[10]
[11]
[12]

J. Linn. Generic Security Service Application Program Interface: Internet draft. June 11 1991.
P. Mockapetris. Domain names — concepts and facilities. RFC 1034, November 1987.

R. Molva, G. Tsudik, E. Van Herreweghen, and S. Zatti. KryptoKnight authentication and key
distribution system. In Proceedings of the 2nd European Symposium on Research in Computer
Security, Toulouse, France, November 23-25 1992. Springer Verlag.

S.J. Mullender and A.S. Tanenbaum. The design of a capability-based distributed operating
system. The Computer Journal, 29(4):289-299, 1986.

B.C. Neuman. Scale in distributed systems. In Readings in Distributed Computing Systems.
IEEE Computer Society Press; 1992.

B.C. Neuman. Proxy-based authorization and accounting for distributed systems. In Pro-
ceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh,
Pennsylvania, May 1993.

W. Rosenberry, D. Kenny, and G. Fisher. Understanding DCE. O’Reilley & Associates, Inc.,
1992.

J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: An authentication service for open
network systems. In Proceedings of the USENIX Winter Conference, pages 191-202, Dallas,
TX, February 1988.

J.J. Tardo and K. Alagappan. SPX: Global authentication using public key certificates. In
Proceedings of the 12th IEEE Symposium on Research in Security and Privacy, pages 232-244,
Oakland, California, May 20-22 1991.

T.Y.C. Woo and S.S. Lam. Authentication for distributed systems. Computer, 25(1):39-52,
January 1992. See also “Authentication” revisited. Computer, 25(3):10-10, March 1992.

T.Y.C. Woo and S.S. Lam. Authorization in distributed systems: A formal approach. In
Proceedings of the 13th IEEE Symposium on Research in Security and Privacy, pages 33-50,
Oakland, California, May 4-6 1992.

T.Y.C. Woo and S.S. Lam. A framework for distributed authorization (extended abstract). In
Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax,
Virginia, November 3-5 1993. To appear.

26

In this paper, we have omitted discussion of many of the more practical details due to
length limitation. For example, the problems of consistency (due to cache invalidation and
certificate expiration), group membership maintenance and propagation of authorization
must be addressed in an implementation.

A prototype implementation of our design is currently under way. We have finished
implementing an authentication substrate upon which our authorization service operates.
We are now mainly focused on finding efficient evaluation strategies for GACL. We plan to
report our implementation results in a future paper, which would also address the practical
details mentioned above.

For future work, we are considering the following directions: (1) To develop a better
understanding of anonymous authorization. In particular, a Principle of Minimal Identity
(i.e., a client should be allowed to supply only the minimal identification required to obtain
authorization) should be formulated and studied. (2) To design an incremental update
procedure so that an authorization server can incorporate new authorizations from an end
server in an efficient manner. (3) To develop compilation strategies for the GACL language.
(4) To propose and study an API for integrating our authorization service into application
programs.

References

[1] IEEE Symposium on Research in Securily and Privacy, Oakland, California, May 7-9 1990.

[2] M. Abadi, M. Burrows, B.W. Lampson, and G. Plotkin. A calculus for access control in
distributed systems. Technical Report 70, Systems Research Center, Digital Equipment Cor-

poration, February 1991. An abbreviated version appeared in Advances in Cryptology —
CRYPTO 91, pages 1-23, Santa Barbara, California, August 11-15 1991.

[3] M. Gasser, A. Goldstein, C. Kaufman, and B.W. Lampson. The Digital distributed system
security architecture. In Proceedings of the 12th National Computer Security Conference, pages
305-319, Baltimore, Maryland, October 1989.

[4] M. Gasser and E. McDermott. An architecture for practical delegation in a distributed system.
In Proceedings of the 11th IEEE Symposium on Research in Securilty and Privacy [1], pages
20-30.

[5] J.T. Kohl and B.C. Neuman. The Kerberos network authentication service: Version 5 draft
protocol specification. April 1993.

[6] B. Lampson, M. Abadi, M. Burrows, and T. Wobber. Authentication in distributed systems:
Theory and practice. In Proceedings of the 13th ACM Symposium on Operating Systems Prin-

ciples, pages 165-182, Asilomar Conference Center, Pacific Grove, California, October 13-16
1991.

[7] B.W. Lampson. Designing a global name service. In Proceedings of the jth ACM Symposium
on Principles of Distributed Computing, August 1985.

[8] H.M. Levy. Capability-Based Compuler Systems. Digital Press, 1984.

[9] J. Linn. Practical authentication for distributed computing. In Proceedings of the 11th IEEE
Symposium on Research in Securily and Privacy [1], pages 31-40.

25

for services that manage a large number of objects with complex dependencies. Its formal
semantics facilitates the implementation of different evaluation strategies that can interop-
erate. The use of a declaration section is novel. It provides directives for choosing the most
efficient evaluation strategy. For example, an unordered gacl can potentially make use of
direct hashing in its evaluation, while an ordered gacl allows a partial evaluation strategy.

The language of policy base proposed in [20] is more general than GACL (in particular, it
subsumes first-order logic) and has a much more abstract semantics. The GACL language
is intended to be practical, and can indeed express the basic structural properties identified
in [20], though not in their full generality. Moreover, the semantics of GACL is more
procedural, as opposed to the declarative nature of the semantics of the language of policy
base. The use of a declaration section also adds to the practicality of GACL.

Authenticated delegation has been used and studied in other works [2, 4, 6, 15]. Most of
these works, with the notable exception of Neuman’s [15], concentrates on the authentication
and operational aspects of delegation rather than its application. The work reported in [2, 6]
presents a formal understanding of authenticated delegation. In particular, it introduces
a handoff rule that can be used to explain protocols for authenticated delegation in a
formal manner. Gasser and McDermott [4] discuss how to carry out delegation in various
contexts (e.g., user-host, process-process). The work by Neuman [15] is most relevant to
ours. He describes a proxy-based scheme for performing authorization and accounting.
A prozy is essentially an authenticated delegation. He describes several applications of
proxies (e.g., capabilities, group servers) that are applicable in our design as well. One
difference between our design and Neuman’s scheme is that in his scheme, an authorization
server is not authoritative, in the sense that an authorization server does not directly assert
whether a subject can be granted access or not. Instead, it allows a client to act (in a
restricted manner) as itself in requesting access at an end server (by granting the client
a restricted proxy). The final authorization is carried out by the end server using acl’s
that contain entries specifying the authority of the authorization server. Our design can
be easily adapted so that an authorization server pre-screens clients only, leaving the final
authorization determination to an end server. Also, Neuman’s focus is more on applications
of proxies; the representation and evaluation issues involved in constructing a complete
authorization service were not discussed.

7 Conclusion

A distributed authorization service relieves an end server of its routine authorization func-
tions. Together with a distributed authentication service, it facilitates the implementation
of secure distributed services. Specifically, it enhances the overall security of a system by
providing a well-defined, security-tested, basic building block to a service implementor.

