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Abstract

The sentry of a concurrent program P is a program that observes the execution of P, and
issues a warning if P does not behave correctly with respect to a given set of logical prop-
erties (due to a programming error or a failure). The synchronization between the program
and sentry is such that the program never waits for the sentry, the shared storage between
them is very small (in fact linear in the number of program variables being observed), and
the snapshots read by the sentry are consistent. To satisfy these three requirements, some
snapshots may be overwritten by the program before being read by the sentry. We develop
a family of algorithms that preserve these requirements for properties involving scalar vari-
ables, then extend the algorithms to permit the observation of large data structures without
additional overhead. We describe in detail the annotation language with which the properties
can be expressed, and a prototype system that we have implemented to generate the sentry
automatically for any given concurrent C program. Finally, we present experimental results
that show that the overhead incurred by the sentry is on average no worse than 10% for
snapshots of up to 6 variables; and that the loss of snapshots prevents the sentry’s detection
of an single violation in less than 4% of the cases. Recurring errors are detected at a rate of
100%.

Keywords: run-time monitoring, assertion checking, parallel and distributed systems.

1 Introduction

The sentry of a concurrent program P is a program that observes the execution of P and

determines whether P is behaving “correctly”. The correct behavior of P is determined by the
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execution’s compliance with specified logical properties of P. A sentry can observe two classes
of properties—safety properties and progress properties. Safety properties define what program
states are valid as P executes. Progress properties define a set of state transitions that will occur

during execution.

In designing an observer to observe the logical properties of programs, a compromise has
to be made between two conflicting requirements: the precision of observation on one hand,
and the cost of observation on the other. For example, an observer that keeps detailed traces
of program execution requires a large amount of storage and may greatly reduce the speed of
program execution. In general, observers that provide high precision are costly in terms of

needed storage and execution speed.

The sentry is a low precision, low cost observer, that evaluates safety and progress properties
by reading snapshots of the program state. The low cost of the sentry system is achieved by

requiring that the observer, or the sentry, satisfy the following;:

e Linear storage:
The amount of shared storage between the program being observed and the sentry

is small, in fact linear in the number of program variables being observed.

o Wait freedom:
The program being observed never waits for the sentry. Thus, the execution speed

of the program is completely independent of the execution speed of the sentry.

o Mutual exclusion:
Access to the shared storage is synchronized to guarantee that every snapshot read

by the sentry is consistent.

Most observer systems do not satisfy one or more of these requirements. For example, real-
time monitors [6] [9] do not satisfy the linear-storage requirement. Recovery block systems [2]
[10] do not satisfy the wait-freedom requirement. Neither the linear-storage requirement nor the
wait-freedom requirement is satisfied in many low-level debuggers [11][16] or in-line assertion

checkers such as Anna [12] and Gypsy[7].

In order to satisfy these requirements in the sentry system, the program being observed is
allowed to overwrite a snapshot in the shared storage (between the program and the sentry),
before the sentry reads that snapshot. In other words, some snapshots can be lost before they

are checked by the sentry, hence the low precision of our system.

Despite the loss of observations, the sentry system has the following correctness properties:



e Soundness
If the sentry detects a violation, then a violation has occurred in the program

execution.

e Completeness
If a violation occurs and persists in the program execution, then the sentry will

detect the violation.

Although snapshots can be lost in the sentry system, our experimental results demonstrate
that the loss of a snapshot can be compensated for by subsequent snapshots in most cases. lL.e. if
a snapshot that reveals a violation is lost, the probability that subsequent snapshots will reveal

the same or other violations is very high.

As mentioned earlier, the sentry observes both safety and progress properties. These prop-
erties can be either local or global. A property of program P is local if it refers to variables in
a single process in P. A property of P is global if it refers to variables in two or more processes
in P. The sentry that observes the correctness of local properties is called a local sentry. The

sentry that observes the correctness of global properties is called a global sentry.

