
Bandwidth (0, (4, (16, (64,

[

KB

sec

] 4] 16] 64] 256]

of Nodes

40 2

200 3 2 5

400 6 3 11

600 8 4 18

800 10 5 4 21

1000 12 6 6 26

1200 12 8 8 32

1400 13 10 9 38

1600 16 10 10 44

Figure 10: Intrusiveness on the LANs for the

distributed algorithm with a heterogeneous

load.

7 Conclusions

We have shown that existing approaches to load shar-

ing do not scale while supporting a rich set of policies

and satisfying bounds on intrusiveness. Further, we

have argued that in an owner-based distributed sys-

tem, it is not su�cient to choose a load sharing algo-

rithm which typically induces little overhead on the

nodes and LANs; rather, the load sharing algorithm

must be able to regulate and control the overhead. Fi-

nally, we outline the distributed clustering algorithm

that provides scalable and non-intrusive load sharing

for a rich set of sharing policies.

References

[1] A. Barak and A. Litman. Mos: A multicomputer

distributed operating system. Software Practice

and Experience, 15(8):725{737, August 1985.

[2] T. L. Casavant and J. G. Kuhl. A taxonomy

of scheduling in general-purpose distributed com-

puting systems. IEEE Transactions on Software

Engineering, 14(2):141{153, February 1988.

[3] F. Douglis and J. Ousterhout. Transparent pro-

cess migration: Design alternatives and the sprite

implementation. Software{Practice and Experi-

ence, 21(8):757{85, August 1991.

[4] D. L. Eager, D. Lazowska, and J. Zahorjan.

Adaptive load sharing in homogenous distributed

systems. IEEE Transactions on Software Engi-

neering, 12(5):{, May 1986.

[5] D. Ferguson, Y. Yemini, and C. Nikolaou.

Microeconomic algorithms for load balancing.

In Proceedings of 8th International Conference

on Distributed Computing, pages 491{499, Los

Alamitos, California, 1988.

[6] L. Kleinrock. Queueing Systems, Volume 1: The-

ory. John Wiley and Sons, Inc., 1975.

[7] P. Krueger and R. Chawla. The stealth dis-

tributed scheduler. In Proceedings of 11th Inter-

national Conference on Distributed Computing,

pages 336{343, Los Alamitos, California, 1991.

[8] P. Krueger and M. Livny. A comparison of pre-

emptive and non-preemptive load distributing. In

Proceedings of 8th International Conference on

Distributed Computing, pages 123{30, Los Alami-

tos, California, 1988.

[9] L. Lamport. Time, clocks, and the ordering of

events in a distributed system. Communications

of the ACM, 21(7):95{114, July 1978.

[10] H.-C. Lin and C.S. Raghavendra. A dynamic

load-balancing policy with a central job dis-

patcher. IEEE Transactions on Software Engi-

neering, 18(2):148{58, February 1992.

[11] M. J. Litzkow, M. Livny, and M. W. Mutka.

A hunter of idle workstations. In Proceedings

of 8th International Conference on Distributed

Computing, pages 104{111, Los Alamitos, Cali-

fornia, 1988.

[12] D. A. Nichols. Using idle workstations in a

shared computing environment. In Proceedings of

the 11th ACM Symposium on Operating Systems

Principals, pages 5{12, 1987.

[13] N. G. Shivaratri, P. Krueger, and M. Singhal.

Load distributing for locally distributed systems.

IEEE Computer, 6(2):33{44, December 1992.

[14] M. M. Theimer and K. A. Lantz. Finding idle

machines in a workstation-based distributed sys-

tem. In Proceedings of 8th International Confer-

ence on Distributed Computing, pages 112{122,

Los Alamitos, California, 1988.

[15] C. Waldspurger, T. Hogg, B. Huberman,

J. Kephart, and W. S. Stornetta. Spawn: A dis-

tributed computational economy. IEEE Trans-

actions on Software Engineering, 18(2):103{117,

Feb 1992.

Figure 4: Average response time.

of Nodes Intrusiveness

40 0.035

200 0.179

400 0.370

600 0.583

800 0.770

1000 0.884

1200 1.117

1400 1.322

Figure 5: Intrusiveness on the manager for

the centralized algorithm with a heterogeneous

load.