Distributed authorization is still a relatively young area. Many issues remains to be
explored and studied. The design proposed in this paper is a first attempt at identifying
and solving some of the problems.

24

Contracting:

(1) k = mutual-authenticate (F, A)

(2) E : generate a delegation key kg
(3) E L A ¢ kg spec
Authorization:

(1) k' = mutual-authenticate (C, A)

(2) A generate an authorization key k,
(3) A compute cert = {k,, T, L, other-info},
(4) AE o cert, kg

End Server Request:
(1) C — F : cert,{T'}p,

Figure 9: Use of Authenticated Delegation

form
cert = {k,,T, L, other-info}y,

where T is a timestamp and L a lifetime. If cert is presented to P, P can easily verify
(by the encryption kg) that it has been issued by its delegate . And R can further prove
that it is the legitimate “owner” of cert by demonstrating its knowledge of k, using an
authenticator of the form {T"'};_, where T" is a timestamp.

The use of authenticated delegation in our design is illustrated in Figure 9. It cor-
responds to the above discussion (£, A and C in Figure 9 correspond respectively to
P, @ and R in the above discussion), we omit further explanation. The notation k£ =
mutual-authenticate (P, Q)) specifies the execution of a mutual authentication protocol be-

tween P and () that distributes a session key k; and a step of the form P * Q) : M specifies
that message M is sent by P to () via channel k. Also, in our context of authorization, we
refer to the delegation key k, and its delegation certificate as an authorization key and an
authorization certificate respectively.

6 Discussion and Related Work

There are two central ideas underlying our design: (1) The use of GACL as a common
representation for authorization requirements. (2) The use of authenticated delegation to
effect authorization offloading from an end server to an authorization server.

The major strength of GACL is its expressiveness and the availability of a precise se-
mantics. Its expressiveness is particularly useful in specifying authorization requirements

23

(1) C : generate new nonce ng

(2) C —F : (e

(3) C : generate new nonce ng

(4) EF -5 = C Eneng

(5) S : generate new session key k

(6) S — F : {nE7k07C}k§17{{ncvnEvchvk}kgl}kE
(7) EF - C {{nc,nE,C,E,k‘}kgl}kC

(8) C — FE : {ngl

In step (1), C' generates a new nonce nc. In step (2), C informs F of its intention to
establish a secure connection by sending its name along with a nonce n¢ to E. In step (3),
I generates its own nonce ng. In step (4), £ forwards C’s information together with its
own name and nonce ng to S to obtain a new session key. In step (5), S generates a new
session key k for communication between C' and F. In step (6), S replies with a public
key certificate for C' and a signed statement containing the key k, ng, ng and the names
of both €' and F. The signed statement is needed for C' to be convinced that the session
key k actually came from S (not E’s own creation). The statement says that k is a key
generated by S for a new communication between €' and F identified by ng and ng. The
binding of £ and ng in the statement assures F that k is fresh; similarly, the binding of &
and n¢ assures ' the same. In step (7), I forwards the signed statement to C' using the
public key of C' it extracts from C’s public key certificate. In step (8), C' replies with ng
encrypted using the new session key k. This authenticates C' to F.

Authentication technology is still evolving. The choice of which one to use depends
on many factors. We have structured our design in a modular way. Thus, any mutual au-
thentication protocol that provides an authenticated, integrity-protected and secret channel
would suffice. Indeed, any of the existing authentication systems could have been used (e.g.,
[12, 17, 18, 19]).

5.2 Authenticated Delegation

The basic idea of an authenticated delegation is fairly straightforward. Consider two pro-
cesses P and (). After performing mutual authentication, P and) share a secret channel
kT If P wants to delegate to (), it can generate a new secret key k; and send it to @ via
channel k. Since channel k is integrity-protected and secret, only) can receive ky. Thus,
any message later received by P that has been encrypted by k;y must have come from @,
and can be accepted by P as according to the delegation.

Indeed, @) can further delegate to another process R by generating a new delegation key
kq and providing R with k, and a delegation certificate. A delegation certificate is of the

17For simplicity, we use the session key distributed in the mutual authentication to refer to the channel.

22

1. A special subject identifier OWNER can be introduced. This stands for the owner of
an object. It can be interpreted as a mapping from ObjID to a SubjExpr that does not
contain negation. With the use of OWNER, a new declaration, namely, “owner”, can
be introduced. This specifies that if a request comes from the owner of an object o,
then evaluation of gacl o should start by first examining entries concerning OWNER
first. In other words, if “owner” is declared, OWNER entries take precedence over
other entries in a gacl.

2. In the semantics presented, there is no built-in scheme for resolving inconsistent au-
thorizations for an unordered gacl. This can be easily remedied if conflict resolution
information can be explicitly stated in the declaration section. This is achieved by
using preference declarations. Two types of preference declaration can be used: op-
eration preference and group preference. An example of an operation preference is
—R > R, which specifies that a negative authorization on R should be preferred over
a positive one. An example of a group preference is Gy > Gy, which says that an
element in Gy N Gy should obey an authorization from G instead of a contradictory
one (if exists) from Gg.

5 Protocols Revisited

In this section, we provide more details on the protocols in our design. In particular, we
present abstract specifications for some of the protocols. These specifications allow us to
convey the key ideas behind these protocols without restricting implementation flexibility.
However, due to length limitation, we omit discussion on the practical details of these
protocols.

5.1 Mutual Authentication

Our authorization service assumes the availability of an underlying authentication substrate.
This authentication substrate provides two basic functions: (1) to authenticate users at
initial sign on; (2) to provide mutual authentication between processes. The initial sign
on returns a set of initial credentials to a user. For example, the set of initial credentials
typically includes a certificate signed by an authentication server that contains the user id,
the network address of the sign on host, a timestamp and a lifetime. All clients invoked by
the user would inherit this initial set of credentials.

We prefer to use a public key based system.!® Since the initial sign on procedure is
heavily dependent on the hardware configuration, we discuss only the client-server mutual
authentication protocol.

The following shows the basic client-server mutual authentication protocol: (C' is a
client, £/ a server, and 5 an authentication server. kyx and k)_(l denote respectively the
public and private key of X.)

Y$This preference is mainly due to the broadcast ability of public key, which allows easier integration of
diverse servers (e.g., group servers, authentication servers and authorization servers).

21

Both ST and [are empty, while D = {default :: ([a],[R]), default :: ([a],[-R])}. Since ST
is empty, A; = 0. Now consider Ay. It can easily be checked that both {([{a}],[RT])} and
{({a}],[R7])} are closed under D, and neither is smaller than the other. Thus A, does
not exist. This is to be expected because both defaults are activated on demand and they
specify contradictory authorizations.

