
VIRTUALLY OWNED COMPUTERS { A NEW

PARADIGM FOR DISTRIBUTED OPERATING

SYSTEMS

Banu

�

Ozden

Avi Silberschatz

Aaron J. Goldberg

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188

TR-93-25 November 1993

�

DEPARTMENT OF COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712

Virtually Owned Computers|A New Paradigm for Distributed

Operating Systems

�

Banu

�

Ozden

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, Texas 78712-1084

Avi Silberschatz

y

Aaron J. Goldberg

600 Mountain Ave.

AT&T Bell Laboratories

Murray Hill, NJ 07974

Abstract

Existing distributed operating systems lack two key features| predictability and choice. Pre-

dictability refers to the ability of the system to provide each user with a computing environment

whose performance is independent of the behavior of other users. Choice refers to the ability of

a user to select a computer system that meets that user's speci�cations, needs or budget. In this

paper, we introduce the virtually owned computers (VOC) paradigm that allows one to incorporate

these concepts into the design of distributed operating systems. In a distributed system based

on the VOC paradigm, each user is promised a given quality of service, and the system seeks to

provide each user with at least that level of service. One can view the service promised to a user

as a virtual computer owned by that user. Ultimately, a user should receive the promised service

independent of the location where the actual execution takes place and where the user accesses

the system. Di�erent users may be promised di�erent levels of service corresponding to di�erent

\types" of virtual computer. In order to support the VOC paradigm, many issues in the design of

a distributed operating system must be reconsidered including resource management, naming, pro-

tection, and service provision. In this paper, we focus on scheduling issues. We demonstrate that

existing scheduling algorithms for distributed and real time systems are not directly applicable to

VOC systems and study the basic problems associated with scheduling under the VOC paradigm.

Index Terms

Distributed operating systems, load distribution, load sharing, owner-based systems, scheduling,

real-time systems.

�

The research of Banu

�

Ozden and Avi Silberschatz was supported in part by the Texas Advanced Technology

Program under Grant No. ATP-024, the National Science Foundation under Grant Nos. IRI-9003341 and IRI-

9106450, and grants from the IBM and Hewlett-Packard corporations.

y

On leave from the Department of Computer Sciences, at the University of Texas at Austin.

1

1 Introduction

Personal computers provide two attractive features that are neglected in today's distributed oper-

ating systems|predictability and choice. Predictability is the ability of the system to provide each

user with a computing environment whose performance is independent of the behavior of other

users. Choice refers to the ability of a user to select a computer system that meets that user's

budget, needs or desire. We refer to the pair of features as ownership, since these two features

together represent the rights of the computer owner. Our goal is to add the concept of ownership

to distributed systems.

A distributed system can be built on various system models which include the processor-pool

model, the workstation model, and the time-shared computers model [TR85]. Though it was orig-

inally assumed that the processor-pool model would dominate distributed systems, current com-

puting environments typically contain autonomous workstations connected through networks. A

primary reason for the shift to such computing environments is that workstations provide users

with ownership rights. A user can decide what workstation to purchase (choice) and whether or

not to share the workstation with other users (predictability).

In order to incorporate the concept of ownership into the distributed operating systems, we

propose a new paradigm|virtually owned computers (VOC). In a distributed system based on the

VOC paradigm, each user is promised a given quality of service, and the system seeks to provide

each user at least the level of service promised. One can view the service promised to a user as

a virtual computer owned by that user. Ultimately, a user should receive the promised service

independent of the location where the actual execution takes place and where the user accesses the

system. Each user may have a di�erent level of service promised; namely, a di�erent type of virtual

computer. The VOC paradigm can be realized on various system models including the processor-

pool model, the workstation model, and the time-shared computers model. By providing the users

of a distributed system with the desirable properties of personal computers|predictability and

choice|the VOC paradigm encourages the users to share their computers with others, or to use a

distributed system instead of buying their own private computers.

A distributed operating system based on the VOC paradigm will be referred to in this paper

as a VOC system. In order to implement a VOC system, some of the issues in the design of

a distributed operating system must be reconsidered including resource management, naming,

protection, and service provisions. This paper concentrates on the processor scheduling aspects

2

of resource management.

The remainder of the paper is organized as follows. Section 2 places VOC in the context

of previous distributed systems paradigms. Section 3 formally de�nes the VOC paradigm. In

Sections 4-6, we focus on the scheduling problem in VOC systems, and compare the problems to

the ones in traditional distributed and real time systems. In Section 7 we brie
y describe the

salient features of the Eagle distributed operating system which is currently being implemented at

the University Of Texas at Austin. The Eagle system is based on the VOC paradigm. Finally, in

Section 8, we o�er some concluding remarks and note some open problems.

2 Related Work

In early distributed systems, the aim of load distribution is to share available computational power

equally among all users. Some of these systems are based on the processor-pool model [NH82,

Tan86, RPT90], whereas others are based on the workstation model [BL85, Stu88]. The concept of

ownership in these systems either does not exist, or is not preserved. Thus, users of these systems

cannot begin to predict how long their tasks will take to execute.

