
Implementation of the Sentry SystemSarah E. Chodrow Mohamed G. GoudaDepartment of Computer SciencesThe University of Texas at AustinAustin, TX 78712fsal,goudag@cs.utexas.edu10 May 1994AbstractThe sentry of a concurrent program P is a program that observes the execution of P, andissues a warning if P does not behave correctly with respect to a given set of logical prop-erties (due to a programming error or a failure). The synchronization between the programand sentry is such that the program never waits for the sentry, the shared storage betweenthem is very small (in fact linear in the number of program variables being observed), andthe snapshots read by the sentry are consistent. To satisfy these three requirements, somesnapshots may be overwritten by the program before being read by the sentry. We developa family of algorithms that preserve these requirements for properties involving scalar vari-ables, then extend the algorithms to permit the observation of large data structures withoutadditional overhead. We describe in detail the annotation language with which the propertiescan be expressed, and a prototype system that we have implemented to generate the sentryautomatically for any given concurrent C program. Finally, we present experimental resultsthat show that the overhead incurred by the sentry is on average no worse than 10% forsnapshots of up to 6 variables, and that the loss of snapshots prevents the sentry's detectionof an single violation in less than 4% of the cases. Recurring errors are detected at a rate of100%.Keywords: run-time monitoring, assertion checking, parallel and distributed systems.1 IntroductionThe sentry of a concurrent program P is a program that observes the execution of P anddetermines whether P is behaving \correctly". The correct behavior of P is determined by the1

execution's compliance with speci�ed logical properties of P. A sentry can observe two classesof properties{safety properties and progress properties. Safety properties de�ne what programstates are valid as P executes. Progress properties de�ne a set of state transitions that will occurduring execution.In designing an observer to observe the logical properties of programs, a compromise hasto be made between two con
icting requirements: the precision of observation on one hand,and the cost of observation on the other. For example, an observer that keeps detailed tracesof program execution requires a large amount of storage and may greatly reduce the speed ofprogram execution. In general, observers that provide high precision are costly in terms ofneeded storage and execution speed.The sentry is a low precision, low cost observer, that evaluates safety and progress propertiesby reading snapshots of the program state. The low cost of the sentry system is achieved byrequiring that the observer, or the sentry, satisfy the following:� Linear storage:The amount of shared storage between the program being observed and the sentryis small, in fact linear in the number of program variables being observed.� Wait freedom:The program being observed never waits for the sentry. Thus, the execution speedof the program is completely independent of the execution speed of the sentry.� Mutual exclusion:Access to the shared storage is synchronized to guarantee that every snapshot readby the sentry is consistent.Most observer systems do not satisfy one or more of these requirements. For example, real-time monitors [6] [9] do not satisfy the linear-storage requirement. Recovery block systems [2][10] do not satisfy the wait-freedom requirement. Neither the linear-storage requirement nor thewait-freedom requirement is satis�ed in many low-level debuggers [11][16] or in-line assertioncheckers such as Anna [12] and Gypsy[7].In order to satisfy these requirements in the sentry system, the program being observed isallowed to overwrite a snapshot in the shared storage (between the program and the sentry),before the sentry reads that snapshot. In other words, some snapshots can be lost before theyare checked by the sentry, hence the low precision of our system.Despite the loss of observations, the sentry system has the following correctness properties:2

� SoundnessIf the sentry detects a violation, then a violation has occurred in the programexecution.� CompletenessIf a violation occurs and persists in the program execution, then the sentry willdetect the violation.Although snapshots can be lost in the sentry system, our experimental results demonstratethat the loss of a snapshot can be compensated for by subsequent snapshots in most cases. I.e. ifa snapshot that reveals a violation is lost, the probability that subsequent snapshots will revealthe same or other violations is very high.As mentioned earlier, the sentry observes both safety and progress properties. These prop-erties can be either local or global. A property of program P is local if it refers to variables ina single process in P. A property of P is global if it refers to variables in two or more processesin P. The sentry that observes the correctness of local properties is called a local sentry. Thesentry that observes the correctness of global properties is called a global sentry.Local and global properties that involve only scalar variables are propositional, and thuscontain no quanti�cation. To allow predicates to be checked, we incorporate into the sentrysystem the observation of larger data structures over which quanti�cation can be de�ned. Weintroduce the observation of predicates into both the local and global sentry systems.The rest of this paper is organized as follows. We discuss sentries for local properties inSection 2, and sentries for global properties in Section 3. We extend local and global sentrieswith limited quanti�cation in Section 4. In Section 5 we de�ne the annotation language in whichthe properties are written. We discuss the automatic generation of sentries for programs withlocal and global properties in Section 6. Section 7 presents some experimental results, and theconclusions appear in Section 8.2 Local SentriesA property of a concurrent program P is a local property if it involves variables from only asingle process pi of P. A sentry that observes the correctness of such local properties is called alocal sentry. In [5] we develop a series of local sentries to observe the local properties of processesin concurrent programs. These local properties consist of several progress and safety properties.Each progress property corresponds to the termination function of a loop in the process{in anyexecution of the process, the loop is guaranteed to have a bounded number of iterations. A safety3

