
Operation r = 0, m = �(1) r � 0, m = �(1) r � 0, m =
(1)tBPC (a; d) �(2d) �(2d�r) �(2d�r)tCYC (a; d) �(2d) �(2d�r) �(2d�r)tRR(a; d) �(2d) �(2d�r) �(2d�r)tSS(a; d) �(2d) �(2d�r) �(2d�r)TOP(a; b; d) �(2d�b) �(2d�b�r) �(2d�b�r)S(a; b; d) �((d=b) � 2d�b) �((d� r) � 2d�b�r=b) �((d� r) � 2d�b�r=(b+m))Table 5: I/O complexities for the P{DISK model.
23

storage behaves like a RAM), and (ii) a zero cost assumption. The motivation for the zerocost assumption is that, for computational problems involving large amount data (e.g., muchmore than can �t in the internal storage), it is often found that the fastest algorithm is theone which performs fewer I/Os. By making the zero cost assumption, we focus our attentionentirely on minimizing I/O complexity.The disk model has a parallel version P{DISK . (P{DISK is to the disk model as Gpar isto Gseq .) Our goal in this section is to determine the complexity of sorting in the P{DISKmodel. Following previous authors, we will focus on the I/O complexity measure. We beginby focusing our attention on the important special case where r = 0 and m = �(1).Because we wish to calculate I/O complexity instead of running time, we need to makea slight change to our general scheme of analysis. In particular, Equation (2) should bechanged to:TOP(a; b; d) = O(maxb�d0�d(tPRIM (a� b; d� b) + tPRIM (a� b; d0 � b) � 2d�d0)):(Note that we have dropped the term corresponding to computation over the �xed-connectionnetwork, as it does not contribute to the I/O complexity.)We now de�ne the mapping of cubes to secondary storage that will be employed toemulate Gseq(a). Recall that a machine in Gseq(a) has a + 1 associated cubes, one of eachdimension d, 0 � d � a. For this purpose, we assume that the blocks of secondary storage arenumbered from 0, and map the dimension-d cube to the contiguous block of memory locations[2d; 2d+1), 0 � d � a. It is now trivial to determine the complexities of the four primitiveoperations. The remaining steps in the calculation of S(a; b; d) are purely mechanical. Ourresults for r = 0 and m = �(1) are summarized in the �rst column of Table 5.It is not di�cult to generalize our approach to handle arbitrary r and m. First let usconsider the case of arbitrary r and m = �(1). This case can be easily reduced to the r = 0,m = �(1) case by simply performing all of the analysis in terms of numbers of blocks ofvalues (as opposed to numbers of values), and then correcting appropriately. Our results forarbitrary r and m = �(1) are summarized in the second column of Table 5. Our boundson the running times of the four primitive operations assume that r � d, and our remainingbounds assume that r � d� b.Now let us consider the case of arbitrary r and m =
(1). This case is similar to thepreceding one, except that for m su�ciently large we can improve the sorting I/O bound bycutting o� the recurrences of Equation (3) through Equation (6) at d = O(b+m) instead ofd = O(b). This modi�cation leads to the bounds stated in the third column of Table 5. Thematching lower bound for sorting is established in [3].Remark: The above modi�ciations used to handle arbitrary r and m could have beenavoided by incorporating the parameters r and m into our generic model of multi-levelstorage. In order to simplify our earlier presentation, however, we chose not to clutter thegeneric model with these additional parameters.22

Operation f(`) = 1 f(`) = 1=(` + 1) f(`) = ��c`, c > 0tBPC (a; d) �(2d) �(d � 2d) �(2(c=2+1)�d)tCYC (a; d) �(2d) �(d � 2d) �(2(c=2+1)�d)tRR(a; d) �(2d) �(d � 2d) �(2(c=2+1)�d)tSS (a; d) �(2d) �(d � 2d) �(2(c=2+1)�d)TOP (a; b; d) �(b � 2d�b) �(d � 2d�b) �(2(c=2+1)(d�b) + b � 2d�b)S(a; b; d) �(d � 2d�b) O((lg d� lg b) � d � 2d�b) �(2(c=2+1)(d�b) + d � 2d�b)S�(n; p) �((n lg n)=p) O((n lg n)(lg lg n� lg lg p)=p) �((n=p)c=2+1 + (n lg n)=p)Table 3: Running times for P{UMH and P{RUMH . The two O-bounds are known to betight for P{RUMH .Operation f(`) = 1 f(`) = 1=(`+ 1) f(`) = ��c�`, c > 0tBPC (a; d) �(d � 2d) �(d2 � 2d) �(2(c=2+1)�d)tCYC (a; d) �(d � 2d) �(d2 � 2d) �(2(c=2+1)�d)tRR(a; d) �(2d) �(d � 2d) �(2(c=2+1)�d)tSS (a; d) �(d � 2d) �(d2 � 2d) �(2(c=2+1)�d)TOP(a; b; d) �(d � 2d�b) �(((d� b)2 + b) � 2d�b) �(2(c=2+1)(d�b) + b � 2d�b)S(a; b; d) �((lg d� lg b) � d � 2d�b) �(((d� b)2 + d) � 2d�b) �(2(c=2+1)(d�b) + d � 2d�b)S�(n; p) �((n lgn)(lg lg n� lg lg p)=p) �((n=p)(lg2(n=p) + lg n)) �((n=p)c=2+1 + (n lgn)=p)Table 4: Running times for P{SUMH .B.2 Results for the P{SUMH ModelThe complexity of the four primitive operations is not too di�cult to determine for allinstances of the P{SUMH model that we consider. Our results for f(`) = 1, f(`) = 1=(`+1),and f(`) = ��c�`, c > 0, are summarized in Table 4.The sorting lower bounds are all non-trivial and are established in [19].C Parallel Disk ModelThe sequential disk model is a two-level model: A processor has a a \slow" external storagepartitioned into blocks of size 2r, r � 0, and a \fast" internal storage that can hold up to 2mblocks, m =
(1). Data can only be read from (resp., written to) the external storage oneblock at a time. We call each such read or write of a block an I/O operation, or simply anI/O. There is a certain �xed cost associated with each I/O. The minimum number of I/Osneeded to solve a given problem is referred to as the I/O complexity of the problem.Two di�erent assumptions are commonlymade with regard to the complexity of accessinglocations of the internal storage: (i) a unit cost assumption (in this model the internal21

