Verifying adder circuits using powerlists

William Adams*

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
USA

e-mall: will@cs.utexas.edu

March 29, 1994

Abstract

We define the ripple-carry and the carry-lookahead adder circuits in the
powerlist notation and we use the powerlist algebra to prove that these
circuits correctly implement addition for natural numbers represented as
bit vectors.

0 Introduction

As hardware designs increase in complexity it is less possible to reason infor-
mally about their behaviour, or to exhaustively test all possible behaviours.
Several researchers have used formal systems for hardware verification, such as
the Boyer-Moore logic [2], HOL [1], Nuprl [5] and Ruby [3]. We propose the
use of a new data structure, the powerlist, for circuit verification. We show how
powerlists may be used to express circuits and reason about their correctness.

The powerlist data structure has been recently introduced by Misra [6]. Tt
provides a notation for compactly expressing synchronous parallel computations
in a functional programming style and an algebra within which properties of
such computations can be proven. The notation allows a computation on a
given powerlist to be expressed in terms of computations on two components,
each of which is half the size of the original list. Recursion is used to express
“divide and conquer” algorithms.

Synchronous digital circuits are often regular, in the sense that a computa-
tion is performed in terms of several disjoint, similar, subcomputations. Thus

*This material is based in part upon work supported by National Science Foundation
Award CCR-9111912

powerlists appear to be well-suited to expressing the functionality and reasoning
about the behaviour of such circuits. We have used powerlists to define and ver-
ify a couple of standard adder circuits, the ripple-carry and the carry-lookahead
adders.

The powerlist notation allows us to write succinct definitions of these circuits.
Also, the powerlist algebra allows short, equational proofs of all the results that
we need to verify these circuits. We have provided detailed proofs of our results;
the steps in these proofs are sufficiently small that there is a good possibility of
providing automated support for the generation of similar proofs!.

Our main result is a proof that the ripple-carry and the carry-lookahead
adder circuits compute the same function. We also give a proof that the ripple-
carry adder circuit correctly implements addition on natural numbers. The
two results together show that the carry-lookahead adder circuit also correctly
implements addition.

1 Powerlists

Misra defines a data structure called the powerlist. Given a set B of elements,
called scalars, the set of powerlists over B is the set of linear lists over B whose
length is a power of 2. The smallest powerlist is thus a list containing a single
element « of B, which we write (z). We call such a powerlist a singleton. There
are two constructors which allow us to construct new powerlists from powerlists
p and ¢, where p and ¢ are of equal length.

e p|q (read p tie ¢) is the powerlist formed by concatenating p and q.

e p WX g (read p zip ¢) is the powerlist formed by interleaving the elements
of p and q.

Note We use the following conventions for variable names throughout this
paper: a, b, ¢, d, e, f, g, h, , y and z represent scalars (elements of B); p,
q, 7, s, t, u, v, w represent powerlists. When giving examples of powerlists we
enclose the elements in angle brackets.

The following are examples of powerlists.

{e f)
s
(abcde fgh)

1Researchers at SUNY Albany, led by Deepak Kapur, have already mechanically generated
proofs for many of the results given in Misra’s original powerlist paper.

The following illustrate the definition of tie and zip.

(abedy|{e fgh) = {(abcde fgh)
(abedyN{e fgh) = {aebfecgdh)
{a) [(b) = {ab) = {a) > (b)

It is clear that if we confine ourselves to the singleton constructor (-) and
the constructors | and X on equal length lists that we can construct all lists of
length 2™ for n > 0 and no others. For a powerlist of length 2" we call n the
loglen of p, which we write lgl.p. We use the notation p; to denote element ¢ in
the powerlist p, for 0 < i < 24'»,

If we take equality of powerlists to be equivalent to equality of linear lists
(that is, element-by-element equality) then it is a straightforward matter to
show the definitions of (-}, | and X satisfy the following axioms.

Powerlist axioms

(Singleton) (&) = {y) = 2=y

(Pair) () [(y) = () X (y)

(Tie) plg=7r|s = p=7r A qg=s
(Zip) pHqg=rMNs = p=1r A gqg=s
(Commutativity) (p™Mq) | (rXs) = (p|r)XN(q]s)

More generally, we can define a powerlist algebra over B to be a tuple
(P, {),],™, lgl) such that

e P is a set of powerlists
e () is a constructor B — P
e | and X are constructors P x P — P
e lgl is a function P — N
which satisfy the following rules
o (z) is defined for all z € B

lgl.p is defined for all p € P

p | ¢ and p X ¢ are defined iff lgl.p = lgl.q

lgl.p=10iff p= () for some z € B

lgl.(p | q) = lgl.(p™M q) = lgl.p+1

lglp>0iff p=q|ror p=qXrforsomeq,re P

e (), | and X satisfy the powerlist axioms

Misra’s powerlists are one example of such a powerlist algebra, which we
call the standard model. Kornerup [4] has another example where | and X are
defined differently, using the Gray-code and inverse Gray-code permutations.

We refer to the standard model to provide an operational interpretation of
the functions that we define, though our proofs are entirely within the powerlist
algebra and so are valid for all models.

From the axioms we can prove the following.

Theorem 0 (Dual decomposition) For any non-singleton powerlist p there
are unique powerlists v, s, u and v such thatp = r|s andp = uMwv.

Note Proofs omitted from the main body of the paper are in the appendix.

2 last and the shift operator

As our first example of a powerlist function we define the function last. We use
a pattern-matching style of function definition. The period represents function
application.

Definition 0

last.{z) = =
last.(p | q) = last.q

Note that because of Theorem 0, this function is defined on all powerlists: any
powerlist is a singleton or is the tie of two powerlists.

The interpretation of last in the standard model should be clear: last returns
the last (rightmost) element of the powerlist. A result of this definition is the
following result.

Lemma 1 last.(p™X q) = last.q

We could equally well have chosen to define last in terms of M and proven a
result about last applied to p | q.

Notation Where convenient we write p for last.p.