Local and global properties that involve only scalar variables are propositional, and thus
contain no quantification. To allow predicates to be checked, we incorporate into the sentry
system the observation of larger data structures over which quantification can be defined. We

introduce the observation of predicates into both the local and global sentry systems.

The rest of this paper is organized as follows. We discuss sentries for local properties in
Section 2, and sentries for global properties in Section 3. We extend local and global sentries
with limited quantification in Section 4. In Section 5 we define the annotation language in which
the properties are written. We discuss the automatic generation of sentries for programs with
local and global properties in Section 6. Section 7 presents some experimental results, and the

conclusions appear in Section 8.

2 Local Sentries

A property of a concurrent program P is a local property if it involves variables from only a
single process p; of P. A sentry that observes the correctness of such local properties is called a
local sentry. In [5] we develop a series of local sentries to observe the local properties of processes
in concurrent programs. These local properties consist of several progress and safety properties.
Each progress property corresponds to the termination function of a loop in the process—in any

execution of the process, the loop is guaranteed to have a bounded number of iterations. A safety
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property states that if an execution of the process reaches a specified position, a corresponding
property holds. During execution, the sentry reads snapshots of the process state and checks

that the progress and safety properties are met.

The local progress properties for a process can be stated in terms of a set of termination
functions—one for each terminating loop in the process. Consider the process in Figure 1 where

the loop do B — S od has a termination function F. As such, F' satisfies three conditions[8]:

process po:

[ Ro;
do B — S od;
Ry

Figure 1: A simple process in a concurrent program.

its value is a natural number (well-foundedness); it is computed from a vector V' of local variables
of the process; and its value is monotonically decreased in each loop iteration to a lower bound

(0, without loss of generality) until B becomes true.

Process py can be extended to write V' to the sentry at each iteration. The extended process
po and its sentry appear in Figure 2. To detect whether a given loop is executing correctly, vector
V' is written to the sentry at every iteration. The sentry reads successive values of V', computes
the corresponding F'(V') and determines whether the values are monotonically decreasing. If the

sentry detects a violation, it reports the violation.

A local safety property P of a process is a boolean expression, computed from a vector V
of local variables of the process, that holds at a given point in the execution of the process.
When the process reaches that point, it writes V' to the sentry. The sentry reads vector V, and
evaluates P(V'). If P does not hold, the sentry reports a violation to the process.

For the sentry’s behavior to be correct, we need a synchronization mechanism that preserves
linear storage and wait freedom, while guaranteeing mutual exclusion between the observed
process and the sentry, and that every snapshot read by sentry is consistent. We can impose
mutual exclusion between the process and sentry, by constructing within the shared memory
a queue of buffers for V' with associated synchronization and history variables. The number
of buffers in the queue is at least two, for non-blocking mutual exclusion. In order to prevent
the sentry from blocking the process, and to keep the length of the queue between the process

and sentry bounded, we allow the process to overwrite the most recent unread snapshot with

4



shared var
b : array [0..1] of vector V value;
full : array [0..1] of boolean;

nxt : 0..1
process po: process sentryo:
var var
w: 0.1 r: 0..1;
new, old : integer
[ Ro; ¥ if fulllr] Ar # nxt —
do B — new := F(b[r]);
blw] :==V; if (0 <new < old) —
full[w] := true; old := new
if fulllw +2 1] — I]—|(0 < new < old) —
skip violation
[| ~full[w +2 1] — fi;
wi=w +2 1; full[r] := false;
nxt ;= w r:=r-+2 1
fi; [ —fulllnxt] V r = nxt —
S skip
od; fi
R ]

Figure 2: The extended process and its sentry.



a new snapshot. In the case of a progress property, this has no effect—a violation of a loop’s
termination function can be detected even though the process overwrites information, because
the termination function is monotonically decreasing. Thus, the comparison of an earlier value
with any later value is sufficient to detect an violation. In the case of a safety property, a
particular violation may be missed due to overwriting, but the sentry construction is based on

the assumption that a serious fault will persist, and so can eventually be detected.