4.4 Evaluation

A client request can be abstractly represented as a triple (s, op, o) where s is the identity
of the client, op the access requested and o the object on which access op is desired. Given
a request req = (s,0p,0) and a gacl for o such that semantics(o) # error, req is granted
if there exists ([9], [op]) € semantics(o) such that s € S; req is denied if there exists
([S],[op]) € semantics(o) such that s € 55 and fail is returned otherwise.

Thus, a naive way of evaluating authorization is to first compute the semantics of a
gacl and then apply the above. This, however, is highly inefficient unless the semantics
is relatively static and a pre-compilation has been done. In general, only a small part of
a gacl should be examined (e.g., the entries mentioning op for a request (s,0p,0)) and a
Prolog-type pattern matching algorithm can be used.!®

Another way to speed up evaluation is to reduce group membership checks. As an
example, consider the following gacl:

o declare ordered

list ([G1],[=R1); {[Ga,[R]), ([Gs].[R])

and a request (a, R,0). Since this is an ordered gacl, evaluation proceeds sequentially from
the first entry to the last. It is easy to see that a grant can be authorized if a can provide in
order a nonmembership certificate for Gy, and then a membership certificate for either Go
or Gz. Otherwise, a denial or a failure should be returned. Thus at least two membership
checks are needed, which, in the worst case, can require two rounds of message exchanges.
However, if information on group relationships are available, some savings are possible. For
example, if it is known that Gy C Gy, then the evaluation can skip over the G entry all
together and proceed directly to the Gz entry. Such group relationship information can
be provided as auxiliary information in an authorization specification or separately by the
group servers.

4.5 Extensions

In this subsection, we briefly describe several extensions to the GACL language. Most of
these relate to new types of declaration.

15We note here that since a gacl may mention other gacl in its entries (e.g.,in EntryHead or in EntryBody
in a inheritance property), the evaluation process may need to examine parts of more than one gacl. This
is similar to Prolog as well, in that the firing of a rule r may induce the firing of other rules corresponding
to the subgoals of r.

20

function UnorderedGACL (obj : ObjID) : set of Authorization {
declare A, A, : set of Authorization
SI,D,I:GList

objlist := simplify(obj, objlist);
ST := {e € objlist | body(e) € STriple or body(e) is an always inherit}
D = {e € objlist | body(e) € DTriple}
I = {e € objlist | body(e) is a demand inherit}
Ajq := smallest set of Authorization closed under ST;
if A, is inconsistent

return error;
As := smallest set of Authorization containing A; and closed under ST U D U I;
if A5 is undefined or inconsistent

return error;
else

return A,;

end;

Figure 8: Unordered gacl

Case 2. body(e) = always inherit o :: p
expand(p) N semantics(o) C A;
Case 3. body(e) = default :: p
expand(p) — AT C A;
Case 4. body(e) = demand inherit o :: p
(expand(p) N semantics(o)) — AT C A.
A is closed under a set F of GACLEntry’s if A is closed under each element of F.

Referring back to Figure 8, we note that A; must exist. This is because if two set of
authorizations A and A’ satisfy p, then A N A’ also satisfies p. From this, we can deduce
that if both A and A’ are closed under a GACLEntry e € S1I, then AN A’ is also closed
under e.!? Thus A4, can be obtained by intersecting the collection of all sets of authorization

closed under STI.

Ay, however, may not exist; and even if it does, may be inconsistent. As an example,

consider the following gacl:

o declare

list default::([a],[R]), default::([a],[—R])

M Technically, we need to show this for an arbitrary collection of sets, instead of just two sets.

19

We say that a gacl o depends on another gacl o if there exist a GACLEntry in o whose
EntryHead contains a STriple that refers to o’. An authorization specification is well-formed
if no gacl o transitively depends on itself. Our semantics is only well-defined for well-formed
authorization specifications.

A similar circularity problem can also surface in handling inheritance. If gacl o inherits
from gacl o’ and vice versa, an infinite recursion would result via the function expand. We
can disallow this by also defining that o depends on o' if o inherits from o’. Thus a well-
formed authorization specification does not have recursive dependence in its closure and
inheritance properties.

After simplification, each GACLEntry in obj.list is examined one by one, proceeding
from the first to the last in the list (cf. loop each construct).

Each GACLEntry belongs to one of three types, STriple, DTriple and I'Triple, depending
on its EntryBody. The handling of STriple and DTriple is essentially the same.!® In each
case, the new authorizations represented by an entry are given by expand(p) (where p is
the SubjOpPair part of the EntryBody), and are merged into A after intersecting with
AY. The intersection guarantees that no conflicting authorizations from those already in
A would be added. In other words, authorizations already in A take precedence over new
authorizations. That is, conflict resolution is based on ordering.

For the case of Itriple, we only want to merge in authorizations represented by p that also
belongs to the semantics of objm(t). This is achieved by first “filtering” what is returned
by exzpand(p) through the semantics of objm(t) using an intersection before merging them
into A.

Unordered gacl

A procedure for computing the semantics of an unordered gacl is shown in Figure 8. We
explain the steps here.

First, as in the case of ordered gacl, we simplify the list part by calling sempli fy. Then
we separate out the GACLEntry’s into three different groups. The first group S7 contains
entries that should always be considered. The second group D contains all of the default
entries, i.e., entries that should be considered only on demand. Similarly, the third group I
contains inheritance entries that are only considered on demand.

As we mentioned earlier, the entries of an unordered gacl should be examined “together”
to determine authorization. This is formalized by the notion of a closed set of authorizations
we define below.

Let A be a set of authorizations and e a GACLEntry. We say that A is closed under e
if the following holds: If for all p : SubjOpPair € head(e), A satisfies p, then

Case 1. body(e) € STriple
A satisfies body(e);

13This confirms our earlier statement that in an ordered list, default entries are mainly for clarification
purposes.

18

function OrderedGACL (obj : ObjID) : set of Authorization {
declare A :set of Authorization
A:=0;
objlist := simplify(obj, obj list)
loop each e € obj.list do
if 3 h : SubjOpPair € head(e) such that A does not satisfy h
next;
case body(e) of
STriple: let body(e) = obj :: p;
A= AU (expand(p) N AY);
DTriple: let body(e) = default :: p;
A= AU (expand(p) N AY);
ITriple: let body(e) = inherit o :: p;
A := AU (expand(p) N semantics(o) N AY);
end;

bl

end;

return A;

Figure 7: Ordered gacl

First, the gacl is simplified by calling simpli fy, which removes all disabled entries and
simplifies the EntryHead of each enabled entry. We note that circularity can result if gacl’s
mutually “depend” on one another. As an example, consider the following pairs of gacl’s
for object oy and os:

01 declare ordered

list oz :: ([b], [W]) = ([b],[W])
09 declare ordered

list oy :: ([al, [R]) = ([a],[R])

In constructing the semantics of gacl o1, the semantics of gacl oy is needed for determining
whether the only GACLEntry in oy is enabled. Therefore, the semantics of gacl o, must be
available before that of gacl o;. However, by a similar argument, the semantics of gacl oy is
needed to determine the semantics of gacl op. This circularity results in an infinite recursion
in our procedural semantics. There are two solutions to this problem: (1) The semantics can
be modified to use an iterative incremental construction that terminates when no increment
is observed. In other words, the procedure allows the semantics of 01 and o3 to be computed
together in an iterative manner. (2) A syntactic restriction that forbids such circularity.
We opted for solution (2) as it is less error-prone and much easier to comprehend for an
authorization administrator.

