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There is a basic simple protocol to implement each of these execution models and a known e�ective imple-mentation of each of these synchronization constructs. For instance, sequentiality can be ensured by executingthe operations of a sequential program in the program order, sequential consistency can be ensured by execut-ing the operations of each program of a concurrent program in the program order, and serializability can beensured by executing transactions in a serial order.Since these protocols and implementations, in general, yield poor performance, a signi�cant amount ofresearch has been done to devise methods to obtain better performance. The two most common techniques forachieving this are pipelining and concurrency [1, 2, 6, 7, 8, 9, 10, 11]. Pipelining is a method for overlapping theexecution of multiple operations of a process, whereas concurrency is a method for overlapping the executionof multiple operations of di�erent processes (a process is an execution of a sequential program, namely, anexecution of a sequential operation stream.) The use of concurrency and pipelining must be controlled, sinceboth may change the order in which data accesses are performed, and therefore may yield incorrect execution.Pipelining allows an operation to be issued, before the previous operations in the program order are issuedor performed. In order to mask latency of interconnection networks, memory accesses are issued before theprevious accesses are performed in some shared memory multiprocessors, and messages are sent before theprevious messages are delivered in some distributed memory multiprocessors. If the interconnection network isasynchronous, then the order, in which memory accesses are executed and messages delivered, may di�er fromthe order speci�ed by the program. Similarly in a pipelined processor, in order to increase the throughput, aninstruction can be issued before completion of a previous instruction, which may cause memory accesses to beperformed in an unintended order.Concurrency allows several processes to execute simultaneously. Typically, programs require more thanone data item to be accessed atomically (without interleaving with other's data accesses). Examples areprogramming languages in which sequence of statements can be speci�ed as atomic, or databases where eachtransaction should be atomic. Since executing the atomic sections in isolation may degrade the performance,concurrent executions are allowed, which can result in incorrect interleavings of data accesses.The problem that the execution order of data accesses of a program can be di�erent from the intendedorder and, therefore, the execution may be incorrect exists in numerous programming paradigms, applicationdomains, and architectures. Examples are sequential programming, concurrent programming based on shareddata or message-passing, parallel programming, centralized and distributed databases, single processor systems,and shared and distributed multiprocessor systems. Although the nature of the problem is the same, there hasbeen no research present a uni�ed solution. It is the aim of this paper to develop a unifying theory for correctexecution.A system that performs operations in the program order and executes atomic sections exclusively is referredto as an ideal system. We assume that each program is correct in the sense that if it were executed on anideal system, then its result is the desired one. It is the responsibility of the programmers to ensure that theirprograms are indeed correct. We refer to an execution on the ideal system as the speci�cation of the correct2



execution, or the correctness criterion. We refer to an execution whose result is equivalent to the result of theexecution on the ideal system, as a correct execution.Given a speci�cation of a correct execution, our goal is to de�ne the class of correct executions whoseaccess order is less restrictive than the the access order of the corresponding execution on the ideal system.We develop a general theory of correct execution that is applicable to any correctness criterion that can beexpressed as follows. An execution on an ideal system is a set of sequential processes, each of which is asequence of atomic actions. An atomic action is a sequence of indivisible data accesses. The order among theatomic actions of di�erent processes can be expressed with a partial order. The processes can run in paralleland can share data. This correctness criterion is su�ciently general to encampus sequentiality, sequentialconsistency and serializability as special cases.Our unifying theory provides a veri�cation tool to test the correctness of an execution. It will have impacton understanding the access ordering problem, and will allow us to devise more e�cient protocols for varioussystems. Furthermore, the uni�ed theory will allow one to extend results developed in one type of system toother systems.The remainder of this paper is organized as follows. In Section 2, we present examples for access orderingproblem. In Section 3, we introduce the system model. In Section 4, we discuss the di�erences betweencorrectness, sequential consistency and serializability. In Section 5, we introduce various classes of correctness.In Section 6, we present the concepts of hierarchical graphs and hierarchical polygraphs to reduce the complexityof testing algorithms, whereas in Section 7, we develop testing algorithms for di�erent classes of correctness.We present our conclusions in Section 8, and prove the theorems in the Appendix.2 ExamplesIn order to motivate our work, we will give examples from several programming and application paradigmsand di�erent architectures where concurrency and pipelining change the execution order with respect to theintended order.Consider a single pipelined processor system, which allows the issuing of memory accesses of the nextoperation, before the execution of previous instructions are completed. Suppose that sequential program K1in Figure 1 is executed on such a processor. In this case, it is possible that operand a of the second instructionis loaded before the value of a is calculated and stored by the �rst instruction. Hence, the execution will beincorrect. On the other hand, if the operands of the third instruction are loaded before the previous instructionis completed, the result will be correct.Consider Peterson's solution to two-process critical section problem as shown in Figure 2. The program iswritten with the assumption that the system is sequentially consistent. Suppose this program is executed ona shared memory multiprocessor. If the basic load and store operations are indivisible, and the system doesnot pipeline the memory accesses, then the execution of this program will yield correct result, namely, at mostone process can be in the critical section. Now, suppose that the system allows pipelining of loads and stores.3



a := b=c;d := d+ a;e := e� f ;Figure 1: Sequential program K1.P0 P1shared F0; F1 : boelean; shared F0; F1 : boelean;shared turn; x; y : integer; shared turn; x; y : integer;F0 := true; F1 := true;turn := 1; turn := 0;while(F1 and turn = 1) do skip; while(F0 and turn = 0) do skip;Critical Section Critical SectionF0 := false; F1 := false;Figure 2: K2: Peterson's solution to two-process critical section problem.Then, the following order of events is possible. Suppose that initially F0 = F1 = false. Process P0 issues therequests to store the value true in F0 and the value 1 in turn. Following this, it issues the requests to loadF1 and turn, and then enters the critical section. Process P1 issues the requests to store the value true in F1and the value 0 in turn. Following this, it issues the requests to load F0 and turn. The request from processP0 to store true into F0 is still not performed, and this load request of process P1 returns false as the valueof F0, and process P1 enters the critical section. Hence, the execution is incorrect.Consider a client-server system, in which each server manages a set of data, and clients send read and writerequests to the appropriate server to access and update data. Suppose that the client programs in Figure 3are written with the assumption that the system is sequentially consistent. Servers S0 and S1 manage objectsobject0 and object1 respectively. Each client reads two objects from two di�erent servers, caches the objectsinto local bu�ers, increments each word of the objects, and updates the copies of the objects in the servers.Sequential consistency can be ensured by waiting for an acknowledgement message from the server to whicha request is sent, before another request is issued. Since such a protocol yields poor performance, the systemmay choose to pipeline the requests. In this case, the following execution is possible. Suppose that initiallyall the words of both objects are zero. After C0 sends the update request to S0, C0 sends read and then theupdate requests to S1. C1 sends a read request to S1, which arrives at S1 after the write request from C0.Therefore, C1 reads the value written by C0. After sending update message to S1, C1 sends read request toS0. This request arrives at S0 before the update request by C0. Hence, C1 reads the initial value of object0.This execution yields an incorrect �nal state in which all the words of object0 are one, and all the words ofobject1 are �ve, whereas a correct execution should result in the state in which all the words of object0 and4



C0 C1shared object0; object1; shared object0; object1;local buffer; i; n; local buffer; i; n;read(object0; buffer; n); read(object1; buffer; n);for i = 0 to i < n do for i = 0 to i < n dobuffer[i] := buffer[i] + 1; buffer[i] := buffer[i] + 3;write(object0; buffer; n); write(object1; buffer; n);read(object1; buffer; n); read(object0; buffer; n);for i = 0 to i < n do for i = 0 to i < n dobuffer[i] := buffer[i] + 2; buffer[i] := buffer[i] + 4;write(object1; buffer; n); write(object0; buffer; n);Figure 3: K3: Client programs C0 and C1.P1 P2x := x+ 10; x := x+ 100;y := y + 10; y := y + 100;Figure 4: Concurrent program K4.object1 are �ve.Consider concurrent programK4 depicted in Figure 4, which is written with the assumption that incrementstatements are atomic. If initially x = 0, then a correct execution must yield x = 110; which can be ensured byexecuting each statement atomically. However, such a system yield poor performance. To improve performance,the increment statement might be implemented as a sequence of three indivisible operations: (i) load a registerwith the value of x; (ii) add 10 or 100 to it; (iii) store the result in x. Thus, in the concurrent program above,the �nal value of x might be 10, 110, or 100. Concurrent execution of P1 and P2 must be synchronized toenforce restrictions on possible interleavings.Consider a database system that is implemented on a distributed system with the client-server model. Thetransaction manager is the server and the transactions are clients that send read and write requests to the server.Transactions are written with the assumption that the system will ensure serializability. The system uses aconcurrency control protocol which orders transactions, and allows a transaction to issue its operations, onlyif all the previous transactions in the order complete. If the system does not allow pipelining of data accesses,then this protocol ensures serial executions. However, if the system allows pipelining and interprocessorcommunication is asynchronous, this protocol may not ensure serializability. Suppose the protocol orderedtransactions in Figure 5 such that T0 is to be executed before T1. Let us represent the chronological orderin which instructions are executed in the system with a schedule. Figure 6 depicts the schedule generated bythis protocol when the data accesses are not pipelined. The schedule is serial. Now suppose that the system5



