
Verifying adder circuits using powerlistsWilliam Adams�Department of Computer SciencesThe University of Texas at AustinAustin, TX 78712{1188USAe-mail: will@cs.utexas.eduMarch 29, 1994AbstractWe de�ne the ripple-carry and the carry-lookahead adder circuits in thepowerlist notation and we use the powerlist algebra to prove that thesecircuits correctly implement addition for natural numbers represented asbit vectors.0 IntroductionAs hardware designs increase in complexity it is less possible to reason infor-mally about their behaviour, or to exhaustively test all possible behaviours.Several researchers have used formal systems for hardware veri�cation, such asthe Boyer-Moore logic [2], HOL [1], Nuprl [5] and Ruby [3]. We propose theuse of a new data structure, the powerlist , for circuit veri�cation. We show howpowerlists may be used to express circuits and reason about their correctness.The powerlist data structure has been recently introduced by Misra [6]. Itprovides a notation for compactly expressing synchronous parallel computationsin a functional programming style and an algebra within which properties ofsuch computations can be proven. The notation allows a computation on agiven powerlist to be expressed in terms of computations on two components,each of which is half the size of the original list. Recursion is used to express\divide and conquer" algorithms.Synchronous digital circuits are often regular, in the sense that a computa-tion is performed in terms of several disjoint, similar, subcomputations. Thus�This material is based in part upon work supported by National Science FoundationAward CCR-9111912



powerlists appear to be well-suited to expressing the functionality and reasoningabout the behaviour of such circuits. We have used powerlists to de�ne and ver-ify a couple of standard adder circuits, the ripple-carry and the carry-lookaheadadders.The powerlist notation allows us to write succinct de�nitions of these circuits.Also, the powerlist algebra allows short, equational proofs of all the results thatwe need to verify these circuits. We have provided detailed proofs of our results;the steps in these proofs are su�ciently small that there is a good possibility ofproviding automated support for the generation of similar proofs1.Our main result is a proof that the ripple-carry and the carry-lookaheadadder circuits compute the same function. We also give a proof that the ripple-carry adder circuit correctly implements addition on natural numbers. Thetwo results together show that the carry-lookahead adder circuit also correctlyimplements addition.1 PowerlistsMisra de�nes a data structure called the powerlist . Given a set B of elements,called scalars, the set of powerlists over B is the set of linear lists over B whoselength is a power of 2. The smallest powerlist is thus a list containing a singleelement x of B, which we write hxi. We call such a powerlist a singleton. Thereare two constructors which allow us to construct new powerlists from powerlistsp and q, where p and q are of equal length.� p j q (read p tie q ) is the powerlist formed by concatenating p and q.� p 1 q (read p zip q ) is the powerlist formed by interleaving the elementsof p and q.Note We use the following conventions for variable names throughout thispaper: a, b, c, d, e, f , g, h, x, y and z represent scalars (elements of B); p,q, r, s, t, u, v, w represent powerlists. When giving examples of powerlists weenclose the elements in angle brackets.The following are examples of powerlists.haihe fihb d f hiha b c d e f g hi1Researchers at SUNY Albany, led by Deepak Kapur, have alreadymechanically generatedproofs for many of the results given in Misra's original powerlist paper.2



The following illustrate the de�nition of tie and zip.ha b c di j he f g hi = ha b c d e f g hiha b c di 1 he f g hi = ha e b f c g d hihai j hbi = ha bi = hai 1 hbiIt is clear that if we con�ne ourselves to the singleton constructor h�i andthe constructors j and 1 on equal length lists that we can construct all lists oflength 2n for n � 0 and no others. For a powerlist of length 2n we call n theloglen of p, which we write lgl:p. We use the notation pi to denote element i inthe powerlist p, for 0 � i < 2lgl :p.If we take equality of powerlists to be equivalent to equality of linear lists(that is, element-by-element equality) then it is a straightforward matter toshow the de�nitions of h�i, j and 1 satisfy the following axioms.Powerlist axioms(Singleton) hxi = hyi � x = y(Pair) hxi j hyi = hxi 1 hyi(Tie) p j q = r j s � p = r ^ q = s(Zip) p 1 q = r 1 s � p = r ^ q = s(Commutativity) (p 1 q) j (r 1 s) = (p j r) 1 (q j s)More generally, we can de�ne a powerlist algebra over B to be a tuple(P; h�i; j;1; lgl) such that� P is a set of powerlists� h�i is a constructor B �! P� j and 1 are constructors P � P �! P� lgl is a function P �!Nwhich satisfy the following rules� hxi is de�ned for all x 2 B� lgl :p is de�ned for all p 2 P� p j q and p 1 q are de�ned i� lgl :p = lgl :q� lgl :p = 0 i� p = hxi for some x 2 B� lgl :(p j q) = lgl:(p 1 q) = lgl :p+ 1� lgl :p > 0 i� p = q j r or p = q 1 r for some q; r 2 P3



� h�i, j and 1 satisfy the powerlist axiomsMisra's powerlists are one example of such a powerlist algebra, which wecall the standard model . Kornerup [4] has another example where j and 1 arede�ned di�erently, using the Gray-code and inverse Gray-code permutations.We refer to the standard model to provide an operational interpretation ofthe functions that we de�ne, though our proofs are entirely within the powerlistalgebra and so are valid for all models.From the axioms we can prove the following.Theorem 0 (Dual decomposition) For any non-singleton powerlist p thereare unique powerlists r, s, u and v such that p = r j s and p = u 1 v.Note Proofs omitted from the main body of the paper are in the appendix.2 last and the shift operatorAs our �rst example of a powerlist function we de�ne the function last . We usea pattern-matching style of function de�nition. The period represents functionapplication.De�nition 0 last:hxi = xlast:(p j q) = last :qNote that because of Theorem 0, this function is de�ned on all powerlists: anypowerlist is a singleton or is the tie of two powerlists.The interpretation of last in the standard model should be clear: last returnsthe last (rightmost) element of the powerlist. A result of this de�nition is thefollowing result.Lemma 1 last :(p 1 q) = last :qWe could equally well have chosen to de�ne last in terms of 1 and proven aresult about last applied to p j q.Notation Where convenient we write p for last:p.The in�x shift operator, written ! takes a scalar as its left argument and apowerlist as its right argument and returns a powerlist of the same size. In thestandard model the intended e�ect of x!p is a powerlist q of the same size asp where q0 = x and qi = pi�1 for 1 � i < 2lgl:q . So, for example, we expecta!he f g hi = ha e f giThe following de�nition realises this description.4