17

function members (s : SubjExpr) : set of C'Ind {
if s € CmpdSubj
let s =s1 A ... A sy
return {i; A ... A i, | i1 € members(sy),... i, € members(sy)};
else
case s of
Individual: return {s};
GrouplID: return grpmember(s);
*: return C'Ind;
—s’ return C'Ind — members(s');

function expand (p : SubjOpPair) : set of Authorization {
declare 5 :set of SubjOpPair; A : set of Authorization
let p = ([subjlist], [oplist]};
S = {{[s],[op]) | s € subjlist, op € oplist};
4= {{{0]. [op]) | op € OP}.
for each ([s], [ep]) € S do
= (A = {([&], [op]) | {[K], [op]) € A})
N U {{[members(s) U R], [op]) | ([E], [op]) € A};
} return {([X], [y]) € A | X # 0}

function simplify (obj : ObjID; ! : GList) : GList {
declare /: GList
loop each e €1 do
if e is disabled
next;
remove from head all p # T € Pred;
remove from head all ¢t € STriple such that obj # objm(t);
£:=1{ head = body;
end;
return ¢,

Figure 6: Some Basic Functions

Ordered gacl

A procedure for computing the semantics of an ordered gacl is shown in Figure 7. In the
following, we briefly explain the steps involved.

16

inconsistent if it contains contradictory authorizations. Whether a gacl defines a consistent
set of authorizations depends on the mappings grpmember and ®, and hence cannot be
determined statically in general.

A gacl is ordered if “ordered” is in its declaration; otherwise it is unordered. The
semantics of ordered gacl and unordered gacl are defined differently, and are presented
separately below. The semantics to be presented is procedural in nature. It is simpler, more
intuitive and closer to implementation than a declarative semantic, though a declarative (and
possibly more complicated) one could have been given by translating the GACL language
to a logical language. To sum up, given a gacl obj, we define:

semantics (obj) = { OrderedGACL (obj) if ordered € obj.declare
UnorderedGACL (0bj) otherwise
where definitions of the procedures OrderedGAC L and UnorderedGAC L are given below.

We next introduce a few functions that are needed later in our definition of semantics.
These functions are shown in Figure 6. The function members, when given a SubjExpr s
returns a set of compound individuals denoted by s. The function expand takes a STriple
t and returns the set of authorizations specified by ¢t. We provide here some example
applications of members and expand. Suppose o € ObjID, G € GroupID, R € OplD,
Ind = {a,b,c} and grpmember(G) = {b,c}, Then members(a A G) ={a A b,a A ¢} and
copand({fa,a A Gl [-R])) = {{[{a,a A b,a A c}].[R])}.

Let A be a set of authorizations. Let p € SubjOpPair. We say A satisfies p if
expand(p) C A.

Given a GACLEntry e in a gacl obj, we say e is disabled if there exists a Pred p €
head(e) such that ®(p) = false or there exists a STriple ¢t € head(e) such that obj #
objm(t) and semantics(objm(t)) does not satisfy pair(t); otherwise it is enabled. Disabled
GACLEntry’s do not contribute to the semantics and can be eliminated. We can simplify
a list of GACLEntry by removing from it all disabled entries and simplify the EntryHead
of enabled ones. This is precisely what the function semplify does. It takes a GList [and
returns a new GList containing only enabled entries whose EntryHead has been simplified.
The parameter obj is needed to identify those GACLEntry’s that refer to other gacl’s. Note
that after simplifying GList [of gacl obj, all STriple’s in the EntryHead of a GACLEntry
in [should contain obj as the object modifier.

Given a consistent set A of authorizations, the inverse of A, denoted by A’, is defined
as the set of authorizations

{51 [op]) [(51, [o7]) € A}

and the complement of A, denoted by A®, is defined as the set of authorizations

([ST; [op]) S is the largest subset of C'Ind such that
P (157, [opl) € A then S0 57 = 0

We note that, unlike ordinary set complements, A U A® may not be equal to C'Ind. And
neither does (A“)“ = A hold.

15

¢ All object modifiers occurring outside of an ITriple must name the object associated
with the current gacl, and hence can be omitted by convention.

o If “ordered” is declared in a gacl, then the modifiers always and demand in front of
inherit can be omitted.

We also allow a shorthand notation using variables. A GACLEntry containing variables
is interpreted as standing for the set of GACLEntry’s obtained by instantiating the vari-
ables with all possible terms of compatible type. For example, if SubjID={Alice, Dept},
then the first GACLEntry of P.doc in Figure 4 would stand for the set of GACLEn-
try’s {P.exe :: ([Alice],[X]) = ([Alice],[R]), P.exe :: ([Dept],[X]) = ([Dept],[R]), P.exe ::
([Alice A Dept],[X]) = ([Alice A Dept], [R])}.

Also, in the grammar, the EntryHead part of a GACLEntry is optional. But to simplify
the presentation of semantics in the next subsection, it would be useful to assume that the
EntryHead is always present. Thus, we adopt the following convention: The EntryHead
of a GACLEntry is always understood to contain a fixed conjunct T, where T is a new
distinguished predicate symbol in Pred. That is, if e is a GACLEntry without an EntryHead,
it should be interpreted instead as T = e; and for a GACLEntry e that has an nonempty
EntryHead, it should be interpreted as head(e) A T = body(e).

An authorization specification is a finite set of gacl’s.

We note that the GACL language allows direct expression of closure, default and inher-
itance properties [20] via the use of its “=”, default and inherit constructs respectively.

4.3 Semantics

A gacl specifies a set of authorizations. To define a semantics for GACL, we need to define
what is an authorization and how to construct the set of authorizations specified by a gacl.

We first introduce a set Ind of individuals; this set is the semantic counterpart of the
set IndID. Each element of IndID names a unique individual in Ind. Similarly, we define a
set Op = {rT,r~ | r € OpID}. Thus, if » € OpID, then r names r* and —r names r~. In
the following, an OpExpr and the name it stands is used interchangeably. As is the case
with OpID’s, we say 1 and r~ are complementary, and define ¥ = 7= and vice versa. A
compound individual is an expression of the form iy A ... A4, (n > 1) where each i belongs
to Ind. Given Ind, we denote the set of all compound individuals by C'Ind. We note that
Ind C ClInd.

We assume that the following mappings are given: (1) A mapping grpmember :
GrouplD — PowerSet(Ind). This gives the membership of each group. (2) A mapping
® : Pred — {true,false} with the property that ®(T) = true.