T0 T1shared A;B; shared A;B;local temp; local temp0; temp1;read(A; temp) read(A; temp0)temp := temp� 50; temp1:= temp0*0.1;write(A; temp); temp0 = temp0� temp1;read(B; temp); write(A; temp1);temp := temp+ 50; read(B; temp0);write(B; temp) temp0 := temp0 + temp1;write(B; temp0);Figure 5: K5: Two transactions T0 and T1.allows pipelining. The following order of events is possible. After T0 issues all its read and write accesses, itcommits. T1 issues read(A; temp0). This request arrives the server before write(A; temp) of T0. T1 reads theinitial value of A. T1 issues read(B; temp0) which arrives the server after write(B; temp) of T0. Hence, T1reads the value of B written by T0. The execution is not serializable.The protocol above ensures serializability, if there is no pipelining. However, such a protocol decreases per-formance unnecessarily. Consider the execution in Figure 7. Although transactions are executed concurrently,the result is equal as if T1 is executed after T0. Now consider the execution in Figure 8. Transactions areexecuted concurrently, but the result is not equal to any serial execution of T0 and T1. Hence, any interleavingof operations may not yield correct result, execution of T0 and T1 must be synchronized to enforce restrictionson possible interleavings.Consider parallel program K6 in Figure 9 in which barrier synchronization is used. The end sync constructspeci�es a barrier, which means that a process cannot execute the statements following the barrier before allother processes reach the barrier. The forall construct speci�es that processes can execute the loop concurrently,and each iterate of the loop is executed by another process. Suppose that N = 4 and processes P1; P2; P3 andP4 execute the iterations 1,2,3 and 4 for both forall loops, respectively. ProgramK7 in Figure 10 illustrates thestatements that each process will execute in this case. Note that there are execution orders of operations thatare di�erent than the order speci�ed by the program, but yield correct execution. For example, the executionwill be correct if P1 only waits for P2, before issuing load a[2; 1] after the barrier.Consider concurrent programK8 in Figure 11, which consists of a producer program and consumer program.The program uses semaphores to specify a speci�c execution order, namely, initially both bu�ers are emptyand producer writes into buffer0 and buffer1, and the consumer can read the bu�ers only after the producerwrites into the bu�ers, and the producer can write another item into the bu�ers only after the consumer readsthe bu�ers. Although this implementation is correct, it may yield poor performance. Suppose this program6



T0 T1read(A; temp)temp := temp� 50;write(A; temp);read(B; temp);temp := temp+ 50;write(B; temp) read(A; temp0)temp1:= temp0*0.1;temp0 = temp0� temp1;write(B; temp1);write(B; temp1);read(B; temp0);temp0 := temp0 + temp1;write(B; temp0);Figure 6: A serial schedule of T0 and T1.T0 T1read(A; temp)temp := temp� 50;write(A; temp); read(A; temp0)temp1:= temp0*0.1;temp0 = temp0� temp1;write(B; temp1);read(B; temp);temp := temp+ 50;write(B; temp) read(B; temp0);temp0 := temp0 + temp1;write(B; temp0);Figure 7: A concurrent serializable schedule of T0 and T1.7



T0 T1read(A; temp)temp := temp� 50; read(A; temp0)temp1:= temp0*0.1;temp0 = temp0� temp1;write(B; temp1);read(B; temp0);write(A; temp);read(B; temp);temp := temp+ 50;write(B; temp) temp0 := temp0 + temp1;write(B; temp0);Figure 8: A concurrent nonserializable schedule of T0 and T1.shared a[N;N ];constant N ;local i; j; k;forall(i = 1; i � N) in parallelfor(k = 0; N2 ; k ++)for(j = 0;N ; j := j + 2 � k)a[i,j]:= a[i,j] + a[i,j+k];end syncforall(j = 1; j � N) in parallelfor(k = 0; N2 ; k ++)for(i = 0;N ; i := i+ 2 � k)a[i,j]:= a[i,j] + a[i+k,j];end syncFigure 9: Parallel program K6.8



P1 P2 P3 P4a[1; 1] := a[1; 1] + a[1; 2]; a[2; 1] := a[2; 1] + a[2; 2]; a[3; 1] := a[3; 1] + a[3; 2]; a[4; 1] :=a[4,1]+a[4; 2];a[1; 3] := a[1; 3] + a[1; 4]; a[2; 3] := a[2; 3] + a[2; 4]; a[3; 3] := a[3; 3] + a[3; 4]; a[4; 3] :=a[4,4]+a[4; 4];a[1; 1] := a[1; 1] + a[1; 3]; a[2; 1] := a[2; 1] + a[2; 3]; a[3; 1] := a[3; 1] + a[3; 3]; a[4; 1] :=a[4,1]+a[4; 3];barrier synchronization; barrier synchronization; barrier synchronization; barrier synchronization;a[1; 1] := a[1; 1] + a[2; 1]; a[1; 2] := a[1; 2] + a[2; 2]; a[1; 3] := a[1; 3] + a[2; 3]; a[1; 4] := a[1; 4] + a[2; 4];a[3; 1] := a[3; 1] + a[4; 1]; a[3; 2] := a[3; 2] + a[4; 2]; a[3; 3] := a[3; 3] + a[4; 3]; a[3; 4] := a[3; 4] + a[4; 4];a[1; 1] := a[1; 1] + a[3; 1]; a[1; 2] := a[1; 2] + a[3; 2]; a[1; 3] := a[1; 3] + a[3; 3]; a[1; 4] := a[1; 4] + a[3; 4];Figure 10: Program K7.Producer Consumershared buffer0; buffer1; shared buffer0; buffer1;local temp0; temp1; local temp0; temp1;semaphore full = 0; empty = 1; semaphore full = 0; empty = 1;repeat repeatproduce an item in temp0; wait(full);produce an item in temp1; read(buffer0; temp0);wait(empty); read(buffer1; temp1);write(buffer0; temp0); signal(empty);write(buffer1; temp1); consume the item in temp0;signal(full); consume the item in temp1;untilfalse; untilfalse;Figure 11: K8: Producer and consumer programs.is executed on a sequential processor and the system uses a protocol that orders the accesses to shared dataas shown in Figure 12. In this case, the execution will be correct. However, not all possible interleavings ofreads and writes yield correct result. Execution of consumer and producer processes must be synchronized toenforce restrictions on possible interleavings.Consider the execution of the program in Figure 11 on a shared or distributed memory multiprocessor.Suppose the system uses semaphores, but the system allows pipelining of data accesses. If the program isexecuted on a shared memory multiprocessor, where the interconnection network between processors andmemory modules is asynchronous, and if it is executed on a distributed memory multiprocessor, where theinterconnection network between processors is asynchronous, then the following order of events is possible.After the producer issues requests to write into both bu�ers, it issues a signal request on semaphore ull. Thesignal request is performed. The consumer issues a wait request on semaphore full and issues read operations.Due to the asynchronous behavior of the interconnection network, the previous writes from the producer are9



Producer Process Consumer Processwrite(buffer0; temp0); read(buffer0; temp0);write(buffer1; temp1); read(buffer1; temp1);write(buffer0; temp0); read(buffer0; temp0);. .. .. .Figure 12: An order of execution of reads and writes of programs C0 and C1 that results in correct execution.still not performed. The read requests of the consumer are performed. The consumer reads incorrect values,and thus this execution is incorrect.3 System ModelA concurrent execution involves a set of sequential processes, P = fp1; p2; :::; png �, and a set of non-overlappingdata structures called entities, E = fe1; e2; :::; emg. A process is the execution of a sequential program, whichconsists of a �nite sequence of operations. Processes communicate with each other through shared entities.There is only one valid version of an entity at any time. This means that if there are several copies of an entity,these copies are kept coherent. Accesses to entities are indivisible, which means that the e�ect of performinga read or write on an entity is equivalent to the case where the read and write are executed exclusively. Weallow the granularity of an entity to be larger than one memory word. Note that an entity is not necessarilyshared.This model encompasses sequential and shared memory systems in which a memory word is an entity,client-server systems in which shared data of any size accessed through a server process is an entity, databasesystems in which shared items are entities, and message passing systems in which a message bu�er is an entity.For message passing systems, a send operation can be viewed as a write operation on the message bu�er ofthe receiver processes, and a receive operation as a read operation on the message bu�er.A process may use local data bu�ers to cache entities. Local data bu�ers are not shared among processes.For example, registers in sequential and tightly coupled shared memory programming can be viewed as localdata bu�ers. Similarly, in client-server systems or databases, the variables in the address space of a process,in which an entity is bu�ered, or from which an entity is updated can be viewed as local data bu�ers.In this paper, we make a simplifying assumption that the accesses to local data bu�ers are executed in theprogram order. This assumption can be relaxed either by modeling the local data bu�ers as entities, or by�n � 1. We allow that n to be one to be able to apply the theory also to sequential programs.10