De�nition 2 x!hyi = hxix! (p 1 q) = (x! q) 1 pWe have a result about ! in terms of j.Lemma 3 x! (p j q) = (x!p) j (p! q)3 Pointwise operatorsWe can de�ne powerlist functions in terms of operators on the scalar set B. Onecommonway to do this is to coerce operators on B to be operators on powerlistsover B. The simplest way to do this is so thatha b c di ? he f g hi = ha ? e b ? f c ? g d ? hiThe de�nition of this coercion is straightforward.De�nition 4 For ? a binary operator on B, we coerce ? to be a binary operatoron P by hxi ? hyi = hx ? yi(p 1 q) ? (r 1 s) = (p ? r) 1 (q ? s)We call such an operator ? a pointwise operator on powerlists. The followingresult is easily proven.Lemma 5 (p j q) ? (r j s) = (p ? r) j (q ? s)We generalize the de�nition of pointwise operators to n-ary operators in theobvious way. Note that p?q is de�ned i� lgl :p = lgl :q and that lgl:(p?q) = lgl :p.A simple induction establishes that commutativity, associativity and distribu-tivity properties of binary operators on B are carried over to the correspondingpointwise operators on powerlists. We can also show thatlast:p ? last:q = last :(p ? q)(x!p) ? (y! q) = (x ? y)! (p ? q)We call functions and operators on powerlists which commute with pointwiseoperators in this way positional . 5



4 Shifted operatorsFor ? a binary operator on B, we de�ne shift ?, written ~?, so thatha b c di~? he f g hi = he a ? f b ? g c ? hiThe operator ~? is similar to the pointwise version of the ? operator except thatelements from the �rst powerlist are shifted one place to the right before ? isapplied pointwise.De�nition 6 For ? a binary operator on B, we de�ne ~? on P byhxi~? hyi = hyi(p 1 q)~? (r 1 s) = (q~? r) 1 (p ? s)Note that, as with the pointwise version of ?, p~? q is de�ned i� lgl:p = lgl :q andthat lgl :(p~? q) = lgl:p.We have the following quasi-associativity results.Lemma 7 For associative ?,(p~? q) ? r = p~? (q ? r)(p ? q)~? r = p~? (q~? r)5 Pre�x computationIf p is a powerlist over scalar set B and ? is an associative binary operator onB then we de�ne the pre�x computation of p with respect to ? in the standardmodel to be a powerlist w of the same size as p such that wi = p0 ? � � � ? pi. So,for example, if p = ha b c di, the pre�x computation of p with respect to ? isthe powerlist ha a ? b a ? b ? c a ? b ? c ? diWe can express the conditions on the pre�x computation in the following way.w0 = p0wi = wi�1 ? pi 1 � i < 2lgl:pThis is equivalent to the powerlist expressionw = w~? pWe have the following result.Lemma 8 For ? an associative binary operator on B, the equationw = w~? phas a unique solution in w for any p. 6



This justi�es de�ning of the pre�x sum operator as follows.De�nition 9 (Pre�x computation) For ? an associative binary operator onB, the pre�x computation of powerlist p with respect to ?, written F? p, is de�nedby w = F? p � w = w~?pFor our convenience in de�ning the carry-lookahead adder we de�ne anotheroperator on powerlists which combines the shift and pre�x computation opera-tors.De�nition 10 (Shift-pre�x) The shift-pre�x computation of x and p with re-spect to ?, written x ?7!p, is de�ned byx ?7! p = F? (x!p)The following lemma gives a direct de�nition of ?7! .Lemma 11 x ?7! hyi = hxix ?7! (p j q) = u j vwhere u = x ?7!pv = (u ? p) ?7! q6 Using powerlists to describe circuitsThe circuit descriptions that we give are algorithmic, in that they indicate whichintermediate results the circuit is to calculate and how it is to combine theseto reach the desired result. (We do not address the question of translatingthese algorithms to hardware.) The powerlist notation allows for a compactrepresentation of circuits. The style of de�nition we use is similar to that usedby Hunt and Brock [2], except they used Lisp lists where we use powerlists andthey provided mappings down to the hardware level.The input and output values of circuits are given in terms of values fromthe set f0; 1g, which we call bits. We regard this set as a subset of the naturalnumbers, so we allow ordinary arithmetic operations on it. We represent inputand output registers as powerlists of bits, which we call bit vectors. When weare using registers to represent natural numbers we assume that bits go left toright from low-order to high-order within the corresponding bit vectors.As an example of the style in which we present circuits, we de�ne two circuitsto compute the parity of the bits in a register. This is a special case of a moregeneral problem: given a powerlist p and an associative binary scalar operator?, compute p0 ? : : : ? pN�1 where N is the length of p (so N = 2lgl:p). We7