A discussion of local sentries for processes with more complex structures, such as non-

terminating loops, nested loops, etc., can be found in [5].

3 Global Sentries

The global sentry observes the global state of a set of processes rather than the local state of
one process. Its purpose is to observe the execution of multiple processes and check the validity
of properties involving variables from different processes. This implies the need for a snapshot
of the variables of several processes, from which the global state is computed. To fit the sentry
paradigm, the snapshot must be obtained without blocking any of the executing processes. The

sentry must also read consistent snapshots.

A correct global snapshot algorithm generates a consistent program state in which values
from individual processes (could have) coexisted in time. To meet the sentry paradigm, a snap-
shot algorithm also needs to preserve our requirements of linear shared storage, wait-freedom,
and mutual exclusion. The local sentry snapshot algorithm is no longer applicable, as it cannot
obtain consistent snapshots of the global state without blocking the program. In the local sentry
system, a single process writes its state to the sentry, and controls the synchronization between
itself and the sentry. To guarantee non-blocking, consistent snapshots of a set of processes, only
the sentry can synchronize communications. Allowing the processes to control the synchroniza-
tion leads either to the blocking of some of the processes in the program, or to inconsistent

snapshots.

Several existing algorithms can obtain snapshots of the state of concurrent programs. How-
ever, these algorithms violate either the linear storage requirement or the wait-freedom require-
ment. The Chandy/Lamport algorithm [4] blocks both the reader and the writers in generating
the snapshot, thereby violating our wait-freedom requirement. The snapshot algorithms of
Anderson[3] and Afek et al[1] are wait-free, but these algorithms require at least quadratic stor-
age, violating our linear storage requirement. Furthermore, they also have very high overhead

(quadratic to exponential).

The global sentry snapshot algorithm meets our requirements. To ensure the consistency of
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a snapshot, each process of the concurrent program writes the value of an observed variable to

the sentry immediately after modifying the variable.

To guarantee linear storage, there are two buffers in shared memory for each observed vari-
able. Because the sentry controls the synchronization, only two buffers need ever be in use at

any given time-one for the sentry to read from and one for the program to write to.

Wait-freedom is ensured because there is always a buffer available for any process of the
program to write to. Mutual exclusion is ensured by forcing the sentry to wait until changes
to the synchronization variable have propagated to all writing processes, before the sentry can

read snapshots from those processes.

Within a single process, it is straightforward to identify a specific point in its execution
at which a local property holds. It is far more difficult to identify the corresponding point in
the execution of a concurrent program at which a global property holds. Thus, the properties
observed by the global sentry are invariants that are maintained throughout the entire program
execution rather than assertions associated with a particular point in the execution. During
execution, the global sentry reevaluates the observed properties as new snapshots are read.
Note that the global snapshot algorithm can be used to observe local properties of a single
process. However, the global snapshot algorithm is more expensive, due to the necessity of

writing snapshots to the sentry after every modification to an observed variable.

The global sentry continuously observes and evaluates global properties of a concurrent
program. It executes in an endless loop. In each iteration of the loop, the sentry waits until
some process writes new state information. The sentry then reads new variables from their
buffers, preserving mutual exclusion with the processes, and enables the checking of any property
involving those variables. Only properties involving new data will be tested. After the sentry
has read the available state information from all processes, it checks the enabled properties. If
any violations are detected, they are reported. The processes involved may choose to initiate

some recovery action. Recovery is the responsibility of the processes, not of the global sentry.

We cannot halt all processes simultaneously to access their states and then resume execution.
As a result, the snapshot is always of a state that could have occurred, but is not guaranteed to
be a state that did occur in this execution. However, if a violation-state could have occurred,

the underlying program is flawed.