property states that if an execution of the process reaches a speci�ed position, a correspondingproperty holds. During execution, the sentry reads snapshots of the process state and checksthat the progress and safety properties are met.The local progress properties for a process can be stated in terms of a set of terminationfunctions{one for each terminating loop in the process. Consider the process in Figure 1 wherethe loop do B ! S od has a termination function F . As such, F satis�es three conditions[8]:process p0:[R0;do B �! S od;R1]Figure 1: A simple process in a concurrent program.its value is a natural number (well-foundedness); it is computed from a vector V of local variablesof the process; and its value is monotonically decreased in each loop iteration to a lower bound(0, without loss of generality) until B becomes true.Process p0 can be extended to write V to the sentry at each iteration. The extended processp0 and its sentry appear in Figure 2. To detect whether a given loop is executing correctly, vectorV is written to the sentry at every iteration. The sentry reads successive values of V , computesthe corresponding F (V) and determines whether the values are monotonically decreasing. If thesentry detects a violation, it reports the violation.A local safety property P of a process is a boolean expression, computed from a vector Vof local variables of the process, that holds at a given point in the execution of the process.When the process reaches that point, it writes V to the sentry. The sentry reads vector V , andevaluates P (V). If P does not hold, the sentry reports a violation to the process.For the sentry's behavior to be correct, we need a synchronization mechanism that preserveslinear storage and wait freedom, while guaranteeing mutual exclusion between the observedprocess and the sentry, and that every snapshot read by sentry is consistent. We can imposemutual exclusion between the process and sentry, by constructing within the shared memorya queue of bu�ers for V with associated synchronization and history variables. The numberof bu�ers in the queue is at least two, for non-blocking mutual exclusion. In order to preventthe sentry from blocking the process, and to keep the length of the queue between the processand sentry bounded, we allow the process to overwrite the most recent unread snapshot with4

shared varb : array [0..1] of vector V value;full : array [0..1] of boolean;nxt : 0..1process p0: process sentry0:var varw : 0..1 r : 0..1;new, old : integer[R0; *[if full[r] ^ r 6= nxt !do B ! new := F (b[r]);b[w] := V ; if (0 � new < old) !full[w] := true; old := newif full[w +2 1] ! :(0 � new < old) !skip violation:full[w +2 1] ! �;w := w +2 1; full[r] := false;nxt := w r := r +2 1�; :full[nxt] _ r = nxt !S skipod; �R1]] Figure 2: The extended process and its sentry.
5