call this computation the reduction of p with respect to ?. Parity is reductionof a bit vector with respect to the operator �, which is addition modulo 2(or, equivalently, logical exclusive-or if we regard 0 and 1 as representing falseand true repectively). As a �rst (ine�cient) way of doing this we consider thefunction iterpar de�ned by the following.iterpar:b:hxi = b� xiterpar:b:(p j q) = iterpar :c:qwhere c = iterpar :b:pFunction iterpar takes two arguments, a single bit and a bit vector and returns asingle bit representing the parity of all the bits of its arguments. Thus iterpar:0:preturns the parity of p. We interpret this function as describing a circuit in whichwe can identify particular wires as carrying the input, output and intermediatevalues which are generated as we unwind the recursive calls. The functiondescribes not a single circuit, but a family of circuits, one for each registerwidth 2n, for n � 0. The recursive nature of the de�nition indicates that weshould be able to identify circuits of width 2n�1 within a circuit of width 2n.It should be clear that iterpar describes an iterative circuit which accumu-lates its result by checking the bits of the input register left to right, checkingeach bit's parity against that of the previously seen bits. This is a rather unnat-ural de�nition to give in the powerlist notation, but it is close to the Lisp-stylede�nitions used by Hunt and Brock.As an obvious improvement (in both the circuit delay and the number ofgates required) we propose the circuit parapar which uses concurrent operationson the bits of the input registers.parapar :hxi = xparapar :(p 1 q) = parapar :rwhere r = p� qFunction parapar takes as input a single bit vector and uses a tree computationto calculate the result. Here again we regard this as describing a circuit in whichwe can identify wires holding the intermediate results used. As with iterpar ,parapar describes a family of circuits of width 2n. Though (we claim) iterpar:0(the iterpar circuit with the initial input bit �xed at 0) and parapar de�ne thesame function, when we interpret their de�nitions as circuits we see that theydescribe di�erent circuits.To verify these circuits, we �rst need a way to state their correctness, so wemust de�ne the parity of a powerlist. From what we have previously de�ned wecould use the following. parity:p = last :F� pThe veri�cation task is then to prove that iterpar:0 and parapar are both func-tionally the same as parity . Since to prove the three equalitiesiterpar :0 = parity8



parapar = parityiterpar :0 = paraparwe need only prove any two of them, we are free to choose which two to prove.Use this freedom when, rather than attempting to prove directly that the carry-lookahead adder correctly implements addition, we prove this by showing itequivalent to the ripple-carry adder, whose correctness is easier to establishdirectly.7 The ripple-carry adderThe ripple-carry adder is the simplest of the adder circuits to describe andexplain. The basic element of the circuit is the full-adder . This is circuitelement with three bit inputs, x, y and b (x and y are the local inputs and b isthe carry-in) and two bit outputs, z and c (z is the local output and c is thecarry-out). The operation of the full-adder is illustrated in �gure 0. The outputz is 1 if one or three of the input bits are 1 and is 0 otherwise; the output c is1 if two or more of the input bits are 1 and is 0 otherwise (here � representsinteger division).The idea is that x and y are bit values at corresponding positions in tworegisters, and b is the carry generated by adding bits at lower order positions;the result of the local addition is the bit z which represents the bit in the outputregister at the position corresponding to x and y, and a carry bit c which ispassed on to the higher order bits. We regard a full-adder as a ripple-carryadder of width 1. We join two ripple-carry adders of width 2n to give one ofwidth 2n+1 as shown in �gure 1. In the �gure the input and output registersare shown with their least signi�cant bits on the left.The function rc takes as its inputs a single bit b representing the carry-in andequal-length bit vectors p and q representing the input registers. The output ofrc is a pair (t; d) where t is a bit vector of the same size as the input bit vectorsrepresenting the output register and d is a single bit representing the carry-out(overow).De�nition 12 (Ripple-carry adder)rc:b:hxi:hyi = (h(x+ y + b) mod 2i; (x+ y + b)� 2)rc:b:(p j q):(r j s) = (t; d)where t = u j v(u; c) = rc:b:p:r(v; d) = rc:c:q:sWe show in Appendix A.5 that the ripple-carry adder de�ned in this way cor-rectly implements addition. 9



fulladder?x ?y?z-b - cz = (x+ y + b) mod 2c = (x+ y + b)� 2Figure 0: The full-adder circuit elementpr?ripple-carryadder for 2n bits? -u-b c2n bits
2n bitspr?ripple-carryadder for 2n bits? -u qs?ripple-carryadder for 2n bits? -v-b c d2n+1 bits
2n+1 bitsFigure 1: Ripple-carry adders of widths 2n and 2n+110



It is well known that the ripple-carry adder is not the most e�cient circuit foradding natural numbers represented as bit vectors. We next describe the carry-lookahead adder which is known to be more e�cient. However, the correctnessof the carry-lookahead adder is not nearly as apparent as the correctness ofthe ripple-carry adder, but using the powerlist algebra we prove that the twocircuits compute the same function.8 The carry-lookahead adderThe ine�ciency of the ripple-carry adder circuit arises from a linear data de-pendence between the computations at each bit position: the computation atany position requires as one of its inputs a carry-in, which is the carry-out fromthe position to its left (the carry bits are said to ripple from left to right, whichgives the circuit its name). The strategy used in the carry-lookahead adder is to�rst calculate the carry-in to each position using a pre�x computation (this canbe done in time logarithmic in the width of the input registers). Once this hasbeen done the local result for all bit positions can be calculated concurrentlyusing only local computations.To explain the carry-lookahead adder we �rst note that in the ripple-carryadder, if the input bits pi and qi at position i are both 1 then the carry-outfrom that position is 1 regardless of the carry-in (in this case we say positioni generates a carry). Similarly, if pi and qi are both 0 then the carry-out fromposition i is 0 regardless of the carry-in (position i stops a carry). If one of piand qi is 1 and the other is 0 then the sum of these bits is 1 and the carry-outfrom position i is the same as the carry-in (position i propagates a carry).We de�ne a binary operator � to calculate whether two bits at a givenposition generate, stop or propagate a carry.De�nition 13 x � y = � x if x = y� if x 6= yHere outputs 1 and 0 represent generate and stop respectively (these are givenby the appropriate carry value) and output � represents propagate. Pointwiseapplication of � to input bit vectors p and q gives us the initial carry-out vector.We use the example in �gure 2 as we continue the explanation of the oper-ation of the carry-lookahead adder. The example and the new operators intro-duced in it are explained in the following paragraphs.The �rst three lines are the input bit vectors p and q and the carry-in bit b.The next line shows the initial carry-out vector r which, as explained above, isgiven by p � q.The initial carry-in values for each bit position are now given by the vectorb! r, which is shown in the �fth line. The value r is shifted out of the vector by11



