151

7 (, Optimul

CPU Time (sec)
EoS
|

1 Heuristic
T

i T AN | A S S
0 12(8 2%6 384 512 640 768 896 1024
Maximum transfer length, K

Figure 6.3: CPU time versus maximum transfer length for GRA and Tree
for complete binary tree architectures with 64 senders

| Maximum
/\ Increase

5 Average
Increase
—

Percentage of makespan increase due (0 heuristic

" S [T T T
0 128 256 384 512 640 768 896 1024
Maximum transfer length, K

Figure 6.4: Penalty paid for using GRA versus maximum transfer length for
complete binary tree architectures with 64 senders

; yo—

J——

Optimal

CPU Time (sec)

e

Heuristic

LA S R A T T

S o e
0 16 32 48 64 80 96 112 128

Capacity of links to users, C

Figure 6.5: CPU time versus user link capacity for GRA and 'Iree for com-
plete binary tree architectures with 64 senders

Maximum
Increase

Percentage increase in makespan due to heuristic

Average

Increase

0 16 32 48 64 80 96 112 128

Capacity of links to users, C

Figure 6.6: Penalty paid for using GRA versus user link capacity for complete
binary tree architectures with 64 senders

153

6.3 Discussion

The experiments described in the previous section show that as the number
of users is increased, the GRA algorithm can provide substantial savings in
average execution time over Tree (upto 50%, or an ésymptotic factor of n
improvement) for a relatively small average penalty (about 5% increase in
schedule length). This behavior is almost independent of the lengths of the
transfers involved. The insensitivity to transfer lengths is as expected, since
although longer transfer lengths will lead to longer schedules, they will in
general not increase the switching complexity, or number of feasible transfers
that are calculated; each feasible transfer will simply be re-used for a greater

number of time slots.

The running time of GRA follows that of Tree as the user link capacities
are incresed. The discussion in sec. 5.6 applies to GRA also. It is interesting
to note that as user link capacities are increased, the maximum penalty,
in terms of schedule length, for using GRA increases quite sharply, while
the average penalty remains in the 10-15% range. Clearly as link capacities
increase the optimal algorithm has greater opportunities for maximizing the
number of parallel data transfers at every time slot, while the heuristic does
not backtrack to try to take advantage of these opportunities once a set of
feasible transfers has been found. Further study is needed to fully understand
the differences between the average and maximum penalties, and the effect

of increasing the user link capacities even further.

Taking a broader view, the results of this chapter constitute one exploration of

a design space for constructing heuristics to solve TreeDTS. It is possible to

154

design a different heuristic, for instance simply by changing the ordering that
is applied to the edges of the resource graph in the Greedy Tree Algorithm.
As a concrete example, consider the following promising heuristic: sort the
edges by their congestion, i.e., calculate for each edge the ratio of the transfer
length for that edge to the minimum of the capacities of its end users, and
examine those edges with the highest congestion ratios first. Call this heuristic
the Maximum Congestion First, or MCF heuristic. The MCF heuristic is
myopic in the same sense that GRA is: only part of the input instance
information is examined. MCF is also simplistic in the same sense that
GRA is: no backtracking is done to improve on the initial choices made by
the algorithm. However, MCF would give rise to different, probably better,
performance in terms of schedule length, while paying a greater penalty in
terms of execution time, than GRA. An experimental evaluation of MCF,
very similar in style to that described in this chapter for GRA, could then

be carried out to test and quantify its behavior.

This example shows a general characteristic of the process of designing heuris-
tics to solve optimization problems. There are two classes of design param-
eters: the amount of the (input) state space that is examined, and the com-
plexity of the function applied to it. In the case of the GRA and MCF,
both these parameters are changed: MCF examines more of the state space,
as well as applies a slightly more complex function to it, than GRA. One
can envision a range of heuristics that can be systematically designed, each
appropriate for different input parameters and applications, as the design

parameters are systematically varied.

Chapter 7

Scheduling in Extended Hierarchical Architectures

In this chapter we extend the range of problems that can be solved still fur-
ther. The first extension solves a generalization of the problem of scheduling
in tree architectures that was studied in Chapter 5. In the following section
we consider tree architectures in which some transfers do not traverse the
root of the tree, i.e., both local and remote transfers are permitted. When
this possibility is specified in our model, the architecture graph is no longer a
tree. This problem has applications both for parallel I/O and satellite com-
munications scheduling. We obtain an approximation algorithm that solves
more general cases of the problem than the best previous heuristic, has the

same performance guarantee, but a better time complexity.

The second extension in this chapter considers tree architectures in which
preemptions may take place arbitrarily, and not only at pre-specified integer
boundaries. This problem is applicable to data transfers in systems with con-
tinuous media, such as those in current and proposed multimedia systems.
We show that the Tree algorithm can be modified slightly to solve this prob-

lem. The last extension we mention is that of tree-structured architectures in

155

156

which the users communicate via transceivers. This problem has applications
in packet radio networks. Sasaki [125] has proved that an approximation al-
gorithm can be designed for this problem. The Tree algorithm modified to

handle arbitrary preemptions is used as a subroutine in the solution.

7.1 Systems with local and remote data transfers

In this section we consider an extension to the TreeDT'S problem in which
the architecture graph permits both local and remote transfers i.e., transfers
that pass through the root of the tree architecture (remote transfers), as well
as transfers that only traverse the root of a subtree (local transfers). This
is an important extension as it occurs frequently both for the parallel 1/0O
application as well as the communications switching application. In the case
of the parallel I/O application it occurs in shared-bus systems such as the
Sequent [100] and potentially also in systems such as Hector [138] and inter-
connection networks such as KYKLOS [102]. In the case of communications

networks it occurs for intersatellite transfers [7, 53, 54].

We first define the problem formally in our model, and discuss how it arises in
the parallel I/O and intersatellite communications application. We then show
how the graph-theoretic nature of our specification facilitates the systematic
decomposition of the problem into a number of subproblems, allowing us to
obtain a heuristic solution. This solution also applies to a special case of
the intersatellite communication problem studied earlier by Bertossi et al [7],
and provides the same upper bound on makespan but better time complexity

than the best heuristic available previously.

157

7.1.1 Specification of the problem

A formal specification of the problem in the model is as follows. See Fig. 7.1

for an example.

LocalRemote DTS = (PG, AG, RG, f, Preempt)

where the 5-tuple is defined as follows.

PG = (T, Ep, Lp) has |T| = m tasks, of length Lp(t) € N for all t € T, and

|Ep| = 0, i.e., no precedence constraints.

AG = (R, Ea, La) has |R| = n + 3b vertices, with n vertices of type SUSER
and RUSER b vertices each of type MUX and DMUX, and b vertices of
type NULL. Each NULL vertex is the root of a three-level tree which can
be specified exactly as the architecture graph of TreeDTS, with N leaves of
each type SUSER and RUSER. (Hence n = 2bN). One of the NULL
vertices, called the system vertez, has an incoming arc from the root of every
other DMUX subtree to the root of its MU X subtree and an outgoing arc
from the root of its DMU X subtree to the root of every other MUX subtree.
(These arcs are called inter-bus links, a name suggested by the parallel 1/O
application). The capacity is La(e) = 1 for all e € Ea except those arcs
incident on the NULL vertices; for the latter arcs La(e) > 1 and, for the

parallel 1/O application, represents the bus capacity.

RG = (R, Er, Lr) is a bipartite graph, where Eris a set of arcs from SUSER

to RUSER vertices only, leaving the assignment of other resources implicit,

Receiving users,
type RUSER

Demultiplexer
tree root

Buses, type
NULL vertices

Multiplexer Tree
Roots, MT

Sending users,
| type SUSER

Inter-bus

links

Figure 7.1: AG for the scheduling problem with local and remote transfers,

LocalRemote DTS

and Lr is a bijection from Er to T. RG is further restricted in that if the
only path between a pair of SUSER and RUSER vertices in AG contains

more than one inter-bus link, there is no arc between those vertices in RG.

f 1s makespan.

Preempt is true.

We discuss two applications which give rise to the LocalRemote DTS problem.

159

.
_ sest ETHERNET
DUAL CPU MEMORY MEMORY | CONTROLLER

PROCESSOR CONTROLLER EXPANSION | ETHERNET

BOARD BOARD BOARD INTERFACE
DIAGNOSTICS AEMOTE
PROCESSOR
s CONSOLE
ﬁ ﬂ :
suc 8us 1
1 LOCAL
SYSTEM BUS (B0 MBYTES/SEC) CONSOLE
'T " SCS1 BUS
MULTI
MULTIBUS ADAPTER Oual-Channel

Oisk Controtler

INTERFACE BOARD

540 MByte 264 MByte
MULTIBUS DISKS DISKS

T ey

16 LINE USER %" TAPE

Mux DEVICES 150 MByte %~ TAPE

DISKS
(527 only!