The infix shift operator, written — takes a scalar as its left argument and a
powerlist as its right argument and returns a powerlist of the same size. In the
standard model the intended effect of x — p is a powerlist ¢ of the same size as
p where qo = 2 and ¢; = p;_; for 1 < i < 2%"4. So, for example, we expect

a—{efgh = {aefg)

The following definition realises this description.

Definition 2
r—={y) = ()
r—(pXgq) = (z—q)Xp
We have a result about — in terms of |.

Lemma 3 J:—>(p|q) = ($—>P)|(ﬁ—>Q)

3 Pointwise operators

We can define powerlist functions in terms of operators on the scalar set B. One
common way to do this is to coerce operators on B to be operators on powerlists
over B. The simplest way to do this is so that

(abedyx{e fgh) = {(axe bxf cxg dxh)
The definition of this coercion is straightforward.

Definition 4 For* a binary operator on B, we coerce x to be a binary operator
on P by

(x)x(y) =
(PH@*(rXs) = (pxr)M(gxs)

We call such an operator x a pointwise operator on powerlists. The following
result is easily proven.

Lemma 5

(pla)x(rls) = (p*xr)|(g*s)

We generalize the definition of pointwise operators to n-ary operators in the
obvious way. Note that pxq is defined iff lgl.p = lgl.q and that lgl.(p*q) = lgl.p.
A simple induction establishes that commutativity, associativity and distribu-
tivity properties of binary operators on B are carried over to the corresponding
pointwise operators on powerlists. We can also show that

last.pxlast.q = last.(p*q)
(x—=p)x(y—q) = (zxy)—(*xq)

We call functions and operators on powerlists which commute with pointwise
operators in this way positional.

4 Shifted operators

For % a binary operator on B, we define shift x, written %, so that
(abedyx{e fgh) = (e axf bxg cxh)

The operator x is similar to the pointwise version of the x operator except that
elements from the first powerlist are shifted one place to the right before x is
applied pointwise.

Definition 6 For % a binary operator on B, we define * on P by
() x(y) = ()
(pM@*(rHs) = (¢xr) X (p*s)

Note that, as with the pointwise version of %, p* ¢ is defined iff lgl.p = lgl.q and
that lgl.(pxq) = lgl.p.
We have the following quasi-associativity results.

Lemma 7 For associative x,

(pxq)*r = px(g*r)
(pxq)*r = px(¢*r)

5 Prefix computation

If p is a powerlist over scalar set B and x is an associative binary operator on
B then we define the prefiz computation of p with respect to x in the standard
model to be a powerlist w of the same size as p such that w; = pgx---xp;. So,
for example, if p = (a b ¢ d), the prefix computation of p with respect to % is
the powerlist

(a axb axbxec axbxcxd)

We can express the conditions on the prefix computation in the following way.

Wy = Po
w; = Wi—1*P; 1§i<21§l'p

This is equivalent to the powerlist expression
w = wxp

We have the following result.

Lemma 8 For x an associative binary operator on B, the equation
w = wxp

has a unique solution in w for any p.

This justifies defining of the prefix sum operator as follows.

Definition 9 (Prefix computation) For x an associalive binary operalor on
B, the prefiz computation of powerlist p with respect to *, written |dp, is defined

by
w=kp = w=wxp

For our convenience in defining the carry-lookahead adder we define another
operator on powerlists which combines the shift and prefix computation opera-
tors.

Definition 10 (Shift-prefix) The shift-prefiz computation of ¢ and p with re-
spect to x, written x bip, 1s defined by

v5p = H(z—p)

The following lemma gives a direct definition of .

Lemma 11

e (y) = ()
*
e=(plq = ulv
*
where u = a>p
— —\ K
v (T*P)—q

6 Using powerlists to describe circuits

The circuit descriptions that we give are algorithmic, in that they indicate which
intermediate results the circuit 1s to calculate and how it is to combine these
to reach the desired result. (We do not address the question of translating
these algorithms to hardware.) The powerlist notation allows for a compact
representation of circuits. The style of definition we use is similar to that used
by Hunt and Brock [2], except they used Lisp lists where we use powerlists and
they provided mappings down to the hardware level.

The input and output values of circuits are given in terms of values from
the set {0, 1}, which we call bits. We regard this set as a subset of the natural
numbers, so we allow ordinary arithmetic operations on it. We represent input
and output registers as powerlists of bits, which we call bit vectors. When we
are using registers to represent natural numbers we assume that bits go left to
right from low-order to high-order within the corresponding bit vectors.

As an example of the style in which we present circuits, we define two circuits
to compute the parity of the bits in a register. This is a special case of a more
general problem: given a powerlist p and an associative binary scalar operator
%, compute pg ... %* py_1 where N is the length of p (so N = 21'?). We

call this computation the reduction of p with respect to . Parity is reduction
of a bit vector with respect to the operator @, which is addition modulo 2
(or, equivalently, logical exclusive-or if we regard 0 and 1 as representing false
and true repectively). As a first (inefficient) way of doing this we consider the
function iterpar defined by the following.

iterpar.b.{(x) = bdw
iterpar.b.(p | q) = iterpar.cq
where ¢ = iterpar.b.p

Function ¢terpar takes two arguments, a single bit and a bit vector and returns a
single bit representing the parity of all the bits of its arguments. Thus iterpar.0.p
returns the parity of p. We interpret this function as describing a circuit in which
we can identify particular wires as carrying the input, output and intermediate
values which are generated as we unwind the recursive calls. The function
describes not a single circuit, but a family of circuits, one for each register
width 27 for n > 0. The recursive nature of the definition indicates that we
should be able to identify circuits of width 2”~! within a circuit of width 27.

It should be clear that iterpar describes an iterative circuit which accumu-
lates 1ts result by checking the bits of the input register left to right, checking
each bit’s parity against that of the previously seen bits. This is a rather unnat-
ural definition to give in the powerlist notation, but it is close to the Lisp-style
definitions used by Hunt and Brock.