p 0 1 1 0 0 0 1 1q 0 0 1 1 1 0 1 0b 0r 0 � 1 � � 0 1 � p � qb! r 0 0 � 1 � � 0 1r �s 0 0 0 1 1 1 0 1 b ?7! rt 0 1 0 0 0 1 0 0 s � rd 1 s ? rFigure 2: Example showing the stages in calculating the outputs t and d usingcarry-lookahead for inputs p, q and bthis operation. From the above remarks we can conclude that a position thathas a non-� value in b! r has the correct carry-in value. Any position that hasa � carry-in value gets the rightmost non-� carry-in value to its left as its �nalcarry-in value. We can represent the computation of the �nal carry-in values sas a pre�x computation with respect to the binary operator ? de�ned as follows.De�nition 14 x ? y = � y if y 6= �x if y = �Note that ? is associative, so pre�x computation with respect to ? is well-de�ned.The value of s is thus F? (b! r) or b ?7! r.To compute the vector of local outputs t we note that if ri 6= � then thecontribution of pi and qi to ti is 0, so ti is the value of the carry-in si. If ri = �then the contribution of pi and qi to ti is 1, so the local result is the inverse of si.We de�ne a binary operator � which gives this result when applied pointwiseto s and r.De�nition 15 x� y = � x if y 6= �:x if y = �where :0 = 1:1 = 0:� = �The value of t is thus s � r.To determine the carry-out d of this operation we notice that d is the value ofthe carry-out from the the rightmost position of the bit vectors, or alternativelythe carry-in to a position just to the right of the rightmost position. If we12



consider the value that a pre�x computation for carry-in bits including thisposition would yield we see that d is given by s ? r.Combining the informal arguments above we now propose the following def-inition of an addition circuit. We use the same input and output formats for clas we used for rc.De�nition 16 (Carry-lookahead adder)cl:b:p:q = (t; d)where t = s � rd = s ? rr = p � qs = b ?7! rIt can be seen from this de�nition that all operations used in the calculation ofthe results of the carry-lookahead adder, apart from the shift-pre�x computationused to evaluate s, are pointwise (and thus can be performed for all bit positionsin parallel). Shift-pre�x can be evaluated on input registers of width 2n in timeproportional to n. Hence the overall running time is logarithmic in the widthof the input registers. In contrast, the running time for the ripple-carry addercircuit is linear in the width of the input registers.Note The function cl is de�ned for b 2 f0; 1; �g and for p and q powerlists overthe same set. However, in the theorem below we restrict the inputs to comefrom the set f0; 1g. One consequence of the theorem is that in this case theoutput of cl does not contain the value � (since rc cannot generate such a valuein its output).Theorem 1 (Equivalence of the adder circuits) For all p, q, b, where pand q are bit vectors of equal size and b 2 f0; 1g,rc:b:p:q = cl:b:p:qProof We show that cl satis�es the equations de�ning rc. That is, we useDe�nition 16 to calculate cl:b:p:q for singleton p and q and for non-singletonp and q and we show in each case that the result can be put in the form ofDe�nition 12. The result then follows by a simple structural induction.For cl:b:hxi:hyi we get the following. The format of the proofs is explained inAppendix A.0.r= f De�nition 16 ghxi � hyi= f � pointwise ghx � yi 13



s= f De�nition 16 gb ?7! r= f value of r, above gb ?7! hx � yi= f Lemma 11 ghbit= f De�nition 16 gs� r= f values of s and r, above ghbi � hx � yi= f � pointwise ghb� (x � y)id= f De�nition 16 gs ? r= f values of s and r, above glast:hbi ? last:hx � yi= f De�nition 0, twice gb ? (x � y)Since we can show b� (x � y) = (x+ y + b) mod 2b ? (x � y) = (x+ y + b)� 2for all x, y and b taking values from f0; 1g, we havecl:b:hxi:hyi = (h(x+ y + b) mod 2i; (x+ y + b)� 2)which matches the base case of De�nition 12.We now need to express cl:b:(p j q):(p0 j q0) in terms of cl:bp:p:p0 and cl:bq:q:q0 forappropriate values of bp and bq to match the recursive case of De�nition 12. Wehave the following from De�nition 16.cl:b:(p j q):(p0 j q0) = (t; d)where t = s � rd = s ? rr = (p j q) � (p0 j q0)s = b ?7! r(0) 14



cl:bp:p:p0 = (tp; dp)where tp = sp � rpdp = sp ? rprp = p � p0sp = bp ?7! rp(1) cl:bq:q:q0 = (tq; dq)where tq = sq � rqdq = sq ? rqrq = q � q0sq = bq ?7! rq(2)We now express the intermediate results for cl:b:(p j q):(p0 j q0) in terms of the in-termediate results for cl:bp:p:p0 and cl:bq:q:q0. In doing so we choose appropriatevalues for bp and bq.r= f (0) g(p j q) � (p0 j q0)= f � pointwise g(p � p0) j (q � q0)= f (1) ; (2) grp j rqs= f (0) gb ?7! r= f value of r, above gb ?7! (rp j rq)Using Lemma 11 we calculate u and v so that s = u j v.u= f Lemma 11 gb ?7! rp= f choose bp = b, (1) gspv= f Lemma 11 g(u ? rp) ?7! rq= f value of u, above g 15



(sp ? rp) ?7! rq= f (1) gdp ?7! rq= f choose bq = dp, (2) gsqThus if we choose bp = b and bq = dp we get s = sp j sq .t= f (0) gs� r= f values of s and r, above g(sp j sq)� (rp j rq)= f � pointwise g(sp � rp) j (sq � rq)= f (1); (2) gtp j tqd= f (0) gs ? r= f values of s and r, above glast:(sp j sq) ? last :(rp j rq)= f De�nition 0, twice gsq ? rq= f (2) gdqCombining the above results we getcl:b:(p j q):(p0 j q0) = (t; dq)where t = tp j tq(tp; dp) = cl:b:p:p0(tq; dq) = cl:dp:q:q0which is precisely the form of the recursive case of De�nition 16.(End of proof)9 ConclusionsUsing powerlists we have shown that two adder circuits with dissimilar algo-rithms, one with running time linear in the input register width and the other16