a new snapshot. In the case of a progress property, this has no e�ect{a violation of a loop'stermination function can be detected even though the process overwrites information, becausethe termination function is monotonically decreasing. Thus, the comparison of an earlier valuewith any later value is su�cient to detect an violation. In the case of a safety property, aparticular violation may be missed due to overwriting, but the sentry construction is based onthe assumption that a serious fault will persist, and so can eventually be detected.A discussion of local sentries for processes with more complex structures, such as non-terminating loops, nested loops, etc., can be found in [5].3 Global SentriesThe global sentry observes the global state of a set of processes rather than the local state ofone process. Its purpose is to observe the execution of multiple processes and check the validityof properties involving variables from di�erent processes. This implies the need for a snapshotof the variables of several processes, from which the global state is computed. To �t the sentryparadigm, the snapshot must be obtained without blocking any of the executing processes. Thesentry must also read consistent snapshots.A correct global snapshot algorithm generates a consistent program state in which valuesfrom individual processes (could have) coexisted in time. To meet the sentry paradigm, a snap-shot algorithm also needs to preserve our requirements of linear shared storage, wait-freedom,and mutual exclusion. The local sentry snapshot algorithm is no longer applicable, as it cannotobtain consistent snapshots of the global state without blocking the program. In the local sentrysystem, a single process writes its state to the sentry, and controls the synchronization betweenitself and the sentry. To guarantee non-blocking, consistent snapshots of a set of processes, onlythe sentry can synchronize communications. Allowing the processes to control the synchroniza-tion leads either to the blocking of some of the processes in the program, or to inconsistentsnapshots.Several existing algorithms can obtain snapshots of the state of concurrent programs. How-ever, these algorithms violate either the linear storage requirement or the wait-freedom require-ment. The Chandy/Lamport algorithm [4] blocks both the reader and the writers in generatingthe snapshot, thereby violating our wait-freedom requirement. The snapshot algorithms ofAnderson[3] and Afek et al[1] are wait-free, but these algorithms require at least quadratic stor-age, violating our linear storage requirement. Furthermore, they also have very high overhead(quadratic to exponential).The global sentry snapshot algorithm meets our requirements. To ensure the consistency of6

a snapshot, each process of the concurrent program writes the value of an observed variable tothe sentry immediately after modifying the variable.To guarantee linear storage, there are two bu�ers in shared memory for each observed vari-able. Because the sentry controls the synchronization, only two bu�ers need ever be in use atany given time{one for the sentry to read from and one for the program to write to.Wait-freedom is ensured because there is always a bu�er available for any process of theprogram to write to. Mutual exclusion is ensured by forcing the sentry to wait until changesto the synchronization variable have propagated to all writing processes, before the sentry canread snapshots from those processes.Within a single process, it is straightforward to identify a speci�c point in its executionat which a local property holds. It is far more di�cult to identify the corresponding point inthe execution of a concurrent program at which a global property holds. Thus, the propertiesobserved by the global sentry are invariants that are maintained throughout the entire programexecution rather than assertions associated with a particular point in the execution. Duringexecution, the global sentry reevaluates the observed properties as new snapshots are read.Note that the global snapshot algorithm can be used to observe local properties of a singleprocess. However, the global snapshot algorithm is more expensive, due to the necessity ofwriting snapshots to the sentry after every modi�cation to an observed variable.The global sentry continuously observes and evaluates global properties of a concurrentprogram. It executes in an endless loop. In each iteration of the loop, the sentry waits untilsome process writes new state information. The sentry then reads new variables from theirbu�ers, preserving mutual exclusion with the processes, and enables the checking of any propertyinvolving those variables. Only properties involving new data will be tested. After the sentryhas read the available state information from all processes, it checks the enabled properties. Ifany violations are detected, they are reported. The processes involved may choose to initiatesome recovery action. Recovery is the responsibility of the processes, not of the global sentry.We cannot halt all processes simultaneously to access their states and then resume execution.As a result, the snapshot is always of a state that could have occurred, but is not guaranteed tobe a state that did occur in this execution. However, if a violation-state could have occurred,the underlying program is
awed.In certain cases, it may be necessary to express a property or a set of properties by introducinglocal auxiliary variables to the processes. For example, the de�nition of mutual exclusion is thatonly one process may be in the critical section at any given time. This property is di�cult tostate in terms of existing program variables, especially if the mutual exclusion mechanism is not7

process pi: process mutex sentry:*[*[/* write 1 into ai when entering CS */ /* wait for any new data */in[i] := true; or wait(bu�ers[nxt mod 2]);w[i] := nxt; /* processes write to b[nxt mod 2] */ai[w[i mod 2]] := 1; nxt := nxt + 1;in[i] := false; /* sentry reads other bu�er */r := (nxt - 1) mod 2;/* critical section */ j := 0;/* for each process j *//* write 0 into ai when leaving CS */ do (j < N) �!in[i] := true; /* wait until safe to read from Pj */w[i] := nxt; do (w[j] != nxt) ^ in[j] �! skip od;ai[w[i mod 2]] := 0; if (aj[r] 6= -1) �! A[j] := aj[r];in[i] := false; (aj[r] = -1) �! skip�;/* non-critical section*/ /* reset bu�ers to empty */] aj[r] := -1;j := j + 1od;/* at most one process in CS? */ifPN�1i=0 A[i] � 1 �! skipPN�1i=0 A[i] > 1 �! violation�]Figure 3: Process pi and the sentry for the N-process mutual-exclusion program.
8

