
[10] J. Linn. Generic Security Service Application Program Interface: Internet draft. June 11 1991.[11] P. Mockapetris. Domain names | concepts and facilities. RFC 1034, November 1987.[12] R. Molva, G. Tsudik, E. Van Herreweghen, and S. Zatti. KryptoKnight authentication and keydistribution system. In Proceedings of the 2nd European Symposium on Research in ComputerSecurity, Toulouse, France, November 23{25 1992. Springer Verlag.[13] S.J. Mullender and A.S. Tanenbaum. The design of a capability-based distributed operatingsystem. The Computer Journal, 29(4):289{299, 1986.[14] B.C. Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems.IEEE Computer Society Press, 1992.[15] B.C. Neuman. Proxy-based authorization and accounting for distributed systems. In Pro-ceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh,Pennsylvania, May 1993.[16] W. Rosenberry, D. Kenny, and G. Fisher. Understanding DCE. O'Reilley & Associates, Inc.,1992.[17] J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An authentication service for opennetwork systems. In Proceedings of the USENIX Winter Conference, pages 191{202, Dallas,TX, February 1988.[18] J.J. Tardo and K. Alagappan. SPX: Global authentication using public key certi�cates. InProceedings of the 12th IEEE Symposium on Research in Security and Privacy, pages 232{244,Oakland, California, May 20{22 1991.[19] T.Y.C. Woo and S.S. Lam. Authentication for distributed systems. Computer, 25(1):39{52,January 1992. See also \Authentication" revisited. Computer, 25(3):10{10, March 1992.[20] T.Y.C. Woo and S.S. Lam. Authorization in distributed systems: A formal approach. InProceedings of the 13th IEEE Symposium on Research in Security and Privacy, pages 33{50,Oakland, California, May 4{6 1992.[21] T.Y.C. Woo and S.S. Lam. A framework for distributed authorization (extended abstract). InProceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax,Virginia, November 3{5 1993. To appear.
26

In this paper, we have omitted discussion of many of the more practical details due tolength limitation. For example, the problems of consistency (due to cache invalidation andcerti�cate expiration), group membership maintenance and propagation of authorizationmust be addressed in an implementation.A prototype implementation of our design is currently under way. We have �nishedimplementing an authentication substrate upon which our authorization service operates.We are now mainly focused on �nding e�cient evaluation strategies for GACL. We plan toreport our implementation results in a future paper, which would also address the practicaldetails mentioned above.For future work, we are considering the following directions: (1) To develop a betterunderstanding of anonymous authorization. In particular, a Principle of Minimal Identity(i.e., a client should be allowed to supply only the minimal identi�cation required to obtainauthorization) should be formulated and studied. (2) To design an incremental updateprocedure so that an authorization server can incorporate new authorizations from an endserver in an e�cient manner. (3) To develop compilation strategies for the GACL language.(4) To propose and study an API for integrating our authorization service into applicationprograms.References[1] IEEE Symposium on Research in Security and Privacy, Oakland, California, May 7{9 1990.[2] M. Abadi, M. Burrows, B.W. Lampson, and G. Plotkin. A calculus for access control indistributed systems. Technical Report 70, Systems Research Center, Digital Equipment Cor-poration, February 1991. An abbreviated version appeared in Advances in Cryptology |CRYPTO '91, pages 1{23, Santa Barbara, California, August 11{15 1991.[3] M. Gasser, A. Goldstein, C. Kaufman, and B.W. Lampson. The Digital distributed systemsecurity architecture. In Proceedings of the 12th National Computer Security Conference, pages305{319, Baltimore, Maryland, October 1989.[4] M. Gasser and E. McDermott. An architecture for practical delegation in a distributed system.In Proceedings of the 11th IEEE Symposium on Research in Security and Privacy [1], pages20{30.[5] J.T. Kohl and B.C. Neuman. The Kerberos network authentication service: Version 5 draftprotocol speci�cation. April 1993.[6] B. Lampson, M. Abadi, M. Burrows, and T. Wobber. Authentication in distributed systems:Theory and practice. In Proceedings of the 13th ACM Symposium on Operating Systems Prin-ciples, pages 165{182, Asilomar Conference Center, Paci�c Grove, California, October 13{161991.[7] B.W. Lampson. Designing a global name service. In Proceedings of the 4th ACM Symposiumon Principles of Distributed Computing, August 1985.[8] H.M. Levy. Capability-Based Computer Systems. Digital Press, 1984.[9] J. Linn. Practical authentication for distributed computing. In Proceedings of the 11th IEEESymposium on Research in Security and Privacy [1], pages 31{40.25

for services that manage a large number of objects with complex dependencies. Its formalsemantics facilitates the implementation of di�erent evaluation strategies that can interop-erate. The use of a declaration section is novel. It provides directives for choosing the moste�cient evaluation strategy. For example, an unordered gacl can potentially make use ofdirect hashing in its evaluation, while an ordered gacl allows a partial evaluation strategy.The language of policy base proposed in [20] is more general than GACL (in particular, itsubsumes �rst-order logic) and has a much more abstract semantics. The GACL languageis intended to be practical, and can indeed express the basic structural properties identi�edin [20], though not in their full generality. Moreover, the semantics of GACL is moreprocedural, as opposed to the declarative nature of the semantics of the language of policybase. The use of a declaration section also adds to the practicality of GACL.Authenticated delegation has been used and studied in other works [2, 4, 6, 15]. Most ofthese works, with the notable exception of Neuman's [15], concentrates on the authenticationand operational aspects of delegation rather than its application. The work reported in [2, 6]presents a formal understanding of authenticated delegation. In particular, it introducesa hando� rule that can be used to explain protocols for authenticated delegation in aformal manner. Gasser and McDermott [4] discuss how to carry out delegation in variouscontexts (e.g., user-host, process-process). The work by Neuman [15] is most relevant toours. He describes a proxy-based scheme for performing authorization and accounting.A proxy is essentially an authenticated delegation. He describes several applications ofproxies (e.g., capabilities, group servers) that are applicable in our design as well. Onedi�erence between our design and Neuman's scheme is that in his scheme, an authorizationserver is not authoritative, in the sense that an authorization server does not directly assertwhether a subject can be granted access or not. Instead, it allows a client to act (in arestricted manner) as itself in requesting access at an end server (by granting the clienta restricted proxy). The �nal authorization is carried out by the end server using acl'sthat contain entries specifying the authority of the authorization server. Our design canbe easily adapted so that an authorization server pre-screens clients only, leaving the �nalauthorization determination to an end server. Also, Neuman's focus is more on applicationsof proxies; the representation and evaluation issues involved in constructing a completeauthorization service were not discussed.7 ConclusionA distributed authorization service relieves an end server of its routine authorization func-tions. Together with a distributed authentication service, it facilitates the implementationof secure distributed services. Speci�cally, it enhances the overall security of a system byproviding a well-de�ned, security-tested, basic building block to a service implementor.Distributed authorization is still a relatively young area. Many issues remains to beexplored and studied. The design proposed in this paper is a �rst attempt at identifyingand solving some of the problems. 24