In certain cases, it may be necessary to express a property or a set of properties by introducing
local auxiliary variables to the processes. For example, the definition of mutual exclusion is that
only one process may be in the critical section at any given time. This property is difficult to

state in terms of existing program variables, especially if the mutual exclusion mechanism is not



process pi:
*

/* write 1 into a; when entering CS */

/* critical section */

/* write 0 into a; when leaving CS */

m[i] := true;
wli] := nxt;
w[i mod 2]] := 0;

/* non-critical section®/

process mutex_sentry:

*[

/* wait for any new data */
or_wait( buffers[nxt mod 2]);
/* processes write to b[nzt mod 2] */
nxt :=nxt + 1;
/* sentry reads other buffer */
r:= (nxt - 1) mod 2;
=0
/* for each process j */
do (j < N) —
/* wait until safe to read from Py */
do (w[j] '= nxt) A in[j] — skip od;
if (ailr] # 1) — AL = aylt]
[ (ajlr] =-1) — skip
fi;
/* reset buffers to empty */
ajfr] :=-1;
ji=j+1
od;
/* at most one process in CS? */
if 571 Al <1 — skip
|:| Zfigl Ali] > 1 — wviolation
fi

Figure 3: Process p; and the sentry for the N-process mutual-exclusion program.



accessible to the programmer, or if adding write statements to it affects its atomicity. Instead,
it is simpler to add an auxiliary variable a; to each process p;, which is set to 1 when a process
enters the critical section, and to 0 when the process leaves the critical section. (See Figure 3.)
These auxiliary actions are the first and last actions taken within the critical section. The sentry
in Figure 3 detects a violation when more than one process is in the critical section, as the sum

of the auxiliary variables exceed 1.

4 Predicate Sentries

Both the local and global sentries described in the previous sections can be thought of as propo-
sitional sentries, because they only observe properties involving scalar variables. However, many
interesting properties involve more complex data structures. In this section, we discuss the possi-
bilities and tradeoffs inherent in observing large data structures, and how the sentry is extended

to allow it.

The most straightforward solution to allow a sentry to evaluate a property involving a non-
scalar data structure is to copy the structure to the sentry, as we copied scalars in the propo-
sitional sentries. However, given our desire that the sentry not impinge overly on the timing
and performance of the program, this is not a viable option. For consistency’s sake, we cannot
allow the sentry to read the data structure without some synchronization. Nor can we block
the program to allow the sentry to read the data structure, as that violates the wait-freedom

requirement.

To allow reasonable performance and consistent evaluation of a predicate property, we in-
troduce a notion of timestamping to the sentry system. Fach observed data structure is made
readable by the sentry, and is given an associated timestamp. This timestamp is visible to the
sentry, but written only by the program. Immediately before the data structure is changed, the
program increments the timestamp. Upon completion of the modification, the program sends
the current timestamp to the sentry in a buffer, using whatever communication mechanism exists
already. When the sentry evaluates a property involving a non-scalar data structure, it not only
reads the data structure from the program, but also the structure’s current timestamp and the
buffered timestamp. If the current timestamp matches the buffered timestamp, the snapshot
is consistent. If not, the sentry discards the snapshot, as its consistency is indeterminate, and

seeks a new snapshot to instantiate the property.

Consider a program that measures the temperature of a substance over a period of time, and
remembers the last 50 readings in array 7. (See Figure 4.) A safety property on this program

might be that every k probes the average temperature is always greater than 32 degrees, i.e.



(n_probes mod k = 0) A (3212, T[i]) /50 > 32. The annotation language (q.v.) allows arithmetic

and logical quantification to be expressed in properties.

int last = 0, n_probes = 0;
while (1) {

/*{ beginmodify( T) }x/

T[last] = read_temp();

/*{ end modify( T) }*/

n_probes++;

last = (last + 1) % 50; /* circular array of size 50 */

/#{p: (nprobes % k) == 0 && (sum i: 0 <= i < 50 : TRUE : T[il) / 50 > 32 }*/

Figure 4: Annotated temperature program fragment.

5 The Annotation Language

In the previous sections, we have described how the snapshots required to evaluate the progress
and safety properties of a program are communicated to the sentry. In this section, we discuss

the annotation language in which the properties are expressed.