Figure 7.2: Sequent architecture

7.1.2 The parallel I/O application

The bus I/O scheduling problem consists of scheduling the data transfers
among processors and peripheral devices connected via a collection of hierar-
chically organized buses. Examples of such architectures include the commer-
cially succesful Sequent [100] and the research prototype Hector [138]. The
Sequent system (Fig. 7.2) has a two-tier arrangement of buses. A single fast
system bus connects processors and main memory. Several relatively slow 1/0
buses, e.g. SCSI or Multibus (see [68]), connect I/O devices to the system
bus. Each bus permits at most one data transfer to be in progress at any

given time.

Two types of I/O transfers may take place. Data transfers from one 1/0 de-

vice to another on the same bus are called local transfers, while those among

160

main memory and I/O devices on separate buses are called remote transfers.
A remote transfer requires simultaneous posession of an I/0 device, a system
bus, an I/O bus, and either a memory unit or another I/O device. A local
transfer requires two 1/O devices and a local bus. An example of an applicat-
jon requiring local transfers is 3D visualization of scientific data (e.g. [144]),
for which a fast disk may supply data to a high-performance graphics work-
station connected to a common local bus. A more mundane example is the
periodic backup of files from disks to tape. Each transfer consists of a number
of fixed-size units (e.g. disk blocks) which we call packets, and transfers can
be preempted at packet boundaries. It is assumed that each I/O device or

memory unit has one port and is either a sender or a receiver of data.

As mentioned in Chapter 3, given the increasing data transfer demands of
new applications programs, there are likely to be multiple parallel buses in
future bus-oriented parallel architectures, as in the IBM RP3 [115]. Even if
only one bus is available, however, if the bus bandwidth is high enough it
can be time-shared to effectively provide many parallel 1/O transfers. An
example of a bus for which this is possible is the Sequent system bus, which

has a bandwidth of 53 MB/s.

71.3 The intersatellite communications application

The intersatellite communications scheduling problem [7] consists of sched-
uling the data transfers among a set of zones on the ground via a network
of satellites, ground-satellite links and intersatellite links (ISL). Each zone

communicates with one satellite. Each ground-satellite link and each ISL is

161

S1 S2
KEY

. Satellite

O Ground zone
O O O O «3» Intersatellite

Gl G2 G3 G4 G5 G6 Link

<—> Ground-to
-air link

Figure 7.3: Example ISL communications system

bidirectional and allows at most one transfer in each direction at any given
time. Both local transfers between zones connected to the same satellite,
as well as intersatellite transfers between zones connected to different satel-
lites, are possible (see Fig. 7.3). Data for a single transfer is transmitted as
fixed-length packets which may be interspersed on the communications links
with packets from other transfers. It is assumed that there is no intersatel-
lite transfer required between two zones if their respective satellites are not

connected by an ISL.

Bertossi et al [7] have shown that the ISL communication scheduling problem
is NP-complete for an arbitrary number of satellites even for highly restricted
ISL network topologies, and zero ISL propagation delay. They conjecture [7]
that the special case of just two satellites and zero ISL delay, which we call

the SimplelSL problem, is also NP-complete, and propose two suboptimal

162

heuristics. Both heuristics generate schedules of at most twice the optimal
schedule length. That is, the upper bound on the makespan, UB(1) = 2 LB,
where LB is a lower bound on the makespan defined as follows. Let L(u,v)
be the total intersatellite traffic from satellite u to satellite v, ST'(u) the total

traffic sent from zone u, and RT(u) the total traffic received at zone u. Then,

LB = maz{maz{L(i,j): 1 <4,j <bAi#j}
maz{ST(1):1 <i<n},mac{RT(1):1<:< n}}

The time complexity of the first heuristic is O(n*%), and of the second is

O(n3%).

The ISL problem has also been formulated as a modified open-shop by Ganz
and Gao [53] for the case of arbitrary ISL propagation delay, and a heuristic
has been proposed. The modified open-shop formulation models each uplink
as a processor and each downlink as a job. Since each local data transfer
requires an uplink and a downlink simultaneously it is modeled as one oper-
ation of a job on a processor. Since the transfers through a downlink may
occur in any ‘order, the operations of jobs on processors are modeled as not

having any technological cobstraints, i.e., as an open shop.

The difficulty with this formulation arises in its modeling of intersatellite tr-
ansfers, which require three resources (uplink, downlink and ISL) simultane-
ously. Each direction of an ISL is modeled as a processor and a job consisting
of only one operation which executes on that processor. Thus an intersatellite

transfer assumes implicitly that two processors are used simultaneously, and

163

this assumption is enforced when each time slot is scheduled by the heuristic

solution [53].

From our viewpoint the problem specification in our model is preferable to the
open-shop formulation as the former clearly and explicitly specifies precisely
which transfers require which three resources simultaneously. (This approach
subscribes to software engineering principles which advocate a clean separa-

tion between the specification of a program and its implementation).

An assumption made by Ganz and Gao [53] is that the ISL propagation delay
§ s the same for all ISL. In addition, an intersatellite transfer of length ¢
time units is assumed to require the uplink and downlink for ¢ + 6 time units
and the ISL for ¢ units. We assume that an intersatellite transfer requires all

three links for time t + 6.

SimpleISL is the same as LocalRemoteDTS except that b = 2, and, since a
zone may send and receive data simultaneously, each zone is represented as
one SUSER vertex and one RUSER vertex. In the following section we
describe a heuristic to solve LocalRemote DTS and SimplelSL.

7.1.4 The decomposition heuristic

The heuristic we use to solve LocalRemoteDTS is to decompose the architec-
ture graph into trees and apply the solution used for TreeDTS. One set of

trees allows only local transfers to take place, and one tree allows the remote

164

®

vertex

System
? vertex

f MuploerTree Qe %
xﬂD & &H}) W qﬂ{ }Iﬁ‘ Sending users, type xm) q{ }HD QIHI{ EB}
i

Figure 7.4: Applying the decomposition heuristic

NULL vertex (R System

% % Receiving users,
type RUSER
Demultiplexer tree
root

B>

transfers to take place. An example of the decomposition is shown in Iig.

7.4.

Decomposition Heuristic.
Input: Scheduling problem LocalRemote DTS.
Output: A schedule satisfying LocalRemoteDTS.

Step A. Decompose LocalRemoteDTS to b Local data transfer problems

1. Let AG' = (R, Ed',Ld’) with Ed’ = Ea — {e : e is an inter-bus link}
to to obtain a forest AG' = {AG'(1),AG'(2),...,AG'(b)}. Ld' is La
restricted to Fa'.

2. For 1 <¢<b, let RG'(z) = (R'(¢), Ev'(4), Lr'(2)) be RG restricted to
the vertices in AG(2).

165

3. For 1 <i< b, let PG'(i) = (T'(), Ep'(i), Lp'(i)) with T'(2) restricted
to the arcs of Er'(i), i.e., T'(1) = {t : t € Lr'(i)}, and Ep'(:) and Lp'(z)
restricted to T"(¢).

4. For 1 <i<b, there is a scheduling problem LocalDTS(i) = (PG(i),
AG(i), RG(1), f, Preempt).

Step B. Decompose LocalRemote DTS to one Remote data transfer problem

1. Let AG" = (R", Ed", La") be constructed as follows. Denote the NULL
system vertex as s, its MUX child as MT and its DMU X child as DT.
Then R = R— {v:v & NULL — {s}}. Let E be Ea restricted to R”
and with all inter-bus links deleted. Let F' = {(u, MT) :u# MT A uis
a MUX verter}. Similarly let G = {{DT,u) : u £ DT ANuisa DMUX
verter}. Then Ea”" = EU FUG. La"is La restricted to Ea” and with
unit capacities for arcs in F U G.

2. Let RG" = (R, Er", Lr") with Er" = Er — {e:e€ Er'(1),1 <i<bj,
and Lr" restricted to Er”.

3. Let PG" = (T", Ep",Lp") where T" = {t : t = Lr"}, and Ep” and Lp"
are restricted to T".

4. Obtain a scheduling problem RemoteDTS = (PG”, AG”, RG”, f, Pre-

empt).

Step C. Schedule Local data transfers. For each LocalDTS(i), call the Tree
algorithm.

Step D. Schedule Remote data transfers. Call the Tree algorithm to solve
RemoteDTS.

166

End Heuristic.

Theorem 7.1 The decomposition heuristic solves an instance of LocalRe-
moteDTS in time O(n*), providing a schedule with an upper bound on the
makespan of UB(2) =2 LB.