Recently, owner-based variants of the workstation model have been proposed where the aim of

the load distributing algorithm is to share only the idle computational cycles that are not utilized by

the owners of workstations [LLM88, KC91, DO91]. Ultimately, in these systems, workstation owners

should be able to specify the policies that govern the conditions under which their workstations

can be shared, and the load sharing algorithm will adhere to these policies [BOS93]. However,

current owner-based systems do not provide predictable performance for an owner's tasks that are

executing remotely on other machines. For example, when an owner starts using his workstation,

foreign tasks (i.e., remote tasks of other owners) executing on that workstation are either migrated

from the workstation as in Sprite and Condor [LLM88, KC91], or are continued but with reduced

priority as in Stealth [DO91]. From the remote task owner's perspective, there are no guarantees

of predictable performance for remote tasks.

The VOC paradigm can be viewed as an extension and a generalization of owner-based systems.

It extends the owner-based systems in the sense that each user is promised a level of service. Further,

the VOC paradigm generalizes owner-based systems in the sense that it can be implemented on

system models other than the workstation model.

3

3 The VOC Paradigm

In the VOC paradigm, each user owns an imaginary computer|a virtual computer. The virtual

computer is only a description of a computer and may not correspond to any real computer in the

system. The description includes the CPU type (which includes CPU speed) and a local scheduling

algorithm (e.g., �rst come �rst served (FCSF), round robin (RR)). The real computers used in the

distributed system may be workstations, multiprocessors or mainframes depending on the system

model. For our purpose, the system is simply modeled as a set P = fP

1

; P

2

; :::; P

m

g of processors.

Let V = fV

1

; V

2

; :::; V

n

g be the set of virtual computers. We assume there is one-to-one cor-

respondence between the set of users and V . The virtual computers of two di�erent users may

di�er in terms of their speci�cation. Assignment of di�erent virtual computers to users will usually

depend on factors such as a user's needs, seniority, and budget. For example, in an owner-based

network of workstations, a user will be assigned a virtual computer that is equivalent to the user's

own workstation.

Suppose that all of a user's tasks were executed on a computer which is equivalent to the user's

virtual computer. Such an execution is referred to an execution on the virtual computer. We call

a period in which no task is executing on the virtual computer an idle period. We call the period

between two idle periods of a virtual computer a burst period. We say that a user reclaims his

virtual computer at the beginning of each burst. The notion of reclamation can be de�ned in a

number of di�erent ways to support varying levels of sharing and predictability. We shall say more

about this issue in Section 7.

The tasks that a user submits to the system are assumed to be submitted exclusively to the

virtual computer of the user. The abstract execution of a task T

i

on a virtual computer can be

characterized by two attributes: arrival time a

i

, and completion time �c

i

on the virtual computer.

The arrival time is the time when T

i

is submitted to the system. The completion time is the

time when T

i

would be completed if it were executed on a real computer equivalent to the virtual

computer. Clearly �c

i

depends on the local scheduling algorithm of the virtual computer, the length

of the task T

i

, and the load of the virtual computer. We denote the actual completion time of T

i

in the system by c

i

.

A VOC system seeks to provide each user with a level of service which is at least as good as the

one that could have been obtained on the user's virtual computer after the user has reclaimed it.

That is, a VOC system ensures, whenever possible, that once a user reclaims his virtual computer,

4

for each task T

i

belonging to that user, the condition c

i

� �c

i

holds.

The abstraction of virtual computers generates a set of tasks T = fT

1

; T

2

; :::; T

k

g that must be

actually scheduled on the system. Three attributes are associated with each task T

i

: arrival time a

i

;

deadline (time constraint) d

i

, and processor constraint r

i

: Deadline d

i

is the time by which T

i

must

complete, namely d

i

= �c

i

. Processor constraint r

i

is either a positive integer corresponding to the

processor id on which the task must be executed (i.e., j if the task is to execute on processor P

j

),

or a negative integer to specify that the task can be executed on any processor. For example, if the

task is a high bandwidth interactive application (e.g., a 3D CAD tool), then it may be constrained

to execute on the processor that is connected to the graphical display.

In the VOC paradigm, the deadline of a task depends on the length of the task, CPU speed,

the local scheduling algorithm, and the load of the virtual computer (the characteristics of tasks

on the virtual computer). Since the load changes dynamically, the deadline of a task is not �xed

at the arrival time, even if the length of the task is known.

A VOC system attempts to schedule all the tasks in T so that they meet their time and processor

constraints. Depending on the computation environment, the scheduling algorithm may also try

to optimize some performance metric (e.g., minimize average response time) while meeting these

constraints. Obviously, this task system can be implemented on di�erent system models including

the time-shared computers model, the processor-pool model and the workstation model.

Two approaches can be taken to implement a VOC system. In the limited-resource approach, the

processing power available in the system is less than the sum of the processing powers of all virtual

computers. In the plenty-resource approach, the available processing power in the system is equal

to or greater than the sum of the processing powers of all virtual computers. The limited-resource

approach relies on the assumption that all users do not use their virtual computers simultaneously.

At times, the system may not be able to guarantee everyone the promised service quality. The ap-

proach can be modeled by including in the performance metric the concept of meeting the promised

service qualities. For example, minimizing total lateness can be selected as the performance metric.

In the plenty-resource approach, if all the virtual computers are not fully utilized, there will be idle

cyles in the system. The idle cycles can be used to maximize a performance metric. For example,

this approach is suitable for owner-based systems in which idle cycles are shared among other users.

This approach can be implemented on other system models as well. For example, if a time-shared

computer system model is used, then each user can be allocated su�cient time-slices so that the

user can get a performance that is equivalent to his virtual computer. In this approach, meeting

5

the promised service qualities can be viewed as a correctness criterion that must be preserved while

optimizing another performance criterion.