As an obvious improvement (in both the circuit delay and the number of
gates required) we propose the circuit parapar which uses concurrent operations
on the bits of the input registers.

parapar.(x) = x
parapar.(p™X q) = parapar.r
where r = pdyg

Function parapar takes as input a single bit vector and uses a tree computation
to calculate the result. Here again we regard this as describing a circuit in which
we can identify wires holding the intermediate results used. As with terpar,
parapar describes a family of circuits of width 2. Though (we claim) dterpar.0
(the iterpar circuit with the initial input bit fixed at 0) and parapar define the
same function, when we interpret their definitions as circuits we see that they
describe different circuits.

To verify these circuits, we first need a way to state their correctness, so we
must define the parity of a powerlist. From what we have previously defined we
could use the following.

parity.p = last.|glp

The verification task is then to prove that iterpar.0 and parapar are both func-
tionally the same as parity. Since to prove the three equalities

werpar.0 = paridy

parapar = parity

ierpar.0 = parapar

we need only prove any two of them, we are free to choose which two to prove.
Use this freedom when, rather than attempting to prove directly that the carry-
lookahead adder correctly implements addition, we prove this by showing it
equivalent to the ripple-carry adder, whose correctness is easier to establish
directly.

7 The ripple-carry adder

The ripple-carry adder is the simplest of the adder circuits to describe and
explain. The basic element of the circuit is the full-adder. This is circuit
element with three bit inputs, #, y and b (# and y are the local inputs and b is
the carry-in) and two bit outputs, z and ¢ (z is the local output and ¢ is the
carry-out). The operation of the full-adder is illustrated in figure 0. The output
z is 1 if one or three of the input bits are 1 and is 0 otherwise; the output ¢ is
1 if two or more of the input bits are 1 and is 0 otherwise (here + represents
integer division).

The idea is that and y are bit values at corresponding positions in two
registers, and b is the carry generated by adding bits at lower order positions;
the result of the local addition is the bit z which represents the bit in the output
register at the position corresponding to x and y, and a carry bit ¢ which is
passed on to the higher order bits. We regard a full-adder as a ripple-carry
adder of width 1. We join two ripple-carry adders of width 2" to give one of
width 27*! as shown in figure 1. In the figure the input and output registers
are shown with their least significant bits on the left.

The function rc takes as its inputs a single bit b representing the carry-in and
equal-length bit vectors p and ¢ representing the input registers. The output of
rc is a pair (¢,d) where 7 is a bit vector of the same size as the input bit vectors
representing the output register and d is a single bit representing the carry-out
(overflow).

Definition 12 (Ripple-carry adder)

re.b.(x).(y) {(z+y+b)mod2), (x+y+b)+2)

bl ls) = (d)
where ¢ = ulv

(u,e) = rcbpr

(v,d) = rec.cq.s

We show in Appendix A.5 that the ripple-carry adder defined in this way cor-
rectly implements addition.

oy
full
adder

|

z

z=(x+y+b)mod?2
c=(x+y+b)+2

Figure 0: The full-adder circuit element

ripple-carry
adder for 2" bits

ripple-carry c ripple-carry
adder for 2" bits adder for 2" bits

| u I v |

27t hitg

Figure 1: Ripple-carry adders of widths 27 and 27+!

10

It 1s well known that the ripple-carry adder is not the most efficient circuit for
adding natural numbers represented as bit vectors. We next describe the carry-
lookahead adder which is known to be more efficient. However, the correctness
of the carry-lookahead adder is not nearly as apparent as the correctness of
the ripple-carry adder, but using the powerlist algebra we prove that the two
circuits compute the same function.

8 The carry-lookahead adder

The inefficiency of the ripple-carry adder circuit arises from a linear data de-
pendence between the computations at each bit position: the computation at
any position requires as one of 1ts inputs a carry-in, which is the carry-out from
the position to its left (the carry bits are said to ripple from left to right, which
gives the circuit its name). The strategy used in the carry-lookahead adder is to
first calculate the carry-in to each position using a prefix computation (this can
be done in time logarithmic in the width of the input registers). Once this has
been done the local result for all bit positions can be calculated concurrently
using only local computations.

To explain the carry-lookahead adder we first note that in the ripple-carry
adder, if the input bits p; and ¢; at position ¢ are both 1 then the carry-out
from that position is 1 regardless of the carry-in (in this case we say position
i generates a carry). Similarly, if p; and ¢; are both 0 then the carry-out from
position ¢ is 0 regardless of the carry-in (position ¢ stops a carry). If one of p;
and ¢; is 1 and the other is 0 then the sum of these bits is 1 and the carry-out
from position ¢ is the same as the carry-in (position ¢ propagates a carry).

We define a binary operator e to calculate whether two bits at a given
position generate, stop or propagate a carry.

Definition 13

oy — x if z=y
rey = m il z#y

Here outputs 1 and 0 represent generate and stop respectively (these are given
by the appropriate carry value) and output = represents propagate. Pointwise
application of e to input bit vectors p and ¢ gives us the initial carry-out vector.

We use the example in figure 2 as we continue the explanation of the oper-
ation of the carry-lookahead adder. The example and the new operators intro-
duced in 1t are explained in the following paragraphs.

The first three lines are the input bit vectors p and ¢ and the carry-in bit b.
The next line shows the initial carry-out vector r which, as explained above, 1s
given by p eq.

The initial carry-in values for each bit position are now given by the vector
b — r, which 1s shown in the fifth line. The value 7 is shifted out of the vector by

11

p o 1 1 0 0 0 1 1

q 0 1 1 1 0 1

b 0

r 0 = 1 = 0 1 pey
b—r O 0 #© 1 = =« 0 1

T i

s o o o 1 1 1 0 1 b
t o 1 0 0 O 1 0 0 sOTr
d 1 ST

Figure 2: Example showing the stages in calculating the outputs ¢ and d using
carry-lookahead for inputs p, ¢ and b

this operation. From the above remarks we can conclude that a position that
has a non-7 value in b — r has the correct carry-in value. Any position that has
a 7 carry-in value gets the rightmost non-# carry-in value to its left as its final
carry-in value. We can represent the computation of the final carry-in values s
as a prefix computation with respect to the binary operator x defined as follows.