Proof. The heuristic clearly terminates, and from the construction it is plain
that the b+1 scheduling problems Local DT S(i) and Remote DT S are special
cases of TreeDTS. Recall that the time complexity of the Tree algorithm is
O(n*C) where n is the number of user nodes and C is the average capacity of
the user links For LocalRemote DTS the user nodes are SUSER and RUSER
vertices and the user links are the arcs incident upon them, so C = 1. For
Local DT S(7) the number of user nodes is 2NV = n/b while for RemoteDTS
it is n, so that the time complexity of the decomposition heuristic is O(n*).
The length of the schedule generated by the heuristic has an upper bound
given by

UB(2) = maz{L(i,j): 1 <4,j <bAi#j}
+ maz{maz{ST():1 <i < n},maz{RT():1<2< n}}
<2LB
= UB(1) O

The decomposition heuristic is a generalization of the heuristics of Bertossi
et al [7]. For the SimpleISL problem the decomposition heuristic compares
favorably with those Bertossi et al, which have the same upper bound on

schedule length and have time complexities of O(n*®) and O(n®®).

167

Our approach to the scheduling problem for local and remote transfers also
illustrates the use of the scheduling model to obtain effective solutions to

scheduling problems by graphical decomposition of the abstract specification.

7.2 Systems allowing arbitrary preemption

In this section we briefly note that the Tree algorithm can be modified to
solve problems in which the traffic demand is non-integer or the system allows
preemption at arbitrary boundaries. This may be useful for data transfers
involving continuous media, which is becoming more commonly used in mul-

timedia applications.

It turns out that the proof of correctness, and the time complexity, of Tree
derived in need to be modified only slightly. The lower bound on the schedule

length becomes:
L'(r) = maXeer %’(%2

The definition of network link lower bound and network link capacity are

changed to:

B(e) =4 e). ifeE]*? and t—;{g = L'(r)
0, otherwise

c,(e)_{o, ifec E and t.(e) =0
R Le(e). otherwise

168

Similar changes to other definitions and proofs, most of which are straightfor-
ward, show that Tree remains optimal for solving TreeDTS with arbitrary

preemptions, and the time complexity remains O(C n*). For details, see Sasaki

and Jain [125].

7.3 Applications to packet radio and transceiver sys-
tems

An important extension to the TreeDTS problem is the case where users
communicate through transceivers. A transceiver is a device that can transmit
and receive, but not both at the same time. This problem has applications
for packet radio networks and other communications networks. Special cases
of the problem have been studied by Hajek and Sasaki as well as Choi and
Hakimi [66, 25].

The paper by Sasaki and Jain [125] shows that the Tree algorithm modified to
handle arbitrary preemptions, mentioned above, can be used as a subroutine
to approximately solve a special case of TreeDTS with transceivers. The
modified algorithmm has a time complexity of O(Cmn?). The proof is due

to Sasaki.

7.4 Conclusions and future work

The previous work related to the results in this chapter has already been

discussed; it can be found in [7, 66, 25, 53, 54, 125].

169

Our contributions in this chapter can be summarized as follows. Firstly, we
have found an approximation algorithm for the problem of data transfers in
tree architectures when both local and remote transfers are allowed. This
problem has important applications for parallel I/0O as well as intersatellite
communications. Our algorithm generalizes previous work that was done in
the context of intersatellite communications, provides a performance guaran-
tee at least as good as that provided by the previous best heuristic, and has
better time complexity. Secondly, we have shown that the Tree algorithm
can be modified to apply to tree architectures in which preemption can occur
arbitrarily. Such systems may become more prevalent in the future with the
spread of continuous media in multimedia systems. Finally, we mention that
the Tree algorithm has been shown to provide a heuristic for data transfer

scheduling in systems with transceivers.

For future work, we suggest two questions. The first is to determine the
operating parametres for which the heuristic for local and remote transfers,
as well as the Tree algorithm for continuous media, provide practical solutions
for the parallel I/O application. The second is to resolve the open question
of whether SimpleISL, the intersatellite communication problem with two

satellites for which we have provided a heuristic, is NP-complete.

Chapter 8

Scheduling Tasks Under Mutual Exclusion and
Precedence Constraints

A natural extension to the data transfer problem DT'S is to allow the speci-
fication of logical constraints between tasks. In this chapter we will consider
two types of constraints: mutual exclusion constraints and precedence con-
straints. Informally, a mutual exclusion constraint between two tasks means
that in any legal schedule they are not permitted to execute simultaneously.
Note that precedence constraints are logically stronger than mutual exclusion
constraints. as they additionaly specify the order in which tasks must occur.
While the scheduling of tasks with precedence constraints has been studied
extensively (e.g. see Chapter 2 and [56, 112]), to our knowledge the previ-
ous work on mutual exclusion constraints is very limited, despite its practical
applicability to parallel computing. Thus we first concentrate on developing
results for scheduling tasks under mutual exclusion constraints, and in sec.
8.2 we present some results on the NP-completeness of precedence-constrained

scheduling.

170

171

8.1 Mutual exclusion constraints

Mutual exclusion constraints on tasks are very common in parallel programs,
and represent a natural and practical means of expressing synchronization
requirements. The CODE parallel programming environment, for instance,
provides a limited form of mutual exclusion constraints for this purpose [15],
[140], [141]. We surmise that mutual exclusion constraints may also be useful
for expressing scheduling constraints on problems drawn from many other

application areas, including the communications switching application.

An advantage of our model (see Chapter 2) over simpler classification schemes
is the ability to perform graph transformations to the problem specifications
so as to prove that two problems are related in the sense that a solution to
one is a solution to the other. In this section we demonstrate this by showing
the scheduling problem for data transfers in systems with tree-structured ar-
chitectures (TreeDTS) is related to scheduling data transfers in the presence
of limited mutual exclusion constraints. The limited mutual exclusion con-
straints are a superset of those allowed in the CODE 1.2 parallel program-
ming environment [140]. We thus obtain an algorithm producing optimal-
length schedules for this application of parallel I/O scheduling in a parallel

programming environment.

8.1.1 Problem definition

We consider the data transfer scheduling problem in which each data transfer

operation involves a distinct pair of resources drawn from two disjoint resource

172

sets. and each transfer may be required to be logically mutually exclusive with
a (restricted) set of other transfers. For simplicity we assume in the following
that the architecture provides a direct dedicated link between every pair of

communicating entities.

In our model the problem is specified as follows:
LimMuter= (PGi, AG1, RGy, f1, Preempt;)

where the elements Qf the 5-tuple are defined as follows.

PG: = (T, Ep,Lp) where |T| = n, Lp(t) is the length of task t € T, and
Ep is a set of hyperedges. Recall that in the model hyperedges represent
mutual exclusion constraints between tasks, i.e., no two tasks included in the
same hyperedge may execute simultaneously. We will introduce a hierarchy

of restrictions on Ep below.

AG, = (R,Ea,La) with |R| = 2n contains vertices of type SUSER and
RUSER corresponding to sending users and receiving users respectively. For
ease of exposition we assume the number of both sending users and receiving
users is equal to n, although this restriction can easily be relaxed. Ea forms
a complete directed bipartite graph from vertices of type SUSER to vertices
of type RUSER, and La(e) = 1 is the link capacity for all e € Ea.

RG, = (R, Er, Lr) where Er is a set of arcs from vertices of type SUSER to
those of type RUS E R such that no two edges share a vertex. Lr is a bijection
from Er to T.

173

f1 is makespan.

Preempt; = true.

Terminology. The abbreviation mutez stands for “mutual exclusion con-
straint”; the plural is muteres. Vertices and hyperedges in PG will some-
times be called the entities they represent, i.e., tasks and mutexes, and vice
versa. A set of vertices in PG (i.e., tasks) connected by a hyperedge is called
a muter set. A task t € T is said to participate in a mutez if 1t is a member

of a mutex set in PG. The degree of a graph G is denoted degree(G).

8.1.2 Limited Mutual Exclusion Constraints

Allowing arbitrary mutexes between tasks can lead to very complex restric-
tions which are difficult for run-time systems to enforce efficiently, let alone
schedule optimally; to our knowledge there are no published scheduling re-
sults in this area. It is necessary to consider limited mutexes that provide a
trade-off between expressibility and efficiency. We consider three successively

looser restrictions.

R1. A task may participate in at most one mutex, i.e., degree(PG,) < 1.

R2. There are no hyperedge cycles of odd length in PGy and
degree(PGy) < 2.

R3. A task may participate in at most 2 mutexes, i.e., degree(PGy) < 2.

174

xes
T T T3 T8® QO T4
060 " O

T6
tex per task R2. There are no cycles of hyperedges
RI Avmost one muexp of odd length and there are at most two
R3. At most two mutexes per mutexes per task
task
T T2 T3
4
T6 I S) @ T4 KEY: mutex 1, ml
N S mutex 2, m2 =--=="="
O TS mutex 3, m3 = == ==

mutex 4, M4 m = -
Figure 8.1: Limited mutual exclusion constraints

Clearly, R1 = R2, and R2 == R3. In Fig. 8.1 we show examples of precedence
graphs satisfying RI - R3. Restriction RI is implemented in the CODE
1.2 parallel programming environment [140]. We will show that there exist
instances of the LimMutex problem satisfying R3, but not R2, which cannot

be scheduled using the Tree algorithm of Chapter 5.