B Uniform Memory HierarchiesThe uniform memory hierarchy (UMH) model was de�ned by Alpern, Carter, and Feig [4].The model is parameterized by positive integers � and �, and a monotone, non-increasingbandwidth function f . The memory is partitioned into levels, and each level is in turnpartitioned into blocks. The number of locations in each block at level `, ` � 0, is �`. (Wewill assume that � > 1 so that the size of blocks at successive levels increases geometrically.)The number of blocks at level ` is � � �`. Thus, the total number of storage locations at level` is � � �2`. In the UMH model, data stored at level ` can only be directly moved to eitherlevel ` + 1 or level ` � 1. (We can think of the processor as residing at level 0. Of course,information is never passed down from level 0 or up from the highest level.)Data is passed up from level ` to level `+1 in level-` blocks. When a level-` block arrivesat level ` + 1, it is placed into a subblock of some block at level ` + 1. (Each block at level` + 1 is partitioned into � subblocks of size �`.) The cost of transferring a level-` block ofdata from level ` to level `+ 1 is �`=f(`).Data is passed down from level ` + 1 to level ` in level-(`+ 1) subblocks. When a level-(`+1) subblock arrives at level `, it is placed into a block at level `. The cost of transferringa level-` block of data from level ` + 1 to level ` is �`=f(`).Distinct block transfers between adjacent levels cannot overlap in time. On the otherhand, the UMH model does allow simultaneous transfers between distinct pairs of levels.We will also consider two variants of the UMH model that have been proposed by Nodineand Vitter [17]: sequential UMH (SUMH), and random-access UMH (RUMH). The SUMHmodel is the same as UMH except that it disallows simultaneous transfers of any kind. TheRUMH is a much less restrictive variant of the original UMH model; we refer the readerto [17] for the de�nition of this model.The UMH , RUMH , and SUMH models have parallel versions P{UMH , P{RUMH ,P{SUMH , respectively. (For example, P{UMH is to UMH as Gpar is to Gseq .)We now de�ne the mapping of cubes to memory that will be employed (for all variantsof UMH) to emulate Gseq (a). Recall that a machine in Gseq(a) has a + 1 associated cubes,one of each dimension d, 0 � d � a. We map the dimension-d cube to the smallest level thatwill hold it, i.e., to level ` where ` is the least integer such that ��2` � 2d. (Within the level,we map the cube to the smallest possible number of blocks.) For each of the models thatwe consider, it remains to determine the complexities of the four primitive operations. Theremaining steps in the calculation of S�(n; p) are purely mechanical, and have been omitted.B.1 Results for the P{UMH and P{RUMH ModelsThe complexity of the four primitive operations is not too di�cult to determine for allinstances of the P{UMH and P{RUMH model that we consider. The results for f(`) = 1,f(`) = 1=(` + 1), and f(`) = ��c�`, c > 0, are summarized in Table 3.The sorting lower bounds for f(`) = 1=(` + 1) (P{RUMH only) and f(`) = ��c`, c > 0,are non-trivial and are established in [19]. 20

Operation P{HMM lg x P{HMM x�, � > 0tBPC (a; d) �(d � 2d) �(2(�+1)�d)tCYC (a; d) �(d � 2d) �(2(�+1)�d)tRR(a; d) �(d � 2d) �(2(�+1)�d)tSS(a; d) �(d � 2d) �(2(�+1)�d)TOP(a; b; d) �(d � 2d�b) �(2(�+1)(d�b) + b � 2d�b)S(a; b; d) �((lg d� lg b) � d � 2d�b) �(2(�+1)(d�b) + d � 2d�b)S�(n; p) �((n lg n)(lg lgn � lg lg p)=p) �((n=p)�+1 + (n lg n)=p)Table 1: Running times for P{HMM .
Operation P{BT x�, 0 < � < 1 P{BTx P{BT x�, � > 1tBPC (a; d) �((lg d) � 2d) �(d2 � 2d) �(2��d)tCYC (a; d) �(2d) �(2d) �(2��d)tRR(a; d) �((lg d) � 2d) �(d2 � 2d) �(2��d)tSS (a; d) �((lg d) � 2d) �(d � 2d) �(2��d)TOP (a; b; d) �(b � 2d�b) �(((d� b)2 + b) � 2d�b) �(2��(d�b) + b � 2d�b)S(a; b; d) �(d � 2d�b) �(((d � b)2 + d) � 2d�b) �(2��(d�b) + d � 2d�b)S�(n; p) �((n lg n)=p) �((n=p)(lg2(n=p) + lg n)) �((n=p)� + (n lg n)=p)Table 2: Running times for P{BT .19

[19] J. S. Vitter and M. H. Nodine. Large-scale sorting in uniform memory hierarchies.Journal of Parallel and Distributed Computing, 17:41{57, 1993.[20] J. S. Vitter and E. A. M. Shriver. Optimal disk I/O with parallel block transfer. InProceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 159{169, May 1990. To appear in Algorithmica.A The Hierarchical Memory ModelThe hierarchical memory model (HMM) was de�ned by Aggarwal, Alpern, Chandra andSnir [1]. This model is equivalent to the usual sequential RAM model except that the costof reading/writing location x is f(x) instead of 1, where f is some nondecreasing function.(The RAM model is the same as HMM with f(x) = 1.) We will consider the following twoimportant special cases of HMM : HMM lg x and HMM x�, � > 0.The hierarchical memory model with block transfer (BT) was de�ned by Aggarwal, Chan-dra, and Snir [2]. In this model, access to location x costs f(x) (as in HMM), but contiguousblocks of locations can be copied more cheaply. In particular, the contiguous block of `+ 1locations [x� `; x] can be copied to any disjoint block [y� `; y] at a cost of f(maxfx; yg)+1.We will consider the following three important special cases of BT : BT x�, 0 < � < 1, BT x,and BT x�, � > 1.The HMM and BT models have parallel versions P{HMM and P{BT , respectively. (Forexample, P{HMM is to HMM as Gpar is to Gseq .)We now de�ne the mapping of cubes to memory that will be employed (for all variantsof HMM and BT) to emulate Gseq(a). Recall that a machine in Gseq(a) has a+ 1 associatedcubes, one of each dimension d, 0 � d � a. We map the dimension-d cube to the contiguousblock of memory locations [2d; 2d+1), 0 � d � a. For each of the models that we consider, itremains to determine the complexities of the four primitive operations. The remaining stepsin the calculation of S�(n; p) are purely mechanical, and have been omitted.A.1 Results for the P{HMM ModelThe complexity of the four primitive operations is easy to determine for all variants of theP{HMM model. Our results for P{HMM lg x and P{HMM x�, � > 0, are summarized inTable 1.A.2 Results for the P{BT ModelThe complexity of the four primitive operations is non-trivial to determine for some vari-ants of the P{BT model. Fortunately, though, the P{BT complexity of many operations isknown [2], and these existing bounds readily imply tight bounds for each of the four prim-itive operations. Our results for P{BT x�, 0 < � < 1, P{BT x, and P{BT x�, � > 1, aresummarized in Table 2. (Note that we have not considered P{BT lg x because we alreadyobtain a sorting bound of O((n lg n)=p) for P{BT x. We cannot hope to improve this boundwith any comparison-based sort.) 18

[4] B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies. In Proceedings of the31st Annual IEEE Symposium on Foundations of Computer Science, pages 600{608,October 1990.[5] K. E. Batcher. Sorting networks and their applications. In Proceedings of the AFIPSSpring Joint Computer Conference, vol. 32, pages 307{314, 1968.[6] G. Bell. Ultracomputers: A tera
op before its time. Communications of the ACM,35(8):26{47, 1992.[7] T. H. Cormen. Asymptotically tight bounds for performing BMMC permutations onparallel disk systems. In Proceedings of the 5th Annual ACM Symposium on ParallelAlgorithms and Architectures, pages 130{139, July 1993.[8] T. H. Cormen. Fast permuting on disk arrays. Journal of Parallel and DistributedComputing, 17:41{57, 1993.[9] R. E. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on thehypercube and related computers. In Proceedings of the 22nd Annual ACM Symposiumon Theory of Computing, pages 193{203, May 1990. To appear in JCSS.[10] R. E. Cypher and C. G. Plaxton. Techniques for shared key sorting. Technical report,IBM Almaden Research Center, March 1990.[11] R. E. Cypher and J. L. C. Sanz. Cubesort: A parallel algorithm for sorting N dataitems with S-sorters. Journal of Algorithms, 13:211{234, 1992.[12] R. W. Floyd. Permuting information in idealized two-level storage. In R. E. Millerand J. W. Thatcher, editors, Complexity of Computer Computations, pages 105{109.Plenum Press, New York, 1972.[13] F. T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transactionson Computers, C{34:344{354, 1985.[14] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Treesand Hypercubes. Morgan-Kaufmann, San Mateo, CA, 1991.[15] D. Nassimi and S. Sahni. A self routing Benes network and parallel permutation algo-rithms. IEEE Transactions on Computers, C{30:332{340, 1981.[16] D. Nassimi and S. Sahni. Parallel permutation and sorting algorithms and a new gen-eralized connection network. Journal of the ACM, 29:642{667, 1982.[17] M. H. Nodine and J. S. Vitter. Large-scale sorting in parallel memories. In Proceedingsof the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures, pages29{39, July 1991.[18] M. H. Nodine and J. S. Vitter. Deterministic distibution sort in shared and distributedmemorymultiprocessors. In Proceedings of the 5th Annual ACM Symposium on ParallelAlgorithms and Architectures, pages 120{129, July 1993.17