Definition 14

“y:{y if y#m

x if y=m=x

Note that x is associative, so prefix computation with respect to x is well-defined.
The value of s is thus (b —r) or b,

To compute the vector of local outputs ¢ we note that if »; # 7 then the
contribution of p; and ¢; to ¢; is 0, so #; is the value of the carry-in s;. If r; = &
then the contribution of p; and ¢; to t; is 1, so the local result is the inverse of s;.
We define a binary operator @ which gives this result when applied pointwise
to s and r.

Definition 15

_ z if y#m7

TOY = { -z if y=n«
where =0 = 1

-1 = 0

T = 7

The value of ¢ is thus s © r.

To determine the carry-out d of this operation we notice that d is the value of
the carry-out from the the rightmost position of the bit vectors, or alternatively
the carry-in to a position just to the right of the rightmost position. If we

12

consider the value that a prefix computation for carry-in bits including this
position would yield we see that d is given by 5x 7.

Combining the informal arguments above we now propose the following def-
inition of an addition circuit. We use the same input and output formats for cl
as we used for re.

Definition 16 (Carry-lookahead adder)

clbp.g = (t,d)
where ¢ = sOFr
d = 3%T
r = pegq
s b r

It can be seen from this definition that all operations used in the calculation of
the results of the carry-lookahead adder, apart from the shift-prefix computation
used to evaluate s, are pointwise (and thus can be performed for all bit positions
in parallel). Shift-prefix can be evaluated on input registers of width 27 in time
proportional to n. Hence the overall running time is logarithmic in the width
of the input registers. In contrast, the running time for the ripple-carry adder
circuit is linear in the width of the input registers.

Note The function ¢l is defined for b € {0, 1, 7} and for p and ¢ powerlists over
the same set. However, in the theorem below we restrict the inputs to come
from the set {0,1}. One consequence of the theorem is that in this case the
output of ¢l does not contain the value 7 (since rc cannot generate such a value
in its output).

Theorem 1 (Equivalence of the adder circuits) For all p, q, b, where p
and q are bit vectors of equal size and b € {0, 1},

rc.b.p.q = clb.pyg

Proof We show that cl satisfies the equations defining rc. That is, we use
Definition 16 to calculate cl.b.p.q for singleton p and ¢ and for non-singleton
p and ¢ and we show in each case that the result can be put in the form of
Definition 12. The result then follows by a simple structural induction.

For cl.b.{z).{y) we get the following. The format of the proofs is explained in
Appendix A.0.

r

{ Definition 16 }
(z) o (y)

= { e pointwise }
(zoy)

13

s

= { Definition 16 }
b

= { value of r, above }
b (z e y)

= { Lemma 11 }
b

[
= { Definition 16 }
sOr
= { values of s and r, above }
(5 © (& o)
= { ® pointwise }
(b0 (z o p))
d

= { Definition 16 }
SxT

= { values of s and r, above }
last.(b) * last.(x o y)

= { Definition 0, twice }
bx(xey)

Since we can show
bo(rey) = (z+y+b)mod?2
bx(xey) = (x4+y+b)=2
for all z, y and b taking values from {0, 1}, we have
cb () {yy = {(z+y+b)mod2),(x+y+b)+2)
which matches the base case of Definition 12.

We now need to express cl.b.(p | ¢).(¢' | ¢') in terms of cl.b,.p.p" and cl.b,.q.¢" for
appropriate values of b, and b, to match the recursive case of Definition 12. We
have the following from Definition 16.

co(plq).(p' I¢) = (td)

where

(0)

[A T
1!
o |
3
= |
~—

[]
—~
’6\
=,
~—

14

clbppp’ = (tp,dp)

where t, = 5,07,

(1) dy = Sp*Tp
r, = pe p/

sp = by = Tp

clbgq.¢ = (5, dy)

where t, = 5,07

(2) dg = SixTq
ry = qe q/

s = by = g

We now express the intermediate results for cl.b.(p | ¢).(p | ¢’) in terms of the in-
termediate results for cl.b,.p.p’ and cl.b,.¢.¢". In doing so we choose appropriate
values for b, and b,.

= 100) }
(plo)e (' |d)

= { e pointwise }
(pep)|(qgeq)

= {();@2)}

rp|rq

s

= {(0)}
b

= { value of r, above }
b (rp [1)

Using Lemma 11 we calculate u and v so that s = u | v.

u

= { Lemma 11 }
bbiw“p

= { choose b, = b, (1) }
Sp
v

= { Lemma 11 }
T A Ty) P
(@x7p) =7y
= { value of u, above }

15

(%*ﬁ)i}rq
{3
dpbiw“q
= { choose b, =d,, (2) }

34

Thus if we choose b, = b and b, = d, we get s = s, | 5.

= {(0)}
s@Or

= { values of s and r, above }
(8p | 54) © (rp | 7g)

= { ® pointwise }
(8p ©1p) | (54 © 1)

= 1(; (2}

tp |tq

d

= Lo
SkT

= { values of s and r, above }
last.(sp | 54) * last.(rp | 74)

= { Definition 0, twice }
ST

- ey
dq

Combining the above results we get

cb.(plg).(p'1¢) = (t,dy)
where ¢ = 1,1,
(tp,dp) = clbpyp
(tg,dy) = cldpq.q

which is precisely the form of the recursive case of Definition 16.

(End of proof)

9 Conclusions

Using powerlists we have shown that two adder circuits with dissimilar algo-
rithms, one with running time linear in the input register width and the other

16

with logarithmic running time, compute the same input-output function. This
result is, of course, well known. However, our proof of this result (Theorem 1)
is surprisingly compact. We believe this compactness is a strong argument in
favour of using the powerlist notation for describing and verifying circuits.

A further result is that the prefix computation can be expressed as the unique
solution of a fixpoint equation, and that we can derive its properties from this
equation. Since the prefix computation plays such and important role in digital
design, we expect the results in Appendix A.4 leading to the proof of Lemma 11
to be of use as we attempt to specify and verify other circuits.