Intru- (0.000, (0.067, (0.110, (0.135,

siveness 0.067] 0.110] 0.135] 0.208]

of Nodes

40 2

200 10

400 19 1

600 28 2

800 37 2 1

1000 41 8 1

1200 45 13 2

1400 48 16 4 2

1600 51 17 10 2

Figure 6: Intrusiveness on managers for the DC

algorithm with a heterogeneous load.

Intru- (0.000, (0.067, (0.110, (0.135,

siveness 0.067] 0.110] 0.135] 0.208]

of Nodes

40 40

200 200

400 490 20

600 600

800 700 100

1000 910 90

1200 1140 60

1400 1040 160 200

1600 1120 240 100 140

Figure 7: Intrusiveness on nodes for the dis-

tributed algorithm with a heterogeneous load.

of Nodes Bandwidth [

KB

sec

]

40 1.8102

200 9.7180

400 20.7440

600 33.9083

800 44.6015

1000 47.6991

1200 66.1447

1400 87.3665

Figure 8: Intrusiveness on the LAN of the man-

ager for the centralized algorithm with a het-

erogeneous load.

Bandwidth (1, (4, (8,

[

KB

sec

] 4] 8] 16]

of Nodes

40 2

200 9 1

400 19 1

600 27 3

800 28 11 1

1000 20 29 1

1200 23 35 2

1400 27 41 2

1600 30 45 5

Figure 9: Intrusiveness on the LANs for the

DC algorithm with a heterogeneous load.

Figure 2: Intrusiveness on the nodes.

distributed algorithms introduce very little overhead.

We now consider a heterogeneous environment in

which location policy requires us to �rst search for an

available processor within the local cluster and then

to try all the processors in each neighboring cluster.

Cluster size is �xed at 20 processors per cluster. The

simulated receiving policies are such that half of the

clusters will not accept any remote tasks, though they

are still generating remote task requests at an average

rate of one request per minute per node. The other

half of the clusters are relatively idle, but their nodes

are generating state update messages at the rate of one

update per 10 seconds per node. The results (see Fig-

ure 4) show that both our DC approach and fully dis-

tributed load sharing scale beyond 1400 nodes; how-

ever, response times are an order of magnitude higher

in the distributed case. For this workload, the cen-

tralized case fails to scale beyond about 1000 nodes.

The tables in Figures 5{7 report the fraction of

compute cycles expended on load sharing overhead.

The latter two tables report overhead distributions

rather than simple averages, with each column rep-

resenting an intrusiveness range. For example, in Fig-

ure 6, we see that for a 1400 node system, four cluster

managers spent 11{13.5% of their cycles on load shar-

ing overhead. The results for the centralized case show

intrusiveness increasing with system size. In fact, load

sharing overhead eventually overwhelms the central

server, limiting scalability and producing intrusiveness

ratings greater than 1. In contrast, the DC algorithm

Figure 3: Intrusiveness on the LANs.

is holding up relatively well; in a 1600 node system

only 2 cluster managers are expending 20% of their

cycles on load sharing. In contrast, in the distributed

algorithm, 140 nodes spend 20% of their cycles in load

sharing overhead. Moreover, while load sharing over-

head is con�ned to cluster managers in the DC algo-

rithm, overhead in the fully distributed algorithm can

perturb any node in the system.

Finally, the tables in Figures 8 to 10 report net-

work bandwidth overhead. Again, for the DC and dis-

tributed algorithms, we report overhead ranges rather

than averages. In a 1400 node system, the central

server's LAN sees 87KB/sec of tra�c. For the 1600

node DC case, assuming each cluster manager is on a

di�erent LAN, 94% of the LANs see at most 8KB/sec

of load sharing tra�c and all LANs see less than

16KB/sec. The distributed algorithm does a bit worse,

with 50% of the LANs using 0.25MB/sec for load shar-

ing tra�c.

Thus, the simulation results con�rm our qualita-

tive assessments. A single centralized server does not

scale to thousands of nodes for homogeneous or het-

erogeneous workloads while the fully distributed al-

gorithm becomes intrusive under heterogeneous work-

loads. The DC algorithm scales to the system sizes in

which we are interested while controlling intrusiveness

and limiting overhead to a well-de�ned set of man-

agers.

state will be stale before it is used, but broadcasting

updates to keep this state coherent would introduce

the problems of the centralized scheme.