with logarithmic running time, compute the same input-output function. Thisresult is, of course, well known. However, our proof of this result (Theorem 1)is surprisingly compact. We believe this compactness is a strong argument infavour of using the powerlist notation for describing and verifying circuits.A further result is that the pre�x computation can be expressed as the uniquesolution of a �xpoint equation, and that we can derive its properties from thisequation. Since the pre�x computation plays such and important rôle in digitaldesign, we expect the results in Appendix A.4 leading to the proof of Lemma 11to be of use as we attempt to specify and verify other circuits.We plan to further explore the use of powerlists for expressing and verifyingdigital circuits in future work.AcknowledgementsJay Misra suggested that I look at the possibilities for the use of his powerlistnotation for circuit speci�cation and veri�cation. This work was completedthanks to Jay's continual support and encouragement. Other colleagues at UTAustin, notably Al Carruth, Warren Hunt and Jacob Kornerup, made severalsuggestions for improving the presentation of the material.A Appendix: additional proofsA.0 Proof formatWhere we give calculational proofs we use the format fromDijkstra and Scholten[0]. So, for example, the proof of the identity(hai 1 hbi) 1 (hci 1 hdi) = (hai j hci) j (hbi j hdi)is presented as a chain of equalities in the following format.(hai 1 hbi) 1 (hci 1 hdi)= f Pair axiom, twice g(hai j hbi) 1 (hci j hdi)= f Commutativity axiom g(hai 1 hci) j (hbi 1 hdi)= f Pair axiom, twice g(hai j hci) j (hbi j hdi)The lines beginning with equality symbols contain justi�cations (in curly braces)for the claimed equality between the term above and the term below.A.1 Dual decompositionTheorem 0 (Dual decomposition) For any non-singleton powerlist p thereare unique powerlists r, s, u and v such that p = r j s and p = u 1 v.17



Proof We note that the uniqueness of r, s, u and v is guaranteed by the Tieand Zip axioms and that, from powerlist algebra rules, p is not a singleton i�p = r j s for some r and s or p = u 1 v for some u and v. We assume thatp is non-singleton and p = r j s and show that p = u 1 v for some u and v.A corresponding proof shows the converse. The proof is by induction of thestructure of r and s.Basis: r and s are singletons.p= f given gr j s= f r and s singletons, Pair axiom gr 1 sSo if u = r and v = s then p = u 1 v.Induction step: r and s are non-singleton. We assume as the induction hypoth-esis that r = r0 1 r00 and s = s0 1 s00 for some r0, r00, s0 and s00.p= f given gr j s= f induction hypothesis g(r0 1 r00) j (s0 1 s00)= f Commutativity axiom g(r0 j s0) 1 (r00 j s00)So if u = r0 j s0 and v = r00 j s00 then p = u 1 v.(End of proof)This proof makes use of the Pair and Commutativity axioms, which are theonly axioms that involve both j and 1. The form of this proof is one that arisesrepeatedly in proving results about powerlists.A.2 Results for last and the shift operatorWe give �rst a couple of results which are useful in the bases of inductive proofsof results involving ! and last . The proofs come directly from De�nitions 2and 0.Lemma 17 For any scalar x and for any singletons p and q,x!p = hxip! q = pLemmas 1 and 3 use the same form of induction as used above to proveTheorem 0. We show only the proof of Lemma 3.18



Lemma 3 x! (p j q) = (x!p) j (p! q)Proof We use induction of the structure of the right-hand argument to !.Basis: p and q are singletons.x! (p j q)= f Pair axiom gx! (p 1 q)= f De�nition 2 g(x! q) 1 p= f Lemma 17 ghxi 1 p= f Pair axiom ghxi j p= f Lemma 17, twice g(x!p) j (p! q)Induction step: p and q are non-singleton. We assume p = r 1 s and q = u 1 vand, as the induction hypothesis, that x! (s j v) = (x! s) j (s!v).x! (p j q)= f value of p and q gx! ((r 1 s) j (u 1 v))= f Commutativity axiom gx! ((r j u) 1 (s j v))= f De�nition 2 g(x! (s j v)) 1 (r j u)= f induction hypothesis g((x! s) j (s!v)) 1 (r j u)= f Commutativity axiom g((x! s) 1 r) j ((s!v) 1 u)= f De�nition 2, twice g(x! (r 1 s)) j (s! (u 1 v))= f Lemma 1 g(x! (r 1 s)) j (last :(r 1 s)! (u 1 v))= f value of p and q g(x!p) j (p! q)(End of proof)A.3 Results for shifted operatorsWe �rst prove a result giving ~? in terms of j.Lemma 18 (p j q)~? (r j s) = (p~? r) j ((p! q) ? s)19



Proof We use induction on the arguments.Basis: p, q, r, s are singletons.(p j q)~? (r j s)= f Pair axiom, twice g(p 1 q)~? (r 1 s)= f De�nition 6 g(q~? r) 1 (p ? s)= f De�nition 6 gr 1 (p ? s)= f Pair axiom gr j (p ? s)= f De�nition 6; Lemma 17 g(p~? r) j ((p! q) ? s)Induction step: p, q, r, s are non-singleton. We assume that p = p0 1 p00,q = q0 1 q00, r = r0 1 r00, s = s0 1 s00 and, as the induction hypothesis,(p00 j q00)~? (r0 j s0) = (p00~? r0) j ((p00! q00) ? s0)We then have(p j q)~? (r j s)= f value of p, q, r, s g((p0 1 p00) j (q0 1 q00))~? ((r0 1 r00) j (s0 1 s00))= f Commutativity axiom, twice g((p0 j q0) 1 (p00 j q00))~? ((r0 j s0) 1 (r00 j s00))= f De�nition 6 g((p00 j q00)~? (r0 j s0)) 1 ((p0 j q0) ? (r00 j s00))= f induction hypothesis; ? pointwise g((p00~? r0) j ((p00! q00) ? s0)) 1 ((p0 ? r00) j (q0 ? s00))= f Commutativity axiom g((p00~? r0) 1 (p0 ? r00)) j (((p00! q00) ? s0) 1 (q0 ? s00))= f De�nition 6; ? pointwise g((p0 1 p00)~? (r0 1 r00)) j (((p00! q00) 1 q0) ? (s0 1 s00))= f De�nition 2; value of p, r, s g(p~? r) j ((p00! (q0 1 q00)) ? s)= f Lemma 1; value of q g(p~? r) j ((last :(p0 1 p00)! q) ? s)= f value of p g(p~? r) j ((p! q) ? s)(End of proof)The following lemma further illustrates the close connection between ~? and!. The proof is a straightforward induction and is omitted.20