We plan to further explore the use of powerlists for expressing and verifying
digital circuits in future work.

Acknowledgements

Jay Misra suggested that I look at the possibilities for the use of his powerlist
notation for circuit specification and verification. This work was completed
thanks to Jay’s continual support and encouragement. Other colleagues at UT
Austin, notably Al Carruth, Warren Hunt and Jacob Kornerup, made several
suggestions for improving the presentation of the material.

A Appendix: additional proofs

A.0 Proof format

Where we give calculational proofs we use the format from Dijkstra and Scholten
[0]. So, for example, the proof of the identity

({a) W (b)) M ({c) M (d)) = ({a) | {c}) | ((b) [{d}))
is presented as a chain of equalities in the following format.

({a) ™ (b)) ™ ({c) ™ {d})

= { Pair axiom, twice }

({a) [(6)) M ({c) | (d))

= { Commutativity axiom }

({a) M {e}) | ((b) M (d))

{ Pair axiom, twice }
({a) [{c)) [({B) | ()

The lines beginning with equality symbols contain justifications (in curly braces)
for the claimed equality between the term above and the term below.

A.1 Dual decomposition

Theorem 0 (Dual decomposition) For any non-singleton powerlist p there
are unique powerlists v, s, u and v such thatp = r|s andp = uMwv.

17

Proof We note that the uniqueness of r, s, v and v is guaranteed by the Tie
and Zip axioms and that, from powerlist algebra rules; p is not a singleton iff
p = r|s for some r and s or p = uX v for some u and v. We assume that
p is non-singleton and p = r|s and show that p = u X v for some u and v.
A corresponding proof shows the converse. The proof is by induction of the
structure of r and s.

Basis: r and s are singletons.

p

= { given }
r|s

= { r and s singletons, Pair axiom }
rXs

Soif u=rand v = s then p = u X v.

Induction step: r and s are non-singleton. We assume as the induction hypoth-
esis that » = v M ¢ and s = s’ X 5" for some r/, v/, s’ and s”.

p
{ given }
r|s
{ induction hypothesis }
(' X"y | (s W s
= { Commutativity axiom }
(7,,/ | 5/) X (7,,// | 5//)

Soifu=17"|s and v =" | ¢ then p= u X v.

(End of proof)

This proof makes use of the Pair and Commutativity axioms, which are the
only axioms that involve both | and X. The form of this proof is one that arises
repeatedly in proving results about powerlists.

A.2 Results for /ast and the shift operator

We give first a couple of results which are useful in the bases of inductive proofs
of results involving — and last. The proofs come directly from Definitions 2

and 0.

Lemma 17 For any scalar x and for any singletons p and q,

r—p = {(x)
p—q = p
Lemmas 1 and 3 use the same form of induction as used above to prove

Theorem 0. We show only the proof of Lemma 3.

18

Lemma 3 J:—>(p|q) = ($—>P)|(ﬁ—>Q)

Proof We use induction of the structure of the right-hand argument to —.

Basis: p and ¢ are singletons.

z—(plq)
{ Pair axiom }

r— (p X q)

= { Definition 2 }
(x — q) X p

= { Lemma 17 }
{z) M p

= { Pair axiom }
{z) [p

= { Lemma 17, twice }
(z—=p) [(P—9)

Induction step: p and ¢ are non-singleton. We assume p =r X s and ¢ = u X v
and, as the induction hypothesis, that # — (s | v) = (# —s) | (§—v).

z—(plq)
= { value of p and ¢ }

p— (1 8) | (w5 0))

= { Commutativity axiom }
w—((r |u) W (s |v))

= { Definition 2 }
(x—(s]v)) X (r|u)

= { induction hypothesis }
(g —=5) [(5—=0)) W (r | u)

= { Commutativity axiom }
(=) X 7) [((F—v) Mu)

= { Definition 2, twice }
(= (r™s)) | (5—(uMv))

= { Lemma 1 }
(x = (rXs)) | (last.(r X s) — (u X))

= { value of p and ¢ }

(x—=p) [(P—9q)
(End of proof)

A.3 Results for shifted operators

We first prove a result giving ¥ in terms of |.

Lemma 18

(P lo*(rls) = (pxr) [(F—q)*3)

19

Proof We use induction on the arguments.
Basis: p, ¢, r, s are singletons.
(P lg)*(r|s)
= { Pair axiom, twice }
(p M @)% (r M s)
= { Definition 6 }
(g%7) X (p)
= { Definition 6 }

7 M (p*s)
= { Pair axiom }
7| (p*s)

= { Definition 6; Lemma 17 }
(pxr) [(P—q) *s)

Induction step: p, ¢, r, s are non-singleton. We assume that p = p’ X p’’|
g=q' Xqg" r=v" N’ s=5 Xs" and, as the induction hypothesis,

" 1g)FE) = (" F) [(p7—q") %)
We then have

(plg)*(r|s)
= {valueof p, q, r, s }

((p' Xp") [(¢" W g”))*((r" MW7) [(s" M s"))
= { Commutativity axiom, twice }

(' |{Q') D; ®" | Q")]?;*'((T' ESLUCSNES)
= Definition 6

(" [¢")%(r" [) WP [¢) (7" | s7))
= { induction hypothesis; * pointwise }

(" Fr") [(07— ¢") % 5) M (P %" | (¢ > 5"))
= { Commutativity axiom }

(" %) 2 (p" %)) [(97— q") 5 8") M (' % 5"))
= { Definition 6; x pointwise }

((p M p") (" X)) [(P —¢") M q') * (5" MW 7))
= { Definition 2; value of p, r, s }

(pFr) | (" —(¢' X q")) %s)
= { Lemma 1; value of q }

(p?r{) | (l(last.f(p’? p’)—q) xs)
= value of p

(pFr) [(P—q) *s)
(End of proof)

The following lemma further illustrates the close connection between % and
—. The proof is a straightforward induction and is omitted.

20

Lemma 19 pR(z—q)=x—(p*xq)

Proof for Lemma 7 is also a straightforward induction and is likewise omitted.