6 Comparison of load sharing ap-

proaches

In this section, we compare the three load sharing al-

gorithms discussed above with respect to their abil-

ity to scale with acceptable intrusiveness in an owned

environment. Unfortunately, even under the simple

workload and policy models, the fully distributed and

the DC approaches are not amenable to analytic tech-

niques. Consider the simple case when task arrivals

and departures can be modeled with Poisson distri-

butions. To evaluate scalability for each node in dis-

tributed load sharing, we must estimate scheduling

response time, �x

p

. But �x

p

depends on the number of

nodes to be polled, which depends in turn on work-

load distribution, receiving policy, and the policies

that determine location order. And, response time de-

pends not only on the number of nodes polled but also

on current message arrival rates (�

p

) at these nodes.

Given this complexity, we use simulation techniques

to compare the di�erent load sharing algorithms.

6.1 Simulation model

Each node has its own local and remote task submis-

sion rates. In order to model a realistic sending pol-

icy, we assume that when a task is submitted for re-

mote execution, it will consume non-negligible compu-

tation cycles. This assumption motivates us to bound

the frequency with which remote tasks are submit-

ted by a processor to one per minute. Every local

and remote submission has an associated CPU uti-

lization and communication bandwidth usage. These

task submissions and their corresponding task com-

pletions change the state of the node and the state of

the LAN to which the node is connected.

The frequency of state changes depends upon the

policies speci�ed by owners, as well as the workload.

For a location policy that tries to balance load or

reduce average response time by assigning a remote

task to the \least busy" processor in the system, each

state change due to local task arrivals and departures

must be considered. Alternatively, if the location pol-

icy simply searches for an available processor and the

receiving policy is to accept tasks on weekends only,

then state changes occur only at the beginning and end

of the weekend. To support a broad range of policies,

Figure 1: Average response time.

we use the \least busy" processor policy to motivate

an upper bound on state change frequency of once per

node per 10 seconds.

Finally, we consider both a homogeneous and a het-

erogeneous workload. Details of the workloads and the

simulation results are reported in the section below.

6.2 Comparison

In our simulation of a homogeneous environment, the

mean rate at which processors submit remote tasks is

one task per 60 seconds. For the centralized and DC

cases, each node sends a state update message to its

manager at a rate of one in every 10 seconds. Recall

from Section 4 that under homogeneous conditions we

expect centralized load sharing to have poor scalabil-

ity. This qualitative conclusion is supported by the

simulation results in Figure 1 where we plot average

response time �x vs. number of processors N . Both the

DC algorithm and the distributed approach scale well

beyond 1400 nodes, whereas the centralized scheme

requires about �ve seconds to service a request when

there are 600 nodes and becomes unstable beyond 856

nodes. Figures 2 and 3 display results on the over-

head of the load sharing algorithms as a function of

the number of nodes. These graphs respectively plot

the maximum fraction of compute cycles dedicated to

load sharing overhead at any node and the maximum

network overhead in any LAN. As predicted earlier,

the intrusiveness of the centralized scheme scales lin-

early with the number of nodes while the DC and

then a search of all the nodes in each \nearby" LAN.

If the workload is such that half the LANs are idle and

the other half are busy, then the overhead of N nodes

searching for an idle machine can quickly generate

O(N

2

) messages and increase response time. Thus,

we cannot predictably bound the intrusiveness of the

scheme.

Various researchers have proposed randomized

polling to avoid this behavior. Under homogeneous

conditions with uniform task arrival rates and uni-

form node service rates, it has been shown that for

reasonable system utilizations, a node will �nd an ap-

propriate available remote node with 2 to 5 random

probes [4]

2

. For a shared pool of processors, this ran-

domized polling approach seems perfectly reasonable.

But, in an owner-based system, processors will be par-

titioned into political units and location and receiving

policies may encourage or even require a processor to

poll in a particular order. For example, in a univer-

sity setting we may �rst try to exploit idle cycles in our

own research group, then in a related research group,

then within the department and �nally throughout the

university. Applying such a scheme would naturally

produce the workload described in the previous para-

graph. Quantitative results about the high message

tra�c and scheduling overhead for this workload are

given in Section 6.