basic operations. Instead, a sparse sorting routine should be implemented directly. Similarcomments apply to the Sharesort subroutine FindSplitters.The reader may have questioned the signi�cance of the particular exponents appearing inthe Sharesort recurrences. These were chosen for consistency with the original presentationof Sharesort, but other possibilities exist. In general, we can hope to make use of \nicer"exponents (in terms of the constant factors induced) on computational models having a morepowerful row routing capability.To make a fair comparison between the practical performance of Sharesort and that ofBalance Sort, it would �rst be necessary to �x a particular model and then compare opti-mized versions of both algorithms. This has yet to be done. One point of contrast may beworth mentioning, however, for the case where the processors happen to be interconnectedby a hypercubic network. While both algorithms make use of sorting operations over theinterconnection network, Sharesort applies such operations only to \actual" keys (i.e., keysof the original sorting problem). All of the other operations performed over the interconnec-tion network by Sharesort are standard, logarithmic-time operations (e.g., pre�x, monotoneroute). In contrast, Balance Sort makes use of sorting over the interconnection network forboth PRAM emulation as well as sorting of actual keys.It is possible that both Sharesort and Balance Sort are impractical in their strict deter-ministic form: The most practical algorithms for sorting in parallel models of multi-levelstorage may well be randomized.9 Concluding RemarksSharesort may be useful in other parallel sorting applications where some form regularity isenforced (e.g., in an environment where BPC permutations are less expensive than arbitrarypermutations).Finally, the set of primitives underlying Sharesort also underlies a host of other algorithmsfor hypercubic networks. Do many or all of these algorithms for hypercubic networks map tooptimal algorithms for parallel models of multi-level storage? This is an intriguing questionfor further investigation.References[1] A. Aggarwal, B. Alpern, A. K. Chandra, and M. Snir. A model for hierarchical memory.In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages305{314, May 1987.[2] A. Aggarwal, A. K. Chandra, and M. Snir. Hierarchical memory with block transfer. InProceedings of the 28th Annual IEEE Symposium on Foundations of Computer Science,pages 204{216, October 1987.[3] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and relatedproblems. CACM, 31:1116{1127, 1988. 16

3. Map the cubes of Gseq(a) to the speci�c storage locations in M . The mapping shouldbe chosen in order to minimize TOP(a; b; d).4. Determine the complexity of the four primitive operations: tBPC (a; d), tCYC (a; d),tRR(a; d), and tSS(a; d). This step is quite model-speci�c but will generally be straight-forward. Note that the four primitive operations are sequential. Their complexitiesare determined with respect to machine M .5. Determine TOP (a; b; d). Substitute the functions computed in the previous step intoEquations (1) and (2).6. Determine M(a; b; d). Solve the recurrence of Equations (3) and (4).7. Determine S(a; b; d). Solve the recurrence of Equations (5) and (6).8. DetermineS�(n; p). In order to present the complexity of our Sharesort implementationin more usual terms, we computeS�(n; p) def= S(lgn; lg(p=csh); lg n)Here n denotes the number of keys being sorted and p denotes the number of processors.This time bound applies to the model Mpar .It is worth commenting on our requirement that p be a multiple of the constant csh. All ofthe models that we consider have the property that a single multi-level storage hierarchy canemulate any constant number of multi-level storage hierarchies with constant slowdown (anda constant factor blow-up in storage capacity). As a consequence, there exists a machinein Mpar with �(2a) storage and only � � 2b processors, for any � > 0, that sorts in timeO(S�(n; p)).Appendices A through C apply the preceding strategy to several speci�c models of multi-level storage that have been proposed in the literature. The results are summarized in tableformat. Although we do not prove any non-trivial lower bounds in this paper, the readerwill notice that almost all of our table entries (all but one, in fact) are given in the form of�-bounds rather than O-bounds. The source of each non-trivial lower bound will be citedin the relevant section. Those lower bounds which are not discussed are trivial to prove.8 Practical ConsiderationsIt should be emphasized that the simulation-based approach we have taken towards analyzingthe big-Oh complexity of Sharesort-based algorithms is geared towards streamlining theasymptotic analysis, and is almost certainly inappropriate (due to accumulated constantfactors) for actual implementation. In particular, note that the primitives of our genericmodel must be rather weak in order to be e�ciently implementable on all of the particularmodels that we intend to address. When implementing Sharesort on any speci�c model, avariety of signi�cant constant-factor optimizations should be possible. For example, each callto sparse enumeration sort is currently handled by simulating the corresponding sequence of15

2b processors of the relevant dimension-d par-cube.) Running time: O(TOP (a; b; d) +25d=9M(a; b; 4d=9)).3. A set of 24d=9 merges of dimension 5d=9. Implementation: A subcube scan primitiveinterleaved with the sequence of 24d=9 recursive high-order merging problems. (Thesubcube scan primitive has argument 5d=9 and is applied to each of the 2b processors ofthe relevant dimension-d par-cube.) Running time: O(TOP (a; b; d)+24d=9M(a; b; 5d=9)).(The initial sorting problem is such that it resides within a dimension-a par-cube with 2bprocessors. As is easily proven by induction, each recursive sorting or high-order mergingproblem of dimension d arises within some dimension-d par-cube with 2b processors. Fur-thermore, each sorted list of length 24d=5 passed to a high-order merging problem resides ina dimension-(4d=5) par-cube with 2b processors.)Thus, we haved > c� � b (4)=) M(a; b; d) �M(a; b; 4d=9) � 25d=9 +M(a; b; 5d=9) � 24d=9 +O(TOP (a; b; d)):Given the function TOP(a; b; d) associated with a speci�c model of multi-level storage, wecan apply the recurrence of Equations (3) and (4) to calculate M(a; b; d). This turns out tobe a straightforward exercise for each of the models that we consider in Section 7.Let S(a; b; d) denote the complexity of performing a sort of dimension d on Gpar (a; b).Cubesort gives d � c� � b =) S(a; b; d) = O(TOP (a; b; d)); (5)and Sharesort givesd > c� � b =) S(a; b; d) � S(a; b; 4d=5) +M(a; b; d) +O(TOP (a; b; d)): (6)Given the functions TOP (a; b; d) and M(a; b; d) associated with a speci�c model of multi-level storage, we can apply the recurrence of Equations (5) and (6). This turns out to giveS(a; b; d) = O(M(a; b; d)) for each of the models that we consider in Section 7.7 Sorting in Speci�c ModelsGiven the framework provided by Section 6, it is no easy to analyze the complexity ofSharesort on a variety of speci�c models of multi-level storage. For any speci�c model M,we follow the same procedure to analyze the complexity of Sharesort:1. De�neMseq , the sequential version of modelM. (The parallel versionMpar is obtainedfrom Mseq in the same way as Gpar was obtained from Gseq .)2. Choose the machine M in Mseq corresponding to Gseq(a). The desired machine Mshould have a total storage capacity of �(2a).14