Contracting:(1) k = mutual-authenticate (E;A)(2) E : generate a delegation key kd(3) E k! A : kd; specAuthorization:(1) k0 = mutual-authenticate (C;A)(2) A : generate an authorization key ka(3) A : compute cert = fka; T; L; other-infogkd(4) A k0! C : cert; kaEnd Server Request:(1) C ! E : cert; fT 0gkaFigure 9: Use of Authenticated Delegationform cert = fka; T; L; other-infogkdwhere T is a timestamp and L a lifetime. If cert is presented to P , P can easily verify(by the encryption kd) that it has been issued by its delegate Q. And R can further provethat it is the legitimate \owner" of cert by demonstrating its knowledge of ka using anauthenticator of the form fT 0gka , where T 0 is a timestamp.The use of authenticated delegation in our design is illustrated in Figure 9. It cor-responds to the above discussion (E, A and C in Figure 9 correspond respectively toP , Q and R in the above discussion), we omit further explanation. The notation k =mutual-authenticate (P;Q) speci�es the execution of a mutual authentication protocol be-tween P and Q that distributes a session key k; and a step of the form P k! Q :M speci�esthat message M is sent by P to Q via channel k. Also, in our context of authorization, werefer to the delegation key ka and its delegation certi�cate as an authorization key and anauthorization certi�cate respectively.6 Discussion and Related WorkThere are two central ideas underlying our design: (1) The use of GACL as a commonrepresentation for authorization requirements. (2) The use of authenticated delegation toe�ect authorization o�oading from an end server to an authorization server.The major strength of GACL is its expressiveness and the availability of a precise se-mantics. Its expressiveness is particularly useful in specifying authorization requirements23

(1) C : generate new nonce nC(2) C ! E : C; nC(3) C : generate new nonce nE(4) E ! S : C;E; nC; nE(5) S : generate new session key k(6) S ! E : fnE ; kC; Cgk�1S ; ffnC; nE; C; E; kgk�1S gkE(7) E ! C : ffnC ; nE ; C; E; kgk�1S gkC(8) C ! E : fnEgkIn step (1), C generates a new nonce nC . In step (2), C informs E of its intention toestablish a secure connection by sending its name along with a nonce nC to E. In step (3),E generates its own nonce nE . In step (4), E forwards C's information together with itsown name and nonce nE to S to obtain a new session key. In step (5), S generates a newsession key k for communication between C and E. In step (6), S replies with a publickey certi�cate for C and a signed statement containing the key k, nC , nE and the namesof both C and E. The signed statement is needed for C to be convinced that the sessionkey k actually came from S (not E's own creation). The statement says that k is a keygenerated by S for a new communication between C and E identi�ed by nC and nE . Thebinding of k and nE in the statement assures E that k is fresh; similarly, the binding of kand nC assures C the same. In step (7), E forwards the signed statement to C using thepublic key of C it extracts from C's public key certi�cate. In step (8), C replies with nEencrypted using the new session key k. This authenticates C to E.Authentication technology is still evolving. The choice of which one to use dependson many factors. We have structured our design in a modular way. Thus, any mutual au-thentication protocol that provides an authenticated, integrity-protected and secret channelwould su�ce. Indeed, any of the existing authentication systems could have been used (e.g.,[12, 17, 18, 19]).5.2 Authenticated DelegationThe basic idea of an authenticated delegation is fairly straightforward. Consider two pro-cesses P and Q. After performing mutual authentication, P and Q share a secret channelk.17 If P wants to delegate to Q, it can generate a new secret key kd and send it to Q viachannel k. Since channel k is integrity-protected and secret, only Q can receive kd. Thus,any message later received by P that has been encrypted by kd must have come from Q,and can be accepted by P as according to the delegation.Indeed, Q can further delegate to another process R by generating a new delegation keyka and providing R with ka and a delegation certi�cate. A delegation certi�cate is of the17For simplicity, we use the session key distributed in the mutual authentication to refer to the channel.22

1. A special subject identi�er OWNER can be introduced. This stands for the owner ofan object. It can be interpreted as a mapping from ObjID to a SubjExpr that does notcontain negation. With the use of OWNER, a new declaration, namely, \owner", canbe introduced. This speci�es that if a request comes from the owner of an object o,then evaluation of gacl o should start by �rst examining entries concerning OWNER�rst. In other words, if \owner" is declared, OWNER entries take precedence overother entries in a gacl.2. In the semantics presented, there is no built-in scheme for resolving inconsistent au-thorizations for an unordered gacl. This can be easily remedied if conict resolutioninformation can be explicitly stated in the declaration section. This is achieved byusing preference declarations. Two types of preference declaration can be used: op-eration preference and group preference. An example of an operation preference is�R > R, which speci�es that a negative authorization on R should be preferred overa positive one. An example of a group preference is G1 > G2, which says that anelement in G1 \ G2 should obey an authorization from G1 instead of a contradictoryone (if exists) from G2.5 Protocols RevisitedIn this section, we provide more details on the protocols in our design. In particular, wepresent abstract speci�cations for some of the protocols. These speci�cations allow us toconvey the key ideas behind these protocols without restricting implementation exibility.However, due to length limitation, we omit discussion on the practical details of theseprotocols.5.1 Mutual AuthenticationOur authorization service assumes the availability of an underlying authentication substrate.This authentication substrate provides two basic functions: (1) to authenticate users atinitial sign on; (2) to provide mutual authentication between processes. The initial signon returns a set of initial credentials to a user. For example, the set of initial credentialstypically includes a certi�cate signed by an authentication server that contains the user id,the network address of the sign on host, a timestamp and a lifetime. All clients invoked bythe user would inherit this initial set of credentials.We prefer to use a public key based system.16 Since the initial sign on procedure isheavily dependent on the hardware con�guration, we discuss only the client-server mutualauthentication protocol.The following shows the basic client-server mutual authentication protocol: (C is aclient, E a server, and S an authentication server. kX and k�1X denote respectively thepublic and private key of X .)16This preference is mainly due to the broadcast ability of public key, which allows easier integration ofdiverse servers (e.g., group servers, authentication servers and authorization servers).21