5 DC algorithm

In the last section, we noted serious shortcomings in

both the centralized and the fully distributed load

sharing algorithms. The centralized algorithm does

not o�er the scalability we require, while the dis-

tributed algorithm is intrusive. We can overcome

these pitfalls by using a parameterized hybrid dis-

tributed clustering (DC) approach. We group nodes

into clusters. A manager is assigned to each cluster

to maintain the state of the cluster. As stated above,

the de�nition of state depends on the policies we are

implementing. Nodes within a cluster send state up-

date messages and remote task requests to their clus-

ter manager. The size of a cluster is a parameter which

is determined with respect to the scalability and intru-

siveness measures of the system. Nodes on a particu-

lar LAN may be partioned into more than one cluster.

2

The e�ectiveness of the randomized algorithm depends on

its homogeneity assumptions. If, for example, only one node

in a large system is idle but that node is extremely fast, then

system utilization can be moderate but pure randomized polling

will still generate O(N

2

) messages to locate the idle cycles on

the fast node.

Alternatively, a cluster manager may be responsible

for nodes connected to several LANs.

The set of cluster managers may change over time

to handle changes in bounds on intrusiveness and fair-

ness. In the simplest case, an owner of a node which

has been running as a cluster manager may require ex-

clusive use of his node and the manager will migrate.

When a manager receives a remote task request and

the request cannot be satis�ed by any node within the

cluster, the cluster manager polls other cluster man-

agers. As alluded to in our discussion of information

and location mechanisms, the number of cluster man-

agers that are polled depends on the amount of state

information maintained about other clusters and the

polling order. While coherent global state would al-

low us to minimize polling, maintaining global state

would introduce the scalability problems inherent in

the centralized approach. On the other hand, if man-

agers do not maintain any state information about

other clusters, then the intrusiveness of the load shar-

ing algorithm on the networks and managers cannot

be controlled. To avoid this problem, in the DC algo-

rithm each manager keeps a record of which clusters

are currently available for polling. When a manager

detects that it is in danger of violating its node's or

LANs intrusiveness constraints (Equations 2 and 3),

it noti�es all other managers that it is removing itself

from the load sharing pool and those managers update

their state accordingly.

Thus, DC uses state information to guarantee non-

intrusiveness. Additional state information can be ex-

ploited to reduce the number of managers that need to

be polled to satisfy a remote request. We divide the

state of each cluster into two categories: frequently

and infrequently changing state. A state is said to

change frequently when the frequency of state tran-

sitions is greater than or equal to the average arrival

rate of remote tasks. Otherwise, that state is said to

change infrequently. A cluster manager stores the rel-

evant infrequently changing state of other clusters. In

order to reduce the amount of stored state, caching

schemes can be employed to maintain only frequently

accessed state information.

The rationale behind the DC algorithm's state

maintenance strategy is as follows. Certain policies

like calendar based receiving policies induce infrequent

state changes and the current state of a node governed

by such policies can be correctly predicted from stored

information. On the other hand, there can be frequent

state changes due to policies that are based on the

load of a resource (e.g., least busy processor schedul-

ing). Caching this type of state is useless since the

fundamental scalability and non-intrusiveness issues.

In this section, we consider the scalability and intru-

siveness of two widely used approaches to load sharing,

centralized and fully distributed. Further discussions

of scalability may also be found in [14, 15].

4.1 Centralized approach

In the centralized approach as described in [14], there

is a dedicated server that maintains global knowledge

of every node's available resources and current receiv-

ing policy. Each node in the system sends state update

messages to the dedicated central server. When a task

is submitted for remote execution, the node where the

task is submitted forwards the remote task request to

the central server, which uses its state information to

schedule the task on an appropriate available node.

We will use a simple example to demonstrate the

centralized approach's inability to scale. Suppose that

the arrival of remote task requests and frequency of lo-

cal state changes can be modeled with Poisson distri-

butions. Assume further that each node has the same

average remote task arrival rate, �

p

, and the same av-

erage frequency of local state changes �

p

. Denote the

average time the server takes to service a message by

�y

s

and let N be the number of nodes in the system.

Then, the average server response time T for a node

can be calculated with the following formula [6]:

T =

�y

s

1� N (�

p

+ �

p

)�y

s

: (4)

Assuming message transmission time is negligible,

server response time T is equal to request response

time �x

p

, and we can calculate the size to which the sys-

tem scales for a given workload by inserting this equa-

tion into the scalability formula (Equation 1). For ex-

ample, if �y

s

= 0:01 seconds, �

p

= 0:0167 tasks/second,

and �

p

= 0:1 state changes/second, the system will not

scale beyond N = 856 nodes.