entities x; y; z : integer;z := x+ y;if x � 10 thenx := z � x;Figure 13: Program K9.deriving a more sophisticated system model. The latter issue is a future research topic.3.1 Issuing and Performing an OperationIn order to develop a comprehensive theory, we distinguish between the actions of issuing an operation andperforming an operation on an entity. Issuing a read or a write operation means that a request to performthe operation is made, whereas performing a read or a write operation means that the requested operation isserviced. We say that a read is serviced at the moment when the value it will return is �xed. Similarly, a writeis serviced at the moment when a subsequent read can return the value written.We are only interested in read and write operations, denoted by R and W respectively. Hence, we use theterm operation only to refer to read and write operations. We use the notations Rji (e) andW ji (e) to denote thatif the operations were executed in the program order, jth operation of process Pi would be a read and writeoperations on entity e, respectively. When no confusion arises, we will omit the subscript or the superscript.3.2 Program OrderTo simplify the presentation, we sometimes refer to the graph representation of a relation R also as R, and tothe underlying relation of a graph G as G. The program order of a concurrent execution speci�es the order inwhich entity accesses would have been performed if they were executed in the order speci�ed by the concurrentprogram. The program order IBi for a process Pi is a total order on the set Oi of operations executed byprocess Pi. We also refer to IBi as the schedule of process Pi. IBi is analogous to the concept of tracede�ned in [9], and the concept of transaction in databases. To illustrate, Figure 14 displays the program ordergenerated by executing program K9 in Figure 13, when initially x � 10; and Figure 16 displays the programorder generated by executing program K10 in Figure 15. In these �gures, IB is represented as the smallestrelation of which transitive closure is IB. For a given schedule, we denote the jth operation and the entityassociated with this operation by operation(j) 2 fW;Rg and entity(aj) 2 E; respectively.The system may provide constructs to allow programmers to specify an order among the operations ofdi�erent processes. Barrier synchronization primitives [5] and conditional synchronization primitives [4] (e.g.,semaphores, continue and delay operations in Concurrent PASCAL, and notify and wait operations in Mesa)are examples for such constructs. We de�ne the relation IBinter to express the order among the operationsof di�erent processes speci�ed by the concurrent program. If a and b are operations of processes Pi and Pj11



IBR1(x)W 3(z)R2(y)R5(x)R4(x)W 7(x)R6(z)Figure 14: IB originated from the execution of program K9, when x � 10 initially.entities object : character[n];local buffer : character[n];local i; n : integer;read(object; buffer; n);for i = 0 to i < n dobuffer[i] := buffer[i] + 1;write(object; buffer; n);Figure 15: Program K10.IBR(object)W (object)Figure 16: IB originated from the execution of program K10.12



W 92 (a[2; 1])R82(a[2; 3])R72(a[2; 1])R42(a[2; 3])W 62 (a[2; 3])R52(a[2; 4])R12(a[2; 1])W 32 (a[2; 1])R22(a[2; 2])

W 182 (a[1; 2])R172 (a[3; 2])R162 (a[1; 2])R132 (a[3; 2])W 152 (a[3; 2])R142 (a[4; 2])R102 (a[1; 2])W 122 (a[1; 2])R112 (a[2; 2])R111 (a[2; 1])W 121 (a[1; 1])R101 (a[1; 1])R141 (a[4; 1])W 151 (a[3; 1])R131 (a[3; 1])R161 (a[1; 1])R171 (a[3; 1])W 181 (a[1; 1])

R21(a[1; 2])W 31 (a[1; 1])R11(a[1; 1])R51(a[1; 4])W 61 (a[1; 3])R41(a[1; 3])R71(a[1; 1])R81(a[1; 3])W 91 (a[1; 1]) R113 (a[2; 3])W 123 (a[1; 3])R103 (a[1; 3])R143 (a[4; 3])W 153 (a[3; 3])R133 (a[3; 3])R163 (a[1; 3])R173 (a[3; 3])W 183 (a[1; 3])

R23(a[3; 2])W 33 (a[3; 1])R11(a[1; 1])R53(a[3; 4])W 63 (a[3; 3])R43(a[3; 3])R73(a[3; 1])R83(a[3; 3])W 93 (a[3; 1]) W 94 (a[4; 1])R84(a[4; 3])R74(a[4; 1])R44(a[4; 3])W 64 (a[4; 3])R54(a[4; 4])R14(a[4; 1])W 34 (a[4; 1])R24(a[4; 2])

W 184 (a[1; 4])R174 (a[3; 4])R164 (a[1; 4])R134 (a[3; 4])W 154 (a[3; 4])R144 (a[4; 4])R104 (a[1; 4])W 124 (a[1; 4])R114 (a[2; 4])
Figure 17: IB for parallel program K7respectively (i 6= j), and the concurrent program speci�es that b must be performed after a, then a IBinterb.For example, consider again Figure 10. Operation W1(a[1; 1]) for the third statement of P1, and operationR3(a[1; 3]) for the fourth statement of P3. The program speci�es that W1(a[1; 1]) IBinterR3(a[1; 3]).We denote the set of all operations of all the processes in a concurrent execution by O, namely O = Sni=1Oi.Program order relation IB, denoted by i!, is de�ned on O as the transitive closure of Sni=1IBi [ IBinter: IBis an irreexive partial order on O. Note that there can be program orders which cannot be expressed byIB relation. In �gures in this paper, we depict IB as the smallest relation of which transitive closure is IB.Figure 17 depicts IB for parallel program in Figure 10.If the operations are issued in the program order, then IBi speci�es the order in which entity accesses areissued. This is not the case for some pipelined processors that issue operations in di�erent order than the orderde�ned in the code.We assume that concurrent programs are written correctly for an ideal machine, and that the code generatedby the compiler either preserves the order of entity accesses in each program, or if the compiler rearranges the13



order of entity access in a program, it preserved the interprocess dependencies. Thus, if the entity accesses areexecuted in the order that is de�ned in the compiler generated code, the result will be correct. In pipelinedprocessors, branches can a�ect the pipeline performance [12]. One method for reducing pipeline stalls due tobranch delays is predicting branches. According to prediction, the branch is either taken or not taken before thebranch condition is calculated. If the prediction is wrong, the state must be restored. For such architectures,we assume that pipeline stalls, if the shared data (entities) must be accessed in a predicted branch until branchcondition is computed.3.3 Performed Before OrderAs we pointed out before, the order in which operations are performed can be di�erent from the programorder. We de�ne the performed before relation PB, denoted by p!, on O to capture the observable order, inwhich the accesses are performed, as follows:1. If a and b are operations of the same process or di�erent processes, and performing b is delayed until ais performed, then a p! b.2. If an operation R(x) in a process returns the value written by an operation W (x) in the same process ordi�erent processes, then W (x) p! R(x).3. If an operation W (x) in a process overwrites the value read by an operation R(x) in the same process ordi�erent processes, then R(x) p! W (x).4. If an operation W (x) in a process overwrites the value written by an operation W (x) in the same processor di�erent processes, then W (x) p! W (x).5. If a p! b and b p! c, then a p! c.PB is an irreexive partial order on O. In �gures in this paper, we illustrate PB as the smallest relation ofwhich transitive closure is PB.The rationale behind the de�nition of PB is as follows. Item (1) expresses the order imposed due to eitherarchitectural assumptions or program speci�cation. For example, some processors do not issue an operationuntil the previous operations are performed, or some pipelined processes do not issue operations that aredependent on previously issued operations until these operations are performed. Another example is the accessordering in bus-based shared memory multiprocessors. Since there is one FIFO path between a processor andall memory modules, then for any two operations a and b of a process, it is known that if a i! b, then a p! b.Yet another example is the fence operation in some shared memory multiprocessors, which allows to delayissuing, and hence, performing of an access until some previous accesses are performed [13]. Item (2) is due tocausality. Items (3) and (4) are due to our assumption about the system that data is kept coherent. Item (5)simply expresses the transitivity of PB relation. 14