accessible to the programmer, or if adding write statements to it a�ects its atomicity. Instead,it is simpler to add an auxiliary variable ai to each process pi, which is set to 1 when a processenters the critical section, and to 0 when the process leaves the critical section. (See Figure 3.)These auxiliary actions are the �rst and last actions taken within the critical section. The sentryin Figure 3 detects a violation when more than one process is in the critical section, as the sumof the auxiliary variables exceed 1.4 Predicate SentriesBoth the local and global sentries described in the previous sections can be thought of as propo-sitional sentries, because they only observe properties involving scalar variables. However, manyinteresting properties involve more complex data structures. In this section, we discuss the possi-bilities and tradeo�s inherent in observing large data structures, and how the sentry is extendedto allow it.The most straightforward solution to allow a sentry to evaluate a property involving a non-scalar data structure is to copy the structure to the sentry, as we copied scalars in the propo-sitional sentries. However, given our desire that the sentry not impinge overly on the timingand performance of the program, this is not a viable option. For consistency's sake, we cannotallow the sentry to read the data structure without some synchronization. Nor can we blockthe program to allow the sentry to read the data structure, as that violates the wait-freedomrequirement.To allow reasonable performance and consistent evaluation of a predicate property, we in-troduce a notion of timestamping to the sentry system. Each observed data structure is madereadable by the sentry, and is given an associated timestamp. This timestamp is visible to thesentry, but written only by the program. Immediately before the data structure is changed, theprogram increments the timestamp. Upon completion of the modi�cation, the program sendsthe current timestamp to the sentry in a bu�er, using whatever communication mechanism existsalready. When the sentry evaluates a property involving a non-scalar data structure, it not onlyreads the data structure from the program, but also the structure's current timestamp and thebu�ered timestamp. If the current timestamp matches the bu�ered timestamp, the snapshotis consistent. If not, the sentry discards the snapshot, as its consistency is indeterminate, andseeks a new snapshot to instantiate the property.Consider a program that measures the temperature of a substance over a period of time, andremembers the last 50 readings in array T . (See Figure 4.) A safety property on this programmight be that every k probes the average temperature is always greater than 32 degrees, i.e.9

(n probes mod k = 0)^ (P49i=0 T [i])=50 > 32. The annotation language (q.v.) allows arithmeticand logical quanti�cation to be expressed in properties.int last = 0, n probes = 0;: : :while (1) f: : :/*f begin modify(T) g*/T[last] = read temp();/*f end modify(T) g*/n probes++;last = (last + 1) % 50; /* circular array of size 50 *//*f p: (n probes % k) == 0 && (sum i: 0 <= i < 50 : TRUE : T[i]) = 50 > 32 g*/: : :g Figure 4: Annotated temperature program fragment.5 The Annotation LanguageIn the previous sections, we have described how the snapshots required to evaluate the progressand safety properties of a program are communicated to the sentry. In this section, we discussthe annotation language in which the properties are expressed.Properties are composed of the equality/inequality relations, the logic connectives (and, or,not), the arithmetic operators, the logical quanti�ers (8; 9) and the arithmetic quanti�ers (�;�).User-de�ned functions are not (yet) permitted, and the use of quanti�cation is strictly limitedto ensure the computability of the properties.For propositional sentries, the annotation language is the propositional calculus combinedwith the integer-arithmetic operators and relations. Local properties are either terminationfunctions, which annotate loops, or safety properties, which annotate code blocks. A terminationfunction is written as a non-negative, integer-valued expression. A safety property is a boolean-valued expression. The table in Figure 5 contains a summary of the syntax for propositionalproperties. 10