The VOC paradigm models computing environments where each user wants to own a speci�c

computer. It can also be used to model computing environments where the number of users who

can access the system at a given time is �xed by limiting the access points to the system, and

each access point is promised a given performance. In this case, each access point is a virtual

computer which can be used by di�erent users at di�erent times (e.g., a lab consisting of n personal

computers).

We note, however, that the VOC paradigm cannot be used to model a computing environment

in which users are willing to accept any performance. For example, university students may have

no alternative but to accept whatever level of performance is currently provided by the school's

distributed computing environment, even if this means waiting 10 seconds for simple editor response

during �nal project week. Similarly, the VOC paradigm is not appropriate for modeling hybrid

computing environments in which there are both owners and \property-less" users who are willing

to accept any quality of service. While it may be possible to extend the VOC paradigm to handle

such environments, these issues are beyond the scope of this paper.

4 Model Assumptions

In this section, we introduce a number of simplifying assumptions which allow us to study scheduling

in the VOC paradigm. These restrictions are not inherent to VOC and we expect to relax them in

the future.

When we introduced the task model in Section 3, we did not consider possible dependencies

among tasks. These dependencies can be speci�ed by precedence constraints. In this paper, we

assume that tasks are mutually independent. We also assume that tasks are preemptable and the

cost of preemption is negligible. Further, we assume that tasks are computation intensive and do

not require I/O. We denote the length of a task T

i

by l

i

, though we do not necessarily assume that

the length of task is known when the task enters the system.

We only consider processing resources (CPUs). That is, we assume that the system always has

su�cient amounts of other resources such as memory, secondary storage and network bandwidth.

We measure the quality of a service using task response times. There are other aspects of service

quality such as security and protection, but we will not cover them in this paper.

6

We assume that each virtual computer is of the same type; that is, they all have the same CPU

type (speed) and local scheduling algorithm. We consider two local scheduling algorithms:

� First Come First Served (FCFS). A newly arrived task is inserted at the tail of the ready

queue. The CPU is allocated to the task at the head of the ready queue until the task

completes.

� Round-Robin (RR). A time slice is de�ned. A newly arrived task is inserted at the tail of the

ready queue. The CPU is allocated to the task at the head of the ready queue for a time

interval of up to one time slice. If the task has not completed, it is deleted from the head of

the queue and inserted at the tail of the queue.

In this paper, we model the system as a set of equivalent processors. Because the processors

on which the distributed operating system is built may not physically share memory, we must also

account for migration cost when a task moves from one processor to another in such systems. In

general, we say the migration time of task T

i

ism

i

seconds, of which m

i

node

seconds are the overhead

on the computer from which the task is migrated. We assume that the cost of starting or restarting

a task on any node is negligible.

5 Scheduling in Distributed and Real Time Systems

In this section, we highlight the main di�erences between scheduling in VOC systems and traditional

scheduling in distributed and real time systems. Scheduling a set of tasks is sequencing the tasks

on one or more processors in order to optimize a given criterion. In traditional general-purpose

distributed operating systems, common performance criteria are throughput, average response time,

and idle processor cycles. However, the notion of providing predictable performance to each user is

not emphasized. A VOC system aims to provide each user with a service which is at least as good

as that which would have been obtained by executing on the user's virtual computer. Depending on

the computation environment, another performance metric may also be optimized without violating

time constraints of tasks. Recall that the time constraint of a VOC task is de�ned as the response

time on an imaginary computer (virtual computer).

Below, we present examples to demonstrate that algorithms that balance load, minimize aver-

age response time, or minimize idle cycles do not simultaneously satisfy the time constraints that

the VOC paradigm imposes on tasks (despite the fact that there is a schedule that meets these

7

Virtual Computer Task a

i

l

i

d

i

V

1

T

1

0 1000 2998

V

1

T

2

0.2 1000 2999

V

1

T

3

0.4 1000 3000

V

2

T

4

0 1000 1000

Figure 1: Tasks characteristics in Example 1.

P

1

T

2

T

1

................

T

2

T

1

T

3

................

T

3

T

4

T

4

P

2

1 2 3 40 20001999

T

3

T

4

T

1

T

2

Figure 2: Schedule on processors P

1

and P

2

in Example 1.

constraints). In all the examples, there are two real processors (P

1

and P

2

) and two virtual com-

puters (V

1

and V

2

). The processing speeds of real processors and virtual computers are identical.

The virtual processors use an RR local scheduling scheme with time slice length equal to one unit

of time.

Example 1: Consider the four tasks in Figure 1 where T

1

; T

2

and T

3

are submitted to V

1

and T

4

is submitted to V

2

. Figure 1 gives the task arrival times (a

i

), lengths (l

i

) and deadlines (d

i

where d

i

= �c

i

). Suppose that system balances load and schedules the processors P

1

and P

2

in RR

fashion with time slices of unit length. Figure 2 depicts the schedule on processors P

1

and P

2

that

balances the load. As illustrated in Figure 2, task T

4

misses the deadline imposed by the VOC

paradigm, completing at t = 1999 rather than t = 1000. 2

Example 2: Consider now the four tasks with the characteristics described in Figure 3.

Assume that the scheduling algorithm seeks to minimize the average response time. Figure 4

illustrates the schedule on processors P

1

and P

2

which yields the minimum average response time.