8.1.3 Transformation

We will transform LimMutez into the problem Tree* defined below, which
is an instance of TreeDTS. The basic idea is that the mutual exclusion con-
straints in LimMutez are converted to architecture constraints. For an exam-

ple of this transformation, see I'ig. 8.2.

Tree* = (PGy, AGq, RGy, fo, Preempts)

175
T oY) B
:. = :
™ ¢ (D T4
™ O— -@ - - s
6

O Dummy node. Type NULL

Precedence Graph for LimMutex
satisfying R2

Root of Demultiplexer

f Multiplexer
Root of Multip!) Treo, DT

Subtree, MT Demultiplexer

nodes, type
DMUX

. ‘ A
OO0 = cceeee

S1 S2 S3 S4 S586 S7 S8 Rl R2 R3 R4 RS R6 R7 R8

Multiplexer
nodes, lype

KEY: mutex 1, ml
mutex 2, m2 smsmesns:
mutex 3, m3 mm wm - -
muex 4, M4 we = o=

Sending Users, Receiving Users,
type SUSER type RUSER
Architectare Graph for Tree*

Figure 8.2: Example mutex transformation

where

PGy = (T,Ep,Lp) has |T| = n and Ep = {}, as in TreeDTS. Preempl; =
Preempt; and f, = f1, and both variables are as in TreeDTS. RGy = RGYy,
and hence this is a special case of TreeDTS where no two arcs share a vertex
since there are no resource assignment conflicts. AG; = (R, Ea, La) is a
special case of TreeDTS (see Fig. 5.1) in which all arcs not connected to the

root have capacity 1, and the arcs entering and leaving the root have capacity

n.

An informal explanation of the transformation is given here (see Theorem
8.1 below for the proof). The basic idea is that the two sets of leaves of the
architecture graph of Tree* represent data senders and receivers respectively,

and the interior vertices model the mutual exclusion constraints of LimMutezr.

176

KEY: mutex 1, ml
mutex 2, m2 ----====
muteX 3, M3 cwm==

Each Task Tiisa
transfer from Sito Ri

Figure 8.3: Example PG satisfying R A ~R2

For instance, a MUX vertex with two incoming unit-capacity arcs from two
senders, but a single outgoing arc of unit capacity, will allow only one of the

senders to transfer data at any given time.

Both MUX and DMUX interior vertices can be introduced to model mu-
texes, and each sender and each receiver can be connected to an interior
vertex. Since each data transfer task involves a distinct sender-receiver pair,
it would thus seem that each task can be allowed to participate in two mu-
texes; in other words, restriction B3 would seem to suffice. However, the tree
topology of the architecture graph requires that every path from a sender to
a receiver include the root vertex. This necessitates the stronger restriction
R2 on mutexes. Fig. 8.3 shows an example for which R3 is satisfied but k2

is violated, and an instance of Tree* cannot be constructed.

177

Theorem 8.1 An instance of LimMutez satisfying R2 can be transformed to

an instance of Tree*.

Proof. (Follows from Lemmas 8.1 - 8.3 below.) For convenience PGy, the
precedence graph of LimMutez, is converted to a mutez graph containing
edges but no hyperedges. Condition R2 can then be stated as an equivalent
condition R2’ on the mutex graph (see Lemma 8.1). The key step of the
proof is contained in Lemma 8.2, which shows that, provided the mutex graph
satisfies R2’, each vertex in the mutex graph (i.e., each mutex in PG1) can be
systematically represented as an interior vertex of type MUX or DMUX in
AG, so that adjacent vertices in the mutex graph are assigned different types.
This process is called typing, and an algorithm for performing it is given.
Once the interior vertices have been consistently typed, it is a straightforward

construction to obtain AG, (see Lemma 8.3). O

Def. Given a precedence graph G = (V, E, L) containing only hyperedges, the
corresponding mutex graph is Mg = (V',E',L") where V' = {m, :e; € E},
E = {(mi,m;) : ei,e; EENe;Nej # {}}, and L' : V' = 2" is a labeling

function such that L(m;) = {u : e; is incident on u}.

Vertices of Mg may also be called mutexes. We state a condition R2’on the

mutex graph.

R2’. There are no cycles of odd length in the mutex graph MG corresponding
to P Gl.

178

Lemma 8.1 R2 = R2.

Proof. Clearly degree(PG,) >3 = —-R2', and if there are cycles of odd
lengthin PG so are therein MG. Hence ~R2 = - R2. Proving ~R2 = —~R2
is equivalent to showing that if MG has an odd cycle and degree(PG;,) <2
then PGy also has an odd cycle, which follows from the construction of MG.

0

We assign a type MUX or DMUX to each vertex in the mutex graph MG
using the Typing Algorithm given below. We will see that in order to subse-
quently construct a tree, the typing algorithm must assign different types to
adjacent vertices in the mutex graph, which can only be done if the mutex

graph satisfies R2’

Def. A vertex set M C V' of a mutex graph MG = (V',E', L) is said to
be consistently typed if for all m,m’ € M such that (m,m') € E', type(m)
+ type(m’). A mutex graph is said to be consistently typed if the set of all

its vertices is consistently typed.

Typing Algorithm.
Input. Mutex graph MG = (V', E', L') satislying R2’.
Output. Type function type : V' — {MUX,DMUX}.

Let type(m,) = MUX for some m; € V'
Let A, = (Wi, Ey) with Vi = {m1}.

179

1=1
Repeat
Choose some m € V' — V; such that for some m’ € V;, (m,m’) € E'.
Let type(m) be the opposite of type(m’)
Let Aipr = (Vig1, Eiqa) withVi, =V U {m} and Ejy, = E; U {(m,m")}.
1=141
Until all vertices in V' are typed.

End algorithm.

Lemma 8.2 Given a mutez graph satisfying R2’, the Typing Algorithm pro-

duces a consistently typed mutezx graph.

Proof. By induction on the sequence Ay, ..., Ap. Wiog assume that the mutex
graph MG = (V', E', L") is strongly connected. Then by the construction so
are all the A;.

basis. Clearly A, is consistently typed.

hyp. A; is consistently typed.

ind. Let m be the unique element of Vi1; — V;. By construction there exists
a vertex m' € V; such that (m,m’) € E' and type(m) # type(m'). Suppose
there exists m” € V; such that (m,m") € E' and type(m) = type(m”). Then

there exists a path of mutexes (m’ = ny,ng,...,n, = m’) in A; since A; is
15762y c--s Tty

180

strongly connected; in addition, type(n;) # type(niy1), for 1 <1 <y, since A;
is consistently typed. The path (n;,ns, ..., ng) followed by m is a cycle of odd
length, contradicting B2’ O

Lemma 8.3 An architecture graph AGs satisfying Tree* can be constructed

from a consistently typed mutez graph MG = (V', E\L).

Proof. By construction of AGy = (Va, E3, Ls).

Vertices of AG,. Let V; = SURUM U DU {MT,DT,r} defined as fol-
lows. S and R are sets of n vertices each of type SUSER and RUSER
respectively. Set M = {m; : m; € V' Atype(m;) = MUX}, and D =
{d; : d; € V' Atype(d;) = DMUX}. Set the types of the roots of the mul-
tiplexer tree, the demultiplexer tree, and of AG; as type(MT) = MUX,
type(DT) = DMUX, and type(r) = NULL.

Arcs of AGy. Let E; = EsUERUEy UEpUEx U {(MT,r),(r,DT)}
defined as follows. Add arcs from sending users to a vertex m € M if transfers
from that user participate in m, i.e., let Es = U, € yEn where E,, =
{(sixm) : s; € S Av; € L'(m)}. Similarly let Er = U 4 ¢ pEa where E, =
{(d,r;) :7; € RAv; € L'(d)}. Add arcs from the MUX vertices to the root
of the multiplexer subtree, i.e., let Ep = {(m,MT) : meM }. Similiarly,
let Ep = {(DT,d) : d € D}. Finally, connect sending users whose transfers
do not participate in mutexes directly to the root of the multiplexer subtree,
and similarly for receivers, i.e., let Ex = {(s, MT) : s € S A degree(s) =
0} U {(DT,s) : s € R A degree(s) = 0}.