Both SI and I are empty, while D = fdefault :: h[a]; [R]i;default :: h[a]; [�R]ig. Since SIis empty, A1 = ;. Now consider A2. It can easily be checked that both fh[fag]; [R+]ig andfh[fag]; [R�]ig are closed under D, and neither is smaller than the other. Thus A2 doesnot exist. This is to be expected because both defaults are activated on demand and theyspecify contradictory authorizations.4.4 EvaluationA client request can be abstractly represented as a triple (s; op; o) where s is the identityof the client, op the access requested and o the object on which access op is desired. Givena request req = (s; op; o) and a gacl for o such that semantics(o) 6= error, req is grantedif there exists h[S]; [op]i 2 semantics(o) such that s 2 S; req is denied if there existsh[S]; [op]i 2 semantics(o) such that s 2 S; and fail is returned otherwise.Thus, a naive way of evaluating authorization is to �rst compute the semantics of agacl and then apply the above. This, however, is highly ine�cient unless the semanticsis relatively static and a pre-compilation has been done. In general, only a small part ofa gacl should be examined (e.g., the entries mentioning op for a request (s; op; o)) and aProlog-type pattern matching algorithm can be used.15Another way to speed up evaluation is to reduce group membership checks. As anexample, consider the following gacl:o declare orderedlist h[G1],[�R]i, h[G2],[R]i, h[G3],[R]iand a request (a;R; o). Since this is an ordered gacl, evaluation proceeds sequentially fromthe �rst entry to the last. It is easy to see that a grant can be authorized if a can provide inorder a nonmembership certi�cate for G1, and then a membership certi�cate for either G2or G3. Otherwise, a denial or a failure should be returned. Thus at least two membershipchecks are needed, which, in the worst case, can require two rounds of message exchanges.However, if information on group relationships are available, some savings are possible. Forexample, if it is known that G2 � G1, then the evaluation can skip over the G2 entry alltogether and proceed directly to the G3 entry. Such group relationship information canbe provided as auxiliary information in an authorization speci�cation or separately by thegroup servers.4.5 ExtensionsIn this subsection, we briey describe several extensions to the GACL language. Most ofthese relate to new types of declaration.15We note here that since a gacl may mention other gacl in its entries (e.g., in EntryHead or in EntryBodyin a inheritance property), the evaluation process may need to examine parts of more than one gacl. Thisis similar to Prolog as well, in that the �ring of a rule r may induce the �ring of other rules correspondingto the subgoals of r. 20

function UnorderedGACL (obj : ObjID) : set of Authorization fdeclare A1; A2 : set of AuthorizationSI;D; I : GListobj:list := simplify(obj; obj:list);SI := fe 2 obj:list j body(e) 2 STriple or body(e) is an always inheritgD := fe 2 obj:list j body(e) 2 DTriplegI := fe 2 obj:list j body(e) is a demand inheritgA1 := smallest set of Authorization closed under SI;if A1 is inconsistentreturn error;A2 := smallest set of Authorization containing A1 and closed under SI [D [I;if A2 is unde�ned or inconsistentreturn error;elsereturn A2;end;g Figure 8: Unordered gaclCase 2. body(e) = always inherit o :: pexpand(p) \ semantics(o) � A;Case 3. body(e) = default :: pexpand(p)�AI � A;Case 4. body(e) = demand inherit o :: p(expand(p) \ semantics(o))�AI � A.A is closed under a set E of GACLEntry's if A is closed under each element of E.Referring back to Figure 8, we note that A1 must exist. This is because if two set ofauthorizations A and A0 satisfy p, then A \ A0 also satis�es p. From this, we can deducethat if both A and A0 are closed under a GACLEntry e 2 SI , then A \ A0 is also closedunder e.14 Thus A1 can be obtained by intersecting the collection of all sets of authorizationclosed under SI .A2, however, may not exist; and even if it does, may be inconsistent. As an example,consider the following gacl:o declarelist default::h[a],[R]i, default::h[a],[�R]i14Technically, we need to show this for an arbitrary collection of sets, instead of just two sets.19

We say that a gacl o depends on another gacl o0 if there exist a GACLEntry in o whoseEntryHead contains a STriple that refers to o0. An authorization speci�cation is well-formedif no gacl o transitively depends on itself. Our semantics is only well-de�ned for well-formedauthorization speci�cations.A similar circularity problem can also surface in handling inheritance. If gacl o inheritsfrom gacl o0 and vice versa, an in�nite recursion would result via the function expand. Wecan disallow this by also de�ning that o depends on o0 if o inherits from o0. Thus a well-formed authorization speci�cation does not have recursive dependence in its closure andinheritance properties.After simpli�cation, each GACLEntry in obj:list is examined one by one, proceedingfrom the �rst to the last in the list (cf. loop each construct).Each GACLEntry belongs to one of three types, STriple, DTriple and ITriple, dependingon its EntryBody. The handling of STriple and DTriple is essentially the same.13 In eachcase, the new authorizations represented by an entry are given by expand(p) (where p isthe SubjOpPair part of the EntryBody), and are merged into A after intersecting withAC . The intersection guarantees that no conicting authorizations from those already inA would be added. In other words, authorizations already in A take precedence over newauthorizations. That is, conict resolution is based on ordering.For the case of Itriple, we only want to merge in authorizations represented by p that alsobelongs to the semantics of objm(t). This is achieved by �rst \�ltering" what is returnedby expand(p) through the semantics of objm(t) using an intersection before merging theminto A.Unordered gaclA procedure for computing the semantics of an unordered gacl is shown in Figure 8. Weexplain the steps here.First, as in the case of ordered gacl, we simplify the list part by calling simplify. Thenwe separate out the GACLEntry's into three di�erent groups. The �rst group SI containsentries that should always be considered. The second group D contains all of the defaultentries, i.e., entries that should be considered only on demand. Similarly, the third group Icontains inheritance entries that are only considered on demand.As we mentioned earlier, the entries of an unordered gacl should be examined \together"to determine authorization. This is formalized by the notion of a closed set of authorizationswe de�ne below.Let A be a set of authorizations and e a GACLEntry. We say that A is closed under eif the following holds: If for all p : SubjOpPair 2 head(e), A satis�es p, thenCase 1. body(e) 2 STripleA satis�es body(e);13This con�rms our earlier statement that in an ordered list, default entries are mainly for clari�cationpurposes. 18

function OrderedGACL (obj : ObjID) : set of Authorization fdeclare A : set of AuthorizationA := ;;obj:list := simplify(obj; obj:list)loop each e 2 obj:list doif 9 h : SubjOpPair 2 head(e) such that A does not satisfy hnext;case body(e) ofSTriple: let body(e) = obj :: p;A := A [(expand(p) \AC);DTriple: let body(e) = default :: p;A := A [(expand(p) \AC);ITriple: let body(e) = inherit o :: p;A := A [(expand(p) \ semantics(o) \AC);end;end;return A;g Figure 7: Ordered gaclFirst, the gacl is simpli�ed by calling simplify, which removes all disabled entries andsimpli�es the EntryHead of each enabled entry. We note that circularity can result if gacl'smutually \depend" on one another. As an example, consider the following pairs of gacl'sfor object o1 and o2: o1 declare orderedlist o2 :: h[b]; [W]i) h[b]; [W]io2 declare orderedlist o1 :: h[a]; [R]i) h[a]; [R]iIn constructing the semantics of gacl o1, the semantics of gacl o2 is needed for determiningwhether the only GACLEntry in o1 is enabled. Therefore, the semantics of gacl o2 must beavailable before that of gacl o1. However, by a similar argument, the semantics of gacl o1 isneeded to determine the semantics of gacl o2. This circularity results in an in�nite recursionin our procedural semantics. There are two solutions to this problem: (1) The semantics canbe modi�ed to use an iterative incremental construction that terminates when no incrementis observed. In other words, the procedure allows the semantics of o1 and o2 to be computedtogether in an iterative manner. (2) A syntactic restriction that forbids such circularity.We opted for solution (2) as it is less error-prone and much easier to comprehend for anauthorization administrator. 17