An authorization is an expression of the form ([.S], [op]), where S C C'Ind and op € Op.
For example, ([{a A b,c}],[RT]) is an authorization. This says that both the compound
individual a A b and the individual ¢ are allowed to perform operation R on the object that
is associated with this authorization. We say authorizations ([S], [op]) and ([5'],[op']) are
contradictory if S NS #) and op and op’ are complementary. A set of authorizations is

14

<SimplSubj> = [“=7]<SubjID> | [“="]<GroupID>

<CmpdSubj> = <SimplSubj> {“A” <SimplSubj>}
<SubjExpr> = [“="]** | <SimplSubj> | <CmpdSubj>
<SubjList> = <SubjExpr> {“” <SubjExpr>}

<OpExpr> = [“="1* | [“="]<OpID>

<OpList> = <OpExpr> {“” <OpExpr>}

<SubjOpPair> = X[’ <SubjList> “],[” <OpList> “])”
<STriple> = <ObjID> “:” <SubjOpPair>

<DTriple> = “default::” <SubjOpPair>

<ITriple> = (“always” | “demand”) “inherit” <STriple>
<EntryHead> = (<STriple> | <Pred>) { “A” <EntryHead> }
<EntryBody> = <STriple> | <DTriple> | <ITriple>
<GACLEntry> := [<EntryHead> “="] <EntryBody>

<DCL> = { (ordered | anonymous) }

<GList> = <GACLEntry> {“” <GACLEntry>}

<gacl> = <ObjID> “declare” <DCL>
“list” <GList>

Figure 5: A Grammar for GACL

We try to keep the grammar as simple as possible. In particular, we have not encoded a
number of syntactic restrictions into the grammar to avoid complicating it. They are listed
in the following instead. The motivations for these restrictions will become clear when we
present the semantics of GACL in the next subsection.

Terminology. The ObjID in a STriple is called an object modifier. Given a STriple ¢, we
denote its object modifier by objm(t) and its SubjOpPair part by pair(t). Two OpExpr’s are
complementary if one is the negation of the other, e.g., R and —R are complementary. Given
an OpExpr op, we denote the OpExpr complementary to op by op. Let e be a GACLEntry,
we denote by head(e) and body(e) respectively the EntryHead part (if present) and the
EntryBody part of e. Given a gacl obj, we will refer to its declaration (i.e., DCL part) as
obj.declare and its list (i.e., GList) part as obj.list. O

Here are the restrictions on the grammar:

e An OpList cannot contains a pair of complementary OplD’s.

o If “*” occurs in a SubjList or an OpList, then it must be the only expression. In

addition, a “*” in OpList should be understood as an abbreviation for the list of all
OpID’s. That is, if OpID = {R,W}, then an occurrence of “*” in an OpList stands
for R,W while an occurrence of “—*” stands for —R, —W.

o A gacl cannot inherit from itself. That is, the object modifier in an ITriple must name
an ObjID different from the object associated with the current gacl.

13

is denied read access to Doc will inherit the same denial to P.doc. Entry 4 specifies that
any subject who has write access to Doc can inherit on demand the same access to P.doc.
That is, a demand inheritance is activated only if no other write authorization has been
specified in other entries. For example, members of Dept would not be able to inherit their
write access to Doc (even if they do have it) because of entry 2. Note that gacl P.doc is
unordered, thus its entries must be considered together in making a determination. For
example, if Alice has execute right to P.exe (cf. entry 1) but is denied read access to Doc
(cf. entry 3), then a read request from Alice for P.doc would generate an error as entries 1
and 3 together specify contradictory read authorizations for Alice.

The “anonymous” declaration does not affect the semantics of authorization. It indicates
that an end server is willing to accept authorizations certified by an authorization server
even without precise knowledge of the client making the request. For example, if a client
other than Alice or Bob presents itself only as a member of Dept without saying who it is,
it will still be acceptable to the end server and be granted read access.

Consider gacl P.srcin Figure 4. Entry 1 specifies that members of Research can read and
write P.src. Entry 2 specifies that any subject not belonging to Dept is denied write access
to P.src. Again, gacl P.src is unordered. Thus a write request for P.src from any member of
Research who is outside of Dept would generate an error.

Consider gacl Doc in Figure 4. Entry 1 specifies that all members of Dept have read
access to Doc. Entry 2 illustrates authorizations for compound subjects. A compound
subject can informally be understood as a subject who has authority to act as each of its
component subjects. Thus, entry 2 specifies that any subject who has authority to act both
as DocSys and as a member of Research can be granted all accesses to Doc. Typically, a
compound subject is constructed by delegation. For example, a member of Research who has
obtained delegation from DocSys to act on behalf of DocSys is an instance of the compound
subject DocSys A Research. Entry 3 specifies that by default, every subject should be
denied all accesses. Since “ordered” is declared, this default serves as a negative catch-all,
and provides the “denial by default” semantics of ordinary ACL. Defaults are typically used
in an unordered gacl; its activation is then similar to that of demand inheritance. For an
ordered gacl, the keyword default is optional; it serves as a comment. For example, the
semantics of gacl Doc is unchanged if the default modifier is dropped from entry 3.

4.2 Syntax

We begin with a set ObjID of object identifiers, a set SubjID of subject identifiers, a set
OpID of operation identifiers, and a set Pred of predicate symbols. We assume that SubjlD is
partitioned further into two disjoint sets IndID and GrouplD. The set IndID contains names
for individuals while the set GrouplD contains names for groups. An object identifier names
an object, e.g., a file, a printer. An operation identifier names an operation, e.g., read, write.
Note that not all operations are meaningful on all objects. A predicate symbol denotes a
condition on the system and is possibly monitored by some system monitor.

Each object is uniquely associated with a gacl. For that reason, we simply use an ObjID
to refer to a gacl in the following. A grammar for the syntax of a gacl is given in Figure 5.

12

P.exe declare ordered
list ([Alice,Bob],[—execute]},
([Dept],[execute]),
highload = ([*],[—execute]),
inherit P.src::([*],[write])

P.doc declare anonymous
list P.exe::{[x],[execute]) = ([x],[read]},
([Dept], [write]),
always inherit Doc::([*],[—read]},
demand inherit Doc::([*],[write])

P.src declare
list ([Research],[read,write]},
([—Dept],[—write]}
Doc declare ordered
list ([Dept],[read]},
([DocSys A Research],[*]),
default::([*],[—*])

Figure 4: Specification of an Fxample using GACL

An Example

Consider a set of objects {P.exe, P.doc, P.src, Doc}. P.exe, P.doc and P.src together constitute
a software package with P.exe being the executable, P.doc the documentation and P.src
the source. Doc is a centralized documentation control system in which P.doc is a part.
Alice and Bob are individual users while Research and Dept are groups. DocSys is a server
responsible for maintaining the documentation control system (e.g., performing version
control). Though DocSys is not an actual user, it is considered a user in our design. We
consider only three types of access, namely, read, write and execute. highload is a system
predicate whose (boolean) value is continuously updated by some system component that
monitors the load of the system. For brevity, in the following, we refer to an entry by its
position in the list. For example, with respect to gacl P.src, entry 2 refers to the entry
([—Dept],[—write]).