181

Labels of AG. Set the arc capacities of all links except those incidert on the
NULL vertex to 1, i.e., forall e € E;— {(MT,r),(r,DT)} let Ly:e =1. Let
Loy((MT,r)) = L:((r,DT)) = n. O

8.2 Precedence constraints

In this section w= consider the problem of scheduling data transfers inder the
presence of precsdence constraints. Clearly, this is an especially mportant
problem for the parallel I/O application. We will show, however. -hat even
for situations in which tasks are of unit length and the precdence cmstraints
are restricted to be in the form of a tree, the problem is NP-complee. In the
following we specify the problem and review some well-known reated NP-
completeness resilts. We then observe the NP-completeness of ou- problem,

and suggest averues for further work.

We specify a resiricted form of the precedence-constrained data trmsfer sch-

eduling problem which we will later show to NP-complete.

TreePrecDTS = (PG, AG, RG, f. Preempt)

where

PG = (T,Ep,L7) has, for all t € T, Lp(t) = 1, and is a tree.

AG = (R,Ea, Lz) is a complete bipartite graph.

182

RG = (R, Er,Lr) is a bipartite graph with |Er| = |T|.

f is makespan, Preempt is true.

We contrast the TreePrecDT S problem with two related scheduling prob-
lems, one of which is the well-known Resource Constrained Scheduling prob-
lem for multiprocessors [55, 56], a special case of which we call Tree RCMS,

specified as follows.

TreeRCMS = (PG, AG', RG', f, Preempt)

where PG, f and Preempt are as for TreePrecDTS.

AG' = (R, Ea,La) is a bipartite graph, i.e., R is partitioned into a set of

‘processors’, R,, and a set of ‘other resources’, R,, but Ea = {}.

RG' = (R,Er,Lr) has R = R, U R, and Er = {}, i.e., the assignment of
tasks to resource instances is not specified. The task resource requirement ir
is that each task requires one processor and some number of other resources,

i.e., for all t € T, there exists k, 0 < k < |R,|, such that tr(t) € R, x RE.

It is known that TreeRCM S is NP-complete [55]. However, we note that in
TreeRCMS the assignment of tasks to resources has to be computed as well
as a schedule minimizing the makespan. Therefore it might be possible that

if the assignment is fixed, finding the schedule is not NP-complete. In fact,

183

this turns out not to be the case, as shown by considering a related problem,
Processor-Bound Multiprocessor Scheduling with tree precedences [64], which
we call TreePBMS.

TreePBMS = (PG, AG", RG", [, Preempt)

where PG, f and Preempt are as for TreePrecDTS and TreeRCMS.

AG" = (R, Ea, La) consists of |R| distinguished vertices, with Ea = {}.

RG" = (R, Er, Lr) has |Er| = |T| consisting of self-loops on each vertex.

Thus TreePBMS differs from TreePrecDTS and TreeRCMS in that each
task requires only one resource, but also differs from Tree RCM S in that the
assignment of tasks to resource instances is known. Goyal [64, 56] has shown,
using a reduction very similar to that used by Garey and Johnson [55], that
TreePBMS is NP-complete.

Observation. TreePrecDTS is NP-complete.

The observation follows from the NP-completeness of T reePBM S, and not-
ing that TreePrecDTS is a special case of Tree PBMS.

8.2.1 Further work

Since the TreePrecDTS problem is of practical interest, it is useful to look

for approximation algorithms for its solution. We are currently investigating

184

several such schemes [79].

A way of specifying the problem that may be useful for future work is to
“merge” the resource and precedence graphs. Informally, the precedence
graph is augmented by adding a hyperdge connecting any tasks that require
the same resource instance (i.e., edges in the resource graph that have a com-
mon vertex). Then the edges of the resource graph can be deleted, since
resource conflict information is already captured in the extended precedence
graph. Note that the extended precedence graph can be simplified: if two
vertices are connected by a directed edge, they need not be connected by
a hyperedge even if they have a resource conflict. This extended precedence
graph may be useful for designing heuristics that consider both the precedence
and resource constraints between tasks simultaneously. (It can, of course, also
be applied to problems in which there are no resource conflicts but tasks have

logical mutual exclusion constraints as well as precedence constraints).

8.3 Discussion

8.3.1 Previous related work

The related work on precedence constrained scheduling [55, 64, 56, 98, and

refernces therein] has already been reviewed in sec. 8.2 and Chapter 2.

To our knowledge, there has been no previous work on scheduling of tasks
with explicit mutual exclusion constraints. Of course, implicit mutual exclu-

sion constraints, such as situations where every task is mutually exclusive to

185

every other task since they all require the same resource, have been stud-
ted extensively. For instance, some of the recent work on scheduling in the
presence of “exclusion constraints” between two tasks (e.g. [145]) actually
-efers to the restriction that if one task is executing, on a single proces-
sor, it may not be preempted by the other. Similarly, general resource con-
straints implicity define mutual exclusion constraints between tasks (e.g., see
[130, 128] and references therein). However, by specifying the mutual ezclu-
sion constraints implicitly, their logical structure is not apparent and cannot
be ezploited. Thus general resource-constrained scheduling is NP-complete for
the non-preemptive case and requires high-degree polynomial linear program-
ming solutions in the preemptive case [56, 130]. In contrast, by considering
the structure of explicit mutual exclusion constraints, we are able to specify a
hierarchy of constraints that can occur in practice, and obtain a polynomial-

time solution.

Almost all the previous work on logical constraints between tasks has focused
on precedence constraints, which are logically stronger than mutual exclusion
constraints and do not capture the synchronization requirements of tasks in
some applications, particularly parallel programming. Some recent work has
started to address this issue by weakening precedence constraints. Berger
and Cowen [6] consider tasks which may be subject to precedence constraints
(the usual partial order), as well as “concurrency constraints” (tasks that
must be scheduled in the same time step) and “weak precedence constraints”
(tasks that must be scheduled before, or at the same step as, some other
task). They do not consider mutual exclusion constraints and simultaneous

resource requirements, however.

186

8.3.2 Conclusions and further work

We have presented NP-completeness results for the problem of scheduling

z-a transfers under the presence of tree-sructured precedence constraints.

We have also presented a solution to the problem of scheduling data transfer
tz2sks when the tasks are subject to a restricted set of logical mutual exclusion
constraints. Such constraints arise naturally in the parallel I/O application,
a=d to our knowledge have not been previously systematically studied. While
our results are limited to mutual exclusion constraints of a restricted class,
trey do apply to those allowed in the CODE 1.2 parallel programming en-
ironment. Further, the technique used in this chapter, of systematically
transforming formal problem specifications, is promising and likely to be ap-
plicable to more general classes of mutual exclusion constraints, as well as

other problems.

For further work, we suggest two questions. The first is whether the opti-
mal algorithm we have developed, or a fast approximation algorithm based
upon it, could be used in parallel programming environments such as CODE.
The situation is quite promising since the mutual exclusion constraints are
explicitly and deterministically specified by the user, and since an automatic
programming system generates all the synchronization code, the algorithm
could be used without the user having to be aware of it. The second question
is whether tasks with mutual exclusion constraints could be combined with
tasks under the constraints of Berger and Cowen’s model [6], i.e., “concur-

rency constraints” and “weak precedence constraints”. This would further

187

weaken the model of task interaction (compared to the usual model of par-

tial orders, i.e., precedence constrained tasks) and allow scheduling in more

realistic situations for applications such as parallel I/0.

Chapter 9

Conclusions and Further Work

We have studied the scheduling of data transfers, a problem of increasing
importance in high-performance parallel computers and communications sys-
tems, particularly with the advent of advanced applications such as volume

visualization and multimedia information systems.

Data transfer scheduling gives rise to an important and interesting class of
simultaneous resource scheduling problems. We have defined a general graph-
theoretical model for precisely specifying and classifying scheduling problems,
and demonstrated its coverage of a wide range of traditional and simultane-
ous multiple resource scheduling problems. We have used the model for the
recognition of the similarity of seemingly different problems from different
application areas, for the systematic transformation of one problem speci-
fication into that of a seemingly different problem, and for the systematic

decomposition of a problem specification into solvable subproblems.

We have obtained optimal and approximate algorithms for a wide range of

problems, including communication architectures in which resources are fully

188

189

connected, cormunication architectures with a tree topology, and tree archi-
tectures in which both Iocal and remote data transfers are permitted. We
have also obtzned resulus for scheduling data transfers under the presence
of mutual exclzsion consiraints and precedence constraints. All these results
either solve mare general instances of the scheduling problem, or have bet-
ter time compl=xity, or provide better approximations than previously known
solutions, or al three. Finally, we have undertaken extensive experimenatal
evaluations of zur algoritmms and determined the situations under which they

operate best.

The results we rave obtained are generally applicable to both parallel comput-
ers and commnications systems. Specifically, they are applicable to certain
types of sharec-bus multiprocessor systems such as the Sequent [100], Encore
[143], and the IBM RP3 [115]; bus-oriented local area networks such as the
Ethernet; TDVMA satellize switches [75]; hierarchical switching systems [39];
tree-structure? multiprocessor architectures such as the Sequent [100], Tree
Machine [133. KYKLOS [102], and Hector [138]; and intersatellite commu-

nications systems [7].