Properties are composed of the equality /inequality relations, the logic connectives (and, or,
not), the arithmetic operators, the logical quantifiers (V, 3) and the arithmetic quantifiers (X, I1).
User-defined functions are not (yet) permitted, and the use of quantification is strictly limited

to ensure the computability of the properties.

For propositional sentries, the annotation language is the propositional calculus combined
with the integer-arithmetic operators and relations. Local properties are either termination
functions, which annotate loops, or safety properties, which annotate code blocks. A termination
function is written as a non-negative, integer-valued expression. A safety property is a boolean-
valued expression. The table in Figure 5 contains a summary of the syntax for propositional

properties.
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Keyword Meaning Keyword Meaning
&& and < less than
|l or char character var
! not float real var
% modulo int integer var
multiply local local var
divide private private var
+ plus FALSE false
- minus TRUE true
== equal £ header for term.
1= not equal function
>= at least
<= at most p: header for safety
> greater than property

Figure 5: Annotation language for propositional sentries.

In the annotations, termination functions are prefixed with the string “_f:”, and safety

?. C syntax is used for relations and operations.

properties are prefixed with the string “_p:
The annotations are written within specially-formatted comments that are recognized by the
sentry generator, but ignored by an ordinary C compiler. These comments appear in the places

where the properties are to be evaluated.

Global properties are not associated with any given process, and are continually reevaluated
during program execution, upon the receipt of new state information. Thus, instead of being
written in a given process, all the properties of a set of processes are written in a separate file.

Each property is labeled with a unique name. Every process has to declare which of variables in

/*#{ sendrcv: p_sent >= q.rcvd }*/
/*#{ window5: 5 + gqrcvd >= p_sent }*/

Figure 6: Constraints for reader/writer program.

the properties it writes. A variable is declared by type and by whether it is local to the process
or is readable by other processes. In the first case, the variable is called a local variable, in the
second, it is called a private variable. Figure 6 contains the predicate file for a reader/writer
program with a window size of 5. Figure 7 contains code for the writer, in which the only
annotation is the declaration of local variable p_sent. The reader’s code would contain the

declaration of local variable q_rcvd.
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int *channel; /* channel is shared between processes p & q */

int n.acks = 0; /* number of acknowledgments */
int p_sent = 0; /* number of data items sent by p */
/#{ int local p_sent; }*/ /* observe local var p_sent */

if ((psent - n_acks < 5) &% empty( channel)) {
ns++;
p-sent += 1;

send( datal[ns], channel);

Figure 7: Writer code fragment.

Constraints involving non-scalar data types, especially arrays, require extending the anno-
tation language to allow limited first-order expressions. Both logical (V, 3) and arithmetic (X,
II) quantification are permitted, but only across a fully instantiated subrange. A quantified ex-
pression consists of a quantifier-free proposition (either logical or arithmetic) surrounded by any
number of singly-indexed quantifiers with fully instantiated ranges. For example, the property

that a 10 x 10 array A is sorted is represented as

(FORALL i: 0 <= i < 9: TRUE:
(FORALL j: 0 <= j < 9: TRUE:
(A[i,3] <= [i, j+11) && (A[i,9] <= A[i+1, 01)))

even though the second conjunct does not involve the index j. A boolean function can be

used to restrict the domain further.

In addition, a set of modify functions are added to the annotation language, so that the sentry
can be informed about changes to a non-scalar data structure. The table in Figure 8 contains
the extended syntax for predicate properties. The programmer places a begin_modify( A)
annotation immediately before changing data structure A, and an end_modify( A) call upon

completing the changes.

6 Implementation

We have constructed prototype local and global sentry generators that automatically construct,

from annotated source programs, a sentry and a version of the source that can interact with
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Keyword Meaning

EXISTS there exists
FORALL for all
PROD product
SUM sum

begin_modify | begin to modify data struct

end_modify end of modification

Figure 8: Extension to annotation language for predicates.

the sentry. The prototypes described below are the basis of a tool that allow programmers to
check the progress and safety properties of sequential and concurrent programs during execution,

supplementing static analysis.