A.4 Results for prefix computation and shift-prefix

The following lemma was used to justify the use of a fixpoint equation in Defi-
nition 9.

Lemma 8 For x an associative binary operator on B, the equation
w = wxp
has a unique solution in w for any p.

Proof We use structural induction on p. Note that, from the definition of %,
any solution in w to the equation w = w*p must be such that lgl.w = lgl.p.

Basis: p is a singleton. From Definition 6, for any singleton w
wxp = p

So we have

S
[l
S
*
3
1l
S
[
3

and thus w is uniquely specified.

Induction step: p is non-singleton, say p = r X s. We assume that for any ¢
such that lgl.t = lgl.r the fixpoint equation

has a unique solution in w’. Since any solution to the fixpoint equation for w
must be non-singleton, we can write such a solution as u X v. We now calculate
conditions on u and v.

u Mo
{ fixpoint equation for w }
(uXv)*p
{ value of p }
(u X v)*(rXs)
{ Definition 6 }
(v*r) X (uxs)

So from the Zip axiom

(3) u

(4) Vo= uxs

vRT

This gives

21

U

{ Substitute from (4) in (3) }
(uxs)xr
= { Lemma 7, % associative }
ux(s¥r)

Since lgl.(s % r) = lgl.r, from the induction hypothesis there is a unique u satis-
fying the equation

u = ux(s¥r)

Using this value of «, (4) thus gives a unique v and so w is uniquely determined.

(End of proof)

For an operator % having a left identity { (so {xx = » for all x € B), we can
show from the definitions that

pxq = (I—p)xq
We can thus regard the following lemma as a generalization of Lemma 8.
Lemma 20 For x a binary operator on B, the equation

w = (z—w)*xp
has a unique solution in w for any x and p.

Proof We use structural induction on p. Note that from the definition of a
pointwise operator, any solution w to the equation must be such that llen.w =
llen.p.

Basis: p is a singleton. For singleton w we have, from Lemma 17,
w=(x—w)xp = w={x)xp

so there is a unique solution in w to the equation.

Induction step: p is non-singleton, say p = r | s. We assume that for any « the
fixpoint equations

w o= (z—w)xr
= (z—uw")xs
have unique solutions in w’ and w”. Since any solution to the fixpoint equation

for w must be non-singleton, we can write such a solution as u | v. We now
calculate conditions on u and v.

22

ulwv

= { fixpoint equation for w }
(#—(u|v))*p

= { Lemma 3; value of p }
(g —w) [(@—=0v))*(r]s)

= { x pointwise }
(g —=w)xr) [(W—v) *s)

So from the Tie axiom
(5) u = (z—u)*xr
(6) v = (T—v)*s

From the induction hypothesis (5) has a unique solution in u. Using this solu-
tion, the induction hypothesis gives us that (6) has a unique solution in v, so w
is uniquely determined.

(End of proof)

Note In Lemma 20 we do not require that the operator x be associative and
the proof does not require this. It is possible to prove Lemma 8 using | instead
of M as the constructor in the induction step and appealing to Lemmas 18 and
20. We could thus remove the restriction that x be associative from Lemma 8.
We choose not to do this since the main purpose of Lemma 8 1s to establish the
validity of Definition 9, and prefix computation as it is normally understood is
only defined with respect to associative operators.

Our next goal is to prove Lemma 11. We first need to prove some results
about the prefix computation.

We use the notation [«] for the unary function (Ay :: #xy) on elements of B
(so [*].y = xxy). This function applies pointwise to powerlists. The following
lemma (and its generalization to the case when z is replaced by a powerlist) is
easily proven.

Lemma 21 For assoctative x,

[z %]y ~.z = [&x].([y *].2)

Note Throughout this section all prefix computations and shift-prefix compu-
tations are with respect to x, a given associative binary operator, so we omit
this operator from our notation and write | |p and « — p for [xJp and = bip.

The first result for the prefix computation operator is an alternative way of
defining it.
Lemma 22
U(z) = (=)
Urlg = ulv

where u = |]p

v = [u]lle

23

We prove this lemma in conjuction with the following one, which we can regard
as a generalization of Definition 9.

Lemma 23 For assoctative x,
w=(zx—w)kp = w=[z*|lp

Proof We prove the lemmas together with a single structural induction. Note
that for Lemma 23 it is sufficient to prove

w=lzxllp = w=(z—w)*xp

since the converse then follows from Lemma 20.

Basis: We need to show
(7) L) = (x)
(8) w=[zAy) = w=(@—w)x(y)

Proof of (7): Follows immediately from Definitions 9 and 6.
Proof of (8): Suppose that w = [x +].| [{y). We have

= { assumption and (7) }
[z *].{y)

= { [# *] pointwise }
(z*y)

So we get

(x —w) x (y)

= { Lemma 17, w a singleton (above) }
() * (y)

= { x pointwise }
(z*y)

= { above }

Induction step: We assume that for some p and ¢ such that lgl.p = Ilgl.q we
have, for all w and =,

(9) w=(@—w)xp = w=[x+|]lp
(10) w=(r—w)xq = w=[z*]|]¢
We show

(11) where u = |]p

24

(12) w=leAUple) = w=(—wxplq)

Proof of (11): Suppose w = | |(p | ¢). From Definition 9 we have that w is not
a singleton, so let w = u | v.

ulwv

{ Definition 9 }
((u] o) %(p]q)

{ Lemma 18 }
(uxp) [(@—v) xq)

So from the Tie axiom

U = u*xp
v = (T—v)*q
From Definition 9 we get
u = |lp
and (10) gives
v = [u+]lle

Proof of (12): Suppose w = [z #].| |(p | ¢). Taking u and v satisfying (11) we
get

= { assumption and (11) }
e #].(u |)

{ [# *] pointwise }
[*].u | [2+].v

So we have

w = r|s

(13) where r = [z+|.u

= [z
From (13) and (11) we get

r o= [z*].l]p

So from (9)
(14) r = (x—r)xp
Also

25

S

{(13) and (11) }
e ([2} L)
= { Lemma 21 }
L +1:3 L
= { [# *] pointwise, last positional }
[last.([x *].u) *].|_|¢
- (a3
[+].Lg
So from (10)

(15) s = (F—s)xq
Thus

(z—w)x(p|q)
= {(13)}
(x—(r]s)x(p|q)
= { Lemma 3 }
(e —r) | (F—) % (p] 0
= { * pointwise }
(2 —7)*p) | ((F—5))
= | L)

{(13) }

w

(End of proof)

Note Lemma 22 gives an iterative algorithm for the prefix computation, which
has running time linear in the length of the input list. We can derive other
algorithms for the prefix computation which have running time logarithmic in
the length of the input list. These algorithms use X to deconstruct the list in
the recursive case. See [6] for details.