T

4

completes at t = 3001, missing its deadline of t = 2003. Although the average response time is

minimized, the time constraints are not met. 2

We now consider scheduling techniques from owner-based systems that attempt to minimize idle

processor cycles while respecting ownership rights. Two methods are used to maintain ownership

8

Virtual Computer Task a

i

l

i

d

i

V

1

T

1

0 1000 2998

V

1

T

2

1 1000 2999

V

1

T

3

2 1000 3000

V

2

T

4

3 2000 2003

Figure 3: Tasks characteristics in Example 2.

300110011

0 1000

P

1

P

2

T

4

T

3

T

1

T

2

Figure 4: Schedule on processors P

1

and P

2

in Example 2.

rights. When an owner reclaims his computer, foreign tasks are either preempted as in [DO91,

LLM88], or they are assigned a lower priority as in [KC91]. We give counterexamples to demonstrate

that neither of these methods respects the time constraints imposed by the VOC paradigm.

Example 3: Let T

1

and T

2

be tasks submitted to V

1

, and let T

3

be a task submitted to V

2

.

Further, assume that V

2

is not used until t = 12, at which time it is reclaimed. Figure 5 depicts

the characteristics of the three tasks. Suppose that processors P

1

and P

2

belong to the owners of

V

1

and V

2

respectively, and that the system migrates a foreign task when the owner reclaims his

virtual computer. Migration of T

2

takes 10 time units and incurs 4 time units of overhead on the

processor from which the task is migrated. The local scheduling algorithms of processors P

1

and

P

2

are RR with the length of time slice being one unit of time. Figure 6 illustrates the schedule on

processors P

1

and P

2

. T

2

and T

3

complete at t = 30 and 116 respectively and miss their deadline.

Hence, such systems are not VOC systems. 2

Virtual Computer Task a

i

l

i

m

i

node

m

i

d

i

V

1

T

1

0 12 14

V

1

T

2

10 10 4 10 22

V

2

T

3

12 100 112

Figure 5: Tasks characteristics in Example 3.

9

30

.......

11717

.....

22

12100

T

2

....

P

2

P

1

T

2

T

1

....

T

3

.............................. ..

Figure 6: Schedule on processors P

1

and P

2

in Example 3.

Virtual Computer Task a

i

l

i

m

i

node

m

i

d

i

V

1

T

1

0 100 110

V

1

T

2

10 10 5 10 29

V

2

T

3

12 100 112

Figure 7: Tasks characteristics in Example 4.

Example 4: Let T

1

and T

2

be tasks submitted to V

1

, and let T

3

be a task submitted to V

2

. V

2

is available until t = 12, at which time it is reclaimed. Figure 7 depicts the characteristics of these

three tasks. Suppose that processors P

1

and P

2

belong to the owners of V

1

and V

2

respectively, and

that the system preempts a foreign task gives a lower priority to the task when the owner reclaims

his virtual computer. The lower priority tasks are executed whenever there is no higher priority

task to execute. Figure 8 illustrates the schedule on processors P

1

and P

2

. T

2

completes at t = 120

and misses its deadline. Hence, such systems are not VOC systems. 2

Despite the \deadline" oriented nature of scheduling in both VOC and real-time (RT) systems,

scheduling algorithms for RT systems are not directly applicable to VOC systems. This is because

RT systems assume that the characteristics of a task, which include the length of the task and

.....................

...................

100 120112

T

2

T

3

12100

P

2

P

1

T

2

T

1

Figure 8: Schedule on processors P

1

and P

2

in Example 4.

10

the deadline of the task, are known to the scheduler when the task arrives at the system. In RT

systems, tasks are assigned �xed deadlines according to some criteria. This is in contrast to VOC

systems where a task has an unpredictable time constraint. The deadline of a task depends on the

length of the task, CPU speed, the local scheduling algorithm, and the load of the virtual computer.

Since the load changes dynamically, the deadline of a task is not �xed at the arrival time, even if the

length of the task is known. Furthermore, in VOC systems, the length of a task is not necessarily

known to the scheduler when the task enters the system, whereas RT systems are based on the

assumption that the length of each task is known a priori. In RT systems, the length of a task is

typically assumed to be equal to its worst case computation time. Since the VOC paradigm targets

general purpose computing environments, where the length of a task can be much shorter than its

worst case computation time, it is impractical to make that assumption for VOC systems.

Some of the typical scheduling criteria in RT systems can be used for some VOC systems

depending on the computation environment. Typical criteria in RT systems are minimizing the

number of tardy tasks, minimizing the average tardiness, and maximizing the system value [SR88].

In addition, static scheduling algorithms from RT systems can act as a good basis of comparison

for some of the scheduling algorithms for VOC systems.

6 Scheduling in VOC Systems

In this section, we examine the basic scheduling problems implicit in the VOC paradigm. We �rst

study the existence/nonexistence of optimal scheduling algorithms for single and multiprocessor

systems and then consider appropriate VOC performance metrics.

Under VOC, the goal is to optimize a given criterion without undermining any individual user's

performance; that is, without delaying any task in the system beyond the time when it would have

been completed if the task were executed on the virtual computer. The selection of the performance

metric depends on the computation environment and the implementation of the VOC paradigm.

Let us �rst consider the case where the sole goal is meeting deadlines in a limited-resource

environment. A schedule for the set of tasks T is called feasible if each task in T is completed by

its deadline in the schedule. A scheduling algorithm is said to be optimal if, for any set of tasks, it

always produces a feasible schedule when one exists. A basic question to ask is whether there is an

optimal dynamic scheduling algorithm.

11

Virtual Computer Task a

i

l

i

d

i

V

1

T

1

0 10 10

V

1

T

2

4 8 18

Figure 9: Tasks characteristics in Example 5.