6.1 Implementation of the Local Sentry Generator

The current implementation of the local sentry generator constructs a sentry and extended source
program from an annotated C program. The local sentry generator uses a scanner/parser (based
on lex and yacc) and templates to expand the program annotations into C code, and to create
the main loop and validation functions for the sentry. The system consists of approximately 4000

lines of commented C code, with slightly more than half due to the grammar for the parser.

The current prototype accepts a single annotated C program P.c as input. Five files are gen-
erated from the input file—P.make, P.src.c, P.sentry.c, P.consts.h, and P.writer.h. The makefile
P.make contains the compiler directives to create two executable programs, P.src and P.sentry,
and the underlying communication structures. Communications and shared storage are imple-

mented using the UNIX System V IPC shared memory package.

The file P.src.c contains the original source process, with the annotations replaced by calls to
write macros. Each annotation in the source file generates a buffer queue, and the corresponding
write macro that selects the correct buffer and writes the corresponding variable vector. For
the most part, the C code in the input file P.c is reproduced in P.src.c without interpretation.
However, in order to handle correctly a more complex process than we discussed in Section 2,
such as one with nested loops, it is necessary to keep track of the nesting structure of the process.
A macro call to increment the session number is added at the end of each level of nesting. At
the beginning of the program, a call to an initialization macro sets up the communications

structures. Macros are used both for legibility and for efficiency.

The file P.sentry.c contains the code for the sentry. The sentry generator uses the annotations
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in P.c to create the code to read the variables from the buffers and to evaluate the appropriate
safety or progress property. The main loop of the sentry does not change, except for a few
constants based on the input program, and thus can be read from a template. These source-
dependent constants—the maximum depth of the loops, the number of termination functions and

safety properties, and the maximum number of variables—are stored in the file P.consts.h

To check the execution of the sequential program, the two executables P.src and P.sentry
are run in parallel. As the sentry initializes the shared memory, it must be started first. P.src
writes its variables to the sentry as it executes. The sentry reads the variables and computes
the appropriate function. If a violation is detected, the sentry sends a signal to the program,

which may initiate some user-defined recovery action based on the type of fault.

6.2 Implementation of the Global Sentry Generator

The global sentry generator consists of a scanner and parser (lex and yacc based), a code genera-
tor, and a template from which the sentry is constructed. The generator contains approximately
5000 lines of commented C code. Again, the parser grammar account for slightly more than half
the code.

The global sentry generator takes as input a file of properties and the annotated C files that
make up the concurrent program. A debug flag allows the user to follow the parsing and code
generation in detail. The properties file contains the global (safety) properties that apply to
(a subset of) the processes in the program. Because the properties are associated with a set
of processes, rather than an individual process, it is more straightforward to keep them in a

separate file.

Each process is annotated with a declaration of the observed variables that it writes. The
sentry generator automatically recognizes changes to scalar variables, as long as no aliasing
occurs, and inserts the necessary write macros calls as needed. For non-scalar variables, the
programmer adds “modify” annotations, to inform the sentry that the structure is about to be

changed.

Every property is expanded into a corresponding validation function in the sentry. The sentry

generator uses the variable declarations and modify calls to complete the validation function.

Ideally, the programmer should not have to change her source code at all to use a sentry.
However, for the sentry to observe data structures shared among several processes, the pro-
grammer has to allow the sentry to determine where in shared memory those data structures

are to be located. Both scalar and non-scalar shared structures are affected. Shared memory
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not observed by the sentry can be allocated independently of the sentry’s memory.

Given a properties file X.props and C programs X;.c...X,.c as input, the current global
sentry generator produces augmented source files X, .sre.c. .. X, .src.c, write macros for each input
file X;.macros.h...X,,.macros.h, and a sentry file X.sentry.c. In this version, the programmer
will have to modify the existing makefile to incorporate the sentry and its accompanying files.