The following lemma shows how [z %] distributes over .
Lemma 24 [*].(y—p) = (x*xy)—p
Proof Let w = (x x y) — p, so from Definition 10, w = | [((z xy) — p)
w
= { Definition 9 }
wk((zxy)—p)
= { Lemma 19 }

(x*xy)— (wxp)
= { x pointwise, — positional }

(x —w)x(y—p)

26

So from Lemma 23

w =

[z «].(y —p)

From Definition 10 this gives

(End of proof)

w = [¢4].(y—p)

We now are able to prove Lemma 11.

Lemma 11

z—(y) (z)
z—(plq) u v
where u =
Proof -
= {y)
= { Definition 10 }
Lz —(y))
= { Definition 2 }
L)
= { Lemma 22 }
(z)
v (p|q)
= { Definition 10 }
Lz —(p[49)
= { Lemma 3 }
LUz —p) | (P—q))
So by Lemma 22
v—~(plg) = ulv
where
v = Ue—p)
v = [uAld@—q)
Definition 10 then gives
U = z—p
v o= [@4F—0)
and Lemma 24 gives
= (@xp)—q

(End of proof)

27

l‘|—>p
(Txp)—q

A.5 Correctness of the ripple-carry adder

In this section we need some properties of mod and + on natural numbers.
We take them to be defined as follows (all variables are natural numbers with
m > 1). We give both of these operators the same binding power as *, the
multiplication operator.

Definition 25
r+=m = |z/m]
zmodm = z—mx*(z+m)
The following results can be proven from these definitions. We omit the proofs.
Lemma 26
0. 0<zmodm<m
l.z<m = zmodm=x¢x
r<m? = r+=m<m
(z mod m + y) mod m = (x + y) mod m
tt+y+-m=(zxm+y)+m
(r+=m)+m=2+m?
z mod m + ((z = m) mod m) * m = x mod m?

(z mod m?) mod m = x mod m

® e ok w DN

(r mod m?) - m = (z = m) mod m

To state the correctness of the ripple-carry adder we define a function bv
which convert natural numbers to bit vector representations and another func-
tion vp to convert the output of the the function rec to the corresponding natural
numbers.

Function bv takes two natural numbers as arguments. The value of bv.n.x
in the standard model is a bit vector of length 2" representing & mod 22" in the
encoding assumed in our definition of re.

Definition 27

bv.0.x = (xmod2)
bu.(n+1).2 = bv.n.(2mod2?) | bv.n.(z=2%) for n >0

The proof of the following lemma is straightforward and is omitted.

Lemma 28 lgl.(bv.n.z)=n

28

We also have the following result.
Lemma 29 bv.n.z = bv.n.(x mod 227)

Proof We use inducton on n.
Basis: Immediate from Definition 27 and Lemma 26.3 since 2 = 22°.

Induction step: We define m = 22" so m? = 22n+1, and our induction hypothesis
is, for any =,

bvnz = bv.n.(xrmodm)
We want to show
bv.n+ 1)z = bn.(n+1).(x mod mz)

bv.(n + 1).(z mod m?)
= { Definition 27 }
bv.n.((x mod m?) mod m) | bv.n.((x mod m?) = m)
{ Lemma 26.7; Lemma 26.8 }
bv.n.(z mod m) | bv.n.((x +m) mod m)
{ induction hypothesis, with := 2 +m }
bv.n.(z mod m) | bv.n.(x +m)
{ Definition 27 }
bv.(n+1).x

(End of proof)

The following lemma is the main result needed for the ripple-carry adder
correctness proof.

Lemma 30 Foranyz, y and b, 0 <z <2?", 0<y<2?" be {0, 1},
re.b.(bv.n.z).(bvny) = (bvn(z+y+b),(e+y+b) = 22n)

Proof Note first that for z, y and b in the ranges given, z +y + b < 2'+2" so
(x+y-+b)=2%") € {0,1}, as required. The proof of the theorem is by induction
on n.

Basis: Note that for n =0, 2 < 2 and y < 2.

re.b.(bv.0.2).(bv.0.y)
{ Definition 27 }

re.b.(xz mod 2).{y mod 2)

= { Lemma 26.1, x < 2 and y < 2 }
re.b.{(x).(y)

= { Definition 12 }
{((z+y+b)mod2), (x+y+b)+2)

= { Definition 27; 2° =1 }
(bv.0.(x + y+b), (2 +y+b) = 22°)

29

Induction step: We define m = 22", so m? = 22n+1, and we assume that for all
z,y, 0 <z <mand 0<y<m,and for b € {0,1},

re.b.(bv.n.z).(bvny) = (bvn(z+y+b),(x+y+b)+m)
We have to show

(16) re.b.(bv.(n+ 1).2).(bv.(n+ 1).y) =
(bv.(n+ 1).(x +y +0b), (x +y+b) = m?)
for and y in the range 0 < # < m? and 0 < y < m?. Note that from
Definition 27 we have
bv.in+ 1) = bv.n.(zrmodm)|bv.n.(z+m)
bv.n+ 1)y = bvn(ymodm)|bv.n.(y+m)

So from Definition 12 we have

(17) re.b.(bv.(n+ 1).2).(bv.(n+ 1).y) = (¢, d)
where

(18) t = ul|v

(19) (u,e) = reb.(bv.n.(z mod m)).(bv.n.(y mod m))
(20) (v,d) = rec.(bvn.(x+m)).(bv.n.(y+m))