Cubesort immediately gives a method for sorting the 2a keys of par-cube C in a constantnumber of phases, where in each phase the following steps are performed: (i) a parallelapplication of the subcube scan primitive is applied to par-cube C, interleaving sortingoperations over the �xed-connection network, and (ii) a BPC route operation is applied topar-cube C.Letting TCUBE(a; b) denote the running time of Cubesort, we conclude thatTCUBE (a; b) = O(TOP (a; b; a))whenever a = O(b). This bound will turn out to be optimal in all of the models of multi-levelstorage that we consider in Section 7. On the other hand, when a = !(b), Cubesort doesnot lead to optimal sorting bounds. (Nor does column sort.)6.2 SharesortWe now devise a sorting algorithm for our generic parallel model of multi-level storage thatwill prove to be asymptotically optimal for all a � b on a variety of particular models ofmulti-level storage.Our sorting algorithm will be a bottom-up merging algorithm. As a result, for givenparameters a and b, we will perform recursive sorts corresponding to parameters d and bwhere d takes on many di�erent values in the range b � d � a. For each recursive sort withd � c� � b, where c� is some su�ciently large positive constant to be determined, we willsimply apply Cubesort as described in Section 6.1. On the other hand, each recursive sortwith d > c� � b will be solved by applying the �rst of two main recurrences of the Sharesortalgorithm to reduce the given sorting problem to a number of smaller sorting and high-ordermerging problems. Let us de�ne a sort of dimension d as the problem of sorting 2d keys, anda high-order merge of dimension d as the problem of merging 2d=5 sorted lists of length 24d=5.Sharesort reduces a sort of dimension d (i.e., a sort of 2d keys) to 2d=5 sorts of dimension4d=5, followed by a high-order merge of dimension d.It remains to describe how to perform a high-order merge of dimension d, b � d � a.Let M(a; b; d) denote the complexity of performing a high-order merge of dimension d onGpar (a; b). If d � c� � b, the high-order merge will be performed using Cubesort, and sod � c� � b =) M(a; b; d) = O(TOP (a; b; d)): (3)If d > c� � b, then we apply the second main recurrence of Sharesort, which reduces a high-order merging problem of dimension d to:1. A constant number of basic operations of dimension d, including a dimension-d rowrouting operation with crr = 29=45. (Note that c0rr can be brought arbitrarily close tocrr by choosing the constant c� su�ciently large. Hence, for an appropriate choice ofc�, the constraint c0rr > 0 will be satis�ed.) Implementation: See Section 5. Runningtime: O(TOP (a; b; d)).2. A set of 25d=9 high-order merges of dimension 4d=9. Implementation: A subcube scanprimitive interleaved with the sequence of 25d=9 recursive high-order merging prob-lems. (The subcube scan primitive has argument 4d=9 and is applied to each of the13

Note that c0rr > 0 if and only if crr � d � b > 0, and so the row route operation is ill-de�ned unless this inequality holds. In our applications, we will verify that crr �d�b > 0whenever a row route operation is performed. Running time (when the operation iswell-de�ned): O(tRR(a� b; d� b)).We now generalize the preceding implementations to handle the case where a basic oper-ation is applied to all subpar-cubes of a given par-cube. As in Section 3, let us take the pre�xoperation as a canonical example. Assume that dimension-d par-cube C is contained in somemachine of Gpar (a; b), b � d � a, and we would like to apply pre�x to every dimension-d0subpar-cube of C, where b � d0 � d. This could be implemented by interleaving: (i) aparallel application of the subcube scan primitive, with argument d0, to par-cube C, and (ii)2d�d0 pre�x operations, one applied to each of the dimension-d0 subpar-cubes of C. Runningtime: O(tSS (a� b; d� b) + tSS (a� b; d0 � b) � 2d�d0 + b � 2d�b).The �ve remaining basic operations can be generalized in a similar fashion. LettingTOP(a; b; d) represent the maximum running time of any basic operation applied to thedimension-d0 subpar-cubes of some dimension-d par-cube of a machine in Gpar (a; b), b � d0 �d � a, we �nd thatTOP(a; b; d) = O(maxb�d0�d(tPRIM (a� b; d� b) + tPRIM (a� b; d0 � b) � 2d�d0 + b � 2d�b)): (2)Note that the additive term b �2d�b term represents the cost of all parallel computations overthe �xed-connection network, since the primitive operations do not induce any communica-tion between the processors.6 Sorting in the Generic ModelIn this section we derive bounds on the running time of sorting algorithms in the generic par-allel model of multi-level storage G de�ned in Section 5. Our time bounds will be expressedin terms of TOP (a; b; d) (see Equation (2)).The input to a sorting problem is a set of 2a keys. We will investigate the time requiredto sort these keys on a machine M in Gpar (a; b). Note that the total storage capacity of Mis only a constant factor larger than the size of the data set being sorted. The input data isassumed to be provided to the sorting algorithm in a single dimension-a par-cube C. Thealgorithm must produce the sorted output in the same par-cube C.6.1 CubesortIf a = O(b) (i.e., if the number of keys is bounded by some polynomial in the number ofprocessors) then Cubesort [11] provides a simple method for obtaining an e�cient sortingalgorithm. (Leighton's column sort [13] could also be used to obtain the bounds that follow.We prefer to make use of Cubesort only because the permutations performed by Cubesortcan be implemented as BPC routes, one of our basic operations. The permutations involvedin column sort are equally \easy", but are not all directly implementable as BPC routes.)12

intra-processor index bits), (ii) a parallel application of the subcube scan primitivewith parameter 0, interleaving appropriate O(b)-time computations over the �xed-connection network (to permute/complement inter-processor index bits), (iii) a par-allel application of the cyclic shift primitive (with arguments set to prepare for the\transpose" of step (iv)), (iv) a parallel application of the subcube scan primitive withparameter 0, interleaving appropriate O(b)-time computations over the �xed connec-tion network (in combination with the previous step, to exchange intra-processor indexbits with inter-processor index bits as necessary), (v) a parallel application of the BPCroute primitive (to permute intra-processor bits once again if necessary). Runningtime: O(tBPC (a� b; d� b) + tCYC (a� b; d� b) + tSS(a� b; d� b) + b � 2d�b).3. Merge. A merge operation takes two dimension-d par-cubes C 0 and C 00 as input,b � d � a, and produces a dimension-(d + 1) output par-cube C. The merge canbe implemented by interleaving: (i) three parallel applications of the subcube scanprimitive, each with argument 0, applied (one each) to par-cubes C, C 0, and C 00, and(ii) appropriate O(b)-time computations over the �xed-connection network. (The ideais to implement a block-sequential merge of the data in cubes C 0 and C 00, where theblock size is 2b and the output is written a block at a time to output cube C. A newblock is read from C 0 or C 00 only when there is insu�cient data in the �xed-connectionnetwork to form the next output block.) Running time: O(tSS (a� b; d� b) + b � 2d�b).4. Monotone route. A monotone route operation takes two dimension-d par-cubes Cand C 0 as input, b � d � a, and applies a particular permutation to the values ofpar-cube C. The permutation can be implemented by interleaving: (i) two parallelapplications of the subcube scan primitive, each with argument 0, applied (one each)to par-cubes C and C 0, and (ii) appropriate O(b)-time computations over the �xed-connection network. (The idea is to implement a block-sequential monotone route ofthe data in cube C, where the block size is 2b and the output is written a block at atime to output cube C. A new block is read from C or C 0 only when there is insu�cientdata in the �xed-connection network to form the next output block.) Running time:O(tSS (a� b; d� b) + b � 2d�b).5. Pre�x. A pre�x operation acts on a single dimension-d par-cube C, b � d � a. Thepre�x operation can be implemented by interleaving: (i) a parallel application of thesubcube scan primitive, with argument 0, to par-cube C, and (ii) appropriate O(b)-timecomputations over the �xed-connection network. (The idea is to implement a block-sequential pre�x operation over the data in cube C, where the block size is 2b and wealternately read/write blocks from/to C.) Running time: O(tSS (a� b; d� b)+ b �2d�b).6. Row route. A row route operation takes two dimension-d par-cubes C and C 0 asinput, b � d � a, and applies a particular permutation to the values of par-cube C.The permutation can be implemented by a single parallel application of the row routeprimitive to par-cubes C and C 0, with argumentc0rr def= crr � d � bd� b :11