The required #include statements are automatically inserted into the modified source programs.

To observe the execution of the concurrent program described in X;.c...X,.c, the sentry
is run in parallel with the the new executables. The sentry is responsible for allocating and
initializing shared memory, so it must be started first. The processes X;...X,, write their state
information to the sentry as it changes. The sentry reads the state as it becomes available,
and evaluates the properties for which new information was obtained. Errors can be reported
by signal to the processes involved in a violated property, so that they may take appropriate

recovery actions.

6.3 Implementation of the Predicate Sentry Generator

In Section 4, we introduced the notion of a “predicate sentry,” i.e. a sentry to observe properties
about non-scalar data structures. In order to make the data structure visible to the sentry,
the sentry generator automatically moves the structure from the program’s memory to the
sentry system’s shared memory. The shared memory allocation is done at compile time, thus
dynamically allocated data structures are beyond the scope of the sentry generator. As in the
propositional sentries, shared memory is allocated for the synchronization variables and the
buffers for propositional variables. For each structure to be observed, the generator allocates a

timestamp and a set of buffers for that timestamp.

When parsing the file in which a data structure A is modified—each observed structure having
exactly one writer—the sentry generator replaces each begin_modify( A) annotation with an
increment of the timestamp of A, and each end_modify( A) with the writing of the timestamp
to its buffer. The sentry, upon evaluating a property involving structure A, will check the
consistency of the result by comparing the buffered timestamp with the actual timestamp. If

the two do not match, the result is discarded.

/*{ sortA: (forall ii : 1 <= ii < 100: 1: A[ii] >= A[ii - 1]) }*/

Figure 9: Constraint sortA
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/* compute the quantified sub-expression */

1q0 = TRUE;
for (ii = 1; ii < 100 && 1q0; ii++) {
if (1) {
190 = 1q0 && (A[ii] >= A[ii - 1]);
}
}

/* now add that to the rest of the property */
valid = (1q0) || (*_tsA !'= tshA);

Figure 10: The validation function computing sortA.

Figure 9 contains the property that an array A is sorted. The validation function correspond-
ing to property sortA, as generated by the predicate sentry generator, appears in Figure 10.
The quantified sub-expression—in this case, the sortedness of array A-is computed first, and its
value is stored in variable 1q0. The final subexpression (*_tsA !'= tsA) determines whether
array A has been changed since the rest of the expression was sent, and thus whether or not the

the snapshot is consistent.

Predicate sentry generation has been incorporated into both the local and global sentry

generators.

7 Experimental Results

The design of the sentry is based on three assumptions:

1. The sentry has low overhead.
2. The information loss encurred by the overwriting of snapshot information is minimal.

3. Sufficient predicates involving non-scalar structures are evaluated, rather than discarded

due to inconsistency, to avoid starvation of the sentry.

Below we empirically test these assumptions. In the following experiments, we will be evaluating
variants of two programs. The first is an n-process mutual exclusion program, implementing the
algorithm described in Section 3 in which n processes vie for access to a critical section. The
second program is a two-process parallel exchange sort that combines two sorted arrays of length
N into a single sorted array of length 2 %« N. The execution environment is a multiprocessor

Sparc-10, to allow truly parallel execution of the program and sentry.
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7.1 Sentry overhead

In this experiment, we examine the overhead introduced by the sentry to a set of processes. This
overhead arises primarily from the additional writing done by each process to communicate its
variables to the sentry. There are also minor initialization costs. Every write to the sentry
involves four assignments, as in Figure 3. The program tested is the parallel exchange sort, in
which an integer variable and an array in each process are observed by the sentry. Each exchange
triggers three writes to the sentry per process, and with the input fixed (A[¢] = 3¢, B[{] = 2x1),

for an array of size IV, there are 2N /5 exchanges per process.

array size | #snapshots per Yoverhead

exchange process P process Q  average

100 4 13.52 8.59 11.1
6 9.48 12.01 10.74

10 16.63 17.08 16.85

15 19.52 22.20 20.86

1000 3 1.12 8.99 5.06

6.09 5.72 5.91

10 10.14 9.69 9.92

15 10.89 9.62 10.26

10000 3 6.03 2.16 4.09

4.78 4.34 4.56

10 7.48 2.5b 5.02

15 4.63 4.63 4.63

Figure 11: Overhead of introducing a sentry to the parallel exchange sort program.