1

Some work has been directed at ameliorating this

scalability problem by reducing the number of update

messages (N�

p

) that the server processes. The basic

idea is to periodically determine the K \least busy"

nodes in the system and to have only these \idle"

nodes send update messages to the central server [14].

Simulation results and timings of an actual implemen-

tation show the approach scales to thousands of nodes.

However, the algorithm assumes that it is possible

to determine a set of idle nodes. In a homogeneous

shared pool of processors, this idle set is obvious, but

1

These parameter values are used for the homogeneous work-

load simulations; justi�cation may be found in Section 2.3.

in an owned environment the set is not well-de�ned.

For example, if the owner of Workstation Seven is only

willing to accept remote tasks from members of De-

partment X, then we cannot assign a simple idleness

measure to that workstation. More generally, if we

want to support
exible local policies, we cannot use

the restricted updators scheme outlined above to en-

hance the scalability of the centralized approach.

Now let us consider the intrusiveness constraints.

In the centralized scheme, satisfying non-intrusiveness

for all nodes other than the server is straightforward.

The server, however, sees update messages in propor-

tion to the number of active nodes in the system.

Hence, in order for the server s to satisfy the intru-

siveness bound stated in Equation 2, it is normally

necessary to choose a large t

s

. Since most owners do

not want to dedicate a large fraction of a node's cy-

cles to load sharing overhead, this constraint normally

implies a dedicated server node. To substantiate this

argument, consider the example workload above. Sup-

pose the owner of the node is willing to allow the server

to run their as long as only one tenth of computation

cycles of his node are used for the load sharing algo-

rithm, so t

s

= 0:1. The average number of messages

that the server receives for load sharing is

�

s

= N (�

p

+ �

p

): (5)

Inserting Equation 5 in Equation 2, we can calculate

the number of nodes N that this server is willing to

support. For the values selected above, the server can-

not support more than N = 85 nodes.

A similar argument applies to the network overhead

constraint. The central server sees all the load sharing

message tra�c in the system which introduces tra�c

on the particular LAN where the server resides. Thus,

it is usually necessary to place the server on its own

LAN to satisfy the bound stated in Equation 3.

4.2 Distributed approach

In the distributed approach, a remote task request is

initiated at a node, and that node polls other nodes in

the system to locate an available machine. Note that

we describe a sender-initiated approach. For brevity,

we do not consider a receiver-initiated approach. In

the case of a homogeneous workload and policies, dis-

tributed polling eliminates the central server's bottle-

neck. However, if the workload and policies are not ho-

mogeneous, it is di�cult to control the overhead that

the distributed scheme induces on nodes and LANs,

and intrusiveness can be a problem.

For example, a location policy may require a search

�rst through all the nodes within the local LAN and

centralized approaches (see Section 4.1). However, as

is discussed further in Section 4.1, in an owner-based

system, the potentially complex owner-de�ned sharing

policies imply that the state of a node cannot be re-

duced to a single inexpensively cached parameter like

system load.

Alternatively, there are probabilistic methods for

load balancing that are based on partial state infor-

mation [1], where each node maintains information

about other nodes which is correct (up-to-date) with a

given probability. These methods rely on the premise

that the information about the state of a node need

not be exact to achieve e�ective load balancing. Al-

though such methods work well under the assumption

that there is a pool of processors shared by all users

uniformly, they are not appropriate for load sharing

in the ownership paradigm because inexact state in-

formation may jeopardize ownership rights (e.g., an

owner removes his node from the pool absolutely, not

probabilisticly). In the paper we propose a cluster-

ing method in which a node in each cluster maintains

the state of all nodes in the cluster, as well as limited

information about other clusters. We refer to this ap-

proach as the distributed clustering (DC) load sharing

algorithm.

The thesis of this paper is that the nonintrusive-

ness of load sharing and its ability to scale to a given

system size depends on the workload and policies, and

both centralized and fully distributed load sharing al-

gorithms fail to scale to typical system sizes and/or

be non-intrusive, under some set of policies and work-

loads, whereas the DC algorithm scales to systems

with thousands nodes and remains non-intrusive.

2.3 Workload

In the distributed environment described above, each

node generates two types of tasks|local and remote.

Remote tasks are created by the sending policies of the

node (which may have been induced by the receiving

policies as described earlier). In practice, it is possible

that the load sharing algorithm cannot �nd a suitable

node on which to run a remote task. Ultimately, a load

sharing algorithm should control this problem by reg-

ulating the number of remote tasks generated in the

system to avoid overwhelming the available resources.