IBW1(x)R1(x)R1(y)W1(y) R2(x)W2(x)W2(y)R2(y)Figure 18: IB order and A relation for program K4.3.4 Atomic ActionsAn atomic action is a sequence of operations whose execution is guaranteed to yield the same e�ect as if theoperations were executed exclusively. An equivalence relation Ai on Oi for each process Pi speci�es the atomicactions. If a and b are operations of the same process, and a and b must performed atomically, then aAib. Wede�ne the equivalence relation A on the set O of operations of all processes: A = Sni=1Ai.The following de�nitions, borrowed from [6], will be used later in the paper. If R is an irreexive relationand A is an equivalence relation on a set U , then R=A is an irreexive relation induced by R on the set ofequivalence classes U=A. R is de�ned asR=A = f(r1; r2)j r1 2 U=A ^ r2 2 U=A ^ r1 6= r2 ^ (9a9b : a 2 r1; b 2 r2 : a R b)gHence, PB=A and IB=A are the irreexive relations induced by PB and IB on the set of equivalence classesO=A. We assume that IB=A is a partial order, and IB=A speci�es the program order among the atomic actionsin a concurrent execution. In �gures that depict IB, we illustrate the operations in an atomic action withina box. Consider again concurrent program K4 of Figure 4. The IB order for program K4 is depicted inFigure 18, where A1 = f(R1(x);W1(x)); (R1(y);W1(y))g and A2 = f(R2(x);W2(x)); (R2(y);W2(y))g:3.5 Data DependenceWe say that a write operation W ki (x) is dependent on an entity y (where y can be equal to x), if the value ofentity y is used to compute the value of x. We say that W ki (x) is dependent on read operation Rli(y), if it isdependent on y and Rli(y) is is the �rst read on y before W ki (x) in IBi. Note that we have de�ned dependencywithin a process.To illustrate, consider program K9 in Figure 13 and the corresponding schedule in Figure 14. W 3(z) isdependent on entities x and y and on operations R1(x) and R2(y), whereas W 7(x) is dependent on entitiesx and z and on operations R5(x) and R6(z). For program K10 in Figure 15 and its schedule in Figure 16,W (object) is dependent on entity object and on operation R(object).We assume that the system stalls before issuing a write operation until all reads that write is dependentare performed. Hence, for any write operation a that is dependent on a read operation b, b p! a.15



3.6 InterpretationWe borrow the notion of interpretation from [7]. The interpretation of a schedule (IBi) is speci�ed by theprogram of process Pi from which the schedule is originated. An interpretation of a schedule is a pair Ii =(D;F ), where D = fDx; Dy; :::g is a set of domains, one for each entity in E; each domain is a set of valuesfor the corresponding entity. F is a set of functions, one for each write operation in IBi and is de�ned as:F = ffj j j is a step of the schedule and operation(j) = WgFor each such step j, fj is a mapping fj : Yx2B(j)Dx �! Dentity(j);where B(j) = fx 2 Ej W j(entity(j)) is dependent on xg:We illustrate this concept by an example. Consider again program K9 in Figure 13. Figure 14 depicts theschedule generated by executing program K9, when initially x � 10: The interpretation Ii = (D;F ) of theschedule corresponding to program K9 is the following. The domains Dx; Dy; Dz for the entities x; y; z are theset of integers, and the functions corresponding to the write operations are f3(x; y) = x+y and f7(z; x) = z�x:3.7 Concurrent Execution, Correct Execution and Execution ModelTwo relations R1 and R2 are said to be consistent, if R1 [ R2 can be extended to a total ordering. A relationcan be extended to a total ordering if and only if its transitive closure is irreexive. Thus, R1 is consistentwith R2 if and only if R1 [R2 is acyclic.A concurrent execution s is represented by a tuple < C; PB >, where C is a tuple < O; I; A; IB > thatspeci�es the correct execution. We refer to C as the correctness criterion or the speci�cation of the correctexecution. O is the set of entity accesses of all processes in the concurrent execution. A is the equivalencerelation on O that de�nes the atomic actions. IB and PB are the program and performing orders on theentity accesses O, respectively. I is the set consisting of the union of all interpretations of all schedules in theconcurrent execution.We have assumed that programs are written correctly for the ideal system. Hence, we know that anexecution in which operations are performed in the program order, and in which atomic actions are executedexclusively is correct. Formally, we can de�ne the correct execution as follows.De�nition 3.1 For a given speci�cation C =< O; I; A; IB >; an execution s =< C; PB > is correct if theresult of s is equal to the result of any execution in the set of executions X, whereX = f< C; PBc > j IB � PBc ^PBc is consistent with IB ^IB=A � PBc=A ^PBc=A is consistent with IB=Ag: 16



An execution model describes an execution order on operations of processes, such that the result of anexecution, which adheres this model, is the same as if the operations were executed in this order. An executionmodel can be speci�ed by a type of atomic constraints and a type program order constraints. Executions =< C; PB >, which adheres the model, is correct, if the constraints of the model match the ones in thespeci�cation C of the correct execution. Let Ae be the equality relation. For example, sequential consistency isan execution model in which atomic constraints are speci�ed by Ae and program order constraints are speci�edby Sni=1IBi; where IBi is the program order of process Pi:De�nition 3.2 For a given speci�cation C =< O; I; A; IB >; an execution s =< C; PB > is sequentiallyconsistent, if the result of s is equal to the result of a sequential execution de�ned assc = f< Cc; PBc > j Cc =< O; I;SiIBi; Ae > ^SiIBi � PBc ^PBc is consistent with SiIBig:Let As be the equivalence relation de�ned as follows: a As b; if and only if a and b are operations of the sameprocess.De�nition 3.3 For a given speci�cation C =< O; I; A; IB >; an execution s =< C; PB > is serializable, ifthe result of s is equal to the result of a serial execution de�ned asss = f< Cs; PBs > j Cs =< O; I;SiIBi; As > ^SiIBi � PBs ^PBs is consistent with SiIBi ^(SiIBi) =As � PBs =As ^PBs =As is consistent with (SiIBi) =Asg:4 Correctness, Sequential Consistency, SerializabilityOur theory encompasses sequentially consistent executions of programs. Sequential consistency is the typicalexecution model for multiprocessor systems. The notion of sequential consistency was de�ned in [1] as follows:\ The result of any execution is the same as if the operations of all the processors were executed in somesequential order, and the operations of each individual processor appear in this sequence in the order speci�edby its program." In other words, an execution is sequentially consistent, if its result is equivalent to a sequentialexecution. For a given program, if A is the equality relation and IBinter = ;, then a sequentially consistentexecution is correct.For applications in which A and IBinter are speci�ed di�erently, sequential consistency is not su�cient toensure correctness. These application domains include those programs which are speci�ed as a sequence ofatomic segments, each of which is a sequence of indivisible operations (e.g., programs in Figures 4 and 5) and17



those programs in which there is a speci�c order speci�ed among the operations of di�erent processes (eg.,programs in Figures 10 and 11). A sequentially consistent execution of such programs may yield incorrectresults.Our theory encompasses serializable executions of programs. Serializability is the typical execution modelthat is used in database systems. Serializability is de�ned as follows. The result of any execution is the same asif the processes (transactions) were executed in some serial order. In other words, an execution is serializable, ifits result is equivalent to a serial execution. If A is equal to relation As de�ned in Section 3.7, and IBinter = ;,then a serializable execution is correct.For applications in which IBinter is not an empty set, serializability is not su�cient to ensure correctness.These application domains include those programs in which there is a speci�c order speci�ed among theoperations of di�erent processes (eg., programs in Figures 10 and 11). A serializable execution of such programsmay yield incorrect results. Furthermore, for applications, in which IBinter = ;, but A is de�ned di�erently,serializability degrades the performance unnecessarily. These application domains include those programswhich are speci�ed as a sequence of atomic segments (e.g., program in Figures 4).In addition to sequential consistency and serializability, one can de�ne other execution models with di�erentatomic constraints and program order constraints. Our theory allows us to deal with any execution model,in which atomic constraints can be expressed as an equivalence relation and program order constraints as apartial order. Our goal is to derive algorithms to test whether an execution is correct or meets a given executionmodel. To this end, we develop di�erent notions of equivalence, and propose extensions to some of the conceptsin serializability theory. We make three extensions to read-write model of transactions. These extension alsorequire that changes be made to the various testing algorithms for serializability [2, 7]. Since serializability isa special case of our general correctness criterion, the testing algorithms that will be presented in Section 7also cover the necessary changes to the testing algorithms for serializability with the following extensions.1. We remove the restriction in the transaction model that each transaction reads and writes an entity atmost once, and if a transaction reads and writes an entity x, W (x) follows R(x). Hence, the schedule ofa process can have more than one read and write in any order.2. We remove the restriction in the transaction model that if a transaction issues operation a before operationb, then a is executed before b.3. We assume a write is dependent only on a subset of previous reads in the schedule. The subset of readsis de�ned by the dependencies. In serializability, a write is assumed to be dependent on all the previousreads in the schedule [7]. Hence, we de�ne the equivalence classes for a set of interpretations that resultin the same dependencies, whereas in serializability, the equivalence classes are de�ned for all possibleinterpretations of an schedule. The latter de�nition is more conservative in the sense that the set ofcorrect executions accepted under this de�nition is a subset of correct executions accepted under ourde�nition. 18