Although the preceding paragraph gives a complete description of the model G, it willbe useful to introduce some additional terminology. First, let us arbitrarily partition the pprocessors into csh par-groups (parallel groups) of size 2b. Each par-group has a total of 2bassociated cubes of dimension d, 0 � d � a � b. We call these cubes seq-cubes (sequentialcubes). Within each par-group, we form a single par-cube (parallel cube) of dimension d,b � d � a, by combining together the 2b seq-cubes of dimension d � b. The values ofeach par-cube are distributed over the corresponding set of seq-cubes by applying a 2b-wayunshu�e of the index set of the par-cube. More formally, suppose that a given dimension-dpar-cube C corresponds to the set of 2b seq-cubes C(j), 0 � j < 2b. Further assume that Chas associated values xi, 0 � i < 2d, and that C(j) has associated values x(j)k , 0 � k < 2d�b.Then xi is assigned to seq-cube C(j) with j = (i mod 2b), and corresponds to the value x(j)kwith k = bi=2bc.We have chosen to introduce par-cubes because all of our algorithms are most easily un-derstood in terms of their action on par-cubes (as opposed to seq-cubes). In our algorithms,whenever a primitive operation is applied at a particular processor P , the same primitive op-eration is simultaneously applied at every other processor in the par-group of P . We call thisa parallel application of the primitive to the par-group (or par-cube). Furthermore, althougheach par-cube is physically distributed over 2b processors, we will shortly demonstrate thatall of the basic operations de�ned in Section 3 can be e�ciently applied to par-cubes. Infact, each basic operation will require only a constant number of parallel applications of thefour primitive operations.Recall that each of the basic operations of family A takes O(1) distinct cubes of dataas input, and produces a single output cube (in some cases the output cube is also one ofthe input cubes). We now describe how each of these basic operations can be implementedon our generic model of multi-level storage. In particular, we will be interested in the casewhere: (i) the input/output cubes to a particular operation correspond to par-cubes in thegeneric model, and (ii) distinct input/output cubes correspond to par-cubes of distinct par-groups in the generic model. We now address each of the basic operations of family A inturn. Following the same approach as in Section 3, we will �rst treat the case where a basicoperation is applied over an entire par-cube, and then generalize to basic operations that areapplied to all subpar-cubes of some par-cube.1. Assignment. An assignment operation involves k (k a constant) dimension-d inputpar-cubes C(j), 0 � j < k, and a dimension-d output par-cube C, b � d � a. Let `denote the number of distinct input/output par-cubes (the output par-cube could bethe same as one of the input par-cubes). The assignment operation can be implementedby interleaving: (i) ` = O(1) parallel applications of the subcube scan primitive, eachwith argument 0, applied to the set of input/output par-cubes, and (ii) O(1)-timelocal computations over the processors of the �xed-connection network. Running time:O(tSS (a� b; d� b) + 2d�b).2. BPC route. A BPC route operation takes a single dimension-d par-cube C, b � d � a,and permutes the values of C. The permutation is not di�cult to implement via a se-quence of primitive operations applied to C. One possible sequence may be sketched asfollows: (i) a parallel application of the BPC route primitive (to permute/complement10

in Gseq(a)2. Cyclic shift. When applied to the cube C of dimension d, 0 � d � a, this primitivetakes an integer argument k such that 0 � k < 2d. Assume that cube C has associatedinteger values xi, and let yj = xi where j = (i+k) mod 2d, 0 � i < 2d. Then the e�ectof applying a cyclic shift primitive to cube C is to replace each xi by yi, 0 � i < 2d.Let tCYC (a; d) denote the running time of this primitive.3. Row route. This primitive is de�ned in the same way as the corresponding \basicoperation" in Section 3, except that the constant crr in the de�nition of r is replacedby a real value c0rr , crr � c0rr < 1, that is passed as an argument. (Also, we do notextend the de�nition to allow for simultaneous application across all of the subcubesof a given cube.) In our applications, c0rr will always be bounded away from 1. LettRR(a; d) denote the running time of this primitive.4. Subcube scan. When applied to a cube C of dimension d, 0 � d � a, this primitivetakes an integer argument d0, 0 � d0 � d. The subcube scan operation proceeds in2d�d0 \steps". Step i, 0 � i < 2d�d0 , consists of the following three \sub-steps":(a) The ith dimension-d0 subcube of C (i.e., the subcube corresponding to the rangeof indices [i � 2d0 ; (i+ 1) � 2d0)) is copied to the cube of dimension d0.(b) An arbitrary sequence of primitive operations (possibly including one or moresubcube scan primitives) is applied to the cube of dimension d0. (In our appli-cations, this sequence will be the same for all i.) If d0 = 0, then an arbitrarycomputation may be applied at the processor level. Note: The running time ofthis step is not included in tSS (a; d0), de�ned below, as it will always be accountedfor elsewhere in our analysis.(c) The values stored in the cube of dimension d0 are copied back into the ithdimension-d0 subcube of C.Let tSS (a; d) denote the running time of this primitive, for a worst-case choice of d0.Let us de�ne tPRIM (a; d) as the maximumworst-case running time of any of the four primitiveoperations applied to the cube of size d of some machine in Gseq(a), that is,tPRIM (a; d) def= maxftBPC (a; d); tCYC (a; d); tRR(a; d); tSS(a; d)g: (1)We now de�ne our generic parallel model of multi-level storage Gpar , which takes twononnegative integer parameters. A machine in Gpar (a; b), 0 � b � a, may be constructed asfollows: For some su�ciently large positive constant csh (related to the maximum number ofwords of data used by the hypercube version of the Sharesort algorithm at any one processor,which is O(1)), take p = csh � 2b machines in Gseq (a� b), and interconnect the p processorsvia any bounded-degree network that can perform both pre�x and sorting operations (wherethe input consists of p values/keys stored one per processor) in O(lg p) = O(b) time. Suchnetworks are known to exist [13]. 9

