theoretical and experimental
results in closer intuitive agreement, another method should be used to bound
the switching complexity of the algorithm, i.e., the theoretical analysis should

be sharpened.

138

5.6 Discussion
5.6.1 Previous related work

The previous work for scheduling data transfers in tree architectures has all
been done for special cases of the TreeDT'S problem. In addition, it has all
been done in the context of specific application domains. The result is that
the previous research has been reported in a wide variety of journals and con-
ferences, using specialized notation and jargon, and with no cross-referencing
of research across application areas. In the following we summarize some of

this research using our scheduling model.

The ground-breaking work on data transfer scheduling was done by Coff-
man, Garey, Johnson and LaPaugh, in their 1985 paper which focused on
the problem of non-preemptive file transfers in a distributed network [27].
The problem they address differs from TreeDTS in that Preempt = false,
and general architecture graphs were considered. The paper is remarkable
in defining a new and interesting class of problems and presenting a large
number of results, including NP-completeness of various classes of problems,
approximation algorithms for these problems with performance guarantees,
polynomial-time algorithms for special cases, and distributed algorithms for
some situations. The suggestions for future work mention the realistic situa-
tion of file transfers where intermediate network nodes may be used to forward
files if the sender and receiver have no direct link. These and other variations
of the problems mentioned in the paper have subsequently been addressed
by several researchers (e.g., see [23, 142, 101] and references therein), and

continue to receive attention.

139

Our work differs from that of Coffman et al [27] and their successors in that
we are considering the situation where preemption is allowed. This assump-
tion not only makes the scheduling problem easier, but is well-justified for
many applications. For instance, in the case of parallel 1/0, data is typically
read in fixed-size blocks from magnetic media, allowing preemption between
block boundaries. Similarly, in the case of satellite TDMA switching, data
is transferred in fixed-size packets in order to time-share the medium using
time-division multiplexing, and communications protocols often assume pack-
etization of data in order to operate correctly. In the rest of this section, we

consider preemptive scheduling only.

Eng and Acamopra [39] consider a special case of TreeDTS for the satellite
switching application. They place the following additional restrictions on the

architecture graph:

1. The hierarchical switching system has three stages, i.e., AG is a tree
with exactly four levels (a dummy root, and two subtrees of three levels
each), and

9. arcs connected to leaves (users) have a capacity of exactly 1 packet per

second, i.e., C = 1.

Eng and Acampora [39] provide necessary and sufficient conditions for the
existence of an optimal schedule. Bonnucelli [11] and Liew [96] provide exact
optimal scheduling algorithms of time complexity O(n®) under these condi-
tions. Informally, the basic approach is, at every time slot, to identify critical

transfers - those whose remaining traffic demand equals the optimal makespan

140

calculatec using Eng and Acampora’s conditions. At every time slot as many
packets as possible from these critical transfers are transferred - the num-
ber that can be sent is calculated using a max-flow algorithm. The resulting
schedule #ill have the optimal makespan. We note that our algorithm will

solve this restricted problem in time O(n?).

Choi anc Hakimi [24] study a special case of TreeDTS for the file transfer

applicatim. They place the following constraints on the architecture graph:

1. AGis a tree with exactly three levels, and

2. a) rcs of AG connected to leaves (users) have an arbitrary positive
integer capacity equal to the number of ports, (this case is called speed-
up . or
b) wcs of AG connected to leaves (users) have capacity exactly 1 and

(tks case is called no speed-up)

In additi:n, preemption is allowed arbitrarily, i.e., packets may be of variable
length. We shall show in a later chapter that this extension can be handled

by a simzle modification of TreeDTS.