A dynamic scheduler does not know about the characteristics of a task a priori. Rather, it

obtains this information only when the task enters the system. The following characteristics of a

task T

i

are available to the scheduler at time t � a

i

: The arrival time a

i

of the task; the number of

time units that T

i

has executed in the system until t, denoted by l

i

(t); and the time at which l

i

(t)

units of T

i

would be executed if T

i

were executed on the virtual computer, denoted by

�

t

i

. Using

�

t

i

,

we can derive the number of time units by which the task precedes its imaginary execution on the

virtual computer, denoted by p

i

(t), where p

i

(t) =

�

t

i

� t. The following example illustrates these

de�nitions.

Example 5: Consider a system consisting of two processors P

1

and P

2

, and a single virtual

computer V

2

. Tasks T

1

and T

2

are submitted to virtual computer V

1

with FCFS as the local

scheduling algorithm. Figure 9 depicts the tasks' attributes, and Figure 10 illustrates a possible

schedule of these tasks. At time t = 1, the scheduler knows that a

1

= 0, l

1

(1) = 1,

�

t

1

= 1 and

p

1

(1) = 0. At time t = 5, the scheduler knows that a

1

= 0, l

1

(5) = 5,

�

t

1

= 5, p

1

(5) = 0 and a

2

= 4,

l

2

(5) = 1,

�

t

2

� 6, p

2

(5) � 1. At time t = 11, the scheduler knows and a

2

= 4, l

2

(11) = 7,

�

t

2

= 17

p

2

(11) = 6. 2

We now present some basic results concerning scheduling in a uniprocessor VOC system where

the real processor and the CPUs of the virtual computers have identical speed.

Theorem 1: Consider a limited-resource uniprocessor VOC systems where the processing

speed of the processor is identical to that of the virtual computers. If the local scheduling algorithms

of the virtual computers are FCFS and RR respectively, then the FCFS and RR schemes are

optimal.

Proof: There is a feasible schedule, if and only if the bursts of any two virtual computer

never overlap. Given this observation, if the real processor uses the same FCFS or RR scheduling

algorithm as the virtual processor, it will always meet the VOC deadline. Hence, the algorithm is

optimal. 2

Now, we consider uniprocessor systems where the processing speed of the processor is k times

12

T

2

T

1

P

2

P

1

1211105410

Figure 10: Schedule on processors P

1

and P

2

in Example 5.

faster than the processing speed of the CPUs of the virtual computers. This means that execution

of a task on a computer that is equivalent to the virtual computer will take k times longer than it

requires on the real processor.

Theorem 2: Consider a limited-resource uniprocessor VOC systems where the real processor

is faster than the virtual computers. If the length of tasks are not known, then no optimal scheduling

algorithm exists.

Proof: The proof relies on the fact that for any scheduling algorithm which sequences tasks

in a given order without knowledge of task lengths, one can �nd a task set for which the algorithm

fails. Consider a uniprocessor system where the processor is k = 2 times faster than the CPUs of

virtual computers and assume the task set in Figure 11. Note that the nature of the local scheduling

algorithm of the virtual computers does not a�ect the example, since only one task is submitted to

each virtual computer. There are six possible ways of sequencing these tasks on the uniprocessor.

The sequence depicted in Figure 12 is in fact a feasible schedule. However, since the scheduler does

not know the length of tasks, all tasks appear to be the same to the scheduler. Thus, if a scheduler

algorithm executes tasks of virtual computers in a given order, we can always �nd another set of

tasks for which the algorithm fails. The proof is valid for any k > 1 and any number of virtual

computers. 2

Once the lengths of tasks are known, the scheduler can also calculate the deadline for task

T

i

at time t � a

i

denoted by d

i

(t). If the virtual computers use the FCFS scheme as the local

scheduling algorithm, then d

i

(t) = d

i

for t � a

i

. If the virtual computers use the RR scheme

as the local scheduling algorithm, then d

i

(t) is a monotonically increasing function and is always

smaller than d

i

. For any two tasks T

i

and T

j

of the same virtual computer, if d

i

(t

1

) < d

j

(t

1

) holds,

then d

i

(t

2

) < d

j

(t

2

) holds for any t

2

� t

1

, whereas for two tasks T

i

and T

j

from di�erent virtual

13

Virtual Computer Task a

i

l

i

d

i

V

1

T

1

0 2 4

V

2

T

2

0 0.5 1

V

3

T

3

0 1 2

Figure 11: Tasks characteristics in Theorem 2.

T

1

T

3

T

2

3.51.50.5

Figure 12: A feasible schedule in Theorem 2.

Virtual Computer Task a

i

l

i

d

i

V

1

T

1

0 2 4

V

2

T

2

0 2 8

V

2

T

3

1 2 8

V

3

T

4

2 0.5 3

V

4

T

5

2 0.5 3

V

5

T

6

2 0.5 3

V

6

T

7

2 0.5 3

Figure 13: Tasks characteristics in Theorem 3.

14

computers, this is not necessarily the case. If the lengths of tasks are known, the earliest deadline

algorithm [SR88] is optimal for uniprocessor VOC systems where the virtual computers use the

FCFS scheme as the local scheduling algorithm. However, this is not the case for uniprocessor

VOC systems where the virtual computers use the RR scheme as the local scheduling algorithm.