Keyword Meaning Keyword Meaning&& and < less than|| or char character var! not float real var% modulo int integer var* multiply local local var/ divide private private var+ plus FALSE false- minus TRUE true== equal f: header for term.!= not equal function>= at least<= at most p: header for safety> greater than propertyFigure 5: Annotation language for propositional sentries.In the annotations, termination functions are pre�xed with the string _f:", and safetyproperties are pre�xed with the string _p:". C syntax is used for relations and operations.The annotations are written within specially-formatted comments that are recognized by thesentry generator, but ignored by an ordinary C compiler. These comments appear in the placeswhere the properties are to be evaluated.Global properties are not associated with any given process, and are continually reevaluatedduring program execution, upon the receipt of new state information. Thus, instead of beingwritten in a given process, all the properties of a set of processes are written in a separate �le.Each property is labeled with a unique name. Every process has to declare which of variables in/*f send rcv: p sent >= q rcvd g*//*f window 5: 5 + q rcvd >= p sent g*/Figure 6: Constraints for reader/writer program.the properties it writes. A variable is declared by type and by whether it is local to the processor is readable by other processes. In the �rst case, the variable is called a local variable, in thesecond, it is called a private variable. Figure 6 contains the predicate �le for a reader/writerprogram with a window size of 5. Figure 7 contains code for the writer, in which the onlyannotation is the declaration of local variable p sent. The reader's code would contain thedeclaration of local variable q rcvd. 11

int *channel; /* channel is shared between processes p & q */int n acks = 0; /* number of acknowledgments */int p sent = 0; /* number of data items sent by p *//*f int local p sent; g*/ /* observe local var p sent */: : : if ((p sent - n acks < 5) && empty(channel)) fns++;p sent += 1;send(data[ns], channel);g: : : Figure 7: Writer code fragment.Constraints involving non-scalar data types, especially arrays, require extending the anno-tation language to allow limited �rst-order expressions. Both logical (8, 9) and arithmetic (�,�) quanti�cation are permitted, but only across a fully instantiated subrange. A quanti�ed ex-pression consists of a quanti�er-free proposition (either logical or arithmetic) surrounded by anynumber of singly-indexed quanti�ers with fully instantiated ranges. For example, the propertythat a 10� 10 array A is sorted is represented as(FORALL i: 0 <= i < 9: TRUE:(FORALL j: 0 <= j < 9: TRUE:(A[i,j] <= [i, j+1]) && (A[i,9] <= A[i+1, 0])))even though the second conjunct does not involve the index j. A boolean function can beused to restrict the domain further.In addition, a set ofmodify functions are added to the annotation language, so that the sentrycan be informed about changes to a non-scalar data structure. The table in Figure 8 containsthe extended syntax for predicate properties. The programmer places a begin_modify(A)annotation immediately before changing data structure A, and an end_modify(A) call uponcompleting the changes.6 ImplementationWe have constructed prototype local and global sentry generators that automatically construct,from annotated source programs, a sentry and a version of the source that can interact with12

Keyword MeaningEXISTS there existsFORALL for allPROD productSUM sumbegin_modify begin to modify data structend_modify end of modi�cationFigure 8: Extension to annotation language for predicates.the sentry. The prototypes described below are the basis of a tool that allow programmers tocheck the progress and safety properties of sequential and concurrent programs during execution,supplementing static analysis.6.1 Implementation of the Local Sentry GeneratorThe current implementation of the local sentry generator constructs a sentry and extended sourceprogram from an annotated C program. The local sentry generator uses a scanner/parser (basedon lex and yacc) and templates to expand the program annotations into C code, and to createthe main loop and validation functions for the sentry. The system consists of approximately 4000lines of commented C code, with slightly more than half due to the grammar for the parser.The current prototype accepts a single annotated C program P.c as input. Five �les are gen-erated from the input �le{P.make, P.src.c, P.sentry.c, P.consts.h, and P.writer.h. The make�leP.make contains the compiler directives to create two executable programs, P.src and P.sentry,and the underlying communication structures. Communications and shared storage are imple-mented using the UNIX System V IPC shared memory package.The �le P.src.c contains the original source process, with the annotations replaced by calls towrite macros. Each annotation in the source �le generates a bu�er queue, and the correspondingwrite macro that selects the correct bu�er and writes the corresponding variable vector. Forthe most part, the C code in the input �le P.c is reproduced in P.src.c without interpretation.However, in order to handle correctly a more complex process than we discussed in Section 2,such as one with nested loops, it is necessary to keep track of the nesting structure of the process.A macro call to increment the session number is added at the end of each level of nesting. Atthe beginning of the program, a call to an initialization macro sets up the communicationsstructures. Macros are used both for legibility and for e�ciency.The �le P.sentry.c contains the code for the sentry. The sentry generator uses the annotations13