Lemma 19 p~? (x! q) = x! (p ? q)Proof for Lemma7 is also a straightforward induction and is likewise omitted.A.4 Results for pre�x computation and shift-pre�xThe following lemma was used to justify the use of a �xpoint equation in De�-nition 9.Lemma 8 For ? an associative binary operator on B, the equationw = w~? phas a unique solution in w for any p.Proof We use structural induction on p. Note that, from the de�nition of ~?,any solution in w to the equation w = w~?p must be such that lgl :w = lgl :p.Basis: p is a singleton. From De�nition 6, for any singleton ww~? p = pSo we have w = w~? p � w = pand thus w is uniquely speci�ed.Induction step: p is non-singleton, say p = r 1 s. We assume that for any tsuch that lgl :t = lgl:r the �xpoint equationw0 = w0~? thas a unique solution in w0. Since any solution to the �xpoint equation for wmust be non-singleton, we can write such a solution as u 1 v. We now calculateconditions on u and v.u 1 v= f �xpoint equation for w g(u 1 v)~? p= f value of p g(u 1 v)~? (r 1 s)= f De�nition 6 g(v~? r) 1 (u ? s)So from the Zip axiom u = v~? r(3) v = u ? s(4)This gives 21



u= f Substitute from (4) in (3) g(u ? s)~? r= f Lemma 7, ? associative gu~? (s~? r)Since lgl:(s~? r) = lgl :r, from the induction hypothesis there is a unique u satis-fying the equation u = u~? (s~? r)Using this value of u, (4) thus gives a unique v and so w is uniquely determined.(End of proof)For an operator ? having a left identity l (so l ? x = x for all x 2 B), we canshow from the de�nitions thatp~? q = (l!p) ? qWe can thus regard the following lemma as a generalization of Lemma 8.Lemma 20 For ? a binary operator on B, the equationw = (x!w) ? phas a unique solution in w for any x and p.Proof We use structural induction on p. Note that from the de�nition of apointwise operator, any solution w to the equation must be such that llen:w =llen:p.Basis: p is a singleton. For singleton w we have, from Lemma 17,w = (x!w) ? p � w = hxi ? pso there is a unique solution in w to the equation.Induction step: p is non-singleton, say p = r j s. We assume that for any x the�xpoint equations w0 = (x!w0) ? rw00 = (x!w00) ? shave unique solutions in w0 and w00. Since any solution to the �xpoint equationfor w must be non-singleton, we can write such a solution as u j v. We nowcalculate conditions on u and v. 22



u j v= f �xpoint equation for w g(x! (u j v)) ? p= f Lemma 3; value of p g((x!u) j (u! v)) ? (r j s)= f ? pointwise g((x!u) ? r) j ((u!v) ? s)So from the Tie axiom u = (x!u) ? r(5) v = (u!v) ? s(6)From the induction hypothesis (5) has a unique solution in u. Using this solu-tion, the induction hypothesis gives us that (6) has a unique solution in v, so wis uniquely determined.(End of proof)Note In Lemma 20 we do not require that the operator ? be associative andthe proof does not require this. It is possible to prove Lemma 8 using j insteadof 1 as the constructor in the induction step and appealing to Lemmas 18 and20. We could thus remove the restriction that ? be associative from Lemma 8.We choose not to do this since the main purpose of Lemma 8 is to establish thevalidity of De�nition 9, and pre�x computation as it is normally understood isonly de�ned with respect to associative operators.Our next goal is to prove Lemma 11. We �rst need to prove some resultsabout the pre�x computation.We use the notation [x ?] for the unary function (�y :: x?y) on elements of B(so [x ?]:y = x?y). This function applies pointwise to powerlists. The followinglemma (and its generalization to the case when z is replaced by a powerlist) iseasily proven.Lemma 21 For associative ?,[[x ?]:y ?]:z = [x ?]:([y ?]:z)Note Throughout this section all pre�x computations and shift-pre�x compu-tations are with respect to ?, a given associative binary operator, so we omitthis operator from our notation and write Fp and x 7!p for F? p and x ?7!p.The �rst result for the pre�x computation operator is an alternative way ofde�ning it.Lemma 22 Fhxi = hxiF(p j q) = u j vwhere u = Fpv = [u ?]:Fq23



We prove this lemma in conjuction with the following one, which we can regardas a generalization of De�nition 9.Lemma 23 For associative ?,w = (x!w) ? p � w = [x ?]:FpProof We prove the lemmas together with a single structural induction. Notethat for Lemma 23 it is su�cient to provew = [x ?]:Fp ) w = (x!w) ? psince the converse then follows from Lemma 20.Basis: We need to show Fhxi = hxi(7) w = [x ?]:Fhyi ) w = (x!w) ? hyi(8)Proof of (7): Follows immediately from De�nitions 9 and 6.Proof of (8): Suppose that w = [x ?]:Fhyi. We havew= f assumption and (7) g[x ?]:hyi= f [x ?] pointwise ghx ? yiSo we get(x!w) ? hyi= f Lemma 17, w a singleton (above) ghxi ? hyi= f ? pointwise ghx ? yi= f above gwInduction step: We assume that for some p and q such that lgl:p = lgl:q wehave, for all w and x, w = (x!w) ? p � w = [x ?]:Fp(9) w = (x!w) ? q � w = [x ?]:Fq(10)We show F(p j q) = u j vwhere u = Fpv = [u ?]:Fq(11) 24



w = [x ?]:F(p j q) ) w = (x!w) ? (p j q)(12)Proof of (11): Suppose w = F(p j q). From De�nition 9 we have that w is nota singleton, so let w = u j v.u j v= f De�nition 9 g((u j v))~? (p j q)= f Lemma 18 g(u~?p) j ((u!v) ? q)So from the Tie axiom u = u~?pv = (u!v) ? qFrom De�nition 9 we get u = Fpand (10) gives v = [u ?]:FqProof of (12): Suppose w = [x ?]:F(p j q). Taking u and v satisfying (11) weget w= f assumption and (11) g[x ?]:(u j v)= f [x ?] pointwise g[x ?]:u j [x ?]:vSo we have w = r j swhere r = [x ?]:us = [x ?]:v(13)From (13) and (11) we get r = [x ?]:FpSo from (9) r = (x! r) ? p(14)Also 25