Because our goal in this study is to compare di�er-

ent load sharing algorithms in terms of scalability and

intrusiveness, we do not elaborate on a system's abil-

ity to regulate the creation of remote tasks. Instead,

in our simulations, we choose workloads that preserve

system stability in the sense that the the mean ar-

rival rate of tasks does not exceed the mean duration

of tasks. In this environment, we simply assume that

unscheduled remote tasks are resubmitted again.

3 Evaluation model

In order to evaluate di�erent load sharing algo-

rithms, we develop measures for scalability and non-

intrusiveness.

For a particular node p in the system, let �

p

denote

the average rate at which the node generates remote

task requests and �x

p

denote the average time the load

sharing algorithm requires to service the node's re-

quest. In other words, �x

p

is the average time that the

requester must wait for the load sharing algorithm to

determine whether or not there is an available proces-

sor. We refer to �x

p

as the average response time. It is

desirable to keep �x

p

small: Further, for scalability, we

require that each node p in the system must satisfy

the relation:

�

p

�x

p

< 1: (1)

Suppose that N is the number of nodes. We say that

a load sharing algorithm scales to a system of size N ,

if Equation 1 is satis�ed for each node in the system.

In an owner-based system, owners normally restrict

the degree to which the load sharing algorithm is per-

mitted to intrude on their resources. Let �

p

denote the

average number of messages that a node receives due

to the load sharing algorithm. Let �y

p

denote the av-

erage time the node takes to service a message. Then,

the intrusiveness restriction is expressed as

�

p

�y

p

< t

p

(2)

where the value t

p

, 0 � t

p

� 1 is a bound set by the

owner of the node. Similarly, for a particular local

area network n, the average number of messages that

the load sharing algorithm generates in that network,

n

, must satisfy a local bound

n

< b

n

(3)

set by the owner(s) of the network, where b

n

is less

than or equal to the network bandwidth. We say that

a load sharing algorithm is non-intrusive, if Equa-

tions 2 and 3 are satis�ed for each node in the system.

4 Previous work

Much of the previous work on load sharing has fo-

cused on a particular policy for achieving balanced

distribution of work (e.g., [5, 8, 10]) rather than on

In general, a local sending policy is de�ned in terms

of task resource needs and local resource utilization.

Resource based sending policies include trying to mi-

grate a program that requires more physical memory

than is locally available or attempting to distribute

the load once a given CPU utilization threshold is ex-

ceeded. In addition, sending policies can sometimes

be induced by receiving policies. For example, a re-

ceiving policy that states that no foreign tasks can be

executed locally between 10am and 5pm will induce

the migration of any foreign tasks that are executing

at 10am.

2.1.2 Selection policy

Selection policy speci�es which tasks will actually be

migrated when a node becomes a sender. When receiv-

ing policies prioritize users, the lowest priority user's

tasks will be considered �rst for migration. Within

a priority class, selection policy may consider time of

task submission, migration cost, expected execution

time, and expected communication overhead.

2.1.3 Location policy

A location policy speci�es classes of nodes where the

remote tasks of an owner should be executed. The user

can specify that his task must execute on a node with a

certain average load, with special cases including least

busy remote node and �rst available remote node. For

a given location policy, the remote node will be chosen

subject to the user's priorities on other nodes (which

are de�ned as part of node receiving policies). For

example, owner A may have an agreement with owner

B to execute A's tasks on B's resources, or a company's

organizational hierarchy may be used to decide how

resources are to be shared.

2.2 Mechanisms

We identify two distinct but interrelated types of

mechanism|location and information mechanism.

Information mechanism determines the amount of

state information to be maintained, and the method

for maintaining this state. Location mechanism polls

one or more nodes to �nd an appropriate node for the

execution of a task. The number of nodes to be polled

depends on the amount of state information. Note

that the de�nition of a state depends on the policies.

For example, if a location policy tries to reduce aver-

age response time by assigning a remote task to the

\least busy" processor in the system, then each local

task arrival and departure causes a state change. Al-

ternatively, if the location policy simply searches for

an available processor and the receiving policy is to ac-

cept tasks on weekends only, then state changes occur

only at the beginning and end of the weekend.

The amount of state that is maintained can range

from coherent global state to node-local state only.