storage model M, we will apply basic operation X sequentially to each of the dimension-d0cubes. Operation Y will also be applied sequentially to each of the dimension-d00 cubes.However, in many cases we will not want to apply X everywhere before beginning to applyY . Instead, it may be more e�cient to interleave the applications of X and Y as in thefollowing 2d�d0 -phase algorithm: In phase i, apply X to the ith dimension-d0 subcube of C(call this subcube Ci), and then apply Y sequentially to each of the 2d0�d00 dimension-d00subcubes of Ci, 0 � i < 2d�d0 .While this interleaving idea is quite simple, it cannot be applied e�ectivelywithout furtherinvestigating the structure of the Sharesort algorithm. Fortunately, Sharesort is based on asystem of recurrences that capture everything we will need to know about the sequence ofsubcube dimensions corresponding to the sequence of basic operations applied by Sharesort.These recurrences are reviewed in Section 6. The \interleaving" scheme that we will use toimplement Sharesort on various models of multi-level storage is also given in Section 6.5 A Generic Model of Multi-Level StorageIn Section 7 we will determine the asymptotic complexity of certain operations on a varietyof models of multi-level storage. Fortunately, we will be able to expedite this process byfollowing the same basic strategy for each model. The purpose of the present section is tode�ne a \generic" model G of multi-level storage which captures certain common features ofthe speci�c models that we will study later on. Section 6 will describe our basic strategy interms of the generic model.We �rst de�ne the sequential version of our generic model of multi-level storage G. Wewill then extend this de�nition to the parallel case. Our sequential model of multi-levelstorage Gseq is parameterized by a single nonnegative integer. A machine in Gseq (a) is asingle processor with O(1) local memory and an associated multi-level storage consisting ofa + 1 disjoint cubes. More speci�cally, the multi-level storage contains one cube of eachdimension d, 0 � d � a. Input and output are provided/computed in speci�c subsets of themulti-level storage. The processor has direct access to the value in the dimension-0 cube.(We make no assumption regarding whether or not the processor can directly access thevalues stored in any other cube. Thus, in algorithms that we develop for the generic model,such values will �rst be transferred to the dimension-0 cube before they are read by theprocessor.)The computation consists of a sequence of steps, where in each step one of four primitiveoperations is applied to a cube. After a primitive operation has been applied to the cube ofsome dimension d, 0 � d � a, all values belonging only to cubes of dimension strictly lessthan d should be assumed to have been set arbitrarily. (In other words, any data that mayhave been stored in such a location should be assumed lost.) The more useful e�ect of eachof the four primitive operations is de�ned below.1. BPC route. This primitive is de�ned in the same way as the corresponding \basicoperation" in Section 3. (But we do not extend the de�nition to allow for simultaneousapplication across all of the subcubes of a given cube.) Let tBPC (a; d) denote therunning time of this primitive when applied to the cube of dimension d of a machine8

A number of sorting algorithms that have been proposed in the literature belong to the familyA. Hence these algorithms can be implemented by making use of the subroutines cited above.For each of the following three sorting algorithms, this approach leads to e�cient hypercubeimplementations.1. Bitonic sort. This sorting algorithm, due to Batcher [5], can be expressed in termsof the assignment, BPC route, and merge operations applied to a dimension-d cubecontaining 2d keys. The corresponding hypercube algorithm runs in O(d2) time. Upontermination, the key with rank i (ties can be broken in a stable fashion) is stored inprocessor i, 0 � i < 2d. (Note: It is possible to implement bitonic sort without anyexplicit list reversal operations, but this would not improve the running time by morethan a constant factor.)2. Sparse enumeration sort. This algorithm, due to Nassimi and Sahni [16], can beexpressed in terms of the assignment, BPC route, merge, monotone route, and pre�xoperations applied to a constant number of dimension-d cubes, one of which initiallycontains the set of input keys. When the number of input keys is 2
�d for some constant
 < 1, the corresponding hypercube algorithm runs in O(d) time. Upon termination,the key with rank i (ties can be broken in a stable fashion) is stored in processor i,0 � i < 2
�d.3. Sharesort. This algorithm, due to Cypher and Plaxton [9], can be expressed in termsof the assignment, BPC route, merge, monotone route, pre�x, and row route operationsapplied to a constant number of dimension-d cubes, one of which initially contains theset of 2d input keys. (Sharesort also makes use of bitonic sort and sparse enumerationsort, but as we have just seen these algorithms can themselves be expressed in termsof the basic operations.) Depending on the amount of preprocessing allowed (see thediscussion of the row route bounds above), the running time of Sharesort is O(d lg d)(exponential preprocessing), O(d lg d lg� d) (polynomial preprocessing), or O(d lg2 d)(no preprocessing). The output condition is the same as for bitonic sort.The main goal of this paper is to demonstrate that Sharesort can also be implementede�ciently on various models of multi-level storage. For a particular model of multi-levelstorage M, one might attempt to achieve this goal by: (i) determining the complexity ofimplementing each of the basic operations on M, and (ii) calculating the correspondingrunning time for Sharesort by adding up the times of the various basic operations. Althoughthis approach will certainly yield a correct sorting algorithm, it will also generally lead to arunning time that is very far from optimal. In order to obtain optimal bounds, we will makeuse of the observation that the scheduling of the basic operations can be interleaved, as inthe simple example of the following paragraph.Suppose that basic operations X and then Y are to be applied to the dimension-d0 anddimension-d00 subcubes of some dimension-d cube C, with 0 � d00 � d0 � d. In the hypercubeimplementation outlined above, basic operation X would be applied to all dimension-d0subcubes of C in parallel, and then basic operation Y would be applied to all dimension-d00 subcubes of C in parallel. In an implementation corresponding to a typical multi-level7

� to each of the 2d�d0 dimension-d0 subcubes of C. Each of the other �ve basic operationscan be generalized in a similar fashion; in each case, an additional integer d0 is speci�ed,0 � d0 � d, and the operation as de�ned above is performed over all subcubes of dimensiond0. The resulting set of six generalized basic operations, as applied to a dimension-d cube,will be referred to as the basic operations of dimension d.We can now de�ne the family of algorithms A. The input and working storage of analgorithm in A is given by a constant number of dimension-d cubes. The algorithm trans-forms the cube values by applying some sequence of basic operations of dimension d. (Foreach such operation, a subcube dimension d0, 0 � d0 � d, is speci�ed as discussed in thepreceding paragraph.)4 Hypercube AlgorithmsThis section begins with a discussion of the general strategy for implementing algorithms offamilyA on the hypercube. (The same strategy can be applied to obtain e�cient algorithmsfor bounded-degree variants of the hypercube such as the butter
y, cube-connected cycles,and shu�e-exchange.) We then review three speci�c sorting algorithms that have beenproposed in the past, all of which belong to family A.Consider an algorithm of family A involving k = O(1) dimension-d cubes with associatedvalues x(j)i , 0 � i < 2d, 0 � j < k. It is natural to map the cube values to a hypercube ofdimension d by storing the values fx(0)i ; : : : ; x(k�1)i g at processor i, 0 � i < 2d. The followingrunning times are known to be achievable for implementing each of the basic operations.Note: In each case, the running time is given in terms of d0, 0 � d0 � d, the dimension ofthe subcubes to which the operation is being applied. Unless otherwise stated, the runningtimes are for on-line algorithms with no preprocessing.1. Assignment. An assignment operation requires only O(1) time, as it can be imple-mented with a constant number of local operations at each processor (no inter-processorcommunication is required).2. BPC route. This operation can be performed in O(d0) time [15].3. Merge. This operation can be performed in O(d0) time by reversing one of the twolists (using a BPC route) and then applying Batcher's bitonic merge algorithm [5].4. Monotone route. This operation can be performed in O(d0) time [16].5. Pre�x. This operation can be performed in O(d0) time (see [14], for example).6. Row route. The asymptotic complexity of this operation is known to be the same(to within a constant factor) as that of the shared key sorting operation of Cypherand Plaxton [9]. (This claim follows from the optimal O(d0) complexity of sparseenumeration sort, discussed below.) If exponential preprocessing time (to computecertain tables used by the algorithm) is allowed, an optimal O(d0) running time can beachieved [10]. With polynomial preprocessing, O(d0 lg� d0) is achievable [10]. With nopreprocessing, O(d0 lg d0) is currently the best bound known [9].6