in P.c to create the code to read the variables from the bu�ers and to evaluate the appropriatesafety or progress property. The main loop of the sentry does not change, except for a fewconstants based on the input program, and thus can be read from a template. These source-dependent constants{the maximum depth of the loops, the number of termination functions andsafety properties, and the maximum number of variables{are stored in the �le P.consts.hTo check the execution of the sequential program, the two executables P.src and P.sentryare run in parallel. As the sentry initializes the shared memory, it must be started �rst. P.srcwrites its variables to the sentry as it executes. The sentry reads the variables and computesthe appropriate function. If a violation is detected, the sentry sends a signal to the program,which may initiate some user-de�ned recovery action based on the type of fault.6.2 Implementation of the Global Sentry GeneratorThe global sentry generator consists of a scanner and parser (lex and yacc based), a code genera-tor, and a template from which the sentry is constructed. The generator contains approximately5000 lines of commented C code. Again, the parser grammar account for slightly more than halfthe code.The global sentry generator takes as input a �le of properties and the annotated C �les thatmake up the concurrent program. A debug
ag allows the user to follow the parsing and codegeneration in detail. The properties �le contains the global (safety) properties that apply to(a subset of) the processes in the program. Because the properties are associated with a setof processes, rather than an individual process, it is more straightforward to keep them in aseparate �le.Each process is annotated with a declaration of the observed variables that it writes. Thesentry generator automatically recognizes changes to scalar variables, as long as no aliasingoccurs, and inserts the necessary write macros calls as needed. For non-scalar variables, theprogrammer adds \modify" annotations, to inform the sentry that the structure is about to bechanged.Every property is expanded into a corresponding validation function in the sentry. The sentrygenerator uses the variable declarations and modify calls to complete the validation function.Ideally, the programmer should not have to change her source code at all to use a sentry.However, for the sentry to observe data structures shared among several processes, the pro-grammer has to allow the sentry to determine where in shared memory those data structuresare to be located. Both scalar and non-scalar shared structures are a�ected. Shared memory14

not observed by the sentry can be allocated independently of the sentry's memory.Given a properties �le X.props and C programs X1.c: : :Xn.c as input, the current globalsentry generator produces augmented source �les X1.src.c: : :Xn.src.c, write macros for each input�le X1.macros.h: : :Xn.macros.h, and a sentry �le X.sentry.c. In this version, the programmerwill have to modify the existing make�le to incorporate the sentry and its accompanying �les.The required #include statements are automatically inserted into the modi�ed source programs.To observe the execution of the concurrent program described in X1.c: : :Xn.c, the sentryis run in parallel with the the new executables. The sentry is responsible for allocating andinitializing shared memory, so it must be started �rst. The processes X1: : :Xn write their stateinformation to the sentry as it changes. The sentry reads the state as it becomes available,and evaluates the properties for which new information was obtained. Errors can be reportedby signal to the processes involved in a violated property, so that they may take appropriaterecovery actions.6.3 Implementation of the Predicate Sentry GeneratorIn Section 4, we introduced the notion of a \predicate sentry," i.e. a sentry to observe propertiesabout non-scalar data structures. In order to make the data structure visible to the sentry,the sentry generator automatically moves the structure from the program's memory to thesentry system's shared memory. The shared memory allocation is done at compile time, thusdynamically allocated data structures are beyond the scope of the sentry generator. As in thepropositional sentries, shared memory is allocated for the synchronization variables and thebu�ers for propositional variables. For each structure to be observed, the generator allocates atimestamp and a set of bu�ers for that timestamp.When parsing the �le in which a data structure A is modi�ed{each observed structure havingexactly one writer{the sentry generator replaces each begin_modify(A) annotation with anincrement of the timestamp of A, and each end_modify(A) with the writing of the timestampto its bu�er. The sentry, upon evaluating a property involving structure A, will check theconsistency of the result by comparing the bu�ered timestamp with the actual timestamp. Ifthe two do not match, the result is discarded./*{ sortA: (forall ii : 1 <= ii < 100: 1: A[ii] >= A[ii - 1]) }*/Figure 9: Constraint sortA15