Two common methods for maintaining global state

are the centralized and distributed approaches. In the

centralized approach, one node maintains the state of

the system. This approach requires only one message

to update the global state when there is a local state

change. Also, since global state is maintained at a

single node and the state is coherent, a simple location

mechanism can be constructed using a two message

request/acknowledge protocol.

In the distributed approach, each local state change

is broadcast to every node in the system. If the system

architecture does not support broadcast, then N � 1

messages are necessary to update the global state per

local state change, where N is the number of nodes

in the system. Moreover, the distributed approach

complicates the location mechanism, since it must be

guaranteed that when a node A decides that node B in

its current state is appropriate for execution of a task,

no other node should execute a task on node B before

A's task is spawned; otherwise, node B's state may

change making it inappropriate for execution of A's

task. This is a standard distributed mutual exclusion

problem that requires, in the worst case, 2(N � 1)

messages be exchanged before node A can execute its

task on node B [9]. Since the distributed approach is

more expensive (in terms of the number of messages)

than the centralized approach, we consider only the

latter in this paper, referring to it as the centralized

load sharing algorithm.

In the case when each node maintains only its own

state, the number of nodes to be polled and the or-

der in which they are polled depends on the loca-

tion mechanism. Examples include various sender-

initiated, receiver-initiated and symmetrically initi-

ated schemes that poll some number of neighboring

nodes [13]. In this paper, we refer to the load sharing

scheme in which no global state is maintained as the

fully distributed load sharing algorithm.

There are also information mechanisms which

maintain partial state. For example, some algorithms

cache information about the current load on other

nodes. This system load information is exploited to re-

duce polling in distributed approaches (e.g., the stable

sender-initiated and symmetrically initiated adaptive

algorithms in [13]) and to reduce the set of updaters in

workload and policies. To substantiate our claims we

run simulations with realistic workload and policies

where the centralized approach and fully distributed

approach fail to scale while respecting owners intru-

siveness bounds, whereas the DC approach performs

acceptably.

The remainder of this paper is organized as follows.

In Section 2, we describe the system model, while in

Section 3 we develop measures for scalability and non-

intrusiveness. Section 4 surveys previous work on both

centralized and distributed techniques for load shar-

ing. Section 5 introduces our load sharing algorithm,

distributed clustering. In Section 6, we compare the

various load sharing techniques via simulation to show

the superior scalability and non-intrusiveness of our

algorithm. We conclude in Section 7 with a discussion

of the applicability and extensibility of the distributed

clustering algorithm.

2 System model

A distributed system is a collection of heterogeneous

resources that are owned by individuals or groups.

Each resource owner speci�es policies that de�ne the

conditions under which the resource can be shared.

We consider two types of resources:

� Computing resources, such as PCs, workstations,

multiprocessors, and mainframes.

� Communication resources, such as local area net-

works (LANs).

We refer to each computing resource as a node. We as-

sume that nodes are connected through LANs and the

LANs are connected via bridges, gateways and wide

area networks.

In this environment, a task submitted by a user

at his node is either executed locally at that node, or

remotely at another node. We call a task that executes

on a node that does not belong to the owner of the

task a \foreign" task when we refer to the task in the

context of the node that executes the task; we refer to

such a task as a \remote" task when we refer to it in

the context of the node at which it is submitted. The

decision where the task will execute is determined by

policies as described in Section 2.1.

The owner of a node speci�es a bound on the over-

head that the load sharing algorithm can impose on

his node. The bound t

p

for node p is expressed as a

fraction of the CPU cycles of node p. Similarly, the

owner or owners of the LAN must specify a bound

on the overhead that the load sharing algorithm can

impose on the LAN. The bound b

n

for LAN n is ex-

pressed in terms of communication bandwidth.

In the load sharing literature, a load sharing algo-

rithm is typically characterized by four policies: trans-

fer policy, selection policy, location policy, and infor-

mation policy [2, 13]. Our framework, however, dis-

tinguishes the mechanisms and policies that govern a

load sharing algorithm. This distinction leads us to

modify the \standard" de�nitions of location and in-

formation policy. We give our policy and mechanism

de�nitions below.

2.1 Policies

The policies in a load sharing system can be classi-

�ed into three groups: transfer, selection and location

policies. Transfer policy speci�es the conditions un-

der which a node is eligible to send or receive a task,

selection policy speci�es which tasks are eligible to mi-

grate, and location policy speci�es the nodes on which

a task can be executed. Note, however, that it is up

to the owners of the nodes and LANs to specify the

policies that govern their particular resources. Below,

we describe a reasonable set of transfer, selection, and

location policies.