function members (s : SubjExpr) : set of CInd fif s 2 CmpdSubjlet s = s1 ^ : : : ^ sn;return fi1 ^ : : : ^ in j i1 2 members(s1); : : :; in 2 members(sn)g;elsecase s ofIndividual: return fsg;GroupID: return grpmember(s);*: return CInd;�s0: return CInd�members(s0);end;end;gfunction expand (p : SubjOpPair) : set of Authorization fdeclare S : set of SubjOpPair;A : set of Authorizationlet p = h[subjlist]; [oplist]i;S := fh[s]; [op]i j s 2 subjlist; op 2 oplistg;A := fh[;]; [op]i j op 2 OPg;for each h[s]; [op]i 2 S doA := (A � fh[R]; [op]i j h[R]; [op]i 2 Ag)[fh[members(s) [R]; [op]i j h[R]; [op]i 2 Ag;end;return fh[X]; [y]i 2 A j X 6= ;g;gfunction simplify (obj : ObjID; l : GList) : GList fdeclare ` : GListloop each e 2 l doif e is disablednext;remove from head all p 6= T 2 Pred;remove from head all t 2 STriple such that obj 6= objm(t);` := `; head) body;end;return `;g Figure 6: Some Basic FunctionsOrdered gaclA procedure for computing the semantics of an ordered gacl is shown in Figure 7. In thefollowing, we briey explain the steps involved.16

inconsistent if it contains contradictory authorizations. Whether a gacl de�nes a consistentset of authorizations depends on the mappings grpmember and �, and hence cannot bedetermined statically in general.A gacl is ordered if \ordered" is in its declaration; otherwise it is unordered. Thesemantics of ordered gacl and unordered gacl are de�ned di�erently, and are presentedseparately below. The semantics to be presented is procedural in nature. It is simpler, moreintuitive and closer to implementation than a declarative semantic, though a declarative (andpossibly more complicated) one could have been given by translating the GACL languageto a logical language. To sum up, given a gacl obj, we de�ne:semantics (obj) = (OrderedGACL (obj) if ordered 2 obj:declareUnorderedGACL (obj) otherwisewhere de�nitions of the procedures OrderedGACL and UnorderedGACL are given below.We next introduce a few functions that are needed later in our de�nition of semantics.These functions are shown in Figure 6. The function members, when given a SubjExpr sreturns a set of compound individuals denoted by s. The function expand takes a STriplet and returns the set of authorizations speci�ed by t. We provide here some exampleapplications of members and expand. Suppose o 2 ObjID, G 2 GroupID, R 2 OpID,Ind = fa; b; cg and grpmember(G) = fb; cg, Then members(a ^ G) = fa ^ b; a ^ cg andexpand(h[a; a ^ G]; [�R]i) = fh[fa; a ^ b; a ^ cg]; [R�]ig.Let A be a set of authorizations. Let p 2 SubjOpPair. We say A satis�es p ifexpand(p) � A.Given a GACLEntry e in a gacl obj, we say e is disabled if there exists a Pred p 2head(e) such that �(p) = false or there exists a STriple t 2 head(e) such that obj 6=objm(t) and semantics(objm(t)) does not satisfy pair(t); otherwise it is enabled. DisabledGACLEntry's do not contribute to the semantics and can be eliminated. We can simplifya list of GACLEntry by removing from it all disabled entries and simplify the EntryHeadof enabled ones. This is precisely what the function simplify does. It takes a GList l andreturns a new GList containing only enabled entries whose EntryHead has been simpli�ed.The parameter obj is needed to identify those GACLEntry's that refer to other gacl's. Notethat after simplifying GList l of gacl obj, all STriple's in the EntryHead of a GACLEntryin l should contain obj as the object modi�er.Given a consistent set A of authorizations, the inverse of A, denoted by AI , is de�nedas the set of authorizations fh[S]; [op]i j h[S]; [op]i 2 Agand the complement of A, denoted by AC , is de�ned as the set of authorizations(h[S]; [op]i ���� S is the largest subset of CInd such thatif h[S 0]; [op]i 2 A then S \ S 0 = ;)We note that, unlike ordinary set complements, A [AC may not be equal to CInd. Andneither does (AC)C = A hold. 15

� All object modi�ers occurring outside of an ITriple must name the object associatedwith the current gacl, and hence can be omitted by convention.� If \ordered" is declared in a gacl, then the modi�ers always and demand in front ofinherit can be omitted.We also allow a shorthand notation using variables. A GACLEntry containing variablesis interpreted as standing for the set of GACLEntry's obtained by instantiating the vari-ables with all possible terms of compatible type. For example, if SubjID=fAlice;Deptg,then the �rst GACLEntry of P.doc in Figure 4 would stand for the set of GACLEn-try's fP.exe :: h[Alice]; [X]i) h[Alice]; [R]i, P.exe :: h[Dept]; [X]i) h[Dept]; [R]i, P.exe ::h[Alice ^ Dept]; [X]i) h[Alice ^ Dept]; [R]ig.Also, in the grammar, the EntryHead part of a GACLEntry is optional. But to simplifythe presentation of semantics in the next subsection, it would be useful to assume that theEntryHead is always present. Thus, we adopt the following convention: The EntryHeadof a GACLEntry is always understood to contain a �xed conjunct T, where T is a newdistinguished predicate symbol in Pred. That is, if e is a GACLEntry without an EntryHead,it should be interpreted instead as T) e; and for a GACLEntry e that has an nonemptyEntryHead, it should be interpreted as head(e) ^ T) body(e).An authorization speci�cation is a �nite set of gacl's.We note that the GACL language allows direct expression of closure, default and inher-itance properties [20] via the use of its \)", default and inherit constructs respectively.4.3 SemanticsA gacl speci�es a set of authorizations. To de�ne a semantics for GACL, we need to de�newhat is an authorization and how to construct the set of authorizations speci�ed by a gacl.We �rst introduce a set Ind of individuals; this set is the semantic counterpart of theset IndID. Each element of IndID names a unique individual in Ind. Similarly, we de�ne aset Op = fr+; r� j r 2 OpIDg. Thus, if r 2 OpID, then r names r+ and �r names r�. Inthe following, an OpExpr and the name it stands is used interchangeably. As is the casewith OpID's, we say r+ and r� are complementary, and de�ne r+ = r� and vice versa. Acompound individual is an expression of the form i1 ^ : : : ^ in (n � 1) where each ik belongsto Ind. Given Ind, we denote the set of all compound individuals by CInd. We note thatInd � CInd.We assume that the following mappings are given: (1) A mapping grpmember :GroupID 7! PowerSet(Ind). This gives the membership of each group. (2) A mapping� : Pred 7! ftrue; falseg with the property that �(T) = true.An authorization is an expression of the form h[S]; [op]i, where S � CInd and op 2 Op.For example, h[fa ^ b; cg]; [R+]i is an authorization. This says that both the compoundindividual a ^ b and the individual c are allowed to perform operation R on the object thatis associated with this authorization. We say authorizations h[S]; [op]i and h[S 0]; [op0]i arecontradictory if S \ S 0 6= ; and op and op0 are complementary. A set of authorizations is14