Theorem 3: Consider a limited-resource uniprocessor VOC systems where processing speed

of the processor is greater than that of one of the virtual computers with RR scheme as the local

scheduling algorithm. If the arrival times of tasks are not known, then no optimal scheduling

algorithm exists.

Proof: The proof relies on the fact that for any scheduling algorithm which sequences tasks in

a given order without the knowledge of arrival times of tasks, one can �nd a task set for which the

algorithm fails. Consider a uniprocessor system where the processor is k = 2 times faster than the

CPUs of virtual computers and virtual computers with RR local scheduling algorithm with time

slice length being one unit of time. Suppose that at time t = 0 tasks T

1

and T

2

are submitted

to virtual computers V

1

and V

2

respectively, where l

1

= l

2

= 2, and the next task arrives at the

system at t = 1. There are three possible ways of sequencing T

1

and T

2

in the time interval [0; 1)|

executing T

1

in this interval, executing T

2

in this interval, or executing both T

1

and T

2

for some

fraction of the time in this interval. The �rst sequencing order fails for the task set in Figure 13 (see

Figure 14, T

1

misses its deadline), the second sequencing order fails for the task set in Figure 15

(see Figure 16, T

2

misses its deadline), whereas the third sequencing order fails with both task sets,

although there are feasible schedules for both task sets. The proof is valid for any k > 2 and any

number of virtual computers. 2

Let us now consider multiprocessor VOC systems which use the limited-resource approach. We

restrict the model so that processors and virtual computers have identical processing speed, tasks

have no processor constraints and migration costs are negligible.

T

4

T

5

T

6

T

7

T

3

T

1

0 1 2 3 4

T

1

5 6 8

T

2

T

2

Figure 14: First sequencing order in Theorem 3.

15

Virtual Computer Task a

i

l

i

d

i

V

1

T

1

0 2 8

V

1

T

8

1 2 8

V

2

T

2

0 2 4

V

3

T

4

2 0.5 3

V

4

T

5

2 0.5 3

V

5

T

6

2 0.5 3

V

6

T

7

2 0.5 3

Figure 15: Tasks characteristics in Theorem 3.

Theorem 4: Consider a limited-resource multiprocessor VOC systems. If the arrival times

of tasks are not known a priori, then no optimal scheduling algorithm exists.

Proof: It has been proven for RT systems that there cannot be an optimal scheduling algorithm

for multiprocessor systems if arrival times of tasks are not known a priori [SR88]. We prove that

this remains the case in VOC where the time constraint of a task varies as a function of both its

length and the load and local scheduling algorithm of the virtual computer. To this end, we show

that any possible scheduling decision at a given time t fails if the arrival times of the tasks that

enter the system after t are not known at t (although there is a feasible schedule). Consider the

following example. Let V

1

; V

2

; V

3

and V

4

be virtual computers which use as the local scheduling

algorithm an RR scheme with time slice length equal to one time unit. Let T

1

and T

2

be tasks

submitted to V

1

and tasks T

3

and T

4

be tasks submitted to V

2

. Figure 17 depicts the characteristics

of the tasks. At time t = 10, the scheduler can choose any of the following pairs of tasks to execute:

T

2

and T

3

, or T

2

and T

4

, or T

3

and T

4

. Figure 18 depicts the case when the scheduler selects T

2

and

T

3

. However, at time t = 11, tasks T

5

and T

6

arrive at virtual computers V

3

and V

4

respectively,

where l

5

= l

6

= 1 and d

5

= d

6

= 12. T

4

misses its deadline. On the other hand, Figure 19 depicts

the case when the scheduler selects T

3

and T

4

. At time t = 11, T

2

is scheduled again. However, at

time t = 12, tasks T

5

and T

6

arrive at virtual computers V

3

and V

4

respectively, where l

5

= l

6

= 2

T

4

T

5

T

6

T

7

T

1

0 1 2 3 4

T

1

5 6 8

T

2

T

8

T

2

Figure 16: Second sequencing order in Theorem 3.

16

Virtual Computer Task a

i

l

i

d

i

V

1

T

1

0 10 12

V

1

T

2

8 4 14

V

2

T

3

10 1 11

V

2

T

4

10 1 12

Figure 17: Tasks characteristics in Theorem 4.

and d

5

= d

6

= 13. T

2

misses its deadline. Furthermore, if the scheduler selects T

2

and T

4

at t = 10

for execution, T

3

will miss its deadline. If FCFS scheme is used as the local scheduling algorithm

for virtual computers, the task set in Figure 20 can be used with the same example to show that

there can be no optimal scheduling algorithm for multiprocessor systems. 2

In VOC systems based on the plenty-resource approach there always exists a feasible schedule

for any set of tasks. For instance, if the number of processors in the system is equal to the number

of virtual computers, and the processors and virtual computers have identical processing speed,

then the feasible schedule can be obtained by simply assigning each virtual computer a processor,

and executing all tasks of the virtual computer on the same processor.

In VOC systems based on the plenty-resource approach, the objective is to optimize a perfor-

mance metric (e.g., maximize utilization, minimize average response time) while meeting deadlines.

If the meeting of timing constraints is treated as a correctness criterion, then the scheduling algo-

rithm must choose from among the feasible schedules the one that is optimal with respect to a given

performance criterion. We refer to such a scheduling algorithm as an optimal scheduling algorithm,

and to such a schedule as an optimal schedule. (Note that the de�nition of an optimal scheduling

algorithm plenty-resource approach is di�erent than the one for the limited-resource approach.)