Choi an¢ Hakimi’s problem generalizes that of Bonnucelli [11] and Liew [96]
in allowng non-unit capacities and allowing variable-length packets, but is
restrictes in allowing only three levels in the AG. The term speed-up implies
that musiple ports may be used to expedite the data transfer between a given
sender-rzceiver pair. Thus allowing a vertex v to engage in upto a(v) transfers

means t:at a transfer of length w between vertices u and v only requires time

w/(min 2(u), «(v)))-

141

Choi and Hakimi’s method is interesting because it illustrates an alternative
approach to the problem. Tiey essentially use a generalized edge-coloring
method in order to obtain optimal schedules. Their problem is a general-
ization of the SimpleDTS and DTS problems that we have solved using
standard edge-colorings of bipartite graphs, but is a restriction of T reeDTS,
for which we used more powerful network flow methods. Further, they handle
the case where at most k < n transfers may take place at any given time by
using a procedure similar to the k-filling procedure we use for DTS. Thus
not only their problem, but tieir solution method falls at a point in between
the approaches that we have taken to solve the DT'S and TreeDTS data

transfer scheduling problems.

Under speed-up, Choi and Hakimi’s algorithm runs in time O(Csumm?), where
Clyum is the sum of the link capacities at the user nodes and m is the number of
data transfers, i.e., it runs in time O(Cn®). Without speed-up the algorithm
2 m), ie., O(Cn® 4+ C?n?).

runs in time O(Cyymm? + C7,

In the same paper, Choi and Hakimi [24] also consider the situation where a
non-zero switching time is required in order to change from one switch con-
figuration to another. They show that even a simple version of this problem

is NP-complete, and design zpproximation algorithms.

Our formulation of the protlem allows modeling of speed-up since all arcs
connected to leaves have capacities equal to the number of ports. For the
case without speed-up we mcdify the network model so that arcs representing

the data transfers themselves {arcs from receiving users to sending users)

142

have capacity 1. In either case our algorithm generalizes and provides a
faster algorithm for the problem than the optimal algorithms of Choi and
Hakimi [24], provided that preemption is allowed only at fixed packet length
boundaries. As already mentioned, in a later chapter we will show that even
for the latter case, the Tree optimal algorithm can be extended to generalize

and have better time complexity than Choi and Hakimi’s optimal algorithms.

The data transfer problem has continued to receive attention for the satellite
switching system application. Chalasani and Varma [20] present an algorithm
for the restricted system studied by Eng and Acampora (39, 11, 96] that takes
time O(n? min(L, n?) min(k,n"*)), where L is the schedule length and k is the
capacity of the central switch in the three-stage network. Thus their algorithm

takes time O(n*?).

Chalasani and Varma [136] have also presented an algorithm whose basic idea
is similar in spirit to the approach we have used to design Tree: instead of
recalculating flows from scratch at each step of the algorithm, calculate only
a modification to the flow. However, their algorithm again only applies to
the three-stage unit-capacity network specified by Eng and Acampora [39],
and runs in time O(n? + ¢n), where ¢ is the number of traffic units to be
reassigned in the traffic matrix, i.e., it runs in time O(Ln*), where L is the
schedule length. There are two interesting points in their approach, however.
The first is that they use a procedure similar to k-filling to convert the pr-
oblem for a three-stage hierarchical architecture to that for a single switch
(the architecture graph of DT'S). The second is that they use an algori-
thm originally developed for routing traffic in a switching network to perform

scheduling.

143

It is clear that e Tree algérithm solves more general cases of the optimal
data transfer scn=tulin g problem than those considered in (39, 11, 96, 20, 136].
It also solves mce general cases of the problem than the polynomial-time
solvable problem studied in [24]. In general, for arbitrary traffic matrices
(and hence schemle lengths that may be greater than O(n?)), Tree also
performs better lan previous algorithms [39, 24, 11, 96, 20, 136].

5.6.2 Conclusons and Further Work

We have defin=c -1e problem of data transfer scheduling in tree-structured ar-
chitectures in o model, and shown that it generalizes previous work done in
three different amlicazion areas: parallel I/O [132], satellite switching systems
[39, 11, 96], and ile transfers in computer networks [24]. The generalization
comes in two forns: in allowing arbitrary tree topologies in the architecture,
and in allowing zbitrary integer capacities for the communications links. We
have developed m algorithm whose time complexity is O(Cn*), where C is
the average capaity of the links connected to senders and receivers, and n is
the number of saders and receivers. In general, this algorithm is faster than

previous algoritmms [24, 11, 96, 20, 136].