<SimplSubj> := [\�"]<SubjID> j [\�"]<GroupID><CmpdSubj> := <SimplSubj> f\ ^ " <SimplSubj>g<SubjExpr> := [\�"]*" j <SimplSubj> j <CmpdSubj><SubjList> := <SubjExpr> f\," <SubjExpr>g<OpExpr> := [\�"]*" j [\�"]<OpID><OpList> := <OpExpr> f\," <OpExpr>g<SubjOpPair> := \h[" <SubjList> \]; [" <OpList> \]i"<STriple> := <ObjID> \::" <SubjOpPair><DTriple> := \default::" <SubjOpPair><ITriple> := (\always" j \demand") \inherit" <STriple><EntryHead> := (<STriple> j <Pred>) f \ ^ " <EntryHead> g<EntryBody> := <STriple> j <DTriple> j <ITriple><GACLEntry> := [<EntryHead> \) "] <EntryBody><DCL> := f (ordered j anonymous) g<GList> := <GACLEntry> f\," <GACLEntry>g<gacl> := <ObjID> \declare" <DCL>\list" <GList>Figure 5: A Grammar for GACLWe try to keep the grammar as simple as possible. In particular, we have not encoded anumber of syntactic restrictions into the grammar to avoid complicating it. They are listedin the following instead. The motivations for these restrictions will become clear when wepresent the semantics of GACL in the next subsection.Terminology. The ObjID in a STriple is called an object modi�er. Given a STriple t, wedenote its object modi�er by objm(t) and its SubjOpPair part by pair(t). TwoOpExpr's arecomplementary if one is the negation of the other, e.g., R and �R are complementary. Givenan OpExpr op, we denote the OpExpr complementary to op by op. Let e be a GACLEntry,we denote by head(e) and body(e) respectively the EntryHead part (if present) and theEntryBody part of e. Given a gacl obj, we will refer to its declaration (i.e., DCL part) asobj:declare and its list (i.e., GList) part as obj:list. 2Here are the restrictions on the grammar:� An OpList cannot contains a pair of complementary OpID's.� If *" occurs in a SubjList or an OpList, then it must be the only expression. Inaddition, a *" in OpList should be understood as an abbreviation for the list of allOpID's. That is, if OpID = fR;Wg, then an occurrence of *" in an OpList standsfor R,W while an occurrence of \�*" stands for �R;�W.� A gacl cannot inherit from itself. That is, the object modi�er in an ITriple must namean ObjID di�erent from the object associated with the current gacl.13

is denied read access to Doc will inherit the same denial to P.doc. Entry 4 speci�es thatany subject who has write access to Doc can inherit on demand the same access to P.doc.That is, a demand inheritance is activated only if no other write authorization has beenspeci�ed in other entries. For example, members of Dept would not be able to inherit theirwrite access to Doc (even if they do have it) because of entry 2. Note that gacl P.doc isunordered, thus its entries must be considered together in making a determination. Forexample, if Alice has execute right to P.exe (cf. entry 1) but is denied read access to Doc(cf. entry 3), then a read request from Alice for P.doc would generate an error as entries 1and 3 together specify contradictory read authorizations for Alice.The \anonymous" declaration does not a�ect the semantics of authorization. It indicatesthat an end server is willing to accept authorizations certi�ed by an authorization servereven without precise knowledge of the client making the request. For example, if a clientother than Alice or Bob presents itself only as a member of Dept without saying who it is,it will still be acceptable to the end server and be granted read access.Consider gacl P.src in Figure 4. Entry 1 speci�es that members of Research can read andwrite P.src. Entry 2 speci�es that any subject not belonging to Dept is denied write accessto P.src. Again, gacl P.src is unordered. Thus a write request for P.src from any member ofResearch who is outside of Dept would generate an error.Consider gacl Doc in Figure 4. Entry 1 speci�es that all members of Dept have readaccess to Doc. Entry 2 illustrates authorizations for compound subjects. A compoundsubject can informally be understood as a subject who has authority to act as each of itscomponent subjects. Thus, entry 2 speci�es that any subject who has authority to act bothas DocSys and as a member of Research can be granted all accesses to Doc. Typically, acompound subject is constructed by delegation. For example, a member of Research who hasobtained delegation from DocSys to act on behalf of DocSys is an instance of the compoundsubject DocSys ^ Research. Entry 3 speci�es that by default, every subject should bedenied all accesses. Since \ordered" is declared, this default serves as a negative catch-all,and provides the \denial by default" semantics of ordinary ACL. Defaults are typically usedin an unordered gacl; its activation is then similar to that of demand inheritance. For anordered gacl, the keyword default is optional; it serves as a comment. For example, thesemantics of gacl Doc is unchanged if the default modi�er is dropped from entry 3.4.2 SyntaxWe begin with a set ObjID of object identi�ers, a set SubjID of subject identi�ers, a setOpID of operation identi�ers, and a set Pred of predicate symbols. We assume that SubjID ispartitioned further into two disjoint sets IndID and GroupID. The set IndID contains namesfor individuals while the set GroupID contains names for groups. An object identi�er namesan object, e.g., a �le, a printer. An operation identi�er names an operation, e.g., read, write.Note that not all operations are meaningful on all objects. A predicate symbol denotes acondition on the system and is possibly monitored by some system monitor.Each object is uniquely associated with a gacl. For that reason, we simply use an ObjIDto refer to a gacl in the following. A grammar for the syntax of a gacl is given in Figure 5.12