Consider gacl P.exe in Figure 4. Entries 1 and 2 are similar to those in ordinary ACL.
Entry 1 specifies that both Alice and Bob are not permitted to execute P.exe, while entry 2
specifies that members of group Dept are allowed to execute P.exe. Entry 3 specifies that
if the value of highload is true, then no subject is allowed to execute P.exe. (* stands for
all subjects.) Entry 4 specifies that any subject who can write P.src can inherit the same
access (i.e., write) to P.exe. Since “ordered” is declared, these entries should be examined
in order from entries 1 to 4 in determining authorization. For example, Alice will be denied
execute right for P.exe even if she belongs to Dept or has write access to P.src.

Consider gacl P.doc in Figure 4. Entry 1 specifies that any subject who has execute right
for P.exe can also read P.doc. (x is a variable that can be instantiated to any subject.) Entry
2 specifies that members of Dept cannot write P.doc. Entry 3 specifies that any subject who

11

We believe that ACL is the right abstraction to use in an authorization service. However,
it must be extended to be effective. To this end, we propose the GACL language. GACL is
much more expressive than ordinary ACL. The main features of GACL include the following;:

o [t provides constructs that can express in a straightforward way most commonly en-
countered authorization requirements. For example, the structural properties, closure,
inheritance and defaults, identified in [20], can be directly expressed in GACL.

o It allows incomplete authorization to be specified. That is, it is possible that for some
request, neither grant nor denial can be determined. A failure is returned in this case.
This is preferred over the “denial by default” style of authorization because a failure
may suggest an error in a specification. On the other hand, the language allows an
authorization administrator to explicitly specify a catch-all “denial by default” if so
desired.

e [t has an implementation independent semantics, thus allowing implementations of
varied complexity and permitting interoperability across different authorization servers.

o [t provides a declaration section that gives an authorization administrator additional
flexibility in expressing authorization requirements.

GACL can be viewed as a practical “approximation” of the logical language of policy
base introduced in [20]. We defer a comparison of the two to Section 6. In what follows,
we give an informal introduction to GACL by examples. This hopefully would provide
sufficient background for discussions on the architectural and protocol aspects of our design
in the next two subsections. A complete presentation of GACL with a formal semantics is
given in Section 4.

An example is specified using GACL in Figure 4. FEach gacl is labeled by an object
name and consists of two parts: (1) a declaration part identified by the keyword declare;
and (2) a list part identified by the keyword list.

The declaration part contains a (possibly empty) list of predefined keywords that provide
information for interpreting the gacl. In this paper, we discuss in detail only two such
keywords: “ordered” and “anonymous”. Other keywords are mentioned in Subsection 4.5
on extensions of GACL. An “ordered” declaration specifies that the list part of the gacl
is an ordered list. That is, in determining authorization, its entries should be examined
in a sequential order starting from the first to the last. By default, a gacl is interpreted
as “unordered”. For an unordered gacl, all entries in its list part should be examined
“together” in making an authorization determination. This would be made clearer as we
examine the example more closely below.

The list part contains a list of entries, some of which resemble those of ordinary acl’s,
while others are new. We informally explain their meanings below using the example in
Figure 4.

10

submit certain group certificates to satisfy A, and can be iterative. That is, as A examines
the entries in a particular gacl, it may request that C furnish additional group certificates.!!
Indeed, ' may not be aware of the group certificates that are required until instructed by
A% Hence, several message exchanges may be necessary before an authorization can be
determined.

Clearly, caching could be done to enhance efficiency. Caching and the related issue of
certificate expiration have correctness implications. For example, if cached group certificates
are not invalidated when group membership changes, there may be incorrect grant or denial.
Similarly, an unexpired authorization certificate should be invalidated when the particular
authorization has been revoked. These issues are similar to those in the use of capabilities
[8, 13], and are beyond the scope of this paper. Lastly, a secure update protocol is needed
for F to notify A of any changes in spec.

4 The GACL Language

Terminology. To differentiate between our language of generalized access control list
from a particular generalized access control list, we will refer to the former as GACL and
the latter as gacl. A similar convention (acl and ACL) is adopted in referring to ordinary
access control lists. O

4.1 An Informal Introduction

ACL has long been used for specifying authorization requirements. An acl is typically
associated with an object and consists of a list of pairs; each pair is made up of a subject
identifier and a set of access rights. A subject s is granted access r to object o if and only
if the acl associated with o contains a pair (s, R) such that r € R. Denial is implicit, i.e., it
is implied by the absence of positive authorization in the list. As an example, consider the
following acl for a file f: (Alice and Bob are individuals while Dept is a group)

f: (Alice, {read, write}), (Bob, {read}), (Dept, {write})

This acl specifies that Alice can be granted read and write accesses to f, and denied any
other access to f. Similarly, Bob only has read access while all members in group Dept only
have write access.

The key advantage of ACL is its straightforward semantics which is easy to understand.
However, it is not very expressive. Several extensions have been proposed, e.g., allowing
explicit negative authorizations. Most of these extensions are, however, ad-hoc and have
often been introduced without a well-defined semantics.

" This is commonly known as the push model. A pull model is one in which A itself gathers the relevant
certificates from the group servers. However, it appears to be more desirable to reduce the load of A so that
it does not become a bottleneck, even at the expense of the clients.

12This is typically the case when nonmembership certificates are needed by A.

such as message format, file format and encryption/decryption issues. Our ideas are also
illustrated in Figure 3; for clarity, we have omitted exchanges that involve authentication
servers and service locators. Abstract specifications of protocols discussed here are provided
in Section 5.

When an end server £ (who has elected to offload its authorization) starts up, it lo-
cates (possibly through a service locator) and contracts an authorization server A using a
contracting protocol which performs several functions:

e It mutually authenticates £/ and A, and distributes a new secret session key £ for use
between F and A.

o It establishes a delegation key kg between E and A. The key kg will be used by A to
sign authorization certificates.

e It transfers an authorization specification spec from E to A. spec contains a spec-
ification of authorization requirements written in GACL, and will be used by A to
determine authorization. The integrity of spec is protected by signing it with the
session key k.%

Upon successful contracting, ¥ notifies the service locator that A is its authorization
server. This allows the service locator to direct clients of £ to A first.”