W 21 (turn)IB W 11 (F1)W 20 (turn)W 10 (F0) R31(F1)R30(F0)R40(turn)W 50 (F0) W 51 (F1)R41(turn)Figure 19: IB originated from an execution of K2.entities x; y : integer;x := x+ 10;y := y + 10;Figure 20: Program K11.The �rst extension allows us to capture typical concurrent programs in which processes interact throughreading and writing shared entities. This is in contrast to the transaction model, in which the goal is to executeeach transaction in isolation. For example, consider Peterson's solution to two-process critical section problemas shown in Figure 2. In Figure 19, the schedules originated from an execution of program K2 are depicted.In this execution, F0 and F1 are false initially, and process P0 reads F0 before process P1 starts executing.Entities F0 and F1 are written twice in IB0 and IB1, respectively, and entity turn is read after it is writtenin both schedules.The second extension is introduced to allow the pipelining of operations, whereas the third extension isintroduced to increase pipelining. For example, consider program K11 in Figure 20 and its IB in Figure 21. Inour model, W (y) is dependent only on R(y), whereas in serializability theory, W (y) is assumed to be dependenton both R(y) and R(x). If pipelining is allowed, W (y) can be issued or performed before R(x) is issued orperformed according to our theory, whereas W (y) can only be issued after both R(x) and R(y) are performedaccording to the serializability theory.In the remainder of this paper, we only refer to an atomic action which contains more than one operationas an atomic action. Oi=Ai � Oi=Ae is the set of atomic actions in process Pi: We denote this set by AAi.Hence, AAi = Oi=Ai � Oi=Ae = fO1i ; O2i ; :::g, where Oji is the set of operations in atomic action j in processPi. The set of all atomic actions is denoted by AA, where AA = SiAAi.19



IBW (y)R(y)W (x)R(x)Figure 21: IB originated from execution of K11.5 Classes of Correct ExecutionsIn this section, we present three di�erent notions of equivalence to categorize correct executions and executionsthat meet a given execution model into classes. The containment relation between these classes is in terms ofthe restriction placed on the access order.5.1 View CorrectnessWe rede�ne the notion of view equivalence used in serializability theory [2] to capture the case where a processcan issue several read and write operations on the same entity in any order, and operations can be performedin an order di�erent from the order in which they are issued.De�nition 5.1 Two executions s1 =< C1; PB1 > and s2 =< C2; PB2 > are view equivalent, if O1 = O2,I1 = I2, and1. for each entity x, if Rji (x) returns the initial value of x in execution s1, then Rji (x) must return the initialvalue of x in execution s2; and2. for each entity x, if Rji (x) returns the value written by W lk(x) in execution s1, then Rji (x) must returnthe value written by W lk(x) in execution s2; and3. for each entity x, if W ji (x) writes the �nal value of x in execution s1, then W ji (x) must write the �nalvalue of x in execution s2; and4. for each entity x, if W ji (x) is dependent on entity y and Rki (y) is the �rst read performed on y beforeW ji (x) in execution s1, then Rki (y) must be the �rst read performed on y before W ji (x) in execution s2.De�nition 5.2 For a given C; let X be the set of executions as de�ned in Section 3.7.Execution s =< C; PB > is view correct, if it is view equivalent to an execution in X.De�nition 5.3 An execution is view consistent, if it is view equivalent to a sequential execution.View consistency should not be confused with view serializability. An execution is view serializable, if it isview equivalent to a serial execution. 20



5.2 B CorrectnessWe will prove in Section 7.1 that testing for view correctness is an NP-complete problem. Therefore, we mustsearch for other classes of correct executions that restrict the access order more than view correct executions.For this purpose, we de�ne a new equivalence notion| B equivalence. In Section 7.2, we will present apolynomial time testing algorithm for B correctness.De�nition 5.4 Two executions s1 =< C1; PB1 > and s2 =< C2; PB2 > are B equivalent, if1. s1 and s2 are view equivalent, and2. for each entity x, if W ji (x) is performed before W lk(x), and if Rqp(x) returns the value written by W lk(x)in execution s1, then W ji (x) must be performed before W lk(x) in s2, and3. for each entity x, if W ji (x) is performed after Rqp(x) in execution s1, then W ji (x) must be performed afterRqp(x) in s2.De�nition 5.5 For a given C; let X be the set of executions as de�ned in Section 3.7.Execution s =< C; PB > is B correct, if s is B equivalent to an execution in X.De�nition 5.6 An execution s is B consistent, if s is B equivalent to a sequential execution.De�nition 5.7 An execution s is B serializable, if s is B equivalent to a serial execution.Theorem 5.1 If an execution s is B correct, then s is view correct. 2The converse of Theorem 5.1 is not true. Similarly, if an execution s is B consistent, then s is view consistent,and if an execution s is B serializable, then s is view serializable, and the converses of these statements arenot correct.5.3 Conict CorrectnessAlthough B correctness yields a polynomial time testing algorithm, for completeness, we introduce anothercorrectness class|conict correctness, which also yields a polynomial time testing algorithm, but restricts theaccess order more than B correctness. Conict equivalence is widely used in serializability theory [2] and inoptimization techniques for parallel programs [6].Two operations are said to be conicting, if they access the same entity and at least one of them is a write.We extend the de�nition of conict equivalence de�ned for databases [2].De�nition 5.8 Two executions s1 =< C1; PB1 > and s2 =< C2; PB2 > are conict equivalent, if1. s1 and s2 are B equivalent, and 21



2. for each entity x, if W lk(x) overwrites the value returned by Rji (x) in execution s1, then W lk(x) mustoverwrite the value returned by Rji (x) in execution s2.3. for each entity x, if W lk(x) overwrites the value written by W ji (x) in execution s1, then W lk(x) mustoverwrite the value written by W ji (x) in execution s2.De�nition 5.9 For a given C; let X be the set of executions as de�ned in Section 3.7.Execution s =< C; PB > is conict correct, if it is conict equivalent to an execution in X.De�nition 5.10 An execution s is conict consistent, if s is conict equivalent to a sequential execution.Conict consistency should not be confused with conict serializability. An execution is conict serializable,if it is conict equivalent to a serial execution.Theorem 5.2 If an execution is conict correct, then it is B correct. 2The converse of Theorem 5.2 is not true. Similarly, if an execution s is conict consistent, then s isB consistent, and if an execution s is conict serializable, then s is B serializable, and converses of thesestatements are not correct.6 Hierarchical Graphs and PolygraphsIn order to reduce the complexity of testing for correctness, we de�ne the concepts of hierarchical graph andhierarchical polygraphs. Informally, a hierarchical graph is a graph in which some nodes are themselves graphs.A hierarchical polygraph is a polygraph (polygraphs are de�ned in [7]), in which some nodes are themselvespolygraphs. Each hierarchical graph represent a graph, which we refer as the underlying graph.De�nition 6.1 A hierarchical graph (or higraph) is a tuple G = (V1; V0; E). V1 is the set of supernodes. Eachsupernode is a graph. Hence, V1 = f(V1i; E1i)gV0 is the set of nodes, and E is the set of edges de�ned by a binary relation on V1 [ V0.In �gures, we depict a higraph G = (V1; V0; E) with a set of graphs. The set includes graph G0 = (V1 [V0; E), in which nodes corresponding to supernodes are drawn in black, and a graph per supernode, which isdrawn in a circle. Figure 22 illustrates a higraph. In this higraph, the set of supernodes is V1 = fsn1; sn2g,where sn1 = (V11; E11); V11 = fn1; n2g, E11 = ;. sn2 = (V12; E12); V12 = fn3; n4; n5; n6g, and E12 =(n3; n5); (n4; n5); (n5; n6)g. The set of nodes V0 is empty. The set of edges is E = f(sn1; sn2)g.To simplify the de�nition of the underlying graph of a higraph, we de�ne the function parent for a higraphfrom the set SiV1i [ V0 to the set V1 [ V0 as follows:parent(n) = ( sn if (9sn : sn 2 V1 : n 2 sn)n otherwise22



sn2sn1sn1sn2 n2n1 n5 n6 n4n3Figure 22: Higraph G1.
n6n5 n4n3 n2n1

Figure 23: G is the underlying graph of higraph G1.De�nition 6.2 A higraph G = (V1; V0; E) represents an underlying graph G = (V;E 0), whereV =[iV1i [ V0;E0 =[iE1i [E00;E 00 = f(ni; nj)j ni 2 V ^ nj 2 V ^ (parent(ni) 6= parent(nj))^ ((parent(ni); parent(nj)) 2 E)g:Figure 23 illustrates the underlying graph of higraph G1 depicted in Figure 22. For higraph G1, parent(n1) =parent(n2) = sn1 and parent(n3) = parent(n4) = parent(n5) = parent(n6) = sn2. For the underlying graphG, E 00 = f(n1; n3); (n1; n4); (n1; n5); (n1; n6); (n2; n3); (n2; n4); (n2; n5); (n2; n6)g.De�nition 6.3 A hierarchical polygraph (or hipolygraph) is a tuple P = (V1; V0; E; C). V1 is the set ofsupernodes. Each supernode is a polygraph. Hence,V1 = f(V1i; E1i; C1i)g23