P.exe declare orderedlist h[Alice,Bob],[�execute]i,h[Dept],[execute]i,highload) h[*],[�execute]i,inherit P.src::h[*],[write]iP.doc declare anonymouslist P.exe::h[x],[execute]i) h[x],[read]i,h[Dept],[�write]i,always inherit Doc::h[*],[�read]i,demand inherit Doc::h[*],[write]iP.src declarelist h[Research],[read,write]i,h[�Dept],[�write]iDoc declare orderedlist h[Dept],[read]i,h[DocSys ^ Research],[*]i,default::h[*],[�*]iFigure 4: Speci�cation of an Example using GACLAn ExampleConsider a set of objects fP.exe;P.doc;P.src;Docg. P.exe, P.doc and P.src together constitutea software package with P.exe being the executable, P.doc the documentation and P.srcthe source. Doc is a centralized documentation control system in which P.doc is a part.Alice and Bob are individual users while Research and Dept are groups. DocSys is a serverresponsible for maintaining the documentation control system (e.g., performing versioncontrol). Though DocSys is not an actual user, it is considered a user in our design. Weconsider only three types of access, namely, read, write and execute. highload is a systempredicate whose (boolean) value is continuously updated by some system component thatmonitors the load of the system. For brevity, in the following, we refer to an entry by itsposition in the list. For example, with respect to gacl P.src, entry 2 refers to the entryh[�Dept],[�write]i.Consider gacl P.exe in Figure 4. Entries 1 and 2 are similar to those in ordinary ACL.Entry 1 speci�es that both Alice and Bob are not permitted to execute P.exe, while entry 2speci�es that members of group Dept are allowed to execute P.exe. Entry 3 speci�es thatif the value of highload is true, then no subject is allowed to execute P.exe. (* stands forall subjects.) Entry 4 speci�es that any subject who can write P.src can inherit the sameaccess (i.e., write) to P.exe. Since \ordered" is declared, these entries should be examinedin order from entries 1 to 4 in determining authorization. For example, Alice will be deniedexecute right for P.exe even if she belongs to Dept or has write access to P.src.Consider gacl P.doc in Figure 4. Entry 1 speci�es that any subject who has execute rightfor P.exe can also read P.doc. (x is a variable that can be instantiated to any subject.) Entry2 speci�es that members of Dept cannot write P.doc. Entry 3 speci�es that any subject who11

We believe that ACL is the right abstraction to use in an authorization service. However,it must be extended to be e�ective. To this end, we propose the GACL language. GACL ismuch more expressive than ordinary ACL. The main features of GACL include the following:� It provides constructs that can express in a straightforward way most commonly en-countered authorization requirements. For example, the structural properties, closure,inheritance and defaults, identi�ed in [20], can be directly expressed in GACL.� It allows incomplete authorization to be speci�ed. That is, it is possible that for somerequest, neither grant nor denial can be determined. A failure is returned in this case.This is preferred over the \denial by default" style of authorization because a failuremay suggest an error in a speci�cation. On the other hand, the language allows anauthorization administrator to explicitly specify a catch-all \denial by default" if sodesired.� It has an implementation independent semantics, thus allowing implementations ofvaried complexity and permitting interoperability across di�erent authorization servers.� It provides a declaration section that gives an authorization administrator additionalexibility in expressing authorization requirements.GACL can be viewed as a practical \approximation" of the logical language of policybase introduced in [20]. We defer a comparison of the two to Section 6. In what follows,we give an informal introduction to GACL by examples. This hopefully would providesu�cient background for discussions on the architectural and protocol aspects of our designin the next two subsections. A complete presentation of GACL with a formal semantics isgiven in Section 4.An example is speci�ed using GACL in Figure 4. Each gacl is labeled by an objectname and consists of two parts: (1) a declaration part identi�ed by the keyword declare;and (2) a list part identi�ed by the keyword list.The declaration part contains a (possibly empty) list of prede�ned keywords that provideinformation for interpreting the gacl. In this paper, we discuss in detail only two suchkeywords: \ordered" and \anonymous". Other keywords are mentioned in Subsection 4.5on extensions of GACL. An \ordered" declaration speci�es that the list part of the gaclis an ordered list. That is, in determining authorization, its entries should be examinedin a sequential order starting from the �rst to the last. By default, a gacl is interpretedas \unordered". For an unordered gacl, all entries in its list part should be examined\together" in making an authorization determination. This would be made clearer as weexamine the example more closely below.The list part contains a list of entries, some of which resemble those of ordinary acl's,while others are new. We informally explain their meanings below using the example inFigure 4. 10

submit certain group certi�cates to satisfy A, and can be iterative. That is, as A examinesthe entries in a particular gacl, it may request that C furnish additional group certi�cates.11Indeed, C may not be aware of the group certi�cates that are required until instructed byA.12 Hence, several message exchanges may be necessary before an authorization can bedetermined.Clearly, caching could be done to enhance e�ciency. Caching and the related issue ofcerti�cate expiration have correctness implications. For example, if cached group certi�catesare not invalidated when group membership changes, there may be incorrect grant or denial.Similarly, an unexpired authorization certi�cate should be invalidated when the particularauthorization has been revoked. These issues are similar to those in the use of capabilities[8, 13], and are beyond the scope of this paper. Lastly, a secure update protocol is neededfor E to notify A of any changes in spec.4 The GACL LanguageTerminology. To di�erentiate between our language of generalized access control listfrom a particular generalized access control list, we will refer to the former as GACL andthe latter as gacl. A similar convention (acl and ACL) is adopted in referring to ordinaryaccess control lists. 24.1 An Informal IntroductionACL has long been used for specifying authorization requirements. An acl is typicallyassociated with an object and consists of a list of pairs; each pair is made up of a subjectidenti�er and a set of access rights. A subject s is granted access r to object o if and onlyif the acl associated with o contains a pair (s; R) such that r 2 R. Denial is implicit, i.e., itis implied by the absence of positive authorization in the list. As an example, consider thefollowing acl for a �le f: (Alice and Bob are individuals while Dept is a group)f : (Alice; fread;writeg); (Bob; freadg); (Dept; fwriteg)This acl speci�es that Alice can be granted read and write accesses to f, and denied anyother access to f. Similarly, Bob only has read access while all members in group Dept onlyhave write access.The key advantage of ACL is its straightforward semantics which is easy to understand.However, it is not very expressive. Several extensions have been proposed, e.g., allowingexplicit negative authorizations. Most of these extensions are, however, ad-hoc and haveoften been introduced without a well-de�ned semantics.11This is commonly known as the push model. A pull model is one in which A itself gathers the relevantcerti�cates from the group servers. However, it appears to be more desirable to reduce the load of A so thatit does not become a bottleneck, even at the expense of the clients.12This is typically the case when nonmembership certi�cates are needed by A.9

such as message format, �le format and encryption/decryption issues. Our ideas are alsoillustrated in Figure 3; for clarity, we have omitted exchanges that involve authenticationservers and service locators. Abstract speci�cations of protocols discussed here are providedin Section 5.When an end server E (who has elected to o�oad its authorization) starts up, it lo-cates (possibly through a service locator) and contracts an authorization server A using acontracting protocol which performs several functions:� It mutually authenticates E and A, and distributes a new secret session key k for usebetween E and A.� It establishes a delegation key kd between E and A. The key kd will be used by A tosign authorization certi�cates.� It transfers an authorization speci�cation spec from E to A. spec contains a spec-i�cation of authorization requirements written in GACL, and will be used by A todetermine authorization. The integrity of spec is protected by signing it with thesession key k.8Upon successful contracting, E noti�es the service locator that A is its authorizationserver. This allows the service locator to direct clients of E to A �rst.9There are two basic approaches to determine authorization using spec: compilation andinterpretation. Compilation refers to the translation of spec into some form of executablespeci�cation that can be directly activated in making authorization decision. Interpretationrefers to the use of a �xed algorithm to examine spec each time an authorization is to be de-termined. Compilation is preferred if spec is relatively static (e.g., for authorization of �xedsystem resources like printers) while interpretation is preferred otherwise. A hybrid of thesealternatives is possible. For example, spec can �rst be translated into some intermediateform which can then be interpreted.10Before contacting E, a client C contacts A to obtain the proper authorization. Anauthorization is typically in the form of an authorization certi�cate signed by A using kdthat contains, among other information, an authorization key ka that is only known to C(and A of course). C can later submit this certi�cate to E to obtain the desired service.Knowledge of ka is used by C to demonstrate to E that the authorization certi�cate wasindeed obtained from A. This scheme is what we call authenticated delegation. A similarscheme but with the name proxy is used in [15]. See Section 6 for a comparison of the twoschemes.A only issues the appropriate authorization certi�cate to C after it has determined fromspec that C can be granted access to E. The determination procedure may require C to8This is similar to a zone transfer in DNS, except that authorization data are involved here.9Such redirection is similar to the use of MX records for mail exchanges in DNS. A major di�erenceis that mail exchanges are responsible for forwarding mail to their �nal destinations, while authorizationservers do not forward their decisions directly to end servers.10Indeed, some form of pre-compilation of spec by E before transfer to A is also possible.8