For future wok, we have posed specific questions at the end of each chapter
that relate to 1ae topics studied in that chapter. Here we state some questions

of broader practical and theoretical concern.

1. What is the range of architectures and exclusion constraints for which
we can cotain optirmal, polynomial-time solutions? In particular, can ar-
chitectuzes such as the hypercube and mesh-based systems be covered?

Is it possible to design and evaluate faster near-optimal solutions?

™

o

Is it possible to integrate data partitioning and allocation with data
transfer scheduling so as to provide a better comprehensive approach to
managing paralle] 1/ O7

Is it desirable to integrate routing and scheduling of data transfers, in
computer networks and multiprocessor architectures such as the hyper-
cube? Is it possible to exploit the similarity of the solution techniques
used for some routing and scheduling problems?

Can effective parallel algorithms be developed to perform data transfer
scheduling?

Can the reasoning about the equivalence and transformation of sched-
uling problem classes using our scheduling model be formalized further

into inference rules or general theorems?

BIBLIOGRAPHY

[1] J. Akella and D. P. Siewiorek. Modeling and measurement of the impact
of Input/Output on system performance. In Proc. 18th Intl. Symp.
Comp. Arch., pages 390-399, 1991.

[2] M. Arrott and S. Latta. Perspectives on visualization. IEEE Spectrum,
pages 61-65, Sep. 1992.

[3] Kenneth R. Baker. Introduction to sequencing and scheduling. John
Wiley, 1974,

[4] H. Balan. Master’s thesis, Dept. of Elect. and Comp. Eng., Univ. of
Texas at Austin, 1990.

[5] Claude Berge. Graphs. North-Holland, 1985.

[6] B. Berger and L. Cowen. Complexity results and algorithms for
{ <, <,=}-constrained scheduling. In Proc. Symp. on Discrete Alg.,
pages 137-147, 1991.

[7] A. A. Bertossi, G. Bongiovanni, and M. A. Bonuccelli. Time slot as-
signment in SS/TDMA systems with intersatellite links. JEEE Trans.
Comm., 35:602-608, June 1987.

[8] J. A. Bondy and U. §. R. Murty. Graph theory with applications. North-
Holland, 1976.

191

(9]

[10]

[11]

[13]

[14]

192

G. Bongiovanni, D. Coppersmith, and C. K. Wong. An optimum time
slot assignment algorithm for an SS/TDMA system with variable num-
ber of transponders. Technical Report RC 8301 (# 35888), IBM T. J.
Watson Research Center, 1980.

G. Bongiovanni, D. Coppersmith, and C. K. Wong. An optimum time
slot assignment algorithm for an SS/TDMA system with variable num-
ber of transponders. IEEE Trans. Comm., 29(5):721-726, May 1981.

M. A. Bonuccelli. A fast time slot assignment algorithm for TDM hi-
erarchical switching systems. IEEE Trans. Comm., 37:870-874, Aug.
1989.

H. Boral and D. J. DeWitt. Database machines: An idea whose time
has passed? A critique of the future of database machines. In Third

Intl. Workshop on Database Machines, pages 166-187, 1983.

H. Boral and P. Faudemay, editors. Database machines. Springer-

Verlag, 1989.

D. Bradley and D. A. Reed. Performance of the Intel iPSC/2 in-
put/output system. In Proc. Conf. on Hypercubes, Concurrent Comp.
and Appl., pages 141-144, 1990.

J. C. Browne, Muhammad Azam, and Stephen Sobek. CODE: A unified
approach to parallel programming. IEEE Software, page 11, July 1989.

J. C. Browne, A. Dale, C. Leung, and R. Jenevein. A parallel multi-
stage 1/0 architecture with self-managing disk cache for database man-
agement applications. In Fourth Intl. Workshop on Database Machines.
Springer-Verlag, 1985.

17]

18]

19]

24]

25]

183

J. C. Browne, G. E. Onstott, P. L. Soffa, Ron Goering, S. Sivaramakr-
ishnan, Harish Balan, and Kiran Somalwar. Design and evaluation
of external memory architectures for multiprocessor computer systems:
Second quarter report to IBM Yorktown Heights Research Lab. Techrni-
cal report, Univ. Texas at Austin, Dept. of Comp. Sci., 1987. Available

from J. C. Browne.

C. E. Catlett. Balancing resources. IEEE Spectrum, pages 48-595, Sep.
1992.

S. Chalasani and A. Varma. Fast parallel time-slot assignment algo-
rithms for TDM switching. In Proc. Intl. Conf. Par. Proc., volume 111,
page 154, 1990.

S. Chalasani and A. Varma. An improved time slot assignment algor-
ithm for TDMA hierarchical switching systems. In Proc. Fourth Intl.
Conf. Data Comm. Sys. and their Perf., pages 116-132, 1990.

W.-T. Chen and H.-J. Liu. An adaptive scheduling algorithm for TDM
switching systems. In Proc. IEEE Infocom, pages 663-677, 1991.

W.-T. Chen, P.-R. Sheu, and J.-H. Yu. Time slot assignment in TDM
multicast switching systems. In Proc. IEEE Infocom, 1991.

H.-A. Choi and S. L. Hakimi. Scheduling file transfers for trees and odd
cycles. SIAM J. Comput., 16(1):162-168, 1937.

H.-A. Choi and S. L. Hakimi. Data transfers in networks. Algorithmica,
3:223-245, 1988.

H-A. Choi and S. L. Hakimi. Data transfers in networks with tran-
scievers. Networks, 18:223-251, 1988.

194
[26] E. F. Cocc Multiprogram scheduling. Comm. ACM, 3, June 1960.

[27] E. G. CeZnan, Jr., M. R. Garey, D. 5. Johnson, and A. S. LaPaugh.
Scheduli=¢ ile transfers. SIAM J. Comput., 3:744-780, 1985.

[28] E. G. Cofnan, Jr. and R. L. Graham. Optimal scheduling for two-
processor ssterms. Acta Inf., 1:200-213, 1972.

[29] R. Cole znt J. Hopcroft. On edge coloring bipartite graphs. SIAM J.
Comput.. 2 3):540-546, 1982.

[30] R. W. Convay, W. L. Maxwell, and L. W. Miller. Theory of Scheduling.
Addisorn-Vissley. 1967.

[31] D. de Wera. An introduction to timetabling. European J. of Opera-
tional Ezs. 19:151-162, 1985.

[32] T. A. DeFnti, M. D. Brown, and B. H. McCormick. Visualization:
Expanding scientific and engineering research opportunities. IEEE Co-

mputer. pazes 12-26, Aug. 1989.

[33] P.J. Deznng. Effects of scheduling on file memory operations. In Proc.

AFIPS Sp-ng Joint Comp. Conf., pages 9-21, 1967.

[34] N. Deo. Guph Theory with Applications to Engineering and Computer
Science. Pentice-Hall, 1974.

[35] D. J. D=Wt. DIRECT - A multiprocessor organization for supporting
relatior.z] tatabase management systems. IEEE Trans. Comp., June

1679.

13

12

i

B

195

D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. Kumar, and
M. Muralikrishna. GAMMA - A high performance dataflow database
architecture. In Proc. 12th Intl. Conf. on Very Large Data Bases, Aug.
1986.

-7 G. Dobson and U. Karmarkar. Simultaneous resource scheduling to

minimize weighted flow times. Oper. Res., 37(4):592-600, 1989.

< E. W. Dusio, T. P. Murphy, and W. F. Cashman. Communications

satellite software: A tutorial. [EEE Computer, pages 21-34, Apr. 1991.

1 K. Y. Eng and A. S. Acampora. Fundamental conditions governing

TDM switching assignments in terrestial and satellite networks. [EEE
Trans. Comm., COM-35:755-761, 1987.

1 S. Even, A. Itai, and A. Shamir. On the complexity of timetable and

multicommodity flow problems. SIAM J. Comput.. 5(4):691-703, 1976.

S. Fiorini and R. J. Wilson. Edge-colourings of graphs. Pitman, Lon-
don, U.K., 1977.

] L. R. Ford and D. R. Fulkerson. Flows in networks. Princeton Univer-

sity Press, 1962.

.37 E. A. Fox, editor. CACM Special Issue on Digital multimedia systems.

ACM, Apr. 1991.

1 J. C. French, T. W. Pratt, and M. Das. Performance meaurement of a

parallel Input/Output system for the Intel iPSC/2 hypercube. In Proc.
SIGMETRICS, pages 178-187, 1991.

Simon French. Sequencing and Scheduling. John Wiley, 1982.