n6sn2sn1 n3 n5n4sn2n2n1sn1Figure 24: A hipolygraph P1. n6sn2sn1 n3 n5n4sn2n2n1sn1Figure 25: A higraph that is compatible with hipolygraph P1.V0 is the set of nodes, and E is the set of edges de�ned by a binary relation on V1 [V0. C is the set of choicesde�ned on V1 [ V0.In �gures, we depict a hipolygraph P = (V1; V0; E; C) with a set of polygraphs. The set includes polygraphP 0 = (V1 [ V0; E; C), in which nodes corresponding to supernodes are drawn in black, and a polygraph persupernode, which is drawn in a circle. Figure 24 illustrates a hipolygraph. In this hipolygraph, the set ofsupernodes is V1 = fsn1; sn2g, where sn1 = (V11; E11; C11); V11 = fn1; n2g, E11 = f(n1; n2)g, C11 = ;,sn2 = (V12; E12; C12); V12 = fn4; n5; n6g, E12 = f(n4; n5)g, and C12 = f(n4; n6; n5)g. The set of nodes isV0 = fn3g, the set of edges E = f(sn1; sn2)g, and the set of choices C = f(n3; sn1; sn2)g. The functionparent is de�ned the same way for a hipolygraph. For hipolygraph P1, parent(n1) = parent(n2) = sn1,parent(n3) = n3, and parent(n4) = parent(n5) = parent(n6) = sn2.De�nition 6.4 Higraph G = (V1; V0; E) is said to be compatible with hipolygraph P = (V 01; V0; E 0; C 0), if1. E0 � E, and for each choice (c1; c2; c3) in C0, either edge (c1; c2) or edge (c2; c3) is in E; and2. E01i � E1i, and for each choice (c1; c2; c3) in C01i, either edge (c1; c2) or edge (c2; c3) is in E1i:Figure 25 illustrates a higraph that is compatible with hipolygraph P1 depicted in Figure 24.De�nition 6.51. A supernode is said to be acyclic, if the graph that the supernode contains is acyclic.24



2. A higraph is said to be acyclic, if the underlying graph is acyclic.3. A hipolygraph is said to be acyclic, if there is a compatible higraph which is acyclic.4. A supernode is said to be a total order, if the graph that the supernode contains is a total order.5. A higraph is said to be a total order, if the underlying graph is a total order.Theorem 6.1 A higraph G = (V1; V0; E) is acyclic, if and only if each supernode in V1 is acyclic, and graphG0 = (V1 [ V0; E) is acyclic. 27 Testing AlgorithmsIn this section, we develop algorithms for testing view correctness, B correctness and conict correctness.These algorithms can also be used to test whether an execution meets a given execution model by replacingthe atomic constraints and program order of the speci�cation of correct execution by the ones of the executionmodel.7.1 View CorrectnessIn order to test whether an execution s is view correct, we de�ne a directed hipolygraph P(s). An augmentedexecution ŝ of an execution s contains two new processes Pb and Pf , besides those in s. Pb consists of only writesteps, one for each entity read or written in s. Pf consists of only read operations one for each entity read or writ-ten in s. Execution ŝ starts with Pb and ends with Pf : Given an execution s, hipolygraph P(s) = (V1; V0; E; C)is constructed as follows. In P(s), there are two nodes that represent Pb and Pf respectively, and one node foreach operation in s which is not in an atomic action. Hence, V0 = fPb; Pfg[O�SS2AAS. Each supernode cor-responds to an atomic action. The set of supernodes is V1 = f(O11; E11; C11); (O21; E21; C21); :::; (O12; E12; C12); :::; g;where Oji is the operations in atomic action j of process Pi. There are six types of directed edges in Eji .1. For each pair of operations a and b in atomic action j in process Pi, if a is immediately before b inprogram order IB, then the arc (a; b) is added to Eji .2. For each entity x, if Rki (x) and W li (x) are operations in atomic action j in process Pi, and Rki (x) returnsthe value written by W li (x), then (W li (x); Rki (x)) is added to Eji .3. For each entity x, if Rki (x) and Wmi (x), are operations in atomic action j in process Pi, Rki (x) returnsthe value written by W la(x) that is not in the same atomic action, then edge (Rki (x);Wmi (x)) is added toEji .4. For each entity x, if W li (x) and Wmi (x), are operations in atomic action j in process Pi, Rka(x) that isnot in the same atomic action returns the value written by W li (x), then edge (Wmi (x);W li(x)) is addedto Eji . 25



5. For each entity x, if there is Rki (x) in atomic action j in process Pi that returns the initial value of x,and there is a W li (x) in the same atomic action, then edge ((Rki (x);W li (x)) is added to Eji .6. For each entity x, if there is W ki (x) in atomic action j in process Pi that writes the �nal value of x, andthere is a W li (x) in the same atomic action, then edge (W li (x));W ki (x))) is added to Eji .For each entity x, if Rki (x);W li (x); and Wmi (x), are operations in atomic action j in process Pi, and Rki (x)returns the value written by W li (x), then choice (Rki (x);Wmi (x);W li (x)) is added to Cji .There are six types of directed edges in E.1. For each operation a in any process in s, the arc (Pb; parent(a)) is added to E.2. For each operation a in in s, the arc (parent(a); Pf) is added to E.3. For each pair of operations a and b in any processes in s, if parent(a) 6= parent(b), and a is beforeb in program order IB, and there is no other operation c in any process in s, such that parent(a) 6=parent(c) 6= parent(b); and a is before c and c is before b in IB; then the arc (parent(a); parent(b)) isadded to E.4. For each entity x, if Rji (x) in any process in s returns the value written by W lk(x) in any process in s,and parent(Rji (x)) 6= parent(W lk(x)), then edge (parent(W lk(x); parent(Rji(x)) is added to E.5. For each entity x, if in any process in s, there is a read operation Rji (x) that returns the initial value ofx, and there is a write operation W lk(x) in any process in s, and parent(Rji (x)) 6= parent(W lk(x)), thenedge (parent(Rji (x)); parent(W lk(x))) is added to E.6. For each entity x, if in any process in s, there is a write operation W ji (x) that writes the �nal value ofx, and there is another write operation W lk(x) in any process in s, and parent(W ji (x)) 6= parent(W lk(x)),then edge (parent(W lk(x)); parent(W ji (x))) is added to E.The set of directed choices C is constructed as follows: For each entity x and operations Rji (x); W lk(x), andW ac (x) in any processes in s, such that Rji (x) returns the value written by W lk(x), then(parent(Rji (x)); parent(W ac (x)); parent(W lk(x)))is added to the set of choices C, if1. parent(Rji (x)) = parent(W lk(x)) 6= parent(W ac (x)), or2. parent(Rji (x)) 6= parent(W ac (x)) 6= parent(W lk(x)) 6= parent(Rji (x)).Theorem 7.1 An execution s is view correct if and only if P(s) is acyclic. 2Theorem 7.2 The problem of deciding whether an execution is view correct is NP-complete. 226



P1 P2entities x1; x2; y1 : integer; entities x; y : integer;local t : integer; local t : integer;t := y1; t := y2;x1 := x1� t; x1 := x1 + t;barrier synchronization; barrier syncronization;x2 := x1� x2; x2 := x1 + x2;Figure 26: Program K12 that is written with the assumption that each increment statement is atomic.PBIBR11(y1)R21(x1)W 31 (x1)R41(x1)R51(x2)W 61 (x2)
R12(y2)R22(x1)W 32 (x1)R42(x1)R52(x2)W 62 (x2)