Client GroupServer
Autho-rizationServer SystemMonitorEndServer ContractingProtocol SystemInformation

GroupCerti�catesIdentityCredentials,GroupCerti�catesAuthorizationCerti�cateIdentityCredentials,AuthorizationCerti�cateFigure 3: Message Exchanges in our Designcerti�cates are requested by clients, and are to be forwarded to the authorizationserver together with their requests.� Systemmonitor | A systemmonitor tracks the values of system predicates. Typically,this is done by the monitor as well as a set of processes executing a distributedalgorithm. Such a system monitor, however, cannot be expected to return the precisevalue of a system predicate at a particular time due to the asynchronous nature ofdistributed computation. Rather, if a system predicate is stable, then the monitorwould eventually return its correct value.We note that the above servers are only logically disjoint, they could easily be imple-mented as an integrated server or located on the same machine. To enhance e�ciency, theseservers can also be distributed6 and/or replicated.7 These servers are assumed to be trusted.For example, a group server is trusted to maintain and hand out correct membership infor-mation. A standard technique to ensure such trustworthiness is to implement these serverson dedicated machines that are physically secure (cf. Kerberos [5, 17]).3.2 Operation and ProtocolsIn this section, we describe the operational aspects of our design, as well as the protocols wehave devised. Due to length limitation, we will discuss just the the key ideas and omit details6This refers to the partitioning of a distributed system into subsystems and the assignment of distinctservers to handle the subsystems [14].7This of course would bring in a number of standard distributed system problems (e.g., consistency) thatneed to be separately addressed. 7

Authen-ticationServer ServiceLocator GroupServer Autho-rizationServer SystemMonitor
Client EndServerFigure 2: Distributed Authorization Architectureprocedures registry. It responds to a client's request with a list of end servers thatimplement the requested service, and possibly also a list of authorization servers for theend servers (for end servers that have elected to o�oad their authorization functions).� Authentication server | An authentication server performs two basic functions: (1)To authenticate users during their initial sign-on and supply them with an initial set ofcredentials. (2) To enable mutual authentication between clients and servers. We notethat all communications should be authenticated, including those between clients andservers (e.g., clients and group servers, clients and authorization servers), and thosebetween servers (e.g., end servers and authorization servers, system monitors andauthorization servers).� Authorization server | An authorization server performs authorization on behalf ofan end server. Each end server can elect to o�oad its authorization to an authorizationserver. To do so, it needs to contract an available authorization server for this purpose.This requires the use of a contracting protocol. We will say more about this protocolin the next subsection. An authorization server hands out authorization certi�catesto authorized clients. These certi�cates are to be forwarded by clients to end serversalong with their requests.� Group server | A group server maintains and provides group membership informa-tion. From the perspective of authorization, its main function is to hand out twotypes of certi�cates: membership and nonmembership certi�cates. The former assertsthat a client belongs to a particular group while the latter asserts the opposite. These6

from an end server must �rst contact an authorization server (and possibly an authenticationserver before that) to obtain authorization.A separate authorization service o�ers many advantages: (1) Savings in re-implementatione�ort for each end server. (2) End servers are relieved of the task of determining autho-rization, which can lead to higher throughput. (3) A specialized authorization service cana�ord the use of better methods in determining authorization than would be justi�ed forindividual end servers. (4) An authorization service can be veri�ed to be secure once and forall. This reduces the complexity in verifying the security of an end service. (5) Anonymity(if desired) can be achieved with the use of a trusted authorization service. See Section 3.2.(6) A uniform authorization service can contribute to the uniformity of accounting and au-diting functions, hence facilitating the construction of distributed accounting and auditingservices.Two key problems need to be addressed in constructing a distributed authorizationservice:� Representation problem | The commonalities in authorization requirements of endservers should be identi�ed, and an appropriate representation abstraction designedto capture these commonalities. In our research, we adopt a language approach.Our speci�cation language GACL can be used to specify most commonly encounteredauthorization requirements, and e�cient algorithms can be constructed for their eval-uation.� Protocol design problem | Secure protocols are needed for o�oading authorizationfrom end servers to authorization servers, and for interactions among clients, autho-rization servers and end servers. These protocols make transparent the decoupling ofauthorization services from end services.In Sections 4 and 5 respectively, we describe in details how the above two problems areaddressed in our design. But �rst in the next section, we give an overview of our design.3 Overview of Our Design3.1 ArchitectureFigure 2 shows the architecture of our distributed authorization service. Below, we givea functional description of the various servers in the �gure. An operational description ofthese servers is provided in Subsection 3.2.� Service Locator | A service locator assists clients in locating servers implementinga particular service. A service locator obtains such information either statically fromsome con�guration �le or dynamically from registration messages sent out by activeservers. A service locator functions in a manner similar to a name server5 or a remote5Indeed, it can be easily implemented as part of an existing name server mechanism (e.g., DNS) byincluding additional forms of resource records. 5