denote some dimension-(d + 1) cube with associated integer values xi, 0 � i < 2d+1.Then the e�ect of merging \input" cubes C 0 and C 00 to \output" cube C is to assignthe xi's to the sorted sequence corresponding to the union of the yi's and zi's.4. Monotone route. Let distinct dimension-d cubes C, C 0, and C 00 be given, withassociated integer values xi, yi, and zi, 0 � i < 2d, respectively. Further assume that�1 � zi < 2d, 0 � i < 2d, and that the nonnegative zi's form a monotonically increasingsequence. Then the e�ect of applying a monotone route operation to \destination" cubeC, \source" cube C 0, and \address" cube C 00 is to assign xz(i) to yi for each i such that0 � i < 2d and z(i) is nonnegative.5. Pre�x. Let C denote a dimension-d cube of data containing the integer values xi,0 � i < 2d. Let yi = L0�j<i xj, 0 � i < 2d, for some binary associative operator �.Then the e�ect of applying a pre�x operation to cube C with operator � is to replacexi with yi, 0 � i < 2d.6. Row route. Let distinct dimension-d cubes C and C 0 be given, with associated integervalues xi and yi, 0 � i < 2d, respectively. Let r = bcrr � dc where crr > 1 is a positiveconstant to be speci�ed later (see Section 6). Let f(i) = bi=2d�rc, � be a permutationover [0; 2r), and �(i) = �(f(i)) � 2d�r + (i mod 2d�r), 0 � i < 2d. Note that � is apermutation over [0; 2d). (Viewing C as a 2r � 2d�r matrix stored in row-major order,� corresponds to a permutation of the rows of C.) Assume that yi = �(i) and letzi = x�(i), 0 � i < 2d. Then the e�ect of applying a row route operation to cube Cwith respect to the \row permutation" speci�ed by cube C 0 is to replace xi with zi,0 � i < 2d.The reader may wonder why we have chosen to include three special-purpose permuta-tion routing operations in the preceding list (BPC route, monotone route, and row route)rather than a general permutation routing operation. The reason is that on many models ofcomputation (such as the hypercube, and certain of the models of multi-level storage thatwe will consider), the worst-case complexity of these special-purpose routing operations isasymptotically lower than that of general permutation routing. In such cases we may beable to obtain a more e�cient sorting algorithm by restricting ourselves to special-purposerouting operations.We now generalize each of our six basic operations in the same fashion by introducing thenotion of a subcube. Our goal is to allow parallel application of any of the basic operationsover disjoint subcubes of some cube.De�nition 3.2 For any d0 such that 0 � d0 � d, we de�ne a unique partitioning of a givendimension-d cube of data into 2d�d0 dimension-d0 subcubes of data as follows: Subcube jconsists of those values with indices in the interval [j � 2d0 ; (j + 1) � 2d0).If re-indexed from 0, note that any subcube corresponds to a cube. Consider then thefollowing generalization of the pre�x operation de�ned above: Given a dimension-d cube C,a binary associative operator �, and an integer d0, 0 � d0 � d, apply pre�x with operator5

lem of sorting e�ciently on hypercubic networks (e.g., the main routine is overly-sequentialin nature), though it remains to be seen whether Balance Sort could be modi�ed to yieldan e�cient hypercubic sorting algorithm (while preserving the same basic overall structure).Thus, Sharesort has a broader proven range of applicability.3 The Family of Algorithms AThis section introduces an abstract family of algorithms which we will refer to as familyA. Algorithms in this family are obtained by composing certain basic operations over aconstant number of cubes of data, as de�ned below. In subsequent sections we will analyzethe running time of algorithms in this family under various models of computation.De�nition 3.1 For any d � 0, a dimension-d cube of data is a set of 2d integer valuesindexed from 0 to 2d � 1.Note that a dimension-d cube of data may be viewed as simply a linear array of length 2d.We now de�ne the basic operations that may be applied to cubes of data within algorithmsof family A. With the exception of the \row route" operation, all of these operations haveappeared previously (and extensively) in the literature. Row routing is not really a newoperation either, as it is a minor variant of the shared key sorting operation used within theSharesort algorithm of Cypher and Plaxton [9].The set of six basic operations stated below may seem to have been somewhat arbitrarilychosen. As we will soon see, however, these basic operations satisfy two important properties:(i) each can be e�ciently implemented both on hypercubic networks as well as on variousmodels of multi-level storage, and (ii) together they can be used to de�ne an e�cient sortingalgorithm.1. Assignment. Let E(x; x(0); : : : ; x(k�1)) denote an arbitrary constant-size, integer-valued arithmetic expression in k+1 integer variables. Corresponding to each variablex(j), assume that we are given a dimension-d cube C(j) with associated integer valuesx(j)i , 0 � i < 2d. Further assume that cube C has associated integer values xi, 0 �i < 2d. Then the result of assigning expression E to cube C is to replace xi byE(i; x(0)i ; : : : ; x(k�1)i), 0 � i < 2d.2. BPC route. Let C be a cube of dimension d with associated integer values xi,0 � i � 2d. Let � be a permutation over [0; d), and hb0; : : : ; bd�1i be a sequence of dbits. For any integer i in [0; 2d), we de�ne the function �(i) as follows: If i has binaryrepresentation id�1 � � � i0 then �(i) = j where j has binary representation jd�1 � � � j0with jk = (i�(k) + bk) mod 2, 0 � k < d. Note that � is a permutation over [0; 2d).Let y�(i) = xi, 0 � i < 2d. Given � and hb0; : : : ; bd�1i, the e�ect of applying thecorresponding BPC route operation to cube C is to replace xi with yi, 0 � i < 2d.3. Merge. Let distinct dimension-d cubes C 0 and C 00 be given, with associated integervalues yi and zi, 0 � i < 2d, respectively. Assume that the yi's and zi's are sorted inascending order. (In other words, yi � yi+1 and zi � zi+1, 0 � i < 2d � 1.) Let C4

in the current setting (which is more sequential in nature) than in the hypercube setting.For example, the shared key sorting subroutine takes up approximately half of the originalSharesort description, but corresponds to a simple primitive in the present context.It is interesting to compare the high-level structure of Sharesort with that of Balance Sort.Balance Sort is a deterministic, comparison-based distribution sort: The keys are sorted ina top-down fashion by partitioning them into buckets (as given by a set of approximatelyevenly-spaced splitter keys) and then sorting each of the buckets recursively. On the otherhand, Sharesort is a deterministic, comparison-based (high-order) merge sort: The keys aresorted in a bottom-up fashion by arbitrarily partitioning them into n
 lists of length n(1�
)(for some constant
, 0 <
 < 1), sorting each of these lists recursively, and then merging thesorted lists via a single high-order merge operation. This cursory examination of the structureof the two algorithms in question suggests that they are entirely di�erent. In fact, such ananalysis is somewhat misleading, since the critical high-order merge operation of Sharesort,which dominates the running time of Sharesort in all computational models of interest, isactually a \distribution merge": The keys are merged in a top-down fashion by computinga set of (precisely) evenly-spaced splitter keys, breaking the sorted lists into smaller sortedlists of similar keys (i.e., keys lying between the same pair of adjacent splitters), partitioningthese smaller sorted lists into buckets (as given by the splitters), and then merging the listswithin each bucket recursively.Thus, Sharesort is more properly viewed as a \mixed-mode" sorting method, with both\bottom-up" and \top-down" characteristics. Indeed, the power of Sharesort stems directlyfrom this curious combination of computational paradigms: The bottom-up sorting eases thecomplexity of the top-down high-order merge while not increasing the overall complexity ofthe algorithm by more than a constant factor. Because Balance Sort takes an entirely top-down approach, the implementation details turn out to be more complicated, for example:(i) a complicated bipartite matching procedure (obtained via advanced de-randomizationtechniques) is needed to balance the load across the processors; (ii) a CRCW PRAM inter-connection is required to obtain optimal complexity for a certain range of parameter settingswithin the parallel disk model; (iii) the main balancing routine needs to maintain severalmatrices containing certain distribution-related counts.Unlike Sharesort, the Balance Sort algorithm does not seem to be expressible in termsof a small number of fundamental primitive operations. (This comment applies to bothinterprocessor operations as well as operations acting on the multi-level storage.) As aresult, we �nd that the implementation details of Balance Sort tend to vary more from onemodel to another (e.g., di�erent techniques are used to bound the internal processing time inthe parallel disk model than in the other models). While we have not attempted to formulatethe following claim as a theorem, we believe that Balance Sort is unlikely to yield betterasymptotic performance than Sharesort on any \reasonable" model of multi-level storage.This is because the running time of each algorithm is ultimately determined by solving asimilar recurrence, where the additive (i.e., overhead) term is determined by the complexityof certain basic operations, and the basic operations associated with Sharesort appear to besimpler.Finally, it is clear that the approach of Balance Sort is not directly applicable to the prob-3