The table in Figure 11 shows the overhead incurred by using the sentry with the parallel
exchange sort program. Most of the computation in a single exchange involves a linear shift of
the array contents, thus the execution time is proportional to the length of the array. We tested
this program for arrays of length 100, 1000, and 10,000. For the array of length 100, the array
was re-initialized and the sort was executed ten times, to allow for sufficient computation to
dominate system costs. For the larger arrays, the exchange sort was executed once. We then
forced additional writes to the sentry, by adding a parameterized loop to the source program to
assign the observed integer variable to itself. This allowed us to measure the overhead caused

by these extra writes, without changing the meaning of the program.

Note that due to the implementation of the sentry as a heavyweight process, a certain

amount of the overhead results from context switching. A future thread-based implementation
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is planned.

7.2 Information loss

Because the program being observed continually overwrites its snapshots, it is possible that the
sentry may miss all occurrences of a recurring violation. The program we tested was the n-process
mutual exclusion program, where each process obtains and releases a semaphore 1000 times
during the course of its execution. We tested for information loss by deliberately introducing
a violation in which a single process releases the semaphore before it has completed its critical
section. In the case of two processes, the violation was never missed. The sentry was apparently
able to keep up with the processes, reading at least 3800 of a possible 4000 snapshots. In the
case of three processes, the violation was missed in 2% of the runs, and in the eight process case,
the violation was missed in 4% of the runs. For a violation which occurred twice, the success

rate for two to eight processes was 100%.

7.3 Starvation of the predicate sentry

As a result of allowing logical properties involving large data structures, it is possible that
the predicate sentry will read inconsistent snapshots that cannot be evaluated. The sentry may
starve because it can never obtain and evaluate a consistent snapshot. We tested for inconsistent
snapshots by observing the exchange sort program with the property that the subarrays are
sorted. For a sorted array of length NV, the property (Vi: 1 < i< N : A[i] > A[i — 1]) requires
that the entire array A be read (the worst possible case) before the property can be evaluated.

Our results (Figure 12) show, as expected, that for very large structures, the sentry discards

array length | %discarded
100 34.06
1000 46.48
10000 95.72

Figure 12: Percentage of snapshots discarded due to inconsistency.

most snapshots. However, even in that case, the sentry never missed a recurring violation.
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8 Concluding Remarks

In this paper we have presented a system to check the safety and progress properties of concurrent
programs in execution. We have developed sentry algorithms that observe local and global
properties during program execution, while ensuring finite storage and mutual exclusion, and
without introducing new synchronization constraints on the program. We have also extended the
sentry to check logical properties involving large data structures without prohibitive overhead.
We have discussed the annotation language with which the programmer defines the properties
to be checked, and have described a prototype to generate the appropriate sentry and program
modifications automatically from annotated C source programs. Finally, we have presented

some encouraging experimental results.

There are a number of approaches that can be taken to increase the applicability and utility
of the sentry system, based on the existing sentry algorithms. We will extend the class of
properties that can be observed to include temporal properties. Time-critical programs are a
natural target for observation during execution, and a sentry, which does not affect the program’s
synchronization and has limited overhead, seems to be a practical monitor to explore. We will
add new languages to the sentry generator, so that it can accept input and construct sentries
in other imperative programming languages, for increased utility. We also plan to develop new
algorithms to allow the sentry methodology to be applied to distributed and message-passing

platforms, in which shared memory is either extremely limited or not available.
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