R11(y1)R21(x1)W 31 (x1)R41(x1)R51(x2)W 61 (x2)
R12(y2)R22(x1)W 32 (x1)R42(x1)R52(x2)W 62 (x2)Figure 27: s12: An execution of program K12.In Figure 26, we de�ne a parallel program K12 in which barrier synchronization is used to order operationsof two processes, and which is written with the assumption that increment statements are atomic. Figure 27illustrates an execution s12 of program K12, and in Figure 28, we show the hipolygraph P(s12) correspondingto execution s12: The hipolygraph is cyclic, therefore the execution is not view correct. Figure 29 illustratesexecution s13; which is view correct. Note that if an execution s =< C; PB > does not contain any atomicactions, testing hipolygraph P(s) = (V1; V0; E; C) becomes a regular polygraph P (s) = (V0; E; C). In this case,execution s is both view correct and view consistent.7.2 B CorrectnessWe de�ne the directed higraph H(s) to test whether execution s is B correct. Given an execution s, hi-graph H(s) = (V1; V0; E); where V1 = f(O11; E11); (O21; E21); :::; (O12; E12); :::; g; is constructed from hipolygraph27
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P(s) =(V 01; V0; E 0; C); where V 01 = f(O11; E 011; C11); (O21; E 021; C21); :::; (O12; E 012; C12); :::; g; as follows.1. For each supernode, E 0ji � Eji .2. For each entity x and operations Rki (x);W li (x) and Wmi (x) in atomic action j in process Pi, if Rki (x)returns the value written by W li (x),(a) arc (Rki (x);Wmi (x)) is added to Eji , if Wmi (x) is performed after Rki (x),(b) arc (Wmi (x);W li (x)) is added to Eji , if Wmi (x) is performed before W li (x):3. E 0 � E.4. For each entity x and operations Rji (x); W lk(x) and W ac (x) in s, such that Rji (x) returns the value writtenby W lk(x),(a) arc (parent(Rji (x)); parent(W ac (x))) is added to E, if W ac (x) is performed after Rji (x), and ei-ther parent(Rji (x)) = parent(W lk(x)) 6= parent(W ac (x)) or parent(Rji (x)) 6= parent(W ac (x)) 6=parent(W lk(x)) 6= parent(Rji (x)).(b) arc (parent(W ac (x)); parent(W lk(x))) is added to E, if W lk(x) is performed after W ac (x), and ei-ther parent(Rji (x)) = parent(W lk(x)) 6= parent(W ac (x)) or parent(Rji (x)) 6= parent(W ac (x)) 6=parent(W lk(x)) 6= parent(Rji (x)).Theorem 7.3 An execution s is B correct, if and only if H(s) is acyclic. 2Theorem 7.4 We can test whether an execution is B correct in O(n2) time, where n is the total numberoperations in all processes. 2In Figure 30, we show the higraph H(s13) corresponding to execution s13 in Figure 29. The higraph iscyclic, and therefore the execution is not B correct. Figure 31 illustrates execution s14, which is B correct. Notethat if an execution s =< C; PB > does not contain any atomic actions, testing higraph H(s) = (V1; V0; E)becomes a regular graph H(s) = (V0; E). In this case, execution s is both B correct and B consistent.7.3 Conict CorrectnessWe de�ne the directed higraph G(s) = (V1; V0; E) to test whether s is conict correct. The set of ver-tices V0 is the set of all operations of all processes in s, which are not in an atomic action. Hence, V0 =O � SS2AAS. Each supernode corresponds to an atomic action, hence, the set of supernodes is V1 =f(O11; E11); (O21; E21); :::; (O12; E12); :::g: There are four types of directed edges in Eji .1. For each pair of operations a and b in atomic action j in process Pi, if a is immediately before b in theprogram order, then the arc (a; b) is added to Eji .29
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Figure 31: Execution s14.30



2. For each entity x and pair of operations Rji (x) and W li (x) in atomic action j of process Pi; if Rji (x)returns the value written by W li (x), then edge (W li (x); Rji(x)) is added to Eji .3. For each entity x and pair of operations Rji (x) and W li (x) in atomic action j of process Pi; if W li (x)overwrites the value read by Rji (x), then edge (Rji (x);W lk(x)) is added to Eji .4. For each entity x and pair of operations W ji (x) and W li (x), in atomic action j of process Pi; if W li (x)overwrites the value written by W ji (x), then edge (W ji (x);W lk(x)) is added to Eji .There are four types of arcs in E:1. For each pair of operations a and b, if parent(a) 6= parent(b), and a is before b in program order IB, andthere is no other operation c such that parent(a) 6= parent(c) 6= parent(b); a is before c and c is beforeb in IB, then the arc (parent(a); parent(b)) is added to E.2. For each entity x and pair of operations Rji (x) and W lk(x), if Rji (x) returns the value written by W lk(x),and parent(Rji (x)) 6= parent(W lk(x)), then edge (parent(W lk(x)); parent(Rji(x))) is added to E.3. For each entity x and pair of operations Rji (x) and W lk(x), if W lk(x) overwrites the value read by Rji (x),and parent(Rji (x)) 6= parent(W lk(x)), then edge (parent(Rji (x)); parent(W lk(x))) is added to E.4. For each entity x and pair of operations W ji (x) and W lk(x), if W lk(x) overwrites the value written byW ji (x), and parent(W ji (x)) 6= parent(W lk(x)), then edge (parent(W ji (x)); parent(W lk(x))) is added to E.Theorem 7.5 An execution s is conict correct if and only if G(s) is acyclic. 2In Figure 32, we show the higraph G(s14) corresponding to execution s14 in Figure 31. The higraph iscyclic, and therefore, the execution is not conict correct. The problem of deciding whether an execution isconict correct can be solved in polynomial time. Note that if an execution s =< C; PB > does not containany atomic actions, testing higraph G(s) = (V1; V0; E) becomes a regular graph G(s) = (V0; E). In this case,execution s is both conict correct and conict consistent.8 ConclusionsAn ideal system is one that performs program operations in the order speci�ed by the program and executesatomic program segments exclusively. Although this system model simpli�es the task of reasoning about bothsequential and concurrent programs, its straightforward implementation yields poor performance. To enhanceperformance, concurrency and pipelining techniques can be used, which may result in data accesses that areperformed in an order which is di�erent from the order speci�ed by the program, which may result in incorrectexecutions. An execution is correct if its result is equivalent to the result that could have been obtained hadthe execution taken place on the ideal system. In this paper, we have developed a uni�ed general theory of31
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A AppendixA.1 Proofs of Theorems in Section 5Proof of Theorem 5.1:s is B correct.� fDe�nition 5.5 gs is B equivalent to an execution sx in X .) fDe�nition 5.4 gs is view equivalent to sx.) fDe�nition 5.2 gs is view correct. 2Proof of Theorem 5.2:s is conict correct.� fDe�nition 5.9 gs is conict equivalent to an execution sx in X .) fDe�nition 5.8 gs is B equivalent to sx.) fDe�nition 5.5 gs is B correct. 2A.2 Proofs of Theorems in Section 6The following axioms directly follow from the de�nitions of higraphs and their underlying graphs Let G =(V;E 0) be the underlying graph of higraph G = (V1; V0; E), and n1, n2 and n3 three nodes in G, such thatparent(n1) 6= parent(n2) 6= parent(n3) 6= parent(n1) in G.Axiom A.1 There is an edge (n1; n2) in G, if and only if there is an edge (parent(n1); parent(n2)) in G.Axiom A.2 There is a path between n1 and n2 in G, if and only if there is a path between parent(n1) andparent(n2) in G.Axiom A.3 There is a cycle through n1 and n2 in G, if and only if there is a cycle through parent(n1) andparent(n2) in G.Axiom A.4 If there is a cyclic supernode in G, then G is cyclic.Axiom A.5 If there is a supernode in G which is not totally ordered, then G is not totally ordered.34



Proof of Theorem 6.1:For the only if direction:G is acyclic.� fDe�nition 6.5 gG is acyclic.) fAxioms A.3 and A.4 gG0 is acyclic, and all supernodes are acyclic.For the other direction:Each supernode is acyclic, and G0 is acyclic.) f Axiom A.3 gIf G has a cycle, it must be only through the nodes of which parent is the same in G.) f Premise gG is acyclic.� fDe�nition 6.5 gG is acyclic. 2A.3 Proofs of Theorems in Section 7We introduce the following lemmas to simplify the proofs of theorems.Lemma A.1 If an execution s is in X, then P(s) is acyclic.Proof: Suppose s is in X . For s, we know that PB � IB and PB is compatible with IB, and thereforethe graph representation of PB is acyclic. We can build an acylic graph G as follows. The nodes of G arethe nodes in O and two nodes Pb and Pf . G contains the graph representation of PB and has two additionaldirected edges (Pb; a) and (a; Pf) for each node a in O. Furthermore, if sni and snj are elements of O=A, suchthat sni PB=A snj , then for all nodes a and b such that a 2 sni and b 2 snj , edge (a; b) is added to G. Theseedges do not generate cycles in G, since PB=A � IB=A and PB=A is compatible with IB=A, and thereforethe graph representation of PB=A is acyclic for s. G is the underlying graph of a higraph G = (V1; V0; E), suchthat V1 = AA and V0 = fPb; Pfg [ O �SS2AAS. Then, E is the set G=A. G is acyclic. We claim now that Gis compatible with hipolygraph P(s): Any arc in P(s) is certainly an arc in G, and any arc in a supernode inP(s) is an arc in the same supernode in in G, and for any choice (a; b; c) in P(s), either arc (a; b) or (b; c) is inG; and for any choice (a; b; c) in a supernode in P(s), either arc (a; b) or (b; c) is in the same supernode in G:P(s) is acyclic, since there is a compatible higraph G that is acyclic. 2Lemma A.2 If s is view correct, then for any execution sx in X; P(s) = P(sx).35