of important reasons why our results are of interest: (i) the Sharesort-based algorithms areconceptually simple, in that they are based upon a handful of well-known basic operationsapplied to \cubes" of data according to a small system of recurrences; (ii) the Sharesort-based approach seems to apply to a strictly wider class of computational models than doesBalance Sort; (iii) the compact mathematical formulation of Sharesort enables us to moreeasily give a complete analysis of its complexity on a given model; (iv) the Sharesort-basedresults reveal an unexpected connection between e�cient sorting algorithms for hypercubicnetworks and e�cient sorting algorithms for parallel models of multi-level storage.A number of technical challenges had to be overcome in order to establish our main result.To simplify the task of developing Sharesort-based algorithms for each of the many parallelmodels of multi-level storage that exist, we will proceed by: (i) de�ning a \generic" parallelmodel of multi-level storage, (ii) providing an implemention of Sharesort within the genericmodel, and (iii) showing how to e�ciently simulate the generic model on each of the speci�cmodels of interest. The generic model must be carefully speci�ed in order to facilitatethis approach. Even so, some of the generic model implementations of basic Sharesortoperations are non-trivial (e.g., BPC route). Still other operations (e.g., monotone route)are intriguing because the e�cient generic model implementation, though straightforward, isseemingly unrelated to the e�cient hypercube implementation. (Such \coincidences" suggestthat the optimality of Sharesort on parallel models of multi-level storage may be somewhatfortuitous.)The remainder of this paper is organized as follows. Section 3 de�nes an abstract family ofalgorithmsA in terms of a number of \basic operations" applied to \cubes" of data. Section 4considers hypercube implementations of algorithms in A, and discusses the running time ofseveral sorting algorithms in A. Section 5 de�nes a \generic" sequential model of multi-level storage, Gseq , in terms of four \primitive operations". Section 5 then extends Gseq to ageneric parallel model, Gpar , and shows how to implement the basic operations of A in Gpar .Section 6 describes how to e�ciently implement the Sharesort algorithm in Gpar . Section 7presents a simple scheme for determining the complexity of Sharesort on a given parallelmodel of multi-level storage. (Appendices A through C apply this scheme to the variousmodels that have been proposed in the literature: P{HMM , P{BT , P{UMH , P{RUMH ,P{SUMH , and P{DISK .) Section 8 discusses practical considerations. Section 9 providesconcluding remarks.2 Comparison with Balance SortThe purpose of this section is to contrast the asymptotic performance of Sharesort andBalance Sort on various parallel models of multi-level storage. Constant-factor issues willnot be addressed in this section. (Section 8 discusses a number of practical considerationsthat one should take into account in an actual Sharesort implementation.)Readers familiar with the intricacies of the Sharesort implementation on hypercubic net-works [9] may be skeptical about the claim made in Section 1 that our Sharesort-basedalgorithms for parallel models of multi-level storage are \conceptually simple". Accord-ingly, it must be emphasized that the implementation details of Sharesort are far easier2

1 IntroductionUnder the classic sequential RAM model, it is assumed that any memory location can beaccessed in unit time. In practice, however, we �nd that the memory of machines is parti-tioned into multiple levels of storage with signi�cantly di�erent access times (e.g., registers,cache, memory, disk, tape). In an e�ort to properly capture this phenomenon, a varietyof sequential models of multi-level storage (often referred to as memory hierarchy models)have been proposed [1, 2, 3, 4, 12]. For example, one simple model assumes that accessingmemory location i costs lg i units of time [1]. (More elaborate models tend to allow specialblock operations, or to de�ne discontinuous access functions [2, 4].) For each particularmodel of multi-level storage, it is natural to analyze the complexity of routing (permuting)and sorting data. The complexity of these fundamental operations is intimately related toour notion of the \power" of the model.An obvious question to ask is whether existing research on sequential models of multi-levelstorage can be extended to the parallel domain in an interesting way. Although many parallelprograms involve only a small amount of data at each processor (and thus a negligiblememoryhierarchy at each processor), such applications are probably closer to the exception than therule. The coming generation of tera-computers can be expected to consist of thousands ofprocessors, each with its own multi-gigabyte storage [6]. Thus, an extension of sequentialmulti-level storage models to the parallel domain would seem to be well-motivated. In fact,Vitter and Shriver [20], Nodine and Vitter [17], and Vitter and Nodine [19] have proposedjust such a series of extensions, and have examined the complexity of sorting in variousparallel models of multi-level storage. In each of these papers, a new parallel modelMpar isde�ned in terms of an existing sequential modelMseq by interconnecting a number of modelMseq sequential processors via some standard parallel model (e.g., PRAM, �xed-connectionnetwork). This seems to be a natural and appropriate approach. The so-called \parallel diskmodel" of Vitter and Shriver [20] has also been studied by Cormen [7, 8], who provides anextremely tight complexity analysis for certain classes of routing operations.The sorting results presented in [17, 19, 20] are quite non-trivial; each of these papersprovides tight sorting bounds for the speci�c family of computational models that it ad-dresses. However, until recently, no single algorithm (or single paradigm) was known thatcould be used to obtain optimal time bounds for sorting on all models in these families.The question of existence of such an algorithm was largely resolved by the recent BalanceSort algorithm of Nodine and Vitter [18]. Balance Sort is a deterministic sorting schemethat leads to optimal or best-known complexity bounds for virtually all parallel models ofmulti-level storage yet proposed.The main result of our paper is that the deterministic Sharesort algorithm of Cypher andPlaxton [9], originally designed as a one-item-per-processor sorting algorithm for hypercubicnetworks, is readily adaptable to all known parallel models of multi-level storage, where inall cases it matches the asymptotic performance of Balance Sort. (In fact, in limited casesSharesort provides technical improvements over Balance Sort by requiring a less powerfulmodel of computation in terms of the processor interconnection. We are not aware of anycase in which Balance Sort requires a less powerful model. The relative merits of BalanceSort and Sharesort are discussed more extensively in Sections 2 and 8.) There are a number1

Optimal Parallel Sortingin Multi-Level StorageAlok AggarwalIBM Research DivisionT. J. Watson Research CenterYorktown Heights, NY 10598aggarwa@watson.ibm.com C. Greg Plaxton�Department of Computer ScienceUniversity of Texas at AustinAustin, TX 78712plaxton@cs.utexas.eduAbstractWe adapt the Sharesort algorithm of Cypher and Plaxton to run on various parallelmodels of multi-level storage, and analyze its resulting performance. Sharesort wasoriginally de�ned in the context of sorting n records on an n-processor hypercubicnetwork. In that context, it is not known whether Sharesort is asymptotically optimal.Nonetheless, we �nd that Sharesort achieves optimal time bounds for parallel sorting inmulti-level storage, under a variety of models that have been de�ned in the literature.
�Supported by NSF Research Initiation Award CCR{9111591, and the Texas Advanced Research Programunder Grant No. 003658{480.