Now, we examine the scheduling problem in multiprocessor VOC systems where the number

of processors is equal to the number of virtual computers, and where the real processors and

T

2

13

T

6

T

5

................. T

3

T

2

T

1

12111080

T

4

Figure 18: Task scheduling.

17

.................

T

6

T

5

T

2

T

4

T

3

T

2

T

1

1412111080

Figure 19: Task scheduling.

the virtual computers have identical processing speed. We �rst assume that migration costs of

tasks are negligible and consider minimization of average response time as the performance goal.

Obviously, for the plenty-resource approach, if the lengths of tasks are not known a priori, there

exists no optimal scheduling algorithm that minimizes average response time without violating

timing constraints. However, if the lengths of tasks are known, the algorithm below can be used to

minimize average response time without violating timing constraints.

The scheduler maintains a list that contains d

i

(t) � (l

i

� l

i

(t)) for each task T

i

that is not

completed. Three events trigger the scheduling| arrival of a new task, completion of a task, and

completion of a schedule interval. A schedule interval is the interval for which the scheduler assigns

a processor to a task. At each event, the scheduler updates the list; assigns each task T

i

for which

d

i

(t)� (l

i

� l

i

(t)) = t holds to a processor; assigns the remaining processors to tasks whose l

i

� l

i

(t)

is shortest for a time interval [t; t

0

), where t

0

is the earliest time at which d

i

(t

0

) � (l

i

� l

i

(t

0

)) = t

0

will hold for any of the unscheduled tasks. If the virtual computers use FCFS local scheduling

algorithm, then d

i

(t) = d

i

for each task T

i

in the algorithm above.

If the migration costs of tasks are not negligible, the the following holds.

Theorem 5: Consider VOC systems based on the plenty-resource approach where migration

costs of tasks are not negligible. If arrival times of tasks are not known a priori, then there exists

Virtual Computer Task a

i

l

i

d

i

V

1

T

1

0 10 10

V

1

T

2

8 4 14

V

2

T

3

10 1 11

V

2

T

4

10 1 12

Figure 20: Tasks characteristics in Theorem 4.

18

no optimal scheduling algorithm that minimizes average response time without violating timing

constraints.

Proof: Consider a two processor system (P

1

and P

2

) with two virtual computers (V

1

and V

2

)

that use FCFS as the local scheduling algorithm. Consider the task set illustrated in Figure 21. In

order to meet deadlines, T

1

and T

3

must execute starting at their arrival times without interruption

until completion. Depending on the values of the variables a

2

, a

3

, and l

3

, one of the following three

schedules for T

2

will yield minimum average response time while meeting its deadline. First, T

2

is

executed on P

2

until t = a

3

�m

2

node

and then migrated to P

1

. Its response time will be

maxf10; (a

3

+m

2

)g+ 10� l

2

(a

3

) +m

2

node

:

Second, T

2

is executed on P

2

until t = a

3

and then preempted until T

3

completes and continued on

P

2

. In this case, its response time will be

a

3

+ l

3

+ 10� l

2

(a

3

):

Third, T

2

is executed on P

1

after T

1

is completed, in which case its response time will be 20. In

order to make the optimal decision, arrival times must be known by time t = a

3

� m

2

node

. (Note

that T

2

can be aborted on P

2

and restarted on P

1

without cost). But, by appropriately selecting

the values of the free variables, we can always �nd a task set such that the scheduler will not know

the arrival times by time t = a

3

�m

2

node

This argument is valid for any number of processors. One

can give a similar example for virtual computers that use RR as the local scheduling algorithm. 2

In a general purpose computing environment, it is not realistic to assume a priori knowledge of

tasks' arrival times. Therefore, one must devise heuristic scheduling algorithms for VOC systems

using known characteristics of tasks; namely, a

i

; p

i

(t), l

i

(t) and m

i

. In the case that l

i

is known, we

can also use d

i

(t) and l

i

. The static scheduling algorithms for RT systems can be used to compare

the heuristic scheduling for VOC systems depending on the performance metric.

Virtual Computer Task a

i

l

i

d

i

V

1

T

1

0 10 10

V

1

T

2

0 < a

2

< a

3

10 20

V

2

T

3

a

3

< 10 l

3

a

3

+ l

3

Figure 21: Tasks characteristics in Theorem 5.

19

21

v(t)

Response Time

0

Figure 22: The value function of task with �c = 2.

Appropriate performance metrics depend on the computation environment. For VOC systems,

performance metrics should include the concept of meeting VOC time constraints. In particular,

value functions provide an appropriate mechanism to describe criterion such as minimizing lateness

of tasks, or reducing the average response time while preserving deadlines. Di�erent value functions

can be de�ned depending on the importance of meeting timing constraints. For example, in order

to capture minimization of lateness, each task T

i

can be assigned value function v

i

(t), where:

v

i

(t) =

(

0 t � �c

i

�c

i

� t t > �c

i

Figure 22 depicts the value function of task T

i

with �c

i

= 2. Maximizing

X

i

v

i

(c

i

)

is equivalent to minimizing lateness.

On the other hand, minimization of average response time while satisfying the time constraints

of each task can be approximated with the following value function:

v

i

(t) =

(

�c

i

� t a

i

� t � �c

i

(�c

i

� t)

3

t > �c

i

Figure 23 depicts the value function of a task which arrives at t = 0 and whose deadline is at t = 10.