There are two basic approaches to determine authorization using spec: compilation and
interpretation. Compilation refers to the translation of spec into some form of executable
specification that can be directly activated in making authorization decision. Interpretation
refers to the use of a fixed algorithm to examine spec each time an authorization is to be de-
termined. Compilation is preferred if spec is relatively static (e.g., for authorization of fixed
system resources like printers) while interpretation is preferred otherwise. A hybrid of these
alternatives is possible. For example, spec can first be translated into some intermediate
form which can then be interpreted.!®

Before contacting F, a client ' contacts A to obtain the proper authorization. An
authorization is typically in the form of an authorization certificate signed by A using ky
that contains, among other information, an authorization key k, that is only known to C'
(and A of course). C can later submit this certificate to I to obtain the desired service.
Knowledge of k, is used by C' to demonstrate to /2 that the authorization certificate was
indeed obtained from A. This scheme is what we call authenticated delegation. A similar
scheme but with the name proxy is used in [15]. See Section 6 for a comparison of the two
schemes.

A only issues the appropriate authorization certificate to €' after it has determined from
spec that €' can be granted access to E. The determination procedure may require C' to

8This is similar to a zone transfer in DNS, except that authorization data are involved here.

°Such redirection is similar to the use of MX records for mail exchangesin DNS. A major difference
is that mail exchanges are responsible for forwarding mail to their final destinations, while authorization
servers do not forward their decisions directly to end servers.

1%Tndeed, some form of pre-compilation of spec by E before transfer to A is also possible.

Contracting System
Protocol Autho- Information
~¢——— P | rization |-
Server
Authorization A)
Certificate Identity
Credentials,
Identlty Group
Credentials, Certificates
Authorization
Certificate v Group
Certificates
- Group
Server

Figure 3: Message Exchanges in our Design

certificates are requested by clients, and are to be forwarded to the authorization
server together with their requests.

e System monitor — A system monitor tracks the values of system predicates. Typically,
this is done by the monitor as well as a set of processes executing a distributed
algorithm. Such a system monitor, however, cannot be expected to return the precise
value of a system predicate at a particular time due to the asynchronous nature of
distributed computation. Rather, if a system predicate is stable, then the monitor
would eventually return its correct value.

We note that the above servers are only logically disjoint, they could easily be imple-
mented as an integrated server or located on the same machine. To enhance efficiency, these
servers can also be distributed® and/or replicated.” These servers are assumed to be trusted.
For example, a group server is trusted to maintain and hand out correct membership infor-
mation. A standard technique to ensure such trustworthiness is to implement these servers
on dedicated machines that are physically secure (cf. Kerberos [5, 17]).

3.2 Operation and Protocols

In this section, we describe the operational aspects of our design, as well as the protocols we
have devised. Due to length limitation, we will discuss just the the key ideas and omit details

5This refers to the partitioning of a distributed system into subsystems and the assignment of distinct
servers to handle the subsystems [14].

"This of course would bring in a number of standard distributed system problems (e.g., consistency) that
need to be separately addressed.

Authen- . Autho-
o Service Group L. System
tication rization .
Locator Server Monitor
Server Server

End

Client
Server

Figure 2: Distributed Authorization Architecture

procedures registry. It responds to a client’s request with a list of end servers that
implement the requested service, and possibly also a list of authorization servers for the
end servers (for end servers that have elected to offload their authorization functions).

Authentication server — An authentication server performs two basic functions: (1)
To authenticate users during their initial sign-on and supply them with an initial set of
credentials. (2) To enable mutual authentication between clients and servers. We note
that all communications should be authenticated, including those between clients and
servers (e.g., clients and group servers, clients and authorization servers), and those
between servers (e.g., end servers and authorization servers, system monitors and
authorization servers).

Authorization server — An authorization server performs authorization on behalf of
an end server. Each end server can elect to offload its authorization to an authorization
server. To do so, it needs to contract an available authorization server for this purpose.
This requires the use of a contracting protocol. We will say more about this protocol
in the next subsection. An authorization server hands out authorization certificates
to authorized clients. These certificates are to be forwarded by clients to end servers
along with their requests.

Group server — A group server maintains and provides group membership informa-
tion. From the perspective of authorization, its main function is to hand out two
types of certificates: membership and nonmembership certificates. The former asserts
that a client belongs to a particular group while the latter asserts the opposite. These

from an end server must first contact an authorization server (and possibly an authentication
server before that) to obtain authorization.

A separate authorization service offers many advantages: (1) Savings in re-implementation
effort for each end server. (2) End servers are relieved of the task of determining autho-
rization, which can lead to higher throughput. (3) A specialized authorization service can
afford the use of better methods in determining authorization than would be justified for
individual end servers. (4) An authorization service can be verified to be secure once and for
all. This reduces the complexity in verifying the security of an end service. (5) Anonymity
(if desired) can be achieved with the use of a trusted authorization service. See Section 3.2.
(6) A uniform authorization service can contribute to the uniformity of accounting and au-
diting functions, hence facilitating the construction of distributed accounting and auditing
services.

Two key problems need to be addressed in constructing a distributed authorization
service:

e Representation problem — The commonalities in authorization requirements of end
servers should be identified, and an appropriate representation abstraction designed
to capture these commonalities. In our research, we adopt a language approach.
Our specification language GACL can be used to specify most commonly encountered
authorization requirements, and efficient algorithms can be constructed for their eval-
uation.

o Protocol design problem — Secure protocols are needed for offloading authorization
from end servers to authorization servers, and for interactions among clients, autho-
rization servers and end servers. These protocols make transparent the decoupling of
authorization services from end services.

In Sections 4 and 5 respectively, we describe in details how the above two problems are
addressed in our design. But first in the next section, we give an overview of our design.

3 Overview of Our Design

3.1 Architecture

Figure 2 shows the architecture of our distributed authorization service. Below, we give
a functional description of the various servers in the figure. An operational description of
these servers is provided in Subsection 3.2.

e Service Locator — A service locator assists clients in locating servers implementing
a particular service. A service locator obtains such information either statically from

some configuration file or dynamically from registration messages sent out by active

5

servers. A service locator functions in a manner similar to a name server® or a remote

®Indeed, it can be easily implemented as part of an existing name server mechanism (e.g., DNS) by
including additional forms of resource records.

registry of remote procedures. The function register returns a handle chan for a channel on
which the server should listen for client requests. In line (2), the function listen returns the
next message arriving from chan. But if no message is available, it blocks until a message
arrives. Fach message represents a client request. The specific format of a client request
is application specific. But it should contain information on the identity of a client, the
service desired and possibly other information needed by the server to provide the service.

The function getid in line (3) returns the identity of the client in msg, and the func-
tion getreq in line (4) returns the service requested by the client. The return value req
typically specifies an operation to be performed, an object on which the operation should
be performed, and possibly a list of arguments providing information for carrying out the
operation. The types of objects and the operations allowed are application specific. Using
such information, authorization is determined by calling the function authorized in line
(5). If authorized returns true (indicating grant), the server proceeds to satisfy the request
by calling function do-operation in line (6). Accounting is performed by calling function
update-account in line (7). If authorized returns false (indicating denial), a notice is sent to
the client in line (8). Lastly, logging is done in line (9) by function log.