s= f (13) and (11) g[x ?]:([u ?]:Fq)= f Lemma 21 g[[x ?]:u ?]:Fq= f [x ?] pointwise, last positional g[last:([x ?]:u) ?]:Fq= f (13) g[r ?]:FqSo from (10) s = (r! s) ? q(15)Thus (x!w) ? (p j q)= f (13) g(x! (r j s)) ? (p j q)= f Lemma 3 g((x! r) j (r! s)) ? (p j q)= f ? pointwise g(((x! r) ? p) j ((r! s) ? q))= f (14); (15) gr j s= f (13) gw(End of proof)Note Lemma 22 gives an iterative algorithm for the pre�x computation, whichhas running time linear in the length of the input list. We can derive otheralgorithms for the pre�x computation which have running time logarithmic inthe length of the input list. These algorithms use 1 to deconstruct the list inthe recursive case. See [6] for details.The following lemma shows how [x ?] distributes over 7! .Lemma 24 [x ?]:(y 7!p) = (x ? y) 7! pProof Let w = (x ? y) 7! p, so from De�nition 10, w = F((x ? y)! p)w= f De�nition 9 gw~? ((x ? y)! p)= f Lemma 19 g(x ? y)! (w ? p)= f ? pointwise, ! positional g(x!w) ? (y!p) 26



So from Lemma 23 w = [x ?]:F(y!p)From De�nition 10 this givesw = [x ?]:(y 7!p)(End of proof)We now are able to prove Lemma 11.Lemma 11 x 7! hyi = hxix 7! (p j q) = u j vwhere u = x 7!pv = (u ? p) 7! qProof x 7! hyi= f De�nition 10 gF(x!hyi)= f De�nition 2 gFhxi= f Lemma 22 ghxix 7! (p j q)= f De�nition 10 gF(x! (p j q))= f Lemma 3 gF((x! p) j (p! q))So by Lemma 22 x 7! (p j q) = u j vwhere u = F(x!p)v = [u ?]:F(p! q)De�nition 10 then gives u = x 7!pv = [u ?]:(p 7! q)and Lemma 24 gives v = (u ? p) 7! q(End of proof) 27



A.5 Correctness of the ripple-carry adderIn this section we need some properties of mod and � on natural numbers.We take them to be de�ned as follows (all variables are natural numbers withm > 1). We give both of these operators the same binding power as �, themultiplication operator.De�nition 25 x�m = bx=mcx modm = x�m � (x�m)The following results can be proven from these de�nitions. We omit the proofs.Lemma 260. 0 � x modm < m1. x < m � x modm = x2. x < m2 � x�m < m3. (x modm+ y) mod m = (x+ y) mod m4. x+ y �m = (x �m + y) �m5. (x�m) �m = x�m26. x modm+ ((x�m) modm) �m = x modm27. (x modm2) modm = x modm8. (x modm2)�m = (x�m) modmTo state the correctness of the ripple-carry adder we de�ne a function bvwhich convert natural numbers to bit vector representations and another func-tion vp to convert the output of the the function rc to the corresponding naturalnumbers.Function bv takes two natural numbers as arguments. The value of bv:n:xin the standard model is a bit vector of length 2n representing x mod 22n in theencoding assumed in our de�nition of rc.De�nition 27bv:0:x = hx mod 2ibv:(n+ 1):x = bv:n:(x mod 22n) j bv:n:(x� 22n) for n � 0The proof of the following lemma is straightforward and is omitted.Lemma 28 lgl :(bv:n:x) = n 28



We also have the following result.Lemma 29 bv:n:x = bv:n:(xmod 22n)Proof We use inducton on n.Basis: Immediate from De�nition 27 and Lemma 26.3 since 2 = 220 .Induction step: We de�ne m = 22n , som2 = 22n+1 , and our induction hypothesisis, for any x, bv:n:x = bv:n:(xmodm)We want to show bv:(n + 1):x = bn:(n+ 1):(xmod m2)bv:(n+ 1):(x modm2)= f De�nition 27 gbv:n:((x modm2) modm) j bv:n:((x modm2)�m)= f Lemma 26.7; Lemma 26.8 gbv:n:(xmodm) j bv:n:((x�m) modm)= f induction hypothesis, with x := x�m gbv:n:(xmodm) j bv:n:(x�m)= f De�nition 27 gbv:(n+ 1):x(End of proof)The following lemma is the main result needed for the ripple-carry addercorrectness proof.Lemma 30 For any x, y and b, 0 � x < 22n, 0 � y < 22n , b 2 f0; 1g,rc:b:(bv:n:x):(bv:n:y) = (bv:n:(x+ y + b); (x+ y + b)� 22n)Proof Note �rst that for x, y and b in the ranges given, x+ y + b < 21+2n , so(x+y+b)�22n) 2 f0; 1g, as required. The proof of the theorem is by inductionon n.Basis: Note that for n = 0, x < 2 and y < 2.rc:b:(bv:0:x):(bv:0:y)= f De�nition 27 grc:b:hxmod 2i:hy mod 2i= f Lemma 26.1, x < 2 and y < 2 grc:b:hxi:hyi= f De�nition 12 g(h(x+ y + b) mod 2i; (x+ y + b)� 2)= f De�nition 27; 20 = 1 g(bv:0:(x+ y + b); (x+ y + b)� 220)29