196

[46] A. M. Frieze. Probabilistic analysis of graph algorithms. In G. Tinhofer,
E. Mayr, H. Noltemeir, and M. Syslo, editors, Computational graph
theory, pages 209-233. Springer-Verlag, 1990. Also as Computing Supp.,
vol. 7, Springer-Verlag, 1990.

[47) M. Fujii, T. Kasami, and K. Ninomiya. Optimal sequencing of two
equivalent processors. SIAM J. App. Math, 17:784-789, 1969. Erratum,
SIAM J. App. Math., vol. 20, p. 141, 1971.

[48] H. Gabow. Using euler partitions to edge color bipartite multigraphs.
Intl. J. Computer and Inf. Sci., 5:345-355, 1976.

[49] H. Gabow. An almost linear algorithm for two-processor scheduling. J.

Ass. Comp. Mach., 29:766-780, 1982.

[50] H. Gabow and O. Kariv. Algorithms for edge coloring bipartite multi-
graphs. ACM Symp. Th. of Comp., pages 184-192, 1978.

[51] H. Gabow and O. Kariv. Algorithms for edge coloring bipartite graphs
and multigraphs. SIAM J. Comput., 11(1):117-129, 1982.

[52] H. Gabow and R. E. Tarjan. A linear-time algorithm for a special case
of disjoint set union. In Proc. 15th Ann. Symp. Theory of Comp., pages
246-251, 1983.

[53] A. Ganz and Y. Gao. Scheduling on SS/TDMA systems with inter-
satellite links. In Proc. Intl. Conf. Comm., volume 1, pages 515 - 519,
1989.

[54] A. Ganz and Y. Gao. TDMA communication for SS/TDMA satellites
with optical intersatellite links. In Proc. Intl. Conf. Comm., pages 1081
- 1085, 1990.

197

[55] M. Garey and D. Johnson. Complexity results for multiprocessor sched-
uling under resource constraints. SIAM J. Comput., 4:397, Dec. 1975.

[56] M. Garey and D. Johnson. Computers and intractability: A guide to
the theory of NP-completeness. Freeman, 1979.

[57] J. Ghosh and B. Agarwal. Parallel I/0 subsystems for hypercube mul-
ticomputers. In Proc. Intl. Par. Proc. Symp., pages 381-384, 1991.

[58] Alan Gibbons. Algorithmic graph theory. Cambridge University Press,
1985.

[59] G. A. Gibson. Redundant disk arrays: Reliable, parallel secondary stor-
age. PhD thesis, Univ. of Calif,, Berkeley, Comp. Sci. Div, 1990. Also
available as Tech. Rep. UCB/CSD 91/613.

[60] Mario Gonzalez, Jr. Deterministic processor scheduling. Computing

Surveys, 9:173, Sept. 1977.

[61] T. Gonzalez and D. B. Johnson. A new algorithm for preemptive sch-
eduling of trees. J. Ass. Comp. Mach., 27:287-312, 1980.

[62] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish
time. J. Ass. Comp. Mach., 23:665-679, 1976.

[63] C. C. Gotlieb. The construction of class-teacher timetables. In Proc.
IFIP Congress, pages 73-17, 1962.

[64] D. K. Goyal. Scheduling processor bound systems. Technical Report
(S-76-036, Washington State Univ., 1976.

198

[65] H. Hadimioglu and R. J. Flynn. The architectural design of a tightly-
coupled distributed hypercube file system. In Proc. Conf. on Hyper-
cubes, Concurrent Comp. and Appl., pages 147-150, 1989.

[66] B. Hajek and G. Sasaki. Link scheduling in polynomial time. IEEE
Trans. Info. Th., 34:910-917, 1983.

[67) B. Hancock. Multiprocessors are NOT always better. Digitial Rev.,
page 59, Dec. 2 1991.

[68] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, San Mateo, CA, 1990.

[69] D. S. Hochbaum, T. Nishizeki, and D. B. Shmoys. A better than “best
possible” algorithm to edge color multigraphs. SIAM J. Comput., 1:79-
104, 1986.

[70] 1. J. Holyer. The NP-completeness of edge colourings. SIAM J. Com-
put., 10:718-720, 1980.

[71] J. Hopcroft and R. Karp. An n®/? algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2:225-231. 1973.

[72] T. C. Hu. Parallel sequencing and assembly line problems. Operations
Research, 9:841-848, 1961.

(73] IEEE. Proc. Intl. Conf. Univ. Pers. Comm., 1992. Held Sep. 29 - Oct.
2, 1992, at Dallas, TX.

[74] T. Inukai. An efficient SS/TDMA time slot assignment algorithm.
IEEE Trans. Comm., COM-27:1449-1455, 1979.

199

[75] Y. Ito, Y. Urano, T. Muratani, and M. Yamaguci. Analysis of a switch

[76]

matrix for an SS/TDMA system. Proc. IEEE, 65:411-419, 1977.

Ravi Jain. Scheduling I/O in parallel computing environments. Un-

published manuscript, Dec. 1990.

[77] Ravi Jain and Galen Sasaki. Scheduling packet transfers in a class of

(78]

(81]

[82]

(83]

TDM hierarchical switching systems. In Proc. Intl. Conf. Comm., 1991.

Ravi Jain, Kiran Somalwar, John Werth, and J. C. Browne. Scheduling
parallel I/O operations in multiple-bus systems. J. Par. and Distrib.

Comp., Dec. 1992. Special Issue on Scheduling and Load Balancing.

Ravi Jain and John Werth. Precedence constrained I/O scheduling.

Unpublished manuscripts, 1992.

Ravi Jain, John Werth, and J. C. Browne. A general model for sched-
uling of parallel computations and its application to parallel I/O oper-

ations. In Proc. Intl. Conf. Par. Proc., 1991.

Ravi Jain, John Werth, J. C. Browne, and G. Sasaki. A graph-theoretic
model for the scheduling problem and its application to simultaneous
resource scheduling. In ORSA Conf. on Computer Science and Op-
erations Research: New Developments in their Interfaces, Jan. 1992.

Available from Pergamon Press.

W. Jilke. Disk array mass storage systems: The new opportunity. Tech-

nical report, Amperif Corp., Sep. 1986.

C. V. Jones. The three-dimensional Gantt chart. Oper. Res., 36(6):891-
903, 19883.

[84]

(85]

[91]

[92]

[93]

200

H. Jordan. Scalability of data transport. In Proc. Scalable High Perf.
Computing Conf., pages 1-8, 1992.

A. Kandappan. Data allocation and scheduling for parallel I/O systems.
Master’s thesis, Dept. of Elect. and Comp. Eng., Univ. of Texas at
Austin, 1990.

H. J. Karloff and D. B. Shmoys. Efficient parallel algorithms for edge
coloring problems. J. Algorithms, 8:39-52, 1987.

K. N. Karna and E. W. Dusio. Communications satellite software.
IEEE Computer, pages 15-16, Apr. 1983. Special Issue on communica-

tions satellite software.

M. Y. Kim. Synchronized disk interleaving. IEEE Trans. Comp., C-35,
1986.

S. J. Kim and J. C. Browne. A general approach to mapping of parallel
computations upon multiprocessor architectures. In Proc. Intl. Conf.

Par. Proc., pages 1-8, 1988.

T. Kwok. Communications requirements of multimedia applications: A

preliminary study. In Proc. Intl. Conf. Univ. Pers. Comm., 1992.

S. Lam and R. Sethi. Worst case analysis of two scheduling algorithms.
SIAM J. Comput., 6:518-536, 1977.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart and Winston, 1976.

E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Recent de-

velopments in deterministic sequencing and scheduling: A survey. In

201

Deterministic and Stochastic Scheduling, pages 35-73. D. Reidel Pub-
lishing, 1982.

[94] P. L’Eculyer. Efficient and portable combined random number genera-
tors. Comm. ACM, 31:742-174, June 1983.

[95] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling
under precedence constraints. Oper. Res., pages 22-35, 1978.

[96] S. C. Liew. Comments on “Fundamental conditions governing TDM sw-
itching assignments in terrestrial and satellite networks”. IEEE Trans.
Comm., 37:187-189, Feb. 1989.

[97] M. Livny, S. Khoshhafian, and H. Boral. Multi-disk management algo-
rithms. In Proc. SIGMETRICS, May 1987.

[98] E. L. Lloyd. Concurrent task systems. Oper. Res., 29:189-201, 1981.

[99] C. Lo, R. S. Wolff, and R. C. Bernhardt. An estimate of network

database transaction volume to support universal personal communica-

tions services. In Proc. Intl. Conf. Univ. Pers. Comm., 1992.

[100] T. Lovett and S. Thakkar. The Symmetry multiprocessor system. In
Proc. Intl. Conf. Par. Proc., pages 303-310, 1988.

[101] Weizhen Mao. Directed file transfer scheduling. Submitted for publi-

cation, 1992.