/* compute the quantified sub-expression */lq0 = TRUE;for (ii = 1; ii < 100 && lq0; ii++) {if (1) {lq0 = lq0 && (A[ii] >= A[ii - 1]);}}/* now add that to the rest of the property */valid = (lq0) || (*_tsA != tsA);Figure 10: The validation function computing sortA.Figure 9 contains the property that an array A is sorted. The validation function correspond-ing to property sortA, as generated by the predicate sentry generator, appears in Figure 10.The quanti�ed sub-expression{in this case, the sortedness of array A{is computed �rst, and itsvalue is stored in variable lq0. The �nal subexpression (*_tsA != tsA) determines whetherarray A has been changed since the rest of the expression was sent, and thus whether or not thethe snapshot is consistent.Predicate sentry generation has been incorporated into both the local and global sentrygenerators.7 Experimental ResultsThe design of the sentry is based on three assumptions:1. The sentry has low overhead.2. The information loss encurred by the overwriting of snapshot information is minimal.3. Su�cient predicates involving non-scalar structures are evaluated, rather than discardeddue to inconsistency, to avoid starvation of the sentry.Below we empirically test these assumptions. In the following experiments, we will be evaluatingvariants of two programs. The �rst is an n-process mutual exclusion program, implementing thealgorithm described in Section 3 in which n processes vie for access to a critical section. Thesecond program is a two-process parallel exchange sort that combines two sorted arrays of lengthN into a single sorted array of length 2 � N . The execution environment is a multiprocessorSparc-10, to allow truly parallel execution of the program and sentry.16

7.1 Sentry overheadIn this experiment, we examine the overhead introduced by the sentry to a set of processes. Thisoverhead arises primarily from the additional writing done by each process to communicate itsvariables to the sentry. There are also minor initialization costs. Every write to the sentryinvolves four assignments, as in Figure 3. The program tested is the parallel exchange sort, inwhich an integer variable and an array in each process are observed by the sentry. Each exchangetriggers three writes to the sentry per process, and with the input �xed (A[i] = 3� i; B[i] = 2� i),for an array of size N , there are 2N=5 exchanges per process.array size #snapshots per %overheadexchange process P process Q average100 4 13.52 8.59 11.16 9.48 12.01 10.7410 16.63 17.08 16.8515 19.52 22.20 20.861000 3 1.12 8.99 5.066 6.09 5.72 5.9110 10.14 9.69 9.9215 10.89 9.62 10.2610000 3 6.03 2.16 4.096 4.78 4.34 4.5610 7.48 2.55 5.0215 4.63 4.63 4.63Figure 11: Overhead of introducing a sentry to the parallel exchange sort program.The table in Figure 11 shows the overhead incurred by using the sentry with the parallelexchange sort program. Most of the computation in a single exchange involves a linear shift ofthe array contents, thus the execution time is proportional to the length of the array. We testedthis program for arrays of length 100, 1000, and 10,000. For the array of length 100, the arraywas re-initialized and the sort was executed ten times, to allow for su�cient computation todominate system costs. For the larger arrays, the exchange sort was executed once. We thenforced additional writes to the sentry, by adding a parameterized loop to the source program toassign the observed integer variable to itself. This allowed us to measure the overhead causedby these extra writes, without changing the meaning of the program.Note that due to the implementation of the sentry as a heavyweight process, a certainamount of the overhead results from context switching. A future thread-based implementation17

is planned.7.2 Information lossBecause the program being observed continually overwrites its snapshots, it is possible that thesentry maymiss all occurrences of a recurring violation. The programwe tested was the n-processmutual exclusion program, where each process obtains and releases a semaphore 1000 timesduring the course of its execution. We tested for information loss by deliberately introducinga violation in which a single process releases the semaphore before it has completed its criticalsection. In the case of two processes, the violation was never missed. The sentry was apparentlyable to keep up with the processes, reading at least 3800 of a possible 4000 snapshots. In thecase of three processes, the violation was missed in 2% of the runs, and in the eight process case,the violation was missed in 4% of the runs. For a violation which occurred twice, the successrate for two to eight processes was 100%.7.3 Starvation of the predicate sentryAs a result of allowing logical properties involving large data structures, it is possible thatthe predicate sentry will read inconsistent snapshots that cannot be evaluated. The sentry maystarve because it can never obtain and evaluate a consistent snapshot. We tested for inconsistentsnapshots by observing the exchange sort program with the property that the subarrays aresorted. For a sorted array of length N , the property (8i : 1 � i < N : A[i] � A[i� 1]) requiresthat the entire array A be read (the worst possible case) before the property can be evaluated.Our results (Figure 12) show, as expected, that for very large structures, the sentry discardsarray length %discarded100 34.061000 46.4810000 95.72Figure 12: Percentage of snapshots discarded due to inconsistency.most snapshots. However, even in that case, the sentry never missed a recurring violation.18