Induction step: We de�ne m = 22n, so m2 = 22n+1 , and we assume that for allx, y, 0 � x < m and 0 � y < m, and for b 2 f0; 1g,rc:b:(bv:n:x):(bv:n:y) = (bv:n:(x+ y + b); (x+ y + b)�m)We have to showrc:b:(bv:(n+ 1):x):(bv:(n+ 1):y) =(16) (bv:(n+ 1):(x+ y + b); (x+ y + b)�m2)for x and y in the range 0 � x < m2 and 0 � y < m2. Note that fromDe�nition 27 we havebv:(n+ 1):x = bv:n:(x modm) j bv:n:(x�m)bv:(n+ 1):y = bv:n:(y modm) j bv:n:(y �m)So from De�nition 12 we haverc:b:(bv:(n+ 1):x):(bv:(n+ 1):y) = (t; d)(17)where t = u j v(18) (u; c) = rc:b:(bv:n:(xmodm)):(bv:n:(y modm))(19) (v; d) = rc:c:(bv:n:(x�m)):(bv:n:(y �m))(20)We have, from Lemma 26.0, x modm < m and y modm < m; also, fromLemma 26.2, x�m < m and y�m < m. So we apply the induction hypothesisto (19) and (20) to getu = bv:n:(x modm+ y modm + b)(21) c = (x modm + y modm + b)�m(22) v = bv:n:(x�m+ y �m+ c)(23) d = (x�m + y �m + c) �m(24)We now haveu= f (21); Lemma 29 gbv:n:((x modm+ y modm + b) modm)= f Lemma 26.3, twice gbv:n:((x+ y + b) modm)and 30



x�m + y �m+ c= f (22) gx�m + y �m+ (x modm + y modm + b)�m= f Lemma 26.4, twice g((x�m) �m + (y �m) �m+ x modm + y modm + b)�m= f Lemma 26.1, twice (since x�m < m and y �m < m) g(((x�m) modm) �m + ((y �m) modm) �m+x modm + y mod m+ b)�m= f rearrange g(x modm + ((x�m) modm) �m +y modm + ((y �m) modm) �m + b)�m= f Lemma 26.6, twice g(x modm2 + y modm2 + b)�m= f Lemma 26.1, twice (since x < m2 and y < m2) g(x+ y + b)�mSubstituting in (23) givesv = bv:n:((x+ y + b)�m)Also d= f substituting in (24) from above g((x+ y + b)�m)�m= f Lemma 26.5 g(x+ y + b)�m2So far we have the followingu = bv:n:((x+ y + b) modm)(25) v = bv:n:((x+ y + b)�m)(26) d = (x+ y + b) �m2(27)We now gett= f substitute from (25), (26) in (18) gbv:n:((x+ y + b) modm) j bv:n:((x+ y + b)�m)= f De�nition 27 gbv:(n+ 1):(x+ y + b)This result, together with (17) and (27) gives (16), as required.(End of proof)We now de�ne the function vp which returns the natural number correspond-ing to the result of a call to rc. We �rst de�ne auxiliary functions expand andvv. 31



The idea of the function expand is that expand:n:p returns the value of thethe bit vector p, where p is regarded as a number in base 22n.De�nition 31expand :n:hxi = xexpand :n:(p 1 q) = expand :(n+ 1):p+ expand :(n+ 1):q � 22nFunction vv is de�ned in terms of expand .De�nition 32 vv = expand :0The following lemma can be proven by structural induction.Lemma 33 expand :n:(p j q) = expand :n:p+ expand :n:q � 22n+lgl:pWe need only the following corollary to this lemma, which follows immediatelyfrom De�nition 32.Lemma 330 vv:(p j q) = vv:p + vv:q � 22lgl:pWe now show that vv is the inverse of bv:n for a subset of the natural numbers.Lemma 34 vv:(bv:n:x) = x mod 22nProof We use induction on n.Basis: vv:(bv:0:x)= f De�nition 32; De�nition 27 gexpand :0:hxmod 2i= f De�nition 31 gx mod 2= f 20 = 1 gx mod 220Induction step: Assume the result holds for n.vv:(bv:(n + 1):x)= f De�nition 27 gvv:(bv:n:(x mod 22n) j bv:n:(x� 22n))= f Lemma 29 gvv:(bv:n:x) j bv:n:(x� 22n))= f Lemma 330; Lemma 28 gvv:(bv:n:x) + vv:(bv:n:(x � 22n)) � 22n= f induction hypothesis, twice gx mod 22n + ((x � 22n) mod 22n) � 22n= f Lemma 26.6 gx mod 22n+1 32



(End of proof)We now de�ne function vp.De�nition 35 vp:(t; d) = vv:t+ d � 22lgl:tFinally, we can state and prove that rc correctly implements addition.Theorem 2 (Correctness of the ripple-carry adder) For any x, y and b,0 � x < 22n, 0 � y < 22n , b 2 f0; 1g,vp:(rc:b:(bv:n:x):(bv:n:y)) = x+ y + bProof We �rst note that we have x+ y + b < 21+2n � 22n+1 . We let m = 22n ,so m2 = 22n+1 , as before. From the above and Lemma 26.2 we havex+ y + b < m2(28) (x+ y + b) �m < m(29)So we calculatevp:(rc:b:(bv:n:x):(bv:n:y))= f Lemma 30 gvp:(bv:n:(x+ y + b); (x+ y + b)�m)= f De�nition 35; Lemma 28 gvv:(bv:n:(x+ y + b)) + ((x+ y + b)�m) �m= f Lemma 34; Lemma 26.1, (29) g(x+ y + b) modm + (((x+ y + b)�m) modm) �m= f Lemma 26.6 g(x+ y + b) modm2= f Lemma 26.1, (28) gx+ y + b(End of proof)References[0] E W Dijkstra and C S Scholten. Predicate calculus and program semantics.Springer-Verlag, 1990.[1] M J C Gordon.Why higher-order logic is a good formalism for specifying andverifying hardware. Technical report 77, University of Cambridge ComputerLaboratory, 1985.[2] Warren A Hunt, Jr and Bishop C Brock. Veri�cation of a bit-slice ALU .Technical report 49, Computational Logic Inc, 1989.33



[3] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In J�rgenStaunstrup, editor, Formal methods for VLSI design. North-Holland, 1990.[4] Jacob Kornerup. Mapping powerlists onto hypercubes. PhD thesis, Depart-ment of Computer Sciences, The University of Texas at Austin, 1994. Inpreparation.[5] Miriam Leeser. Using Nuprl for the veri�cation and synthesis of hardware.Philosopical Transactions of the Royal Society, A 339, 49{68, 1992.[6] Jayadev Misra. Powerlist: a structure for parallel recursion (preliminaryversion). In A W Roscoe, editor, A classical mind: essays in honour ofC A R Hoare, pages 295{316. Prentice Hall International, 1994.

34