[102] B. Menezes and R. Jenevein. KYKLOS: A linear growth fault-tolerant

interconnection network. In Proc. Intl. Conf. Par. Proc., pages 498-

502, 19853.

202

[103] E. Miller. Input/Output behavior of supercomputing applications.
Technical Report UCB/CSD 91/616, Univ. California, Berekeley, 1991.

[104] W. D. Moren. Disk array: You know it when you see it. Workstation
News, Apr. 1992.

[105] B. M. E. Moret, 1992. Private communication.

[106] B. M. E. Moret and H. D. Shapiro. Algorithms from P to NP, Volume
1: Design and efficiency. Benjamin-Cummings, 1991.

[107] T.N. Mudge, J. P. Hayes, and D. C. Winsor. Multiple bus architectures.
Computer, 20(6):42—48, June 1987.

[108] R. R. Muntz and E. G. Coffman, Jr. Optimal preemptive scheduling
on two-processor systems. IEEE Trans. Comp., C-18:101, 1969.

[109] R. R. Muntz and E. G. Coffman, Jr. Preemptive scheduling of time
tasks on multiprocessor systems. J. Ass. Comp. Mach., 17:324-338,
1970.

[110] G. M. Nielson, edizor. IEEE Computer Special Issue on Scientific Vi-
sualization. IEEE. Aug. 1939.

[111] R. G. Ogier. A decomposition method for optimal link scheduling. In
Proc. Allerton Conf. Comput. Comm, pages 822-823, 1986.

[112] Krishna Palem. Om the complezity of precedence constrained scheduling.
PhD thesis, Univ. Texas at Austin, Dept. of Comp. Sci., 1986. Available
as Tech. Rept. TR-86-11.

[113] D. A. Pattreson, G. A. Gibson, and R. H. Katz. A case for redundant
arrays of inexpens®ve disks (RAID). In Proc. SIGMOD, 1988.

[114]

115]

[116]

[117]

[118]

[119]

[120]

[121]

203

P. G. Paulin and J. P. Knight. Force-directed scheduling for the be-
havioral synthesis of ASIC’s. IEEE Trans. Comp.-Aided Design, pages
661-679, 1989.

G. Pfister, W. C. Brantley, D. A. George, 5. L. Harvey, W. J. Klein-
felder, K. P. McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss. The
IBM research parallel processor (RP3): Introduction and architecture.
In Proc. Intl. Conf. Par. Proc., pages 764-771, 1985.

P. Pierce. A concurrent file system for a highly parallel mass storage
system. In Proc. Conf. on Hypercubes, Concurrent Comp. and Appl.,
pages 155-160, 1989.

A. Pizzarello and F. Golshani. In-memory databases: An industry per-
spective. In Proc. Workshop on Res. Iss. in Data Eng., pages 96-101,
1992.

T. Pratt, J. French, P. Dickens, and Jr. S. Janet. A comparison of the
architecture and performance of two parallel file systems. In Proc. Conf.

on Hypercubes, Concurrent Comp. and Appl., pages 161-166, 1989.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling.

Numerical recipes: The art of scientific computing. Cambridge, 1986.

W. Rash. Multimedia moves beyond the hype. Byte, pages 85-87, Feb.
1992.

A. L. N. Reddy and P. Banerjee. Design, analysis and simulation of
1/O architrctures for hypercube multiprocessors. IEEE Trans. Par.
and Distrib. Sys., pages 140-151, Apr. 1990.

[122]

123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

204

R. T. Rockafellar. Network flows and monotropic optimization. John

Wiley, 1984.

F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint
satisfaction problems. In Proc. Euro. Conf. on Art. Intel. (ECAI90),
1990.

K. Salem and H. Garcia-Molina. Disk striping. In Proc. IEEE Intl.
Conf. Data Eng., 1986.

Qalen Sasaki and Ravi Jain. Scheduling data transfers in preemptive

hierarchical switching systems, 1991. Submitted to IEEE Trans. Comm.

Galen Sasaki and Ravi Jain. Scheduling data transfers in preemptive hi-
erarchical switching systems with applications to packet radio networks.

In Proc. Infocom, 1991.

R. K. Schultz and R. J. Zingg. Response time analysis of multiprocessor

computers for database support. ACM Trans. Database Sys., pages 14~
17, 1984.

Chia Shen, K. Ramamritham, and J. A. Stankovic. Resource reclaiming

in real time. IEEE Real-Time Sys. Symp., pages 41-50, 1990.

A. Silberschatz and J. Peterson. Operating systems concepts. Addison-
Wesley, 1988.

R. Slowinski and J. Weglarz. Advances in project scheduling. Elsevier

Science Pub., Amsterdam, 1989.

J. E. Smith, W. C. Hsu, and C.Hsuing. Future general purpose su-
percomputer architectures. In Proc. Supercomp. ’90, pages 796-804,
1990.

205

1232] Kiran Somalwar. Data transfer scheduling. Technical Report TR-88-31,
Univ. Texas at Austin, Dept. of Comp. Sci., 1988.

[233) S. W. Song. A highly concurrent tree machine for database applications.
In Proc. Intl. Conf. Par. Proc., pages 259-268, 1980.

[234] J.D. Ullman. NP-complete scheduling problems. J. Computer and Sys.
Sci., 10:384-393, 1975.

1:35] J. D. Ullman. Complexity of scheduling problems. In E. G. Coffman,
Jr., editor, Computer and job-shop scheduling theory. John Wiley, 1976.

1:36] A. Varma and S. Chalasani. An incremental time-slot assignment algo-
rithm for TDM hierararchical switching systems. In Proc. IEEE Intl.
Conf. Comm., pages 1554-1558, 1991.

“37] V. G. Vizing. On an estimate of the chromatic class of a p-graph.
Diskret. Analiz., 3:25-30, 1964. In Russian. See Gabow, 1976.

7.38] Z. G. Vranesic, M. Stumm, D. M. Lewis, and R. White. Hector: A hier-
archically structured shared-memory multiprocessor. Computer, pages

72-79, Jan. 1991.
39] S. B. Weinstein. JEEE Spectrum, 1985.

"40] John Werth, Dwip Banerjee, J. C. Browne, Ravi Jain, Steve Lin, Peter
Newton, Ravi Rao, and Steve Sobek. CODE 1.2 User Manual and
Tutorials. Technical Report TR-90-35, Univ. Texas at Austin, Dept. of
Comp. Sci., November 1990.

141] John Werth, J. C. Browne, Steve Sobek, T. J. Lee, Peter Newton,

and Ravi Jain. The interaction of the formal and practical in parallel

[142]

143)

[144)

[145]

[146]

206

programming snvironment development: CODE. Technical Report TR-

91-09, Univ. T=xas at Austin, Dept. of Comp. Sci., 1991.

Jennifer Whizchead. The complexity of file transfer scheduling with
forwarding. SZ4M J. Comput., 19(2):222-245, Apr. 1990.

A. W. Wilsor. Jr. Hierarchical cache/bus architecture for shared mem-
ory multiproc=ssors. In 14th Intl. Symp. Comp. Arch., pages 244-252,
1987.

R. H. Wolfe. Jr. and C. N. Liu. Interactive visualization of 3D seismic
data: A volu—ettic method. IEEE Comp. Graphics Appl., pages 24-30,
July 1988.

J. Xu and D. L. Parnas. Scheduling processes with release times, dead-
lines, precedsnce, and exclusion relations. IEEE Trans. Soft. Eng.,

16:360-369. Mar. 1990.

W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive sched-

uling under tme and resource constraints. IEEE Trans. Comp., page

949, Aug. 1957

VITA

Ravi Jain was born on July 3, 1960, at Simla, India. After completing high
school in Kitwe, Zambia, he received the B.Sc. in Electronics Engineering
from The City University, London, in 1980. He obtained an M.S.E.E. from
Penn State University in 1982, where his research focused on modeling en-
ergy deposition in the auroral ionosphere. From 1982 to 1985 he worked at
Syntrex Inc. on communications and systems software for a microcomputer
system, a local area network, and a fault-tolerant file server. He later worked
at SES Inc. on performance modeling of communications systems, and at the
Schlumberger Laboratory for Computer Science on high-level parallel pro-

gramming.

Jain has been an MCD Fellow at the University of Texas at Austin. His
research interests include resource management in parallel and distributed
computers, communications protocols, discrete algorithms, and performance
analysis. Jain has several refereed publications, and has served as a referee
for mumerous conferences and journals. Jain is a member of the Upsilon Pi
Epsilon and Phi Kappa Phi honorary societies, as well as ACM, IEEE, and
CPSR. Jain’s current address is Bellcore, 445 South Street, Morristown, NJ
07962.

Permanent address: 114 East 31st St., #311
Austin, TX 78705