Proof: Suppose that s =< C; PB > is view correct. This means that s is view equivalent to an executionsx =< C; PBc > in X: Due to the de�nition of X (De�nition 3.1), sx has the same C as s. Hence, bothexecutions s and sx correspond to the same operations, program order, and atomic actions. Since s andsx are view equivalent, in both executions, the read operations return the value written by the same writeoperations, initial values are returned by the same read operations, and �nal values are written by the samewrite operations (De�nition 5.1). Thus, if all the steps for the construction of polygraphs P(s) and P(sx) arefollowed, the same supernodes, nodes,edges and choices will be generated for both hipolygraphs. 2Lemma A.3 A higraph G = (V1; V0; E) is a total order, if and only if each supernode in V1 is a total order,and graph G0 = (V1 [ V0; E) is a total order.Proof:For the only if direction:G is a total order.� fDe�nition 6.5 gG is a total order.) fAxioms A.2 and A.5 gG0 is a total order, and all supernodes are a total order.For the other direction:Each supernode is a total order, and G0 is a total order.) f Axiom A.2 gIf G is not totally ordered a cycle, it must be only because there is no edge among some pairs of nodes of whichparent is the same in G.) f Premise gG is a total order.� fDe�nition 6.5 gG is a total order. 2Proof of Theorem 7.1:For the only if direction:s =< C; PB > is view correct.) f Lemma A.2 gP(s) = P(sx).) f Lemma A.1 gP(s) is acyclic. 36



For the other direction:Suppose that P(s) is acyclic. Then, there is an acyclic directed higraph G which is compatible with P(s)(De�nition 6.5). Higraph G can be completed to a total order G0 in which Pb precedes all other operationsand atomic actions in s, and Pf follows all other operations and atomic actions in s. Let G0 be the underlyinggraph of G0, and G00 be the subgraph of G0 which excludes the nodes corresponding to Pb and Pf . Obviously,execution sx =< C;G00 > is in X: Now we will proof that sx is view equivalent to s.1. Suppose that Ria(x) reads the initial value of entity x in s: Due to de�nition of P(s); for any writeoperation W kc (x); there will be an edge e = (Ria(x);W kc (x)) in G00. Since G00 is acyclic and is theperforming order of sx; Ria(x) reads the initial value of x in s; if and only if Ria(x) reads the initial valueof x in sx:2. Suppose that W ia(x) writes the �nal value of entity x in s: Due to de�nition of P(s); for any other writeoperationW kc (x); there will be an edge e = (W kc (x);W ia(x)) in G00. Since G00 is acyclic and the performingorder of sx, W ia(x) writes the �nal value of x in s; if and only if W ia(x) writes the �nal value of x in sx:3. Suppose that Rjd(x) returns the value written by W ia(x) in s: Due to the de�nition of P(s), edge e =(W kc (x); Rjd(x)) in G0. Furthermore, we claim that if G0 is acyclic, there is no node W kc (x), such thatthere is an edge e1 = (W ia(x);W kc (x)) and an edge e2 = (W kc (x); Rjd(x)) in G0. Suppose G0 is acyclic andhas the edges e1 and e2. Since G0 is the underlying graph of higraph G 0 that is compatible with P(s), G0must contain either the edge (W kc (x);W ia(x)) or the edge (Rjd(x);W kc (x)). Then, there is a cycle in G0.Since G0 is acyclic, G0 cannot contain e1 and e2. Since G0 is the performing order of sx; Rjd(x) returnsthe value written by W ia(x) in s; if and only if Rjd(x) returns the value written by W ia(x) in sx:4. Since s and sx consist of the same processes, write operations are dependent on the same entities. Weassumed an architecture where a write operation is performed after the read operations on which thewrite operation is dependent. Hence, for each entity x and W ji (x) that is dependent on entity y, Rki (y) isthe �rst read performed on y before W ji (x) in execution s, if and only if Rki (y) is the �rst read performedon y before W ji (x) in execution sx.Hence, s is view equivalent to sx, and therefore view correct. 2Lemma A.4 A hipolygraph P = (V1; V0; E; C) is acyclic, if and only if each supernode snpi = (V1i; E1i; C1i)in V1 is acyclic, and polygraph P 0 = (V1 [ V0; E; C) is acyclic.Proof:Polygraph P 0 = (V1 [ V0; E; C) is acyclic, and each supernode in V1 is acyclic.37



�There is an acylic graph G0 = (V1 [ V0; E 0) that is compatible with polygraph P 0, and for each supernode inV1, there is an acylic graph sni = (V1i; E 01i) that is compatible with polygraph snpi:� f Theorem 6.1 gHigraph G = (V1; V0; E 0) is acyclic.�Hipolygraph P = (V1; V0; E; C) is acyclic. 2Theorem A.1 The problem of deciding whether an execution is view consistent is NP-complete. 2The proof of this theorem relies on the fact that determining whether a polygraph is acyclic, which is anNP-complete problem [7].Proof of Theorem 7.2:It follows from Theorem A.1 and Lemma A.4 that deciding whether a hipolygraph is acyclic is an NP-completeproblem. Hence, the problem of deciding whether an execution is view correct is NP-complete. 2Lemma A.5 If an execution s is in X, then H(s) is acyclic.Proof: Higraph G which is constructed in the proof of Lemma A.1 contains H(s). Thus, H(s) is acyclic. 2Lemma A.6 If s is B correct, then for any execution sx in X; H(s) = H(sx).Proof: Suppose that s =< C; PB > is B correct. This means that s is B equivalent to an executionsx =< C; PBc > in X: Due to the de�nition of X (De�nition 3.1), sx has the same C as s. Hence, bothexecutions s and sx correspond to the same operations, program order, and atomic actions. Since s and sx areB equivalent, in both executions, the read operations return the value written by the same write operations,initial values are returned by the same read operations, �nal values are written by the same write operations, awrite operation is performed before another write operation, if the value written by the second write operationis returned by a read operation, and if a write operation is performed after a read operation in s; this writeoperation is performed after the read operation in sx (De�nition 5.4). Thus, if all the steps for the constructionof higraphs H(s) and H(sx) are followed, the same supernodes, nodes and edges will be generated for bothhigraphs. 2Proof of Theorem 7.3:For the only if direction:s =< C; PB > is B correct. 38



) f Lemma A.6 gH(s) = H(sx).) f Lemma A.5 gH(s) is acyclic.For the other direction:Suppose that H(s) is acyclic. Higraph H(s) can be completed to a total order G in which Pb precedes all otheroperations and atomic actions in s, and Pf follows all other operations and atomic actions in s. Let G be theunderlying graph of G, and G0 be the subgraph of G which excludes the nodes corresponding to Pb and Pf .Obviously, execution sx =< C;G0 > is in X: Similar to proof of Theorem 7.1, one can go through each item inthe de�nition of B equivalence (De�nition 5.4), and prove that sx is B equivalent to s; hence s is B correct. 2Proof of Theorem 7.4:The problem of deciding whether a graph is acyclic can be performed in O(k2) time, where k is the num-ber of nodes in the graph. Thus, it follows from the Theorem 6.1 that we can test whether an execution is Bcorrect in O(n2) time, where n is the total number operations in all processes. 2Lemma A.7 If an execution s is in X, then G(s) is acyclic.Proof: Suppose s is in X . For s, we know that PB � IB and PB is compatible with IB, and therefore thegraph representation of PB is acyclic. We can build an acylic graph G as follows. The nodes of G are the nodesin O: G contains the graph representation of PB and furthermore, if sni and snj are elements of O=A, suchthat sni PB=A snj , then for all nodes a and b such that a 2 sni and b 2 snj , edge (a; b) is added to G. Theseedges do not generate cycles in G, since PB=A � IB=A and PB=A is compatible with IB=A, and thereforethe graph representation of PB=A is acyclic for s. G is the underlying graph of a higraph G = (V1; V0; E), suchthat V1 = AA and V0 = O �SS2AAS. Then, E is the set G=A. G is acyclic. Obviously, G(s) = G: 2Lemma A.8 If s is conict correct, then for any execution sx in X; G(s) = G(sx).Proof: Suppose that s =< C; PB > is conict correct. This means that s is conict equivalent to anexecution sx =< C; PBc > in X: Due to the de�nition of X (De�nition 3.1), sx has the same C as s. Hence,both executions s and sx correspond to the same operations, program order, and atomic actions. Since sand sx are conict equivalent, in both executions, the conicting executions are performed in the same order(De�nition 5.8). Thus, higraphs G(s) and G(sx) are the same. 2Proof of Theorem 7.5: 39



For the only if direction:s =< C; PB > is conict correct.) f Lemma A.8 gG(s) = G(sx).) f Lemma A.7 gG(s) is acyclic.For the other direction:Suppose that G(s) is acyclic. Higraph G(s) can be completed to a total order G 0: Let G0 be the underlyinggraph of G 0, Obviously, execution sx =< C;G0 > is in X: Similar to proof of Theorem 7.1, one can go througheach item in the de�nition of conict equivalence (De�nition 5.8), and prove that sx is conict equivalent tos; hence s is conict correct. 2
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