2.2 Core Services

The functions getid, authorized, update-account and log implement solutions to the four
problems discussed in Introduction. In most existing systems, each service performs its own
authentication, authorization, accounting and logging.

A better approach would be to factor these functions out and implement them sepa-
rately as a set of core services that can in turn be used as a basis for building other (core
or end) services. In other words, we want to offload as many common functionalities as
possible from user-oriented end servers to system-oriented core servers. Clearly, the success
of this approach depends heavily upon whether these functions are generic across different
applications.

Among these functions, getid is the most generic. Specifically, there exist notions of
identity? that are applicable to most services. Indeed, much success has been achieved
in abstracting getid and isolating it as a separate distributed authentication service (e.g.,
[5, 17]). There is even a proposal to standardize an application program interface for a
distributed authentication service [10].

Progress on abstracting the other functions has been much slower. This may be at-
tributed to a perception that these functions are not as generic. For example, authorization
is often perceived to be tightly coupled to an application and hence cannot be easily ab-
stracted.

2.3 Distributed Authorization Service

Our research aims at abstracting and separating out the function authorized as a distributed
core service, which performs authorization on behalf of end servers. A client desiring service

*Some examples are GIDs (global unique ids) [7] and domain names [11].

service S
(1) chan = register(S, Service-Locator, . . .);
(2) while msg = listen(chan,...) do
(3) id := getid(msg, . ..);
(4) req 1= getreq(msyg, ...);
(5) if authorized(id, req, errcode, ..)
(6) do-operation(id, req, . . .);
(7) update-account(id, req, . ..);

else

(8) reply(chan, errcode, .. .);
end;

(9) log(id, req,...);

end;

endservice S

Figure 1: Structure of a Typical Service

and semantics of the language. The semantics we use is procedural in nature and hence
is fairly close to implementation. In Section 5, we present abstract specifications of the
protocols we introduced in Section 3. In particular, we describe the use of authenticated
delegation in our design. In Section 6, we compare our approach to related proposals. In
Section 7, we draw some conclusions and discuss future directions of our work.

2 Motivation for Distributed Authorization

To obtain a service, a client may need to contact a number of servers. For example, to
obtain a file from a file service, a client may need to first contact an authentication server
to obtain the necessary credentials. In the following, we will refer to a service that a client
would ultimately like to obtain as an end service; and a server implementing such a service

as an end server.?

2.1 End Services

To better understand the issues we address in this paper, we begin by examining the typical
structure of a distributed service (see Figure 1).%

The structure should be self-explanatory. We provide just a brief description here. In
line (1), the server begins by registering itself with a well-known service locator to announce
its availability to potential clients. A service locator can be a distributed name server or a

2This terminology is adapted from [15], where the notion of an end server is defined in the context of
a proxy, and is much more specific. Our notion of an end server is informal, and is intended mainly for
differentiating user-oriented services from system-oriented services.

*For simplicity, we consider an sterative server. A parallel server has a similar structure.

o Accounting— Consumption of service incurs a cost, monetary or otherwise. The cost
is payable by a client as soon as the service has been delivered or a service agreement
has been reached.

o Auditing — On-line scrutiny of all interactions between clients and servers may not
be desirable or feasible. Thus selective client-server interactions may be logged for
possible subsequent off-line examination. For example, if security violation is detected,
a log can be used to reconstruct the sequence of interactions that led up to the
violation.

Among these problems, authentication is the most basic, as well as the most studied
one. Much work has recently been done on authentication [3, 6, 9, 19]. Its main issues are
fairly well-understood. In fact, several implementations of distributed authentication are
already available, e.g., Kerberos from MIT [5, 17] (which has also been integrated as part
of the OSF DCE Security Service [16]), SPX [18] from DEC, and KryptoKnight [12] from
IBM.

On the other hand, the problems of authorization, accounting and auditing have re-
mained relatively unexplored. In this paper, we study the problem of distributed autho-
rization. Specifically, we examine the major issues involved in implementing a distributed
authorization service, and propose a specific design that addresses these issues.

Our design is based on two key ideas, namely, (1) a language-based approach (called
generalized access control list or GACL in short) for specifying authorizations; and (2)
authenticated delegation. GACL is a significant extension of ordinary ACL. In particular,
it provides constructs for explicitly stating inheritance and defaults. The expressiveness of
GACL allows authorization requirements of an end server to be succinctly and uniformly
specified.

Authenticated delegation allows an end server to securely delegate its authorization
functions to specialized authorization servers. The concept of authenticated delegation is
not new. For example, it has been discussed in one form or another in [6, 9, 15]. However,
most of these works, with the notable exception of [15], concentrate on the authentication
aspect. Our study of authenticated delegation is for authorization purpose, and is similar
to the notion of prozy in [15].

Our goal is to construct a distributed authorization service which parallels existing dis-
tributed authentication services. The design presented in this paper represents our attempt
in exploring the theory and practice of constructing such a service. Since our focus is on
authorization, we will discuss accounting and auditing issues only to the extent that they
are relevant to authorization.

The balance of this paper is organized as follows. In Section 2, we motivate and identify
the major issues of distributed authorization. In Section 3, we informally describe the
architecture of our design and the operation of various protocols.! In Section 4, we first
give an informal introduction to the language GACL. Then we present the formal syntax

1A preliminary overview of our architecture, protocols and language has been presented in an extended
abstract [21].

Designing a Distributed Authorization Service”

Thomas Y.C. Woo Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

Abstract

We present the design of a distributed authorization service which parallels existing
distributed authentication services. Such a service would operate on top of an authen-
tication substrate. There are two central ideas underlying our design: (1) The use of
a language, called generalized access control list (GACL), as a common representation
for authorization requirements. (2) The use of authenticated delegation to effect au-
thorization offloading from an end server to an authorization server. We present the
syntax and semantics of GACL, and illustrate how it can be used to specify authoriza-
tion requirements that cannot be easily specified by ordinary ACL. We also describe
the protocols in our design.

1 Introduction

Advances in networking have transformed distributed systems into a marketplace of services.
Some of the standard services in today’s distributed systems include file service, print
service, electronic mail service, and so on. Apart from these “system” services, network
users are beginning to offer their own services as well. Typically, these “user” services are
more specialized and personal, e.g., financial transactions service.

Security is an important concern in the design and implementation of such services.
Design considerations include the following (among others): (1) service is only rendered
to authorized clients; (2) proper charges are levied on services performed; and (3) correct
records are kept for all services requested and delivered. These considerations give rise to
the following problems:

o Authentication and authorization — Before services can be rendered, a server must
be ascertained of a client’s identity and determine that the client’s request can be
honored according to some specified authorization policy. Similarly, a client needs to
affirm the legitimacy of a server before proceeding with the service.

*Research supported in part by NSA Computer Security University Research Program under contract
no. MDA 904-92-C-5150 and by National Science Foundation grant no. NCR-9004464.