We have, from Lemma 26.0, £ mod m < m and y mod m < m; also, from
Lemma 26.2, 2 —~m < m and y+m < m. So we apply the induction hypothesis
to (19) and (20) to get

(21) v = bv.n.(z modm+ymodm+b)
(22) ¢ = (zmodm+ymodm—+b)+m
(23) v = bvn(r=mt+y=+m+eo)
(24) = (z+=m4y+m+c)+m

We now have

U

{(21); Lemma 29 }

bv.n.((x mod m + y mod m + b) mod m)
{ Lemma 26.3, twice }

bv.n.((x+ y+ b) mod m)

and

30

r-=m+y-—m-++c
- (@)
z=m+y=+m+ (xmodm+ymodm—+b)=m
= { Lemma 26.4, twice }
((x=m)xm+ (y+=m)+m+zxmodm+ymodm+b)+m
= { Lemma 26.1, twice (since x =m < m and y ~m < m) }
(((z =m) mod m) * m + ((y = m) mod m) «m +
zmodm+ymodm+b)+m
= { rearrange }
(z mod m + ((z = m) mod m) + m +
ymod m+ ((y = m) modm)*m—+b) =m
{ Lemma 26.6, twice }
(z mod m? + y mod m? +b) = m
= { Lemma 26.1, twice (since x < m? and y < m?) }
(x+y+b)+m

Substituting in (23) gives
v = buvn((x+y+b)+m)
Also
d

{ substituting in (24) from above }
((x4+y+b)=m)+m

{ Lemma 26.5 }
(z+y+0b)+m?

So far we have the following

(25) v = bvn.((z+y+b) modm)
(26) v = buvn((t+y+b)=m)
(27) d = (z+y+b)=m?
We now get

[

{ substitute from (25), (26) in (18) }
bv.n.((x+y+b) modm) | bv.n.((z +y+b)+m)
{ Definition 27 }
bv.n+1).(z+y+0b)

This result, together with (17) and (27) gives (16), as required.
(End of proof)

We now define the function vp which returns the natural number correspond-
ing to the result of a call to rc. We first define auxiliary functions ezpand and
VY.

31

The i1dea of the function expand is that expand.n.p returns the value of the
the bit vector p, where p is regarded as a number in base 22",

Definition 31
expand.n.(z) = x
expand.n.(p™X q) = expand.(n+1).p+ expand.(n + 1).¢ * 22"
Function vv is defined in terms of expand.
Definition 32 vv = expand.(
The following lemma can be proven by structural induction.
Lemma 33 expand.n.(p | ¢) = expand.n.p+ expand.n.q * P

We need only the following corollary to this lemma, which follows immediately
from Definition 32.

Lemma 33’ vo.(p | q) = vop + vv.g* PE
We now show that vv 1s the inverse of bv.n for a subset of the natural numbers.
Lemma 34 vu.(bv.n.z) = 2 mod 22"

Proof We use induction on n.

Basis:

vo.(bv.0.2)

{ Definition 32; Definition 27 }
ezpand.0.{x mod 2)

{ Definition 31 }
z mod 2

(201}

x mod 22’

Induction step: Assume the result holds for n.

vo.(bv.(n+1).2)
{ Definition 27 }
vv.(bv.n.(z mod 22" | bu.n.(x = 2%"))
= { Lemma 29 }
vu.(bv.n.x) | bu.n.(x = 2%"))
= { Lemma 33'; Lemma 28 }
vv.(bv.n.x) + vv.(bv.n.(z = 227)) x 22"
= { induction hypothesis, twice }
x mod 22" 4 ((x = 2%") mod 227) * 22"
= { Lemma 26.6 }

22n+1

x mod

32

(End of proof)

We now define function vp.

lgl.t

Definition 35 vp.(t,d) = vo.t +d*2?
Finally, we can state and prove that rc correctly implements addition.

Theorem 2 (Correctness of the ripple-carry adder) For any x, y and b,
0<ae<2?,0<y<2”, be{0,1},

vp.(re.b.(bvna).(bvny) = x4+y+b

Proof We first note that we have z +y+ b < 272" < 22" We let m = 22"

so m? = 22n+1, as before. From the above and Lemma 26.2 we have

(28) r+y+b < m?
(29) (z+y+b)+=m < m

So we calculate

vp.(re.b.(bv.n.x).(bv.n.y))
{ Lemma 30 }
vp.(bvn(z+y+b),(x+y+b)+m)
= { Definition 35; Lemma 28 }
vo.(bvn(z+y+b)+ (z+y+b)+=m)*xm
= { Lemma 34; Lemma 26.1, (29) }
(x+y+b)modm+ (((z+y+b)+m) modm)*m
= { Lemma 26.6 }
(z + y + b) mod m?
{ Lemma 26.1, (28) }
r+y+b

(End of proof)

References

[0] E W Dijkstra and C S Scholten. Predicate calculus and program semantics.
Springer-Verlag, 1990.

[1] M J C Gordon. Why higher-order logic is a good formalism for specifying and
verifying hardware. Technical report 77, University of Cambridge Computer
Laboratory, 1985.

[2] Warren A Hunt, Jr and Bishop C Brock. Verification of a bit-slice ALU.
Technical report 49, Computational Logic Inc, 1989.

33

[3]

[4]

Geraint Jones and Mary Sheeran. Circuit design in Ruby. In Jgrgen
Staunstrup, editor, Formal methods for VLSI design. North-Holland, 1990.

Jacob Kornerup. Mapping powerlists onto hypercubes. PhD thesis; Depart-
ment of Computer Sciences, The University of Texas at Austin, 1994. In
preparation.

Miriam Leeser. Using Nuprl for the verification and synthesis of hardware.
Philosopical Transactions of the Royal Society, A 339, 49-68, 1992.

Jayadev Misra. Powerlist: a structure for parallel recursion (preliminary
version). In A W Roscoe, editor, A classical mind: essays in honour of
C A R Hoare, pages 295-316. Prentice Hall International, 1994.

34