8 Concluding RemarksIn this paper we have presented a system to check the safety and progress properties of concurrentprograms in execution. We have developed sentry algorithms that observe local and globalproperties during program execution, while ensuring �nite storage and mutual exclusion, andwithout introducing new synchronization constraints on the program. We have also extended thesentry to check logical properties involving large data structures without prohibitive overhead.We have discussed the annotation language with which the programmer de�nes the propertiesto be checked, and have described a prototype to generate the appropriate sentry and programmodi�cations automatically from annotated C source programs. Finally, we have presentedsome encouraging experimental results.There are a number of approaches that can be taken to increase the applicability and utilityof the sentry system, based on the existing sentry algorithms. We will extend the class ofproperties that can be observed to include temporal properties. Time-critical programs are anatural target for observation during execution, and a sentry, which does not a�ect the program'ssynchronization and has limited overhead, seems to be a practical monitor to explore. We willadd new languages to the sentry generator, so that it can accept input and construct sentriesin other imperative programming languages, for increased utility. We also plan to develop newalgorithms to allow the sentry methodology to be applied to distributed and message-passingplatforms, in which shared memory is either extremely limited or not available.References[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merrit, and N. Shavit. Atomic snapshotsof shared memory. In Proceedings of the 9th Annual ACM Symposium on Principles ofDistributed Computing, pages 1{13, August 1990.[2] I. Anderson and R. Kerr. Recovery blocks in action: a system supporting high reliability.In S. K. Shrivastava, editor, Reliable Computer Systems: collected papers of the NewcastleReliability Project, pages 80{101. Springer-Verlag, 1985.[3] J. H. Anderson. Composite registers. In Proceedings of the 9th Annual ACM Symposiumon Principles of Distributed Computing, pages 15{29, August 1990.[4] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of dis-tributed systems. ACM TOCS, 3(1):63{75, February 1985.[5] S. E. Chodrow and M. G. Gouda. The sentry system. In Proceedings of the 11th Symposiumon Reliable Distributed Systems, October 1992.19

[6] S. E. Chodrow, F. Jahanian, and M. Donner. Run-time monitoring of real-time systems.In Proceedings of the 12th Real-Time Systems Symposium, pages 74{83, 1991.[7] R. M. Cohen. Proving Gypsy Programs. PhD thesis, The University of Texas at Austin,1986.[8] D. Gries. The Science of Programming. Springer-Verlag, 1981.[9] F. Jahanian, R. Rajkumar, S. E. Chodrow, and S. Raju. Software support for run-timemonitoring of real-time systems. Technical report, IBM T. J. Watson Research Center,January 1992.[10] K. H. Kim and J. C. Yoon. Approaches to implementation of a repairable distributed re-covery block scheme. In Proceedings of the 18th International Symposium on Fault-TolerantComputing, pages 50{55, June 1988.[11] C.-C. Lin and R. J. LeBlanc. Event-based debugging of object/action programs. Proceed-ings of the ACM SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging,published in ACM SIGPLAN Notices, 24(1):23{34, January 1989.[12] D. Luckham. Programming with Speci�cations: An Introduction to ANNA, A Language forSpecifying Ada Programs. Springer-Verlag, 1990.[13] S. Raju, R. Rajkumar, and F. Jahanian. Monitoring timing constraints in distributedreal-time systems. In Proceedings of the 13th Real-Time Systems Symposium, pages 57{67,1992.[14] S. Sankar. Automatic Runtime Consistency Checking and Debugging of Formally Speci�edPrograms. PhD thesis, Stanford University, 1989. STAN-CS-89-1282.[15] L. M. Smith. Compiling from the Gypsy veri�cation environment. PhD thesis, The Univer-sity of Texas at Austin, 1980.[16] S. Yemini and D. M. Berry. A modular veri�able exception-handling mechanism. ACMTransactions on Programming Languages and Software Systems, 7(2):214{243, April 1985.
20