registry of remote procedures. The function register returns a handle chan for a channel onwhich the server should listen for client requests. In line (2), the function listen returns thenext message arriving from chan. But if no message is available, it blocks until a messagearrives. Each message represents a client request. The speci�c format of a client requestis application speci�c. But it should contain information on the identity of a client, theservice desired and possibly other information needed by the server to provide the service.The function getid in line (3) returns the identity of the client in msg, and the func-tion getreq in line (4) returns the service requested by the client. The return value reqtypically speci�es an operation to be performed, an object on which the operation shouldbe performed, and possibly a list of arguments providing information for carrying out theoperation. The types of objects and the operations allowed are application speci�c. Usingsuch information, authorization is determined by calling the function authorized in line(5). If authorized returns true (indicating grant), the server proceeds to satisfy the requestby calling function do-operation in line (6). Accounting is performed by calling functionupdate-account in line (7). If authorized returns false (indicating denial), a notice is sent tothe client in line (8). Lastly, logging is done in line (9) by function log.2.2 Core ServicesThe functions getid, authorized, update-account and log implement solutions to the fourproblems discussed in Introduction. In most existing systems, each service performs its ownauthentication, authorization, accounting and logging.A better approach would be to factor these functions out and implement them sepa-rately as a set of core services that can in turn be used as a basis for building other (coreor end) services. In other words, we want to o�oad as many common functionalities aspossible from user-oriented end servers to system-oriented core servers. Clearly, the successof this approach depends heavily upon whether these functions are generic across di�erentapplications.Among these functions, getid is the most generic. Speci�cally, there exist notions ofidentity4 that are applicable to most services. Indeed, much success has been achievedin abstracting getid and isolating it as a separate distributed authentication service (e.g.,[5, 17]). There is even a proposal to standardize an application program interface for adistributed authentication service [10].Progress on abstracting the other functions has been much slower. This may be at-tributed to a perception that these functions are not as generic. For example, authorizationis often perceived to be tightly coupled to an application and hence cannot be easily ab-stracted.2.3 Distributed Authorization ServiceOur research aims at abstracting and separating out the function authorized as a distributedcore service, which performs authorization on behalf of end servers. A client desiring service4Some examples are GIDs (global unique ids) [7] and domain names [11].4

service S(1) chan := register(S; Service-Locator; : : :);(2) while msg = listen(chan; : : :) do(3) id := getid(msg; : : :);(4) req := getreq(msg; : : :);(5) if authorized(id; req; errcode; : : :)(6) do-operation(id; req; : : :);(7) update-account(id; req; : : :);else(8) reply(chan; errcode; : : :);end;(9) log(id; req; : : :);end;endservice S;Figure 1: Structure of a Typical Serviceand semantics of the language. The semantics we use is procedural in nature and henceis fairly close to implementation. In Section 5, we present abstract speci�cations of theprotocols we introduced in Section 3. In particular, we describe the use of authenticateddelegation in our design. In Section 6, we compare our approach to related proposals. InSection 7, we draw some conclusions and discuss future directions of our work.2 Motivation for Distributed AuthorizationTo obtain a service, a client may need to contact a number of servers. For example, toobtain a �le from a �le service, a client may need to �rst contact an authentication serverto obtain the necessary credentials. In the following, we will refer to a service that a clientwould ultimately like to obtain as an end service; and a server implementing such a serviceas an end server.22.1 End ServicesTo better understand the issues we address in this paper, we begin by examining the typicalstructure of a distributed service (see Figure 1).3The structure should be self-explanatory. We provide just a brief description here. Inline (1), the server begins by registering itself with a well-known service locator to announceits availability to potential clients. A service locator can be a distributed name server or a2This terminology is adapted from [15], where the notion of an end server is de�ned in the context ofa proxy, and is much more speci�c. Our notion of an end server is informal, and is intended mainly fordi�erentiating user-oriented services from system-oriented services.3For simplicity, we consider an iterative server. A parallel server has a similar structure.3

� Accounting | Consumption of service incurs a cost, monetary or otherwise. The costis payable by a client as soon as the service has been delivered or a service agreementhas been reached.� Auditing | On-line scrutiny of all interactions between clients and servers may notbe desirable or feasible. Thus selective client-server interactions may be logged forpossible subsequent o�-line examination. For example, if security violation is detected,a log can be used to reconstruct the sequence of interactions that led up to theviolation.Among these problems, authentication is the most basic, as well as the most studiedone. Much work has recently been done on authentication [3, 6, 9, 19]. Its main issues arefairly well-understood. In fact, several implementations of distributed authentication arealready available, e.g., Kerberos from MIT [5, 17] (which has also been integrated as partof the OSF DCE Security Service [16]), SPX [18] from DEC, and KryptoKnight [12] fromIBM.On the other hand, the problems of authorization, accounting and auditing have re-mained relatively unexplored. In this paper, we study the problem of distributed autho-rization. Speci�cally, we examine the major issues involved in implementing a distributedauthorization service, and propose a speci�c design that addresses these issues.Our design is based on two key ideas, namely, (1) a language-based approach (calledgeneralized access control list or GACL in short) for specifying authorizations; and (2)authenticated delegation. GACL is a signi�cant extension of ordinary ACL. In particular,it provides constructs for explicitly stating inheritance and defaults. The expressiveness ofGACL allows authorization requirements of an end server to be succinctly and uniformlyspeci�ed.Authenticated delegation allows an end server to securely delegate its authorizationfunctions to specialized authorization servers. The concept of authenticated delegation isnot new. For example, it has been discussed in one form or another in [6, 9, 15]. However,most of these works, with the notable exception of [15], concentrate on the authenticationaspect. Our study of authenticated delegation is for authorization purpose, and is similarto the notion of proxy in [15].Our goal is to construct a distributed authorization service which parallels existing dis-tributed authentication services. The design presented in this paper represents our attemptin exploring the theory and practice of constructing such a service. Since our focus is onauthorization, we will discuss accounting and auditing issues only to the extent that theyare relevant to authorization.The balance of this paper is organized as follows. In Section 2, we motivate and identifythe major issues of distributed authorization. In Section 3, we informally describe thearchitecture of our design and the operation of various protocols.1 In Section 4, we �rstgive an informal introduction to the language GACL. Then we present the formal syntax1A preliminary overview of our architecture, protocols and language has been presented in an extendedabstract [21]. 2

Designing a Distributed Authorization Service�Thomas Y.C. Woo Simon S. LamDepartment of Computer SciencesThe University of Texas at AustinAustin, Texas 78712-1188AbstractWe present the design of a distributed authorization service which parallels existingdistributed authentication services. Such a service would operate on top of an authen-tication substrate. There are two central ideas underlying our design: (1) The use ofa language, called generalized access control list (GACL), as a common representationfor authorization requirements. (2) The use of authenticated delegation to e�ect au-thorization o�oading from an end server to an authorization server. We present thesyntax and semantics of GACL, and illustrate how it can be used to specify authoriza-tion requirements that cannot be easily speci�ed by ordinary ACL. We also describethe protocols in our design.1 IntroductionAdvances in networking have transformed distributed systems into a marketplace of services.Some of the standard services in today's distributed systems include �le service, printservice, electronic mail service, and so on. Apart from these \system" services, networkusers are beginning to o�er their own services as well. Typically, these \user" services aremore specialized and personal, e.g., �nancial transactions service.Security is an important concern in the design and implementation of such services.Design considerations include the following (among others): (1) service is only renderedto authorized clients; (2) proper charges are levied on services performed; and (3) correctrecords are kept for all services requested and delivered. These considerations give rise tothe following problems:� Authentication and authorization | Before services can be rendered, a server mustbe ascertained of a client's identity and determine that the client's request can behonored according to some speci�ed authorization policy. Similarly, a client needs toa�rm the legitimacy of a server before proceeding with the service.�Research supported in part by NSA Computer Security University Research Program under contractno. MDA 904-92-C-5150 and by National Science Foundation grant no. NCR-9004464.