The value function decreases linearly until to the imaginary completion time �c

i

of task T

i

on the

virtual computer and then drops abruptly. The objective of the scheduling is to maximize

X

i

v

i

(c

i

):

20

v(t)

Response Time

10

0

10

Figure 23: The value function of a task with a = 0 and �c = 10.

In summary, this section presented a study of the basic scheduling problems for VOC systems.

We established whether optimal scheduling algorithms exist for single and multiprocessor VOC

systems, and proposed the value function approach for speci�cation of performance metrics for

VOC systems. Given this framework, heuristics can be developed that select schedules with good

performance metric values.

7 The Eagle Distributed Operating System

The VOC paradigm is currently being implemented in the Eagle distributed operating system

project at the University of Texas at Austin. The Eagle system is a collection of heterogeneous

workstations and resources owned by individuals. The owners of resources specify the policies that

govern the conditions under which their workstations can be shared, and the load sharing algorithm

guarantees a service to each user at least as good as if the resources of the user are shared with

respect to these policies.

One of the policies deals with reclamation of virtual computers. In the Eagle system, a virtual

computer is reclaimed if its owner demands service which is at least as good as the one that could

have been obtained if the owner were executing his tasks on his virtual computer. Reclamation

can be either implicit or explicit. In the �rst case, the user speci�es the conditions under which

his virtual computer must be reclaimed, and the system reclaims the virtual computer when these

conditions hold. In the second case, the user explicitly reclaims his virtual computer through a

command. If the user always requires the service quality promised to him (as in this paper), the

21

user speci�es that his virtual computer must be reclaimed whenever he submits tasks to the system

after an idle interval. Extending the de�nition of reclamation increases the number of processing

cycles that can be shared while supporting predictability when it is desired.

Various heuristic algorithms are studied for processor scheduling in the Eagle system. The

heuristics are based on the the known characteristics of tasks, namely, a

i

; p

i

(t), l

i

(t) and m

i

.

In the case that l

i

is known, we also use d

i

(t) and l

i

. The Eagle system incorporates two useful

extensions to the VOC paradigm. First, the Eagle system can deal with tasks for which d

i

> �c

i

holds. This extension is useful when modeling a task that must be completed before a deadline,

but c

i

can be later than �c

i

. For example, a user may submit a two hours long task before going

home at 6pm with the requirement that the result be computed by 8am next morning, when he

arrives at his o�ce. This extension is useful to utilize processing cycles for more critical tasks and

increase the performance metric.

Second, the Eagle system can deal with tasks for which d

i

< �c

i

holds. This extension is useful

to model a task that must be completed before a deadline, which is earlier than its completion time

on the virtual computer. For example, a user has a paper submission deadline at 6pm, whereas he

submits two three hours long simulation tasks at 3pm. He may ask his friends to designate their

machines to him to meet the paper deadline.

8 Conclusions

We introduced the virtually owned computers (VOC) paradigm which incorporates the predictabil-

ity and choice properties into the design of distributed operating systems. We examined the basics

of the VOC scheduling problem and concluded that heuristic approaches need to be developed.

While initial experience with the Eagle project is encouraging, the design and evaluation of the

VOC paradigm on various system models presents numerous challenging problems. Examples are

scheduling under precedence constraints, scheduling I/O bound tasks, development of adequate

performance metrics, development of e�cient scheduling algorithms for various system models,

scheduling with partial state information, and scheduling when virtual computers are heterogeneous

and when the system consists of heterogeneous resources. In addition, naming and protection must

also be reconsidered in the light of VOC paradigm.

22

References

[BL85] A. Barak and A. Litman. MOS: A multicomputer distributed operating system. Software

Practice and Experience, 15(8):725{737, August 1985.

[BOS93] A. Goldberg B. Ozden and A. Silberschatz. Scalable and non-intrusive load sharing in

owner-based distributed systems. In Proceedings of 5th IEEE Symposium on Parallel and

Distributed Processing, Dallas, Texas, December 1993.

[DO91] F. Douglis and J. Ousterhout. Transparent process migration: Design alternatives and

the sprite implementation. Software{Practice and Experience, 21(8):757{85, August 1991.

[KC91] P. Krueger and R. Chawla. The Stealth distributed scheduler. In Proceedings of 11th

International Conference on Distributed Computing, pages 336{343, Los Alamitos, Cali-

fornia, 1991.

[LLM88] M. J. Litzkow, M. Livny, and M. W. Mutka. A hunter of idle workstations. In Proceedings

of 8th International Conference on Distributed Computing, pages 104{111, Los Alamitos,

California, 1988.

[NH82] R. M. Needham and A. J. Herbert. The Camridge Distributed Computing System.

Addison-Wesley, Reading, Mass, 1982.

[RPT90] K. Thompson R. Pike, D. Presotto and H. Trickey. Plan 9 from Bell Labs. In Proceedings

of the Summer 1990 UKUUG Conference, pages 1{9, London, July 1990.

[SR88] J. A. Stankovic and K. Ramamritham. Tutorial: Hard Real-Time Systems. IEEE Com-

puter Society Press, 1988.

[Stu88] M. Stumm. The design and implementation of a decentralized scheduling facility for a

workstation cluster. In Proceedings of 2nd Conference on Computer Workstations, pages

12{22, Los Alamitos, California, 1988.

[Tan86] S. J. Mullender A. S. Tannenbaum. The design of a capability based operating system.

Computer Journal, 29(4), 1986.

[TR85] A. S. Tannenbaum and R. Van Rennesse. Distributed operating systems. ACM Computing

Surveys, 17(4):419{470, November 1985.

23