2.1.1 Transfer policies

The transfer policy can be subdivided into receiv-

ing and sending policies. The receiving policy spec-

i�es when a node is eligible to receive a foreign task,

whereas the sending policy speci�es when a node

should send a task to another node.

The receiving policy is expressed in terms of admin-

istrative and resource-based constraints. Administra-

tive constraints specify who can run jobs on a node,

when they can run jobs on a node, and what priority

they have to run jobs on the node. These constraints

typically capture \political" or \social" reasons for pri-

oritizing or preventing the execution of foreign tasks.

For example, a user may want to prohibit tasks from

users in group X from executing on his workstation,

or a user may simply want to reserve the machine for

exclusive use from 9-5 on weekdays. Resource-based

constraints specify what fraction of machine resources

(real memory, CPU time, disk space, etc.) must be

preserved for exclusive use by the local owner. These

constraints are approximated by assuming that an

owner's recent resource requirements re
ect future re-

source requirements (e.g., if the machine has had a

load average of 0.1 for 10 minutes, the user only re-

quires 10% of the CPU) as it is done in most current

systems [11].

Scalable and Non-Intrusive Load Sharing in Owner-Based

Distributed Systems

Banu

�

Ozden

�

Aaron J. Goldberg Avi Silberschatz

y

600 Mountain Ave.

AT&T Bell Laboratories

Murray Hill, NJ 07974

Abstract

Previously proposed load sharing algorithms do not

support
exible sharing policies in a non-intrusive

fashion and do not scale to systems consisting of sev-

eral thousand workstations, and, therefore, are not

amenable for owner-based distributed systems. This

paper introduces a new algorithm that supports a rich

set of policies while scaling to adequate system sizes

with bounded intrusiveness.

1 Introduction

Load sharing in early distributed systems work as-

sumes a \pool of processors" model where avail-

able computational power is shared uniformly by all

users [4, 14]. Since this model does not preserve own-

ers' rights to their resources, it provides limited incen-

tive to the users to share their resources. Ultimately,

the owners should be able to specify policies that gov-

ern the conditions under which their resources can be

shared. We refer to a system in which the load sharing

algorithm adheres to these policies as an owner-based

distributed system. In order to gain wide acceptance,

we believe that an owner-based system must satisfy

the following three criteria:

1. The load sharing algorithm should not �x the

policies; rather, it should provide mechanisms

that support a rich set of owner-de�ned policies.

Resource owners can then specify sharing policies

that they consider appropriate.

�

A PhD candidate in the Department of Computer and Elec-

trical Engineering at the University of Texas at Austin and sum-

mer intern at AT&T.

y

On leave from the Department of Computer Sciences, at

the University of Texas at Austin.

2. The load sharing algorithm must be non-

intrusive. We call a load sharing algorithm non-

intrusive if the overhead that it induces on each

resource is less than the bound on overhead de-

�ned by the resource owner. By respecting own-

ers' intrusiveness bounds, we gain owner accep-

tance.

3. The load sharing algorithm must scale to the size

of typical systems. We say that a load sharing

algorithm scales to a given system size, if the

mean service rate of the load sharing requests

at each node exceeds the average arrival rate of

load sharing requests there. We consider systems

that are composed of several thousand comput-

ers, since the total computational resources in

medium and large organizations often exceeds a

thousand workstations.

Though recent distributed systems do guarantee the

availability of a workstation to its owner [3, 7, 11, 12],

they fail to to meet the three criteria above, and there-

fore do not provide owners adequate control of their

resources.

In this paper, we examine the capacity of the ex-

isting distributed and centralized load sharing algo-

rithms to scale to typical system sizes and to remain

non-intrusive when they support a rich set of policies.

We conclude that the centralized load sharing algo-

rithms fail to scale to thousands of workstations, and

that the distributed load sharing algorithms yield poor

performance and fail to remain non-intrusive under

heterogeneous workload. We devise an alternative hy-

brid, parameterized algorithm, called distributed clus-

tering (DC). The DC algorithm utilizes a set of man-

agers, each of which is responsible for locating re-

sources for a cluster of nodes. The basic parameter

in the DC algorithm is the number of nodes assigned

to a manager, which is determined as a function of