Our study has z:0 be=n unique in that we have actually implemented the sch-
eduling algoriitm and investigated its behavior experimentally. For the case
C = 1, unit tranver lengths, and complete binary tree architecture graphs, we
have found tEz -he CPU execution time of the algorithm grows, on average
over random!T snerated input instances, as O(n?®) in our experiments, rather

than the O(r* vorsi-case theoretical behavior. As expected, the execution

144

time of the algorithm is experimentally observed to be relatively insensitive
to transfer lengths. However, we observed that, for a fixed architecture and
traffic requirement, the execution time dropped as the user link capacity was
increased. While we ofer an informal explanation for this result, it indicates

that the theoretical analysis can be sharpened.

An obvious direction for extensions to this work is consider the use of heuris-
tics in place of the optimal algorithm. We shall consider one such heuristic in
Chapter 6. We have also considered the situation where data transfers can be
preempted at arbitrary points, i.e., data packets can be of arbitrary length.

This result is discussed in a later chapter.

For future work, we suggest two related questions. The first is whether the
architecture graph can be generalized from a tree topology to an architecture
with a higher connectivity. An example would be a hypercube network. Such
an extension to our scheduling algorithms would be of significant practical
interest. For instance, Ghosh and Agarwal [57] have proposed a hypercube
network for 1/0, in addition to the existing hypercube network for inter-
processor communication, to overcome the parallel 1/0 bottleneck in hyper-
cube multiprocessor architectures such as the Intel iPSC/2 and iPSC/860. An
extension to higher-connectivity architectures would also be of theoretical in-
terest in order to investigate whether polynomial-time or pseudo-polynomial
time algorithms could be then be developed. So the second question that
we suggest for future work is to determine the smallest set of extensions to
the tree architecture defined in Tree DTS which still allow polynomial-time
algorithms to be developed.

Chapter 6

A Fast Heuristic for Hierarchical Architectures

In the previois capter we discussed an optimal algorithm for scheduling
data transfers in wree structured architectures, and a theoretical as well as
experimental sval'uation of its performance. This optimal algorithm, Tree,
thus applies 1 the TreeDTS scheduling problem, and has a time complex-
ity of O(Cn*. wheere n is the number of users (or leaves in the architecture
graph), and [is the average capacity of the links connected to the users.
The experimental evaluation showed that, for the situations studied, the av-
erage executim timne of the algorithm varied as n? rather than n* for random
input graphs. While the theoretical worst-case time complexity is an improve-
ment over previows algorithms in this area, and the experimentally measured
average-case :ehavior gives us better performance than the worst-case behav-
ior, the algorshm may still not be fast enough for some applications. Since
the algorithm will be executed repeatedly in any realistic batch scheduling sit-
uation, any gin im speed will help improve overall system performance. This

motivates the sea~ch for faster approximation algorithms to solve TreeDTS.

In this chapter we present an approximation algorithm based upon a simple

greedy hearisic. In sec. 6.1 we describe the approximation algorithm, and

145

146

in sec. 6.2 we describe an experimental evaluation of its performance, as well
as a comparison of its performance with that of Tree. We end with a brief

discussion.

6.1 A greedy heuristic

The basic idea of the greedy heuristic for TreeDTS is quite simple, and
similar in spirit to the greedy heuristics for Simple DT'S and DTS discussed
in Chapter 4. For each time slot, a set of transfers between sender-receiver
pairs is chosen such that it is ‘feasible’, i.e., the resulting traffic on any link in
the network does not exceed the capacity of that link. The “greedy” aspect
of this approach lies in that as large a set as possible is chosen for each time
slot; the “heuristic” aspect lies in that for each time slot, the transfers are
examined once, in some order, and a transfer is added to the feasible set only
if the resulting set will not violate the link capacity constraint. An algorithm

based on this idea is described below.

Algorithm Greedy Tree Heuristic

Input: An instance of TreeDTS = (PG, AG, RG, f, Preempt), where the
bipartite resource graph is denoted RG = (A, B, E).

Output: A schedule satisfying TreeDTS, represented as a set of feasible

transfers for each time slot.

1. Assign some order F = (€1, €z, ...,€n) to the edges of E
2.1:=0

3. while F # {} {

4.
5.
6.

1.
8.
9.

10.

11.

12.

13. }

E = {} /* Feasible transfers for this time slot */
for each e read in sequence from F' {
if the traffic due to {e} U E’ for any link in AG does not
exceed that link’s capacity {
add e to E'

remove e from F and F

}
=141
Assign an order F to the edges of E

147

Clearly, the performance of the heuristic will depend upon the ordering F

of the edges in the resource graph. The bulk of the execution time of the

algorithm will be spent in sorting the edges to obtain F, and in checking

for each transfer and each time slot that the edge set E’ represents a set of

feasible transfers.

The heuristic that we have investigated simply orders the edges in E by the

order in which they are presented to the scheduler, i.e., essentially a random

ordering. Thus obtaining F from E takes no time. We call the resulting

algorithm the Greedy Random Assignment (GRA) algorithm.

148

6.2 Experimental evaluation of the greedy heuristic

The GRA algorithm was implemented and evaluated experimentally in a
manner similar to that described in 5.5 for Tree. In fact, many of the under-
lying routines in the implementation used were the same, as was the ‘driver’
program for parsing inputs and keeping statistics. Also, GRA was evaluated
for the same set of input parameters as described for Tree, and using the
same random number generator, seeds, and number of input graphs per ex-
periment. Specifically, the three experiments described as Tree expt. 1-
3 in sec. 5.5 were repeated, with the Tree algorithm replaced by the GRA
algorithm; the resulting experiments are called GRA expt. 1 - 3. There is
one difference in the results obtained: since GRA 1is an approximation algo-
rithm, there are two measures of peformance: the makespan of the schedule
calculated, and the amount of time to needed to calculate the schedule. In
the following, the figures presented for Tree in sec. 5.5 are shown again to

allow easy comparison with those for GRA.

GRA expt. 1. Effect of varying nuumber of senders. The performance of
GRA is compared with that of Tree for this experiment in Figures 6.1 and
6.2. From Fig. 6.1 we see that as the number of sending (or receiving) users
grows, the savings in execution time obtained by using the heuristic increases.

The curve fit is given by the equation:
GRA(n) = 17.89 x 107* n? —2.35%x 1072 n +0.173,

R2? = 98, R1? = .90, R0? = .99

149

]
/' Optinul
]
3 3
PO
.EE
E 2
S Heuristic
1
0t
0 8

Number of users, n

Figure 6.1: CPU time for GRA and Tree versus number of senders or re-
ceivers for unit-length transfers and complete binary tree architectures

Thus the increase in execution time of GRA for this experiment as the num-
ber of senders is increased is O(n?), as opposed to O(n®) for Tree. This
improvement obviously comes for a price: the schedule obtained by GRA is,
in general, not of minimum length. In Fig. 6.2 we consider the percentage
increase in the schedule length obtained by GRA. Recall that for each value
of n, one hundred batches were generated at random as inputs. For each
batch, the percentage increase in schedule length was calculated. The figure
shows the maximum and average values of the percentage increase over the
one hundred batches. While the maximum percentage increase observed was

almost 35%, the average penalty was only about 5% or less.

GRA expt. 2. Effect of varying transfer lengths. The execution time of
GRA as the transfer length is varied is compared with that of Tree in Figure

6.3, and the percentage penalty paid in terms of schedule length is shown in

351
2 304
g]
e 254
E])
£ 20]
L5 4
=]
; 15+ . Maximum
é Increase
W
R
o 104
5
& 5“_ . * . Average
Increase
0"'!"!"'!‘ [IR
0 3 16 24 32 40 48 56 64

Number of transfers, n
Figure 6.2: Maximum and average penalty paid for using the GRA heuristic
instead of the Tree algorithm, versus number of senders or receivers for unit-
Jength transfers and complete binary tree architectures

Fig. 6.4.

GRA expt. 3. Effect of varying capacities. The execution time of GRA as
the user link capacities are varied is compared with that of Tree in Iigure
6.5, and the percentage penalty paid in terms of schedule length is shown in
Fig. 6.6. The curve-fit for the variation in execution time is given by the

equation:

GRA(C) =2.79C~%% R

i
o
St

